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Abstract 1	

In	recent	years,	populations	of	honey	bees	and	other	pollinators	have	been	reported	to	be	in	decline	2	

worldwide.	A	number	of	stressors	have	been	identified	as	potential	contributing	factors,	 including	3	

the	 extensive	 prophylactic	 use	 of	 neonicotinoid	 insecticides,	 which	 are	 highly	 toxic	 to	 bees,	 in	4	

agriculture.	While	multiple	routes	of	exposure	to	these	systemic	insecticides	have	been	documented	5	

for	honey	bees,	contamination	from	puddle	water	has	not	been	investigated.	In	this	study,	we	used	a	6	

multi-residue	method	 based	 on	 LC-MS/MS	 to	 analyze	 samples	 of	 puddle	water	 taken	 in	 the	 field	7	

during	 the	planting	of	 treated	 corn	 and	one	month	 later.	 If	 honey	bees	were	 to	 collect	 and	drink	8	

water	 from	these	puddles,	our	results	showed	that	 they	would	be	exposed	 to	various	agricultural	9	

pesticides.	 All	 water	 samples	 collected	 from	 corn	 fields	 were	 contaminated	 with	 at	 least	 one	10	

neonicotinoid	 compound,	 although	 most	 contained	 more	 than	 one	 systemic	 insecticide.	11	

Concentrations	of	neonicotinoids	were	higher	in	early	spring,	indicating	that	emission	and	drifting	12	

of	 contaminated	 dust	 during	 sowing	 raises	 contamination	 levels	 of	 puddles.	 Although	 the	 overall	13	

average	 acute	 risk	 of	 drinking	 water	 from	 puddles	 was	 relatively	 low,	 concentrations	 of	14	

neonicotinoids	ranged	from	0.01	to	63	μg/L	and	were	sufficient	to	potentially	elicit	a	wide	array	of	15	

sublethal	 effects	 in	 individuals	 and	 colony	 alike.	 Our	 results	 also	 suggest	 that	 risk	 assessment	 of	16	

honey	bee	water	resources	underestimates	the	foragers’	exposure	and	consequently	miscalculates	17	

the	 risk.	 In	 fact,	 our	data	 shows	 that	honey	bees	and	native	pollinators	are	 facing	unprecedented	18	

cumulative	 exposure	 to	 these	 insecticides	 from	 combined	 residues	 in	 pollen,	 nectar	 and	 water.	19	

These	 findings	 not	 only	 document	 the	 impact	 of	 this	 route	 of	 exposure	 for	 honey	bees,	 they	 also	20	

have	 implications	 for	 the	 cultivation	 of	 a	 wide	 variety	 of	 crops	 for	 which	 the	 extensive	 use	 of	21	

neonicotinoids	 is	 currently	 promoted.	22	
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	23	

Introduction 24	

Pollination	 is	 a	key	ecosystem	service	 for	both	biodiversity	and	human	welfare.	Animal-mediated	25	

pollination	plays	a	role	in	the	sexual	reproduction	process	of	over	90	%	of	the	world’s	angiosperms,	26	

thereby	sustaining	biodiversity	and	maintaining	 the	 integrity	of	most	 terrestrial	ecosystems	[1,2].	27	

More	than	70	%	of	the	world’s	crop	production	depends	to	some	extent	on	biotic	pollination,	which	28	

is	primarily	performed	by	insects	[3,4].	Pollination	by	bees	also	increases	seed	set	and	fruit	set,	size,	29	

quality,	shelf	life	and	commercial	value	of	a	majority	of	crops	[5–9].		30	

While	bees	are	by	far	the	most	efficient	group	of	insect	pollinators,	their	populations	are	declining	31	

worldwide	[10–16].	As	a	result,	over	the	last	decade,	pollinator	health	has	been	an	issue	of	concern	32	

for	 national	 and	 international	media,	 decision	makers,	 scientists	 and	 the	 general	 public.	 	 Several	33	

factors,	 alone	 or	 in	 combination,	 have	 been	 investigated	 and	 identified	 as	 potential	 contributing	34	

causes	 of	 pollinator	 decline	 [11,17–19].	 Among	 these,	 exposure	 to	 pesticide,	 especially	 of	 the	35	

neonicotinoid	family,	has	been	of	growing	concern.	Recent	studies	have	demonstrated	that	the	hive	36	

products	 of	 honey	 bee	 colonies	 located	 in	 agricultural	 environments	 across	 Europe	 and	 North	37	

America	have	been	contaminated	by	various	agricultural	chemicals,	 including	neonicotinoids	[20–38	

23].		39	

Although	neonicotinoid	insecticides	can	be	applied	in	various	ways	(pulverization,	soil	dressing),	in	40	

North	America,	they	are	mainly	used	as	a	seed	dressing	to	protect	corn	and	soybean	crops	from	a	41	

broad	range	of	root-feeding	and	sucking	pest	species.	In	fact,	virtually	every	single	seed	of	corn	and	42	

a	 third	 of	 soybean	 seeds	 are	 coated	 with	 these	 insecticides	 in	 the	 US,	 totalizing	 more	 than	 110	43	

million	 acres	 of	 land	 for	 2010	 [24,25].	 The	 neonicotinoid	 family	 is	 comprised	 of	 10	 compounds	44	

already	 in	use	worldwide	or	pending	approval	 [26,27],	but	clothianidin	and	thiamethoxam,	which	45	
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degrades	to	the	metabolite	clothianidin,	are	the	two	major	active	chemical	ingredients	used	to	treat	46	

corn	 and	 soybeans.	 Both	 of	 these	 compounds	 are	 extremely	 toxic	 to	 pollinators.	 The	 recognized	47	

amount	of	clothianidin	required	to	kill	50%	of	an	exposed	group	of	adult	honey	bees	(LD50)	after	24	48	

hours	ranges	from	22-44	ng/bee	for	contact	exposure,	and	about	3	ng/bee	for	oral	toxicity	[28–30].	49	

Toxicity	is	similar	for	thiamethoxam	and	LD50	for	contact	ranges	from	24-29	ng/bee	and	is	of	4.4	50	

ng/bee	for	oral	exposure	[28,31].	Given	the	current	rate	of	application	of	these	compounds	to	corn	51	

crops	 (between	 0.25	 mg	 and	 1.25	 mg/seed),	 a	 single	 kernel	 of	 corn	 contains	 enough	 active	52	

ingredients	 to	wipe	out	 an	entire	honey	bee	 colony.	Besides	 their	 extreme	 toxicity,	 neonicotinoid	53	

compounds	have	been	shown	to	bind	in	an	irreversible	fashion	to	nicotinic	acetylcholine	receptors	54	

(nAChRs)	 in	 arthropods	 [32].	As	 such,	 even	 though	 insects	 are	 able	 to	detoxify	 their	metabolism,	55	

once	a	molecule	reaches	the	brain,	its	effects	become	permanent.	56	

Bees	 can	 come	 into	 contact	with	 these	 systemic	 compounds	 in	 a	number	of	ways.	Recent	 studies	57	

have	 demonstrated	 that	 planting	 neonicotinoid-coated	 seeds	 with	 a	 pneumatic	 drilling	 machine	58	

releases	 particulate	matter	 contaminated	 with	 the	 insecticides	 into	 the	 environment	 [23,33–39].	59	

Pollinators	 foraging	 in	 fields	and	 flying	 in	 the	vicinity	of	planters	 can	be	directly	exposed	 to	 such	60	

clouds	 of	 contaminated	 dust.	 Furthermore,	 intoxication	 is	 likely	 to	 result	 from	 collecting	 and	61	

consuming	pollen	and	nectar	produced	by	a	plant	grown	from	a	neonicotinoid-coated	seed	[23,40],	62	

grown	 in	 soils	 containing	 neonicotinoids	 or	 covered	 with	 contaminated	 dust	 during	 planting	63	

[23,41,42].	These	systemic	insecticides	can	also	be	very	persistent,	lingering	for	several	months	and	64	

even	accumulating	in	plant	tissues	[43].	65	

In	addition	to	collecting	nectar	and	pollen,	honey	bees	also	forage	actively	for	water.	High	residue	66	

levels	of	neonicotinoids	have	been	measured	in	guttation	and	dew	water	[34,37,44–46].	Collecting	67	

and	consuming	such	contaminated	water	can	result	in	lethal	or	sublethal	effects	for	honey	bees.	The	68	

presence	of	water	resources	in	this	form	depends	largely	on	specific	weather	and	soils	conditions.	69	
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Given	their	appearance	 in	the	early	morning	 for	only	a	short	period	of	 time,	 it	 is	unclear	whether	70	

bees	 are	 likely	 to	 drink	 from	 these	 contaminated	 drops	 and	 thus	 the	 risk	 to	 bees	 has	 been	71	

questioned	 [47].	On	 the	other	hand,	 since	neonicotinoid	 insecticides	are	highly	water	soluble	and	72	

can	 persist	 for	months	 in	 aerobic	 soil	 conditions	 (half-life	 of	 clothianidin	 varies	 from	 148-1,155	73	

days)	[30]	they	are	likely	to	be	found	in	surface	waters.	Recent	studies	have	indeed	found	residues	74	

of	neonicotinoid	 insecticides	 in	 irrigation	water,	rivers	and	wetlands	 in	concentrations	harmful	 to	75	

some	aquatic	macro-invertebrates	[48–53].	Consumption	of	surface	water	as	an	exposure	route	of	76	

pesticide	 contamination	 for	 honey	bees	has	 recently	 been	pointed	 [54].	Nonetheless,	 lack	 of	 data	77	

regarding	 this	 route	 of	 exposure	 has	 been	 underlined	 by	 the	European	 Food	 Safety	 Authority	78	

[55,56].		79	

This	study	was	initiated	after	noticing	how	abundant	puddles	of	water	were	in	corn	fields	following	80	

rainfall	 and	 anecdotal	 observations	 of	 honey	 bees	 drinking	 from	 common	 puddles	 of	 rainwater	81	

(albeit	not	from	corn	fields).	The	objectives	were	to	1)	examine	whether	puddles	of	water	from	corn	82	

fields	are	contaminated	with	neonicotinoid	compounds	and	2)	determine	the	risk	associated	with	83	

the	consumption	of	this	water	for	honey	bees.	Considering	the	extent	to	which	these	insecticides	are	84	

used	 and	 their	 remarkably	 high	 toxicity,	 it	 is	 essential	 to	 thoroughly	 understand	 every	 potential	85	

route	by	which	honey	bees	can	be	exposed	to	them.		86	

Materials and methods 87	

Ethics Statement 88	

 89	
No	ethics	approval	was	required.	We	obtained	private	landowners'	permission.	Private	landowners	90	

who	granted	access	in	this	study	wish	to	remain	anonymous	and	specific	GPS	coordinates	cannot	be	91	

provided	as	part	of	that	confidentiality.	This	study	did	not	involve	endangered	or	protected	species.	92	
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Study Area 93	

Sampling	was	conducted	 in	two	neighbouring	administrative	regions	 in	southern	Quebec,	Canada.	94	

Both	regions,	Montérégie	(45°	37’	10’’	N,	72°	57’	30’’	W)	and	Estrie	(45°	24’	00’’	N,	71°	53’	03’’	W),	95	

have	historically	had	high	levels	of	agricultural	land	use.	Montérégie	alone	produces	nearly	60%	of	96	

the	province’s	 corn	and	soybean	crops.	Since	2008,	 close	 to	100%	of	 corn	and	over	 two-thirds	of	97	

soybean	crops	have	been	treated	with	a	neonicotinoid	coating.	Estrie	,	on	the	other	hand,	produces	98	

very	little	corn	and	soybean,	and	its	agricultural	profile	is	more	evenly	distributed	among	a	variety	99	

of	crops	whose	seeds	are	generally	untreated	with	neonicotinoids.		100	

Field water puddles 101	

Water	samples	were	obtained	from	puddles	of	water	that	had	accumulated	on	the	surface	of	fields	102	

following	a	day	of	precipitation.	All	puddles	were	 located	at	 a	maximum	distance	of	1	km	 from	a	103	

commercial	apiary,	well	within	a	honey	bee’s	 flight	range.	 In	Montérégie,	sampling	was	 limited	 to	104	

puddles	 in	 corn	 fields	 due	 to	 the	 ubiquity	 of	 neonicotinoid	 seed	 treatment	 in	 this	 crop.	 Control	105	

water	samples	were	collected	from	puddles	in	hay	fields	and	grasslands	in	Estrie	and	were	located	106	

at	least	3	km	from	neonicotinoid-coated	crops	to	limit	contamination	apart	and	were	sampled	only	107	

once	 during	 this	 study.	 On	 June	 5th,	 2012,	 10	 samples	 of	water	were	 collected	 from	 coated	 corn	108	

fields	as	 corn	sowing	was	still	 in	progress.	On	May	22nd,	 2013,	30	samples	were	 retrieved	during	109	

corn	plantation,	half	from	coated	corn	fields	and	half	from	hay	fields	and	grasslands.	An	additional	110	

34	 water	 samples	 were	 collected	 from	 coated	 corn	 fields	 on	 June	 29th,	 2013,	 a	 full	 month	 after	111	

sowing	had	ended.	A	total	of	74	water	samples	were	collected,	15	from	untreated	crop	fields,	and	59	112	

from	 neonicotinoid-treated	 corn	 fields.	 Samples	 were	 obtained	 by	 collecting	 water	 with	 50	 ml	113	

disposable	Falcon	tubes	and	filling	1	L	amber-coloured	glass	bottles.	Samples	were	collected	from	114	

clear	 water	 puddles	 (no	 suspended	 solid	 matter)	 and	 tubes	 were	 carefully	 submerged	 into	 the	115	

puddles	to	avoid	suspending	soil	particles	and	to	 limit	sample	contamination.	Bottles	were	sealed	116	
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with	aluminum	foil-lined	 lids	and	 immediately	placed	 in	a	dark	cooler.	Bottles	were	stored	at	4°C	117	

until	 extraction	 for	 chemical	 analyses,	 which	 were	 done	 within	 one	 week	 of	 receiving.	 Residue	118	

analyses	 were	 performed	 by	 two	 governmental	 ISO	 17025	 accredited	 laboratories	 	 (MAPAQ,	119	

CEAEQ).	120	

Chemical analyses 121	

Water	 samples	 collected	 during	 corn	 sowing	 were	 analyzed	 using	 a	 modified	 version	 of	 the	122	

QuEChERS	 method	 originally	 described	 by	 Anastassiades	 et	 al.	 (2003)	 [57].	 Briefly,	 60	 μl	 of	123	

methanol	and	20	μl	of	 isoprocarb	 standard	 solution	 (10	mg/l)	were	added	 to	1	ml	of	 each	 initial	124	

water	 sample.	 The	 solution	 was	 then	 filtered	 through	 a	 0.45	μm	 PTFE	 filter,	 and	 10	 μl	 were	125	

analyzed	 by	 liquid	 chromatography/mass	 spectrometry	 using	Waters	 Acquity	 LC	 interfaced	 to	 a	126	

Waters	Xevo	TQ	MS	 (Halo	C-18	 columns,	 4.6	 solid	 core	 x	 50	mm	porous	outer	 shell	with	2.7	 µm	127	

particle).	 The	 mass	 spectrometer	 was	 positioned	 in	 a	 positive	 electrospray	 mode	 and	 utilized	 a	128	

different	MS/MS	scan	for	each	pesticide	monitored.	Liquid	chromatography	injections	were	carried	129	

out	 three	 times.	Parent	pesticides	and	metabolites	were	 identified	based	on	 comparisons	of	 their	130	

chromatographic	retention	time	with	known	standards	and	mass	abundance	ratios	to	at	 least	two	131	

fragment	 transitions.	 Ion	 ratios	 between	 the	 two	 transitions	 had	 to	 comply	 with	 a	 maximum	132	

difference	of	20%	with	the	calibration	standard.	This	multi-residue	method	allows	detection	of	over	133	

400	 agrochemical	 compounds	 at	 parts	 per	 billion	 concentration	 levels.	 As	 concentrations	 of	134	

neonicotinoids	 were	 expected	 to	 drop	 after	 corn	 planting,	 the	 analytical	 method	 was	 further	135	

modified	to	include	a	pre-concentration	of	the	water	samples.	In	brief,	50	μl	of	isoprocarb	standard	136	

solution	 (1	 mg/l)	 and	 100	μl	 of	 extraction	 standard	 were	 added	 to	 500	 ml	 of	 each	 post	 corn	137	

planting	water	sample.	Prepared	samples	were	then	passed	through	Sep-Pak	C18	SPE	cartridges	(1	138	

g,	 6	 ml),	 pre-conditioned	 with	 6	 ml	 of	 methanol	 and	 6	 ml	 of	 de-ionized	 water.	 Cartridges	 were	139	

evaporated	to	complete	dryness	under	argon	gas	and	then	extracted	with	2	ml	of	eluting	solution	140	
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(208	μl	of	chloridric	acid	0.01	N,	25	μl	of	diethilamine	0.01%	in	250	ml	of	methanol).	Extracted	141	

cartridges	were	again	evaporation	under	argon	gas	to	near	dryness	and	extracts	were	reconstituted	142	

in	 50	μl	 of	 the	 internal	 standard	 and	 450	μl	 of	 de-ionized	water	 solution	 (containing	 0.1	%	 of	143	

formic	 acid	 and	5%	acetonitrile)	 for	 chemical	 analysis.	Original	 samples	 consisted	 of	 500	ml	 and	144	

were	 reconstituted	 in	 a	 0.5	ml	 solution	 thus	 increasing	 residue	 concentrations	 within	 the	 initial	145	

sample	by	a	1000	times.	LC-MS/MS	analyses	were	completed	using	the	same	analytical	method	as	146	

previously	 described.	 These	 focused	 analyses	 were	 limited	 to	 the	 detection	 of	 neonicotinoid	147	

pesticides	and	other	pesticides	intensively	used	in	Quebec	province	and	commonly	encountered	in	148	

water	in	agricultural	areas	at	parts	per	trillion	concentration	levels.	149	

Conversions and risk evaluation  150	

Chemical	 analyses	 of	 water	 result	 in	 concentrations	 expressed	 in	 mass	 of	 active	 ingredient	 per	151	

volume	 of	water.	 In	 order	 to	 understand	 the	 potential	 exposure	 for	 bees,	 the	 amount	 of	water	 a	152	

honey	bee	would	consume	on	a	daily	basis	and	thus	the	amount	of	pesticide	it	would	ingest	must	be	153	

estimated.	The	drinking	water	 intake	rate	used	 in	 this	 risk	assessment	method	 is	based	on	direct	154	

measurement	of	the	water	flux	rate	of	the	brown	paper	wasp	(Polistes	fuscatus).	The	brown	paper	155	

wasp	and	the	honey	bee	are	taxonomically	related	(both	of	the	Hymenoptera	order),	share	similar	156	

size	and	weight	and	are	both	social	species	that	utilize	water	for	thermoregulation	of	their	nest	[58].	157	

Furthermore,	this	drinking	water	intake	rate	accounts	for	all	sources	of	water	intake	(primarily	food	158	

and	drink).	As	reported	by	the	US	EPA’s	White	Paper	in	Support	of	the	Proposed	Risk	Assessment	159	

Process	for	Bees	(2012)	[59],	a	worker	bee	must	drink	a	maximum	of	0.047	ml	of	water	per	day	in	160	

order	to	satisfy	its	daily	metabolic	water	needs.	The	process	for	determining	risk	to	honey	bees	is	161	

based	on	a	Risk	Quotient	 (RQ),	 and	 is	 consistent	with	 the	process	used	 for	other	 taxa	 [54].	RQ	 is	162	

expressed	as	the	ratio	of	point	estimates	of	dietary	exposure,	in	this	case,	the	drinking	water	intake	163	

rate,	 to	 point	 estimates	 of	 effects,	 as	 established	 by	 the	 acute	 oral	 lethal	 dose	 to	 50%	 of	 the	164	
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organisms	tested	(LD50).	For	example,	considering	clothianidin’s	LD50	at	24	hours	is	of	3.35	ng/bee	165	

and	 a	 honey	 bee	would	 ingested	 in	 a	 day	 2.5	 ng	 of	 clothianidin	 through	 pollen,	 nectar	 or	water	166	

consumption,	then	the	corresponding	RQ	value	would	be	of	0.75	(2.5/3.35)	In	consideration	of	the	167	

historic	average	dose	response	relationship	for	acute	toxicity	studies	with	bees,	the	acceptable	limit	168	

of	 the	 acute	 RQ	 value	 was	 set	 below	 0.4	 [59].	 An	 acute	 RQ	 value	 of	 0.4	 or	 higher	 should	 raise	169	

concerns.		170	

Results 171	

Multiresidue analyses of puddle water 172	

Chemical	 analyses	 of	 puddle	water	 indicated	 that	 honey	bees	 are	 exposed	 to	 various	 agricultural	173	

chemicals	 through	 collection	 and	 consumption	 of	 water.	 A	 total	 of	 30	 different	 pesticides	 and	174	

metabolites	were	 found	 in	 the	 74	 puddle	water	 samples,	with	 an	 average	 of	 3.9	 ±	 2.6	 chemicals	175	

detected	 per	 sample.	 In	 the	 15	 control	 water	 samples	 (untreated-crop	 fields),	 5	 pesticides	 were	176	

identified,	with	 some	 samples	 containing	 all	 5	 and	 an	 average	of	 2.1	±	3.8	 chemicals	 per	 sample,	177	

always	below	the	 limit	of	quantification.	Of	 the	5	pesticides	detected,	4	were	herbicides	(atrazine,	178	

desethylatrazine,	 metolachlore	 and	 simazine)	 and	 1	 was	 a	 fungicide	 (thiabendazole).	 Since	179	

occurrence	and	concentrations	of	neonicotinoids	were	similar	in	water	samples	collected	from	corn	180	

fields	when	corn	was	still	being	sown,	samples	from	2012	(10)	and	2013	(15)	were	pooled	together	181	

in	Table	1.	Also,	the	diversity	of	pesticides	found	in	these	puddles	was	similar	for	both	years,	with	182	

the	 exception	 of	metolachor,	which	was	 ubiquitous	 in	 2012	 and	 identified	 only	 once	 in	 2013.	 In	183	

these	 25	 water	 samples	 collected	 in	 both	 years	 (Table	 1),	 22	 pesticides	 and	 metabolites	 were	184	

identified,	 with	 an	 average	 of	 6.4	 ±	 2.6	 chemicals	 detected	 per	 sample	 and	 up	 to	 14	 different	185	

compounds	in	a	single	sample.	Neonicotinoid	concentrations	ranged	from	0.1	to	55.7	μg/l	(ppb)	for	186	

clothianidin	and	 from	0.1	 to	63.4	μg/l	 for	 thiamethoxam.	 In	 the	34	water	 samples	 collected	 from	187	
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corn	 fields	 one	 month	 after	 planting	 was	 completed	 (Table	 2),	 10	 pesticides	 and	 degradation	188	

products	 were	 identified,	 with	 an	 average	 of	 2.8	 ±0.6	 agrochemicals	 per	 sample	 and	 up	 to	 4	189	

compounds	per	sample.	Concentrations	of	neonictoinoid	compounds	ranged	from	0.017	to	2.3	μg/l	190	

for	 clothianidin,	 from	 0.004	 to	 2.8	 μg/l	 for	 thiamethoxam	 and	 from	 0.001	 to	 0.007	 μg/l	 for	191	

imidacloprid.	 Most	 of	 the	 pesticides	 found	 one	 month	 after	 planting	 were	 identified	 at	192	

concentrations	 under	 the	 limit	 of	 quantification,	 with	 the	 exception	 of	 azoxystrobin,	 clothianidin	193	

and	thiamethoxam.	All	water	samples	collected	from	corn	fields	contained	residues	of	at	 least	one	194	

neonicotinoid	 insecticide,	 and	 83%	of	 these	 samples	 contained	 residues	 of	 both	 clothianidin	 and	195	

thiamethoxam.		196	

Risk assessment of neonicotinoid insecticides in water 197	

Comparison	 of	 mean	 concentrations	 of	 clothianidin	 and	 thiamethoxam	 potentially	 ingested	 per	198	

honey	bee	with	their	respective	oral	LD50	values	revealed	a	mean	acute	risk	quotient	(RQ)	below	199	

0.1	 for	samples	collected	during	corn	planting	 (Table	3).	However,	 comparisons	of	 the	maximum	200	

concentrations	 per	 bee	 with	 the	 LD50	 values	 show	 acute	 risk	 quotients	 of	 0.78	 and	 0.68	 for	201	

clothianidin	and	thiamethoxam	respectively,	above	the	accepted	level	of	concern	of	0.4	determined	202	

by	 historical	 risk	 assessment.	 For	 water	 samples	 collected	 one	 month	 after	 corn	 planting,	203	

comparison	of	mean	concentrations	per	bee	with	their	respective	oral	LD50	values	indicates	a	mean	204	

risk	quotient	of	0.01.	No	puddle	of	water	contained	neonicotinoid	compounds	in	concentrations	at	205	

or	above	a	lethal	dose.	206	

Discussion 207	

Neonicotinoid	 seed	 dressing	 is	 used	 extensively	 in	 agriculture	 to	 protect	 a	wide	 variety	 of	 crops	208	

from	 pests.	 As	 these	 insecticides	 are	 highly	 toxic	 to	 honey	 bees,	 it	 is	 essential	 to	 identify	 and	209	

quantify	every	potential	route	of	exposure.	Field	observations	of	honey	bees	drinking	from	puddles	210	
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of	rainwater	raised	concerns	about	their	potential	exposure	to	these	systemic	compounds.	211	

Neonicotinoid residues in puddles of water 212	

The	results	presented	here	more	clearly	define	a	previously	uninvestigated	route	by	which	honey	213	

bees	are	exposed	in	corn-dominated	environment,	not	only	to	neonicotinoid	insecticides,	but	also	to	214	

a	cocktail	of	herbicides	and	fungicides	(Table	1	and	2).	 	Not	surprisingly,	neonicotinoids	were	the	215	

only	insecticidal	compounds	detected	in	all	samples,	due	to	their	water	solubility.	Concentrations	of	216	

neonicotinoid	 residues	 in	 puddles	 were	 markedly	 higher	 in	 springtime	 (mid-May)	 than	 at	 the	217	

beginning	of	summer	(end	of	June).	This	would	indicate	that	much	of	the	residue	in	these	puddles	is	218	

the	result	of	drifting	and	deposition	of	contaminated	dust	emitted	during	sowing	of	neonicotinoid-219	

coated	seeds.	Recent	studies	have	found	extremely	high	levels	of	clothianidin	and	thiamethoxam	in	220	

planter	 exhaust	 material	 and	 in	 the	 vicinity	 of	 the	 planter	 itself	 [23,34,35,37].	 This	 airborne	221	

particulate	 matter	 is	 highly	 susceptible	 to	 drifting,	 settling	 and	 thereby	 contaminating	 the	 soil	222	

surface	and	nearby	water	bodies.	Precipitation	can	readily	dissolve	neonicotinoid	compounds	in	the	223	

superficial	 layer	 of	 soil,	 and	 they	 remain	 in	 the	 rainwater	 puddles.	 However,	 the	 soil	 itself	224	

represents	an	even	greater	source	of	puddle	contamination.	For	purposes	of	comparison,	the	aerial	225	

dust	 emitted	 during	 sowing	 actually	 comprises	 less	 than	 2	 %	 of	 the	 total	 amount	 of	 active	226	

ingredients	in	seed	dressing,	whereas	the	remaining	78-96%	of	active	ingredients	surrounding	the	227	

seeds	are	not	absorbed	by	the	plant	and	enter	the	soil	[60].	Given	the	particularly	persistent	nature	228	

of	 neonicotinoids	 combined	 with	 repeated	 applications	 over	 successive	 years,	 accumulating	229	

concentrations	in	soils	can	be	expected	[61,62].	The	amounts	of	neonicotinoids	present	in	soil	play	230	

an	important	role	in	the	contamination	of	water	puddles.		231	

Implications and flaws of risk assessment 232	

While	the	average	acute	risk	associated	with	consumption	of	puddle	water	alone	was	 found	to	be	233	

relatively	low	for	pollinators	(Table	3),	some	puddles	contained	levels	of	neonicotinoids	almost	as	234	
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high	as	 the	LD50	 for	honey	bees,	 and	 the	 risk	 associated	with	 consumption	of	 this	water	 is	high.	235	

Although	average	concentrations	of	neonicotinoids	per	bee	exposed	to	contaminated	puddle	water	236	

were	 under	 lethal	 doses,	 these	 levels	 are	 nonetheless	 sufficiently	 high	 to	 elicit	 various	 sublethal	237	

effects	at	both	the	individual	and	colony	levels.	Sublethal	effects	include	increased	viral	replication	238	

(from	0.0001	ppb,	[63]),	reduced	food	consumption	(from	0.001	ppb,	[64]),	reduced	fecundity	(from	239	

0.001	ppb,	[65]),	decreased	size	of	hypopharyngeal	glands	(from	0.002	ppb,	[66]),	impaired	foraging	240	

behaviour	(from	0.0038	ppb,	 [67])	and	reduced	colony	growth	and	queen	production	(0.007	ppb,	241	

[68]).	242	

Risk	 assessment	 for	 contact	 with	 and	 dietary	 exposure	 to	 pesticides	 is	 a	 process	 thoroughly	243	

described	 for	 honey	 bees	 [54],	 but	 the	 risk	 associated	 with	 water	 has	 been	 only	 minimally	244	

investigated,	as	water	 is	often	perceived	as	a	 less	 important	resource	 for	pollinators.	Current	risk	245	

assessment	 draws	 an	 incomplete	 portrait	 of	 the	 situation.	 First,	 risk	 assessments	 evaluate	 the	246	

danger	 of	 a	 single	 pesticide	 compound	 at	 a	 time,	 whereas	most	 of	 our	water	 samples	 contained	247	

measurable	residue	of	both	clothianidin	and	thiamethoxam.	Since	these	two	compounds	belong	to	248	

two	 different	 structural	 types	 and	 exhibit	 non-competitive	 binding	 to	 nicotinic	 acetylcholine	249	

receptors	 in	 insects	 [69,70],	 the	 risk	 associated	 with	 the	 consumption	 of	 such	 water	 is	250	

underestimated.	 A	 comprehensive	 risk	 assessment	 should	 consider	 residues	 of	 clothianidin	 and	251	

thiamethoxam	 additively	 as	 they	 act	 independently	 of	 each	 other	 and	 their	 combined	 effect	 is,	252	

therefore,	the	sum	of	their	individual	effects.		Secondly,	social	insects	such	as	the	honey	bee	need	to	253	

consume	water	 for	metabolic	 reasons,	 but	will	mostly	 transport	 it	 back	 to	 the	 hive.	 Studies	 have	254	

demonstrated	 that	 the	 honey	 stomach	 is	 permeable	 to	 some	 pesticides	 [71–73]	 and	 active	255	

neonicotinoid	 ingredients	 can	 therefore	penetrate	 through	 the	 foregut	 cuticle	 in	 the	 same	way	as	256	

the	leaf	cuticle	[74].	As	such, complete	consumption	is	not	necessary	in	order	for	these	compounds	257	

to	enter	the	hemolymph	of	the	insect.	Honey	bees	require	a	considerable	volume	of	water	for	nest-258	

related	 tasks	 such	 as	 the	dilution	of	 stored	honey	 to	 feed	 the	brood,	 to	maintain	humidity	 in	 the	259	
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colony	 for	 larval	 and	 pupal	 development	 and	 for	 evaporative	 cooling	 to	 thermoregulate	 the	 nest	260	

[75–78].	Honey	bees	are	known	to	make	50-100	trips	to	forage	for	water	every	day	[76,79].	During	261	

each	 of	 these	 trips,	 they	will	 generally	 collect	 0.030-0.060	ml	 of	 liquid	 [47,79,80].	 As	 a	 result,	 a	262	

forager	 is	estimated	to	collect	1.5-6	ml	of	water	per	day	[59].	Although	metabolic	needs	are	small	263	

and	the	vast	majority	of	collected	water	will	be	regurgitated	once	inside	the	hive,	a	certain	amount	264	

of	 pesticide	 will	 cross	 the	 gut	 wall	 during	 transportation	 thus	 exposing	 the	 honey	 bee	 to	 these	265	

pesticides.	However,	to	our	knowledge,	the	gut	wall	penetration	rate	for	neonicotinoids	is	currently	266	

unkown.	Taking	these	varied	water	needs	into	account,	a	comprehensive	estimate	of	water	collected	267	

is	much	greater	 than	 the	estimated	drinking	water	 intake	rate	of	0.047	ml	used	 in	evaluating	 the	268	

risk	 associated	 with	 a	 contaminated	 water	 supply.	 Risk	 assessment	 based	 solely	 on	 the	 daily	269	

drinking	water	intake	rate	vastly	underestimates	pesticide	exposure.	Furthermore,	the	real	dietary	270	

risk	 to	 bees	 is	 not	 only	 limited	 to	 water	 resources	 but	 also	 has	 to	 consider	 collection	 and	271	

consumption	of	contaminated	pollen	and	nectar	as	frequent,	daily	routes	of	exposure	to	all	pesticide	272	

residues,	whether	they	are	systemic	or	not.	273	

Occurrence of water puddles and relative importance to honey bees 274	

Water	collection	depends	entirely	upon	 the	colony’s	demand,	 since	water	 is	not	 stored	 inside	 the	275	

hive	 [78].	 As	 such,	water	 carriers	will	 collect	water	 in	 the	 immediate	 environment	 of	 the	 colony.	276	

Since	water	puddles	are	extremely	abundant	at	the	surface	of	fields	after	precipitation	and	lie	well	277	

within	a	honey	bee	 flight	 range,	 they	are	very	 likely	 to	exploit	 this	water	supply.	Paradoxically,	 it	278	

seems	that	honey	bee	foragers	become	increasingly	motivated	to	collect	water	after	being	confined	279	

inside	 the	 hive	 by	 cool,	 rainy	 weather	 [75,77],	 which	 is	 precisely	 when	water	 puddles	 are	most	280	

abundant.	Moreover,	honey	bees	are	not	naturally	inclined	to	collect	clean	water,	but	rather	prefer	281	

more	 natural,	 stagnant	 bodies	 of	 water	 containing	 organic	 matter	 and	 minerals	 [81].	 Water	282	

temperature	is	also	an	important	factor,	as	honey	bees	prefer	to	collect	water	from	a	warmer	source,	283	

so	 as	 not	 to	 impede	 their	 flight	 ability	 [82].	 Puddles	 of	 water	 are	 naturally	 heated	 by	 the	 sun,	284	
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possess	a	distinct	organic	and	saline	“smell”	on	the	surface	of	agricultural	fields	and	are	abundant	in	285	

the	 colony’s	 surroundings,	 all	 of	 which	 make	 them	 remarkably	 attractive	 to	 honey	 bees.	 One	286	

downside	of	 being	heated	by	 the	 sun	 is	 the	 resulting	 evaporation.	Although	 some	pesticides	may	287	

evaporate	 along	 with	 the	 water	 or	 degrade	 under	 warmer	 conditions,	 residue	 concentrations	 of	288	

systemic	compounds	such	as	neonicotinoids	and	herbicides	would	build	up	as	the	water	evaporates	289	

and	thus	increase	the	risk	of	puddle	water	in	comparison	with	other	surface	water.	290	

Conclusions 291	

To	our	knowledge,	this	is	the	first	scientific	record	of	neonicotinoid	residues	in	in-field	puddles	of	292	

water	 in	 relation	 with	 neonicotinoid	 seed	 dressing	 in	 corn	 cropping	 system.	 Although	293	

concentrations	of	 these	systemic	 insecticides	 in	water	 samples	were	not	 found	 to	be	above	 lethal	294	

doses,	 repeated	 exposure	 through	 consumption	 of	 puddle	 water	 alone	 can	 result	 in	 various	295	

sublethal	 effects	 at	 the	 individual-	 and	 colony-level.	 Moreover,	 due	 to	 the	 abundance	 of	 water	296	

puddles	in	agriculture-intensive	areas	and	their	particularly	attractive	features	for	honey	bees,	they	297	

are	highly	likely	to	be	one	of	the	main,	and	at	times	exclusive,	supply	of	water	and	thus	an	important	298	

source	 of	 pesticide	 exposure	 Finally,	 we	 believe	 that	 the	 risk	 of	 exposure	 to	 neonicotinoid-299	

contaminated	water	 reported	 here	 is	 an	 underestimation.	 Additional,	 comprehensive	 research	 is	300	

needed	 to	 therefore	 better	 assess	 risk	 associated	 with	 water	 use	 for	 honey	 bees.	 Our	 findings	301	

provide	further	evidence	of	the	widespread	environmental	contamination	with	neonicotinoids	and	302	

highlight	another	potential	route	of	exposure	for	honey	bees	and	other	pollinators.		303	
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Tables 
Table 1. Pesticide concentrations found in puddle water samples taken from a corn field in 2012 and 2013, when 

planting was in progress.	
Pesticide Class* Detection Samples (N) % Concentrations (μg/L) LOQ† 

Min Max Mean‡ SEM‡ 
Atrazine HERB, S 25 25 100 0.1 7189.0 312.8 1434.6 0.1 

Thiabendazole FUNG, S 25 25 100 0.1 5.7 0.6 1.3 0.1 

Clothianidin NEO, S 23 25 92 0.1 55.7 4.6 12.1 0.1 

Desethylatrazin HERB 21 25 84 0.1 705.0 39.5 152.9 0.1 

Thiamethoxam NEO, S 18 25 72 0.1 63.4 7.7 16.7 0.1 

Metolachlor HERB, PS 11 25 44 0.2 10660.0 1401.9 3353.9 0.1 

Metalaxyl FUNG, S 10 25 40 0.1 0.7 0.4 0.2 0.1 

Propazine HERB 7 25 28 0.4 170.7 25.1 64.2 0.1 

Spiroxamine FUNG 5 25 20 0.4 49.5 13.9 20.1 0.1 

Mesotrione HERB 4 25 16 9.7 10681.0 3437.6 5036.5 0.1 

Imazethapyr HERB 3 25 12 0.1 1.6 0.6 0.8 0.1 

Boscalid FUNG, S 2 25 8 0.2 0.8 0.5 0.4 0.1 

Dimetachlore HERB 2 25 8 3.5 7.1 5.3 2.5 0.1 

Dimethenamid HERB 2 25 8 0.1 0.1 0.1 0.0 0.1 

Simazine HERB, S 2 25 8 1.3 40.7 21.0 27.9 0.1 

Benoxacor HEBR 1 25 4 6.1 6.1 6.1 NA 0.1 

Bentazone HERB 1 25 4 1.5 1.5 1.5 NA 0.1 

Chlorimuron-ethyle HERB 1 25 4 0.4 0.4 0.4 NA 0.1 

Metobromuron HERB 1 25 4 1.5 1.5 1.5 NA 0.1 

Nicosulfuron HERB, S 1 25 4 8.4 8.4 8.4 NA 0.1 

Picoxystrobin FUNG 1 25 4 2.5 2.5 2.5 NA 0.1 

Rimsulfuron HERB 1 25 4 6.0 6.0 6.0 NA 0.1 

	
*	Class: FUNG = fungicide, HERB = herbicide, NEO = neonicotinoid, PS = partially systemic, S = systemic.	
†	LOQ = limit of quantification (μg/L).	
‡	Mean and SEM for detections > LOQ.	



Table 2. Pesticide concentrations found in puddle water samples taken from a corn field one month after planting was 

completed (in 2013).

Pesticide Class* Detection Samples (N) Proportion of 
positives (%) 

Concentrations (μg/L) 
LOQ† Min Max Mean‡ SEM‡ 

Clothianidin NEO, S 34 34 100.0 0.0170 2.3000 0.523 0.567 0.001 

Thiamethoxam NEO, S 34 34 100.0 0.004 2.8 0.585 0.632 0.0001 

Azoxystrobin FUNG, S 21 34 61.8 0.001 2.1 0.191 0.587 0.001 

Imidacloprid NEO, S 3 34 8.8 0.001 0.007 0.004 0.003 0.001 

Imidacloprid urea NEO, S 3 34 8.8 0.005 0.005 0.005 0 0.0009 

	

	
*	Class: FUNG = fungicide, HERB = herbicide, NEO = neonicotinoid, PS = partially systemic, S = systemic.	
†	LOQ = limit of quantification (μg/L).	
‡	Mean and SEM for detections > LOQ.	



	 27	

 

Table 3. Risk assessment of puddle water during corn planting and one month after completion (2012-2013).	

Neonicotinoid AOT LD50 
(ng/bee)* Planting Samples 

(N) 

Concentrations in water 
(μg/L) 

Body burden in bees 
(ng/bee)† RQ‡ 

Mean§ Max Mean§ Max Mean§ Max 

Clothianidin 3.35 
During 25 4.6 55.7 0. 21 2.62 0.06 0.78 

After 34 0.5 2.3 0. 02 0. 11 0.01 0.03 

Thiamethoxam 4.4 
During 25 7.7 63.4 0. 36 2.98 0.08 0.68 

After 34 0.6 2.8 0. 03 0. 13 0.01 0.03 

	

	
*	Acute oral toxicity (AOT) values at 24 hours [83]. 
† Conversions are based on the drinking water intake rate of 0.047 ml (EFED & PMRA 2012). 
‡ RQ = Risk Quotient. 
§ Mean for detections > LOQ.	


