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Résumé

Le fonctionnement optimal d'un système de réservoirs est un processus décisionnel complexe

impliquant, entre autres, l'identi�cation d'un compromis temporel concernant l'utilisation de

l'eau : la dernière unité d'eau doit-elle être conservée ou plutôt utilisée pour un usage im-

médiat ? La variabilité des apports hydrologiques complique encore davantage ce processus

décisionnel puisque la recherche de ce compromis doit être e�ectuée sans une connaissance

parfaite des conditions futures. De manière générale, l'équilibre optimal entre les utilisations

immédiates et futures de l'eau nécessite l'intégration de règles de gestion à court et à long

terme. Si les règles à court terme conduisent à des décisions à courte vue, les stratégies opéra-

tionnelles à long terme ne sont pas appropriées pour gérer des événements à court terme tels

que les inondations. Nous proposons un cadre de modélisation basé sur l'approche de décompo-

sition temporelle (DT) : Les stratégies à moyen/long terme sont tout d'abord déterminées puis

utilisées comme limites pour l'optimisation des stratégies à court terme. Le modèle d'optimi-

sation à moyen terme capture la persistance temporelle trouvée dans le processus des apports

hydrologiques hebdomadaires, alors que les prévisions hydrologiques d 'ensemble (PHE) sont

utilisées pour piloter le modèle à court terme sur un pas de temps journalier. Plus spéci�-

quement, la programmation dynamique stochastique duale (SDDP) génère les fonctions des

béné�ces de valeur hebdomadaires qui sont ensuite imposées à un modèle de programmation

linéaire implémenté sur chaque membre des PHE de 14 jours. Ce cadre de modélisation est

mis en ÷uvre selon un mode de gestion en horizon roulant sur une cascade de centrales hy-

droélectriques dans le bassin de la rivière Gatineau dans la province du Québec au Canada.

À l'aide de ce cadre de modélisation, nous analysons la relation entre la valeur économique et

les caractéristiques statistiques des PHE. Les résultats montrent que l'énergie générée par le

système hydroélectrique augmente avec la précision et la résolution de la prévision, mais que

la relation n'est pas univoque. En e�et, d'autres facteurs semblent contribuer à l'utilité de la

prévision.
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Abstract

The optimal operation of a system of reservoirs is a complex decision-making problem in-

volving, among others, the identi�cation of a temporal trade-o�s regarding the use of water.

Should the last unit of water be kept in storage or rather be released for use downstream?

The variability of natural in�ows further complicates this decision-making problem: at any

given point in space and time, this trade-o� must be made without a perfect knowledge of

future reservoir in�ows. Generally speaking, the optimal balance between immediate and

future uses of water requires the integration of short- and long-term policies. If short-term

policies lead to shortsighted decisions, long-term operational strategies are not appropriate

to handle short-term events such as �oods. We propose a modeling framework based on the

time decomposition (TD) approach: mid/long-term policies are determined �rst and then

used as boundary conditions for the optimization of short-term policies. The mid-term op-

timization model captures the temporal persistence found in the weekly stream�ow process

whereas Ensemble Stream�ow Forecasts (ESF) are used to drive the short-term model on a

daily time step. More speci�cally, a Stochastic Dual Dynamic Programming (SDDP) gener-

ates the weekly bene�t-to-go functions that are then imposed to a linear programming model

implemented on each 14-days member of the ESF. This modelling framework is implemented

in a rolling-horizon mode on a cascade of hydropower stations in the Gatineau River basin,

Quebec, Canada. Using this modelling framework, we analyze the relationship between the

economic value of di�erent sets of short-term hydrologic forecasts. The results show that the

energy generated by the hydropower system increases with the forecast's accuracy and resolu-

tion but that the relationship is not univocal; other factors seem to contribute to the forecast's

utility.
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Introduction

The reservoir operation problem is a complex multi-stage decision making problem. A se-

quence of release decisions must be determined so that bene�ts/costs are maximized/minimi-

zed taking into account various physical, operational, and legal constraints such as municipal/

industrial water supplies, minimum stream�ow requirements for environmental and ecological

concerns, legal agreements, contracts, etc.

Depending on whether the management problem has short- or long-term consequences, typical

time-steps (stages) can be hourly, daily, weekly or monthly. At the beginning of each stage,

reservoir operators face a trade-o� between the immediate and future consequences of a release

decision ; should the water be released or kept in the storage for future uses ? In other words,

the operators face a temporal trade-o�. They may also have to decide about allocating water

to con�icting users which gives rise to spatial trade-o�. Another complicating factor is the

hydrologic uncertainty and the di�culty to accurately forecast future in�ows'.

Solving the reservoir operation problem therefore requires the assistance of optimization tech-

niques. Over the past decades, many optimization models have been proposed in the literature

but no single solution has emerged. Each technique has its own strengths and weaknesses and

the choice will ultimately depend on the characteristics of the system, the availability of data,

the objective function and constraints as well as the operators' preference. State-of-the-art re-

views about the optimization techniques for reservoir operation problem can be found in Yeh

and Becker (1982), Labadie (2004), Rani and Moreira (2010) and more recently in Ahmad and

El-sha�e (2014).

Dynamic Programming (DP) (Bellman (1957)) is one of the most popular techniques to

solve the reservoir operation problem. DP solves the optimization problem by decomposing

a multistage problem into a series of single-stage problems that are solved recursively. DP

performs an optimization by discretizing the continuous state variables and replacing the

continuous state-space by a grid. These optimal solutions are generalized for other points of

the state variables by a continuous function, using an interpolation approach (e.g. linear, cubic

spline) (Tejada-Guibert et al. (1993)).

Figure 0.1 illustrates the basic principle behind the one-stage optimization problem : at each
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stage, the sum of the immediate and future bene�ts from system operation must be maximized.

Because the immediate and future uses of water are orthogonal, when the future bene�ts

increase, immediate bene�ts must decrease and vice-versa. Of interest is the fact that the

derivatives of the immediate and bene�t-to-go functions give the immediate and future water

values, respectively, which must be identical at the optimal solution (Tilmant et al. (2008)).

The marginal value of water is the willingness to pay for an additional unit of water in a

particular reservoir and at a given time of the year. This approach is limited to small-scale

problems because computational e�ort increases exponentially with the number of reservoirs

in the system

DP can easily be extended to solve stochastic multi-stage decision-making problems. For the

reservoir operation problem, the basic idea is to include an additional, hydrologic, state variable

to capture the spatial and temporal persistences found in the stream�ow processes. Stochastic

DP (SDP), often referred to a Markov decision process, solves the problem by discretizing

stochastic variables, as well as the system status, to obtain an optimal policy for each discrete

value of the reservoir system (Figure 0.2). The optimal solutions are then interpolated to the

rest of the domain. Since SDP solves the problem on all discrete combinations of the state

variables, its application is limited by the so-called curse of dimensionality, limited to small

scale systems involving no more than four state variables (storage and hydrologic).

Figure 0.1 � Immediate and future bene�ts functions (Tilmant et al. (2008))

To address the limitations posed by the curse of dimensionality, Pereira and Pinto (1991) de-

veloped Stochastic Dual Dynamic Programming (SDDP). SDDP removes the computational

burden of SDP by constructing a locally-accurate approximation of the bene�t-to-go function

using piecewise linear segments, which are constructed from the primal and dual solutions of

the one-stage optimization problem. SDDP has been largely used in hydropower dominated
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Figure 0.2 � SDP principle when maximizing the sum of immediate and future bene�ts functions, discretizing, and
interpolating of the state variables and system status (Pina (2017))

systems in Norway (Gjelsvik et al. (2010)) , South and Central America (Pereira (1989) ; Sha-

piro et al. (2013)), New Zealand (Kristiansen (2004)), Euphrates-Tigris River basin (Tilmant

et al. (2008)), the Nile River basin (Goor et al. (2012)), the Zambezi River basin (Tilmant and

Kinzelbach (2012)), and Spain (Pereira-Cardenal et al. (2016) ; Macian-Sorribes et al. (2017)).

Moreover, to capture the hydrologic uncertainty while avoiding the discretization of the

hydrologic state variable, SDDP uses a multi-site periodic auto-regressive MPAR-(p) model.

Recently, various authors have proposed improvements to the built-in hydrological model

for SDDP (see for example Poorsepahy-Samian et al. (2016), Raso et al. (2017), Pina et al.

(2017a)).

To handle the stochastic hydrology of the hydropower system, stochastic linear programming

(SLP) and Chance constrained LP (CCLP) have been proposed. SLP assumes the stream�ow

follow a single Markov chain. Instead of providing the steady state releases as a function of

storages, SLP produces steady state probabilities of releases and storages (Loucks et al. 1981).

An application of CCLP can be found in the study by Sreenivasan and Vedula (1996) to

maximize hydroelectricity production of a multipurpose reservoir. Lee et al. (2006) and Seif

and Hipel (2001) applied a two stage SLP approach to handle stochastic in�ows.

Over the past few years, the hydrometeorological community has been progressively shifting

from deterministic simulations to probabilistic ones based on ensembles. Ensemble forecasts

present an alternative to traditional deterministic forecasts by providing a probabilistic as-

sessment of future discharges. An ensemble is a collection of deterministic predictions of the

same event and attempts to produce a representative sample of the future (Figure 0.3).

Ensemble Stream�ow Forecasts (ESFs) can capture the following sources of uncertainty :

weather forecasts, hydrological model structure and initial hydrologic conditions (Bourdin

et al. (2012)). ESFs are usually produced by forcing hydrological models with meteorological

forecasts, which in turn include multiple possible future trajectories of atmospheric variables
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Figure 0.3 � Ensemble Stream�ow Forecast (ESF) trajectories

(Cloke and Pappenberger (2009)). The initial condition uncertainty of ESFs stems from the

propagation of small errors in the initial conditions of the atmospheric models (Buizza, 2003).

Usually, a set of typically ten to �fty initial conditions is obtained and is used to initiate

simulations. Finally, the structural uncertainty of the ESFs can be captured by pooling several

hydrologic models with fundamentally di�erent structures.

Many studies worldwide have illustrated the use of ESFs for reservoir operation. In the

study of Zhao et al. (2011), synthetic experiments of ESF were applied to real-time reservoir

operation and were compared with deterministic forecasts. Results showed that the bene�t

from using ensembles was nearly as high as the one obtained with a perfect forecast. Boucher

et al. (2012) determined the economic bene�ts associated with ESFs for a �ood event on the

Gatineau River, Canada. Ficchì et al. (2015) assessed the improvement of a four-reservoir

system in the Seine River basin, France, using an ensemble of weather forecasts and a real-

time control approach. Fan et al. (2016) examined the added value of applying ESFs comapred

to deterministic forecasts for short-term reservoir operation of a hydropower system in Brazil.

For many reservoir operation problems, the forecast horizon (FH) is usually shorter than the

reservoir operation horizon (OH). FH represents the length of time in the future that in�ow

predictions are generated. This generally may vary from one hour, day, week, or month ;

however, OH represents the length of time that the reservoir operation is targeted which can

vary from several months to several years. For example, the operation of a reservoir for �ood

control purposes may extend over several months while a stream�ow forecast is only available

a few weeks in advance. To bridge the gap between OH and FH, the Rolling Horizon (RH)

technique can be implemented. It consists in dynamically simulating the system, adjusting

release decisions on a daily time step based on the storage level at the beginning of the day
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and updated hydrologic forecasts. (It consists in dynamically simulating the system, adjusting

release decisions on decision horizon (DH) based on the storage level at the beginning of the

DH and updated hydrologic forecasts. The decision horizon (DH) represents how long the

generated decision is implemented. As in�ow forecasts update day by day, DH is usually set as

one day. This suggests that only the current period decision is regarded as �nal and decisions

in the future periods will be updated with a new forecast.)

You and Cai (2008) applied rolling horizon concept to determine the optimal forecast horizon

(FH) based on a given decision horizon (DH) for dynamic reservoir operation problems. They

identi�ed the impact of various factors such as water stress level (the de�cit between water

availability and demand), reservoir size, in�ow uncertainty, evaporation rate, and discount

rate. Their results show that in�ow characteristics and reservoir capacity have major impacts

on FH when water stress is modest ; larger reservoir capacity and the deterministic component

of in�ow such as seasonality require a longer FH. Economic factors have strong impacts when

water stress levels are high. Zhao et al. (2012) compared the impact of forecast horizon (FH)

and forecast uncertainty (FU) to �nd the e�ective forecast horizon (EFH) for real-time reser-

voir operation in a rolling-horizon scheme. Wang et al. (2014) employed the rolling horizon

approach and distributed hydrological in�ow predictions to determine real-time reservoir re-

leases, for a three-reservoir system in the Red River Basin in Southeast Asia. Arena et al.

(2017) developed an optimization- simulation system based on RH for operating a real-word

two-reservoir system in Italy. Séguin et al. (2017) applied a rolling horizon simulation scheme

to develop a daily hydropower operations planning using a stochastic short-term optimization

model based on scenario trees to represent the uncertainty of in�ows.

In general, hydrologic forecasts are available for di�erent horizons (short, mid and log-term).

Although short-term forecasts are in general reliable, their limited horizon (ranging from one

hour to a few days) makes them useless for water resource systems characterized by large

carryover storage capacity. Long-term stream�ow forecast, on the other hand, are potentially

more interesting for those systems but their precision is often too low (Zhao and Zhao (2014)).

In contrast, the operation of a reservoir system with limited storage capacity will bene�t from

regularly updated short-term forecasts (while long-term forecasts are in this case useless).

Yao and Georgakakos (2001)) proposed an approach integrating long- and short-term stream-

�ow forecasts to operate the Folsom reservoir in California. The approach relies on time de-

composition (TD) : the long-term problem is solved �rst and then the solutions are passed to

the short-term problem where they are used as boundary conditions. Typically, target storage

levels at the end of the week (month) or weekly (monthly) water values are imposed on the

short-term model. Many researchers have applied TD to solve the reservoir operation pro-

blem. For example, Yeh and Becker (1982) apply the traditional nesting TD over three levels :

monthly, daily, and hourly. Zahraie and Karamouz (2004) develop a TD approach in which

SDP formulations handle the long-term and midterm problems, while a DP model take care of
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the short-term optimization of a two-reservoirs system. Georgakakos (2006) use TD to develop

a multi-layer operation model, covering real-time, mid-term, and long-term layers for the Nile

basin. Alemu et al. (2011) propose a decision support system can exploit ensemble stream-

�ow prediction (ESP). The long-term model is based on simulation, which provides guides

for short-term optimization based upon historic reservoir operating policies. Zhao and Zhao

(2014) applied a combination of short- and long-term forecasts to derive short- and long-term

operational policies for a single reservoir in China. They used a traditional nesting TD to pass

the optimized long-term storage to short-term model as a boundary condition.

Even though TD reduces the computational e�ort required to solve the reservoir operation

problem, researchers and practitioners still face a trade-o� between system and hydrologic

complexity. This trade-o� essentially exists because traditional optimization techniques can-

not handle a large number of reservoirs (system complexity) or process a large quantity of

hydrologic information (hydrologic complexity).

This study addresses the above challenge by combining, within a TD framework, relevant

optimization techniques so that a mix of short and long-term forecasts can be processed over

potentially large hydropower systems without undue computation time. The proposed frame-

work is applied to Gatineau River basin, a hydropower system, located in Quebec (Canada).

The system includes three reservoirs and four hydropower plants with an installed capacity of

more than 500 MW. Because the Gatineau River basin consists of inhabited areas, the main

operating constraints are related to the production of hydroelectricity. Unfortunately, the ope-

rator did not share the information regarding the current operation of the system. There are

some considerations about boating and recreational activities, supplying the drinking water of

nearby towns and �ood risks in Gatineau River basin. More details are presented in Chapitre

2.

The optimal decisions based on the proposed approach will bene�t from the reliability of

the short-term forecast and the longer horizon of the mid-term forecasts. The weekly water

values are determined via the mid-term (weekly) optimization model SDDP. They are then

processed by the short-term optimization model to make sure the short-term operation respect

the future demands. At the beginning of each day, the short-term model seeks to maximize

the production of energy along each member over the next 14 days taking into account the

value of water at the end of that period. The next day, the process is repeated using updated

ESF. Since each ESF has 50 members and with a planning period extending over 6 years, the

short-term reservoir operation model is formulated as a LP in order to keep the computation

time within reasonable limits. The modelling framework is then used to explore the economic

value of the hydrological forecasts generated by 20 di�erent hydrologic models.

The thesis is organized as follows : section 2 starts with a presentation of temporal de-

composition (TD) which is then followed by a description of the mid-term (MT) model and
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integration of MT and short-term (ST) model, then the section ends with the case study

following by application of the modeling framework to the Gatineau River basin. Analysis of

simulation results are discussed in section 3. Finally, conclusion is given in section 4.
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Chapitre 1

Materials and Methods

1.1 Time Decomposition (TD)

Time Decomposition (TD) is a conventional approach to connect the operation with di�erent

time scales (Figure 1.1, Karamouz et al. (2003), Lamontagne and Stedinger (2014)). In this

study we make the distinction between short and mid-term operation. Mid-term operation de-

termines of weekly releases over a planning horizon of several years and provides the seasonal

trajectory that the system should follow in order to sustain the production of energy in a "dis-

tant" future (beyond the horizon). Short-term operation is concerned with the determination

of daily releases over a period of 14 days corresponding to the horizon of the regularly-updated

ESF.

As mentioned earlier, the mid-term reservoir operation problem is solved by SDDP, whose

weekly bene�t-to-go functions are then passed to the short-term optimization problem, which

is formulated as a LP implemented on each member on a daily basis. Both models are thus

connected through the SDDP-derived bene�t-to-go functions, meaning that no restrictions

are imposed on the decision variables (release and storage) of the lower-level, short-term, LP

model. The precision of the terminal value function of the upper-level model plays an important

role for the accuracy of the results of the lower-level model. For instance, if a weekly model

overestimates the terminal value of storage at the end of each time step, the lower-level model

will attempt to re�ll the reservoir in each time step and vice versa.

1.2 Problem formulation

The objective of a reservoir operation problem is to determine a sequence of optimal decisions

that maximize the bene�ts of the system operation over a given planning horizon considering

physical, operational, and institutional constraints (Figure 1.2).
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Figure 1.1 � Time decomposition for the reservoir operation problem

Figure 1.2 � Multi-stage decision making problem scheme (Labadie (2004))
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Mathematically, the multistage decision-making problem can be written as :

Z = max
xt

{
E
qt

[
T∑
t=1

αtbt(st,xt, qt) + αT+1ν(sT+1, qT )

]}
(1.1)

subject to :

st+1 = st + qt −Cj,krt − et (1.2)

smin ≤ st+1 ≤ smax (1.3)

xmin ≤ xt ≤ xmax (1.4)

Where t is time, T is the end of the planning horizon, bt is a one-stage immediate bene�t at

stage t, xt is the decision variables (release) vector, st is a storage vector at the begin of t,

qt are stochastic in�ows, et are evaporation losses, α is the discount factor, ν is the terminal

value function, and E is the expectation operator. Cj,k is the connectivity matrix between

reservoirs which can be 1 (-1) when the reservoir j receives (releases) water from/to reservoir

k.

When the objective is maximizing the net bene�t from hydropower generation, bt(.) typically

include the economic return from hydropower generation but also penalties for not meeting

various operational constraints like minimum �ow requirements, spillages losses, etc.

bt = HP t − ξ
′
tzt (1.5)

wherezt is a vector of de�cits or surpluses, and ξ
′
t is a vector of penalty coe�cients ($/unit of

penalty or surplus). The hydropower term HP t is given by :

HP t = τ t
∑

j
(πt(j)− θ(j)Pt(j)) (1.6)

where τ t is the number of hours in period t, P t is a vector of energy values($/MWh), and

θ is a vector of O&M cost of hydropower plants ($/MWh). P t is the hydropower in a given

time step t, given by

P t = γηh(st, st+1,xt)xt(st, st+1) (1.7)

Where γ is the speci�c weight of water, η is the turbine e�ciency, h is the net head (function

of average storage and release decisions), and xt is the turbined �ow.
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Figure 1.3 � Piecewise linear approximation of bene�t-to-go function F t+1 (Pina (2017))

1.3 Mid-term model (MT)

Stochastic Dual Dynamic Programming (SDDP) is an extension of Stochastic Dynamic Pro-

gramming (SDP) that addresses the problem of dimensionality found in SDP (Pereira (1989)).

In SDDP, the one stage optimization problem is a LP that maximizes the sum of current bt
and future bene�ts F t+1. The objective function becomes :

Ft(st, qt) = max
xt

{bt(st,xt, qt) +αt+1F t+1} (1.8)

We can see that the bene�t-to-go F t+1 is a scalar.

The scalar F t+1 is bounded from above by a set of hyperplanes, which are additional linear

constraints approximating the bene�t-to-go function :
Ft+1 − φ1

t+1st+1 ≤ γ1
t+1qt + β1

t+1

...

Ft+1 − φLt+1st+1 ≤ γLt+1qt + βLt+1

(1.9)

where L is the number of hyperplanes, φlt+1, γ
l
t+1, and βlt+1 are the parameters of the l th

expected cut obtained from the primal and dual variables calculated at stage t+ 1 (Tilmant

and Kelman (2007)). In Figure 1.3, hyperplane 1 and hyperplane 2 show the approximated

hyperplanes. The linear segments Ft+1 are obtained from the dual solutions of the optimization

problem at each stage and can be interpreted as Benders cuts in a stochastic, multistage

decomposition algorithm. SDDP uses an iterative optimization/simulation strategy to increase

the accuracy of the solution by adding new cuts.
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The hydrologic state variable qt are the natural in�ows observed during the last p periods

qt(j) = [qt−1(j), qt−2(j), qt−3(j), ....., qt−p(j)] and the current in�ow is described by a multi-

site periodic autoregressive model MPAR(p) :

qt(j)− µqt(j)
σqt(j)

=

p∑
i=1

φi,t(j)(
qt−i(j)− µqt−i(j)

σt−i(j)
) + ξt(j) (1.10)

where µqt and σqt are the vectors of periodic mean and standard deviation of qt, respectively.

φi,t is the vector of autoregressive parameter of the lag-p periodic model, and ξt is a time

dependent stochastic noise with mean zero and periodic variance σ2ξ,t. This model is capable

of representing seasonality and serial and spatial in�ow dependence within a river basin and

among di�erent basins and produce synthetic stream�ows scenarios. More details on MPAR(P)

can be found in Pina et al. (2017b).

As indicated earlier, the hydropower production function includes the product of the turbined

out�ow xt (rt) (m3/s) with the net head h(m) on the turbine. This brings non-linearity and

non-convexity to the �rst part of Eq. 1.8. Various approaches have been proposed to handle the

non-convexity in a LP framework : adding a production coe�cient (Archibald et al. (1999)),

convex hull approximations (Goor et al. (2011)), Mc-Cormick envelopes (Cerisola et al. (2012)),

or a concave approximation (Zhao et al. (2014)).

To deal with the head e�ects on the hydropower production function Pt , a convex hull

approximation is stored in the constraints set (1.11). The linear parameters ψ, ω and δ are

determined using the procedure described in Goor et al. (2011).


P̂t −ψ1st+1/2− ω1rt ≤ δ1 +ψ1st/2
...

P̂t −ψHst+1/2− ωHrt ≤ δH +ψHst/2

(1.11)

where H is the number of the planes approximating the real hydropower functions ψ, ω, and

δ are the parameters obtained from the respective convex hulls.

SDDP is an iterative algorithm that employs two phases to gradually increase the accuracy

of the solution by adding new cuts : a backward optimization and a forward simulation. In

the backward phase, K in�ow scenarios are generated by the MPAR(p) model for each node

of the system. These scenarios are applied to calculate the hyperplanes' parameters and to

provide an upper bound to the true expected bene�t-to-go function (FBF). In the forward

phase, the MPAR model generates M synthetic reservoir in�ows sequences to simulate the

system behaviour over the planning period. This forward simulation phase provides a lower

bound that allow us to determine whether the upper bound is a good a approximation or
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not. If the upper bound does not fall inside the con�dence interval of the lower bound, the

approximation is statistically not acceptable and a new backward recursion is implemented

with a new set of hyperplanes build on the storage volumes that were visited during the last

simulation phase.

At each run of SDDP, the optimal operating policies are simulated over M historical hydrologic

sequences of T weeks. T should be chosen so as to be su�ciently long to avoid the e�ects of the

boundary conditions (initial storages and zero terminal value functions) on reservoir operating

policies on intermediate years (Goor et al. (2011)). Here, the results are analyzed for the year

in the middle which is not a�ected by the boundary conditions. The main results are weekly

storage levels and weekly water values that the latter will guide the daily operations in the

ST model.

1.4 Short-term model (ST) and integration with MT

As mentioned earlier, the ST model is based on LP. This choice is motivated by the fact

that the ST model must be run a large number of times (number of days times number

of members). Hence, computational e�ciency is an important criterion. Moreover, since our

analysis mostly consists in comparing the production of energy corresponding to di�erent ESF,

the approximations associated with the linearization of the objective function should not a�ect

the conclusions.

The objective function ZmST of the ST model implemented on the member m can be written

as :

ZmST = max
xm
d

{
D∑
d=1

bd(sd,x
m
d , q

m
d ) +αD+1FD+1

}
(1.12)

where d is the index of day, D is the end of the forecast horizon (here D = 14), qmd is vector

forecasted �ows for day d associated to member m. The second term of Equation 1.12 is the

SDDP-derived bene�t-to-go function approximated by L hyperplanes :


FD+1 − φ̂

1

D+1sD+1 ≤
∑D

d=D−p(γ̂
1
dqd) + β̂

1

D+1

...

FD+1 − φ̂
L

D+1sD+1 ≤
∑D

d=D−p(γ̂
L
d qd) + β̂

L

D+1

(1.13)

The daily bene�t-to-go functions FD+1 are derived from the weekly ones Ft+1. More spe-

ci�cally, for any day D + 1 in week t, FD+1 is interpolated from the neighbouring weekly

bene�t-to-go function Ft and Ft+1 (Figure 1.4). In other words, the parameters (φ̂, γ̂, β̂) of

the hyperplanes associated with FD+1 are linearly interpolated from the parameters (φ, γ,
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Figure 1.4 � Implementing mid-term water values into short-term model

β) corresponding to the weekly functions Ft+1. This interpolation procedure ensures that the

bene�t-to-go function is available at the end of each day.

In the ST model, the non-convexity of the hydropower function is addressed using the same

approach as in the MT model, i.e with the same convex-hulls.
P̂d −ψ1sd+1/2− ω1rd ≤ δ1 +ψ1sd/2
...

P̂d −ψHsd+1/2− ωHrd ≤ δH +ψHsd/2

(1.14)

Note that in the current version of the ST model, the travel time between two consecutive

power plants is ignored.

1.5 The rolling-horizon approach

Basically, the rolling horizon approach is based on three steps that are repeated every day over

the planning period : (1) based on the current status of the system (storage levels, past weekly

in�ows, and updated ESF, determine the optimal release decision for day d, (2) implement

that release decision and assess storage level at the end of the day (sd+1), (3) update the

storage sd+1 with the actual in�ow qd.

The release decision made at the beginning of day d must be chosen from a set of M optimal

decisions, one per member, identi�ed by the ST optimization model. Here, the actual decision
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Figure 1.5 � The structure of the combined short- and mid-term operational model based on rolling horizon

rd is the mean of all decisions :

rd =
1

M

∑
m

rmd (1.15)

where rd,m is the decision associated with the mth member.

At the beginning of the next day (d+1), the simulated storage sd+1 is calculated from sd, the

actual release rd and the actual (observed) �ow qd :

sd+1 = sd + qd −Crd − ed (1.16)

This process is repeated each day until the end of the operation horizon (OH) is reached.

The main results are time series of daily hydroelectric productions, storage levels, turbined

out�ows and spillages losses. Figure1.5 displays the structure of the MT-ST model based on

rolling horizon approach.
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Chapitre 2

Case study

The Gatineau River in Quebec is one of the main tributaries of the Ottawa River. The river

drains an area of 23,700 km2. The hydroelectric system consists of a cascade of four power

stations and two large reservoirs (Figure 2.1). The �ow regime is highly regulated by two

upstream reservoirs : Cabonga and Baskatong. Baskatong supplies water to the Mercier power

plant whose out�ows are then used to spin the turbines of three run-of-river power stations :

Paugan, Chelsea and Rapid Farmers. Paugan is a run-of-river power plant (R-O-R) with a

total capacity of 219 MW and a small reservoir of 30 km2. Chelsea and Rapides Farmer

have an installed capacity of 149 MW and 95 MW respectively. Table (2.1) lists the main

characteristics of the system. As we mentioned before, the Gatineau River basin comprises

inhabited areas and the main operating concerns are hydropower production. Apart from

that, the Baskatong reservoir must be kept high from 1 June to 15 September, to allow

boating and recreational activities for nearby residents. Moreover, the river level must be kept

above a speci�c level to ensure adequate drinking water supply for nearby towns. Finally,

the river must also be kept low for �ood risk. The average volume of a spring �ood in the

Baskatong reservoir is higher than the capacity of the Baskatong reservoir. The routine strategy

is to lower the level of the Baskatong reservoir at the end of the winter as much as possible

and then let the level rise during spring. Then, the reservoir level is kept all summer within

2.5 to 1.3 m of its maximum level until mid-September. During the fall, the reservoir is

managed so that a su�cient water reserve is cumulated to anticipate electricity demand during

winter. The operating margin for the operation of the Baskatong reservoir is quite small

considering the above mentioned constraints and the in�ows it receives during certain periods.

Consequently, spillage is sometimes inevitable at the hydropower stations in spring and fall.

The most signi�cant �ood occurred in the spring of 1974. On this occasion, 3000 residents

were required to evacuate the area, over one-third of Maniwaki (downstream of Baskatong)

was �ooded and 2.9 million Canadian dollars had to be provided in disaster relief.
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Figure 2.1 � Gatineau River Basin (Pina et al. (2017b))

Storage Installed Capacity

Node Name Hm3 MW
1 Cabonga 1633 -
2 Baskatong 3175 50
3 Paugan 93 219
4 Chelsea ROR 148
5 Rapides Farmers ROR 95

a ROR : Run of the river power plant

Table 2.1 � hydropower system of Gatineau River basin

2.1 Ensemble stream�ow forecasts for the Gatineau River

basin

The ensemble stream�ow forecasts (ESF) for the Gatineau river basin have been generated

by F. Anctil's group at U. Laval. The starting point are ensemble meteorological forecasts

produced by the European Center for Medium range Weather Forecasts (ECMWF) (Fraley

et al. (2010)). These 50 ensemble forecasts are produced over a 14-day horizon and with a

temporal resolution of 12 hours.

Then, they are used as inputs to 20 lumped hydrologic models. The models are selected by

Seiller et al. (2012) based on their performance and structural diversity, i.e. 4 to 10 free param-
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eters, and 2 to 7 storage units. The structure of all hydrologic models include some conceptual

storages (see Figure 2.2) to describe the main hydrological processes. All models implement

a time-delay function for routing ; they also consider the physical characteristics of the catch-

ments using a parametric logistic function. Snow accumulation and snow melting are computed

externally. They are all designed to take into account soil moisture with various linear and

non- linear formulations. Figure 2.2 summarizes the structure of the 20 models. The models

exhibit low to moderate complexity (four to ten free parameters and two to seven storages).

The input data for the lumped models are precipitation and potential evapotranspiration. A

more detailed illustration of the models can be found in Perrin (2000) and Seiller et al. (2012).

In this case study, each hydrological model is applied on the four sub-basins generating the

incremental �ows in the system (Figure 2.1). Together, these 20 hydrologic models capture

the structural uncertainty associated with the modeling of the relevant hydrologic processes.

Figure 2.2 � structure of 20 hydrologic models (from Seiller et al. (2012))

To capture the uncertainty attached to the initial (hydrologic) conditions, Ensemble Kalman

Filter (EnKF) is employed to create an ensemble of 50 possible initial conditions based on

the true probability density function of the model states conditioned by the observations.

Hence, for each hydrologic model, an ensemble of 2500 members is produced. Because the

computational burden associated with the ST model is directly proportional to number of

members, the size is reduced to 50 by randomly selecting one out of the 50 EnKF initial

conditions. In the end, each hydrologic model produces ESF with 50 members over a 14-day
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Figure 2.3 � ESFs of Baskatong reservoir from 20 individual hydrologic models for 50 ensemble members (leadtime14
days)

horizon. For the sake of this study, the forecasts are aggregated on a daily time step. Figure

2.3 shows the daily ESFs for the Baskatong reservoir.

2.2 SDDP for the Gatineau River basin

The SDDP model is coded in MATLAB and the optimization scheme uses the linear Gurobi

solver. The model is implemented with 30 backward openings (K=30) and 35 hydrologic

sequences derived from the built-in MPAR(1) (M=35). The planning period of the mid-term

model is 5 years (T=260 weeks), but the results are analyzed for year three only as the �rst

and last two years are in�uenced by the boundary conditions (years 1 and 2 for the initial

conditions, and years 4 and 5 for the terminal conditions). The SDDP-derived future bene�t

function approximations (Ft+1) from the third year (t = 105,...,157), are then passed on to

the short-term model.

Figure 2.4 displays the marginal water value (panel a) and drawdown re�ll cycle (panel b) of

the Baskatong reservoir. In general, during the �rst weeks of the year (winter season), water

values decrease and the storage draws-down to deplete the reservoir for the following �oods

during the snowmelt season (weeks 12-24). During this period, the water values increase and

the storage is re�lled.
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Figure 2.4 � SDDP derived marginal water value (panel a) and optimal storage of Baskatong reservoir(panel b) (35
years)

2.3 LP for the Gatineau River basin

The LP model for the Gatineau river system is also coded in MATLAB and also uses the Gurobi

solver (see Appendix). The �rst input are the 14-day ESFs (FH = 14) with 50 members, which

are available for 20 hydrologic models over an operation horizon (OH) of 6 years. Another input

are the daily SDDP-derived bene�t-to-go functions, which are available as a set of coe�cients

φ̂, γ̂, and β̂.

To better perceive the impact of the structural uncertainty associated with the hydrological

models on the performance of the system, the problem was solved based on two con�gura-

tions. In the �rst con�guration, the reservoir operation problem is solved individually for each

hydrological model. In other words, the rolling-horizon approach is implemented 20 times, one

per hydrologic model, yielding a total of 2,192,000 LP model runs : 50 ESF members × 2192

days × 20 hydrologic models. The main outputs therefore consist of 20 time series of optimal

release decisions, hydroelectric productions, storage levels, and spills over 2192 days.

In the second con�guration, the rolling horizon approach is implemented once, aggregating

the results of all hydrologic models. Here, the actual decision at day d, is the average over the
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50 × 20 decisions associated with the pairs (member - hydro model). In this con�guration,

we assume that the pairs (member - hydro models) are equally-likely ; that is, the pairs have

the same weight. The outputs here are (single) time series of hydroelectric production, storage

levels, releases, and spills.
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Chapitre 3

Analysis of simulation results

Figure 3.1 shows the average drawdown-re�ll cycle of the Baskatong Reservoir for the �rst

and second con�guration. As observed in this �gure, the drawdown starts in the summer and

continues until days 77-78 when the snowmelt season begins. The reservoir then quickly re�lls

at the beginning of the following summer. For the second con�guration, as expected, we can

see that the optimal storage lies within the zone de�ned by the trajectories identi�ed with the

�rst con�guration (20 hydro models separately).

50 100 150 200 250 300 350

Day

500

1000

1500

2000

2500

3000

S
to

ra
ge

(h
m

3)

20-models grand mean max storage min storage

Figure 3.1 � Optimal short-term storage levels for Baskatong reservoir for 20 hydrologic models (�rst con�guration)
and grand mean (second con�guration)

With the �rst con�guration, the optimization framework yields 20 time series of daily energy

at each power plant, each corresponding to a particular hydrologic model. To measure how

well the hydrologic models perform, a comparison is made between the energy generated

with the individual ESFs and the perfect forecasts (PF) (i.e. when the forecasted �ow is

replaced by the observed �ow). In other words, the benchmark is the energy generated in

a semi-deterministic environment in which the short-term hydrologic uncertainty is ignored.

The normalized di�erence between the energy generated with the ESF and the PF is the
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performance indicator used in this study. Let ∆h(j) be the relative di�erence between the

energy generated at the power plant j with PF and with ESF corresponding to the hydrological

model h :

δh(j) =
∆h(j)−min(∆.(j))

max(∆.(j))−min(∆.(j))
(3.1)

The closer δh(j) is to zero, the closer is the energy generated with model h to the energy

generated with PF. Conversely, the hydrologic model with δh(j) approaching 1 shows the

largest energy di�erence with respect to the perfect forecast and therefore performs poorly in

economic/utility terms.
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Figure 3.2 � Energy performance of 20 hydrologic models over 6 years for Gatineau River basin

Figure 3.2 displays the performance of 20 hydrologic models for the Gatineau River basin

during the operation horizon (OH = 6 years). The x-axis represents 20 hydrological models,

while the y-axis is the performance indicator (δ) of the models. It is important to note that the

generated energy at the power plant located in the outlet of the basin is the aggregated energy

of that power plant and the upstream power plants. Therefore, the energy performance at this

power plant (R-Farmers) is representative of the basin-wide energy performance. The best

performance is achieved with M17, while the worst is observed with M08. Table 3.1 shows that

M17, M06, M12 outperforms the others. Since the optimization formulation and the bene�t-

to-go functions' parameters were the same for all 20 runs, the forecasts' quality appears to be

the only factor responsible for those di�erences.

The probabilistic hydrological forecasts are assessed in terms of accuracy, resolution and re-

liability. An ensemble stream�ow forecast can be considered reliable if it contains all of the

observations within the uncertainty bounds ; however, if the uncertainty bounds are very large,
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Ranking energy
performance

1 M17

2 M06

3 M12

4 M19

Table 3.1 � The best four models in terms of energy generation for Gatineau river basin

the precision of the ensemble becomes low and the ensemble is not useful for decision-making

purposes. For instance, a reliable 80% con�dence interval should contain the observation eight

times out of 10 on average. Resolution evaluates the ability of discriminating between two

events which are di�erent. Accuracy is a measure of the distance between forecast and ob-

servation. Traditional deterministic scores like mean absolute error (MAE) cannot be used

in order to measure the quality of the probabilistic forecasts. The quality of the probabilistic

forecasts are often characterized by the continuous ranked probability score (CRPS ; Matheson

and Winkler (1976)), which assesses the accuracy of the ensemble forecasts. It is de�ned as :

CRPS(Ft, xobs) =

∫ +∞

−∞
(Ft(x)−H(x ≥ xobs)2dx (3.2)

where Ft(x) is the cumulative distribution function at time t, x is the predicted variable, and

xobs is the observed value. The function H is the Heaviside function, which equals 0 for the

predicted values less than the observed value, and 1 for the values greater than the observation.

Figure 3.3 shows the relationship between the quality of the forecasts and performance of the

hydropower system for each power plant. The forecasts are characterized by the CRPS while

the performance is illustrated by the indicator δ i.e. the normalized di�erence between the

energy generated with PF and ESF. Because the CRPS are available for each sub-basin, the

scores must be aggregated. In this case, the aggregation is simply the average of the upstream

CRPS associated with the sub-basins drained by the power plant. Despite this approximation,

it can be clearly observed that the hydrologic models with the low CRPS tend to perform

better. In the upstream reach (Baskatong), models M13 and M05 appear to be the most

interesting ones. Further downstream, at Paugan, the group is extended and now includes

models M12, M17, M09 and M06, which are again found at Chelsea. M09 in Paugan is replaced

by M19 in Chelsea. The least interesting models are either M07 or M08 depending on the site.

Table 3.2 provides a ranking of the most interesting hydrologic models and their structure.

As we can see, all of the models include soil storage (S) and groundwater storage (N) in their

structure. Apart from M12, none of the models incorporate surface storage (Sf). Among the 20

models, M17 and M06 are among the few models that have a root zone storage (Ss) component.

Among the models with better performance, M19 is the only one that employs main routing

storage (R) in the structure. Moreover, M12 and M13 are among the few models that apply

overland �ow storage (RS) with two storages in their structure. Interestingly, M12, which is
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Figure 3.3 � the relationship between the performance of the models and their hydrological scores (three sub-basins)

S N Sf Ss R Rs RSs Free calibrated
parameters

M12 * * * - - * * 10
M13 * * - - - * - 8
M06 * * - * - - - 9
M17 * * - * - - - 7
M19 * * - - * - - 8

* = The element present in the model

S = soil storage ; N= groundwater storage

Sf = surface storage ; Ss = root zone storage

R = quick routing storage ;

Rs = overland �ow routing storage ;

RSs = inter�ow routing storage

Table 3.2 � The structure of the best models during the operation horizon (OH=6 years)

the most complex model with seven storages and ten free calibrated parameters, is the only

model that employs inter�ow routing storage (RSs) with two reservoirs.

Table 3.3 provides the structure of the models which perform poorly. Likewise, it is unclear

which components of M07 and M08 lead them to perform poorly. Apart from the common

structure (incorporating S and N) of these two models compared to the other models, M08
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S N Sf Ss R Rs RSs Free calibrated
parameters

M07 * * - - - * - 7
M08 * * - - * - - 7

* = The element present in the model

S = soil storage ; N= groundwater storage

Sf = surface storage ; Ss = root zone storage

R = quick routing storage ;

Rs = overland �ow routing storage ;

RSs = inter�ow routing storage

Table 3.3 � The structure of the worst models during the operation horizon (OH=6 years)

uses a linear R which may cause poor performance of this model among the others. M07 also

applies three RS and incorporates six free calibrated parameters.

Generally, the models that incorporate more than six free calibrated parameters always per-

form better, while the models that include Sf and R do not perform well. However, M12 and

M19 are exceptions, which include Sf and R in their structures and they are in the group of

the models with good performance.

The Gatineau River basin is characterized by a warm and humid climate during the summer,

and generally wet, cold and snow-covered in the winter. This climate leads to very high �ows

during spring-summer (i.e. snowmelt season ; weeks 11-24). To consider the impact of seaso-

nality, the average of the six years performance indicator (δ) and CRPS during the snowmelt

season (days 77-168) and the rest-of-the-year (days 1-77 and days 169-365) are calculated for

20 hydrologic models. Figures 3.4 and 3.5 display the relationship between the performance

of the hydropower (δ) for each power plant (y-axis) and the quality of the forecasts (CRPS)

(x-axis) during the periods of snowmelt and rest-of-the-year, respectively.

Figure 3.4 illustrates that during the snowmelt season, M05 and M13 appear to possess better

energy performance and CRPS for the upstream power plant (Baskatong). However, by moving

to the Paugan, the group extends to M12 and M16. In the downstream power plant (Chelsea),

M11 joins this group. Figure 3.5 shows that during the rest-of-the-year period, apart from

M05 and M13 that still appear interesting, M06 also performs well in the upstream reach

(Baskatong). By moving downstream (Paugan), M05 leaves and M12 and M17 join this group.

In the downstream power plant (Chelsea) M19 joins the group.

Comparing Figures 3.4 and 3.5 reveals that some of the models perform well in both periods

of the snowmelt season and rest-of-the-year. For instance, M05 and M13 for the upstream

power plant (Baskatong) and M12 and M13 for the downstream power plant (Chelsea) perform

well in both periods. However, some models perform di�erently during the two periods. For

example, during the snowmelt season, M05, M11, and M16 are among the interesting models for
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Figure 3.4 � the relationship between the performance of the models and their hydrological scores (three sub-basins)
- snowmelt season

the downstream power plant ; however, during the rest-of-the-year period, M06, M17, and M19

appeared to possess better performance. It is important to note that the best models during

the operation horizon (OH=6 years) (Figure 3.3) and during the rest-of-the- year period (3.5)

for the downstream power plant are similar. Thus, the analysis structure of the best models

during the rest-of-the-year period is the same as the operation horizon (Table 3.2).

S N Sf Ss R Rs RSs Free calibrated
parameters

M12 * * * - - * * 10
M13 * * - - - * - 8
M05 * - * - * - - 4
M11 * * * * - - - 6
M16 * * * - * - - 8

* = The element present in the model

S = soil storage ; N= groundwater storage

Sf = surface storage ; Ss = root zone storage

R = quick routing storage ;

Rs = overland �ow routing storage ;

RSs = inter�ow routing storage

Table 3.4 � The structure of the best models during the snowmelt season
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Figure 3.5 � the relationship between the performance of the models and their hydrological scores (three sub-basins)
- rest of the year

Based on Figures 2.2 and 3.4, the structure of the best models during the snowmelt season for

the Gatineau River basin is presented in Table 3.4. As observed, all the best models incorporate

N and S, which are the common characteristics of all hydrologic models ; however, M05 is an

exception, because it is the simplest model with only four calibrated parameters, and the only

model that does not include N in the structure.

As observed in Table 3.4, all the best models include Sf in their structure ; however, M13 is

an exception, which does not incorporate Sf. M11 is the only model that includes Ss, with six

free calibrated parameters. M05 and M16 are the models that incorporate R in their structure.

This might suggest that quick routing storage (R) helps the models to perform well during

the snowmelt season.

M12 and M13 are the models which perform well during both the snowmelt and rest-of-the-

year periods. Among all 20 models, they are the few that incorporate RS in their structure. It

was previously mentioned that M12 is the most complex model with 10 calibrated parameters

and the only model that includes RSs in the structure. In the both periods (snowmelt and

rest-of-the-year), M07 and M08 appeared to perform poorly.

As observed in Table 3.4, Sf is the element which appeared in the structure of most of the
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models with good performance during the snowmelt season ; however, the best models during

the rest-of-the-year period (Table 3.2) do not incorporate this element in their structure. It is

suggested perhaps with the high amount of surface �ow, Sf helps the model to perform better

during the snowmelt season.

Similarly, R appeared in the structure of two models during the snowmelt season (Table

3.4) ; however, during the rest-of-the-year period (Table 3.2), this element is observed in the

structure of only one model. It maybe suggest that R is more applicable, during the high �ow

season with more �oods.

It is also observed that M05 performs well without the incorporation of N in the structure. This

suggests that during the high �ow season, the groundwater storage for the basin is negligible.

More information about the physical characteristic of the basin such as the type of the soil,

slope, and land-use will help to better understand the reasons for the high performance of

M05 during the snowmelt season. However, it is not within the scope of this study to explore

the details related to the structure of the models. Furthermore, information regarding the

characteristics of the basin such as types of storage (e.g. surface storage, soil storage, routing

storage) was not available in this study.

A comparison of Figures 3.4 and 3.5 demonstrate that the values of CRPS for all three reaches

during the snowmelt season are higher than the rest of the year. However, this should not be

interpreted as the quality of the forecast being lower during the snowmelt season due to CRPS

being typically greater for higher �ow periods.

Perfect M12 M08 Second
Forecast con�guration

Annual average 2852 2813 2764 2800
Di�erence - % -1.4 %-3.1 %-1.9

Table 3.5 � Annual average energy generation by perfect forecast, second con�guration, the best and the worst
hydrologic models (GWh/year)

In absolute terms, based onFigure 3.3, the best model (M12) produces 1.7% more energy

than the worst model (M08) (see Table 3.5). The annual potential gain of the best model is 3.4

million dollars more than the worst model. The opportunity cost of the best hydrological model

corresponds to 1.4% of the amount of energy that could be generated if perfect forecasts were

available for the next 14 days. In other words, the lack of perfect foresight reduces the energy

output by 1.4% when the best forecasts are utilized. This amount of energy is equivalent to

approximately 2.8 million dollars per year. This 3.1% reduction amounts to approximately 6.1

million dollars per year when the worst forecasts are processed by the optimization framework.

When the second con�guration is implemented (i.e. the actual decision is the average of the

overall models and members), the reduced energy output reaches 1.9% compared to the perfect

forecasts, which is 0.5% lower than the amount of energy obtained with the best hydro model
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(M12). The potential annual gain of the second con�guration is 3.6 million dollars less per

year than the perfect forecast and 905 thousand dollars less than the best hydrologic model.

This result seems to indicate that the design of a multi-modeling framework for hydrologic

forecasting would bene�t from a selection of the models based on both their structure and

economic performance. For instance, in our case, a group of the models M06, M12, M17, M13,

and M19 (see Figure 3.3) bene�t from the highest energy performance and hydrological scores.

Implementing a group of these models, instead of using all 20 hydrologic models, will increase

the economic bene�ts of the daily release decisions that lead to enhancing the bene�ts of the

system.
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Chapitre 4

Conclusion and future work

This study presents a modeling framework to optimize the production of hydroelectricity while

taking into account short (daily) and mid-term (weekly) forecasts. The framework is used in

simulation to analyze the relationship between the quality of the short-term forecasts and their

economic performance. This is illustrated using the hydropower system of the Gatineau River

basin where ESF, corresponding to twenty hydrologic models, is available on a daily time step

over a period of six years. The twenty models capture the structural uncertainty associated

with hydrological modeling and therefore, generate forecasts with contrasted quality. Each set

of ESF associated with a particular hydrologic model is then processed by the optimization

framework to determine the optimal amount of energy that can be generated by the system.

The optimization is repeated 20 times in order to have a sample large enough to analyze the

relationship between the quality of ESF and economic performance of the power system. These

results con�rm that the forecast accuracy tends to improve the performance of the system ;

however, the relationship is not univocal. Some hydrologic models may be characterized by a

good statistical score, but perform poorly in terms of energy generation.

Considering the economic gains from the models with the best performance, worst perfor-

mance, and average of all 20 models (second con�guration), it can be concluded that applying

a group of models with higher performance will increase the bene�ts of the system. This group

of models can be regarded as the basis of a multi-modeling framework. However, the members

in the group of the best models change during the snowmelt season.

Because the Gatineau River basin is characterized by high �ows during the spring and early

summer, the impact of seasonality must be considered. Thus, the relationship between the

quality of ESF and economic performance of the system during the snowmelt season is exa-

mined. The results show that some of the models that previously appeared in the group of

the best models perform di�erently during the snowmelt season. This implies that the per-

formance of some models is a�ected by the seasonality, which might a�ect the design of the

multi-modeling framework. In terms of reservoir operation, choosing hydrologic forecasts with
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better performance during the snowmelt season is essential as it a�ects the re�ll phase of the

reservoirs.

To better perceive the impact of structural uncertainties associated with the hydrological

models, and as an operational scenario, the second con�guration was implemented where the

actual decision is the average of all members and all hydro models. The results suggest that the

bene�ts of the system can increase if a carefully chosen subset of hydro models is assembled,

but it would require going beyond the mere assessment of the scores and also investigate the

economic performance, a process that will likely be more time-consuming.

The short-term optimization can be improved by substituting LP by non-linear programming

(NLP) to better handle the non-linearity of the hydropower production function. Future work

may also consider the incorporation of travel time between the power plants. It may also be

better to have ESF for the total �ow at the dams instead of incremental �ows in order to

facilitate the treatment of the CRPS, which must be aggregated in order to have one score

per dam.

Since the optimization formulation and FBF parameters are the same for all 20 hydrologic

models, the quality of the forecast is the only factor responsible for the di�erences in terms

of energy output. In this study, we considered CRPS as an indicator of accuracy for the

hydrologic forecast. However, future work may consider Nash�Sutcli�e E�ciency (NSE) as

another criterion to design multi-model ensemble hydrologic forecasts.

32



Chapitre 5

Appendix : ST model code in

MATLAB

1 % Update day : 2018_10_04

2 % This code i s the da i l y l i n e a r opt imiza t i on f o r Gatineau River

bas in

3 % to work with the code , the f unc t i on s Weekly_2_Daily1 .m , In_data .

m,

4 % EnergyFun_convHull .m, weekly_2_Daily_Power_Price are r equ i r ed .

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 c l e a r a l l ;

8 warning o f f ;

9 t i c ;

10 update= datet ime ( 'now ' ) ;

11

12 load ( ' new_Inflow_rand ' ) ; %The

hydro l og i c Ensemble f i l e

13 new_Inflow = new_Inflow_rand ;

14 load ( ' Gatine16 .mat ' ) ;

15 Gatineau{1}=Gatin16 {3} ;

16 addpath ( 'C: \ gurobi652 \win64\matlab\ ' )

17 J=5;

% number o f nodes

18 Ens_hr=s i z e ( new_Inflow . new_Inflow (1) . new_Inflow .ESF(1 , 1) .ESF, 1 ) ;

% f o r e c a s t hor i zon

19 number_of_Years =round ( l ength ( new_Inflow . new_Inflow (1) . new_Inflow .

ESF) /365+1) ; %operat i on years + 1 year = f o r conver t ing weekly
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SDDP to da i l y

20 operat ion_hor izon = length ( new_Inflow . new_Inflow (1) . new_Inflow .ESF

) ; %operat i on hor i zon

21

22 start_Day =1;

23 end_Day = operat ion_hor izon ; %operat i on hor i zon

24 members =s i z e ( new_Inflow . new_Inflow (1) . new_Inflow .ESF(1 , 1) .ESF, 2 ) ;

% ESF members

25 % members=1; %Per f e c t f o r e c a s t

26 number_of_hydro_models = length ( new_Inflow . new_Inflow ) ;

27 %% Approximation o f parameters f o r energy product ion c o e f f i c i e n t [

MW/hm3/month ]

28 %CONVEX−HULL
29 [ b_Ca, ~ , ~ , HPhull_grid_Ca , HPreal_Ca ] =EnergyFun_convHull ( Gatineau

{1} . system , 0 , 0 , 1 , 5) ; %Cabonga

30 [ b_Ba, ~ , ~ , HPhull_grid_Ba , HPreal_Ba ] =EnergyFun_convHull ( Gatineau

{1} . system , 0 , 0 , 2 , 5) ; %Baskatong

31 [ b_Pa, ~ , ~ , HPhull_grid_Pa , HPreal_Pa ] =EnergyFun_convHull ( Gatineau

{1} . system , 0 , 0 , 3 , 5) ; %Paugan

32 [ b_Ch, ~ , ~] =EnergyFun_convHull ( Gatineau {1} . system , 0 , 0 , 4 , 5) ;

%Chelsea

33 [b_RF, ~ , ~] =EnergyFun_convHull ( Gatineau {1} . system , 0 , 0 , 5 , 5) ;

%R−farmers

34

35 i f J==1

36 structure_B ( 1 , 1 ) . b_All_nodes ( 1 , : )=b_Ca;

37 end

38

39 i f J==2

40 structure_B ( 1 , 1 ) . b_All_nodes ( 1 , : )=b_Ca;

41 structure_B ( 2 , 1 ) . b_All_nodes ( 1 , : )=b_Ba ;

42 end

43 i f J==3

44 structure_B ( 1 , 1 ) . b_All_nodes ( 1 , : )=b_Ca;

45 structure_B ( 2 , 1 ) . b_All_nodes ( 1 , : )=b_Ba ;

46 structure_B ( 3 , 1 ) . b_All_nodes ( 1 , : )=b_Pa ;

47 end

48 i f J==4

49 structure_B ( 1 , 1 ) . b_All_nodes ( 1 , : )=b_Ca;
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50 structure_B ( 2 , 1 ) . b_All_nodes ( 1 , : )=b_Ba ;

51 structure_B ( 3 , 1 ) . b_All_nodes ( 1 , : )=b_Pa ;

52 structure_B ( 4 , 1 ) . b_All_nodes ( 1 , : )=b_Ch;

53 end

54 i f J==5

55 structure_B ( 1 , 1 ) . b_All_nodes ( 1 , : )=b_Ca;

56 structure_B ( 2 , 1 ) . b_All_nodes ( 1 , : )=b_Ba ;

57 structure_B ( 3 , 1 ) . b_All_nodes ( 1 , : )=b_Pa ;

58 structure_B ( 4 , 1 ) . b_All_nodes ( 1 , : )=b_Ch;

59 structure_B ( 5 , 1 ) . b_All_nodes ( 1 , : )=b_RF;

60 end

61 %% Extract ing data from SDDP ( f o r myopic management you dont need

these part )

62 % These l i n e s uses Weekly_2_Daily func t i on and convert the SDDP

der ived weekly beta ,

63 % gamma, phi to da i l y f o r ST model

64 Daily_Beta = (Weekly_2_Daily ( Gatineau , 6 , number_of_Years+1,Ens_hr ) ) ;

% da i l y beta i s the same f o r a l l nodes

65 ST_Output{1 , 1} . cuts . Daily_Beta = Daily_Beta ( : , 1 : operat ion_hor izon+

+ Ens_hr ) ; % p la c ing da i l y beta in a s t r u c tu r e

66 f o r j =11+1:11+J % da i l y gamma

67 Daily_Gamma= Weekly_2_Daily ( Gatineau , j , number_of_Years+1,Ens_hr ) ;

68 ST_Output{1 , 1} . cuts .Daily_Gamma( j −11 ,1) .Gamma = Daily_Gamma ( : , 1 :

operat ion_hor izon + Ens_hr ) ; % p lac ing da i l y gamma in a

s t r u c tu r e

69 end

70 c l e a r j

71 f o r j=6+1:6+J %da i l y phi

72 Daily_Phi= Weekly_2_Daily ( Gatineau , j , number_of_Years+1,Ens_hr ) ;

73 ST_Output{1 , 1} . cuts . Daily_Phi ( j −6 ,1) . Phi = Daily_Phi ( : , 1 :

operat ion_hor izon + Ens_hr+1) ; %p la c ing da i l y phi in a s t r u c tu r e

74 end

75 c l e a r Daily_Gamma Daily_Phi j

76

77 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

78

79 nmb_of_Cuts=s i z e ( Gatineau {1 , 1} . cuts {1 , 1} ,1) ; %number o f

35



backward opennings f o r cuts SDDP

80

81 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

82 %MYOPIC MANAGEMENT sc ena r i o

83 % Daily_Beta =ze ro s (nmb_of_Cuts , operat ion_hor izon+ Ens_hr ) ;

84 % Daily_Gamma= ze ro s (nmb_of_Cuts , operat ion_hor izon+ Ens_hr ) ;

85 % Daily_Phi= ze ro s (nmb_of_Cuts , operat ion_hor izon+ Ens_hr ) ;

86 %

87 % ST_Output{1 , 1} . cuts . Daily_Beta = Daily_Beta ;

88 % fo r j= 1 : J

89 % ST_Output{1 , 1} . cuts .Daily_Gamma( j , 1 ) .Gamma = Daily_Gamma ;

90 % ST_Output{1 , 1} . cuts . Daily_Phi ( j , 1 ) . Phi = Daily_Phi ;

91 % end

92 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

93

94 %% VARIALBLE DEFINITION:

95 % ch a r a c t e r i s t i c s o f the r e s e r v o i r s ( hydropowers ) :

96 S_In=Gatineau {1 , 1} . sim1 . s t (2+31*52 , : ) ' ; %i n i t i a l s t o rage from SDDP

97 Smax=Gatineau {1 , 1} . system . smax ( 1 : J , 1 ) ;

98 Smin=Gatineau {1 , 1} . system . smin ( 1 : J , 1 ) ;

99 Rmax=Gatineau {1 , 1} . system . rmax ( 1 : J , 1 ) /7 ;

100 Rmin=Gatineau {1 , 1} . system . rmin ( 1 : J , 1 ) /7 ;

101 Ptmax=Gatineau {1 , 1} . system . hp ( 1 : J , 1 ) ;

102 P1max=Gatineau {1 , 1} . system . f irmp ( 1 : J , 1 ) ;

103

104 %% Aineq2 : ST matrix f o r convexhul l i n e qua l i t y

105 Sinq2 = [ ] ;

106 f o r t=1:Ens_hr

107 f o r p=1:J

108 i f p<4

109 b=structure_B ( p , 1 ) . b_All_nodes ( 1 , : ) ;

110 size_b=s i z e (b , 2 ) ;

111 dumi_Sinq2=ze ro s ( size_b , Ens_hr*J ) ;

112 c l e a r s a i 1

113 f o r b1=1: size_b
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114 s a i 1 (b1 , 1 )=b{1 , b1 }(3) ;

115 end

116 i f t==1

117 dumi_Sinq2 ( : , p )=−s a i 1 /2 ;
118 Sinq2=[Sinq2 ; dumi_Sinq2 ] ;

119 e l s e

120 dumi_Sinq2 ( : , ( t−2)*J+p)=−s a i 1 /2 ;
121 dumi_Sinq2 ( : , ( t−1)*J+p)=−s a i 1 /2 ;
122 Sinq2=[Sinq2 ; dumi_Sinq2 ] ;

123 end

124 end

125 end

126 i f J==4

127 b=structure_B ( J , 1 ) . b_All_nodes ( 1 , : ) ;

128 dumi_Sinq2=ze ro s (1 , Ens_hr*J ) ;

129 s a i 2=b (3) ;

130 i f t==1

131 dumi_Sinq2 (1 , J )=−s a i 2 /2 ;
132 Sinq2=[Sinq2 ; dumi_Sinq2 ] ;

133 e l s e

134 dumi_Sinq2 (1 , t *J−J )=−s a i 2 /2 ;
135 dumi_Sinq2 (1 , t *J )=−s a i 2 /2 ;
136 Sinq2=[Sinq2 ; dumi_Sinq2 ] ;

137 end

138 end

139 i f J==5

140 b=structure_B ( J−1, 1 ) . b_All_nodes ( 1 , : ) ;

141 dumi_Sinq2=ze ro s (1 , Ens_hr*J ) ;

142 s a i 2=b (3) ;

143 i f t==1

144 dumi_Sinq2 (1 , J−1)=−s a i 2 /2 ;
145 Sinq2=[Sinq2 ; dumi_Sinq2 ] ;

146 e l s e

147 dumi_Sinq2 (1 , t *J−1−J )=−s a i 2 /2 ;
148 dumi_Sinq2 (1 , t *J−1)=−s a i 2 /2 ;
149 Sinq2=[Sinq2 ; dumi_Sinq2 ] ;

150 end

151

152 b=structure_B ( J , 1 ) . b_All_nodes ( 1 , : ) ;
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153 dumi_Sinq2=ze ro s (1 , Ens_hr*J ) ;

154 s a i 2=b (3) ;

155 i f t==1

156 dumi_Sinq2 (1 , J )=−s a i 2 /2 ;
157 Sinq2=[Sinq2 ; dumi_Sinq2 ] ;

158 e l s e

159 dumi_Sinq2 (1 , t *J−J )=−s a i 2 /2 ;
160 dumi_Sinq2 (1 , t *J )=−s a i 2 /2 ;
161 Sinq2=[Sinq2 ; dumi_Sinq2 ] ;

162 end

163

164 end

165 end

166 c l e a r dumi_Sinq2

167

168 Rinq2 = [ ] ;

169 f o r t=1:Ens_hr

170 f o r p=1:J

171 i f p<4

172 b=structure_B ( p , 1 ) . b_All_nodes ( 1 , : ) ;

173 size_b=s i z e (b , 2 ) ;

174 dumi_Rinq2=ze ro s ( size_b , Ens_hr*J ) ;

175 c l e a r omega1

176 f o r b1=1: size_b

177 omega1 (b1 , 1 )=b{1 , b1 }(2) ;

178 end

179 dumi_Rinq2 ( : , ( t−1)*J+p)=−omega1 ;

180 Rinq2=[Rinq2 ; dumi_Rinq2 ] ;

181 end

182 end

183 i f J==4

184 b=structure_B ( J , 1 ) . b_All_nodes ( 1 , : ) ;

185 dumi_Rinq2=ze ro s (1 , Ens_hr*J ) ;

186 omega2=b (2) ;

187 dumi_Rinq2 ( : , t *J )=−omega2 ;

188 Rinq2=[Rinq2 ; dumi_Rinq2 ] ;

189 end

190 i f J==5

191 b=structure_B ( J−1, 1 ) . b_All_nodes ( 1 , : ) ;
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192 dumi_Rinq2=ze ro s (1 , Ens_hr*J ) ;

193 omega2=b (2) ;

194 dumi_Rinq2 ( : , t *(J−1)+(t−1) )=−omega2 ;

195 Rinq2=[Rinq2 ; dumi_Rinq2 ] ;

196

197 b=structure_B ( J , 1 ) . b_All_nodes ( 1 , : ) ;

198 dumi_Rinq2=ze ro s (1 , Ens_hr*J ) ;

199 omega2=b (2) ;

200 dumi_Rinq2 ( : , t *J )=−omega2 ;

201 Rinq2=[Rinq2 ; dumi_Rinq2 ] ;

202 end

203 end

204 c l e a r dumi_Rinq2

205 Linq2=Rinq2 *0 ; %Linqu2

206

207 Ptinq2 = [ ] ;

208 f o r t=1:Ens_hr

209 f o r p=1:J

210 i f p<4

211 b=structure_B ( p , 1 ) . b_All_nodes ( 1 , : ) ;

212 size_b=s i z e (b , 2 ) ;

213 dumi_Ptinq2=ze ro s ( size_b , Ens_hr*J ) ;

214 dumi_Ptinq2 ( : , ( t−1)*J+p)=ones ( size_b , 1 ) ;

215 Ptinq2=[Ptinq2 ; dumi_Ptinq2 ] ;

216 end

217 end

218 i f J==4

219 b=structure_B ( J , 1 ) . b_All_nodes ( 1 , : ) ;

220 dumi_Ptinq2=ze ro s (1 , Ens_hr*J ) ;

221 dumi_Ptinq2 ( : , t *J )=1;

222 Ptinq2=[Ptinq2 ; dumi_Ptinq2 ] ;

223 end

224 i f J==5

225 b=structure_B ( J−1, 1 ) . b_All_nodes ( 1 , : ) ;

226 dumi_Ptinq2=ze ro s (1 , Ens_hr*J ) ;

227 dumi_Ptinq2 ( : , t *(J−1)+(t−1) )=1;
228 Ptinq2=[Ptinq2 ; dumi_Ptinq2 ] ;

229

230 b=structure_B ( J , 1 ) . b_All_nodes ( 1 , : ) ;
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231 dumi_Ptinq2=ze ro s (1 , Ens_hr*J ) ;

232 dumi_Ptinq2 ( : , t *J )=1;

233 Ptinq2=[Ptinq2 ; dumi_Ptinq2 ] ;

234 end

235 end

236 c l e a r dumi_Ptinq2

237 P1inq2=Rinq2 *0 ;

238 P2inq2=Rinq2 *0 ;

239 Finq2=P2inq2 ( : , 1 ) ;

240

241 Ainq2=[Sinq2 Rinq2 Linq2 Ptinq2 P1inq2 P2inq2 Finq2 ] ;

242

243 %% Aeq : ST matrix f o r mass balance equat ion and energy equat ion :

244 [ Aeq , ub , lb ]= Matrix_Definition_Aeq (Ens_hr , Smax , Smin , Rmax, Rmin

, Ptmax , J , P1max) ;

245

246 %% ca l l i n g and Stor ing da i l y energy p r i c e s from SDDP:

247 ST_Output{1 , 1} . system . p i = weekly_2_Daily_Power_Price ( Gatineau {1 ,

1} . system . pi , J , number_of_Years ) ; %Secondary p ( $/MW/hr )

248 ST_Output{1 , 1} . system . pi2 = weekly_2_Daily_Power_Price ( Gatineau {1 ,

1} . system . pi2 , J , number_of_Years ) ; %t o t a l p ( $/MW/hr )

249

250

251 %% ==========================================

252 f o r h= 1 : number_of_hydro_models % th i s loop i s f o r r epea t ing 20

t imes f o r the number o f hyd r o l o g i c a l models

253 % fo r h= 1 :1 %PERFECT FORECAST ( t h i s loop i s f o r the p e r f e c t

f o r e c a s t

254 % scena r i o )

255 Repeater2=s t r c a t ( ' This i s hydro−model loop ' , num2str (h) , ' /20 ' )

256 f o r l=start_Day : end_Day % This loop i s f o r one time ST opt imiza t i on

(50 members , OH =2192 days )

257

258

259 %% Aineq : i n e q u a l i t i e s o f FBF and convexhul l

260 %Aineq1 : Bui ld ing the future−bene f i t−f unc t i on i n e qua l i t y

matrix f o r ST :

261 Sineq1=ze ro s ( ( nmb_of_Cuts) , ( Ens_hr ) *J ) ; %s to rage

262 f o r q=1:nmb_of_Cuts
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263 f o r j =1:J

264 phi_nodes (1 , j )=−ST_Output{1 , 1} . cuts . Daily_Phi ( j ) . Phi (q ,

Ens_hr+l ) ;

265 end

266 Sineq1 ( ( q−1)+1:q , J*(Ens_hr−1)+1:J*Ens_hr )= phi_nodes ;

267 end

268

269 Rineq1=ze ro s ( ( nmb_of_Cuts ) , ( Ens_hr ) *J ) ;

%r e l e a s e

270 Lineq1=ze ro s ( ( nmb_of_Cuts) , ( Ens_hr ) *J ) ;

%s p i l l

271 Fineq1=ones ( ( nmb_of_Cuts ) ,1 ) ;

%b en e f i t to f o func t i on

272 Ptin1=ze ro s ( ( nmb_of_Cuts ) , ( Ens_hr ) *J ) ;

%t o t a l power

273 P1in1=ze ro s ( ( nmb_of_Cuts ) , ( Ens_hr ) *J ) ;

%f i rm power

274 P2in1=ze ro s ( ( nmb_of_Cuts ) , ( Ens_hr ) *J ) ;

%secondary power

275 Aineq1=[ Sineq1 Rineq1 Lineq1 Ptin1 P1in1 P2in1 Fineq1 ] ;

% ' ' the f i r s t A matrix ' '

276

277 Aineq=[Aineq1 ; Ainq2 ] ; % Aineg

278

279 %% Taking the i n i t i a l s t o rage f o r each loop

280 % Note taht the i n i t i a l s t o rage i s the same f o r 50 members per day

281 i f l==1

282 SS=S_In ;

283 e l s e

284 SS=sto rage1 ;

285 end

286 %% This loop r epea t s the opt imiza t i on f o r each member f o r one day

287 f o r m=1:members

288 %% bineq

289 %bineq1 : The r i gh t s i d e o f bene f i r−to−go func t i on

290 %binq2 : The r i gh t s i d e o f convex−hu l l i n e qua l i t y

291 dumi_daily_Beta = ST_Output{1 , 1} . cuts . Daily_Beta ( : , Ens_hr+l −1) ;
292 bineq1 = [ ] ;

293 f o r q=1:nmb_of_Cuts
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294 %======================

295 f o r j = 1 : J

296 Gamma_node( j , 1 )=ST_Output{1 , 1} . cuts .Daily_Gamma( j ) .Gamma(q

, Ens_hr+l −1) ;
297 %

=========================================================================================================================

298 sum_Q_last_7_days ( j , 1 )= sum( new_Inflow . new_Inflow (h) .

new_Inflow .ESF( l , j ) .ESF(Ens_hr−7+1:Ens_hr ,m) ) ; %lag1

299 % sum_Q_last_7_days ( j , 1 )= (sum( new_Inflow . new_Inflow (1) .

new_Inflow .Obs( j ) . Obs( l , : ) ) ) ' ; %Per f e c t f o r e c a s t

300 %

=========================================================================================================================

301 Gamma_Q( j , 1 )=Gamma_node( j , 1 ) *sum_Q_last_7_days ( j , 1 ) ;

302 end

303 %======================

304 dumi_bineq1=sum(Gamma_Q(1 : J ) )+dumi_daily_Beta (q , 1 ) ;

305 bineq1=[ bineq1 ; dumi_bineq1 ] ;

306 end

307

308 binq2=binq2_funct ion ( l , Ens_hr , J , structure_B , SS) ;

309

310 bineq=[ bineq1 ; binq2 ] ;

311

312 %% beq

313 %beq1 : The r i gh t s i d e o f mass balance equat ion

314 %beq2 : The r i gh t s i d e o f energy balance equat ion

315 beq1_dumi = [ ] ;

316 f o r j =1:J

317 %

============================================================================================================

318 Inflow_m_d = ( new_Inflow . new_Inflow (h) . new_Inflow .ESF( l , j ) .ESF ( : ,

m) ) ' ;

319 % Inflow_m_d = new_Inflow . new_Inflow (1) . new_Inflow .Obs( j ) . Obs( l , : )

; %Per f e c t f o r e c a s t

320 %

============================================================================================================
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321 Inflow_m_d (1 , 1 )=SS( j , 1 )+ Inflow_m_d (1 , 1 ) ;

322 beq1_dumi = [ beq1_dumi ; Inflow_m_d ] ;

323 end

324 beq1 = [ ] ;

325 f o r q=1:Ens_hr

326 beq1_dumi2 = beq1_dumi ( : , q ) ;

327 beq1=[beq1 ; beq1_dumi2 ] ;

328 end

329 c l e a r q j

330

331 beq2= ze ro s ( J*Ens_hr , 1 ) ;

332

333 beq=[beq1 ; beq2 ] ; %beq

334

335 %% ob j e c t i v e func t i on :

336 Pi_Ens= [ ] ;

337 pi2_Ens = [ ] ;

338 f o r a=1:Ens_hr

339 Daily_Price_Pi_dumi= ST_Output{1 , 1} . system . p i ( l+a−1 ,1: J ) ;
340 Daily_Price_Pi2_dumi= ST_Output{1 , 1} . system . pi2 ( l+a−1 ,1: J )

;

341

342 Pi_Ens=[Pi_Ens Daily_Price_Pi_dumi ] ; % $/MW/hr

343 pi2_Ens=[pi2_Ens Daily_Price_Pi2_dumi ] ; % $/MW/hr

344 end

345

346 Object ive_f=[ z e r o s (1 , J*Ens_hr ) z e r o s (1 , J*Ens_hr ) 0* ones (1 , J*Ens_hr )

z e r o s (1 , J*Ens_hr ) Pi_Ens .*24 pi2_Ens .*24 1 ] ;

347 % Object ive_f=[ z e r o s (1 , J*Ens_hr ) z e r o s (1 , J*Ens_hr ) 0* ones (1 , J*

Ens_hr ) z e r o s (1 , J*Ens_hr ) Pi_Ens .*24 pi2_Ens .*24 0 ] ; %MYOPIC

MANAGEMENT

348

349 %% ST opt imiza t i on

350 [ESF_Opt , duals , f v a l ] = . . .

351 A_maximise ( Objective_f , Aeq , beq , Aineq , bineq , lb , ub , 1) ;

352

353 %% OUTPUTS

354 %output f o r each member :
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355 r e l e a s e ( : ,m)=ESF_Opt(71 : 7 5 ) ;

356 s to rage2 ( : ,m)=ESF_Opt( 1 : 5 ) ;

357 s p i l l 2 ( : ,m)=ESF_Opt(141 : 145 ) ;

358 pt ( : ,m)= ESF_Opt(211 : 215 ) ;

359

360

361

362 OBF = Object ive_f ( end ) *ESF_Opt( end ) ;

363 ESF .OBF( l , : ) = OBF ;

364 IBOBF = Object ive_f ( 1 : end−1)*ESF_Opt( 1 : end−1) ;
365 ESF . IBOBF( l , : ) = IBOBF ;

366

367 % For Pe r f e c t f o r e c a s t remove t h i s f o r :

368 f o r j= 1 :5

369 ESF . Inflow_Mean (1 , j ) .Mean( l , : )= mean( new_Inflow . new_Inflow

(h) . new_Inflow .ESF( l , j ) .ESF ,2) ;

370 ESF . Inflow_First_Day (1 , j ) . First_Day ( l ,m)= new_Inflow .

new_Inflow (h) . new_Inflow .ESF( l , j ) .ESF(1 ,m) ;

371 end

372 end %f o r m

373

374 % average o f 50 members :

375 release_mean_m = mean( r e l e a s e , 2 ) ;

376 storage2_mean_m = mean( storage2 , 2 ) ;

377 spill_mean_m = mean( s p i l l 2 , 2 ) ;

378 pt_mean_m = mean( pt , 2 ) ;

379

380 %For Pe r f e c t f o r e c a s t remove t h i s f o r :

381 f o r j =1:J

382 Q_member_mean = mean( new_Inflow . new_Inflow (h) . new_Inflow .ESF( l , j ) .

ESF, 2 ) ;

383 ESF .Q_member_mean ( l , j ) = Q_member_mean( j ) ;

384 end

385

386 % sto r i n g the average o f 50 members in the s t r u c tu r e :

387 f o r j =1:5

388 Q( j ) = new_Inflow . new_Inflow (h) . new_Inflow .Obs( j ) . Obs( l ) ;

389 ESF . s ( l , j )= storage2_mean_m ( j ) ;

390 ESF . r ( l , j )= release_mean_m ( j ) ;
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391 ESF . l ( l , j )= spill_mean_m ( j ) ;

392 ESF . pt ( l , j )= pt_mean_m( j ) ;

393 end

394

395

396 % % FOR PERFECT FORECAST ACTIVATE THIS FOR:

397 % fo r j =1:5

398 % Q( j ) = new_Inflow . new_Inflow (2) . new_Inflow .Obs( j ) . Obs( l ) ;

399 % ESF. s ( l , j )= s to rage2 ( j ) ;

400 % ESF. r ( l , j )= r e l e a s e ( j ) ;

401 % ESF. l ( l , j )= s p i l l 2 ( j ) ;

402 % ESF. pt ( l , j )= pt ( j ) ;

403 % end

404

405 % % FOR PERFECT FORECAST:

406 % storage1 = sto rage2 ;

407

408 %% SIMULATION

409 % FOR PERFECT FORECAST remove the s imu la t i on :

410

411 % fo r node 1 :

412 storage1_1 = Q(1) + SS (1) − release_mean_m (1)− spill_mean_m (1) ;

413 i f storage1_1 < Smin (1)

414 storage1_1 = Smin (1 ) ;

415 e l s e

416 i f storage1_1 > Smax(1)

417 sp i l l 1_1 = storage1_1 − Smax(1) ;

418 storage1_1 = Smax(1) ;

419 e l s e

420 sp i l l 1_1 = 0 ;

421 end

422 end

423

424 % fo r node 2 :

425 storage1_2 = Q(2) + SS (2) − release_mean_m (2) − spill_mean_m (2) +

. . .

426 release_mean_m (1) + sp i l l 1_1 + spill_mean_m (1) ;

427

428 i f storage1_2 < Smin (2)
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429 storage1_2 = Smin (2 ) ;

430 e l s e

431 i f storage1_2 > Smax(2)

432 sp i l l 1_2 = storage1_2 − Smax(2) ;

433 storage1_2 = Smax(2) ;

434 e l s e

435 sp i l l 1_2 = 0 ;

436 end

437 end

438 % fo r node 3 :

439 storage1_3 = Q(3) + SS (3) − release_mean_m (3) − spill_mean_m (3) +

. . .

440 release_mean_m (2) + sp i l l 1_2 + spill_mean_m (2) ;

441

442 i f storage1_3 < Smin (3)

443 storage1_3 = Smin (3 ) ;

444 e l s e

445 i f storage1_3 > Smax(3)

446 sp i l l 1_3 = storage1_3 − Smax(3) ;

447 storage1_3 = Smax(3) ;

448 e l s e

449 sp i l l 1_3 = 0 ;

450 end

451 end

452 % fo r node 4 :

453 storage1_4 = Q(4) + SS (4) − release_mean_m (4) − spill_mean_m (4) +

. . .

454 release_mean_m (3) + sp i l l 1_3 + spill_mean_m (3) ;

455

456 i f storage1_4 > Smax(4)

457 sp i l l 1_4 = storage1_4 − Smax(4) ;

458 storage1_4 = Smax(4) ;

459 e l s e

460 sp i l l 1_4 = 0 ;

461 end

462

463 % fo r node 5 :

464 storage1_5 = Q(5) + SS (5) − release_mean_m (5) − spill_mean_m (5) +

. . .
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465 release_mean_m (4) + sp i l l 1_4 + spill_mean_m (4) ;

466

467 i f storage1_5 > Smax(5)

468 sp i l l 1_5 = storage1_5 − Smax(5) ;

469 storage1_5 = Smax(5) ;

470 e l s e

471 sp i l l 1_5 = 0 ;

472 end

473

474

475 s to rage1 = [ storage1_1 ; storage1_2 ; storage1_3 ; storage1_4 ;

storage1_5 ] ;

476

477 % sto r i n g the s imulated s p i l l s

478 f o r j= 1 :5

479 ESF . s t ( l , j )= s to rage1 ( j ) ;

480 end

481 ESF . l_sim ( l , 1 ) = sp i l l 1_1 ;

482 ESF . l_sim ( l , 2 ) = sp i l l 1_2 ;

483 ESF . l_sim ( l , 3 ) = sp i l l 1_3 ;

484 ESF . l_sim ( l , 4 ) = sp i l l 1_4 ;

485 ESF . l_sim ( l , 5 ) = sp i l l 1_5 ;

486

487 end %f o r l

488

489 ESF_All .ESF(h) .ESF = ESF ; %%FOR PERFECT FORECAST deac t i va t e t h i s

l i n e

490 end %f o r h

491

492 toc ;
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