
 

© Martin Robert, 2020 
 

 

Deep-Learning Feature Descriptor for Tree Bark Re-
Identification 

Mémoire 

Martin Robert 

Maîtrise en informatique - avec mémoire 

Maître ès sciences (M. Sc.) 

Québec, Canada 
 



Deep-Learning Feature Descriptor
for Tree Bark Re-Identification

Mémoire

Martin Robert

Sous la direction de:

Philippe Giguère, directeur de recherche
Patrick Dallaire, codirecteur de recherche



Résumé

L’habilité de visuellement ré-identifier des objets est une capacité fondamentale des systèmes
de vision. Souvent, ces systèmes s’appuient sur une collection de signatures visuelles basées
sur des descripteurs comme SIFT ou SURF. Cependant, ces descripteurs traditionnels ont
été conçus pour un certain domaine d’aspects et de géométries de surface (relief limité). Par
conséquent, les surfaces très texturées telles que l’écorce des arbres leur posent un défi. Alors,
cela rend plus difficile l’utilisation des arbres comme points de repère identifiables à des fins de
navigation (robotique) ou le suivi du bois abattu le long d’une chaîne logistique (logistique).
Nous proposons donc d’utiliser des descripteurs basés sur les données, qui une fois entraîné
avec des images d’écorce, permettront la ré-identification de surfaces d’arbres. À cet effet,
nous avons collecté un grand ensemble de données contenant 2 400 images d’écorce présentant
de forts changements d’éclairage, annotées par surface et avec la possibilité d’être alignées
au pixels près. Nous avons utilisé cet ensemble de données pour échantillonner parmis plus
de 2 millions de parcelle d’image de 64x64 pixels afin d’entraîner nos nouveaux descripteurs
locaux DeepBark et SqueezeBark. Notre méthode DeepBark a montré un net avantage par
rapport aux descripteurs fabriqués à la main SIFT et SURF. Par exemple, nous avons démontré
que DeepBark peut atteindre une mAP de 87.2% lorsqu’il doit retrouver 11 images d’écorce
pertinentes, i.e correspondant à la même surface physique, à une image requête parmis 7,900
images. Notre travail suggère donc qu’il est possible de ré-identifier la surfaces des arbres dans
un contexte difficile, tout en rendant public un nouvel ensemble de données.
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Abstract

The ability to visually re-identify objects is a fundamental capability in vision systems. Of-
tentimes, it relies on collections of visual signatures based on descriptors, such as SIFT or
SURF. However, these traditional descriptors were designed for a certain domain of surface
appearances and geometries (limited relief). Consequently, highly-textured surfaces such as
tree bark pose a challenge to them. In turn, this makes it more difficult to use trees as identi-
fiable landmarks for navigational purposes (robotics) or to track felled lumber along a supply
chain (logistics). We thus propose to use data-driven descriptors trained on bark images for
tree surface re-identification. To this effect, we collected a large dataset containing 2,400 bark
images with strong illumination changes, annotated by surface and with the ability to pixel-
align them. We used this dataset to sample from more than 2 million 64 × 64 pixel patches
to train our novel local descriptors DeepBark and SqueezeBark. Our DeepBark method has
shown a clear advantage against the hand-crafted descriptors SIFT and SURF. For instance,
we demonstrated that DeepBark can reach a mAP of 87.2% when retrieving 11 relevant bark
images, i.e. corresponding to the same physical surface, to a bark query against 7,900 images.
Our work thus suggests that re-identifying tree surfaces in a challenging illuminations con-
text is possible. We also make public our dataset, which can be used to benchmark surface
re-identification techniques.
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Introduction

Nowadays, globalization is an undeniable fact, and it comes with lots of challenges. With the
rise in the production and consumption of many goods and merchandise, transport logistics
became a key challenge of our era. The tracking of objects such as merchandise thus became
a necessary concept in many fields, and tracking within the supply chain is now a vital ele-
ment of the Industry 4.0 philosophy. For example, in Cakici et al. (2011), they look at the
radiology industry and evaluate the benefit of switching from an old tracking system using
a barcode system and standard inventory counting practice to a new tracking system using
Radio Frequency Identification (RFID) technology with a redesign of the business process to
fully exploit the technology. They show that the new RFID system would allow a continuous
review of the inventory and also reduce shrinkage by tracking expiration. According to Cakici
et al. (2011), radiology practice faces difficult operational challenges that new tracking systems
could alleviate and help make substantial savings. For Hinkka (2012), it goes without saying
that RFID systems show real benefit for object tracking in the supply chain. This is why
they focus on the reasons behind the slow adoption of such new tracking technology in supply
chain management. Using a literature review, they notice that most published articles con-
centrated on the technical problems related to RFID, while the problem currently preventing
the adoption is more organizational or inter-organizational.

Closer to our subject, tracking objects or products in the forestry industry would consist
in monitoring and managing the forest while tracking logged trees from the forest to their
entrance in the wood yard. In Sannikov and Pobedinskiy (2018), they proposed a theoretical
information system based on RFID to keep a continuous input of the forest state, measure the
quantity of harvested wood, and track wood transportation. By building a network allowing
communication between RFID device and receiver, they say it would enable the best decisions
to be made and help switch from a manual forest management to a remotely automated
process. Then in Mtibaa and Chaabane (2014), assuming a forestry company already tags its
resource with RFID devices, they propose a software system able to connect to an application
layer (XML files and RFID tag). From there, the system can store and process raw data
that become available through a web portal that provides both the business and client with
easy access to reports and a traceability interface of the resource. According to Mtibaa and
Chaabane (2014), such a system would allow companies to engage in product certification
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and optimize the distribution of their raw material as well as the best location to keep their
inventory.

In the context of mobile robotics, localization is fundamental to enable the robot to move
around in his environment in an informed way. In Hellstrom et al. (2009), they use multiple
sensory receivers such as a laser scanner, a Global Positioning System (GPS), a gyro, a radar
and the vehicle odometry in combination with their new path tracking algorithm developed
to follow a learned path based on the steering command to make a 10 tonnes Valmet 830
forwarder follow a precise 160-meter long path. They tested their new algorithm on a Valmet
830 forwarder to simulate as much as possible autonomous wood forwarding in a forest en-
vironment. However, the primary sensor they used to re-evaluate their vehicle position was
their GPS system that was precise to 2cm in their control environment. As they mentioned
themselves, GPS systems need a clear view of multiple satellites, have their accuracy sensitive
to environmental conditions, and need a stationary receiver to correct recurrent bias. So,
forests are a harsh environment where these flaws could prove critical for localization systems.
This is why our research aims to provide a reliable localization method based on tree bark
to be used as visual landmarks. The importance of landmarks in localization systems comes
from their ability to make loop closure in algorithms such as Simultaneous Localization and
Mapping (SLAM). In this algorithm, the robot moving in its environment detects interest-
ing landmarks and then stores their descriptions associated with their location together in a
database. This enables newly-seen landmarks to be compared with the ones previously seen
in the database. When a newly detected landmark (referred to as A here) is matched with a
previously-seen one (referred to as B), the assumed location that would be given to landmark
A is then compared with the assigned location of the landmark B. This allows an evaluation
of the error incurred by the distance travel since having seen the landmark B. That way, these
landmarks enable the repositioning of the robot and the correction of the probabilistic map it
is simultaneously building. Looking at Figure 0.1, we can see a simplistic example of a robot
detecting a previously-seen landmark on his path that will allow him to readjust his map and
position hypotheses.

In the work of Smolyanskiy et al. (2017), they present a micro aerial vehicle (MAV) system
able to navigate a 1-kilometer forest trail autonomously. Their system uses a 3DR Iris+
quadcopter equipped with sonar and lidar to calculate altitude and velocity but relying on
a single forward-facing Microsoft HD Lifecam HD5000 USB camera to calculate the MAV
orientation and lateral offset from the forest trail while also detecting objects and obstacles on
the trail. Thus, they use monocular SLAM to navigate and follow the current forest path that,
in their experiment, did not need any loop closure, since they tested their system on trails
without any intersection and 1 kilometer or less in length. Thus, they showed a high capacity
to follow forest trails autonomously but would need a better re-localization system for longer
trails with many similar path junctions. A great example of the usefulness of landmarks in a
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Figure 0.1: Previously seen landmark recognized a second time by a mobile robot.

more complex path is in Ramos et al. (2007). In their paper, they propose a system to detect,
describe, and associate landmarks to improve the SLAM algorithm in an outdoor setting.
This setting is interesting for us since it is an urban park populated by trees that they use as
landmarks, among others. Their approach begins by using laser information to select a possible
landmark region. Then, cropping the image from the camera to the proposed region, they
classify the crop as a landmark or not. If the image patch is considered as a landmark, they
make an appearance model based on the appearance described by a mixture of Gaussians,
fused with the position information. Finally, to retrieve previously-seen landmarks, they
compared the new appearance model with the ones that were stored using the gated nearest
neighbor method. They compared their approach based on an estimated trajectory on a 1.5-
kilometer-long path containing several loops using the GPS trajectory collected as ground
truth. The two competitors were simple odometry and the standard EKF-SLAM method
that both underperform compared to the proposed approach. However, their results still have
room for improvement, and their outdoor environment being an urban park has a more sparse
distribution of trees than what is expected in a forest. Moreover, using position information
in the appearance model would not allow a robot to solve the exploration problem or recover
from the wake-up or kidnapping problem common in mobile robotic.

To allow tracking or localization using trees, one must gather information from theses trees
that are available all day and all year while displaying distinctive characteristics from one tree
to another one. Thus, we chose to use images of tree bark as the source of information for its
availability, but also because we suspect an inherent distinctiveness among tree bark, similar
to the fingerprint of humans. From this, we designed a system using the standard pipeline of
local feature descriptors to extract the distinctive representation inherent to a bark surface.
Basing our approach on this typical pipeline will also allow us to use standard comparison
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techniques on which we will rely for the data association step of our system. However, looking
at Figure 0.2, we can see six images taken from three different bark surfaces that reveal the
self-similarity of tree bark while making clear the effect of lighting variation. Indeed, bark
texture induces significant changes in appearance when lit from different angles, and it is also
important to note that scale and viewpoint variations considerably affect bark appearance too.
So, to track trees or use them as landmarks in localization, one must be able to re-identify
them and, in our case, make this re-identification based on bark images. In this thesis, we
precisely explore this problem by developing a method to compare images of tree bark and
determining if they come from the same surface or not.

Our main research objective can be summarized with the following question:

Is it possible to reliably recognize an individual tree with a visual
signature extracted from its bark?

1-a 1-b 2-a 2-b 3-a 3-b
Figure 0.2: In this figure, we can see 6 images taken from 3 different bark surfaces identified
by the number 1,2,3. Letters a and b make the distinction between two images of a same
surface. Comparing images from 1 to 3 shows the self-similarity of bark from different trees
while comparing a and b images allows us to see the effect of different illumination angles.

Another assumption we made is that current hand-crafted local feature descriptors are not
adapted to give invariant descriptions in the face of significant changes in illumination and
viewpoint on bark images. But, new techniques introduced recently have the potential to
learn this invariance. Since the advent of the Convolutional Neural Network (CNN) starting
when Krizhevsky et al. (2012) won the ImageNet competition in 2012, these new artificial
neural networks showed a high capacity to learn a non-linear function enabling unprecedented
generalization and invariance. This is why, in this thesis, we propose to replace the description
part of the standard local feature descriptor pipeline by a CNN trained on bark images to
output invariant descriptions of bark images. A preview of the qualitative performance is
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shown in Figure 0.3, which demonstrates the difficulty of dealing with tree bark and descriptors
not tailored for it. However, a weakness of these deep learning networks is their tremendous
need for useful quality data to learn efficiently. At the beginning of this project, this was
indeed another difficulty with the absence of a dataset tailored to this problem. There are
already-existing bark datasets such as Fiel and Sablatnig (2010); Svab (2014); Carpentier et al.
(2018), for example. Still, these are geared towards tree species classification, and we not only
need a bark dataset allowing bark instance retrieval. We need a dataset that enables direct
physical correspondence between specific points in multiple images of the same bark surface.

Figure 0.3: Qualitative matching performance of different descriptors, for two images of the
same bark surface. Every match shown in the image passed a geometric verification. Some false
positive matches remain, due to the high level of self-similarity. Notice the great illumination
changes between the image pair, a key difficulty in tree bark re-identification.

To this effect, we collected a dataset of our own, with 200 uniquely-identified bark surface
samples, for a total of 2,400 bark images. With these images, we were then able to do bark
instance retrieval. This was done by using one of the 12 images of a single bark surface as
a query and use our description and data association algorithm to find the other 11 relevant
images among all the other bark images used as a test set. The particular fiducial markers
we took care to have in every image also provided us with the opportunity to produce a
feature-matching dataset enabling the training of deep learning feature descriptors. With all
this, we established the first state-of-the-art bark retrieval performance, showing promising
results in challenging conditions. In particular, it surpassed by far common local feature
descriptors such as Scale Invariant Feature Transform (SIFT) (Lowe (2004)) or Speeded Up
Robust Features (SURF) (Bay et al. (2006)), as well as the novel data-driven descriptor
DeepDesc (Simo-Serra et al. (2015)).

In short, our contributions can be summarized as follows:

• We introduce a novel dataset of tree bark pictures for image retrieval. These pictures
contain specific fiducial markers to infer camera plane transformation.

• We use our novel dataset to train a Deep Learning local feature descriptor adapted for
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bark images using standard neural network architectures and establish the new state of
the art performance for bark re-identification.

• We show that bark surfaces are sufficiently distinct to allow reliable re-identification
under a challenging context.

• We compare hand-crafted and deep learning methods on the bark re-identification task
and show the necessity of the latter to achieve satisfactory results.

To efficiently understand our approach, the first chapter of this thesis gives the theoretical
foundation we used and the current state of the art of the work related to our research. This
background information will, for one, cover the subject of computer vision. More precisely, it
will discuss the different tasks related to image retrieval along with several ways to describe
images in a meaningful way and the useful measures to evaluate this kind of task. Then, an
overview of concepts from machine learning about our project will be presented. Among these
concepts are the CNN and the objective functions used to train them. We will also look at
the latest work on Deep Learning descriptors and the recent papers working on the subject of
bark images.

With this knowledge, we will then move toward the second chapter describing our data and
methods. These two concepts will be mixed together. That is because we cannot speak of the
composition of our dataset without going through the detail of the methodology to collect the
said data. Also, any methods discussed in this chapter are closely related to our data, since
they are designed to transform, describe or compare bark images from our dataset.

Then, after the theory and methods of the two first chapters, we present the results of our
experiments and discuss them in length in chapter 3. To begin, we look at how to choose the
optimal hyperparameters for a descriptor and investigate the impact of the size of the data
used to train our Deep Learning local feature descriptors. After that, we compare the results
of several descriptors being hand-crafted or learned and then examine the capacity of some of
these learned descriptors to perform on tree bark species never seen in training. Following this,
we produce our most convincing results by testing our best descriptor in a setting composed
of bark images reduced in size while adding thousands of similar but unrelated bark images
to try to reach the limit of the descriptive ability of our descriptor. Then, before ending this
chapter, we evaluate the possibility to speed up the approach along with the possible decrease
in performance and explore the distributions of the scores given by different image matching
methods to discuss the problem of novel location identification.

Finally, we end this thesis with a conclusion, where we highlight some of the critical results
we obtained and give a summary of the work that took us there. Subsequently, we take a
moment to reaffirm our contributions before using them as a stepping stone, leading us to the
future work it enables, while considering the weakness that should be addressed. Note that
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this work can also be found among the published article of the 2020 Conference on Computer
and Robot Vision (CRV).
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Chapter 1

Background and related work

Before delving deep into our methodology, it is essential to start with the building blocks that
led us there. In this chapter, we cover two broad subjects that ultimately take us to an efficient
way to compare images of bark together. We begin by exploring the fields related to describing
images and how to compare them. This mostly covers issues such as the formulation of
image retrieval for different problems in section 1.1, the descriptors projecting whole images to
compact descriptions in section 1.2, the descriptors giving invariant descriptions of interesting
regions of images in section 1.3 and the Bag of Words (BoW) technique to summarize multiple
descriptions of interesting images regions in section 1.4.

Then, we discuss topics in machine learning relevant to our problem. For instance, we start by
presenting a brief overview of Convolutional Neural Network (CNN) in section 1.5. Logically
following this is metric learning in section 1.6, since it is essential to defined a well-suited
learning objective for neural networks. After this, we discuss the multiple ways in which such
a network can be trained to give a unique image description in section 1.7. Next, because
of the loss of performance by learned descriptors when faced with unseen data from datasets
too different, we cover the subject of domain generalization in section 1.8. We also review
the latest works about bark and wood images relevant to our approach in section 1.9. Before
we conclude this chapter in section 1.11, we go through different metrics useful to evaluating
the numerous ways to describe and match images together in section 1.10. Works cited in
this chapter have been aggregated in a table that is available at the end of the chapter, in
section 1.12.

1.1 Image Retrieval Formulations

Comparing two images directly by their content is useful for many computer vision applica-
tions. However, it is generally a highly difficult problem (Wan et al., 2014; Neetu Sharma et al.,
2011). This is due in part to images having high dimensionality (the number of pixels times
the number of color channels), making the semantic relevant content hard to extract. The
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general case where having compact and semantically correct descriptions of images is useful,
is the case of image retrieval. However, this task usually is constrained to specific problems,
allowing the descriptions of images to focus on particular elements in images related to the
constraint problem.

The problem of image retrieval can be defined as follow: given an image as a query, the goal is
to find other images in a database that look similar to the query one. This was first addressed
generically as Content-Based Image Retrieval (CBIR), which appears in conjunction with the
consistent growth of images database that became harder to search as they grow, since it led to
an increase in wrongly labeled images and that visually going through all images requires more
time. In the beginning, searching images for this task was typically accomplished using more
simple techniques such as PCA (Sinha and Kangarloo, 2002) or color histogram based on HSV
color model (Sural et al., 2002; Kaur and Banga, 2013) and RGB color model (Neetu Sharma
et al., 2011). There was also a discussion on the best way of ranking images by similarity to
the query Zhang and Ye (2009) and the effect it has on the system performance. But, more
recent works have started approaching the CBIR task with deep learning methods as in Wan
et al. (2014); Arandjelovic et al. (2018), and there is also Zheng et al. (2016b) that use CBIR
as the common ground to compare SIFT based descriptors and deep learning methods. For
more in-depth information about CBIR, we strongly suggest to look into the survey made
by Datta et al. (2008).

The problem was eventually tailored to specific domains, such as object recognition (Wang
et al., 2017b; Sohn, 2016; Wan et al., 2014; Zheng et al., 2016b; Yi et al., 2016; Rocco et al.,
2018; Sivic and Zisserman, 2003; Lowe, 2004; Bay et al., 2006). In this formulation, it consists
of using a specific object image as a query to find images that contain similar objects, without
necessarily showing the searched object exclusively. For example, in the well-known work
of Sivic and Zisserman (2003), they showed qualitative results for objects such as a poster,
a sign, or an alarm clock. For the poster, they retrieved 20 images, all containing the query
object, but with only small variations of the object in the image. Then, for the sign, they
retrieved 31/33 correct images and 53/73 for the alarm clock, but here again, it was the same
object that needed to be retrieved. Object recognition becomes much harder when you consider
retrieving different objects that are relatively similar. For instance, in Sohn (2016), they tried
to retrieve cars by model and flowers by species. This resulted in a recognition accuracy for
cars of 89.21% and 85.57% for flowers. However, one could make the problem even harder
by trying to cluster unseen objects together. For such a task, Sohn (2016) reported the best
Harmonic Average of the Precision and Recall (F1) scores of 28.19% for online products,
33.55% for cars, and 27.24% for birds.

Another popular application is face recognition (Liu et al., 2017; Wang et al., 2017a, 2018a,b;
Chopra et al., 2005; Schroff et al., 2015; Sohn, 2016; Ming et al., 2018; Sun et al., 2014a; Parkhi
et al., 2015; Wang and Deng, 2018; Sun et al., 2016; Zhang et al., 2014; Taigman et al., 2014;
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Sun et al., 2015; Taigman et al., 2015; Sun et al., 2014b). In this case, the goal can either be i)
to correctly classify the identity of a person based on his face image or ii), taking two different
images of a face and correctly assigning a label to the two images as being the same person
or not. With the recent explosion of data and the easiness of keeping memories of people
with images, the field of face recognition made a quick progression toward high performance.
We see this phenomenon with companies such as FaceBook that built a dataset with 4.4
million labeled faces from 4,030 people in Taigman et al. (2014). They used a CNN and a face
alignment technique to achieve 97.00% accuracy on the known benchmark Labeled Faces in the
Wild (LFW) (Huang et al., 2007; Learned-Miller, 2014) and 91.4% accuracy on the YouTube
Faces DB (YFD) (Wolf et al., 2011) benchmark. Following this, Google in Schroff et al. (2015)
worked with a dataset of 8 million identities, totaling 100-200 million images. With this, they
achieve a remarkable 99.63% accuracy on LFW and 95.12% accuracy on YFD, without using
anything other than a CNN. However, this dataset size is a challenge to manage on its own.
This is why Facebook in Taigman et al. (2015) also worked on how to deal with such large
datasets. For this, they made a new dataset containing 10 million different people with around
50 images each, giving roughly 500 million images. They reported a score of 98.0% on the
verification task of LFW, which is more difficult than the recognition task. They obtained
this score with a single network compared to Sun et al. (2014a) who achieved 99.15% using an
ensemble of hundreds of CNN in combination with information from the LFW images. With
all the work in face recognition, we added Table 1.1 to give a better overview of the type of
datasets available for this task.

Dataset Available People Images
Klare et al. (2015) (IJB-A) public 500 5712
Huang et al. (2007); Learned-Miller (2014) (LFW) public 5K 13K
Wolf et al. (2011) (YFD) public 1595 3425 videos
Sun et al. (2014b) (CelebFaces) public 10K 202K
Yi et al. (2014) (CASIA-WebFace) public 10K 500K
Guo et al. (2016) (MS-Celeb-1M) public 100K about 10M
Taigman et al. (2014) (Facebook) private 4K 4.4M
Schroff et al. (2015) (Google) private 8M 100-200M
Taigman et al. (2015) (Facebook) private 10M 500M

Table 1.1: Table adapted from Guo et al. (2016). Standard datasets used in face recognition
tasks. The number of different identities available in each dataset is the people column, and
the total number of images is in the column images. However, the critical aspect is the
availability of these datasets provided by the column Available, which depicts the advantage
of large companies with their large datasets kept private.

In some other cases, the formulation was used for visual scene recognition (Yi et al., 2016;
Rublee et al., 2011; Alcantarilla et al., 2012; Calonder et al., 2010; Arandjelovic, 2012). For
the latter, the important aspect is to take an image depicting a certain scene such as a beach,
a parking lot, or a forest and retrieve images showing the same kind of scene (but importantly,
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not necessarily the same location). In mobile robotics, image retrieval is often used to perform
localization. In this field, it is known as Visual Place Recognition (VPR) (Jain et al., 2017;
Zheng et al., 2017; Wan et al., 2014; Arandjelovic et al., 2018; Zheng et al., 2016b; Sunderhauf
et al., 2015; Cummins and Newman, 2008, 2009; Turcot and Lowe, 2009; Li et al., 2010;
Rocco et al., 2018; Ramos et al., 2007). There, the objective is to determine if a location
has already been visited, given its visual appearance. The robot could then localize itself by
finding previously-seen images which are geo-referenced. This leads us back to the concept
of SLAM and the associated problem of loop closure initially discussed in the introduction.
However, we did not talk about the difficulty of such a task. An order of magnitude of the
problem is provided by the Figure 1.1 from Cummins and Newman (2009), which depicts the
loop closure in red on a 1,000 km dataset. By comparing their ground truth in a) with the
detected loop closure of their algorithm in b), we see that such a long road will inevitably
exhibit difficult places to recognize visually. Also, we can look at Figure 1.2 to evaluate the
improvement in localization moving from simple odometry to SLAM algorithm with visual
landmarks, passing by standard EKF-SLAM. Nonetheless, on the right side of the figure
where visual landmarks are used, we can still see some errors. It is worth noting that the
trajectory is only 1.5 kilometers and is located in an urban park, which proves less difficult
than other environments such as a dense forest or a snowy landscape where there is a lot of
self-similarity in the scenery.

Figure 1.1: Figure taken from Cummins and Newman (2009). This figure shows a 1,000
kilometers trajectory with loop closure in red. The (a) panel provides the ground truth,
and the (b) panel provides the detected loop closures by the Fab-Map 2.0 algorithm. They
correctly detected 2,189 loop closures and predicted six false positives. This gave them a
99.8% precision at 5.7% recall. In the original caption, they mentioned that the long section
with no loop closure detected is a highway at dusk.

In the area of video surveillance, the problem of Person Re-Identification (Person Re-Id) con-
sists of following an individual through several security camera recordings (Hermans et al.,
2017; Zheng et al., 2017, 2016b; Gray et al., 2007; Zheng et al., 2016a, 2015; Li et al., 2014).
This technique implies to learn a function that maps multiple images of an individual to the
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[a] [b]

Figure 1.2: Figures taken from Ramos et al. (2007). In each case, the blue line shows the
estimated trajectory, and the green line represents the estimated ground truth using GPS
information, which is not available in some areas of the urban park. In the top part of [a],
the blue line is estimated using only odometry, and in the bottom part, we have an estimate
using the standard EKF-SLAM. In [b] is the trajectory predicted by the algorithm using visual
landmarks proposed by Ramos et al. (2007). We can see that the proposed method improves
a lot over the two other methods, but small errors are still visible, and the trajectory used
could be more difficult.

same compact description, despite variation of viewpoint, illumination, pose, or even clothes.
This way, if the description is unique for each individual and invariant to change in appearance,
person re-identification can then retrieve a single person by computing the same description
for this person across multiple cameras despite changes in view angle and different people
being present. One of the standard datasets tailored for this task is the viewpoint invariant
pedestrian recognition (VIPeR) dataset presented in Gray et al. (2007). However, it only
contains 632 image pairs of pedestrians with variations only in viewpoint. By today’s stan-
dard, this dataset is quite small with its total of 1264 images, but since then, larger datasets
have appeared, and the most common are shown in Table 1.2. Numerous works have used
these datasets as benchmarks. One of these is Zheng et al. (2017), who used a CNN trained
with multiple objectives to achieve a rank-1 accuracy of 83.4 in the single-shot setting of the
CHUK03 (Li et al., 2014) dataset. On the Market-1501 (Zheng et al., 2015) dataset, they re-
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ported a mean Average Precision (mAP) score of 59.87 in the single query setting and a score
of 70.33 in multi-query setting. More recently, better results have been reported by Hermans
et al. (2017) on the CHUK03 and Market-1501 dataset, but also on the MARS (Zheng et al.,
2016a) dataset. For CHUK03, they achieved a rank-1 accuracy of 87.58 in a single-shot setting.
On the Market-1501, they obtain a mAP score of 81.07 and 87.18 in single and multi-query
respectively, and lastly, they reached a mAP score of 77.43 on the MARS dataset. It is clear
that person re-identification is undergoing a rapid progression in performance during recent
years, but one can also see that there is still room for improvement when looking at the latest
results.

Dataset pedestrians images
Gray et al. (2007) (VIPeR) 632 1264
Li et al. (2014) (CUHK03) 1,360 13,164
Zheng et al. (2015) (Market-1501) 1,501 32,668
Zheng et al. (2016a) (MARS) 1,261 1,191,003

Table 1.2: Standard datasets used for the person re-identification task. The column pedestrian
shows the number of different identities available in each dataset, and the total number of
images is in the column images. These datasets are also in ascending order of apparition from
top to bottom. We can see the growth in data following the passage of time.

1.2 Global Descriptor

In the early days of image retrieval systems, the first techniques to describe images relied on
the complete image’s properties to perform correspondence. Making histograms from colors
as in Neetu Sharma et al. (2011), for instance, can give some mildly reliable information
about the image content. For example, an image with a predominance of blue might be an
image of the sky or the sea, while an image mostly green will probably contain forests or
vegetation. However, this information is not enough to precisely characterize an image and
can at best allow the association of images with a loosely similar theme. Then, one can
also look into Hue-Saturation-Value (HSV) color format (Sural et al., 2002; Kaur and Banga,
2013) to extract information more robust to illumination changes. In the work of Sural et al.
(2002), they used the HSV format to categorize pixels as a specific color if the saturation
is low or, if it is high, for instance, as a black or white pixel. This is done to allow the
decomposition of images using histograms and segmentation in a more relatable way to how
humans perceive light. Another way to globally describe images is to view them for what they
are in computer science: matrices. Then, using linear algebra, we can characterize images
by extracting their eigenvectors. However, this is not readily applicable for images within
a dataset, without further processing. For this reason, Sinha and Kangarloo (2002) further
constrained their problem by employing dimensionality reduction with Principal Component
Analysis (PCA) to compare images based on the variation of their principal components.
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Nonetheless, these techniques may give too much importance to background information,
often relating to location and drown small but crucial visual information such as objects or
persons, as explained in Datta et al. (2008). Also, they are weak against changes in viewpoint,
as mentioned in Lowry et al. (2016).

Since then, other methods have been developed to describe images globally that broadly differ
from the one previously mentioned. First, there is the BoW method (Sivic and Zisserman,
2003) that globally describe an image by summarizing the set of all descriptions produced by a
local feature descriptor such as SIFT or SURF. There is also a growing interest in using CNN
trained on classification tasks to extract a single vector representing a whole image (Wan et al.,
2014; Sunderhauf et al., 2015). However, we will not discuss these methods here, because they
are the subject of another section.

1.3 Hand-Crafted Local Feature Descriptor

Instead of taking the whole image and calculating a global description as a form of summary,
local feature descriptors aim at representing an image through a collection of descriptions
taken from smaller regions of the image. For these descriptions to be relevant, the small image
regions they describe must be a distinctive or meaningful part of the image. The first step in
using such a descriptor is to find the location of interesting regions of the image. In the context
of local descriptors, these regions are specifically referred to as keypoints. These keypoints are
found using a keypoint detector, which looks through an image, searching for strong gradients
as in Lowe (2004) or searching for corner using pixel intensity as in Viswanathan (2011);
Rosten and Drummond (2006). This change in gradient or pixel intensity correlates strongly
with edges and corners in an image, which makes them reliable points. The advantage of
this technique is that if we can reliably find the same keypoints in an image, we can obtain a
nearly invariant representation of the image while mostly including only meaningful parts of
it. Once the keypoints are found, the descriptor is then used to describe all of the keypoints
surrounding regions following an algorithm devised by an expert. This is the reason why they
are called hand-crafted.

The goal of a local descriptor is then to summarize the visual content of an image patch taken
at the location of a keypoint. This enables a comparison between images based on feature
correspondence, as seen in Figure 1.3. The ideal descriptor is a) compact (low dimensionality)
b) fast to compute c) distinctive and d) robust to illumination, translation and rotations.
These are important qualities for local feature descriptors, because the number of descriptions
to be made in an image can total over 2000, which can be costly in computation and memory
space. A widespread approach of hand-crafted methods to describe image patches is often to
rely on histograms of orientation, scale, and magnitude of image gradients, as in SIFT (Lowe,
2004) or SURF (Bay et al., 2006). Different variants have appeared over the years trying to
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Figure 1.3: Figure taken from Arandjelovic (2012). It compares the descriptors based on the
number of matches retained and the localization quality of the keypoints that have a match.
On the left is the query image, and on the right is the image compared with the estimated
correspondences. It shows that RootSift offers descriptions that are more distinctive and allow
better matching of more locations.

alleviate the computation cost (Calonder et al., 2010; Rublee et al., 2011) or simply trying to
increase the performance (Alcantarilla et al., 2012; Arandjelovic, 2012).

1.4 Bag of Words

The Bag of Words (BoW) is a discretized representation of all the information provided by
a local feature descriptor. It is calculated from the list of descriptions V generated by the
descriptor on an image, which are lists of vectors of reals. The advantage of such a technique
against directly using V , is the speed at which two BoW can be compared. Since BoW are
discretized summary of a list of descriptions extracted from images, this allows for a fast
comparison of these images, which is useful in large datasets. An excellent reference to follow
is Manning et al. (2008) in section 6.2, which we explain next.

The idea of BoW in computer vision has been borrowed from the information retrieval domain.
As its name suggests, the BoW is essentially a multiset (bag) of every word in a document.
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This serves as a summary vector representation of a complete document, using the count of
each word present in this document. In computer vision, the idea of words has been extended
to the concept of visual word in an image. However, visual words are not defined in advance
as words, instead, they represent a cluster composed of similar visual features. These visual
features are small parts of an image considered as informative, such as edges, corners, repetitive
structures, or any meaningful pattern in an image. This means that visual words must be
defined using clustering methods such as the K-mean clustering algorithm from a large set of
visual features extracted from available images. Once we clustered our set of visual features
into a fixed number k of clusters, we end up with k visual words that become what is known as
a visual dictionary voc of size k. More formally, the voc calculation is done by using a keypoints
detector and descriptor to extract all the keypoints descriptions available in a subset of the
dataset we want to use for evaluation. Then, these descriptions, which become our visual
features, can be clustered to build our voc. Finally, we can calculate a BoW representation of
unseen images by extracting their visual features and clustering them into our voc, giving us
the count of visual features for every visual word in an images, as we explain below.

Once we have a relevant voc for our dataset, we can calculate the BoW representation of an
image I. To do so, the Term Frequency (TF) of each visual feature in I must be determined.
The equation for a single TF is written as:

TF =
nz
|V |

. (1.1)

Here, V is the list of descriptions previously computed for the image I using the chosen detector
and descriptor pipeline. Then, nz is the number of descriptions from V being clustered with
the visual word z, and |V | is the number of descriptions in our image. Doing this for every
visual word in our voc gives a normalized BoW representation of I, with the same dimension
of the voc.

However, some visual words may be present in almost every image of a dataset due to their
repetitive nature. For instance, a dataset taken in the street of a city may show street lights in
every image, so detecting them will not help to differentiate two images coming from different
places. To mitigate this problem, one can calculate the Inverse Document Frequency (IDF) of
a visual word from the subset T of our dataset. This enables the adjustment of the BoW by
weighting each visual word according to their presence ratio in T . This way, it mostly ignores
visual words present everywhere while giving more importance to the less present ones that
are more informative. The IDF of a single visual word is defined as:

IDF = log
|T |
mz

. (1.2)

The numerator term |T | corresponds to the number of images in the subset T of the chosen
dataset, which we divided by the total number of imagesmz in T having a least one description
being clustered with the visual word z. Once every TF in the BoW of an image is weighted
by his corresponding IDF, we then obtain a more distinct representation of our image I.
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1.5 Convolutional Neural Network

One of the critical developments in computer vision is the Convolutional Neural Network
(CNN). The first successful application of CNN was for hand-written digit recognition (Lecun
et al., 1998). They began by building a large set of hand-written digits known as the MNIST
dataset from the larger NIST dataset. During their experiment, they used their LeNet neural
architecture to show the advantage of CNN against other methods such as K-NN classifier,
SVM, and fully-connected neural network. However, the usage of CNN did not take on initially,
despite its vast potential. The interest for CNN-like architectures only took off when it was
first used in the ImageNet (Deng et al., 2009) competition, with AlexNet (Krizhevsky et al.,
2012). In this work, they reported a significant winning margin against the best competitor.
They succeeded in significantly reducing the current error margin with their AlexNet model
trained using a smart GPU implementation of the convolution operation. They also discussed
the use of drop-out, non-saturating neurons, and max-pooling that helped achieve their results.
It is with this demonstration that the true capability of CNN had been unveiled.

Neuron
This capability comes from a fundamental building block called artificial neuron. The connec-
tionism approach of artificial intelligence uses these neurons as their main inference engine.
When grouping them in layers and then stacking multiple layers together, it becomes what is
referred to as deep neural networks. These networks are part of the subset of machine learning,
known as deep learning, which includes CNNs.

Neurons are based first on a linear equation that possess a parametric weight for each input it
receives plus a weight bias. This is followed by a non-linear function referred to as an activation
function. Being non-linear is a crucial component of the neuron, because it enables multiple
representations of an input that would be impossible otherwise. Also, if one would stack several
layers of neurons together without non-linearity, the network could then be reduced to a single
linear operation. The standard activation function currently used in deep neural networks is
the Rectified Linear Unit (ReLU) (Nair and Hinton, 2010). This function is defined as the
maximum between the input and 0: max(x, 0). A neuron using a ReLU activation becomes
a pattern detector that outputs a positive number only when the input satisfies a particular
input pattern. This is demonstrated in Figure 1.4, which shows an example of a neuron
receiving five inputs describing a car. The neuron only activates when a car is not too old
and shows little mileage. In this toy example, the network might be trying to predict which
car a potential client might buy, and this particular neuron learns to respond when a car is
relatively new, since this is what a client might want. A latter neuron can discriminate more
complex patterns based on the recognized patterns of the preceding network layer and so on
so forth.
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Figure 1.4: Visualization of the neuron discriminating old cars with lots of mileage. Thus,
we can see that this neuron will respond to cars that seem relatively new, based on age and
mileage. This is based on a toy example where a model tries to predict preferred cars (label
1).

CNN filter
CNN filters are the CNN neuron, but the pattern they search has been specialized for the
2D grid-like arrangement of images. So to find these patterns, CNNs use the convolution
operation that essentially multiplies a matrix (the CNN filter) with a corresponding image
patch taken at every pixel position. The first two steps of this operation can be seen in
Figure 1.5. We can also understand that the filters used in a CNN layer are no more than
another linear equation evaluated at a set of pixels. One advantage of this operation is that
the matrix format allows us to take into account the spatial structure of an image in which
the smaller pattern resides. The other advantage of the convolution is that parameters are
shared across image locations, making a single filter capable of finding a recurrent pattern in
the image wherever it is. The last significant difference between a fully-connected layer and a
CNN one is the output. Where a fully-connected layer gives a new array of features, the CNN
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layer will instead output a feature map. When a single filter is convolved against an image,
the repeated matrix multiplication produces a result for every pixel position that needs to be
kept in the same two-dimensional position to avoid losing the coherence of the image. The
resulting matrix visible in Figure 1.5 is an example of such feature maps. The final output
of a convolutional layer is then a 3-dimensional tensor that is the concatenation of all the
outputted feature maps, since each filter of a CNN layer produces such a feature map.

Figure 1.5: Visualization of the convolution operation. In this figure, we can see that the filter
is multiplied element-wise at each pixel position, and is equivalent to doing the dot product
between two vectors. Note that for brevity, we omit the addition of a weight bias after the
dot product operation.

CNN architecture
A network is typically defined by a particular arrangement of blocks, such as convolution
layers, number and size of filters, max pooling, etc. Architectures greatly influence the results
obtained by deep learning networks. Consequently, they are designed to induce a favorable
bias for the task at hand. For example, the simple fact of using convolution operations causes
a bias that makes deep networks such as CNN more efficient on images.

One architecture that showed outstanding performance and that is available under different
sizes is the ResNet (He et al., 2016). This design intention was to transform the neural
network such that it learns the residual of an identity function, at each layer. It comprised
a residual block, which is composed of two convolutional layers, which are added to the
original input via a skip connection, as displayed in Figure 1.6. This made every subsequent
residual block processing a mix of the original input with the features obtained from the
preceding blocks. Moreover, the skip connection enables the gradient coming from the final
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prediction error to be easily back-propagated to the first layer of the network. This greatly
facilitates the training of ResNet-like networks and increases the design flexibility in terms of
the number of layers, which in turn gives better results when using more layers, as reported
in Figure 1.7. Consequently, many ResNets models are publicly available in common deep
learning framework. The complete architecture of a ResNet with 34 layers can be seen in
Figure A.2.

Figure 1.6: Residual block, as presented in He et al. (2016). The F (x) function is defined by
the two-weight layers and the ReLU activation function. These weight layers can be any kind
of layer, such as convolutional ones. The improvement made compared to traditional networks
comes from the addition of the original input x to the output of F (x). This addition between
input and output helps to back-propagate the gradient. Also, this forces each block to learn
the residual of an identity function.

Figure 1.7: ResNet performance as presented in He et al. (2016). These results were obtained
using single-models on the ImageNet validation set and are reported as error rates (%). The
number beside ResNet networks indicates the number of layers. From this, we can see a clear
improvement following the increase in layers.
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Another interesting CNN architecture variation is SqueezeNet (Iandola et al., 2016). In their
work, they proposed to focus on the sheer number of parameters in SqueezeNet, instead of
trying to improve raw performance. For a quick comparison, the small 18-layers ResNet
has 11,689,512 parameters, while the SqueezeNet 1.1 version only has 1,235,496. This gives a
nine-fold reduction of the number of parameters while keeping an accuracy similar to AlexNet.
Such a feat was achieved with a new CNN building block named Fire Module, and is depicted
in Figure A.1. It was designed to employ three strategies aiming at reducing the number
of parameters needed for convolution, while keeping the highest accuracy possible. Their
first strategy was to reduce the number of costly 3x3 filters by replacing a portion of them
by smaller 1x1 filters. Then, since filters are designed to be applied on every feature map
simultaneously, the Fire Module incorporates a layer of 1x1 filters squeezing the number of
feature maps before using 3x3 filters on it, thus reducing the depth of the 3x3 filters. Finally,
the last strategy was to delay the feature map resolution reduction in the network, considering
that He and Sun (2015) have shown that such a strategy can improve performance.

1.6 Metric Learning

As discussed in section 1.1, deep learning is now an essential component in image retrieval.
This mostly spurs from the fact that deep learning networks can learn complex and non-
linear representations that allow high-dimensional input to be easily classifiable in a linear
fashion. This, in turn, means that a deep neural network can project its inputs to a compact
representation that is meaningful for the task at hand. For a deep neural network to solve
the ImageNet challenge, for example, it had to learn a projection that could take millions
of images and send them to a small and meaningful representation to be linearly classifiable
in 1000 categories. This hard task generated deep models able to encode a large array of
complicated images features from the real world into low dimensional vector representations.
These models essentially became global image descriptors and began to be used as such in
problems such as VPR (Sunderhauf et al., 2015).

However, certain problems need more than having linearly-separable and meaningful vectors
for an arbitrary number of classes. For example, in face recognition, we need to differentiate
two distinct persons by their faces. Consequently, a deep model which could accomplish this
for two, a hundred or even thousands of faces may not be enough for an application dealing
with millions of unseen peoples. This becomes a problem about instance-level representations
instead of classes and is useful, among other things, for instance-matching problems. Thus,
the objective of a deep learning model used for instance retrieval, should be about making
instance representations as distant from each other when different instances are involved, while
keeping variation of the same instance as close as possible. This problem is well-adapted to
the paradigm known as metric learning. More specifically, metric learning aims at designing
a loss function that would allow a metric to be learned in the representation space. Below,
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we discuss recent progress made in metric learning in subsection 1.6.1. As classification losses
provide good performance and greatly impact the representational power of deep models, we
also discuss the use of theses losses in the metric learning setting in subsection 1.6.2.

1.6.1 Metric Loss

Contrastive Loss
Distance metric learning is an approach that tries to learn a representation function to be
used with a distance function d() between data points x. For example, we have a dataset S of
labelled data (x, y) ∈ S with x being an example and y its class label. We also have a function
f which outputs a vector f(x) ∈ Rd. In metric learning, the goal is to learn this function f to
minimizes the distance between the feature vectors, d(x1, x2) = ||f(x1)− f(x2)||22, when both
data points x1 and x2 belong to the same class y1 = y2. It must also maximizes the distance
when x1 and x2 belong to different classes (y1 6= y2). This function f can then be used to
compare unseen examples similar to the ones in S. The loss doing this base scenario can be
found in Hadsell et al. (2006); Chopra et al. (2005); Simo-Serra et al. (2015); DeTone et al.
(2018) and is called the contrastive loss, as defined here:

L(W,Y,X1, X2) = (1− Y )
1

2
(Dw)

2 + (Y )
1

2
{max(0,m−Dw)}2. (1.3)

In equation 1.3, Y is a label directly stating if a pair of examples (X1, X2) are similar (Y = 0)
or not (Y = 1). W are the parameters of Dw that represent the distance function to be
learned. This function should minimize the distance when Y = 0 and maximize to the extent
of a margin m when Y = 1.

Triplet Loss
Instead of bringing together similar pairs in the embedding space as much as possible, one
can try to make the inter-class variation larger than the intra-class one in the embedding
space of the descriptor, as described in Figure 1.8. This is called the triplet loss (Schroff
et al., 2015; Ming et al., 2018; Arandjelovic et al., 2018; Li et al., 2017a). It is computed from
three examples (hence its name), made of an anchor example x, a positive example x+, and a
negative example x−. They are used to learn the following inequality:

||f(x)− f(x+)||22 < ||f(x)− f(x−)||22. (1.4)

This inequality can then be translated to an actual loss:

L(x, x+, x−) = m+ ||f(x)− f(x+)||22 − ||f(x)− f(x−)||22. (1.5)

This Equation 1.5 pushes the distance between a positive x+ and a negative x− pair further
than the selected margin m. In the case of Wang et al. (2017b), they tried to improve the
triplet loss by adding constraints based on triangle geometry, to ensure the proper movement
of the triplet sample in the embedding space during learning.
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Figure 1.8: This figure shows the result after learning the representation with the triplet loss.
The goal of this loss is to make the distance in representation space between two points of the
same class A (here the anchor and the positive) smaller than the distance between a point
of class A and a point of a different class such as B (here the negative) by a certain margin.
It will cluster points of the same class together while assuring a certain margin with other
classes. This figure was taken from Schroff et al. (2015).

Triplet Loss Variant
Sohn (2016) created the N-pair-mc loss to improve upon the idea of moving one pair of positive
examples away from the negative pair one at the time. There, the goal is to use an ingenious
batch construction process, shown in Figure 1.9, to enable the comparison of one positive pair
x, x+ with multiple negatives examples xi at a time. This loss is expressed as:

L({x, x+, {xi}N−1i=1 }; f) = log(1 +

N−1∑
i=1

exp(f>fi − f>f+)), (1.6)

with the N-pair-mc loss using the N − 1 negatives examples xi to move the positive pair
x, x+ away from every one of them. This has the critical benefit of avoiding that the pair
x, x+ of a triplet (x, x+, x−i ) gets closer to an unseen negative example x−j during a mini-batch
learning update. Also, Hermans et al. (2017) showed that comparing the hardest positive pairs
(dissimilar examples that should be similar) with the hardest negative pairs (similar examples
that should be dissimilar) in a mini-batch can lead to even better results in some instances.

1.6.2 Classification Loss

With the loss previously explained in subsection 1.6.1, our function f(x) has generally learned
to output representation easily comparable in Euclidean distance. The kind of representation
learned when classifying with the cross-entropy loss is different, but still relies on a form of
distance. A cross-entropy loss is normally used to learn the categorization of instances of a
pre-defined problem by transforming the final output of a network into a set of class proba-
bilities. However, this final output given by the network can be seen as the non-normalized
angle between the last layer and the input it receives, as explained in Figure 1.10. When
considering this angle as a distance, it makes the penultimate layer representation learned
with classification useful in metric learning, as we explained below.
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Figure 1.9: This figure shows the ingenious batch construction process used by the N-pair-mc
loss to reduce the number of evaluations needed to transform each example in their vector
representation. In a), we can see the standard Triplet loss that chooses N triplet for a batch,
resulting in the need for 3N evaluations. In b) is a naive selection of examples for a (N + 1)-
tuplet loss batch, resulting in the need for (N + 1)N evaluations. Finally, in c), we can see
that to reduce the number of evaluations needed, the N-pair-mc loss selects only N positive
pairs of examples. Then, it used half of these pairs as the negative examples to create N
(N + 1)-tuplet, reducing the total number of evaluations to only 2N . This figure was taken
from Sohn (2016).

Figure 1.10: The dot product of the input representation at the n− 1 layer and the weights of
the last layer n can be considered as the non-normalized angle between them. This angle can
thus serve as a distance and lead us to think of the input representation given by the n − 1
layer as a representation learned using a distance. The cross-entropy loss indirectly does this
by making examples of the same class have similar angles and make classification useful in
metric learning.

Cross-entropy Loss
Considering that the objective is to obtain a sufficiently-diverse representation to differentiate
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two distinct instances of a dataset, it may not be mandatory to directly enforce a distance
between every instance. Instead, Sun et al. (2014b) use a cross-entropy loss to learn the
classification of 10,000 different faces. Having many classes forced their CNN model to learn a
function that output sufficiently-detailed representation before the last layer to be successfully
used in a face verification task.

Similarity Loss
Even if classification can be used for metric learning, it is not the most suitable loss for
verification, i.e., to decide if an unseen image pair is considered the same or not. To tackle
this problem, a verification loss using binary cross-entropy (Xufeng Han et al., 2015; Sun
et al., 2016) was developed to directly output the probability of two images being the same
(0 different, 1 same). If we consider this probability as a distance, this loss becomes similar
to the contrastive loss by pushing the distance between similar examples to 1 and different
examples to 0.

Multi Loss
With the great success of losses based on learning distances and the significant power of
classification, it is not surprising to see that this led to experiments which combined losses to
improve over one another. In Sun et al. (2014a, 2015), they trained their network by carrying
out classification and using the contrastive loss at the same time. Similarly, Parkhi et al.
(2015) used a cross-entropy loss in conjunction with the triplet loss. In the case of Zheng
et al. (2017); Taigman et al. (2014); Taigman et al. (2015), they combined classification with
a similarity loss objective using binary cross-entropy. With all of these methods, Wan et al.
(2014) made a comparison of a pre-trained network on ImageNet with the same network fine-
tuned on similar data to the test set using either a cross-entropy loss or a triplet loss. They
concluded that a pre-trained network while offering good results, can have its performance
significantly boosted by fine-tuning it with either loss.

Angular Loss
Since the performance shown by a cross-entropy loss is still relevant, some people started to
address one of its disadvantages, namely the lack of proper decision boundaries. Liu et al.
(2017); Wang et al. (2017a, 2018a,b) alleviated this problem by modifying the softmax to
incorporate an angular margin that must be overcome by the network to classify an example
correctly. This problem can be seen in Figure 1.11, which also depicts the effect of adding a
margin in the softmax classification loss in either the non-normalized vector space or the l2

normalized vector space.

1.7 Learned Local Feature Descriptor

Recently, with the revolutionary appearance of deep learning in computer vision, data-driven
approaches have dominated the landscape. The assumption is that with the right dataset,
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Figure 1.11: Figure taken from Liu et al. (2017). Toy experiment showing 2D representations
learned by a CNN on the CASIA face dataset. Three losses were used to train the neural
network, which are the softmax loss (which Liu et al. (2017) defined as the combination of
softmax and the cross-entropy loss), the modified softmax loss and the A-Softmax loss. For
each loss, there is a positional representation and an angular one. Two classes of face features
are represented in each graph, one in yellow and one in purple. This figure thus displays the
lack of angularity and margin in the class representations of the softmax loss, which made the
A-Softmax loss perform better.

a data-driven approach should learn a more meaningful and distinct representation of image
patches, while being invariant to changes in lighting and viewpoint conditions. This is in
contrast with the hand-crafted approach, in which datasets play a less-direct role. A good
example of data-driven approaches is in Brown et al. (2011), where they made a patches
dataset using the 3D reconstruction of the Statue of Liberty (New York), Notre Dame (Paris),
and Half Dome (Yosemite) from the photos and the multi-view stereo data of Snavely et al.
(2008); Goesele et al. (2007). This dataset, now known as Multi-View Stereo (MVS) dataset,
is composed of a large set of 64x64 patches, mostly depicting buildings.

Consequently, a descriptor train with such a dataset will be biased toward buildings and may
very well fail on other datasets, such as a household objects dataset, to name one. Nevertheless,
Brown et al. (2011) showed with their dataset that learning a parametric function on one of the
three buildings and testing on another one, made their descriptor offer a better performance
than a generic one such as SIFT. Despite the bias induced by the dataset, learned descriptors
can thus be useful as long as the data used to train them is appropriately selected for the task.

With encouraging results of machine learning approaches such as Brown et al. (2011), it was
expected to see a deep learning approach such as Simo-Serra et al. (2015); Paulin et al. (2015)
apply CNN to the local feature descriptor task. In the case of Paulin et al. (2015), they ap-
proximate a kernel map in an unsupervised way using the Convolution Kernel Network (CKN)
from Mairal et al. (2014) that was developed to be more simple, easy to train and invariant
than normal CNN. Then, their network takes image patches as input and produced kernel
map approximations, which serve as the descriptions. To train this descriptor, they prepared
a new patches dataset using landmark images of Rome taken from Li et al. (2010). They
tested their approach on the unseen part of their Rome dataset, as well as other benchmarks,
and showed on par or better performance than supervised CNN.

For their part, Simo-Serra et al. (2015) used the MVS dataset to devise a training scheme using
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the contrastive loss. Their CNN was then trained to output similar vectors when given two
patches of the same region and dissimilar vectors for patches of different regions. A sample of
these patches used by Simo-Serra et al. (2015) from the MVS dataset can be seen in Figure 1.12.
In this figure, you can observe a pair of similar patches for each different region. When tested
on this dataset, they outperformed SIFT for every split used for testing, outperformed the
VGG approach (Simonyan et al., 2014) fine-tuned on the data in all splits except one and
using different datasets further demonstrated robustness to rotation and generalization.

Instead of outputting vectors that can be compared, Xufeng Han et al. (2015) decided to
develop a two-step process that describes two image patches and then directly provides the
matching probability between these two patches. To do so, they first designed a deep learning
network composed of two CNNs with shared parameters. Each pipeline describes the two image
patches at the same time, and then these internal descriptions are fed to a fully-connected
network that outputs the similarity probability. They further explain a two-step scheme to
rapidly compare images, which is to describe every image patch using their CNN and then
compare all pairs using the fully-connected network. When compared on the MVS dataset,
they outperformed variant of SIFT and Trzcinski et al. (2012); Simonyan et al. (2014); Brown
et al. (2011) approaches. They also showed that they could achieve state-of-the-art results
while using quantization to make use of fewer bits per feature.

Figure 1.12: This figure shows pairs of images from the Multi-View Stereo (MVS)
dataset Snavely et al. (2008); Goesele et al. (2007). Images in the top row come from the
New-York Statue of Liberty, and are referred to as ‘Liberty’ (LY) in the dataset. In the
middle row are images from the Notre-Dame de Paris cathedral, dubbed ‘Notre Dame’ (ND).
Finally, in the bottom row, we can see images from the Yosemite National Park in the U.S.
that are referred to as ‘Yosemite’ (YO). Each row is separated by pairs of images representing
the same physical location. Figure taken from Simo-Serra et al. (2015).

A more complex approach is to learn the complete description pipeline, which includes both
the detection and description of points of interest in an image. Yi et al. (2016) followed
this approach by training three CNNs, which respectively: calculate a score map to crop the
most interesting region, predict the crop orientation to rotate it accordingly, and describe
the image crop. At training time, these three operations are carried out back-to-back to be
differentiable in an end-to-end manner. The whole pipeline is trained using quadruplet of
128 × 128 pixels image patches taken at the location of keypoints calculated by a Structure-
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from-Motion algorithm. The detector is used to find the most interesting keypoints in each
of the 128× 128 pixels image patches, and then a 64× 64 crop is passed on to the rest of the
pipeline. This alleviates the need to train the detector to find the most distinctive points in
an image, and then at test time, it can be decoupled from the pipeline to be run on the whole
image to find interesting keypoints. They tested their method on three different datasets and
outperformed all the other approaches, among which there was Simonyan et al. (2014); Xufeng
Han et al. (2015); Simo-Serra et al. (2015); Bay et al. (2006); Alcantarilla et al. (2012); Rublee
et al. (2011); Lowe (2004).

In DeTone et al. (2018), they used complete images as input to learn an encoder function
using a CNN. This encoder generates a reduced representation of the whole image. It is
then sent to an interest point decoder and a descriptor decoder that outputs the keypoints
and descriptions respectively, all in a single forward pass. Another pipeline was proposed
by Rocco et al. (2018). Their approach begins by calculating the descriptions for every part
of the image using a CNN. Then, instead of using keypoint locations to restrain the number
of comparisons to the number of interesting points, they directly compare all the descriptors
of two images at once. This results in a 4D space of feature matches that they process with a
4D CNN that outputs a 4D map of filtered matches. They assumed that with a 4D CNN they
could take advantage of the neighborhood spatial information related to matches to better
identify them.

For a good comparison between SIFT- and CNN-based descriptors, the work of Zheng et al.
(2016b) offers a good overview of the performance. It also indicates a slight advantage for
learned methods when applying fine-tuning. The need to use fine-tuning is leading us back
to the problem mentioned earlier: learned descriptors can be biased by their dataset and
may underperform on certain tasks. In Schonberger et al. (2017), multiple learned and hand-
crafted descriptors are evaluated on different matching tasks as well as the more practical task
of image-based reconstruction. They clearly show the high variance of learned descriptors
across tasks and the equal or better performance of hand-crafted descriptors on image-based
reconstruction. Thus, it is clear that despite their remarkable performance, learned approaches
suffer from the generalization problem. However, next in section 1.8, we look into the work
done to alleviate specifically this problem.

1.8 Domain Generalization

When tackling a problem with machine learning, data related to the problem at hand is
essential to learn something. However, problems where there is no data directly available, may
not be easily solvable using learning techniques. This is particularly true for deep learning
approaches, as they typically require a significant amount of labeled data. When data is scarce,
the way to solve such a problem is by using abundant data coming from similar distributions.
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This is known as Domain Generalization and aims at using available data from k different
problems defined as source domains Ds = {D1,D2, ...,Dk} to learn invariant features that
enable generalization to an unseen target domain Dt. This can be applied to problems such
as Visual Place Recognition (VPR), where it is unrealistic to gather images from all around
the world with all possible types of variations (illumination, weather, season, etc.). Another
example is when real data is hard to collect, but generating synthetic data is cheap and reliable.
The same problem appears when trees offer too much variety, and thus collecting sufficient
data from every possible type of bark is practically impossible. With the need to investigate
Domain Generalization, datasets composed of several source domains have been shared, such
as the PACS (Li et al., 2017b) dataset and the VLCS (Fang et al., 2013) dataset.

Figure 1.13: This figure was initially designed to show the effect of the different losses proposed
in Motiian et al. (2017). However, here we intend to show how well it represents the goal of
domain generalization. First, the distinction between the classes to predict is represented by
the different shapes. Also, the difference in the domain distributions is expressed by colors.
We can then consider the left side as training a network to classify three different shapes,
despite the shape coming from different domains. Next, on the right side, we can see the
goal of domain generalization, which is to have a classification network being able to classify
examples at test time from an unknown domain (purple) in the three same categories with
minimum error. This figure was taken from Motiian et al. (2017).

In Domain Generalization, all the domains are similar, but each domain possesses its own bias,
causing a covariate shift between domains. This, in turn, leads to a reduction of performance
when testing the learned model on an unseen domain. Despite this, it is possible to make
a model employ the common features shared between domains while lessening the covariate
shift effect. This goal is well illustrated in Figure 1.13, where we can see that the model g
at test time produces similar representations for the target domain, while still showing a bias
compared to the source domains. Common ways of solving domain generalization can range
from learning domain-invariant classifiers (Khosla et al., 2012) to learning domain-invariant
features (Muandet et al., 2013; Ganin et al., 2016). Also, in Radenovic et al. (2018), they
tried to directly transform all source domains to a common representation, in order to learn
a single representation for all domains.
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1.9 Vision Applied to Bark/Wood Texture

Trees are an essential resource for the economy and the environment. But, with all of the
species and variations of appearance, including between the trees of a sole species, recognizing
them can be challenging. This motivated research studies on how best to utilize tree character-
istics to determine their species and, in particular, bark, since it is easily accessible and present
all year round. This led to the first attempts of recognizing tree bark using Local Binary Pat-
terns (LBP) descriptors. This is because bark can be considered as a texture classification
problem, for which the LBP descriptors have shown good performance at classifying. This
technique and its variants have been used in Sulc and Matas (2013); Svab (2014) to described
tree bark textures in images and then classify the bark description using a Support Vector
Machine (SVM). Likewise, Huang et al. (2006) described bark images with LBP features, but
tried to use a radial basis probabilistic network to carry out species classification instead. A
good comparison of LBP descriptors applied to bark texture can be found in Boudra et al.
(2015), where they evaluated the performance of such descriptors using instance retrieval based
on the bark species. They show moderate results on the Trunk12 (Svab, 2014) dataset and
the AFF (Fiel and Sablatnig, 2010) dataset.

Even if bark identification is considered a texture problem, other descriptors not designed
with texture in mind have been studied in an attempt to recognize tree species from it. For
example, Zheru Chi et al. (2003) used banks of Gabor filter to model texture as a collec-
tion of narrowband signals from which they extracted characteristic features of each bark
species. Classification was then performed on these extracted features. Closer to our descrip-
tion method, Fiel and Sablatnig (2010) used a SIFT descriptor to process images of bark and
calculate a Bag of Words (BoW) description that they classify using a SVM. Their work
shows interesting results on the AFF bark dataset. They further evaluated their method for
the classification of tree leaves on a small leaf dataset and look at the feasibility of classifying
tree needles. Recently, Carpentier et al. (2018) approached tree bark recognition using CNNs,
but due to the need for a large amount of data to train deep neural networks, they had to build
their own dataset. This dataset, called BarkNet, contains 23,616 images of 23 different tree
species. They compared the performance of pre-trained ResNet fine-tuned on bark images and
demonstrated high performance, particularly when using a voting scheme based on multiple
crops of the bark.

Texture can be found to be similar for the same family of material, thus suggesting that
classification is possible between each family, such as maple bark versus pine bark or simply
asphalt versus granite. However, texture being randomly generated in nature makes two
surfaces of the same family of material similar, but still different. This randomness in texture
makes it worthwhile to investigate the possibility of re-identifying a specific texture surface
based on the uniqueness of this surface. For instance, one can find interesting research such as
that of Zhang et al. (2017); Zhang and Rusinkiewicz (2018) that use ground textures such as
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asphalt, wood floor, or other texture surfaces to enable robots to localize themselves. In Zhang
et al. (2017), they focused on building a texture map of the floor using the standard SIFT
pipeline (detector+descriptor). Once the floor was mapped, they would later take a picture of
the ground using their fixed downward camera surrounded by LED that helps generate nearly-
invariant images. They then described the image with the SIFT descriptor and compared the
features found with the one in their map, using a voting scheme tailored for the randomness
of ground texture. In their following work (Zhang and Rusinkiewicz, 2018), they improved
by learning a texture feature detector. This detector is based on a CNN, trained on their
previous dataset (Zhang et al., 2017). For training, they employed a special "ranking" loss
combined with a "peakedness" loss designed to maximize the response map.

1.10 Evaluation Metrics

Image retrieval can be evaluated in multiple ways. However, not every metric gives a good
understanding of the performance of any solution. Since the task discussed in this thesis
is essentially a binary classification (relevant versus non-relevant) problem, we will review
the metrics well-suited for it and their significance. This is important since using a metric
not designed for our task could give misleading results. As an example, using accuracy to
evaluate the performance of a classification model on a binary problem with a skew ratio of
positive/negative examples could give excellent results as long as it labels everything as the
majority class. For instance, having 5 positive examples against 1000 negative examples with a
model labeling everything as negative would yield a 99.5% accuracy (10001005 correct predictions),
while having mislabelled all positive examples.

Usually, a model predicting a class label will either directly output the predicted label or give
a probability (or score) of belonging to each of the labels. In the task of image retrieval, we
usually refer to the positive class as a relevant match between a query image and an unseen
image. Conversely, the negative class will be referred to as a non-relevant match. To better
adhere to the problem formulation used in this thesis, we will consider that the model gives
a matching score for every image of a set compared to a query image, which indicates the
relevance of these images to the query. This means that a higher score is related to a better
probability of being a relevant image to the query. Therefore, by using a certain threshold,
we can transform these scores into a label. This makes us consider the predictions of a model
as two separate categories. If the predictions are considered as scores of being classified as
relevant, we can use a metric that will estimate performance based on the order of these scores
in their set. Otherwise, if we consider the predictions as relevant/non-relevant labels, we will
use metrics estimating the performance based on the set of unordered labels. For another
reference on the subject of information retrieval evaluation, the reader is referred to section 8
of Manning et al. (2008).
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1.10.1 Unordered Set

Starting with the scores given to images by a model predicting relevance, we observe a set of
scores as presented in the first row of our toy example of Figure 1.14, where the color blue
indicates scores that should be considered relevant and the color red indicates the opposite.
When looking for a model that will give an explicit label, we make use of a threshold that will
separate the scores given into two distinctive groups that will each receive an explicit label
of relevance and non-relevance. In the second row of Figure 1.14, the gray squares indicate
possible thresholds that could be used to classify higher score (left) as relevant and lower
score (right) as non-relevant. This transforms our set of scores into an unordered set of labels.
However, as seen in the figure, a threshold may wrongly classify some elements of the set.

10 27 8 20 4 23 19 18 26 14 13 9 30 6 15 5

30 27 26 23 20 19 18 15 14 13 10 9 8 6 5 4

29 24 21 16 12

Figure 1.14: Here, we can see two rows depicting the same matching scores. Each number is a
score, with blue circles indicating relevant matches, red circles are non-relevant ones, and gray
squares represent possible threshold values. First row: an unordered set of matching scores
calculated for an arbitrary query. Second row: the same score as row one but in decreasing
order to visualize the separation by different thresholds.

Ground Truth

Predicted
True False

True True Positive (TP ) False Positive (FP )
False False Negative (FN) True Negative (TN)

Table 1.3: This figure presents a confusion matrix showing the name of the variable between
predicted labels and ground-truth labels.

To more easily inspect the count of correctly and incorrectly classified images, we construct a
confusion matrix, as shown in Table 1.3. This matrix is needed to count the number of images
situated in each intersection of predicted and ground truth labels. These intersections are the
correctly predicted relevant images (TP ), the correctly predicted non-relevant images (TN),
the incorrectly predicted relevant images (FN), and the incorrectly predicted non-relevant
images (FP ). These four values are essential to evaluate the performance of a prediction
model, and multiple metrics may be derived from them, as we will see next.

Precision and Recall
The TP and TN results indicate the number of correct predictions made by our model.
While the FP and the FN indicate how many errors our model has made. However, correctly
evaluating our model is not that simple. When our test set is largely imbalanced, and we have
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few relevant data to compare to the non-relevant data, we need to focus more on our total TP
prediction. Also, depending on the application, making more FP errors may be preferable
than FN errors, while in other cases, the opposite would be preferable. For a more in-depth
explanation of the FP and FN error, see section 9 of Montgomery and Runger (2003). To
obtain a more comprehensive overview of the results under these constraints, we commonly
use the Precision, and Recall measures, defined as:

Precision =
TP

TP + FP
, (1.7) Recall =

TP

TP + FN
. (1.8)

Equation 1.7 represents how much the model used to make predictions with a certain threshold
is conducive of considering non-relevant matches as relevant. Conversely, Equation 1.8 rep-
resents the preponderance of the model to wrongly predict relevant matches as non-relevant.
While each equation evaluates a different type of error, they are connected by an inversely-
proportional relationship. In other words, if we move a threshold to improve one measure, the
other will most likely suffer.

Unordered Set Precision and Recall Graph
Looking at Precision and Recall for a single arbitrary threshold is not meaningful. Thus, one
of the common ways to use these two measures is to calculate them for multiple thresholds,
spanning the possible scores, and then plot one against the other for each threshold. This
results in a Precision Recall (PR) Curve that allows us to see the trade-off between Precision
and Recall for each threshold. If a single threshold could correctly separate every score, it
would produce both a Precision and Recall of 1, and this means that the best point in such
a graph is the top right corner at (1,1). However, this is highly improbable except for trivial
problems. One should, therefore, look for a point in the graph that represents a threshold
where the important metric for their use case respects their need, without penalizing too
much the other metric. Table 1.4 shows metrics calculated from the example in Figure 1.14,
demonstrating how Precision and Recall are inversely correlated. To differentiate the PR
graph using Precision and Recall calculated from an unordered set to the PR graph that we
present in the ordered set section later, we refer to the former as a Unordered Set Precision
Recall (US-PR) graph.

F1 Score
If one is searching for the optimal combination of Precision and Recall among all thresholds
used and considering giving equal importance to both measures, it is a good idea to look at
the F1 score. This metric is a single value obtained for a specific threshold that is equally
influenced by both Precision and Recall, while preventing averaged results such as 0.5 for a
precision of 0 with a recall of 1 (F1 would yield 0). This F1 score gives a good representation
of the expected performance of a method when considering precision as much as recall. The
exact calculation of the F1 score takes both measures equally into consideration. It is defined
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here as:
F1 =

2 · TP
2 · TP + FP + FN

. (1.9)

Threshold 29 24 21 16 12

Confusion matrix 1 0 2 1 3 1 4 3 4 6
3 12 2 11 1 11 0 9 0 6

Precision 1.000 0.667 0.750 0.571 0.400
Recall 0.250 0.500 0.750 1.000 1.000
F1 0.400 0.571 0.750 0.727 0.571
FPR 0.000 0.083 0.083 0.333 0.500

Table 1.4: Confusion matrix and associated metric calculated for each threshold used in the
example of Figure 1.14.

Receiver Operating Characteristic
Another common way to evaluate multiple thresholds is to plot Recall against the False
Positive Rate (FPR), which is defined here:

FPR =
FP

FP + TN
. (1.10)

This gives the Receiver Operating Characteristic (ROC) Curve, which represents the Recall
as a function of the ratio between the number of relevant matches wrongly classified and
everything predicted as non-relevant. The ROC Curve can be seen as the trade-off between
the benefit (recall) and the cost (FPR) for every threshold. In such a graph, the diagonal line
going from the bottom left to the top right represents random guesses. A line passing by the
top left corner would be a perfect classifier (all benefit at no cost).

Area Under the Curve
From the ROC Curve, one can compute a single value, called the Area Under the Curve (AUC),
that varies between 0 and 1. This value captures the probability that the model will score a
randomly-relevant match higher than a randomly-non-relevant one. Since the AUC refers to
the area under the ROC Curve, it should be calculated using an integral. However, since the
ROC Curve is the plot of Recall against the FPR, we have a series of (x,y) points. Instead of
using an integral, the AUC is calculated with the trapezoidal rule shown here:

AUCi =
1

2
(Recalli +Recalli+1)(FPRi+1 − FPRi). (1.11)

In this equation, the subscript i identified a point of the ROC Curve, hence AUCi is the area
between two points of the ROC Curve and repeating Equation 1.11 for {i0, i1, i2, ..., in−1} give
an approximation of the AUC. Like the ROC diagonal that represents random guesses, a AUC
value of 0.5 is considered uninformative. Conversely, an AUC of 1 is a perfect score. However,
a value of 0 is also a perfect score because it can be reversed to 1 by inverting the class labeling.
Finally, this metric must be seen as an aggregated representation of the performance since it
is a summary of the result of every threshold.
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1.10.2 Ordered Set

The other way to evaluate a model performance based on the query scores is to sort them in
decreasing order. We took the previous example of Figure 1.14 and changed the thresholds
for the ranking system in Figure 1.15. When using an ordered set, the assumption is that
relevant matches are given higher scores than non-relevant matches. With this assumption
and the fact that we have four relevant images for our example query, we then consider that
the first four ranks of our ordered set should contain the relevant matches.

10 27 8 20 4 23 19 18 26 14 13 9 30 6 15 5

30 27 26 23 20 19 18 15 14 13 10 9 8 6 5 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 1.15: Here are two rows depicting the same matching scores. Blue circles are relevant
matches, red circles are non-relevant ones, and each number in these circles is a score. The
gray squares represent the rank of each score, after putting them in order. First row: an
unordered set of matching scores calculated for an arbitrary query. Second row: the same
score as row one but in decreasing order, to better visualize the rank of each score.

Precision@K and Recall@K
Just as in the unordered section, Precision and Recall can be calculated for an ordered set of
scores. However, instead of using a threshold, here we need to select a rankK that will be used
to separate the ordered scores in relevant and non-relevant classes. The scores ranging from
the first rank to the Kth rank will be considered as relevant and will enable the calculation of
the Precision at rank K (P@K) and Recall at rank K (R@K) as:

P@K =
p(K)

K
, (1.12) R@K =

p(K)

|I|
. (1.13)

In both Equation 1.12 and 1.13, the function p returns the number of relevant images ranked
between the first rank and the Kth rank (K included). For Equation 1.13, I is the set of
relevant images and |I| is its cardinality.

Precision Recall Graph
A PR graph can be drawn for ordered sets, just as for unordered sets, by using the P@K for
each level of Recall available. For this, we calculate the P@K and the R@K at each rank
where a relevant image can be found as in Table 1.5. Then, plotting them against each other
produce a PR graph. With an ordered set, the PR is then calculated as:

PR = {i ∈ I | (R@ik, P@ik)}. (1.14)

Here, i ∈ I represents one image coming from the set of relevant images, and ik is the rank
where the image i can be found. This builds a set of tuples, with each tuple being (P@K,
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R@K). The reason we do not calculate these metrics for every K is that the P@K is bound
to decrease if the K + 1 rank does not contain a relevant match. Instead, we calculate the
P@K only when the R@K increases. So, a PR graph allows us to look at the averaged P@K
over all queries obtained for each rank where a relevant image is located. To differentiate this
PR graph from the US-PR graph, we refer to it as an Ordered Set Precision Recall (OS-PR)
graph.

K 1 3 4 5
P@K 1.000 0.667 0.750 0.800
R@K 0.250 0.500 0.750 1.000

Average Precision (AP) 0.804

Table 1.5: P@K and R@K calculated for eachK where there is a relevant image in the example
of Figure 1.15. This table shows each measure of an PR graph and the associated AP for our
example.

Average Precision
The Average Precision (AP) is the mean of all P@K in an OS-PR graph for a single query,
as shown in Table 1.5. Thus, when we make multiple queries in an experiment and average
the AP over them, we use the abbreviation mean Average Precision (mAP). What the mAP
shows is a single number representing the P@K of every relevant match, which is a summary
of the OS-PR graph. Also, a mAP value of 1 corresponds to a graph with a straight line
remaining at 1 for any value of R@K.

R-Precision
When K is equal to the number of relevant images (four in our example of Figure 1.15), it is
called the R Precision (R-P). Using K = |I| has the advantage that it can reach a value of 1
with a perfect classification and simultaneously give Precision@4 and Recall@4. We can see
that this equality occurs in Table 1.6 when K = 4. What makes this score different from the
mAP is that its evaluation is more arbitrary. For example, if the fourth-best relevant image
reaches rank 5 as in the example of Figure 1.15, it will not be counted in the R-P, thus giving
a value of 0.75 (3/4 = 0.75). While a Precision@5 of 0.8 would be added to the mAP value
(for a final mAP of 0.804 as in Table 1.5), making the drop in performance less drastic.

K 1 2 4 5 10
P@K 1.000 0.500 0.750 0.800 0.400
R@K 0.250 0.250 0.750 1.000 1.000

Table 1.6: P@K and R@K calculated from the example in Figure 1.15, using arbitrary K to
show the Precision and Recall equality when K = |I| = 4 . Note you can also see the drop
in Precision with an identical Recall when going from K = 1 to K = 2, which would give
misleading results if used in a graph.

Precision@1
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Even if Precision at rank 1 (P@1) uses an arbitrary rank, this metric can be meaningful. The
P@1 checks if the best score per query is a relevant match. It is advantageous if an application
needs only one match to confirm the re-identification. However, one must be careful of the
number of relevant images used. This is because even if we obtain a high P@1, this does not
mean that every relevant images can be retrieved reliably. A high P@1 only indicates the
probability we have to always retrieve the more similar relevant image.

1.11 Conclusion

In this chapter, we reviewed the essential elements of image retrieval and deep learning. We
first began by organizing the different ways image retrieval is used in different problems such
as visual place recognition, face recognition, and person re-identification, among others. With
the ability to describe images being essential to image retrieval, we then looked at image
description using global descriptor techniques. Apart from global descriptors, we also discussed
how hand-crafted local feature descriptors with their more invariant descriptions had become
the standard method. However, because these local feature descriptors used computationally
expensive algorithms, we also looked at how it is possible to summarize their numerous local
descriptions to produce easily comparable Bag of Words (BoW) descriptions.

To understand the fundamentals of Deep Learning, we entered the subject of Convolutional
Neural Network (CNN). Despite having a great capacity to represent high dimensional data in
meaningful ways, training them to achieve this is still a hard challenge. Following this section,
we thus focused our attention on metric learning. We understood how we could give deep
neural networks an objective to learn that make unique and invariant representations. Hence,
we saw that this combination of CNN and metric learning could produce great descriptors,
but in this thesis, we focused on how to use them to create learned local feature descriptors.
We explained how these later can achieve excellent performance, but need particular datasets
for training and might suffer from the bias present in these datasets. To go more in-depth
about this dataset bias problem in machine learning, we transitioned to the subject of domain
generalization to explain how this bias problem can be mitigated.

Before reaching this conclusion, we discussed crucial information about the metric that can be
used to evaluate image retrieval tasks and how they are all useful in different ways. Finally,
before delving into chapter two, a quick review of the literature referenced in this chapter is
available in our reference table just below.
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1.12 Reference Summary

Author (Year) CBIR
Object,
Scene
Reco.

Face
Reco.

VPR
Person
Re-Id

Global
Desc.

Hand
Crafted
Desc.

CNN
Metric
Learning

Learn
Desc.

Domain
Gen.

Tree
Bark

Datta et al. (2008) x
Zhang and Ye (2009) x

Kaur and Banga (2013) x
Sural et al. (2002) x x

Sinha and Kangarloo (2002) x x
Neetu Sharma et al. (2011) x x
Arandjelovic et al. (2018) x x x

Wan et al. (2014) x x x x
Zheng et al. (2016b) x x x x x
Wang et al. (2017b) x x

Sohn (2016) x x x
Yi et al. (2016) x x

Rocco et al. (2018) x x x
Sivic and Zisserman (2003) x

Lowe (2004) x x
Bay et al. (2006) x x
Liu et al. (2017) x x

Wang et al. (2017a) x x
Wang et al. (2018a) x x
Wang et al. (2018b) x x
Chopra et al. (2005) x x
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Schroff et al. (2015) x x
Ming et al. (2018) x x
Sun et al. (2014a) x x
Parkhi et al. (2015) x x
Sun et al. (2016) x x

Wang and Deng (2018) x
Zhang et al. (2014) x

Taigman et al. (2014) x x
Sun et al. (2015) x x

Taigman et al. (2015) x x
Sun et al. (2014b) x x
Yi et al. (2014) x x
Guo et al. (2016) x x
Klare et al. (2015) x
Huang et al. (2007) x

Learned-Miller (2014) x
Wolf et al. (2011) x x
Rublee et al. (2011) x x

Alcantarilla et al. (2012) x x
Calonder et al. (2010) x x
Lowry et al. (2016) x
Ramos et al. (2007) x
Jain et al. (2017) x
Zheng et al. (2017) x x x

Sunderhauf et al. (2015) x x
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Cummins and Newman (2008) x
Cummins and Newman (2009) x

Turcot and Lowe (2009) x
Li et al. (2010) x x

Hermans et al. (2017) x x
Gray et al. (2007) x
Arandjelovic (2012) x x
Viswanathan (2011) x

Rosten and Drummond (2006) x
Lecun et al. (1998) x
Deng et al. (2009) x

Krizhevsky et al. (2012) x
Nair and Hinton (2010) x

He et al. (2016) x
Iandola et al. (2016) x
He and Sun (2015) x
Hadsell et al. (2006) x
Li et al. (2017a) x

Xufeng Han et al. (2015) x x
Simo-Serra et al. (2015) x x
DeTone et al. (2018) x x
Brown et al. (2011) x
Paulin et al. (2015) x

Schonberger et al. (2017) x
Snavely et al. (2008) x
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Goesele et al. (2007) x
Mairal et al. (2014) x

Simonyan et al. (2014) x
Trzcinski et al. (2012) x

Li et al. (2017b) x
Fang et al. (2013) x

Motiian et al. (2017) x
Khosla et al. (2012) x
Muandet et al. (2013) x
Radenovic et al. (2018) x
Ganin et al. (2016) x
Huang et al. (2006) x

Sulc and Matas (2013) x
Svab (2014) x

Boudra et al. (2015) x
Fiel and Sablatnig (2010) x
Zheru Chi et al. (2003) x
Carpentier et al. (2018) x
Zhang et al. (2017) x

Zhang and Rusinkiewicz (2018) x
Table 1.7: Summary of the referenced articles in chapter 1.
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Chapter 2

Bark Data and Method

Our project about bark surface re-identification consists of three main components. The first
one is the original bark data, which we collected ourselves and named the Bark-Id dataset. The
second component is also about data, but more specifically, about a second dataset composed
of small images patch tuples representing the same physical locations that we named the
Bark-Aligned dataset. Lastly, our third component refers to two descriptors, DeepBark and
SqueezeBark, built using Bark-Aligned.

This chapter explains all the details that we have taken into account to obtain these three
crucial components. It begins by pointing out the need for a bark dataset tailored for bark
re-identification in section 2.1. We then explain all the details taken into account to collect the
data of the Bark-Id dataset in section 2.2, followed by the description of Bark-Id in section 2.3.
After this, we go through the crucial details of homography in section 2.4. The next section lays
out the operations, such as homography and keypoints detection, among others, we needed
to be able to apply to our Bark-Id dataset in section 2.5. These operations enabled us to
transform the Bark-Id dataset into the Bark-Aligned dataset composed of pixel-aligned image
patches, representing identical physical bark location as described in section 2.6.

With the first two components well explained, we then enter the discussion of how we built
our deep learned descriptors based on our Bark-Aligned dataset in section 2.7. In addition to
our two datasets and two descriptors, we still need to clarify how we made use of them. For
this, we first discuss the existing techniques that use local feature descriptors to build visual
signatures of images in section 2.8. We also define the three methods we used to compare
two bark visual signatures in the context of bark re-identification in section 2.9. Finally, we
summarize this chapter in the conclusion of section 2.10.
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2.1 Bark Data

All the previously-mentioned methods in section 1.9 are all geared towards tree bark clas-
sification. To the best of our knowledge, no work has been done on the problem of bark
instance retrieval using images. Consequently, there is no available dataset suited for our
bark re-identification objective. Table 2.1 shows the specificity of the datasets used in bark
classification works. Moreover, the majority of these datasets are private. In addition, Ta-
ble 2.1 includes our dataset developed with a careful index annotations to allow the testing
of methods to retrieve specific instance (surfaces) of bark images. From this table, one can
see that no other datasets allow for pixel-alignment of images of the same bark surface. This
is an important point because without such a dataset, we would not have been able to build
our Bark-Aligned dataset, without which no deep learning descriptor could have been trained.
Finally, to stimulate research in this area, we decided to make our new bark dataset public.

Reference Number of
classes

Number of
images Public Instance

Retrieval
Pixel

Aligned
Zheru Chi et al. (2003) 8 200
Huang et al. (2006) 17 300

TRUNK12, Svab (2014) 12 393 X
Bressane et al. (2015) 5 540
Blaanco et al. (2016) 23 920

AFF, Fiel and Sablatnig (2010) 11 1183
BarkNet, Carpentier et al. (2018) 23 23616 X

Ours 2 2400+750 X X X

Table 2.1: This table is a comparative of the existing bark datasets based on their size,
availability, and applications. All datasets contain tree bark images designed for species clas-
sification, except ours. Adapted from Carpentier et al. (2018).

2.2 Description of the Data Gathering Methodology

To collect a dataset enabling instance retrieval and pixel alignment between images of the same
bark surface, we designed a proper methodology before beginning to collect bark images. To
achieve our tree bark re-identification objective, the dataset we collected needed to allow three
different operations on its images. The first one (1) is to associate every image taken with a
specific bark surface, enabling a retrieval ground-truth of relevance and non-relevance between
images. The second operation (2) was to allow each image to be cropped around a surface of
interest. Moreover, besides merely cropping the exceeding information, we needed to specify
the contour of the surface of interest to generate a complete correspondence between two
images of a sole bark surface. The third operation (3) needed is the homography, which allows
the calculation of the spatial transformations between the specified location in multiple images
of the same bark surface.
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Other than the three previously-mentioned operations, our dataset needed to display certain
forms of variations. Without it, our dataset would not present sufficient challenges in terms of
retrieval. But more importantly, it would not allow us to train a descriptor to become invariant
to these variations. To select them, we took into account that tree bark is a highly-textured
surface and then postulated that changes in lighting and viewpoints would drastically perturb
the representation of bark in an image. Our methodology thus needed annotated images that
can be cropped and spatially registered with one another, while ensuring that changes in
viewpoints and lighting were present between images.

Allowing operation 1 was rather straightforward. Since images have to be relevant to each
other, we always begin by selecting a distinct physical bark surface. This surface was then
photographed multiple times with different lighting and viewpoint variations. Then, when we
uploaded the photos to a computer from the camera, we prepared a folder for every set of
images corresponding to a specific bark surface. Thus, all images in a folder were relevant
to each other. However, even if this is a straightforward operation, it is essential to mention
that a distinct physical bark surface is just a certain area of bark on a tree. This means that
two bark surfaces with no overlapping area are still considered distinct even if they are part
of the same tree. Thus, bark images relevant to each other come from the same physical bark
surface area and are not relevant to any other images of a different bark surface located on
the same tree.

For operations 2 and 3, a more thoughtful method was necessary. The minimal requirement
was to surround a specific surface of bark with fixed markers that would stay visible despite
any variations. Using simple thumbtacks of different colors pushed into the bark could have
been sufficient, but would have made their precise registration in the image more difficult.
For instance, it might have asked of a human to visually locate the center of the thumbtack
heads in the image and note the pixel location, which could lead to human error while adding
a great cost in annotation time. To avoid such problems, we relied on the mostly-vertical and
straight shape of trees to design a rectangular wooden frame that could be attached to most
tree trunks. This provided us with a solid support to attach visible fiducial markers around
a standardized area. In Figure 2.1, we can see our custom-made wooden frame, which allows
a surface of 757.5 cm2 (rectangle of 50.5 cm by 15 cm) of tree bark to be made visible. This
frame was fixed to trunks using elastic cords attached from one side of the frame to the other,
with sufficient tension to avoid any movement of the frame while pictures were taken. This
frame was employed for every bark surface of our dataset.

As shown in Figure 2.1, we used four ArUco (Ar) fiducial markers to identify the four corners
of the rectangle, delimiting the bark surface region. These markers were generated using
the OpenCV library available in Python. The advantage of these markers is that the same
library that generated them also offers the algorithm to detect them in an image automatically.
These markers are defined by four black borders forming a perfect square enclosing a specific
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Figure 2.1: This figure shows a sample of zoomed red pine images from our dataset. The
wooden frame used to surround every bark surface in our dataset is displayed with its four
fiducial markers.

binary pattern in the form of a matrix. This makes it easy to find them using edge detection
while being robust to error and uniquely identifiable by their respective pattern. However,
the material used to print them was of great importance for two reasons. First, trees being
outside, we needed our markers to be resistant to different weather conditions. For instance,
when there was too much humidity in the air, simply using paper made all markers subject to
curling, reducing their ability to be detected. It also affected the precision to estimate their
position. The second reason appeared when we tried waterproof paper: it quickly became
apparent that such glossy paper reflected too much light, which completely prevented markers
from being detected. The solution we employed was to print our markers on fabric, that we
stretched with clips to make them visible on the frame. The fabric was roughly as glossy
as regular paper, and them being stretched prevented curling. With this wooden frame and
markers, we fulfilled the needs of operation 2 and 3 by being able to surround any bark surface
with a clearly-defined rectangle, while having four fixed points allowing to calculate spatial
transformations between any pair of images.

Finally, we needed to ensure a good distribution of the desired visual variations across each
set of images coming from a single bark surface. Using an LG Q6 cellphone camera with
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a resolution of 4160 x 3120 pixels, it was relatively easy to freely move the camera around
when taking photos to incorporate changes in viewpoint. For each lighting angle, we used four
different viewpoints to add changes in scale, perspective, and rotation. These variations can
be seen in Figure 2.2 and with a wider range of variations in Figure 2.4. Changes in lighting
angles were the other variation we desired. We felt it was one of the most crucial ones to train
and stress our approach properly. This is because, with its numerous ridges and troughs, the
appearance of tree bark is highly affected by light direction.

Consequently, hand-crafted descriptors, which tend by design to be less invariant to changes
in lighting than viewpoint, are more susceptible to underperform for this condition. Thus, to
add significant changes in illumination angles, we collected our images at night with a single
550 lumen LED EnergizerTM lamp as the main light source. As only one person collected
the pictures, the lamp had to be attached to a tripod. The tripod was moved into one of the
three selected angles to light the tree bark, while a person took photos with the hand-held
camera. One of the illumination angles was in front (∼ 0◦) of the bark surface, while the
other two were on the left (∼ 35◦) side and the right (∼ 35◦) side of the bark surface. When
looking at the bottom row of Figure 2.4, we can see twelve images of a single surface, after
being pixel aligned. Note that the latter removes the majority of the effect of the viewpoint
variation, leaving mostly the difference in illumination, for illustration purposes. It also serves
to demonstrate that we can, indeed, register images with our fiducial markers.

2.3 Bark-Id Dataset

Before we could start collecting bark images, we had to take other considerations into account.
An important question to answer was the impact of collecting data on multiple tree species.
With the results of Carpentier et al. (2018), it was clear that neural networks can easily distin-
guish between tree species. To avoid biasing our tree bark re-identification results positively,
we opted to collect bark images from only two tree species. Otherwise, our descriptors may
learn to exploit species as critical information for re-identification, while a realistic deployment
scenario could be a forest composed of primarily one tree species. Our focus will thus be on
evaluating bark re-identification in experiments containing many bark surfaces, but from one
or two different species, to make it more challenging. It will also allow us to test how much
training on one species transfers on re-identifying another species.

This requirement on species meant that we had to be able to identify a tree’s species correctly.
To simplify this error-prone process, we opted to collect Red Pine (RP) (an evergreen) from a
tree plantation within a clearly-defined area containing only this single species. This ensured
that every image taken from this location was indeed a red pine. For the second species, we
chose Elm (EL) (a deciduous tree), since it was present on the university campus in specific
locations for which previous forestry reports provided the information. For each of these tree
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species, we respectively collected a total of 100 bark surfaces, taken from 50 different trees.
A sample of these two kinds of bark taken from our dataset can be seen in Figure 2.2. This
meant that for each tree we visited, we attached our wooden frame on two different sides of
the trunk, giving two distinct bark surfaces per tree. Then, we took 12 images per distinct
surface. We manually verified them after being taken to avoid any issues that would prevent
the correct detection of the markers in the image. We also made sure that we had taken 12
images with a good distribution of the variations mentioned above before moving our wooden
frame.

Due to the lengthy process of collecting bark surface images, we could not gather enough bark
images of either tree species to evaluate our system in a completely realistic scenario that tracks
hundreds of thousands of trees. Instead, we decided to focus on augmenting the number of
true negative (non-relevant) examples to emulate such conditions. This was possible by adding
a faster data collection approach to new bark images for strictly non-relevant examples, by
forgoing the need to be able to register them pixel-wise. This way, we did not need to attach
our wooden frame, speeding up the data gathering process. We thus collected more EL bark
pictures with this method because they were physically closer to us, and there were a lot of
EL trees that we still had not seen. To keep these new images close to our original appearance
distribution, we also took them at night, with three different illumination angles, but with
limited changes in point of view. We collected 30 images per tree with some physical overlap,
spread nearly uniformly around the trunk. This gave us a total of 750 manually-cropped non-
relevant images for any EL query taken at a similar scale of our other images. Moreover, we
took these new images with limited changes in viewpoints, because it is easier to artificially
alter images to add changes in rotation, perspective or scale than trying to simulate changes in
lighting angle. This way, we sped up the data collection process, while still being able to later
use data augmentation techniques to get closer to the distribution of appearance variations
present in our 200 indexed bark surfaces.

Figure 2.2: Images from our database of Red Pine (RP) and Elm (EL). For each species,
we can see three images of the same bark surface, but for different illuminations and camera
angles. In each image, there are four fiduciary markers on a custom-made wooden frame, used
for pixel-wise registration.
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2.4 Homography

To better understand the explanations of section 2.5 coming next, we briefly introduce the
concept of homography. This is a well-known concept coming from projective geometry, which
became a useful tool for computer vision. This is because computer vision deals with digital
images (or videos) that are 2D representations of the 3D environment, as seen in Figure 2.3.
This means that an image is a plane in 3D space intersecting straight lines (light rays) going
from the point of origin to infinity. When two images represent a common planar surface of
the environment, they become related by a homography. This homography is a 3× 3 matrix
H defining the transformation of a planar surface representation of one image to another.

Figure 2.3: This figure shows the spatial relationship between two images of the same bark
surface. Considering the bark image as the real physical model in nature, the rectangles
containing the points pk and p′k represent two different images of the same bark surface. The
index k shows the association of each pk, p′k with a fiducial marker. These associations come
from the light rays bouncing on the bark surface and going through the lens of the camera. The
homography is thus the relation between the set of points pk and p′k, based on the geometry
of straight lines intersecting on common locations.

To calculate this homography, one first needs to select at least four points in each of the
two images. These four points identified by the index k must represent the same location on
the planar surface in the real 3D space. In other words, in each image, four points defined
as pk = (x, y) will be selected and will have different (x, y) coordinates while representing
the location of a unique point in 3D space. This results in a one-to-one correspondence
between an image I and another image I ′, as in Figure 2.3. Once you have these four points
correspondence, one can minimize the following equation, to identify the components hij of
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the homography H:

∑
k

(
x′k −

h11xk + h12yk + h13
h31xk + h32yk + h33

)2

+

(
y′k −

h21xk + h22yk + h23
h31xk + h32yk + h33

)2

. (2.1)

Note that this is exactly the equation used to calculate the homography H during our dataset
processing, as specified by the findHomography function available in OpenCV. Thus, mini-
mizing Equation 2.1 gives the best values of h11 through h33 allowing the selection of a single
point (x, y) of a starting image I to calculate a destination point (x′, y′) in another image I ′:

Homogeneous p′ =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 ·
xy
1

 =

x
′

y′

z′

 . (2.2)

Lastly, it is crucial to understand that this homography matrix H represents a transformation
in 3D space. Consequently, it has to be a 3×3 matrix. However, the coordinates of the images
are in two dimensions and cannot be directly transformed. This is why each coordinate from
the image I must be represented as a homogeneous coordinate. This is accomplished by adding
an extra dimension with a value of 1. This way, we can obtain the homogeneous coordinate
representing the point in image I ′ as visible in the right-hand side of the Equation 2.2. Then
finally, to obtain the 2D image coordinate of I ′ from the homogeneous coordinate, we use the
third dimension (z′) to scale (x′, y′) to their correct position, as shown here:

p′ = (x′/z′, y′/z′). (2.3)

2.5 Transformation Pipeline

Before applying standard keypoint detection techniques, we had to ensure that images only
showed bark to fairly evaluate the different descriptors (hand-crafted vs. data-driven) per-
formance. Also, even when keypoints have been found solely on bark, they still need to be
filtered to avoid problems such as extra information given by image borders. Thus, going
from original bark images to a clean set of keypoints is a multiple steps process. Luckily, we
fully automated this preprocessing. It involved registration between images, image adjustment
before keypoints detection, and keypoints filtering.

The first step, image registration, made use of the four visible ArUco (Ar) markers attached
to our custom wooden frame. Recall that this frame is entirely visible in every indexed images
of our dataset. It was done using the detectMarkers function available in the ArUco module
of OpenCV. This function returns the four corner positions of each marker with its associated
identifier based on its binary matrix. To have a more standardized and straightforward in-
formation, we reduced the four corner positions of each marker to their mean position. The
original delimitation of our bark surface was then four (x, y) positions with their identifier.
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These marker identifiers were needed to make the data association between images, and thus
calculate a homography between these two sets of four points, as described in Equation 2.2.
However, despite the availability of an Ar library in OpenCV and the robustness of such mark-
ers, these markers sometimes exhibited enough specular reflection in certain images so that
they could not be easily detected. In these images, we could still clearly see the marker that
was undetected. After performing some experiments, we found simple image transformations
that would make the marker detectable. The best performing modifications were to either
subtract a certain value from every pixel (65 or 100 worked best), use contrast normalization,
or to mix the original image with a copy that was passed through an edge sharpener. With
this, the Ar markers in every image present in our dataset could be reliably found.

With no assumption on the capacity of hand-crafted and learned descriptors to make use of
the bark patterns, we introduced an input image resizing operation as the second step. The
idea was that some patterns in a bark image may be more informative than others, but could
also be seen only in larger image patches. By allowing an image to be reduced, we let every
descriptor decide the optimal downsizing factor that would enable informative patterns to fit
in their respective fixed input size. However, this resizing forced us to adjust the markers’
position to ensure the proper correspondence for the homography operation. We could have
avoided this adjustment by resizing the images before the Ar detection: but the reduced size
would have been harmful to the Ar markers detection.

Since all four markers are fixed on the wooden frame, cropping from their original position
would leave a large chunk of the frame and the background in the cropped images. We solve
this in the third step of preprocessing by moving the four markers’ position by a certain
margin, towards the frame center. Due to every image having a different rotation, scale, and
perspective, adding the margin directly on the image would have affected it in largely different
ways. The way around this problem was to adjust the margin specifically for each image. The
automatic process to do this involved setting a reference frame R as simply being a rectangle
described by four corners. Then, we calculated the spatial transformation going from the
frame R to the image Ii through homography H i. This gave us the means to find four points
respecting a fixed margin inside the frame R, which we then transposed in every image using
their respective H i. Adjusting the margin for every bark image provided us with four new
marker positions surrounding bark pixels only. After that, the fourth step was to crop the
image around these four points.

Because of the rotation and perspective changes, the cropping could still leave artifacts in the
image, as seen in the second row of Figure 2.4. To remove this, one could crop inside the four
marker locations. However, this would leave almost no pixel left due to the rotation of some
images. Moreover, rotating the images to align them with the top of the image would defeat
the purpose of training and testing the descriptors’ invariance to rotation. Instead, the fifth
step was to color every pixel outside of the borders formed by the four marker rectangle in a
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Figure 2.4: Examples of the preprocessing conducted on bark images. First row: original
images resized by a chosen factor. Second row: rectangular crops around the wood frame.
Third row: removal of any artifact remaining in the crops, using visual marker positions.
Fourth row: examples of every image after reprojection onto the reference frame R using
homography Hr (from image Ii to R).

unique color. This removed all changes in gradient not inside the specified bark surface and
thus prevented the detection of any keypoint on non-bark pixels.

2.6 Bark-Aligned Dataset

Since our descriptors require a dataset composed of 64× 64 pixel image patches to be trained
with metric learning, we use our transformation pipeline of section 2.5 to create the Bark-
Aligned dataset. On top of being properly indexed per bark surface, these patches must
also be centered around the exact same physical location. Because patches cannot just be
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extracted at random locations but rather at locations of interest, these patches are centered
around keypoint locations. Consequently, we detected a maximum number of keypoints for
each bark image using the SIFT keypoint detector to have a sufficiently large dataset. It is
also essential to respect the fact that the patches’ appearance distributions must be similar at
training and testing times. Hence, we must use the same detector at both test and training
time.

Figure 2.5: Top row: pictures of the same bark surface with strong changes in illumination.
Each circle color is a distinct keypoint. Bottom row: close up of the red keypoints from their
respective images. This highlights the importance of a descriptor to be as immune as possible
to such illumination changes.

However, the input resolution of our descriptor network being 64× 64, using a keypoint as its
center, thus implies a 32 pixels radius around it. This becomes problematic when a keypoint
is detected on the edge of the bark present in an image, because the patch taken for this
keypoint will show border artifacts. To fix this problem, we removed every keypoint found
at less than 50 pixels of the bark border. We chose 50 pixels since the corner of a square
is at a distance from its center equal to the hypotenuse of the right triangle formed by two
halves of its side (

√
322 + 322 = 45.25). We also added a supplementary margin of 4.75 pixels

(50 − 45.25 = 4.75). After verification, there was still some amount of pixels artifact due to
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some extreme rotations and perspectives, although this had become insignificant.

After each image had been preprocessed to remove the excess of information (background,
frame, shadow, etc.), we performed registration between every image of a bark surface with
our reference frame R via homography Hr. We used the estimated positions of the fiducial
markers on the frame surrounding the bark surface after preprocessing to estimate these trans-
formations. Then for each bark image of the same surface, we projected all of their keypoints
to the reference frame R via the homography Hr. We filtered all of the keypoints in R to
require a minimum of 32 pixels between them to minimize overlap. This resulted in around
800-1000 distinct keypoints in R.

Figure 2.6: Actual example of 64×64 image patches, for a keypoint, projected on all 12 images
of the same bark surface. Red arrows indicate the orientation of the original bark images.

For each of these keypoints, we then found the 12 image patches (one per image, see section 2.3)
using a homography H i that gives the transformation from the reference frame R to a specific
bark image Ii. This resulted in a collection of 64 × 64 image patches centered around the
exact same physical location on the bark, but with changes in illumination and point of
view (rotation, scaling, and perspective). Figure 2.5 shows three images of a unique bark
surface, with the manual correspondence between keypoints. Figure 2.6 shows 12 examples of
a keypoint extracted according to our algorithm used to create the Bark-Aligned dataset.

2.7 DeepBark and SqueezeBark

To perform the description of image patches, we implemented two different architectures with
Pytorch 0.4.1. The first one, DeepBark, is based on ResNet-18 developed by He et al. (2016)
and pre-trained on ImageNet. We removed the average pooling and the fully-connected layers
and replaced them with one fully-connected layer but without any activation function. The full
architecture of our DeepBark network is described in Table A.1. The second one, SqueezeBark,
is a smaller network based on SqueezeNet 1.1, presented in the work of Iandola et al. (2016) and
also pre-trained on ImageNet. We again removed the average pooling and the fully-connected
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layers. We replaced them with a max-pooling layer (to reduce the feature map) and a fully-
connected layer (no activation function). The full architecture of our SqueezeBark network is
described in Table A.2. In both cases, the networks compute a 128-dimensional vector, fed to
an l2 normalization layer. Removing our last fully-connected layer and calculating the number
of parameters for the remaining convolutional layers, DeepBark is then composed of a total of
10,994,880 parameters and SqueezeBark includes 719,552 parameters. Our intention here is
to be able to compare a number of network representation powers on the descriptor quality.
These networks (DeepBark and SqueezeBark) were trained with the N-pair-mc loss from Sohn
(2016). But our implementation varied slightly, since we did not use l2 regularization to avoid
degeneracy. Instead, we l2-normalized the descriptor vectors v to keep it in a hypersphere as
in Schroff et al. (2015).

Our Bark-Aligned dataset, described in section 2.6, is composed of 64 × 64 patches that we
divided into two sets with around 70,000 distinct keypoints for the training set, and 17,000
for the validation set, except for the saturation experiment (section 3.3) where the goal was
to vary the training set size. Using 12 patches by keypoint for training and two for validation,
this totals 874,000 64 × 64 bark image patches. At each iteration during training, we only
used a pair of examples for every keypoint in the training set. However, to ensure diversity
in the (N+1)-tuplet which we used to train with the N-pair-mc loss, we shuffle the order of
the keypoints in the training set after each iteration to compare together patches of different
keypoints. Since we have 12 relevant patches per keypoint, we also randomly select the pair of
examples for each keypoint to ensure an equal probability for every patch to be seen together
with every other relevant patch. We added online data augmentation in the form of color,
luminosity, and blurriness jitter. Each input patch image was normalized between (−1, 1) by
subtracting 127.5 and then dividing by 128. We used the Adam optimizer by Kingma and Ba
(2015), starting with a learning rate of 1e−4 and reducing it by a factor of 0.5 each time the
validation plateaued for 20 iterations.

We built the validation set by finding all of the keypoints available in the bark images set
aside for validation and randomly selected two patches from the 12 available for each distinct
keypoint. This gave us a fixed validation set, where every patch had a corresponding one.
This way, during training, we validated our model by selecting 50 keypoints with their two
examples at the time and performed a retrieval test to calculate the P@1. The final validation
score was the average of every P@1 calculated for every batch of 50 keypoints. After training,
we selected the model with the highest validation score. Training was stopped with either
early stopping when the validation stagnated for 40 iterations, or when a maximum number
of iterations was reached.
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2.8 Bark Visual Signature

As explained in chapter 1, numerous descriptor calculation methods have been devised to
extract the meaningful content of an image and make a useful description of it. This is
necessary to allow an efficient comparison between images, which are too high-dimensional.
To tackle our bark re-identification problem, we defined a clear process to describe bark images
using local feature descriptors. More specifically, we perform the bark image search via visual
signatures, defined as si = (Ki, Vi, bi). These signatures are extracted for each image (database
and query Iq), as depicted in Figure 2.7. For this, we mostly follow the approach used in Sivic
and Zisserman (2003), summarized below.

First, a keypoint detector selects a collection Ki of keypoints from an image. For each of these
keypoints k ∈ Ki, we extract a description v of dimension 128, yielding a list of descriptions
Vi. These descriptions can be from standard descriptors, such as SIFT or SURF, or our
novel descriptors, which we introduced in section 2.7. The remaining component of an image
signature si is a BoW representation bi ∈ R1000, calculated from the list of descriptions Vi.
For the latter, we employ the standard TF-IDF technique. In Sivic and Zisserman (2003),
the comparison between two BoWs is made using the cosine distance. Instead, we have l2-
normalized once every BoW as a pre-processing step and use the l22 distance to compare them
at test time. This way, our distance ranking is equivalent to the pure cosine distance, but
without using a dot product.

2.9 Signatures Matching

A typical bark re-identification scenario involves a database of image signatures S and an
unseen query image Iq. The search for relevant images to Iq begins by describing the query
image into a query signature sq. A single comparison of two signatures produces a score g,
which represents the similarity between them. So, the signature sq must be compared with
every signature of the database S to produce a set of scores G = {sq, si ∈ S | compare(sq, si)}.
Hence, the compare function is an important piece of the retrieval process. In our experiments
of chapter 3, this function is either a BoW comparison or the matching of descriptions v. After
the use of compare to produce the set G, the retrieval of the relevant images to Iq is based on
the best signature matching scores g.

For the BoW comparison, we simply used the distance between two BoWs ||bq − bi||22 as our
score g. The other way to calculate a score between sq and si is the matching of descriptions
v and begins by taking the l22 distance between every description of Vq and Vi, in order to
obtain a collection M of putative matching pairs of descriptions, m ∈M = (v ∈ Vq, v ∈ Vi)
with |M | = |Vq|. The equality |M | = |Vq| appears because M is the result of a non-surjective
mapping between each v ∈ Vq to a v ∈ Vi and is based on the smallest l22 distance, meaning a
single description of Vi can be the closest description to multiple v ∈ Vq.
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Figure 2.7: Illustration of the signature si = (Ki, Vi, bi) extraction pipeline, for a single image
Ii. First, the keypointsKi are detected. Then, for each keypoint k, a descriptor v is computed,
creating the list Vi. Finally, a Bag of Words (BoW) representation bi of Vi is computed from
the quantization of all descriptions v via a visual vocabulary, resulting in a global signature
si of image Ii.

However, building the set M is not enough to obtain a score g. Hence this method needs to
filter out potential false matches inM by adding an extra constraint. In this thesis, we explored
two such constraints, that we refer to as scoring methods. The first one is the Lowe Ratio (LR)
test introduced in Lowe (2004). The second one is a Geometric Verification (GV), which is a
simple neighboring consistency check. The GV starts by taking a match m = (vx, vy), then
retrieving the keypoints kx and ky associated with each description v of the match. Following
this, we find the α nearest neighbors of each of the keypoints kx and ky in their respective
images. Finally, the match is accepted if at least ρ % of the α neighbors of keypoint kx have
a match m ∈M with the α neighbors of keypoint ky. An example of the GV used to evaluate
one match is illustrated in Figure 2.8, with α = 5 and ρ = 0.6, the match shown would be
an accepted match. The number of matches left after filtering with either the LR or the GV
scoring methods, is then considered as the matching score g between two bark images.
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Figure 2.8: First row: example of a match m between a pair of descriptions. Second row: the
GV of the match m. Blue arrows show the evaluated match m ∈ M and green arrows show
neighbors matches member of M , while red arrows indicate incorrect matches. With α = 5
and ρ = 0.6, the match m would be accepted.

2.10 Conclusion

In this chapter, we began by presenting the existing bark dataset available and quickly showed
how it was necessary to build our dataset to enable tree bark re-identification. Then, to create
this dataset, we discussed the methodology we used to gather the data while incorporating the
necessary elements to make this data suited for our re-identification task. We followed this
with the composition of the new Bark-Id dataset that was produced using our data gathering
methodology. We then had to briefly explain the concept of homography to prepare ourselves
for the explanations on our transformation pipeline. This pipeline had two purposes. For one,
it was essential to crop and describe images for future comparison. Still, it was also crucial
to enable the calculation of the spatial transformation between any images using fiducial
markers placed on our wooden frame and homography. By combining our Bark-Id dataset
and our transformation pipeline, we built the Bark-Aligned dataset that was vital to allow
the training of learned descriptors with bark data. Apart from the dataset for training, we
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also reviewed the many details that composed the training procedure we used to build both
our learned descriptors SqueezeBark and DeepBark. Aside from datasets and descriptors, we
further needed a methodology to compare our bark images. For this, we explained how we
built global visual signatures composed of the keypoints, and descriptions produced with local
descriptors and a Bag of Words (BoW) representation. Finally, the last operation we needed
to perform was to compare two global visual signatures together, for which we implemented
different methods such as the BoW distance or the filtering of a set of matching descriptions
M using either the Lowe Ratio (LR) or the Geometric Verification (GV).
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Chapter 3

Bark Re-identification Experiments

The problem we are addressing is an instance of re-identification. Given an existing database
of bark images and a query image Iq, our goal is to find all images in the database that
correspond to the same physical surface to re-identify the tree, as seen in Figure 3.1. For
instance, if the image compared to Iq is from the same tree but, a different bark area, then it is
not a valid match, and the tree is not re-identified. For all experiments except in section 3.8,
we assume that Iq has a meaningful match in our database, i.e., we are not solving an open-set
problem. For more information on novel locations detection, we refer the reader to the work
of Cummins and Newman (2008). It is important to note that even if our approach enables
trees re-identification, in this chapter, we focused on reporting bark surface re-identification
results. The evaluation of tree re-identification is largely influenced by the number of physical
bark surfaces used for retrieval, which vary with each specific retrieval scenario and is thus
left to future research.

Figure 3.1: Here is a simplified example of bark images from two different trees, on which two
different surfaces have been photographed. With two images per surface, this gives us eight
images. Our goal is to take one bark image and retrieve the other bark image corresponding
to the exact same surface. This way, a previously-seen tree could be recognized using a bark
image as a signature.

To make our results unambiguous, we begin this chapter by laying out essential details about
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our evaluation methodology in section 3.1. With the numerous hyper-parameters affecting
retrieval results, we conducted a grid search of the three most critical hyper-parameters in
our opinion and reported the results in section 3.2. Another influential factor, but specific
to learned descriptors, is the dataset size used to train these descriptors. Thus, we evaluated
our best performing learned descriptor on different training set sizes in section 3.3. With our
approach using recent advances in deep learning, it was necessary to compare the performance
of the well established hand-crafted descriptors with the newer learned descriptors, which is
why we made the experiment of section 3.4. A significant problem of deep learning is the
generalization of performance across data with different biases. With the diversity of bias in
tree bark, we evaluated the generalization of our descriptors performance between tree species
in section 3.5. One of the challenges about our data gathering methodology was the slowness
of the data collection. This led to a dataset with less bark images then what more real-world
scenarios would have. To mitigate this, we quickly collected unseen negative examples and
evaluated the performance of our approach against a larger test set in section 3.6. Because
matching the whole sets of descriptions Vq and Vi is time-consuming, we investigated the
trade-off between time and performance in section 3.7. To tackle the problem of detecting
novel locations, we inspected the score distributions of our approach and showed how a simple
threshold could be used for this task in section 3.8. Finally, we resume our results and state
the main message of this chapter in the conclusion of section 3.9.

3.1 Evaluation Methodology

Beside DeepBark and SqueezeBark, we also analysed hand-crafted descriptors, namely SIFT
and SURF. We also included DeepDesc, a learned descriptor originally trained on the multi-
view stereo dataset Brown et al. (2011). We also used our own version of DeepDesc, renamed
DeepDescBark, which we trained on our bark dataset following our training procedure. All
descriptors used the SIFT keypoint detector, except for SURF that used its own detector. For
all experiments, we used a ratio of 0.8 for the LR test, and set α = 15 and ρ = 0.33 for the
GV filter. As we will see later, these parameters offered good performance, and we did not
try to adjust any of them to improve the results further.

Each visual vocabulary voc was computed from the training images of each respective exper-
iments while being clustered using the k-mean algorithm. Also, to the best of our knowledge,
we did not see previous work using a learned descriptor with the technique of the BoW. Con-
sequently, we do not know the effect of calculating the voc using the training set on which we
trained our descriptor, instead of having two distinct datasets for these two tasks.

For every experiment (except in section 3.2), we take all indexed bark surface images as a
query and search for their 11 respective relevant images, giving, for example, 1200 queries for
a single experiment. This means that our unordered set of scores for an experiment is the
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score of every query put together. However, such a set of scores comes with a consequence
when applying a threshold on it. This is because the calculated score of any query is compared
to a threshold without relativizing between queries. This problem can be seen in Figure 3.2.
Thus, predicting relevance based on a threshold in our context may not give the best retrieval
performance compare to predicting relevance on a query basis using a ranked method. Also,
the F1 scores we report are always the highest value found among all evaluated thresholds.

58 55 54 47 47 45 42 38 35 33 30 28 27

48 46 45 32 31 29 29 25 21 18

50

Query 1:

Query 2:

Threshold:

Figure 3.2: Example of the lack of relativization when using a threshold. Each circle node
is the score of a bark image compare to a query image. Blue circles are the ground truth
relevant scores, and red ones are the non-relevant ground truth scores. The grey square is the
threshold used to predict the score relevance. The scores on the left are predicted as relevant
and on the right as the opposite. We then clearly see that the threshold correctly predict the
relevance for only the query 1, despite the query 2 having a score distribution easily separable.

As opposed to the unordered set method, the ordered set method calculates a metric for each
query. This is because the metric needs to be calculated on the ranked score of a single
query, which brings the advantage of solving the problem shown in Figure 3.2. However, the
mean of 1200 queries, as in most of our experiments, can prevent the detection of problematic
performance. To highlight the problem with such a technique, let say we got the following
set of AP score: Scores = {0.30, 0.40, 0.35, 0.90, 0.95, 0.85}. Taking the mean of Scores, we
obtain the mAP score of 0.625, and we may consider that our approach is successful enough.
However, the Scores set show two clear trends ({0.30, 0.40, 0.35} and {0.90, 0.95, 0.85}) in the
AP scores that may indicate insidious problems in the approach taken that the mean does not
reveal.

3.2 HyperParameters search

Our approach comprises several hyperparameters to select. First is the maximum allowable
number γ of keypoints in an image. From experiments, increasing γ beyond 500 keypoints did
not significantly improve the performance of any descriptor. The second hyperparameter is
the downsizing factor φ of the original image. Downsizing an image allowed the receptive field
of any method to be increased, without changing its processing pipeline. Our experiments
showed that using a downsizing factor of φ = 2 generally helped every descriptor. Our third
hyperparameter is the sigma σ used in the blurring performed before passing the image through
the keypoint detector. Note that the blur was done for the keypoint detection, but after
that we used either the unblurred image for computing the description of learned descriptors
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(DeepBark, SqueezeBark, DeepDesc and DeepDescBark) or the blurred image for SIFT and
SURF. The latter was necessary, as they used the keypoint information found on the blurred
image. We found that the best blur filter value σ varied greatly between descriptors. A sample
of the results is in Table 3.1 and the chosen values for the section 3.4 experiment are shown in
Table 3.2. These values were found by averaging the results of 36 randomly-selected queries
run against the validation set for each hyperparameter combination.

Descriptors φ
GV LR
σ σ

0 1 2 3 0 1 2 3

DeepBark
1.0 0.862 0.875 0.881 0.883 0.834 0.841 0.825 0.856
1.5 0.941 0.947 0.934 0.805 0.901 0.915 0.895 0.907
2.0 0.966 0.954 0.818 0.556 0.921 0.917 0.906 0.876

SqueezeBark
1.0 0.109 0.119 0.134 0.139 0.686 0.680 0.675 0.662
1.5 0.136 0.149 0.148 0.131 0.652 0.663 0.673 0.676
2.0 0.183 0.189 0.159 0.126 0.732 0.723 0.706 0.715

SURF
1.0 0.174 0.218 0.321 0.399 0.199 0.235 0.302 0.329
1.5 0.324 0.359 0.413 0.459 0.272 0.314 0.366 0.418
2.0 0.315 0.395 0.447 0.489 0.322 0.363 0.397 0.429

SIFT
1.0 0.120 0.239 0.389 0.441 0.259 0.377 0.460 0.495
1.5 0.181 0.353 0.454 0.406 0.305 0.423 0.535 0.541
2.0 0.237 0.398 0.376 0.208 0.338 0.461 0.542 0.492

DeepDesc
1.0 0.072 0.068 0.062 0.067 0.131 0.125 0.119 0.124
1.5 0.076 0.081 0.069 0.064 0.161 0.174 0.149 0.127
2.0 0.092 0.091 0.065 0.066 0.169 0.199 0.161 0.124

DeepDescBark
1.0 0.058 0.070 0.068 0.069 0.244 0.288 0.276 0.303
1.5 0.067 0.072 0.074 0.081 0.344 0.341 0.381 0.377
2.0 0.076 0.084 0.084 0.073 0.458 0.441 0.458 0.419

Table 3.1: Results for the hyperparameters grid search, averaged over 36 random queries on
the validation set. The downsize factor φ is how much the size of the original image was
divided, and σ is the sigma used for the gaussian blur on the image before keypoint detection.
The values reported for the GV and LR methods are the mAP metric.

Aside from the mAP metric, we also calculated the P@1, R-P, F1 and the AUC metric to
find the optimal set of hyper-parameters to use for every method. Thus, some of the hyper-
parameters chosen in Table 3.2 may not have the best mAP value as in Table 3.1. We selected
those hyper-parameters based on different metrics for either the GV or the LR method. We
did this because, as it is shown in Table 3.1, some descriptors performed better with a certain
scoring method than with another one. So, we made sure to chose the hyper-parameters
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Descriptors φ σ GV LR Avg. Keypoint Num.
DeepBark 2.0 0 0.966 0.921 492.8 ±18.4

SqueezeBark 2.0 0 0.183 0.732 492.8 ±18.4
SURF 2.0 3 0.489 0.429 499.6 ±4.8
SIFT 1.5 3 0.406 0.541 469.4 ±69.9

DeepDesc 2.0 1 0.091 0.461 497.0 ±17.4
DeepDescBark 2.0 0 0.076 0.458 492.8 ±18.4

Table 3.2: Hyperparameters chosen after careful examination of the grid search. Shown is
the mAP metric for the GV and LR methods. We also report the mean number of keypoints
found at test time. The number of keypoints was capped to 500.

yielding the best improvement for the scoring method in which each descriptor performed
best.

3.3 Impact of training data set size

Data-driven approaches based on Deep Learning tend to be data-hungry. To check the impact
of the training data size, we created five training scenarios by tree species, which used 10%,
20%, 30%, 40%, and 50% of the dataset. For this experiment, we chose the learned descriptor
DeepBark, which we validated and tested on the same sets (10% and 40% respectively) of each
species dataset. We stopped training when the validation P@1 stagnated for 40 consecutive
iterations.

Table 3.3 shows the performance of DeepBark, for each training set size. For each species,
the P@1, the R-P, mAP metric with their standard deviation are reported as well as the F1
and AUC metric for the three scoring methods: GV, LR and BoW. What can be seen from
this table is that an increase in data improves the results of any metric, any method and also
decreases the standard deviation, meaning that more data helps obtain more reliable/stable
matching. When looking at the P@1 and the mAP, we can see that finding a single similar
bark image is an easy task, but finding every variation of the bark surface necessitates more
training data. In the Red Pine case, using 50% of the training generally yielded the best results.
However, an interesting observation is that in the case of the Elm, 40% of the training data
gave better results than using 50%. But, we believe that this is not statistically significant,
given the randomness of the training process and that the difference is minimal.

The US-PR curves for Elm (EL) and Red Pine (RP) are displayed in Figure 3.3 and Figure 3.4,
for various training set sizes. Results are reported for all three scoring approaches. The
first thing that we notice in them is the lack of smoothness when using the GV method.
Nonetheless, the training set size affects the GV curve the same way as for the BoW and the
LR scoring methods. This means that this is an inherent problem to the GV method. But,
it seems to be slightly mitigated by an increase in the training set size. Other than that, it
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Red Pine
Metric 10% 20% 30% 40% 50%

BoW
P@1 0.971 ±0.168 0.985 ±0.120 0.985 ±0.120 0.996 ±0.064 0.994 ±0.079
R-P 0.578 ±0.196 0.651 ±0.188 0.705 ±0.174 0.722 ±0.181 0.751 ±0.171
mAP 0.633 ±0.207 0.713 ±0.198 0.769 ±0.178 0.785 ±0.187 0.812 ±0.173
AUC 0.896 0.923 0.940 0.941 0.940
F1 0.523 0.605 0.649 0.663 0.703

GV
P@1 0.988 ±0.111 0.990 ±0.102 0.998 ±0.046 0.996 ±0.064 0.998 ±0.046
R-P 0.727 ±0.132 0.790 ±0.112 0.828 ±0.097 0.842 ±0.093 0.857 ±0.087
mAP 0.777 ±0.148 0.848 ±0.122 0.892 ±0.098 0.905 ±0.091 0.922 ±0.080
AUC 0.939 0.956 0.958 0.960 0.968
F1 0.645 0.717 0.751 0.769 0.784

LR
P@1 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000
R-P 0.822 ±0.141 0.890 ±0.115 0.921 ±0.099 0.930 ±0.093 0.938 ±0.086
mAP 0.882 ±0.123 0.932 ±0.092 0.956 ±0.075 0.962 ±0.067 0.967 ±0.062
AUC 0.893 0.923 0.944 0.947 0.955
F1 0.724 0.792 0.840 0.859 0.874

Elm
Metric 10% 20% 30% 40% 50%

BoW
P@1 0.940 ±0.238 0.956 ±0.205 0.971 ±0.168 0.979 ±0.143 0.983 ±0.128
R-P 0.558 ±0.226 0.635 ±0.226 0.662 ±0.218 0.710 ±0.230 0.706 ±0.223
mAP 0.607 ±0.247 0.691 ±0.238 0.721 ±0.226 0.759 ±0.231 0.764 ±0.223
AUC 0.894 0.874 0.923 0.893 0.909
F1 0.532 0.612 0.651 0.689 0.689

GV
P@1 0.944 ±0.230 0.965 ±0.185 0.977 ±0.150 0.981 ±0.136 0.983 ±0.128
R-P 0.670 ±0.188 0.706 ±0.174 0.742 ±0.172 0.763 ±0.166 0.757 ±0.169
mAP 0.707 ±0.213 0.752 ±0.202 0.791 ±0.189 0.816 ±0.180 0.806 ±0.187
AUC 0.922 0.937 0.942 0.948 0.935
F1 0.640 0.678 0.713 0.734 0.722

LR
P@1 0.985 ±0.120 0.996 ±0.064 0.998 ±0.046 0.998 ±0.046 1.000 ±0.000
R-P 0.613 ±0.209 0.689 ±0.214 0.726 ±0.204 0.748 ±0.196 0.747 ±0.195
mAP 0.665 ±0.224 0.740 ±0.216 0.779 ±0.197 0.800 ±0.190 0.798 ±0.191
AUC 0.876 0.903 0.915 0.924 0.921
F1 0.622 0.696 0.729 0.751 0.751

Table 3.3: This table shows the DeepBark descriptor performance, when training with 10%,
20%, 30%, 40%, and 50% of the data from a single tree species. From the remaining data,
10% and 40% have been used for validation and testing, respectively. Hyperparameters were
fixed through testing. The best results are in bold for each row.
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Figure 3.3: US-PR Curve for all training set sizes using RP bark.

Figure 3.4: US-PR Curve for all training set sizes using EL bark.

is clear that using only 10% of the training set is not enough and that there is almost no
difference in performance when using either 40% of 50% of the training data.

Figure 3.5: OS-PR Curve for all training set sizes using RP bark.

In like manner, the graphs in Figure 3.5 and Figure 3.6 show the OS-PR curves for all three
scoring methods. The same lack of smoothness for the GV scoring method appears, but to a
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Figure 3.6: OS-PR Curve for all training set sizes using EL bark.

lesser degree. But once again, more data smoothen the GV curve. It gave a visible increase
in performance up to 40% of the training set size. These figures also show that the GV and
LR methods perform similarly, regardless of the recall or the training dataset size.

But, from the previous Figures 3.3, 3.4, 3.5, 3.6 we can draw two conclusions. First, the BoW
performed worst than the two other methods and showed a better improvement from 10% of
the training set to 30%. However, this is expected since the voc of the BoW is computed from
the training set, which changed in size. Thus, the BoW summary representation of the full
list of keypoints descriptors V will differ depending on the quality of the voc. Second, the
increase of the training set size greatly improved the performance of every method up to 30%
of the training set size, after which the gains to 40% became less apparent and negligible to
50%.

From the Table 3.3 and Figures 3.3, 3.4, 3.5, 3.6, we concluded that performance gains were
minimal beyond 40% and decided to use that much training data in our experiments. This
validates that our training database is sufficiently large to obtain good performance. For
references, when using 50% of RP as training data, we have access to approximately 42,700
distinct keypoints, giving 512,000 bark image patches of 64x64 pixels. Note that this order of
magnitude in the number of training examples is consistent with generally-accepted practices
of deep learning.

3.4 Comparing hand-crafted vs. data-driven descriptors

An important objective of this thesis was aimed at evaluating the capacity of different local
descriptors to re-identify tree bark images. More specifically, we wanted to learn if traditional
hand-crafted descriptors are sufficient for this task or the new learned descriptors would be
needed to achieve reasonable performance. To do so, this section compare the performance of
multiple descriptors that are listed here: SIFT, SURF, DeepDesc, DeepDescBark, SqueezeBark
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and DeepBark. The descriptors SIFT, SURF are the hand-crafted category representative,
while all the other descriptors are representative of the learned category.

Since many variations could be compared among the learned descriptors, we included more
of them. Hence, DeepDesc serves to illustrate the expected behavior when no training is
done with bark data and can be directly compared with DeepDescBark that is our version of
DeepDesc train on bark data. Also, we used SqueezeBark to evaluate the performance of a
deep neural network with little weight parameters and DeepBark to portray the performance
we expect from a deep neural network that obtained the state of the art results on ImageNet.

For this experiment, we selected 50% of red pine bark surfaces and 50% of elm bark surfaces
to create a test set, while using the remaining data for the training and validation sets.
This corresponded to 80 unique bark surfaces for the training, 20 for the validation, and 100
for testing. We kept the ratio between tree species to 50/50 in each set. The data-driven
descriptors DeepBark, SqueezeBark and DeepDescBark were trained for 200 iterations, and
we kept the model with the best validation. With 12 images for each bark surface, the test
set had a total of 1200 images, with 600 images per tree species. Each of these images was
used as a query during the retrieval test. The results were averaged over all queries.

Figure 3.7: OS-PR Curve for all descriptors and scoring methods tested on 50% of RP and
EL. Learned descriptors were trained on the remaining 50% of bark. Each of the 1200 images
of the test set was used as a query. No extra negative examples were added.

Figure 3.7 and Figure 3.8 show the comparative performance of the six descriptors, in the form
of OS-PR and ROC curves, respectively. Based on the Figure 3.7, we can assess to a certain
extent, the invariance of the descriptors to changes in illumination and viewpoint. Using the
assumption that more similar images are retrieved first, we can look at which recall (and thus
rank K) a descriptor loose precision and then evaluate how much variations it can handle
before having difficulties to retrieve images. In the case of the hand-crafted descriptors, we
can see that they can often successfully retrieve one image, but struggle beyond this. This
is visible by their precision over 0.8 for the first image retrieve with LR or GV. Which then
quickly drops and reaches a precision of almost 0 at a recall of 1. This indicates that they
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Figure 3.8: ROC Curves for all descriptors and scoring methods tested on 50% of RP and EL.
Learned descriptors were trained on the remaining 50% of bark. Each of the 1200 images of
the test set was used as a query. No extra negative examples were added.

can retrieve the most similar images relative to the query but then fail to match the relevant
images that are more challenging, i.e., have more variations in appearance due to illumination
or camera-pose changes. When analyzing ROC Curves, it is common to compare performance
to the diagonal going from (0,0) to (1,1), which represents the performance expected by making
random choices. Thus, when looking at Figure 3.8, we see that the descriptions generated by
SIFT and SURF are distinctive enough to beat random choice, but not by much. From this,
we can see that hand-crafted descriptors on our bark retrieval task generally offer a poorer
performance over data-driven ones. More precisely, it seems that hand-crafted descriptors can
re-identify similar bark images, but when face with illumination and viewpoints variations,
they start performing similarly to random choices. However, hand-crafted approaches offer
more consistent behavior across all scoring methods.

One of our proposed approach, the data-driven descriptor DeepBark, obtains overall the best
performance. For instance, when looking at Table 3.4, DeepBark wins in almost any metric
with the GV method, except for the F1 metric where it still dominates, but with the LR
method. Even when comparing every descriptor by scoring methods, DeepBark performs
better than every one. One exception is for the BoW when using AUC and F1, where it
has score respectively 0.842 and 0.439. For the BoW with the AUC, there is DeepDescBark
that reach a score of 0.856. However, it is SqueezeBark that show the best performance with
an AUC and F1 score of respectively 0.901 and 0.496. Since P@1, R-P and mAP are the
average of multiple queries, we calculated their standard deviation and demonstrated once
again that DeepBark perform better by having smaller standard deviation in general, a sign
of more reliable performance.

Interestingly, the results for our second data-driven approach, SqueezeBark, are mitigated as
shown in Figure 3.7 and Figure 3.8. Using the GV method gave worse performances than
the two hand-crafted descriptors and a total lack of invariance to illumination and viewpoint
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Descriptors Scoring
Methods

Metrics
P@1 R-P mAP AUC F1

SIFT
BoW 0.563 ±0.496 0.157 ±0.156 0.153 ±0.157 0.666 0.099
GV 0.808 ±0.394 0.278 ±0.167 0.270 ±0.170 0.737 0.248
LR 0.953 ±0.213 0.375 ±0.184 0.390 ±0.197 0.748 0.330

SURF
BoW 0.336 ±0.472 0.101 ±0.122 0.095 ±0.122 0.664 0.085
GV 0.930 ±0.255 0.311 ±0.175 0.318 ±0.183 0.701 0.354
LR 0.875 ±0.331 0.252 ±0.141 0.259 ±0.149 0.722 0.248

DeepDesc
BoW 0.170 ±0.376 0.080 ±0.115 0.078 ±0.104 0.739 0.069
GV 0.053 ±0.225 0.019 ±0.043 0.021 ±0.027 0.497 0.018
LR 0.249 ±0.433 0.075 ±0.078 0.068 ±0.061 0.683 0.068

DeepDescBark
BoW 0.609 ±0.488 0.268 ±0.216 0.275 ±0.232 0.856 0.236
GV 0.131 ±0.337 0.035 ±0.067 0.033 ±0.056 0.391 0.018
LR 0.557 ±0.497 0.217 ±0.198 0.225 ±0.204 0.823 0.131

SqueezeBark
BoW 0.950 ±0.218 0.668 ±0.216 0.726 ±0.222 0.901 0.496
GV 0.412 ±0.492 0.181 ±0.228 0.196 ±0.244 0.744 0.053
LR 0.627 ±0.484 0.594 ±0.372 0.617 ±0.374 0.766 0.512

DeepBark
BoW 0.984 ±0.125 0.702 ±0.206 0.764 ±0.212 0.842 0.439
GV 1.000 ±0.000 0.913 ±0.134 0.940 ±0.112 0.965 0.853
LR 1.000 ±0.000 0.864 ±0.163 0.899 ±0.147 0.924 0.862

Table 3.4: Different metrics for all descriptors and scoring methods tested on 50% of RP
and EL. Learned descriptors were trained on the remaining 50% of bark. Each of the 1200
images of the test set was used as a query. The best result for each metric is in bold. These
results clearly show the advantage of learned descriptors trained with bark data. Especially
DeepBark that dominates every other descriptor in almost any combination of scoring methods
and metrics.

changes. However, SqueezeBark did largely better with the LR method, as seen in Figure 3.7.
There, the precision starts worse than SIFT and SURF. But the same level of precision is
almost retained up to the last relevant image. Curiously SqueezeBark shows its best perfor-
mance using the BoW method, which uses a summary representation of the descriptions list
V that should, in theory, be less accurate. This might indicate that finding a good descriptor
for bark images under strong illumination changes is a difficult problem, requiring a neural
architecture with sufficient capacity. This is further supported by DeepDescBark performing
worse than SqueezeBark and DeepBark, which are bigger networks.

Importantly, DeepDescBark exhibits great improvements over DeepDesc. Indeed, the latter
displays the worst performance of any descriptor by far, which reiterates the importance of
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using the appropriate training data. Nevertheless, the situation in terms of overall perfor-
mance is still unclear for DeepDescBark. Indeed, DeepDescBark seems to follow the trend of
SqueezeBark, but with worse performance. It gives poor performance when used with the GV
method, and then it almost catches up with SIFT and SURF using the LR method, as can
be seen in Figure 3.7. Finally, while remaining less efficient than SqueezeBark, it does beats
hand-crafted descriptors with the BoW by a good margin.

3.5 Generalization across species

In the experiments of section 3.4, we reported results on networks trained on both species,
instead of training and testing each architecture on a single species. We intended to double the
amount of training data, thus benefiting from the potential synergy between species. This kind
of synergy is often seen in deep network training, exemplified with the paradigm of multi-task
learning. Domain shift is known to be particularly problematic for deep networks. We thus
wanted to look at the capability of our networks, DeepBark and SqueezeBark, to generalize
across species. Hence, we devised two experiments to evaluate the generalization from one
species to the other, and vice versa. The first one is composed of a training set with 80% of
the RP data, using the remaining 20% as the validation set. All of the EL data is, naturally,
in the test set (labeled RP→EL). We also performed the converse, labeled EL→RP.

Figure 3.9: OS-PR curves for the generalization test across species. The arrow → indicates
the species generalization direction (trained on → tested on).

Figure 3.9 and Figure 3.10 show clearly the domination of DeepBark compared to SqueezeBark.
Also, comparing the two networks based on the generalization direction with Table 3.5 demon-
strates the constant superiority of DeepBark. Indeed, the latter has better results in every
metric and for any method for this generalization test. Moreover, the standard deviation of
its performance is smaller in almost every case. The bold numbers in Table 3.5 indicating the
best results let us quickly appreciate the perfect scores that DeepBark obtained for the P@1,
in both species generalization direction.
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Figure 3.10: US-PR curves for the generalization test across species. The arrow → indicates
the species generalization direction (trained on → tested on)

When inspecting which bark species generated the best generalization capacity, it becomes
clear that training on RP and testing on EL gave better performance. This appears in Ta-
ble 3.5, where DeepBark (RP→EL) shows the best results across all metrics. The same trend
also appears in Figure 3.9 where the two generalization directions are compared for DeepBark
with the GV method. Finally, the strongest demonstration of this is in Figure 3.10, where
(RP→EL) with DeepBark always dominates the opposite generalization direction. In the case
of SqueezeBark, if we put aside the GV method that previously gave questionable results,
the two other methods also show an advantage for the (RP→EL) direction. However, it is
unclear to us why this trend is present. The first reason could be that EL bark is easier to
match correctly, but other reasons such as more precise spatial transformations available or
more diverse lighting directions present in the RP bark dataset could cause a situation such
as this. Nonetheless, since we took great care to apply the same data collection methodology
for any bark species, we suspect more strongly that this generalization direction trend comes
from a key difference between tree species.

The important conclusion to reach in this section, is the capacity of our descriptor DeepBark to
perform well on an unseen tree bark species. This is particularly important since it would be
extremely difficult to collect a training dataset containing the exhaustive set of all existing trees
species. This is because a real-world application is bound to comprise previously-unseen tree
species for the descriptor network. However, looking at Figure 3.9 and Figure 3.10, DeepBark
shows satisfactory results across species generalization, for the GV and LR methods. If we
consider the BoW method as a pre-selection tool (as will be done in section 3.7), the results
are acceptable too. Thus, we consider that DeepBark has a good generalization capacity.
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Descriptors Scoring
Methods

Metrics
P@1 R-P mAP AUC F1

DeepBark
(RP→EL)

BoW 0.818 ±0.386 0.420 ±0.237 0.439 ±0.264 0.885 0.409
GV 1.000 ±0.000 0.846 ±0.166 0.880 ±0.154 0.952 0.809
LR 0.998 ±0.050 0.713 ±0.204 0.755 ±0.206 0.939 0.751

SqueezeBark
(RP→EL)

BoW 0.397 ±0.489 0.188 ±0.193 0.188 ±0.199 0.817 0.119
GV 0.348 ±0.476 0.163 ±0.194 0.170 ±0.206 0.792 0.108
LR 0.970 ±0.171 0.637 ±0.229 0.669 ±0.241 0.913 0.589

DeepBark
(EL→RP)

BoW 0.939 ±0.239 0.402 ±0.179 0.426 ±0.199 0.864 0.346
GV 1.000 ±0.000 0.707 ±0.177 0.755 ±0.181 0.917 0.685
LR 1.000 ±0.000 0.632 ±0.186 0.678 ±0.189 0.924 0.677

SqueezeBark
(EL→RP)

BoW 0.479 ±0.500 0.196 ±0.173 0.196 ±0.176 0.785 0.111
GV 0.770 ±0.421 0.292 ±0.213 0.303 ±0.230 0.764 0.130
LR 0.922 ±0.269 0.559 ±0.246 0.593 ±0.266 0.916 0.393

Table 3.5: Results of retrieval test based on generalization across species. The arrow →
indicates the generalization direction (trained on → tested on). The best results for each
metric are in bold.

3.6 More realistic scenario: adding negative examples

To test how our system would perform on a larger database that would be typical of a real
deployment, we added 6,700 true negative elm examples with a crop size similar to query
images. Half of them were original images, and the other images were generated via data
augmentation by doing either a rotation, scale, or affine transformation. Note that the original
3,350 images contain some physical overlap, as they come from 25 trees.

We reused the DeepBark network and the voc previously trained in section 3.4. For the test,
we removed the red pine images and kept the elm images that we separated into two crops (top
and bottom halves), giving us a total of 1,200 images. We thus obtained a database of 7,900
bark images. Again, every query had 11 relevant images. Importantly, this experiment is the
only one where we split the bark images into two crops, solely done to increase the database
size. This had the side effect of also dropping the performance. Since the visible bark (and
thus, the number of visible features) was reduced by half. This can be seen by comparing
Figure 3.7 and Figure 3.11.

Inspecting Table 3.6, it is clear that the extra negative data has an impact on the results
of our two representative descriptors DeepBark and SIFT. Indeed, it is apparent that the
different metrics worsen, even with only 600 new negative examples. Among the GV, LR, and
the BoW, the most affected one is, without a doubt, the BoW. Looking at Figure 3.11 and
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Figure 3.11: OS-PR Curves for the negative examples test on SIFT and DeepBark. Numbers
in the legend indicate how many negative examples were added.

Figure 3.12: US-PR Curves for the negative examples test on SIFT and DeepBark. Numbers
in the legend indicate how many negative examples were added.

Figure 3.13: ROC Curves for the negative examples test on SIFT and DeepBark. Numbers in
the legend indicate how many negative examples were added.

Figure 3.12, the effect of negative data on the BoW is quite apparent. We conjecture that this
effect is caused by the summary representation that is the BoW and the fact that it does not
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use any extra information available from the set of match M .

In comparison, the GV and LR scoring method are more resilient against the augmented
number of images and the visible area reduction. However, it seems like the GV scoring
method is the clear winner here, with both descriptors showing a smaller loss of performance
going from 0 to 6700 added negative examples, which is a surprise since LR was design with
SIFT in mind. Carefully analyzing the GV and the LR in the case of SIFT, we can even
see that LR initially give better performance than the GV. But as the number of added
negative examples increase, the LR performance drop so much that the GV end up with
better performance. Thus, it suggests that to correctly re-identify bark images among large
database require more than a summary representation of an image and that relying on the
geometric consistency of local characteristics in images coming from a unique bark surface is
advantageous.

Even if Figure 3.13 could be used to show that DeepBark outperform SIFT with smaller crop
size and additional negative bark images, we keep it here to demonstrate the pitfall of some
metric used in image retrieval. Except for the correctly represented performance gap between
the two descriptors, Figure 3.13 is wrong about its representation of the performance when
more negative data is added. Looking carefully, we notice that this figure would lead us
to believe that the more negative examples are added, the more the performance increase.
Examining other metrics show that this is wrong, but taking as an example the AUC in
Table 3.6, we notice that the best results are almost always the last one, which is incorrect.
This miss-representation is due to how FPR is calculated and reminds us to always stay
vigilant of the metric we use.

From Table 3.6, it is clear that DeepBark outperforms SIFT either from looking at the highest
results or the smaller decrease of performance when adding negative examples. For instance,
if we look at the mAP in the column labeled 6700, DeepBark always score higher. The closest
SIFT could get to DeepBark, was when compared with the LR, and it still shows a 0.334
difference between the two scores. On the side of keeping good performance while adding
negative examples, DeepBark is visibly better with bold results in some metrics starting from
0 added examples to 6700, indicating no drop in performance. However, even if this re-
iterate the point that learned descriptors are necessary to allow tree bark re-identification as
showed in section 3.4, SIFT is presented here more to show a baseline and the effect that the
added negative examples can have. The real conclusion to draw here is that when using the
DeepBark descriptor in combination with the GV scoring method, we can expect satisfactory
performance even with a realistic database of more than 7900 bark images. We expect this,
since the combination of DeepBark and GV has shown only a negligible drop of performance
no matter the number of added negative examples.
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DeepBark
Metric 0 600 1600 3300 6700

BoW
P@1 0.952 ±0.214 0.937 ±0.244 0.924 ±0.265 0.910 ±0.286 0.885 ±0.319
R-P 0.611 ±0.238 0.569 ±0.243 0.537 ±0.248 0.504 ±0.250 0.471 ±0.252
mAP 0.659 ±0.258 0.611 ±0.269 0.572 ±0.276 0.532 ±0.279 0.491 ±0.281
AUC 0.918 0.914 0.911 0.907 0.907
F1 0.542 0.505 0.471 0.431 0.394

GV
P@1 0.998 ±0.041 0.998 ±0.041 0.998 ±0.041 0.998 ±0.041 0.998 ±0.041
R-P 0.832 ±0.179 0.832 ±0.178 0.832 ±0.178 0.832 ±0.178 0.831 ±0.179
mAP 0.874 ±0.165 0.874 ±0.165 0.874 ±0.166 0.873 ±0.167 0.872 ±0.168
AUC 0.951 0.959 0.964 0.968 0.970
F1 0.723 0.723 0.722 0.721 0.720

LR
P@1 0.999 ±0.029 0.999 ±0.029 0.998 ±0.050 0.998 ±0.050 0.998 ±0.050
R-P 0.769 ±0.203 0.763 ±0.206 0.756 ±0.209 0.748 ±0.214 0.736 ±0.221
mAP 0.812 ±0.198 0.804 ±0.203 0.794 ±0.209 0.783 ±0.215 0.768 ±0.223
AUC 0.926 0.930 0.933 0.935 0.937
F1 0.690 0.684 0.677 0.671 0.659

SIFT
Metric 0 600 1600 3300 6700

BoW
P@1 0.683 ±0.466 0.653 ±0.476 0.622 ±0.485 0.601 ±0.490 0.576 ±0.494
R-P 0.189 ±0.149 0.164 ±0.142 0.149 ±0.135 0.136 ±0.130 0.124 ±0.121
mAP 0.189 ±0.158 0.163 ±0.148 0.144 ±0.140 0.129 ±0.131 0.114 ±0.121
AUC 0.684 0.686 0.694 0.697 0.698
F1 0.108 0.093 0.082 0.071 0.059

GV
P@1 0.586 ±0.493 0.586 ±0.493 0.586 ±0.493 0.586 ±0.493 0.585 ±0.493
R-P 0.271 ±0.161 0.264 ±0.159 0.263 ±0.159 0.257 ±0.158 0.250 ±0.155
mAP 0.245 ±0.154 0.235 ±0.153 0.230 ±0.153 0.223 ±0.153 0.214 ±0.150
AUC 0.788 0.799 0.807 0.812 0.817
F1 0.248 0.237 0.233 0.225 0.216

LR
P@1 0.972 ±0.166 0.971 ±0.168 0.969 ±0.173 0.968 ±0.177 0.967 ±0.180
R-P 0.465 ±0.201 0.458 ±0.201 0.449 ±0.201 0.437 ±0.200 0.425 ±0.200
mAP 0.495 ±0.218 0.481 ±0.219 0.467 ±0.219 0.450 ±0.218 0.434 ±0.217
AUC 0.727 0.731 0.734 0.735 0.737
F1 0.316 0.308 0.299 0.292 0.283

Table 3.6: Results of the negative examples test for DeepBark and SIFT. The numbers in the
header indicate how many negative examples were added. The best results for each row are
in bold.
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3.7 Speeding-up classification with Bag of Words (BoW)

Even though the LR and the GV scoring methods perform better in terms of mean precision,
it is unrealistic to use them to search a whole database. Indeed, in a realistic scenario, this
database might contain over 10,000 images, which would be prohibitively expensive to search
with the LR or the GV scoring methods. Instead, the BoW approach can be used as a pre-
filter to propose putative candidates to other more computationally-expensive but accurate
methods. As shown by Cummins and Newman (2009), a BoW is a fast method to compare
and handle large datasets. To obtain a sense of the time that could be saved by such pre-
filtering, we report in Table 3.7 the average time for a single comparison of all three scoring
methods, on a single thread. Even if we compared the BoW to the second-fastest method
(LR), computing a BoW is still 65,750 time faster. However, it is important to note that our
implementation of the LR and GV methods are rudimentary and could probably be rewritten
to obtain more speed.

Nevertheless, the magnitude of the computational gap would remain, especially considering
that our BoW version could also be improved. Using a BoW of size 1000, we calculated that,
on average, a BoW has 71.8% of its entries being null. One improvement could thus come
from taking advantage of this sparsity. It would also be possible to improve this method by
using what is called an inverted index commonly used in information retrieval, as they explain
in section 1.2 of Manning et al. (2008).

Scoring Method BoW LR GV
Mean Computation Time (ms) 0.002 131.499 179.387

Table 3.7: Single signature comparison time, averaged over 500 comparisons. Done using our
single-thread implementation, running on an Intel Core i7-6700K 4.00GHz.

Figure 3.14: Impact of the BoW size on the retrieval performance. From left to right: OS-PR,
US-PR and ROC Curves for the SIFT and DeepBark descriptors, for three different BoW sizes.
The composition and separation of the dataset is the same as in the comparative experiment
in section 3.4. Numbers in the legend indicate the BoW size, ranging from 500 to 2000.
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Other than time, the precision and recall of the BoW approach should also be considered.
Inspecting Figure 3.14, we can understand the effect of the actual BoW size on its performance.
This size is, in effect, the number of words in the visual dictionary. For SIFT, the increase
in size is slightly detrimental to the performance. However, SIFT is already underperforming,
leaving little room for a large degradation. In the case of DeepBark, the situation is less clear.
In the OS-PR graph, only a size of 500 gives worse performance, while a size of 1000 and 2000
behave similarly.

On the other hand, the US-PR graph shows that using a size of 2000 is detrimental to perfor-
mance. Note that the three different BoW sizes seems to give equal performance at low recall.
Finally, the ROC graph agrees with the US-PR graph, but to a smaller extent. From this, we
concluded that our BoW size of 1000 was the most appropriate for all of our experiments.

Descriptors R@25 R@50 R@100 R@200
SIFT-0 0.248 0.316 0.403 0.520

SIFT-6700 0.150 0.176 0.215 0.268
DeepBark-0 0.728 0.795 0.857 0.908

DeepBark-6700 0.561 0.625 0.681 0.739

Table 3.8: R@K for different values of K using the BoW. Results taken from the experiment
with negative examples. The number next to the method name indicates how many negative
examples were added.

Nonetheless, Figure 3.14 only let us look at precision to certain recall values, but using the
BoW as a pre-filter, we will select an arbitrary number of candidate up to rank K for each
query. To this end, we provide Table 3.8, which shows the R@K for various Ks. The first
conclusion is that using SIFT and keeping the 200 best image matches in the setting with extra
negative examples would only retain 26.8 % of the relevant images, which we judge ineffective
for our application. On the other hand, keeping the 200 best matching image pairs using the
BoW with DeepBark would retain 73.9% of the 11 relevant images among the 7,900 possible
matches. The only concern is the loss of performance due to the addition of negative data.
For R@25, when going from 0 extra negative data to 6700, it results in a performance loss
of 24.3%. For R@200, we acknowledge a performance loss of 18.6%. Still, a recall of 73.9%
for R@200 in a dataset of 7900 images is more than satisfactory performance. From this, we
can see that if we were to apply the GV with our current algorithm on only the K = 200 top
matching images given by the BoW pre-filtering, it would take 35.88 s. Note that to select
these 200 candidates, we would have to match a query against a dataset of 7,900 images with
the BoW, but this would only take 0.016 s, which means that the total time for the whole
computation would be of 35.896 s.
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3.8 Detecting Novel Tree Surfaces

So far, we have addressed in this thesis the tasks of matching an unseen image to a previously-
seen one with sufficient precision. A natural extension, which we have not discussed yet, is
determining if a query image is genuinely a previously-unseen surface. This determination is
necessary because the matching stage will always return the best match, even if it does not
correspond to a true positive match. However, we should expect the best matching score to
be somewhat unsatisfactory.

A similar issue happens in mobile robotics, where Visual Place Recognition (VPR) is used
to identify previously-visited locations. VPR is now part of many mapping solutions. In-
deed, an essential task in mobile robotic is to map the environment and enable the robot to
localize himself in this environment. This is known as Simultaneous Localization And Map-
ping (SLAM), which is a challenging problem due to multiple factors such as environmental
complexity, sensors unreliability, the fusion of sensors information, and the need for low algo-
rithmic complexity to be realistically used. Thus, algorithms such as particle filters, extended
Kalman filters, and GraphSLAM were developed to give good approximated solutions to this
problem. These approaches can sometimes refine the localization precision or robustness by
leveraging loop closure, which is to recognize a previously seen location, using, for instance,
image retrieval. Loop closure thus enables the localization algorithm to reinforce its hypothesis
about its location by detecting a previously-seen location. Visual Place Recognition (VPR) is
often the solution of choice to detect these. As such, it has become a powerful tool in mobile
robotic to help solve loop closure.

The problem of detecting that a novel location is indeed an unseen one, is properly addressed
in Cummins and Newman (2008) using a formal probability framework. In our case, we
will be using a simpler approach. We believe that the absence of significant 3D structures,
contrary to a scene seen by a robot’s camera, allows us to employ a simpler solution. So,
instead of a complex framework, we will show that using the scoring results of our DeepBark
method, a simple threshold is enough to classify unseen images as new or not. We hypothesize
that if the score distributions of relevant and non-relevant image matches possess enough
distance between them, we can use a threshold discarding almost every non-relevant images,
while keeping relevant ones. This means in turns that if an unseen image does not pass the
threshold test, it should be considered a new surface, with no valid match in the database.
This relies on the assumption that only relevant images can have a high score.

Figure 3.15 shows the Precision versus the Recall when considering the calculated scores as
an unordered set, for all three scoring methods: Bag of Words (BoW), Lowe Ratio (LR) and
Geometric Verification (GV). Having done 1,200 queries with 11 relevant images for each
query, means that these graphs show the recall for a total of 13,200 relevant images among the
9,480,000 matches scores calculated during the experiment. As the Recall gives the proportion
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Figure 3.15: US-PR Curves for the negative examples test on SIFT and DeepBark. Numbers
in the legend indicate how many negative examples were added.

of relevant images retrieved, at 20% recall in the BoW graph we have a Precision of nearly 1
for DeepBark. Such high precision leads us to believe that having a properly-selected threshold
would be sufficiently reliable to classify an image as new with our descriptor. This is also the
case for the graph of GV in Figure 3.15 for DeepBark, where it shows that we could use a
threshold having 50% Recall to classify unseen images as not new with almost no error, since
the Precision is, again, nearly 1. On the contrary, all curves for the SIFT descriptor show a
drastic decrease in precision, except for the LR scoring method.

Figure 3.16 is another visualization of the same results for DeepBark. But it gives a better idea
of the threshold in terms of scores instead of Recall. It shows the distributions of matching
scores as a histogram for both relevant and non-relevant images. This way, we can see that
the mean distribution of the relevant matches score has a significant distance from the mean
distribution of the non-relevant matches score. Looking at the subfigure [a], we see that a
threshold of 2.02 on the score would allow us to keep more than half the relevant images while
discarding almost every non-relevant ones. In addition, subfigure [c] shows that a threshold at
197.40 would keep more than half the relevant images while discarding every non-relevant ones.
This indicates that the score distributions of the relevant and non-relevant image matches for
DeepBark possess enough distance to classify unseen images as new or not, for our tree bark
re-identification problem.

For completeness, Figure 3.17 shows the score distributions for the hand-crafted descriptor
SIFT. Unlike our descriptor DeepBark, we can see that the SIFT descriptor cannot generate
sufficient space between the relevant and non-relevant score distributions to classify unseen
images effectively, regardless of the scoring method. Even when looking at the best scoring
method, the Lowe Ratio (LR) in subfigure [b], we would need to sacrifice approximately 75%
of the relevant matches to discard almost every non-relevant match. This would seriously
hamper the performance of tree bark re-identification, thus making a SIFT-based approach
non-viable in a real scenario.
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[a]

[b]

[c]

Figure 3.16: Score distributions by relevant and non-relevant matching pairs for DeepBark
from the negative examples experiment using 6,700 negative examples. Note that in [a], a
score refers to a similarity, and thus a lesser score means more similarity. While [b] and [c]
refer to the number of feature matches, for which the more, the better.

3.9 Conclusion

With a lot of factors influencing tree bark re-identification experiments, we began this chapter
by first laying out details about how we evaluated our experiments. We also made sure to select
the best hyper-parameters for every descriptor while using the correct amount of data to train
the learned descriptors. With these details and parameters out of the way, we started looking
at the efficiency of different types of local descriptors on our tree bark re-identification task. It
appeared that using learned descriptors train on bark data was essential to obtain satisfactory
results and that hand-crafted descriptors offered poor but constant performance. Then, to
obtain a more realistic picture of the performance, we looked at the generalization across
tree species to learned that even if it hinders the performance, DeepBark showed remarkable
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[c]

Figure 3.17: Score distributions by relevant and non-relevant matching pairs for SIFT from
the negative examples experiment using 6700 negative examples. Note that in [a], a score
refers to a similarity, and thus a lesser score means more similarity. While [b] and [c] refer to
the number of feature matches, for which the more, the better.

resilience by keeping high precision at more than 50% recall.

Adding to the realistic picture, we did an experiment to evaluate descriptors performance
when face with a bigger test set. From this, we determined that the GV scoring method was
able to sustain its performance despite adding negative examples and that paired with the
excellent performance of DeepBark, we could expect satisfactory results against even bigger test
sets. However, since the better GV and LR scoring methods are computationally expensive,
especially on bigger datasets, we looked to take advantage of the much faster BoW to select
potentially matching images. This showed us that we could expect to retain 73.9% of the
relevant images by keeping only 200 images among a dataset of 7900 images, in only 0.016 s.
Finally, we investigated if we could use a score threshold to decide whether or not an unseen
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image possesses a relevant image in our current image database. We discovered that once again,
DeepBark paired with the GV scoring method showed a great distance between its relevant and
non-relevant score distributions, meaning that a single threshold could potentially distinguish
between a new unseen or a previously seen image.
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Conclusion

In this thesis, we explored bark image re-identification in the challenging context of strong
illumination and viewpoint variations. To complete this task, we had to go through essential
theories and related works. Then we had to define specific methods, in addition, to collect
well-labeled data, to finally design and perform key experiments.

We thus reviewed common techniques such as global and local descriptors to describe images in
meaningful ways. In addition to these hand-crafted techniques, we have gone through learned
descriptors and the crucial concepts related to them such as convolutional neural networks and
metric learning. To put these descriptive methods in context, we looked at the image retrieval
task and all the derived formulations. Another essential subject we covered was the multiple
metrics available to evaluate image retrieval and their respective advantages and weaknesses.
We then concluded this background review with the concept of domain generalization and a
thorough survey of the recent research focusing on tree bark images.

After this theoretical review, we started looking at the current state of the available datasets
of bark images. Since there were no datasets able to meet our needs, we explained the strict
methodology we designed to collect bark data. We then described the resulting Bark-Id
dataset, while outlining the pipeline we implemented to transform this Bark-Id dataset into
the Bark-Aligned dataset using techniques such as homography. With our data ready, we
delved into the training details of our two learned descriptors DeepBark and SqueezeBark.
The last, but no less important part we defined, was how to build a distinctive visual signature
for each unique bark surface and the methods we chose to compare such signatures.

Once at this point, we were ready to experiment with our data and methodology to discover
crucial knowledge about bark re-identification. To this end, we started by studying the effect
of different hyperparameters and the size of the training set. From these two experiments, we
asserted that 40% of the data of a single tree species was sufficient to obtain high performance
from DeepBark and that each descriptor performs differently depending on the image scale
and blurriness level. With this knowledge, we were in a position to design an experiment
comparing multiple hand-crafted and learned descriptors together. This comparison led us
to the conclusion that DeepBark was far better than any of the other descriptors with any
of the three scoring methods. Analyzing the generalization capacity between tree species of
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our two learned descriptors, also showed a clear advantage for DeepBark with a small loss of
performance compared to the previous experiment. However, to ascertain of the ability of
DeepBark to perform well under challenging conditions, we planned an experiment where we
reduced the size of the available bark images and added true negative bark images of the same
size. With 7900 images to compare with every query, DeepBark successfully achieves a mAP
of 0.872 with a standard deviation of 0.168 using the GV scoring method.

Nonetheless, other considerations about bark re-identification were of vital importance, such
as time and open-set problem. In the case of time consideration, we showed that using the
BoW method could save a lot of computation without reducing the level of performance by
too much. Then, for the open-set problem, we analyzed the results of previous experiments
using graphic portraying of the distribution of the score by relevance. Finally, we put forward
the idea that a simple threshold could be enough to tackle the problem.

After the collection of our Bark-Id dataset enabling us to tackle the task of bark re-identification
and our multiple experiments following a strict methodology, we are confident in re-affirming
that:

• We introduced a novel dataset of tree bark pictures with specific markers to infer camera
plane transformation, which is also designed for image retrieval.

• We used our novel dataset to train a Deep Learning local feature descriptor adapted for
bark images using standard neural network architectures and established the new state
of the art performance for bark re-identification.

• We showed that bark surfaces are sufficiently distinct to allow reliable re-identification
under a challenging context.

• We demonstrated the necessity to use deep learning methods to achieve satisfactory
results, since hand-crafted ones did not.

Also, we can now answer the central question of this thesis, which is:

Is it possible to reliably recognize an individual tree with a visual
signature extracted from its bark?

From all of our experiments, the apparent conclusion we have reached is clear: yes, it is pos-
sible. However, as usual with research when considering more realistic application scenarios,
the more realistic answer lies in a grayer area. This is why further research remains to be done
in order to evaluate problems posed by numerous real-world aspects. A glaring problem that
realistic scenarios could bear is the encounter of bark belonging to a tree species not present
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in the dataset used for training, and this could be worsened by just accumulating too many
bark samples to distinguish. Another evident problem real-world applications would bring is
the occlusion of tree bark by, for example, snow, leaves, bugs, dirt, etc. Similarly, ripped bark
is sure to decrease the available information and thus become a difficulty. Another problem
we can foresee is that it will be unlikely that each image taken will either show the same bark
surface or not. This means we will have to cope with the fact that two images can partially
depict the same bark surface, and that the score indicating a match will vary more.

However, all hope is not lost. Future research can be conducted that should greatly improve on
the work done in this thesis. For example, since our descriptor is built using deep learning, it
is now common knowledge that more data with more diversity in it improves the performance
of deep learning methods. An aspect of our approach that still needs refinement is the choice
of a keypoint detector. We chose by default the SIFT difference of Gaussian detector since
it is well renown. Yet, it remains unknown which effect other keypoint detectors would have
on our approach, and there is likely room for improvement in this aspect. A last crucial
point we did not investigate further is the geometric constraint used to remove false matches
after the putative matching between two feature lists V . Work on this subject could lead
to great improvement over our approach. This is because, in our case, we used the LR and
the GV methods, which are now relatively simple compared to the latest state of the art
geometric constraint that more efficiently exploits spatial information. Even more ideas could
potentially improve the performance of our original approach, but we leave this task to our
informed reader.
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Appendix A

Appendix A

A.1 ResNet and SqueezeNet

Figure A.1: Fire module architecture, as seen in Iandola et al. (2016) paper. The main idea
here is to use the first 1× 1 convolution filters to reduce the depth of the feature map before
using a combination of 1× 1 and more costly 3× 3 filters. This depth reduction also reduces
the depth of the expand operation filters and thus reduces the number of parameters used.
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Figure A.2: Figure taken from He et al. (2016) paper. We can see an architectural comparison
between the VGG-19 model Simonyan and Zisserman (2015), a plain 34 parameter layers
network, and a 34 parameter layers residual network in order from left to right, respectively.
The figure also presents the shortcut connections between layers of the residual network. Note
that the dotted shortcuts means that the depth dimension is increased from one layer to the
other.
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Layer Name Output Size Params Stride
Conv1 32x32x64 (7x7x3)x64 2

Maxpool1 16x16x64 None 2
Conv2.1.1 16x16x64 (3x3x64)x64 1
Conv2.1.2 16x16x64 (3x3x64)x64 1
Conv2.2.1 16x16x64 (3x3x64)x64 1
Conv2.2.2 16x16x64 (3x3x64)x64 1
Conv3.1.1 8x8x128 (3x3x64)x128 2
Conv3.1.2 8x8x128 (3x3x128)x128 1
Conv3.2.1 8x8x128 (3x3x128)x128 1
Conv3.2.2 8x8x128 (3x3x128)x128 1
Conv4.1.1 4x4x256 (3x3x128)x256 2
Conv4.1.2 4x4x256 (3x3x256)x256 1
Conv4.2.1 4x4x256 (3x3x256)x256 1
Conv4.2.2 4x4x256 (3x3x256)x256 1
Conv5.1.1 2x2x512 (3x3x256)x512 2
Conv5.1.2 2x2x512 (3x3x512)x512 1
Conv5.2.1 2x2x512 (3x3x512)x512 1
Conv5.2.2 2x2x512 (3x3x512)x512 1
Fully1 128 (2048)x128 None
l2 norm 128 None None

Table A.1: DeepBark architecture built with ResNet-18 from Pytorch 0.4.1. Here, the average
pool and the fully connected layer of the ResNet-18 are replaced by a fully connected layer
followed by l2 normalization. A batch normalization layer follows each convolution layer. A
block of convolution is the detailed architecture of a residual block from ResNet.
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Layer Name Output Size Params Stride
Conv1 32x32x64 (3x3x3)x64 2

Maxpool1 16x16x64 None 2
Conv2.1 16x16x16 (1x1x64)x16 1
Conv2.2.1 16x16x64 (1x1x16)x64 1
Conv2.2.2 16x16x64 (3x3x16)x64 1
Conv3.1 16x16x16 (1x1x128)x16 1
Conv3.2.1 16x16x64 (1x1x16)x64 1
Conv3.2.2 16x16x64 (3x3x16)x64 1
Maxpool2 8x8x128 None 2
Conv4.1 8x8x32 (1x1x128)x32 1
Conv4.2.1 8x8x128 (1x1x32)x128 1
Conv4.2.2 8x8x128 (3x3x32)x128 1
Conv5.1 8x8x32 (1x1x256)x32 1
Conv5.2.1 8x8x128 (1x1x32)x128 1
Conv5.2.2 8x8x128 (3x3x32)x128 1
Maxpool3 4x4x256 None 2
Conv6.1 4x4x48 (1x1x256)x48 1
Conv6.2.1 4x4x192 (1x1x48)x192 1
Conv6.2.2 4x4x192 (3x3x48)x192 1
Conv7.1 4x4x48 (1x1x384)x48 1
Conv7.2.1 4x4x192 (1x1x48)x192 1
Conv7.2.2 4x4x192 (3x3x48)x192 1
Conv8.1 4x4x64 (1x1x384)x64 1
Conv8.2.1 4x4x256 (1x1x64)x256 1
Conv8.2.2 4x4x256 (3x3x64)x256 1
Conv9.1 4x4x64 (1x1x512)x64 1
Conv9.2.1 4x4x256 (1x1x64)x256 1
Conv9.2.2 4x4x256 (3x3x64)x256 1
Maxpool4 2x2x512 None 2
Fully1 128 (2048)x128 None
l2 norm 128 None None

Table A.2: SqueezeBark architecture built with SqueezeNet 1.1 from Pytorch 0.4.1. Here,
the last convolutional layer and the average pooling is replaced by a max pool layer with a
fully connected layer and followed by l2 normalization. A block of convolution is the detailed
architecture of a Fire module from SqueezeNet.
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A.2 Supplementary Results

Figure A.3: ROC Curves for all training set sizes using RP bark. Supplementary results of
section 3.3.

Figure A.4: ROC Curves for all training set sizes using EL bark. Supplementary results of
section 3.3.
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Figure A.5: US-PR Curve for all descriptors and scoring methods tested on 50% of RP and
EL. Learned descriptors were trained on the remaining 50% of bark. Each of the 1200 images
of the test set is used as a query. No extra negative examples were added. Supplementary
results of section 3.4.

Figure A.6: ROC Curves for the generalization test. The arrow -> indicates the generalization
direction (trained on -> tested on). Supplementary results of section 3.5.
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