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Résumé

Le fonctionnement optimal d’un systéme de réservoirs est un processus décisionnel complexe
impliquant, entre autres, 'identification d’un compromis temporel concernant 1'utilisation de
I’eau : la derniére unité d’eau doit-elle étre conservée ou plutéot utilisée pour un usage im-
meédiat ? La variabilité des apports hydrologiques complique encore davantage ce processus
décisionnel puisque la recherche de ce compromis doit étre effectuée sans une connaissance
parfaite des conditions futures. De maniére générale, I’équilibre optimal entre les utilisations
immeédiates et futures de 1’eau nécessite I'intégration de régles de gestion a court et a long
terme. Si les régles & court terme conduisent a des décisions a courte vue, les stratégies opéra-
tionnelles a long terme ne sont pas appropriées pour gérer des événements & court terme tels
que les inondations. Nous proposons un cadre de modélisation basé sur ’approche de décompo-
sition temporelle (DT) : Les stratégies & moyen /long terme sont tout d’abord déterminées puis
utilisées comme limites pour 'optimisation des stratégies a court terme. Le modéle d’optimi-
sation a moyen terme capture la persistance temporelle trouvée dans le processus des apports
hydrologiques hebdomadaires, alors que les prévisions hydrologiques d ’ensemble (PHE) sont
utilisées pour piloter le modéle & court terme sur un pas de temps journalier. Plus spécifi-
quement, la programmation dynamique stochastique duale (SDDP) génére les fonctions des
bénéfices de valeur hebdomadaires qui sont ensuite imposées & un modéle de programmation
linéaire implémenté sur chaque membre des PHE de 14 jours. Ce cadre de modélisation est
mis en ceuvre selon un mode de gestion en horizon roulant sur une cascade de centrales hy-
droélectriques dans le bassin de la riviére Gatineau dans la province du Québec au Canada.
A Paide de ce cadre de modélisation, nous analysons la relation entre la valeur économique et
les caractéristiques statistiques des PHE. Les résultats montrent que 1’énergie générée par le
systéme hydroélectrique augmente avec la précision et la résolution de la prévision, mais que
la relation n’est pas univoque. En effet, d’autres facteurs semblent contribuer & l'utilité de la

prévision.
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Abstract

The optimal operation of a system of reservoirs is a complex decision-making problem in-
volving, among others, the identification of a temporal trade-offs regarding the use of water.
Should the last unit of water be kept in storage or rather be released for use downstream?
The variability of natural inflows further complicates this decision-making problem: at any
given point in space and time, this trade-off must be made without a perfect knowledge of
future reservoir inflows. Generally speaking, the optimal balance between immediate and
future uses of water requires the integration of short- and long-term policies. If short-term
policies lead to shortsighted decisions, long-term operational strategies are not appropriate
to handle short-term events such as floods. We propose a modeling framework based on the
time decomposition (TD) approach: mid/long-term policies are determined first and then
used as boundary conditions for the optimization of short-term policies. The mid-term op-
timization model captures the temporal persistence found in the weekly streamflow process
whereas Ensemble Streamflow Forecasts (ESF) are used to drive the short-term model on a
daily time step. More specifically, a Stochastic Dual Dynamic Programming (SDDP) gener-
ates the weekly benefit-to-go functions that are then imposed to a linear programming model
implemented on each 14-days member of the ESF. This modelling framework is implemented
in a rolling-horizon mode on a cascade of hydropower stations in the Gatineau River basin,
Quebec, Canada. Using this modelling framework, we analyze the relationship between the
economic value of different sets of short-term hydrologic forecasts. The results show that the
energy generated by the hydropower system increases with the forecast’s accuracy and resolu-
tion but that the relationship is not univocal; other factors seem to contribute to the forecast’s

utility.
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Introduction

The reservoir operation problem is a complex multi-stage decision making problem. A se-
quence of release decisions must be determined so that benefits/costs are maximized /minimi-
zed taking into account various physical, operational, and legal constraints such as municipal/
industrial water supplies, minimum streamflow requirements for environmental and ecological

concerns, legal agreements, contracts, etc.

Depending on whether the management problem has short- or long-term consequences, typical
time-steps (stages) can be hourly, daily, weekly or monthly. At the beginning of each stage,
reservoir operators face a trade-off between the immediate and future consequences of a release
decision ; should the water be released or kept in the storage for future uses? In other words,
the operators face a temporal trade-off. They may also have to decide about allocating water
to conflicting users which gives rise to spatial trade-off. Another complicating factor is the

hydrologic uncertainty and the difficulty to accurately forecast future inflows’.

Solving the reservoir operation problem therefore requires the assistance of optimization tech-
niques. Over the past decades, many optimization models have been proposed in the literature
but no single solution has emerged. Each technique has its own strengths and weaknesses and
the choice will ultimately depend on the characteristics of the system, the availability of data,
the objective function and constraints as well as the operators’ preference. State-of-the-art re-
views about the optimization techniques for reservoir operation problem can be found in Yeh
and Becker (1982), Labadie (2004), Rani and Moreira (2010) and more recently in Ahmad and
El-shafie (2014).

Dynamic Programming (DP) (Bellman (1957)) is one of the most popular techniques to
solve the reservoir operation problem. DP solves the optimization problem by decomposing
a multistage problem into a series of single-stage problems that are solved recursively. DP
performs an optimization by discretizing the continuous state variables and replacing the
continuous state-space by a grid. These optimal solutions are generalized for other points of
the state variables by a continuous function, using an interpolation approach (e.g. linear, cubic
spline) (Tejada-Guibert et al. (1993)).

Figure 0.1 illustrates the basic principle behind the one-stage optimization problem : at each



stage, the sum of the immediate and future benefits from system operation must be maximized.
Because the immediate and future uses of water are orthogonal, when the future benefits
increase, immediate benefits must decrease and vice-versa. Of interest is the fact that the
derivatives of the immediate and benefit-to-go functions give the immediate and future water
values, respectively, which must be identical at the optimal solution (Tilmant et al. (2008)).
The marginal value of water is the willingness to pay for an additional unit of water in a
particular reservoir and at a given time of the year. This approach is limited to small-scale
problems because computational effort increases exponentially with the number of reservoirs

in the system

DP can easily be extended to solve stochastic multi-stage decision-making problems. For the
reservoir operation problem, the basic idea is to include an additional, hydrologic, state variable
to capture the spatial and temporal persistences found in the streamflow processes. Stochastic
DP (SDP), often referred to a Markov decision process, solves the problem by discretizing
stochastic variables, as well as the system status, to obtain an optimal policy for each discrete
value of the reservoir system (Figure 0.2). The optimal solutions are then interpolated to the
rest of the domain. Since SDP solves the problem on all discrete combinations of the state
variables, its application is limited by the so-called curse of dimensionality, limited to small

scale systems involving no more than four state variables (storage and hydrologic).

Benefits §

Immediate + future benefits
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Future benefits
Marginal water function
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FicuURrE 0.1 — Immediate and future benefits functions (Tilmant et al. (2008))

To address the limitations posed by the curse of dimensionality, Pereira and Pinto (1991) de-
veloped Stochastic Dual Dynamic Programming (SDDP). SDDP removes the computational
burden of SDP by constructing a locally-accurate approximation of the benefit-to-go function
using piecewise linear segments, which are constructed from the primal and dual solutions of

the one-stage optimization problem. SDDP has been largely used in hydropower dominated
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Figure 0.2 — SDP principle when maximizing the sum of immediate and future benefits functions, discretizing, and
interpolating of the state variables and system status (Pina (2017))

systems in Norway (Gjelsvik et al. (2010)) , South and Central America (Pereira (1989) ; Sha-
piro et al. (2013)), New Zealand (Kristiansen (2004)), Euphrates-Tigris River basin (Tilmant
et al. (2008)), the Nile River basin (Goor et al. (2012)), the Zambezi River basin (Tilmant and
Kinzelbach (2012)), and Spain (Pereira-Cardenal et al. (2016) ; Macian-Sorribes et al. (2017)).

Moreover, to capture the hydrologic uncertainty while avoiding the discretization of the
hydrologic state variable, SDDP uses a multi-site periodic auto-regressive MPAR-(p) model.
Recently, various authors have proposed improvements to the built-in hydrological model
for SDDP (see for example Poorsepahy-Samian et al. (2016), Raso et al. (2017), Pina et al.
(2017a)).

To handle the stochastic hydrology of the hydropower system, stochastic linear programming
(SLP) and Chance constrained LP (CCLP) have been proposed. SLP assumes the streamflow
follow a single Markov chain. Instead of providing the steady state releases as a function of
storages, SLP produces steady state probabilities of releases and storages (Loucks et al. 1981).
An application of CCLP can be found in the study by Sreenivasan and Vedula (1996) to
maximize hydroelectricity production of a multipurpose reservoir. Lee et al. (2006) and Seif

and Hipel (2001) applied a two stage SLP approach to handle stochastic inflows.

Over the past few years, the hydrometeorological community has been progressively shifting
from deterministic simulations to probabilistic ones based on ensembles. Ensemble forecasts
present an alternative to traditional deterministic forecasts by providing a probabilistic as-
sessment of future discharges. An ensemble is a collection of deterministic predictions of the

same event and attempts to produce a representative sample of the future (Figure 0.3).

Ensemble Streamflow Forecasts (ESFs) can capture the following sources of uncertainty :
weather forecasts, hydrological model structure and initial hydrologic conditions (Bourdin
et al. (2012)). ESFs are usually produced by forcing hydrological models with meteorological

forecasts, which in turn include multiple possible future trajectories of atmospheric variables
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Ficure 0.3 — Ensemble Streamflow Forecast (ESF) trajectories

(Cloke and Pappenberger (2009)). The initial condition uncertainty of ESFs stems from the
propagation of small errors in the initial conditions of the atmospheric models (Buizza, 2003).
Usually, a set of typically ten to fifty initial conditions is obtained and is used to initiate
simulations. Finally, the structural uncertainty of the ESFs can be captured by pooling several

hydrologic models with fundamentally different structures.

Many studies worldwide have illustrated the use of ESFs for reservoir operation. In the
study of Zhao et al. (2011), synthetic experiments of ESF were applied to real-time reservoir
operation and were compared with deterministic forecasts. Results showed that the benefit
from using ensembles was nearly as high as the one obtained with a perfect forecast. Boucher
et al. (2012) determined the economic benefits associated with ESFs for a flood event on the
Gatineau River, Canada. Ficchi et al. (2015) assessed the improvement of a four-reservoir
system in the Seine River basin, France, using an ensemble of weather forecasts and a real-
time control approach. Fan et al. (2016) examined the added value of applying ESFs comapred

to deterministic forecasts for short-term reservoir operation of a hydropower system in Brazil.

For many reservoir operation problems, the forecast horizon (FH) is usually shorter than the
reservoir operation horizon (OH). FH represents the length of time in the future that inflow
predictions are generated. This generally may vary from one hour, day, week, or month;
however, OH represents the length of time that the reservoir operation is targeted which can
vary from several months to several years. For example, the operation of a reservoir for flood
control purposes may extend over several months while a streamflow forecast is only available
a few weeks in advance. To bridge the gap between OH and FH, the Rolling Horizon (RH)
technique can be implemented. It consists in dynamically simulating the system, adjusting

release decisions on a daily time step based on the storage level at the beginning of the day



and updated hydrologic forecasts. (It consists in dynamically simulating the system, adjusting
release decisions on decision horizon (DH) based on the storage level at the beginning of the
DH and updated hydrologic forecasts. The decision horizon (DH) represents how long the
generated decision is implemented. As inflow forecasts update day by day, DH is usually set as
one day. This suggests that only the current period decision is regarded as final and decisions

in the future periods will be updated with a new forecast.)

You and Cai (2008) applied rolling horizon concept to determine the optimal forecast horizon
(FH) based on a given decision horizon (DH) for dynamic reservoir operation problems. They
identified the impact of various factors such as water stress level (the deficit between water
availability and demand), reservoir size, inflow uncertainty, evaporation rate, and discount
rate. Their results show that inflow characteristics and reservoir capacity have major impacts
on FH when water stress is modest ; larger reservoir capacity and the deterministic component
of inflow such as seasonality require a longer FH. Economic factors have strong impacts when
water stress levels are high. Zhao et al. (2012) compared the impact of forecast horizon (FH)
and forecast uncertainty (FU) to find the effective forecast horizon (EFH) for real-time reser-
voir operation in a rolling-horizon scheme. Wang et al. (2014) employed the rolling horizon
approach and distributed hydrological inflow predictions to determine real-time reservoir re-
leages, for a three-reservoir system in the Red River Basin in Southeast Asia. Arena et al.
(2017) developed an optimization- simulation system based on RH for operating a real-word
two-reservoir system in Italy. Séguin et al. (2017) applied a rolling horizon simulation scheme
to develop a daily hydropower operations planning using a stochastic short-term optimization

model based on scenario trees to represent the uncertainty of inflows.

In general, hydrologic forecasts are available for different horizons (short, mid and log-term).
Although short-term forecasts are in general reliable, their limited horizon (ranging from one
hour to a few days) makes them useless for water resource systems characterized by large
carryover storage capacity. Long-term streamflow forecast, on the other hand, are potentially
more interesting for those systems but their precision is often too low (Zhao and Zhao (2014)).
In contrast, the operation of a reservoir system with limited storage capacity will benefit from

regularly updated short-term forecasts (while long-term forecasts are in this case useless).

Yao and Georgakakos (2001)) proposed an approach integrating long- and short-term stream-
flow forecasts to operate the Folsom reservoir in California. The approach relies on time de-
composition (TD) : the long-term problem is solved first and then the solutions are passed to
the short-term problem where they are used as boundary conditions. Typically, target storage
levels at the end of the week (month) or weekly (monthly) water values are imposed on the
short-term model. Many researchers have applied TD to solve the reservoir operation pro-
blem. For example, Yeh and Becker (1982) apply the traditional nesting TD over three levels :
monthly, daily, and hourly. Zahraie and Karamouz (2004) develop a TD approach in which

SDP formulations handle the long-term and midterm problems, while a DP model take care of



the short-term optimization of a two-reservoirs system. Georgakakos (2006) use TD to develop
a multi-layer operation model, covering real-time, mid-term, and long-term layers for the Nile
basin. Alemu et al. (2011) propose a decision support system can exploit ensemble stream-
flow prediction (ESP). The long-term model is based on simulation, which provides guides
for short-term optimization based upon historic reservoir operating policies. Zhao and Zhao
(2014) applied a combination of short- and long-term forecasts to derive short- and long-term
operational policies for a single reservoir in China. They used a traditional nesting TD to pass

the optimized long-term storage to short-term model as a boundary condition.

Even though TD reduces the computational effort required to solve the reservoir operation
problem, researchers and practitioners still face a trade-off between system and hydrologic
complexity. This trade-off essentially exists because traditional optimization techniques can-
not handle a large number of reservoirs (system complexity) or process a large quantity of

hydrologic information (hydrologic complexity).

This study addresses the above challenge by combining, within a TD framework, relevant
optimization techniques so that a mix of short and long-term forecasts can be processed over
potentially large hydropower systems without undue computation time. The proposed frame-
work is applied to Gatineau River basin, a hydropower system, located in Quebec (Canada).
The system includes three reservoirs and four hydropower plants with an installed capacity of
more than 500 MW. Because the Gatineau River bagin consists of inhabited areas, the main
operating constraints are related to the production of hydroelectricity. Unfortunately, the ope-
rator did not share the information regarding the current operation of the system. There are
some considerations about boating and recreational activities, supplying the drinking water of
nearby towns and flood risks in Gatineau River basin. More details are presented in Chapitre
2.

The optimal decisions based on the proposed approach will benefit from the reliability of
the short-term forecast and the longer horizon of the mid-term forecasts. The weekly water
values are determined via the mid-term (weekly) optimization model SDDP. They are then
processed by the short-term optimization model to make sure the short-term operation respect
the future demands. At the beginning of each day, the short-term model seeks to maximize
the production of energy along each member over the next 14 days taking into account the
value of water at the end of that period. The next day, the process is repeated using updated
ESF. Since each ESF has 50 members and with a planning period extending over 6 years, the
short-term reservoir operation model is formulated as a LP in order to keep the computation
time within reasonable limits. The modelling framework is then used to explore the economic

value of the hydrological forecasts generated by 20 different hydrologic models.

The thesis is organized as follows : section 2 starts with a presentation of temporal de-

composition (TD) which is then followed by a description of the mid-term (MT) model and



integration of MT and short-term (ST) model, then the section ends with the case study
following by application of the modeling framework to the Gatineau River basin. Analysis of

simulation results are discussed in section 3. Finally, conclusion is given in section 4.



Chapitre 1

Materials and Methods

1.1 Time Decomposition (TD)

Time Decomposition (TD) is a conventional approach to connect the operation with different
time scales (Figure 1.1, Karamouz et al. (2003), Lamontagne and Stedinger (2014)). In this
study we make the distinction between short and mid-term operation. Mid-term operation de-
termines of weekly releases over a planning horizon of several years and provides the seasonal
trajectory that the system should follow in order to sustain the production of energy in a "dis-
tant" future (beyond the horizon). Short-term operation is concerned with the determination
of daily releases over a period of 14 days corresponding to the horizon of the regularly-updated
ESF.

As mentioned earlier, the mid-term reservoir operation problem is solved by SDDP, whose
weekly benefit-to-go functions are then passed to the short-term optimization problem, which
is formulated as a LP implemented on each member on a daily basis. Both models are thus
connected through the SDDP-derived benefit-to-go functions, meaning that no restrictions
are imposed on the decision variables (release and storage) of the lower-level, short-term, LP
model. The precision of the terminal value function of the upper-level model plays an important
role for the accuracy of the results of the lower-level model. For instance, if a weekly model
overestimates the terminal value of storage at the end of each time step, the lower-level model

will attempt to refill the reservoir in each time step and vice versa.

1.2 Problem formulation

The objective of a reservoir operation problem is to determine a sequence of optimal decisions
that maximize the benefits of the system operation over a given planning horizon considering

physical, operational, and institutional constraints (Figure 1.2).
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Ficure 1.1 — Time decomposition for the reservoir operation problem
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Figure 1.2 — Multi-stage decision making problem scheme (Labadie (2004))



Mathematically, the multistage decision-making problem can be written as :

Tt

T
Z = max {EIE [Z aby(st, 1, qy) + arpiv(sria, QT)] } (1.1)
¢ Le=1

subject to :
Sgpr1=8+q, —Cjipre — e (1.2)
Smin S St+1 § Smax (13)
Lmin S Tt < Tmazx (14)

Where t is time, T is the end of the planning horizon, b; is a one-stage immediate benefit at
stage t, ; is the decision variables (release) vector, s; is a storage vector at the begin of ¢,
g, are stochastic inflows, e; are evaporation losses, « is the discount factor, v is the terminal
value function, and E is the expectation operator. Cjy is the connectivity matrix between

reservoirs which can be 1 (-1) when the reservoir j receives (releases) water from/to reservoir

k.

When the objective is maximizing the net benefit from hydropower generation, b.(.) typically
include the economic return from hydropower generation but also penalties for not meeting

various operational constraints like minimum flow requirements, spillages losses, etc.

by=HP,— £,z (1.5)

wherez, is a vector of deficits or surpluses, and Elt is a vector of penalty coefficients ($/unit of

penalty or surplus). The hydropower term H P, is given by :

HPt:Tth(ﬂ't(j)—9(j)Pt(j)) (1.6)

where 7 is the number of hours in period ¢, P; is a vector of energy values($/MWh), and
0 is a vector of O&M cost of hydropower plants ($3/MWh). P, is the hydropower in a given
time step ¢, given by

Py = ynh(st, St4+1, Tt)Ti(St, St4+1) (L.7)

Where v is the specific weight of water, 7 is the turbine efficiency, h is the net head (function

of average storage and release decisions), and x; is the turbined flow.

10
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F1GURE 1.8 — Piecewise linear approximation of benefit-to-go function F;4; (Pina (2017))

1.3 Mid-term model (MT)

Stochastic Dual Dynamic Programming (SDDP) is an extension of Stochastic Dynamic Pro-
gramming (SDP) that addresses the problem of dimensionality found in SDP (Pereira (1989)).
In SDDP, the one stage optimization problem is a LP that maximizes the sum of current by

and future benefits F;11. The objective function becomes :
Fi(st,q;) = max {bi(st, x,q;) + a1 Fypr} (1.8)

We can see that the benefit-to-go F'1y; is a scalar.

The scalar Fiy1 is bounded from above by a set of hyperplanes, which are additional linear

constraints approximating the benefit-to-go function :

Fip1 — @l18t41 < viaqy + B
(1.9)

Fip1 — @fy 18141 < YHaq: + Bty
where L is the number of hyperplanes, ¢i+1, fyéH, and /3£+1 are the parameters of the
expected cut obtained from the primal and dual variables calculated at stage t + 1 (Tilmant
and Kelman (2007)). In Figure 1.3, hyperplane 1 and hyperplane 2 show the approximated
hyperplanes. The linear segments F; 1 are obtained from the dual solutions of the optimization
problem at each stage and can be interpreted as Benders cuts in a stochastic, multistage
decomposition algorithm. SDDP uses an iterative optimization /simulation strategy to increase

the accuracy of the solution by adding new cuts.

11



The hydrologic state variable g, are the natural inflows observed during the last p periods
q:(J) = [@1-1(5), @t—2(4), @:—3(j); -+, @:—p(j)] and the current inflow is described by a multi-
site periodic autoregressive model MPAR(p) :

@ (4) th Z¢zt Qt i(7) — pg_; (Jj ))+§t(j) (1.10)

UQt Ot—i (])

where p,4, and o4, are the vectors of periodic mean and standard deviation of ¢, respectively.
¢is is the vector of autoregressive parameter of the lag-p periodic model, and & is a time
dependent stochastic noise with mean zero and periodic variance 025¢. This model is capable
of representing seasonality and serial and spatial inflow dependence within a river basin and
among different basins and produce synthetic streamflows scenarios. More details on MPAR(P)
can be found in Pina et al. (2017b).

As indicated earlier, the hydropower production function includes the product of the turbined
outflow x; (r;) (m?3/s) with the net head h(m) on the turbine. This brings non-linearity and
non-convexity to the first part of Eq. 1.8. Various approaches have been proposed to handle the
non-convexity in a LP framework : adding a production coefficient (Archibald et al. (1999)),
convex hull approximations (Goor et al. (2011)), Mc-Cormick envelopes (Cerisola et al. (2012)),

or a concave approximation (Zhao et al. (2014)).

To deal with the head effects on the hydropower production function Pt , a convex hull
approximation is stored in the constraints set (1.11). The linear parameters 1), w and § are

determined using the procedure described in Goor et al. (2011).

- 1/)13154.1/2 —wlr, <6 4+ ¢1st/2
(1.11)

—pfsi1/2 —wlr, <67 + s /2

where H is the number of the planes approximating the real hydropower functions 1, w, and

0 are the parameters obtained from the respective convex hulls.

SDDP is an iterative algorithm that employs two phases to gradually increase the accuracy
of the solution by adding new cuts : a backward optimization and a forward simulation. In
the backward phase, K inflow scenarios are generated by the MPAR(p) model for each node
of the system. These scenarios are applied to calculate the hyperplanes’ parameters and to
provide an upper bound to the true expected benefit-to-go function (FBF). In the forward
phase, the MPAR model generates M synthetic reservoir inflows sequences to simulate the
system behaviour over the planning period. This forward simulation phase provides a lower

bound that allow us to determine whether the upper bound is a good a approximation or
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not. If the upper bound does not fall inside the confidence interval of the lower bound, the
approximation is statistically not acceptable and a new backward recursion is implemented
with a new set of hyperplanes build on the storage volumes that were visited during the last

simulation phase.

At each run of SDDP, the optimal operating policies are simulated over M historical hydrologic
sequences of T weeks. T should be chosen so as to be sufficiently long to avoid the effects of the
boundary conditions (initial storages and zero terminal value functions) on reservoir operating
policies on intermediate years (Goor et al. (2011)). Here, the results are analyzed for the year
in the middle which is not affected by the boundary conditions. The main results are weekly
storage levels and weekly water values that the latter will guide the daily operations in the
ST model.

1.4 Short-term model (ST) and integration with MT

As mentioned earlier, the ST model is based on LP. This choice is motivated by the fact
that the ST model must be run a large number of times (number of days times number
of members). Hence, computational efficiency is an important criterion. Moreover, since our
analysis mostly consists in comparing the production of energy corresponding to different ESF,
the approximations associated with the linearization of the objective function should not affect

the conclusions.

The objective function Zg; of the ST model implemented on the member m can be written

as :

L —
Lop = Igzanx

D
{Z ba(sa, T, qff) + aD+1FD+1} (1.12)

d=1

where d is the index of day, D is the end of the forecast horizon (here D = 14), ¢} is vector
forecasted flows for day d associated to member m. The second term of Equation 1.12 is the

SDDP-derived benefit-to-go function approximated by L hyperplanes :

~1 D R ~1
Fpy1— ¢pi18p+1 < Yogepp(Yada) + Bpia
(1.13)

AL D 1 L
Fpi1 = épisp+1 < 3 yop_p,(Yd44) + Bpia

The daily benefit-to-go functions Fpy; are derived from the weekly ones Fiii. More spe-
cifically, for any day D + 1 in week ¢, Fpy1 is interpolated from the neighbouring weekly
benefit-to-go function F; and Fy4q (Figure 1.4). In other words, the parameters ((}5, ¥, [3) of

the hyperplanes associated with Fpiq are linearly interpolated from the parameters (¢, v,
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Ficure 1.4 — Implementing mid-term water values into short-term model

B3) corresponding to the weekly functions Fiy;. This interpolation procedure ensures that the

benefit-to-go function is available at the end of each day.

In the ST model, the non-convexity of the hydropower function is addressed using the same

approach as in the MT model, i.e with the same convex-hulls.
Py—aptsgi1/2 —wlrg < 8 + ¢lsg/2
(1.14)

Py—pfsyp1/2 — wiry < 67 +pfsy/2

Note that in the current version of the ST model, the travel time between two consecutive

power plants is ignored.

1.5 The rolling-horizon approach

Basically, the rolling horizon approach is based on three steps that are repeated every day over
the planning period : (1) based on the current status of the system (storage levels, past weekly
inflows, and updated ESF, determine the optimal release decision for day d, (2) implement
that release decision and assess storage level at the end of the day (sqi1), (3) update the

storage sq+1 with the actual inflow gq4.

The release decision made at the beginning of day d must be chosen from a set of M optimal

decisions, one per member, identified by the ST optimization model. Here, the actual decision
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FiGuURE 1.5 — The structure of the combined short- and mid-term operational model based on rolling horizon

rq is the mean of all decisions : )
_ m
rq = MZrd (1.15)
m
where 74, is the decision associated with the m! member.

At the beginning of the next day (d+1), the simulated storage sq41 is calculated from s4, the
actual release rq4 and the actual (observed) flow g, :

Sar1=384+qy— Crqg—eq (1.16)

This process is repeated each day until the end of the operation horizon (OH) is reached.
The main results are time series of daily hydroelectric productions, storage levels, turbined

outflows and spillages losses. Figurel.5 displays the structure of the MT-ST model based on
rolling horizon approach.
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Chapitre 2

Case study

The Gatineau River in Quebec is one of the main tributaries of the Ottawa River. The river
drains an area of 23,700 km?. The hydroelectric system consists of a cascade of four power
stations and two large reservoirs (Figure 2.1). The flow regime is highly regulated by two
upstream reservoirs : Cabonga and Baskatong. Baskatong supplies water to the Mercier power
plant whose outflows are then used to spin the turbines of three run-of-river power stations :
Paugan, Chelsea and Rapid Farmers. Paugan is a run-of-river power plant (R-O-R) with a
total capacity of 219 MW and a small reservoir of 30 km?. Chelsea and Rapides Farmer
have an installed capacity of 149 MW and 95 MW respectively. Table (2.1) lists the main
characteristics of the system. As we mentioned before, the Gatineau River basin comprises
inhabited areas and the main operating concerns are hydropower production. Apart from
that, the Baskatong reservoir must be kept high from 1 June to 15 September, to allow
boating and recreational activities for nearby residents. Moreover, the river level must be kept
above a specific level to ensure adequate drinking water supply for nearby towns. Finally,
the river must also be kept low for flood risk. The average volume of a spring flood in the
Baskatong reservoir is higher than the capacity of the Baskatong reservoir. The routine strategy
is to lower the level of the Baskatong reservoir at the end of the winter as much as possible
and then let the level rise during spring. Then, the reservoir level is kept all summer within
2.5 to 1.3 m of its maximum level until mid-September. During the fall, the reservoir is
managed so that a sufficient water reserve is cumulated to anticipate electricity demand during
winter. The operating margin for the operation of the Baskatong reservoir is quite small
considering the above mentioned constraints and the inflows it receives during certain periods.
Consequently, spillage is sometimes inevitable at the hydropower stations in spring and fall.
The most significant flood occurred in the spring of 1974. On this occasion, 3000 residents
were required to evacuate the area, over one-third of Maniwaki (downstream of Baskatong)

was flooded and 2.9 million Canadian dollars had to be provided in disaster relief.
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Ficure 2.1 — Gatineau River Basin (Pina et al. (2017b))

Storage Installed Capacity

Node Name Hm?3 MW
1 Cabonga 1633 -
2 Baskatong 3175 50
3 Paugan 93 219
4 Chelsea ROR 148
5 Rapides Farmers ROR 95
¢ ROR : Run of the river power plant

TABLE 2.1 — hydropower system of Gatineau River basin

2.1 Ensemble streamflow forecasts for the Gatineau River

basin

The ensemble streamflow forecasts (ESF) for the Gatineau river basin have been generated
by F. Anctil’s group at U. Laval. The starting point are ensemble meteorological forecasts
produced by the European Center for Medium range Weather Forecasts (ECMWF) (Fraley
et al. (2010)). These 50 ensemble forecasts are produced over a 14-day horizon and with a

temporal resolution of 12 hours.

Then, they are used as inputs to 20 lumped hydrologic models. The models are selected by

Seiller et al. (2012) based on their performance and structural diversity, i.e. 4 to 10 free param-

17



eters, and 2 to 7 storage units. The structure of all hydrologic models include some conceptual
storages (see Figure 2.2) to describe the main hydrological processes. All models implement
a time-delay function for routing ; they also consider the physical characteristics of the catch-
ments using a parametric logistic function. Snow accumulation and snow melting are computed
externally. They are all designed to take into account soil moisture with various linear and
non- linear formulations. Figure 2.2 summarizes the structure of the 20 models. The models
exhibit low to moderate complexity (four to ten free parameters and two to seven storages).
The input data for the lumped models are precipitation and potential evapotranspiration. A
more detailed illustration of the models can be found in Perrin (2000) and Seiller et al. (2012).

In this case study, each hydrological model is applied on the four sub-basing generating the
incremental flows in the system (Figure 2.1). Together, these 20 hydrologic models capture

the structural uncertainty associated with the modeling of the relevant hydrologic processes.

MODELS (M, to M,,)

oeeod
focX o7

oCe00
16] (15120

. 4 parameters . 8 parameters
. 6 parameters ® 9 parameters

7 parameters 10 parameters

INPUTS / OUTPUTS
P : Precipitation input (liquid and melt)

E : Potential Evapotranspiration

Q: Simulated total output discharge
STORAGES

Sf : Surface or interception store

S : Soil storage

N : Groundwater storage (or slow routing)

1
1
1
1
1
1
1
1
1
: Ss : Lower soil or rootzone storage
1
1
1
1
1
1
1
1
1
1

1
1
]
]
]
YOYO) : R N R
. . o . / Q," S . 1 R : Main routing storage (or quick routing)
N 1
) ]
. . . . CJ . . ! Rs : Overland flow routing storage
berccccssccas= L 1
[ I H Rss : Interflow (delayed) routing storage

2, 3 : Two or three same type storages
M : Multi-layers storage

FiGURE 2.2 — structure of 20 hydrologic models (from Seiller et al. (2012))

To capture the uncertainty attached to the initial (hydrologic) conditions, Ensemble Kalman
Filter (EnKF) is employed to create an ensemble of 50 possible initial conditions based on
the true probability density function of the model states conditioned by the observations.
Hence, for each hydrologic model, an ensemble of 2500 members is produced. Because the
computational burden associated with the ST model is directly proportional to number of
members, the size is reduced to 50 by randomly selecting one out of the 50 EnKF initial

conditions. In the end, each hydrologic model produces ESF with 50 members over a 14-day
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Ficureg 2.3 — ESFs of Baskatong reservoir from 20 individual hydrologic models for 50 ensemble members (leadtimel4
days)

horizon. For the sake of this study, the forecasts are aggregated on a daily time step. Figure

2.3 shows the daily ESFs for the Baskatong reservoir.

2.2 SDDP for the Gatineau River basin

The SDDP model is coded in MATLAB and the optimization scheme uses the linear Gurobi
solver. The model is implemented with 30 backward openings (K=30) and 35 hydrologic
sequences derived from the built-in MPAR(1) (M=35). The planning period of the mid-term
model is 5 years (T=260 weeks), but the results are analyzed for year three only as the first
and last two years are influenced by the boundary conditions (years 1 and 2 for the initial
conditions, and years 4 and 5 for the terminal conditions). The SDDP-derived future benefit
function approximations (Fiy1) from the third year (t = 105,...,157), are then passed on to

the short-term model.

Figure 2.4 displays the marginal water value (panel a) and drawdown refill cycle (panel b) of
the Baskatong reservoir. In general, during the first weeks of the year (winter season), water
values decrease and the storage draws-down to deplete the reservoir for the following floods
during the snowmelt season (weeks 12-24). During this period, the water values increase and

the storage is refilled.
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FicuRrE 2.4 — SDDP derived marginal water value (panel a) and optimal storage of Baskatong reservoir(panel b) (35
years)

2.3 LP for the Gatineau River basin

The LP model for the Gatineau river system is also coded in MATLAB and also uses the Gurobi
solver (see Appendix). The first input are the 14-day ESFs (FH = 14) with 50 members, which
are available for 20 hydrologic models over an operation horizon (OH) of 6 years. Another input
are the daily SDDP-derived benefit-to-go functions, which are available as a set of coefficients
é, 4, and B.

To better perceive the impact of the structural uncertainty associated with the hydrological
models on the performance of the system, the problem was solved based on two configura-
tions. In the first configuration, the reservoir operation problem is solved individually for each
hydrological model. In other words, the rolling-horizon approach is implemented 20 times, one
per hydrologic model, yielding a total of 2,192,000 LP model runs : 50 ESF members x 2192
days x 20 hydrologic models. The main outputs therefore consist of 20 time series of optimal

release decisions, hydroelectric productions, storage levels, and spills over 2192 days.

In the second configuration, the rolling horizon approach is implemented once, aggregating

the results of all hydrologic models. Here, the actual decision at day d, is the average over the
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50 x 20 decisions associated with the pairs (member - hydro model). In this configuration,
we assume that the pairs (member - hydro models) are equally-likely ; that is, the pairs have
the same weight. The outputs here are (single) time series of hydroelectric production, storage

levels, releases, and spills.
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Chapitre 3

Analysis of simulation results

Figure 3.1 shows the average drawdown-refill cycle of the Baskatong Reservoir for the first
and second configuration. As observed in this figure, the drawdown starts in the summer and
continues until days 77-78 when the snowmelt season begins. The reservoir then quickly refills
at the beginning of the following summer. For the second configuration, as expected, we can
see that the optimal storage lies within the zone defined by the trajectories identified with the
first configuration (20 hydro models separately).

3000

2500

N
o
o
o

1500

Storage(hm3)

1000

20-models —grand mean - - max storage — — min storage

500

l | | | | | |
50 100 150 200 250 300 350
Day

Ficureg 3.1 — Optimal short-term storage levels for Baskatong reservoir for 20 hydrologic models (first configuration)
and grand mean (second configuration)

With the first configuration, the optimization framework yields 20 time series of daily energy
at each power plant, each corresponding to a particular hydrologic model. To measure how
well the hydrologic models perform, a comparison is made between the energy generated
with the individual ESFs and the perfect forecasts (PF) (i.e. when the forecasted flow is
replaced by the observed flow). In other words, the benchmark is the energy generated in
a semi-deterministic environment in which the short-term hydrologic uncertainty is ignored.

The normalized difference between the energy generated with the ESF and the PF is the
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performance indicator used in this study. Let A"(j) be the relative difference between the
energy generated at the power plant j with PF and with ESF corresponding to the hydrological
model A :

v AMG) —min(A ()
") ()~ min () &y

The closer 6"(5) is to zero, the closer is the energy generated with model A to the energy
generated with PF. Conversely, the hydrologic model with §"(j) approaching 1 shows the
largest energy difference with respect to the perfect forecast and therefore performs poorly in

economic/utility terms.
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Fi1GURE 3.2 — Energy performance of 20 hydrologic models over 6 years for Gatineau River basin

Figure 3.2 displays the performance of 20 hydrologic models for the Gatineau River basin
during the operation horizon (OH = 6 years). The x-axis represents 20 hydrological models,
while the y-axis is the performance indicator (0) of the models. It is important to note that the
generated energy at the power plant located in the outlet of the basin is the aggregated energy
of that power plant and the upstream power plants. Therefore, the energy performance at this
power plant (R-Farmers) is representative of the basin-wide energy performance. The best
performance is achieved with My7, while the worst is observed with Mgg. Table 3.1 shows that
M7, Mog, Mo outperforms the others. Since the optimization formulation and the benefit-
to-go functions’ parameters were the same for all 20 runs, the forecasts’ quality appears to be

the only factor responsible for those differences.

The probabilistic hydrological forecasts are assessed in terms of accuracy, resolution and re-
liability. An ensemble streamflow forecast can be considered reliable if it contains all of the

observations within the uncertainty bounds ; however, if the uncertainty bounds are very large,
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Ranking | energy
performance
M7

Mos

Myo

Mig

= W N =

TABLE 3.1 — The best four models in terms of energy generation for Gatineau river basin

the precision of the ensemble becomes low and the ensemble is not useful for decision-making
purposes. For instance, a reliable 80% confidence interval should contain the observation eight
times out of 10 on average. Resolution evaluates the ability of discriminating between two
events which are different. Accuracy is a measure of the distance between forecast and ob-
servation. Traditional deterministic scores like mean absolute error (MAE) cannot be used
in order to measure the quality of the probabilistic forecasts. The quality of the probabilistic
forecasts are often characterized by the continuous ranked probability score (CRPS ; Matheson

and Winkler (1976)), which assesses the accuracy of the ensemble forecasts. It is defined as :

+oo
CRPS(F) = [ (Fia) = H(s > a)d (3.2)

—0o0

where Fy(z) is the cumulative distribution function at time ¢, x is the predicted variable, and
Tops 1S the observed value. The function H is the Heaviside function, which equals 0 for the
predicted values less than the observed value, and 1 for the values greater than the observation.
Figure 3.3 shows the relationship between the quality of the forecasts and performance of the
hydropower system for each power plant. The forecasts are characterized by the CRPS while
the performance is illustrated by the indicator ¢ i.e. the normalized difference between the
energy generated with PF and ESF. Because the CRPS are available for each sub-basin, the
scores must be aggregated. In this case, the aggregation is simply the average of the upstream
CRPS associated with the sub-basins drained by the power plant. Despite this approximation,
it can be clearly observed that the hydrologic models with the low CRPS tend to perform
better. In the upstream reach (Baskatong), models M3 and Mgs appear to be the most
interesting ones. Further downstream, at Paugan, the group is extended and now includes
models M12, M17, Mgg and Mgg, which are again found at Chelsea. Mgg in Paugan is replaced
by Mjg in Chelsea. The least interesting models are either M7 or Mpg depending on the site.

Table 3.2 provides a ranking of the most interesting hydrologic models and their structure.
As we can see, all of the models include soil storage (S) and groundwater storage (N) in their
structure. Apart from M2, none of the models incorporate surface storage (Sf). Among the 20
models, M7 and Mgg are among the few models that have a root zone storage (Ss) component.
Among the models with better performance, Mg is the only one that employs main routing
storage (R) in the structure. Moreover, M3 and Mj3 are among the few models that apply

overland flow storage (RS) with two storages in their structure. Interestingly, Mjo, which is

24



Baskatong Paugan

1r ao 8 1r o8
Sosf Zosr
S S
© aa I
306 as 15 18 7 £06[ o1
£ @0 2
8 8 o7
a1
é 04f 1 1 é 04 3
8 8
g o2t go2t
o5
0 ot3 ‘ oo ‘ ‘ ‘ ‘ 0 ‘ ‘ L2 ‘ ‘ ‘ ‘ ‘
0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.28 0.3 032 034 036 0.38 0.4 042 044 046
Hydrologic score (CRPS) Hydrologic score (CRPS)
Chelsea
1r 8
=08
S
§ 1 7
5061 15
£ a0 @0
3 a1
T 04 s as
g o5 aa
L 02
o 9 03°.
foz2t 013 4
a9
A2 17 6
0 L4 0 L L L L L |
0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

Hydrologic score (CRPS)

FicuRE 3.3 — the relationship between the performance of the models and their hydrological scores (three sub-basins)

S N Sf Ss R Rs RSs Free calibrated

parameters
Mo * * * ~ ~ * * 10
Mg *  * - L * . 8
Mg * % _ * _ _ _ 9
My; *  F o F L . . 7
Mg * % _ I _ _ 8

* = The element present in the model

S = soil storage ; N= groundwater storage
St = surface storage; Ss = root zone storage
R = quick routing storage;

Rs = overland flow routing storage;

RSs = interflow routing storage

TABLE 3.2 — The structure of the best models during the operation horizon (OH=6 years)
the most complex model with seven storages and ten free calibrated parameters, is the only
model that employs interflow routing storage (RSs) with two reservoirs.

Table 3.3 provides the structure of the models which perform poorly. Likewise, it is unclear
which components of My7 and Mpg lead them to perform poorly. Apart from the common

structure (incorporating S and N) of these two models compared to the other models, Mog
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S N Sf Ss R Rs RSs Free calibrated

parameters
My * * - - * N 7
Mps * * - R _ ) 7

* = The element present in the model

S = soil storage; N= groundwater storage
Sf = surface storage; Ss = root zone storage
R = quick routing storage;

Rs = overland flow routing storage;

RSs = interflow routing storage

TABLE 3.3 — The structure of the worst models during the operation horizon (OH=6 years)

uses a linear R which may cause poor performance of this model among the others. Mg; also

applies three RS and incorporates six free calibrated parameters.

Generally, the models that incorporate more than six free calibrated parameters always per-
form better, while the models that include Sf and R do not perform well. However, M2 and
M;jg are exceptions, which include Sf and R in their structures and they are in the group of

the models with good performance.

The Gatineau River basin is characterized by a warm and humid climate during the summer,
and generally wet, cold and snow-covered in the winter. This climate leads to very high flows
during spring-summer (i.e. snowmelt season ; weeks 11-24). To consider the impact of seaso-
nality, the average of the six years performance indicator (J) and CRPS during the snowmelt
season (days 77-168) and the rest-of-the-year (days 1-77 and days 169-365) are calculated for
20 hydrologic models. Figures 3.4 and 3.5 display the relationship between the performance
of the hydropower (§) for each power plant (y-axis) and the quality of the forecasts (CRPS)

(x-axis) during the periods of snowmelt and rest-of-the-year, respectively.

Figure 3.4 illustrates that during the snowmelt season, Mgs and M3 appear to possess better
energy performance and CRPS for the upstream power plant (Baskatong). However, by moving
to the Paugan, the group extends to M2 and Myg. In the downstream power plant (Chelsea),
M;j; joins this group. Figure 3.5 shows that during the rest-of-the-year period, apart from
Mps and M;j3 that still appear interesting, Mgg also performs well in the upstream reach
(Baskatong). By moving downstream (Paugan), M5 leaves and M9 and M;7 join this group.

In the downstream power plant (Chelsea) Mig joins the group.

Comparing Figures 3.4 and 3.5 reveals that some of the models perform well in both periods
of the snowmelt season and rest-of-the-year. For instance, Mgs; and M3 for the upstream
power plant (Baskatong) and M9 and M3 for the downstream power plant (Chelsea) perform
well in both periods. However, some models perform differently during the two periods. For

example, during the snowmelt season, Mgs, M11, and Mg are among the interesting models for
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FicuURE 3.4 — the relationship between the performance of the models and their hydrological scores (three sub-basins)
- snowmelt season

the downstream power plant ; however, during the rest-of-the-year period, Mgg, M17, and Mg

appeared to possess better performance. It is important to note that the best models during
the operation horizon (OH=6 years) (Figure 3.3) and during the rest-of-the- year period (3.5)

for the downstream power plant are similar. Thus, the analysis structure of the best models

during the rest-of-the-year period is the same as the operation horizon (Table 3.2).

S N Sf Ss R Rs RSs Free calibrated
parameters
My * * * L * * 10
Mg * - - - : 8
Mo * - % R _ _ 4
M;; * * * * B B B 6
Mg * * * B * B B ]

* — The element present in the model

S = soil storage ; N= groundwater storage

St = surface storage; Ss = root zone storage

R = quick routing storage;
Rs = overland flow routing storage;

RSs = interflow routing storage

TABLE 3.4 — The structure of the best models during the snowmelt season
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FicuRE 3.5 — the relationship between the performance of the models and their hydrological scores (three sub-basins)
- rest of the year

Based on Figures 2.2 and 3.4, the structure of the best models during the snowmelt season for
the Gatineau River basin is presented in Table 3.4. As observed, all the best models incorporate
N and S, which are the common characteristics of all hydrologic models; however, Mgs is an
exception, because it is the simplest model with only four calibrated parameters, and the only

model that does not include N in the structure.

As observed in Table 3.4, all the best models include Sf in their structure ; however, Mi3 is
an exception, which does not incorporate Sf. My is the only model that includes Ss, with six
free calibrated parameters. Mgs and Mg are the models that incorporate R in their structure.
This might suggest that quick routing storage (R) helps the models to perform well during

the snowmelt season.

M;j2 and Mj3 are the models which perform well during both the snowmelt and rest-of-the-
year periods. Among all 20 models, they are the few that incorporate RS in their structure. It
was previously mentioned that Mjs is the most complex model with 10 calibrated parameters
and the only model that includes RSs in the structure. In the both periods (snowmelt and

rest-of-the-year), Moy and Mog appeared to perform poorly.

As observed in Table 3.4, Sf is the element which appeared in the structure of most of the

28

0.4



models with good performance during the snowmelt season ; however, the best models during
the rest-of-the-year period (Table 3.2) do not incorporate this element in their structure. It is
suggested perhaps with the high amount of surface flow, Sf helps the model to perform better

during the snowmelt season.

Similarly, R appeared in the structure of two models during the snowmelt season (Table
3.4) ; however, during the rest-of-the-year period (Table 3.2), this element is observed in the
structure of only one model. It maybe suggest that R is more applicable, during the high flow

season with more floods.

It is also observed that Mgs performs well without the incorporation of N in the structure. This
suggests that during the high flow season, the groundwater storage for the basin is negligible.
More information about the physical characteristic of the basin such as the type of the soil,
slope, and land-use will help to better understand the reasons for the high performance of
Mps during the snowmelt season. However, it is not within the scope of this study to explore
the details related to the structure of the models. Furthermore, information regarding the
characteristics of the basin such as types of storage (e.g. surface storage, soil storage, routing

storage) was not available in this study.

A comparison of Figures 3.4 and 3.5 demonstrate that the values of CRPS for all three reaches
during the snowmelt season are higher than the rest of the year. However, this should not be
interpreted as the quality of the forecast being lower during the snowmelt season due to CRPS

being typically greater for higher flow periods.

Perfect Mo Mog Second
Forecast configuration
Annual average 2852 2813 2764 2800
Difference - % -14 %-3.1 %-1.9

TABLE 3.5 — Annual average energy generation by perfect forecast, second configuration, the best and the worst
hydrologic models (GWh/year)

In absolute terms, based onFigure 3.3, the best model (Mj2) produces 1.7% more energy
than the worst model (Mog) (see Table 3.5). The annual potential gain of the best model is 3.4
million dollars more than the worst model. The opportunity cost of the best hydrological model
corresponds to 1.4% of the amount of energy that could be generated if perfect forecasts were
available for the next 14 days. In other words, the lack of perfect foresight reduces the energy
output by 1.4% when the best forecasts are utilized. This amount of energy is equivalent to
approximately 2.8 million dollars per year. This 3.1% reduction amounts to approximately 6.1

million dollars per year when the worst forecasts are processed by the optimization framework.

When the second configuration is implemented (i.e. the actual decision is the average of the
overall models and members), the reduced energy output reaches 1.9% compared to the perfect

forecasts, which is 0.5% lower than the amount of energy obtained with the best hydro model
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(Mi2). The potential annual gain of the second configuration is 3.6 million dollars less per
year than the perfect forecast and 905 thousand dollars less than the best hydrologic model.
This result seems to indicate that the design of a multi-modeling framework for hydrologic
forecasting would benefit from a selection of the models based on both their structure and
economic performance. For instance, in our case, a group of the models Mgg, M12, M7, M3,
and Mg (see Figure 3.3) benefit from the highest energy performance and hydrological scores.
Implementing a group of these models, instead of using all 20 hydrologic models, will increase
the economic benefits of the daily release decisions that lead to enhancing the benefits of the

system.
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Chapitre 4

Conclusion and future work

This study presents a modeling framework to optimize the production of hydroelectricity while
taking into account short (daily) and mid-term (weekly) forecasts. The framework is used in
simulation to analyze the relationship between the quality of the short-term forecasts and their
economic performance. This is illustrated using the hydropower system of the Gatineau River
basin where ESF, corresponding to twenty hydrologic models, is available on a daily time step
over a period of six years. The twenty models capture the structural uncertainty associated
with hydrological modeling and therefore, generate forecasts with contrasted quality. Each set
of ESF associated with a particular hydrologic model is then processed by the optimization

framework to determine the optimal amount of energy that can be generated by the system.

The optimization is repeated 20 times in order to have a sample large enough to analyze the
relationship between the quality of ESF and economic performance of the power system. These
results confirm that the forecast accuracy tends to improve the performance of the system;
however, the relationship is not univocal. Some hydrologic models may be characterized by a

good statistical score, but perform poorly in terms of energy generation.

Considering the economic gains from the models with the best performance, worst perfor-
mance, and average of all 20 models (second configuration), it can be concluded that applying
a group of models with higher performance will increase the benefits of the system. This group
of models can be regarded as the basis of a multi-modeling framework. However, the members

in the group of the best models change during the snowmelt season.

Because the Gatineau River basin is characterized by high flows during the spring and early
summer, the impact of seasonality must be considered. Thus, the relationship between the
quality of ESF and economic performance of the system during the snowmelt season is exa-
mined. The results show that some of the models that previously appeared in the group of
the best models perform differently during the snowmelt season. This implies that the per-
formance of some models is affected by the seasonality, which might affect the design of the

multi-modeling framework. In terms of reservoir operation, choosing hydrologic forecasts with
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better performance during the snowmelt season is essential as it affects the refill phase of the

reservoirs.

To better perceive the impact of structural uncertainties associated with the hydrological
models, and as an operational scenario, the second configuration was implemented where the
actual decision is the average of all members and all hydro models. The results suggest that the
benefits of the system can increase if a carefully chosen subset of hydro models is assembled,
but it would require going beyond the mere assessment of the scores and also investigate the

economic performance, a process that will likely be more time-consuming.

The short-term optimization can be improved by substituting LP by non-linear programming
(NLP) to better handle the non-linearity of the hydropower production function. Future work
may also consider the incorporation of travel time between the power plants. It may also be
better to have ESF for the total flow at the dams instead of incremental flows in order to
facilitate the treatment of the CRPS, which must be aggregated in order to have one score

per dam.

Since the optimization formulation and FBF parameters are the same for all 20 hydrologic
models, the quality of the forecast is the only factor responsible for the differences in terms
of energy output. In this study, we considered CRPS as an indicator of accuracy for the
hydrologic forecast. However, future work may consider Nash—Sutcliffe Efficiency (NSE) as

another criterion to design multi-model ensemble hydrologic forecasts.
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Chapitre 5

Appendix : ST model code in
MATLAB

% Update day: 2018 10 04

% This code is the daily linear optimization for Gatineau River
basin

% to work with the code, the functions Weekly 2 Dailyl.m , In_data.
m,

% EnergyFun convHull.m, weekly 2 Daily Power Price are required.

WSTTSTTISSTSSTIISSISTSSTISSTIS SIS SISTSSTISSIISSIITSI TS o

clear all;
warning off;
tic;

update= datetime ( 'now’);

load ("new Inflow rand’); %The
hydrologic Ensemble file

new Inflow = new Inflow rand;

load ("Gatinel6.mat’);

Gatineau{l}=Gatinl6{3};

addpath ('C:\ gurobi652\ win64 '\ matlab\ ")

J=5;
% number of nodes

Ens hr—size (new_ Inflow.new Inflow(1).new Inflow.ESF(1, 1).ESF,1);
% forecast horizon

number of Years =round(length (new Inflow.new Inflow(1).new Inflow.

ESF)/365+1); %operation years + 1 year = for converting weekly

33



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

SDDP to daily

operation horizon = length (new Inflow.new Inflow(1).new Inflow.ESF

); %operation horizon

start Day =1;

end Day = operation horizon; %operation horizon

members =size (new Inflow.new Inflow(1).new Inflow.ESF(1, 1).ESF,2);

% ESF members

% members—1;

number of hydro models = length (new Inflow.new Inflow);

%% Approximation of parameters for energy production coefficient

MW/hm3/month |
JCONVEX-HULL

%Perfect forecast

[b_Ca, =, 7, HPhull grid Ca,HPreal Ca| =EnergyFun convHull(Gatineau
{1}.system, 0, 0, 1, 5); %Cabonga

[b_Ba, ~, 7, HPhull grid Ba,HPreal Ba| =EnergyFun convHull(Gatineau
{1}.system, 0, 0, 2, 5); %Baskatong

[b_Pa, =, 7, HPhull grid Pa,HPreal Pa| =EnergyFun convHull(Gatineau
{1}.system, 0, 0, 3, 5); %Paugan

[b_Ch, 7, 7| =EnergyFun_ convHull(Gatineau{1l}.system, 0, 0, 4, 5);

%Chelsea
[b_ RF, =, 7| =EnergyFun_ convHull(Gatineau{1}.system, 0, 0, 5, 5);

Y%R—farmers

structure_ B( 1, 1 ).b_All nodes(1,:)=b_Ca;

structure_ B( 1, 1 ).b_All nodes(1,:)=b Ca;
structure_ B( 2, 1 ).b_All nodes(1,:)=b Ba;
structure_B( 3, 1 ).b_All nodes(1,:)=b_Pa;

if J=—=1

end

if J==2
structure_ B( 1, 1 ).b_All nodes(1,:)
structure_ B( 2, 1 ).b_All nodes(1,:)

end

if J==3

end

if J=—

structure_ B( 1, 1 ).b_All nodes(1,:)=b_Ca;
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structure_ B( 2, 1 ).b_All nodes(1,:)=b_Ba;

structure_ B( 3, 1 ).b_All nodes(1,:)=b_Pa;
structure_ B( 4, 1 ).b_All nodes(1,:)=b_Ch;

end

if J=5
structure_B( 1, 1 ).b_All nodes(1l,:)=b_Ca;
structure_ B( 2, 1 ).b_All nodes(1,:)=b_Ba;
structure_B( 3, 1 ).b_All nodes(1,:)=b_Pa;
structure_ B( 4, 1 ).b_All nodes(1,:)=b_Ch;
structure_B( 5, 1 ).b_All nodes(1,:)=b_ RF;

end

%% Extracting data from SDDP (for myopic management you dont need
these part)

% These lines uses Weekly 2 Daily function and convert the SDDP
derived weekly beta,

% gamma, phi to daily for ST model

Daily Beta = (Weekly 2 Daily(Gatineau ,6,number of Years+1,Ens hr));
% daily beta is the same for all nodes

ST Output{l, 1}.cuts.Daily Beta = Daily Beta(:,1:operation_ horizon-+
+ Ens_hr); % placing daily beta in a structure

for j=11+1:11+J % daily gamma

Daily Gamma= Weekly 2 Daily(Gatineau,j,number of Years+1,Ens hr);

ST Output{l, 1}.cuts.Daily Gamma(j—11,1).Gamma = Daily Gamma(:,1:
operation horizon + Ens_hr); % placing daily gamma in a
structure

end

clear j

for j=6+1:6+J %daily phi

Daily Phi= Weekly 2 Daily(Gatineau,j ,number of Years+1,Ens hr);

ST Output{1l, 1}.cuts.Daily Phi(j—6,1).Phi = Daily Phi(:,1:
operation horizon + Ens hr+1); %placing daily phi in a structure

end

clear Daily Gamma Daily Phi j

%

ISTTISTITSTISTIISTISSITISSITSTISSISISSISSSISSIISSIISIISSTISSISSSTISSIISSISSTISST T

nmb_of Cuts=size (Gatineau{l, 1}.cuts{1, 1},1);  %number of
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%

backward opennings for cuts SDDP

TITTTSTISSTTSSTISTIIST IS SIS SIS SIS SISSTISSTISSITTSSIISTITS TS SIS SIS ST TSI SIS ST

JMYOPIC MANAGEMENT scenario
Daily Beta —zeros(nmb_of Cuts,operation horizon+ Ens hr);
Daily Gamma= zeros (nmb_of Cuts,operation horizon+ Ens hr);

Daily Phi— zeros(nmb_of Cuts,operation horizon+ Ens_ hr);

ST Output{l, 1}.cuts.Daily Beta — Daily Beta;

for j= 1:J]

ST Output{1l, 1}.cuts.Daily Gamma(j,1).Gamma = Daily Gamma;
ST Output{1l, 1}.cuts.Daily Phi(j,1).Phi = Daily Phi,;

end

TSSTISTITSTISTTISTITSITISSTISTITSSISSISSSISSTISSTISSIISTISSTSS SIS SISS SIS SIS ST

%% VARIALBLE DEFINITION:

%

S In=Gatineau{l, 1}.siml.st(2+31%52,:

characteristics of the reservoirs (hydropowers):
s %initial storage from SDDP

)
Smax=Gatineau{l, 1}.system.smax(1:J,1);
Smin=Gatineau{1l, 1}.system.smin(1:J,1);
Rmax=Gatineau{l, 1}.system.rmax(1:J,1)/7;
Rmin=Gatineau{l, 1}.system.rmin(1:J,1)/7;

Ptmax=Gatineau{l, 1}.system .hp(1l:J,1);
Plmax—=Gatineau{l, 1}.system.firmp (1:J,1);

%% Aineq2 : ST matrix for convexhull inequality
Sinq2 =|[];
for t=1:Ens_hr

for p=1:J
if p<4
b=structure B( p, 1 ).b_All nodes(1,:);
size _b=size (b,2);
dumi_Sinq2=zeros (size_b ,Ens_ hrxJ);
clear sail
for bl=1:size b
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124

129
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131

132

141

142

143

144

147

end

if

end
if

sail (bl,1)=b{1,b1}(3);

end

if t==
dumi_Sinq2 (:,p)=—sail /2;
Sinq2=[Sinq2;dumi_Sinqg2 |;

else
dumi_Sing2 (:,(t—2)*J+p)=——sail /2;
dumi_Sing2 (:,(t—1)*J+p)=-sail /2;
Sinq2=[Sing2;dumi_Sinqg2 |;

end

end

J=A4
b=structure B( J, 1 ).b_All nodes(1,:);
dumi_Sing2=zeros(1,Ens hrxJ);
sai2=b(3);
if t==1
dumi_Sinq2(1,J)=—sai2/2;
Sing2=[Sing2;dumi_Sinqg2 |;
else
dumi_Sinq2(1,t*J—J)=sai2 /2;
dumi_Sinq2 (1,t*J)=sai2 /2;
Sing2=[Sing2;dumi_Sing2 |;

end

J=—
b=structure B( J—1, 1 ).b_All nodes(1,:);
dumi_Sing2=zeros (1,Ens_hrxJ);
sai2=b(3);
if t==
dumi_Sing2(1,J—-1)=sai2 /2;
Sinq2=[Sinq2;dumi_Sing2 |;
else
dumi_Sing2(1,t*J—1-J)——sai2 /2;
dumi_Sing2(1,txJ—1)=sai2 /2;
Sing2=[Sing2;dumi_Sinqg2 |;

end

b=structure B( J, 1 ).b_All nodes(1,:);
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174

175

176

177

end

end

dumi_Sing2=zeros (1,Ens_hrxJ);
sai2=b(3);
if t==
dumi_Sing2(1,J)=sai2 /2;
Sinq2=[Sinq2;dumi_Sing2 |;
else
dumi_Sinq2(1,t*J—J)=sai2 /2;
dumi_Sing2(1,t«J)=sai2 /2;
Sinq2—[Sinq2;dumi_Sing2 |;

end

clear dumi_Sing2

Ring2 =[];
for t=1:Ens

for

end
if

end

if

_hr
p=1:]
if p<4
b=structure B( p, 1 ).b_All nodes(1,:);
size _b=size (b,2);
dumi_Ring2=zeros (size b ,Ens_ hrxJ);
clear omegal
for bl=1:size b
omegal (bl,1)=b{1,bl}(2);
end
dumi_Ring2 (:,(t—1)*J+p)=omegal ;
Ring2=[Rinqg2;dumi_Rinq?2|;
end
J==

b=structure B( J, 1 ).b_All nodes(1,:);
dumi_Ring2=zeros (1,Ens hrxJ);
omega2=h(2) ;

dumi_Ring2 (:, t*J)=—omega?2;
Ring2=|Ring2;dumi_Rinqg2];

J::
b=structure B( J—1, 1 ).b_All nodes(1,:);
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213

214

215

216

219

220

221

222

end

end

dumi_Rinq2=zeros (1 ,Ens_hrxJ);
omega2=b(2);

dumi_Ring2 (:,t*x(J—1)+(t —1))=omega?2;
Ring2=|Ring2;dumi_ Rinqg2|;

b=structure_B( J, 1 ).b_All nodes(1,:);
dumi_Rinq2=zeros (1,Ens_ hr«J);
omega2=b(2);

dumi_Ring2 (:, t*J)=—omega?2;
Ring2=|Ring2;dumi_Rinqg2|;

clear dumi_ Ring2

Ling2=Rinq2

Ptinq2 =[];
for t=1:Ens

for

end
if

end
if

x0; %Linqu2

_hr
p=1:]
if p<4
b=structure B( p, 1 ).b_All nodes(1,:);
size _b=size (b,2);
dumi_Pting2=zeros(size b ,Ens_ hrxJ);
dumi_Pting2 (:,(t—1)xJ+p)=ones(size b ,1);
Ptinq2=|[Ptinq2;dumi_Ptinq2];
end
J==

b=structure B( J, 1 ).b_All nodes(1,:);
dumi_Pting2=zeros (1,Ens_ hrxJ);
dumi_Pting2 (:,txJ)=1;
Ptinq2=[Ptinq2;dumi Pting2|;

J==H

b=structure B( J—1, 1 ).b_All nodes(1,:);
dumi_Pting2=zeros (1,Ens_ hrxJ);
dumi_Pting2 (:,tx(J—1)+(t—1)) =1,
Ptinq2=[Ptinq2;dumi_Ptinq2];

b=structure B( J, 1 ).b_All nodes(1,:);
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252

254

255

256

259

260

261

262

dumi_Pting2=zeros (1 ,Ens_hrxJ);
dumi_ Pting2 (:,txJ)=1;
Ptinq2=|[Ptinq2;dumi_Ptinq2];
end
end
clear dumi_ Pting2

Plinq2=Rinq2*0;
P2inq2=Rinqg2x0;
Finq2=P2inq2 (:,1) ;

Aing2—[Sinq2 Ring2 Ling2 Pting2 Plinq2 P2inq2 Fing2];
%% Aeq : ST matrix for mass balance equation and energy equation:
[Aeq, ub, lb]= Matrix_ Definition Aeq(Ens_hr, Smax, Smin, Rmax, Rmin

, Ptmax, J, Plmax);

%% calling and Storing daily energy prices from SDDP:
ST Output{1l, 1}.system.pi = weekly 2 Daily Power Price(Gatineau{l,

1}.system.pi, J, number of Years ); %Secondary p ($/MW/hr)
ST Output{1l, 1}.system.pi2 = weekly 2 Daily Power Price(Gatineau{l,
1}.system.pi2, J, number of Years ); %total p ($/MW/hr)
9%
for h= l:number of hydro models % this loop is for repeating 20

times for the number of hydrological models

% for h= 1:1 %PERFECT FORECAST (this loop is for the perfect
forecast

% scenario)

Repeater2=strcat (' This is hydro—model loop ’, num2str(h),’ /20")

for l=start Day:end Day % This loop is for one time ST optimization
(50 members, OH =2192 days)

%% Aineq : inequalities of FBF and convexhull

%Aineql : Building the future—benefit—function inequality
matrix for ST:

Sineql=zeros ((nmb_of Cuts) ,(Ens_hr)xJ); %storage

for q=1:nmb_of Cuts

40



263

264

267

268

269

271

274

277

278

279

282
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284

285

for j=1:J
phi_nodes(1,j)=ST Output{l, 1}.cuts.Daily Phi(j).Phi(q,
Ens hr+l);
end
Sineql ((q—1)+1:q,J*(Ens_hr—1)+1:J«Ens_hr)= phi nodes;

end

Rineql=zeros ((nmb_of Cuts) ,(Ens_hr)=J);
%release
Lineql=zeros ((nmb_of Cuts) ,(Ens_hr)=J);
%spill
Fineql=ones ((nmb_of Cuts) ,1);
%benefit to fo function
Ptinl=zeros ((nmb_of Cuts) ,(Ens_hr)*J);
%total power
Plinl=zeros ((nmb_of Cuts),(Ens_hr)*J);
%firm power
P2inl=zeros ((nmb_of Cuts) ,(Ens_hr)*J);
%secondary power
Aineql=[Sineql Rineql Lineql Ptinl Plinl P2inl Fineql|;
%’ the first A matrix’’

Aineq=[Aineql ; Aing2|; % Aineg

T Taking the initial storage for each loop
% Note taht the initial storage is the same for 50 members per day
if 1==
SS=S In;
else
SS=storagel;
end
%% This loop repeats the optimization for each member for one day
for m=1:members
%% bineq
%bineql : The right side of benefir—to—go function
%bing2: The right side of convex—hull inequality
dumi_daily Beta = ST Output{l, 1}.cuts.Daily Beta(:,Ens_ hr+l—-1);
bineql =[];
for q=1:nmb_of Cuts
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319

%

for j = 1:J
Gamma_node(j,1)=ST_ Output{1l, 1}.cuts.Daily Gamma(j).Gamma(q
,Ens_ hrt+l—1);

%

sum_Q last 7 days(j,l)= sum(new Inflow.new Inflow(h).
new Inflow .ESF(1, j).ESF(Ens hr—7+1:Ens hr,m)); %lagl
% sum_Q last 7 days(

j,1)= (sum(new Inflow.new Inflow(1).
new Inflow.Obs(j).Obs(1l,:)))’; %Perfect forecast

%
Gamma_ Q(j ,1)=Gamma_node(j,1)*sum_Q last 7 days(j,1);
end
VG
dumi_bineql=sum (Gamma_ Q(1:J))+dumi_daily Beta(q,1) ;
bineql=[bineql ;dumi_ bineql |;
end

binq2=bing2 function(l, Ens hr, J, structure B, SS);
bineq=|bineql ;binq2 |;

9% beq

%beql : The right side of mass balance equation
%beq2 : The right side of energy balance equation
beql dumi = [];

for j=1:J

%

Inflow m d = (new_ Inflow.new Inflow(h).new Inflow.ESF(1, j).ESF(:,
m) ) ’;
% Inflow_m_d = new_Inflow.new Inflow(1l).new_ Inflow.Obs(j).Obs(1,:)
;. %Perfect forecast

%
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s21 Inflow m d (1,1)=SS(j,1)+ Inflow m d(1,1);
322 beql dumi = |beql dumi; Inflow m d];

323 end

324 beql =|];

325 for g=1:Ens_ hr

326 beql dumi2 = beql dumi(:,q);

327 beql=|beql;beql dumi2|;

328 end

320 clear q j
331 beq2= zeros(J+«Ens_hr,1);
333 beq=|beql; beq2]; %beq

335 %% objective function:
336 Pi_ Ens=|[];

337 pi2 Ens=][];

338 for a=1:Ens_ hr

339 Daily Price_Pi_dumi= ST Output{l, 1}.system.pi(l+a—1,1:J);
340 Daily Price Pi2 dumi= ST Output{l, 1}.system.pi2(l+a—1,1:J)
341

342 Pi_Ens=[Pi_Ens Daily Price Pi_dumi]; % $/MW/ hr

343 pi2 Ens=[pi2 Ens Daily Price Pi2 dumi]; % $ / MW/ hr

344 end

345

s46 Objective f=|zeros(1,J*Ens hr) zeros(1l,J«Ens_hr) Oxones(1,J*Ens_ hr)
zeros (1,J*Ens hr) Pi_ Ens.*24 pi2 Ens.x24 1];

347 % Objective f=|zeros(1,J*Ens hr) zeros(1,J«Ens hr) Oxones(1,Jx
Ens hr) zeros(l,JxEns hr) Pi Ens.x24 pi2 Ens.x24 0]; %MYOPIC
MANAGEMENT

329 Y% ST optimization
350 |ESF _Opt, duals, fval] =
351 A maximise(Objective f, Aeq, beq, Aineq, bineq, lb, ub, 1);

353 Y% OUTPUTS

354 %output for each member:
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355 release (: ,m)=ESF_Opt(71:75);

356 storage2 (: ,m)=ESF Opt(1:5);
357 spill2 (: ,m)=ESF_ Opt(141:145) ;
358 pt (:,m)= ESF_ Opt(211:215);

359

360

361

362 OBF = Objective f(end)*ESF Opt(end);

363 ESF.OBF(1,:) = OBF ;

364 IBOBF = Objective f(l:end—1)*ESF Opt(1l:end—1);
s65 ESF.IBOBF(1,:) — IBOBF ;

367 % For Perfect forecast remove this for:

368 for j= 1:5

369 ESF.Inflow Mean(1,j).Mean(l,:)= mean(new_Inflow.new_Inflow
(h).new Inflow.ESF(1, j).ESF ,2);

370 ESF.Inflow First Day(1,j).First Day(l ,m)= new Inflow.
new Inflow (h).new Inflow.ESF(1, j).ESF(1,m);

371 end

372 end %for m

373

374 % average of 50 members:

375 release_mean m = mean(release ,2);
376 storage2 mean m = mean(storage2 ,2);
377 spill mean m = mean(spill2 ,2);

378 pt_mean m = mean(pt,2);

380 %For Perfect forecast remove this for:

381 for j=1:J

382 (Q_member mean = mean(new Inflow.new Inflow(h).new Inflow.ESF(1, j).
ESF,2) ;

383 ESF.Q member mean (1,j) = Q_member mean(j);

384 end

386 % storing the average of 50 members in the structure:
387 for j=1:5
.new_Inflow.Obs(j).Obs(1);

?

388 Q(j) = new_Inflow.new Inflow(h)
i)
) ;

(
389  ESF.s(l,j)= storage2 mean m (
s00 ESF.r (1 j

,j )= release_mean m (
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391 ESF.1(1,j)= spill_ mean m (j);
302 ESF.pt(l,j)= pt_mean m(j);

393 end

394

395

396 % % FOR PERFECT FORECAST ACTIVATE THIS FOR:
391 % for j=1:5

398 % Q(j) = new_ Inflow.new Inflow(2).new Inflow.Obs(j).Obs(1l);

399 % ESF.s(1,j)= storage2 (j);
a0 % ESF.r(l,j)= release (j);:
a1 % ESF.1(1,j)= spill2 (j);
a2 % ESF.pt(l,j)= pt(j);

103 % end

404

105 % % FOR PERFECT FORECAST:
a6 % storagel = storage?2;

407

408 %% SIMULATION
409 % FOR PERFECT FORECAST remove the simulation:

a1 % for node 1:

s12 storagel 1 = Q(1) + SS(1) — release_mean m (1)— spill mean m(1) ;

413 if storagel 1 < Smin(1)

414 storagel 1 = Smin(1);

415 else

416 if storagel 1 > Smax(1)
417 spilll 1 = storagel 1 — Smax(1l);
418 storagel 1 = Smax(1);
419 else

420 spilll 1 = 0;

421 end

422 end

423

424 % for node 2:

425 storagel 2 = Q(2) + SS(2) — release_mean m (2) — spill mean m(2) +

426 release_mean _m (1) + spilll 1 + spill mean m(1);
427
428 if storagel 2 < Smin(2)
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429 storagel 2 = Smin(2);

430 else

431 if storagel 2 > Smax(2)

432 spilll 2 = storagel 2 — Smax(2);
433 storagel 2 = Smax(2);

434 else

435 spilll 2 = 0;

436 end

437 end

438 % for node 3:

439 storagel 3 — Q(3) + SS(3) — release_mean m (3) — spill mean m(3) +

440 release_mean m (2) + spilll 2 + spill mean m(2);
441

1442 if storagel 3 < Smin(3)

443 storagel 3 = Smin(3);

444 else

445 if storagel 3 > Smax(3)

446 spilll 3 = storagel 3 — Smax(3);
447 storagel 3 = Smax(3);

448 else

449 spilll 3 = 0;

450 end

451 end

452 % for node 4:

453 storagel 4 = Q(4) + SS(4) — release_mean m (4) — spill mean m(4) +

454 release_mean _m (3) + spilll 3 + spill mean m(3);
455

456 if storagel 4 > Smax(4)

457 spilll 4 = storagel 4 — Smax(4);

458 storagel 4 = Smax(4);

459 else

460 spilll 4 = 0;

461 end

462

463 % for node 5H:

464 storagel 5 = Q(5) + SS(5) — release_mean m (5) — spill mean m(5) +
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478

479

480

481

482

490

491

492

release_mean _m (4) + spilll 4 + spill mean m(4);

if storagel 5 > Smax(5h)

spilll 5

storagel
else

spilll 5

end

= storagel 5 — Smax(5);
5 = Smax(5) ;

storagel — [storagel 1; storagel 2; storagel 3; storagel 4;

storagel 5];

% storing the simulated spills

for j= 1:5

ESF.st(1,j)= storagel (j);

end
ESF.1
ESF.1_
ESF.1 sim
ESF.1_
ESF.1

end %for 1

= spilll _1;
= gpilll 2,
= spilll _3;
= spilll 4,
= spilll _5;

ESF_All.ESF(h) .ESF = ESF; %/FOR PERFECT FORECAST deactivate this

line

end %for h

toc;
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