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Abstract

Microeconometric discrete choice models aim to explain the process of individual choice by con-
sumers among a mutually exclusive, exhaustive and finite group of alternatives. Hybrid choice
models are a generalization of standard discrete choice models where independent expanded
models are considered simultaneously. In my dissertation I analyze, implement, and apply si-
multaneous estimation techniques for a hybrid choice model that, in the form of a complex
generalized structural equation model, simultaneously integrates discrete choice and latent ex-
planatory variables, such as attitudes and qualitative attributes. The motivation behind hybrid
choice models is that the key to understanding choice comes through incorporating attitudinal
and perceptual data to conventional economic models of decision making, taking elements from
cognitive science and social psychology.

The Bayesian Gibbs sampler I derive for simultaneous estimation of hybrid choice models offers
a consistent and efficient estimator that outperforms frequentist full information simulated
maximum likelihood. Whereas the frequentist estimator becomes fairly complex in situations
with a large choice set of interdependent alternatives with a large number of latent variables,
the inclusion of latent variables in the Bayesian approach translates into adding independent
ordinary regressions. I also find that when using the Bayesian estimates it is easier to consider
behavioral uncertainty; in fact, I show that forecasting and deriving confidence intervals for
willingness to pay measures is straightforward.

Finally, I confirm the capacity of hybrid choice modeling to adapt to practical situations.
In particular, I analyze consumer response to innovation. For instance, I incorporate pro-
environmental preferences toward low-emission vehicles into an economic model of purchase
behavior where environmentally-conscious consumers are willing to pay more for sustainable
solutions despite potential drawbacks. In addition, using a probit kernel and dichotomous
effect indicators I show that knowledge as well as a positive attitude toward the adoption of
new technologies favor the adoption of IP telephony.



Résumé

Les modèles microéconométriques de choix discrets ont pour but d’expliquer le processus du
choix individuel des consommateurs parmi un ensemble limité et exhaustive d’options mutuelle-
ment exclusives. Les modèles dits de choix hybrides sont une généralisation des modèles de
choix discrets standard, où des modèles indépendants plus sophistiqués sont considérés simul-
tanément. Dans cette thèse des techniques d’estimation simultanée sont analysées et appliquées
pour un modèle de choix hybride qui, sous la forme d’un système complexe d’équations struc-
turelles généralisées, intègre à la fois des choix discrets et des variables latentes en tant que
facteurs explicatifs des processus décisionnels. Ce qui motive l’étude de ce genre de modèles est
que pour comprendre le processus du choix il faut incorporer des attitudes, des perceptions et
des attributs qualitatifs à l’intérieur de modèles décisionnels économiques conventionnels, tout
en prenant ce qui dit la recherche en sciences cognitives ainsi qu’en psychologie sociale.

Quoique l’estimation du système d’équations d’un modèle de choix hybride requière l’évaluation
d’intégrales multidimensionnelles complexes, on résoudre empiriquement ce problème en appli-
cant la méthode du maximum de vraisemblance simulée. Ensuite on dérive une procédure
d’échantillonnage de Gibbs pour l’estimation simultanée bayésienne du modèle qui offre des
estimateurs convergents et efficaces. Ceci devient une méthode plus avantageuse comparative-
ment aux méthodes classiques dans un cadre analytique avec un grand nombre de variables
latentes. En effet, en vertu de l’approche bayésienne il suffit de considérer des régressions ordi-
naires pour les variables latentes. Par ailleurs, dériver les intervalles de confiance bayésiennes
pour les parts de marché ainsi que pour des dispositions à payer devient trivial.

De par sa grande géneralité, le modèle de choix hybride est capable de s’adapter à des situations
pratiques. En particulier, la réponse des consommateurs suite à l’innovation technologique
est analysée. Par exemple, on étudie les préférences pro-environnementales dans un modèle
économique des décisions d’achat de véhicules verts selon lequel les consommateurs soucieux
de l’environnement sont prêts à payer davantage pour des véhicules à faibles émissions, en
dépit des inconvénients potentiels. En outre, en utilisant un noyau probit et des indicateurs
dichotomiques on montre que des connaissances préalables ainsi que des attitudes positives
envers l’adoption de nouvelles technologies favorisent l’adoption de la téléphonie IP.
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Chapter 1

Introduction

1.1 Dissertation statement and methodology

The study of uncertainty has become a paramount topic for several fields in economics,
statistics, and psychology. Uncertainty, broadly defined, accounts for a world that is
probabilistic in nature. As economists we aim at modeling the decision-making process
of consumers, but we need to take into account behavioral uncertainty. In my disser-
tation I address and integrate different dimensions of behavioral uncertainty into one
microeconometric model of choice.

Individuals act according to the expected consequences, or payoffs, of their actions (be-
havior). From the point of view of economics, the cognitive evaluation of behavior1 and
the consequent behavioral response2 are reflected by preferences through an unobserv-
able construct that is known as utility. However, psychology theories propose that to
evaluate the potential outcomes of behavior we construct internal unobservable measures
denominated attitudes. Standard economic models of choice neglect the role of attitudes.
In addition, standard choice models often neglect the impact of other variables that do
not have a natural order or an overt measurement scale, such as quality.

In the general context of random utility maximization and of discrete choice models in
particular, in this dissertation I analyze how the decision-making process can be modeled

1The cognitive evaluation is associated with the expected consequences.
2Choice.
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to account for the impact of diverse unobservable entities that are related to choice. I
build on hybrid choice models (HCMs), which are a generalization of standard discrete
choice models where independent expanded models are considered simultaneously. One
of these expansions is a generalized structural equation model that simultaneously ac-
commodates a discrete choice model with latent explanatory variables3. Even though
the idea of introducing latent variables into the choice process is not new, I identify
several econometric challenges associated with practical implementation of HCMs.

Hence, the main objective of this dissertation is to study both theoretically and empiri-
cally the application of simultaneous econometric estimation of HCMs. First, I discuss
that omitting relevant latent variables or measuring the underlying latent concept with
error result in problems of endogeneity. Second, the system of equations that describes
an HCM needs to be solved simultaneously to derive estimators that are both consistent
and efficient.

To achieve the main objective I pursue the following interrelated themes: advanced econo-
metric estimation techniques for HCMs and empirical performance of HCM estimation
methods. The first project involves derivation of the estimators as well as computer im-
plementation of the approaches analyzed in this research. In the second project, I apply
the estimators to practical situations.

For the project advanced econometric estimation techniques for HCMs, I address simul-
taneous estimation of HCMs, first using an efficient choice probability simulator through
maximum simulated likelihood (MSL) estimation. Although feasible, the MSL approach
necessary for classical estimation is very demanding in situations with a large choice set
of interdependent alternatives with a large number of latent variables. In fact, the latent
variables affect the behavior of the simulated likelihood function in such a way that a
standard optimization algorithm may require a huge number of iterations to converge.

For these reasons, I then propose to go beyond classical methods by introducing Bayesian
econometrics and exploring whether Bayesian techniques represent an attractive alterna-
tive to HCM frequentist estimation. Building on the rapid development of Markov chain
Monte Carlo (MCMC) techniques and on the idea that Bayesian tools could be used to
produce estimators that are asymptotically equivalent to those obtained using classical
methods, I take as my goal to implement a Bayesian approach to hybrid choice model-
ing. To ensure calculation speed, the software needed is written in the R programming
language, which is widely used among Bayesian practitioners.

3Attitudes, but also quality.
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Interestingly, the introduction of Bayesian tools adds another dimension to handling un-
certainty. When embracing the Bayesian approach, we recognize that we are uncertain
about the true state of the world, which is expressed by the true parameters of the econo-
metric model. As opposed to the frequentist approach, which handles uncertainty about
the true parameters by considering them as fixed but unknown constants, the Bayesian
approach considers the true parameters to be random variables. This difference is fun-
damental, because in Bayesian econometrics to make inferences about the parameters
we can introduce prior knowledge or beliefs and apply the rules of probability directly.
Hence, the Bayesian approach appears more akin to a choice model that accounts for
perceptions and beliefs.

Finally, the contribution of my dissertation consists not only in solving econometric
challenges related to simultaneous estimation of HCMs. I also discuss the theoretical
foundations that support the integration of economics and a cognitive model of agent
behavior. In addition, the relevance of my work also comes from empirical applications
which are not only used to test the performance of the estimator, but also provide
interesting results that cannot be derived when using standard choice models. In fact,
results of the project empirical performance of HCM estimation methods are key to
understand consumers’ response to innovation.

1.2 Principles of Bayesian econometrics

Consider the general dominated parametric model4

(Y ,P = Pθ = `(y; θ) · µ, θ ∈ Θ ⊆ Rp, p ≥ 1) (1.1)

where Y is the sample space, P is a parameterized family of probability density functions
Pθ on Y , `(y; θ) is the likelihood function, µ is the dominating measure, θ is a vector of
p parameters, and Θ is the parameter space. In the case of a sampling model, elements
in Y ⊆ RN are composed by random samples with i.i.d components {yi}Ni=1.

In parametric statistics, the (point) estimation problem reduces to propose a value θ̂ to
the true but unknown parameter θ in the model (Y ,P = Pθ). One of the most popular
point estimation methods in frequentist statistics is maximum likelihood estimation.

Suppose that the joint distribution of Y = (Y1, . . . , YN)′ of a parametric model (Y ,P =

4The section overviews concepts that are treated in detail in ?, ?, ?, and ?.
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Pθ) admits a density `(y; θ) = f(y1, . . . , yN ; θ). Once y is observed, the maximum like-
lihood (ML) method keeps the value θ̂(y) that maximizes `(y; θ) as the ML estimate of
θ.

Interestingly, the general estimation problem can be regarded as statistical decision mak-
ing, which is parallel to the decision-making problem in economics. In statistics, we have
to choose θ̂ among various possible values. For this, we need decision rules that can be
found in decision-making theory.

1.2.1 Elements of decision theory

Given a model (Y ,P), a nonrandomized decision rule δ serves to provide a response
δ(y) ∈ D to every possible y ∈ Y , where δ(y) is called a decision, and D is the space of
all possible decisions. For instance, in the case of point estimation5 δ is an estimator,
whereas δ(y) is an estimate. Note that the point estimation problem comes from the
fact that the true parameter θ is not known. If θ were known, the decision rule would
deterministically choose the correct decision δ(Pθ) = θ. Since θ is unknown, correct
decisions are not feasible and the decisions that we take come with an associated cost.
A loss function L(δ(y), θ) is a nonnegative function indicating the cost or loss incurred
by taking the decision δ(y) when the true parameter is θ. Under a correct decision, the
loss function is L(θ, θ) = 0. In fact, L(δ(y), θ) = 0⇐⇒ δ(y) = θ, ∀y ∈ Y .

Suppose that we want point estimation of a scalar function g(θ) ∈ G = g(Θ) ⊆ R. The
typical loss function for this problem is the scalar quadratic loss function L(δ(y), θ) =

(δ(y)− g(θ))2. Note that the loss function depends ex post on y, and that prior to the
observations the loss function L(δ(Y ), θ) is a random variable. Thus, we can define an av-
erage loss, which is operationalized through the risk function R(δ, θ) = Eθ (δ(y)− g(θ))2.
The risk function provides a partial preorder allowing us to rank decision rules. In gen-
eral, the risk function of a nonrandomized decision rule δ is given by

R(δ, θ) = EyL(δ(Y ), θ) =

∫
Y

L(δ(y), θ)`(y; θ)dµ(y).

Note that frequentist maximum likelihood estimation, which seeks the parameter values
that are most likely to have produced the distribution of the observations y ∈ Y , can be

5Other problems in statistics that can be viewed as a decision problem are the problems of interval
estimation, testing, model selection, and prediction.
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interpreted as minimizing the empirical risk with an appropriately chosen loss function
(the negative log-likelihood).

1.2.2 Overview of Bayesian decision making

Bayesian decisions represent a decision-making process under uncertainty.

Definition: Bayesian decision problem. To choose an action a ∈ A ⊆ Rp, the
decision maker minimizes the Bayes risk function

R(a) =

∫
Ω

∫
Y

L(a, ω)`(y;ω)p(ω)dµ(y)dµ(ω) = EωEyL(A, ω), (1.2)

where the loss function L(a, ω) sets the decision criterion when action a is taken and
the true state of the world is ω ∈ Ω. The probability p(ω) expresses the uncertainty
about the true state of the world before new evidence y is provided.

The idea behind Bayesian decision making is that when a decision maker has to make a
choice under uncertainty, the optimal decision is based on the minimum expected cost
of being wrong given the beliefs about the state of the world: â = argminR(a).

Even though I will apply the Bayesian approach to statistical inference, it is instructive
to present first the analogous general approach to decision making, basically because
this motivates the analysis of the role of the decision maker’s beliefs about the unknown
state of the world. In fact, Bayesian decision theory is analogous to the concept of
consumer behavior under uncertainty in economics. In economics a Bayes decision
is taken according to a maximum expected utility principle. Note that the loss function
described above can be interpreted as a disutility to be minimized.

1.2.3 Bayesian inference

In a Bayesian setting of statistical decision problems, parameters of a model (Y ,P = Pθ)

are assumed to have a prior statistical distribution p(θ) that describes the probability
distribution of θ before the observation of y. The consideration of θ being a random vari-
able is what distinguishes the Bayesian approach from classical statistics. This notion is
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fundamental for Bayesian inference and is derived from the concept of subjective proba-
bilities6 (probability laws under uncertainty). The combination of the prior distribution
p(θ) with the information coming in via the sample data y ∈ Y determines the posterior
distribution of the parameters p(θ|y) with respect to a measure µ. The posterior and
prior distributions are related following Bayes’ theorem according to

p(θ|y) =
p(y|θ)p(θ)
p(y)

,

where p(y|θ) represents the distribution of the observations y for every particular value
of θ, and p(y) is the marginal distribution of the data, which is sometimes called the
predictive density of y. Note that p(y|θ) = `(y; θ) by definition. Since p(y) is a constant
that does not depend on the observations y7, for inference purposes Bayes’ theorem is
rewritten as

p(θ|y) ∝ p(y|θ)p(θ),

which emphasizes the Bayesian notion of updating knowledge through evidence.

Using the concepts of (Bayesian) decision making, the action a corresponds to finding
an estimate θ̂ = δ(y) ∈ D of the true parameter θ ∈ Θ, which describes the state of the
nature ω = ω(θ). The latter distinction puts in evidence the presence of an econometric
model, with a structural relation linking Y and P = Pθ. The Bayes decision function
is built by minimizing the Bayes risk R(θ̂ = δ(y)) as defined in equation ??. Thus, a
Bayes estimator is the decision that minimizes the Bayes risk. Note however that if the
decision is taken ex post (after the observation of y), the Bayes decision can be taken
using a posterior Bayes risk, according to

R(δ|y) =

∫
Θ

L(θ̂, θ)p(θ|y)dµ(θ). (1.3)

The estimator that minimizes the posterior Bayes risk ∀y ∈ Y also minimizes the Bayes
risk and therefore is a Bayes estimator.

The most common loss function L(θ̂, θ) used for Bayesian estimation is the general
quadratic loss

L(θ̂, θ) = (θ̂ − θ)′Q(θ̂ − θ), (1.4)

where Q is a positive definite matrix.
6Subjective probabilities measure the beliefs about the occurrence of a particular event.
7p(y) =

∫
Θ

p(y|θ)p(θ)dµ(θ).
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Theorem 1: Bayes decision with a quadratic loss. With a quadractic loss func-
tion ??, the Bayes decision θ̂ is unique and corresponds to the mean of the posterior
distribution p(θ|y)

θ̂ =

∫
Θ

θp(θ|y)dµ(θ) = E(θ|y). (1.5)

The use of alternative risk functions yields different point estimators. For instance,
when using a linear loss function, the Bayesian estimate is the median of the posterior
distribution. In general, a linear-linear loss function yields to a Bayes decision equal to
the posterior qth quantile.

Corollary 1: Precision of the Bayes decision with a quadratic loss. With a
quadractic loss function ??, an unbiased estimator in the Bayesian sense of the precision
(risk) of the Bayes decision θ̂ = E(θ|y) is the posterior variance

V(θ̂ − θ) = VE(θ̂ − θ|y) + EV(θ̂ − θ|y) = EV(θ|y). (1.6)

In sum, with a quadratic matrix risk function, the calculation of the first and second
moments of the posterior distribution are of fundamental interest. It is important to
remark that θ̂ = E(θ|y) is the Bayes decision for the point estimation problem, which
is equivalent to assessing that θ̂ is the best estimator of θ in the Bayesian sense with a
quadratic loss, but still in Bayesian econometrics the parameter θ is random as opposed
to the frequentist problem where the true parameter is fixed. Hence, the description of
the whole posterior distribution is of interest. This distinction is relevant in the sense
that Bayesian econometrics provides tools for finite samples, whereas classical inference
is based on unobserved independent repeated samples. In effect, the difference between
Bayesian and classical inference is clearly exemplified by the interval estimation problem.

Definition: Credible region or Bayesian confidence region. A set C ⊆ Θ such
that

P (θ ∈ C) =

∫
C

p(θ|y)dµ(θ) = 1− α, (1.7)

where (1− α) is a credibility level.

Note that a credible region is a fixed area containing θ with a specified coverage prob-
ability (1 − α), conditional on the observed data y. The frequentist confidence region
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is a completely different concept. First, under a classical perspective θ is fixed and as
such there is no sense in constructing a region based on its distribution. Second, a non-
Bayesian confidence region is constructed using the unobserved sampling distribution of
the estimator. This sampling distribution, which reflects the idea that different point
estimates are generated over independent repeated replications of the data, cannot be
obtained for small samples. For this reason, a classical confidence region is asymptotic
in the sense that the region depends on the distribution of unobserved realizations of the
data; this distribution can be described using large sample theory.

Even though Bayesian and classical inference are intrinsically different, a Bayesian esti-
mate depends on the data and a different sample will generate a different estimate. If
we simultaneously8 consider different independent repeated replications of the data, one
can generate a sequence of Bayesian decisions (point estimates) for which an asymptotic
distribution can be derived. This asymptotic distribution can be seen as a classical inter-
pretation of the Bayesian estimator. In fact, the large sample properties of the Bayesian
point estimate θ̂ in ?? are closely related to classical properties of the maximum likeli-
hood estimator.

Theorem 2: the Bernstein-von Mises theorem. Consider the Bayesian point
estimator θ̂ = E(θ|y). Let θ̂ML be the maximum likelihood estimator9. If we denote the
true value of θ by θ0

10, it can be shown11 that

1.
√
N(θ − θ̂) d→MVN (0, I−1(θ0)),

2.
√
N(θ̂ − θ̂ML)

d→ 0,

3. θ̂ a∼MVN (0, I−1(θ0)/N),

where I(θ0) is the asymptotic Fisher information matrix

I(θ0) = plim
N
− 1

N

∂2 ln p(y|θ0)

∂θ∂θ′.
(1.8)

8In principle under the Bayesian approach, the posterior of a previous realization could be taken as
prior for the next realization. For analyzing asymptotic performance we rule out this possibility.

9The maximum likelihood estimator θ̂ML converges to θ0 at the rate 1/
√
N and satisfies the first

order conditions ∂ ln p(y|θ̂ML)/∂θ = 0.
10θ0 ∈ Θ ⊆ Rp represents the true but unknown parameter that generates the observations y.
11Note that all convergence results are defined in the classical sense. The prior distribution is assumed

continuous with the Lebesgue measure on Rp as dominating measure.
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The Bernstein-von Mises theorem not only establishes that θ̂ is asymptotically unbiased
(consistent), normal, and efficient12, but it also proves the relationship between the
maximum likelihood and Bayes estimators. In fact, when N is large, the Bayes and ML
estimators are approximately equal. If the prior distribution p(θ) is continuous with
a strictly positive density on a neighborhood of the true θ0, the asymptotic properties
of consistency and efficiency of θ̂ do not depend on the choice of p(θ): if N is large,
the evidence provided by the observations y is such that a priori information can be
neglected.

I now return to the prior distribution p(θ). A prior reflects knowledge and beliefs, but
mathematically prior distributions are chosen inside a family of parametric probability
distributions that allow us to incorporate beliefs in a convenient way. Note that the
posterior distribution may become the prior distribution for a subsequent problem. As
we just saw, the importance of the prior distribution disappears as the sample size
increases. However, the use of Bayesian inference is particularly interesting for small
samples where the role of the prior distribution is potentially relevant. In general, even
for small samples the relative importance of the prior distribution is proportional to its
precision: the effect of the prior gradually disappears as the prior variance increases.
The last result translates into the notion of diffuse or noninformative priors. A diffuse
or noninformative prior is a distribution that is widely dispersed, at least over Θ where
the likelihood function is concentrated. A flat prior distribution with an infinite integral
is called an improper prior.

1.2.4 Markov chain Monte Carlo methods

In the previous subsection we saw that Bayesian inference examines the posterior distri-
bution p(y|θ), and in particular the posterior first and second moments. Although the
density of the posterior distribution can be obtained using Bayes’ theorem, the main
difficulty concerns the characterization of this distribution, because p(y|θ) is not always
known explicitly. For this, Bayesian inference makes use of Markov chain Monte Carlo
methods.

Markov chain Monte Carlo (MCMC) methods are a class of stochastic sampling algo-
12The posterior variance is approximately equal to the estimated Fisher information matrix, i.e.

NV(θ|y) ≈ I−1(θ0).
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rithms based on constructing a Markov chain13 that has the desired distribution14 as its
equilibrium distribution. There are different MCMC methods, but Gibbs sampling and
Metropolis Hastings are the most typically applied.

1.2.5 Gibbs sampling

Let P be a partition of θ ∈ Θ such that θ′ = (θ′(1), . . . , θ
′
(P)). For every subvector θ(p), we

define θ′<(p) = (θ′(1), . . . , θ
′
(p−1)), θ

′
>(p) = (θ′(p+1), . . . , θ

′
(P)), θ

′
<(1) = {∅}, θ′>(P) = {∅}, and

θ′−(p) = (θ′<(p), θ
′
>(p)). The partition is chosen such that the full conditional distributions

π(θ(p)|θ−(p)) are easy to describe in the sense that it is possible to draw directly from
each π(θ(p)|θ−(p)),∀p. The Gibbs sampler is an algorithm based on an MCMC where the
transition process from θ(g−1) to θ(g) for p(θ|y) at the gth iteration is defined through

θ
(g)
(p) ∼ π(θ(p)|θ(g)

<(p), θ
(g−1)
>(p) , y),∀p ∈ P.

It can be shown that this reversible Markov chain generates an instance from the poste-
rior distribution at each iteration, i.e. θ(g)

(p) ∼ p(y|θ),∀g.

1.2.6 Metropolis Hastings

Sometimes direct sampling for one or more of the conditional distributions inside the
Gibbs sampler is difficult. For Metropolis-Hastings implementation, a candidate θcand ∈
Θ is drawn from the transition probability q(θcand|θcurr) of generating candidate θcand

given θcurr ∈ Θ, such that θcurr ∼ p(θ, y). The candidate realization θcand is then
compared to the current θcurr ∈ Θ through the acceptance ratio:

α = min

{
1,
p(y|θcand)p(θcand)
p(y|θcurr)p(θcurr)

· q(θ
cand|θcurr)

q(θcurr|θcand)

}
.

Starting with an arbitrary value θ(0), in the Metropolis Hastings algorithm at the gth

iteration the candidate is accepted as the new θ(g) = θcand with probability α, while
the old one is preserved θ(g) = θcurr with probability 1− α. In the case q(θcand|θcurr) =

q(θcand−θcurr) the generating process of the candidate θcand is a random-walk Metropolis
13A Markov chain is a stochastic process that possesses the Markov property, namely that given the

present, it is possible to forecast the future independently of the past.
14In Bayesian inference, the desired distribution is the posterior p(y|θ).



Chapter 1. Introduction 11

chain. If the proposal density is such that q(θcand|θcurr) = q(θcand), the process is a
Metropolis independence chain. It can be shown that p(θg = θcurr) = p(θg−1 = θcurr).
Since θcurr ∼ p(θ, y), it follows that θg ∼ p(θ|y), ∀g. Thus, realizations in the Metropolis
Hastings algorithm generates instances from the posterior distribution. Note that the
Gibbs sampler is a special case of the Metropolis Hastings algorithm, where the proposal
density is given by the conditional distributions and the acceptance ratio equals 1.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows.

In Chapter 2 I motivate the introduction of hybrid choice models through an overview of
the role of attitudes in explaining behavior. Then, in Chapter 3 I describe the classical
estimation techniques for a full information simulated maximum likelihood solution for
a general hybrid choice model, allowing for interactions among the latent variables and
for different distributions for the indicator variables.

In Chapter 4, aiming at understanding the effects of climate change and energy security
concerns on travel behavior I analyze pro-environmental preferences toward low-emission
vehicles. For this, using real data about purchase intentions of low-emission vehicles by
Canadian consumers, I analyze the practical feasibility of a Bayesian estimator for hybrid
choice models.

Chapter 5 generalizes the MCMC method for Bayesian estimation of HCMs. After
describing the system of equations and deriving the estimators following Gibbs sampling,
a Monte Carlo study is performed. Using a virtual case of travel mode choice, I compare
the empirical performance of HCM Bayesian and classical point estimates in terms of
accuracy, statistical significance, and efficiency.

In Chapter 6 I apply the hybrid choice modeling framework (and the general estimator
derived in Chapter 5) to another empirical application with real data. In a telecom
context, this application seeks to understand consumer behavior toward IP telephony
access in Japan.

Finally, in Chapter 7 I conclude and identify lines of future research.
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Chapter 2

Attitudinal response in discrete choice:
the hybrid choice model

Recent research in social psychology has been centered on the relationship
between attitudes and behavioral intentions that may eventuate in actual
behavior. In this chapter, through an overview of the role of attitudes in ex-
plaining behavior I motivate the introduction of latent endogenous constructs
as explanatory variables inside a utility function representing economic pref-
erences. I review how attitudinal constructs, which represent the individual
predisposition to evaluate entities in favor or disfavor, can be measured in
practice. I also review the main models of the interaction between attitudes
and behavior, as well as economic models of consumer behavior. Then, I
recast hybrid choice models in a general microeconometric framework that is
capable of including both qualitative attributes and attitudes as latent vari-
ables in a standard discrete choice model. Since psychometric studies provide
theories and evidence on how attitudes affect behavior, if we omit attitudes
in the context of economic choice we expect to face endogeneity problems.
Thus, the estimators of the taste parameters will be inconsistent. This is also
a problem for other estimators based on the estimates of the marginal utili-
ties, such as elasticities, willingness to pay measures, and derived demands.
As a result, the hybrid choice model emerges not only as a tool to improve
the behavioral representation of the choice process, but also as a way to deal
with endogeneity in discrete choice models.
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2.1 Introduction

The literature on attitudes and the relation of attitude-to-behavior is extremely vast, and
it reflects one of the most relevant topics of research in social psychology. In addition,
consumer behavior is the original and fundamental focus of microeconomics and thus
the literature on economic preferences is huge. My review is therefore selective in the
sense that I present the fundamentals of the theoretical concepts that are relevant for
understanding and developing an integrated attitudinal model of economic preferences.

2.2 The role of attitudes in explaining behavior

In both social and behavioral sciences, an important subject of study is the impact of
attitudes on behavior. Attitudes measure the psychological continuous evaluation of
favor 1 or disfavor assigned by the individual to a particular entity (the attitude object),
including behavior itself (???). Attitudes are generally described as being rather stable,
and yet subject to some change. However, when there is a change in attitudes, the
old attitude is not completely replaced. Thus, when attitudes change, the new attitude
dominates but may not replace the old attitude (?)2.

Attitudes have a perceptual nature: diverse stimuli generate a perception that is evalu-
ated by the individual according to imperfect information leading to an attitudinal re-
sponse toward the attitude object (?). This evaluation, which is not directly observable,
can be affective, cognitive or behavioral, reflecting the multidimensionality of attitudes
(??); this model, sketched in Figure ??, is also known as the tripartite model of attitude
structure (??). The affective component reflects the feelings that the evaluated entity
evokes in terms of emotions such as desire, happiness, fear and empathy. The cognitive
component exhibits individual beliefs about the likelihood of a relationship between the
evaluated entity and a particular outcome. Cognitive attitudes may reflect knowledge
(past experience) as well as prejudices (stereotypes). Finally, the behavioral compo-
nent is related to intended actions. In Figure ?? I present an example of a tripartite
attitudinal evaluation regarding the adoption of low-emission cars.

In sum, attitudes are unobservable but are reflected by individual feelings, beliefs and
1Positive, pro, support, like, agree.
2Whereas the new attitude is explicit, the old attitude remains as an implicit construct.
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Affection

· Feelings & Emotions
· Desire, happiness, fear, empathy

Behavior

· Intended actions

Cognition

· Knowledge, Beliefs & Prejudices

Attitudes

Attitude
Object

Perceptions

Figure 2.1: The tripartite model of attitude structure

Affection

I want the new hybrid car really badly

Behavior

I am ready to buy a hybrid car

Cognition

I favor development of hybrid cars 
because they produce less GHG emissions

Attitudes toward low-
emission vehicles

Figure 2.2: The tripartite model of attitude structure: vehicle choice
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intended behavior.

Whereas it seems rational to think that an individual acts according to his personal
beliefs, in a large number of occasions observed actions and stated intentions do not
coincide. Since the beginning of the scientific analysis of attitudes, social psychology
theorists have noted a discrepancy between intentions and actions. In fact, until the
first half of the 1970s, researchers were rather pessimistic about the existence of a rela-
tionship between stated attitudes and actual behavior (??). In other words, we could
not, apparently, predict behavior based on what people say they will do. However, ??
argued that there is a predictive value in the attitude-behavior relationship, but only
within a context of correspondence between the concepts of target, action, context, and
time.

To explain the attitude-behavior link, in the mid-1970s Fishbein and Ajzen developed
the theory of reasoned action (TRA), revising and expanding Fishbein’s expectancy-
value theory (EVT). According to EVT (?), the evaluative dimension of an attitude
depends on a combination of two factors: the beliefs that individuals have regarding
the results implied by behavior (expectancy) multiplied by the importance that the
individuals assign to these possible results (value). Expectancies are related to the
perceived probability of a particular behavior producing a certain outcome (beliefs about
the consequences of performing the behavior). Values correspond to the individual’s
valuation of these consequences. Note that the combination defining the attitude A
toward behavior can be viewed as a factorial index of beliefs (expected success, bi) and
values vi:

A =
∑
i

bivi (2.1)

If more than one behavior is possible, EVT predicts that the chosen action will be the
one with the largest attitudinal index. Since the evaluative nature of attitudes in EVT
is rather utilitarian, one of the criticisms of this theory has been the lack of affect as a
predictor of attitudes.

The Theory of Reasoned Action (TRA; ?) holds that the best predictor of behavior
is intention. According to TRA, behavioral intention is the immediate antecedent of
behavior and corresponds to the cognitive representation of the strength of an individ-
ual’s willingness to perform a given action. In TRA (see Figure ??), this intention is
not only determined by the attitudes toward the specific behavior (which is constructed
following an EVT model based on behavioral beliefs) but also by subjective norms (a
result of normative beliefs). Subjective norm is the combination of beliefs (perceived
expectations) from the individual’s social network (i.e. beliefs about how people that
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are relevant to the individual will view the behavior in question) along with intentions
to fulfill these expectations.

Attitudes

Behavior

Subjective 
norms

Intentions

Figure 2.3: Theory of Reasoned Action

Behavioral intentions explain actions according to TRA; yet consider how many people
have problems accomplishing New Year’s resolutions. The problem may be that many
resolutions may not in fact be under one’s full volitional control, and this may explain
the gap between intentions and behavior. An extension of TRA, the theory of Planned
Behavior (TPB; ?) states that attitudes and subjective norms may be insufficient to ex-
plain volitional behavior if the individual’s control over the behavior is incomplete. TPB
adds to TRA the concept of perceived behavioral control (see Figure ??), i.e. individual
perceptions regarding the ability to perform a given action. Perceived behavioral control
has a direct impact on actual behavior, as well as an indirect impact through behavioral
intentions (?). Note that perceived behavioral control may reflect actual behavioral con-
trol, i.e. internal control factors such as skills and abilities, as well as external control
factors, such as environmental constraints in resources such as time and money.

2.3 Structural equation modeling of latent variables:
a mathematical representation of attitudes

Latent variables provide a key concept in the statistical modeling of attitudes. While
recognizing the existence of several different formal definitions of latent variables, ?
provides the following conceptualization: “a latent random (or nonrandom) variable is a
random (or nonrandom) variable for which there is no sample realization for at least some
observations in a given sample.” Since there is no sample realization, a latent variable
can be described as a factor that cannot (properly) be quantified in practice. Note that
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Figure 2.4: Theory of Planned Behavior

a latent variable can be unobservable either by nature (hypothetical constructs) or by
practical reasons (a true variable measured with error). For instance, attitudes are by
definition not directly observable; likewise, total demand for a theatrical performance
cannot be measured from the total number of people that attended the show if they
filled the capacity of the theater.

? also makes a distinction in the degree of abstractness of a latent variable. Abstractness
is related to the existence of a measurement scale. Attitudes are abstract constructs, just
as social class and mental state are. Other less abstract latent variables can be subject
to measurement, but, for example, the measurement of income can be indirect because
of misclassification errors. Beyond their use as a tool for overcoming the measurement
problem, latent variables are also used to model unobserved heterogeneity, missing val-
ues, and latent responses (discrete choice), as well as to generate flexible distributions,
and to combine information from different sources (for a discussion, see ?). Finally, a
latent variable can be endogenous (dependent) or exogenous (independent).

When a latent variable, whether a dependent or independent variable, is used, standard
regression techniques cannot be applied. Although latent variables are not observable,
they can be manifested through overt variables that serve to identify the concepts un-
derlying them. These variables are called effect indicators or manifest variables. Latent
variable models describe the relationship between the latent variable and (observable)
manifest or indicator variables. Such models are often used as a means of dimension
reduction, where the latent variable represents an underlying concept explaining the
group of manifest variables. Dimension reduction is technically desirable when the num-
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ber of manifest variables is large, or when there arise problems such as multicollinearity
(provoked by direct incorporation of highly correlated manifest variables as explanatory
variables in a regression).

Structural equation models view the relationship of attitude-to-indicators as a system of
simultaneous equations3. Two main sub-models can be distinguished in structural equa-
tion modeling (SEM): first is the structural model describing potential causal relations
between endogenous and exogenous variables; second is the measurement model speci-
fying the relations of latent variables explaining their manifest variables. Note that the
SEM terminology is somewhat misleading, because the full structural equation model
of latent variables is a simultaneous system of structural equations, meaning that the
measurement model is also a structural equation.

The JKW model (???), also known as LISREL4, provides a general linear representation
of the system of structural equations for both the structural and measurement models.
Following the LISREL parametrization, the structural equation is of the form:

η = Bη + Γξ + ζ, (2.2)

where η is a (latent) vector of endogenous variables, ξ is a (latent) vector of exogenous
variables, B is a coefficient matrix describing simultaneity in the endogenous variables,
Γ is a coefficient matrix measuring the causal effects of ξ on η, and ζ is an error vector.

If both η(y) and ξ(x) are observable with no measurement error, then we obtain the
structural model that has been the foundation of econometrics as a separate field. In
econometrics, the structural model can represent a single-equation economic problem or
a simultaneous system of structural equations, such as the equilibrium model of supply
and demand that clears the market. General estimation techniques include (generalized)
least squares and maximum likelihood. Note that the notation in SEM is somewhat
different from ordinary regressions because in SEM the parameters are grouped in a
matrix, whereas the exogenous variables are written as vectors. In SEM the resulting
covariance structure is important, and the matrix notation of parameters facilitates the
derivation of the covariance of the reduced form.

As discussed above, when a latent variable is used, we also need manifest variables that
identify what is unobservable. The relationship between the observed variables and the

3See ? for a complete review of SEM applied to travel behavior modeling.
4Estimation of SEM was eased due to the LISREL (Linear Structural RELationships) program

developed by ?, ?, and ?.
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latent variables is operationalized through the measurement equations

y = Λyη + ε

x = Λxξ + δ

where y and x are manifest variables of the latent variables η and ξ, respectively. Λy and
Λx are coefficient matrices; and ε and δ represent measurement errors. The measurement
model alone is a key tool for psychometrics, a field concerned with measurement of
abstract psychological concepts (such as attitudes, intelligence, and personality traits).
Factor analysis (a technique that dates back to ?) is the estimation method commonly
used, since this method seeks to explain variability in the manifest variables in terms of
fewer underlying dimensions (the latent variables).

The simultaneous SEM system considers the general model where the structural and
measurement equations are combined. This is necessary when either the endogenous or
the exogenous (or both) variables in the structural model are unobservable. Maximum
likelihood and (generalized) least squares are the statistical methods used most often
for estimation of the SEM parameters. Note that if the indicators perfectly measure the
latent variables, then we have η = y and ξ = x, and we obtain the classical econometric
problem. Figure ?? depicts the general SEM system using a path diagram. Path analy-
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Figure 2.5: LISREL model

sis was created by ?? as a useful way to represent variable dependencies in a system of
structural equations. In a path diagram, boxes represent manifest variables, an ellipse
stands for a latent variable, disturbance terms are represented unenclosed, and a straight
arrow between variables indicates causality. In current applications path diagrams are
mostly viewed as a convenient way of representing potentially complex relationships, es-
pecially when the underlying concepts are highly abstract. However, Wright’s pioneering
path analysis was fundamental for the development of structural equation modeling in
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the 1970s5.

Figure ?? presents the path diagram for a special case of the SEM system known as
the Multiple Indicator Multiple Cause (MIMIC) model (?). In a MIMIC model the
endogenous latent variable is explained by an observed exogenous variable. Using the
LISREL notation, the MIMIC model is a sub-model of the SEM system, where the
presence of a causal indicator6 leads to

η = Bη + Γξ + ζ (2.3)

y = Λyη + ε

x = ξ

where the particularity of the model is the vector x of causal indicators, as opposed to
the vector y of standard manifest variables (effect indicator). Causal indicators permit
us to have a nonrandom exogenous variable in the structural equation. Causal indi-
cators can be guaranteed to exist when it is possible to establish a causal relationship
where x explains η. Even though the MIMIC model was originally formulated as a sin-
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Figure 2.6: MIMIC model

gle latent variable problem, it was quickly generalized to multiple latent variables. ? is
one of the earliest examples of a MIMIC model with multiple latent variables. In this
work, the latent variables are propensities of individuals to participate in four different
modes of politics (voting, campaigning, participating in community activities, and con-
tacting local and national officials personally), the effect-indicators of these propensities
are individual actions (such as voting in previous presidential elections, and number of

5As noted by ?, Wright was able to derive a complete analysis of covariance using path analysis
rather than through matrix algebra. A clear example is Wright’s analysis of the system of supply and
demand equations, which translated into clear conditions for identification and estimation, far before
econometricians derived identification conditions.

6A causal indicator measures the latent variable without error, ?.
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active memberships in community problem-solving organizations), and the causes are
background characteristics of the individuals (such as socioeconomic status, age, and
gender). Working with the same data, ? presented a slightly different version of the
model, analyzing the identification of the parameters and applying a simultaneous es-
timation approach. Note that the direct integration of the causal indicators implies a
direct assessment of potentially heterogeneous latent responses (attitudes) to a partic-
ular concept (attitudinal object). In this example, different propensities to participate
can be ascertained for different groups according to socioeconomic status, age, or gender
(and combinations of these variables).

2.3.1 Causal indicators of attitudes

If the latent variables are attitudes, natural causal indicators that account for hetero-
geneity are the characteristics of the individuals. For instance, just as in the example of
political participation, attitudes toward recycling may present differences across groups
that can be tested using a MIMIC model.

However, socio-demographic variables are not always the only possible causal indicators,
which is especially the case of latent constructs representing variables with measurement
errors. To give an early example, in ? the authors model the latent market value of
a property using different home-value measures as manifest variables (effect indicators
such as an appraised value given by a private firm, and the estimate provided by the
owner). As causal indicators, the authors use property characteristics such as effective
age, number of storeys, number of rooms, and finished area. However, note that the
latent variable in Robins and West’s study is more than an attitude, but rather expresses
a qualitative attribute. I will return to this point later.

In any case, recall that a causal indicator in the MIMIC model represents an exogenous
variable that helps to explain the latent variables. For example, current recycling habits
are a result of someone’s attitudes toward recycling, but the habits do not themselves
cause the attitude. (In other words, recycling habits are manifest variables, and they are
not causal indicators.) Conversely, some studies based on gender socialization theories
establish that women have stronger environmental concerns than men (??), and this
result favors the inclusion of gender as a causal indicator of recycling attitudes. To avoid
violating causality, one must exercise caution when defining the explanatory variables of
the structural model. Ideally, the structural model should be based on a specific theory.
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2.3.2 Measuring attitudes: obtaining manifest variables

Attitudes reflect an evaluative process that is not directly observable. Thus, when we
loosely talk about methods for measuring attitudes, what we mean is the measurement
of an overt expression of an attitude, which translates directly into manifest or indicator
variables. On the one hand if this overt expression is a verbal self-reported response,
then we are making use of direct measurement procedures. Indirect measurement proce-
dures on the other hand are built using non-verbal overt expressions, typically observed
behavior such as physical reactions. In both cases, it is clear that attempting to measure
attitudes translates into assessing possible manifest variables, which by definition are
the overt expression of the attitudes.

In a single-item measure the individual is asked to directly report the attitude toward
an attitudinal object, typically on a structured scale. However, the answer provided
is a verbalization of the attitude and not the underlying attitude in the mind of the
respondent. This verbalization is subject to conscious or unconscious bias; for instance
an individual who is neutral toward recycling may declare a favorable attitude because
of the perception that being green is a better response to give (social desirability bias).
In my view, it is very important to understand the distinction between the true attitude
and the verbalization of it, because the latter is merely a manifest variable of the for-
mer. Considering stated attitudes as effect indicators is consistent with the theoretical
foundations of attitudes, because what one can measure are manifest variables. Note
that a self-reported statement about the attitude in question is possible depending on
the abstractness of the latent construct. Clearly, one can ask people about their atti-
tude toward recycling, but the task becomes more complex if one asks about a general
environmental concern concept. In addition, it is important to note that perceptual
indicators may be wrongly interpreted as attitudes causing perception, whereas percep-
tions explain the formation of attitudes. A perceptual indicator, such as a self-declared
level of satisfaction, is merely a statement that elicits the individual’s beliefs. Attitudes
toward an entity affect this elicited belief.

Another problem with single-item measures is that they presume the hypothesis that the
attitude-indicator relationship is unidimensional, i.e. only one indicator provides enough
information to identify the underlying attitude. To resolve this problem, we can combine
different single-item measures for multiple manifest variables that reflect the complexity
of the attitude under study. For instance, attitudes toward recycling can be manifested
not only through direct verbalization but also through both the degree of support for
other environmental policies and personal statements about current recycling and other
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eco-friendly habits. This example makes it clear that it is not only verbalization (of
both the attitude under study and other related attitudes) which provides identification
of the true attitude, but also stated (self-reported) and overt actions (indirectly observed)
which may serve as manifest variables. The combination of single-item measures involves
collecting information about different aspects of the underlying concepts that will allow
us to identify how this concept is built; put in a simple example, if we need to identify
a person in a group, the more information about the person’s characteristics the better.
Continuing the same example, note that even though we can construct a person’s profile
with enough information to detect the individual we are looking for, this profile is hardly
complete: it is quite likely that the set of manifest variables will not provide a full
measurement of the latent variable.

Typical single-item measurement scales of attitudes include semantic scales, such as Lik-
ert items which measure either positive or negative responses to a particular statement,
typically according to a 5 or 7-level scale (see example in Figure ??). These measures
must be constructed with care to avoid potential bias (See ?). Direct multiple-item
measures include the Thurstone equal-appearing interval method, semantic differentials,
and Likert summated ratings, i.e. the Likert scale, which is the sum of several Likert
items.
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Figure 2.7: Likert item example
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2.4 Economic Preference Models

According to microeconomic theory, consumer preferences aid in understanding pur-
chase behavior and can be described as an artificial summary relation that serves to
characterize consumer tastes, i.e. likes and dislikes (?). This definition is a foundational
axiom of microeconomics and is formally expressed through mathematical assumptions
of completeness and transitivity (preorder).

x*

y/p2

y/p1
x1*

x2

x2*

x1

max U(x1,x2) s.t.

x1p1 + x2p2 = y

U(x)

Figure 2.8: Preference maximization and optimal choice

Preferences serve to explain choice, because the preorder assumptions over preference
relations allow consumers to rank different consumption bundles (subsets of the con-
sumption set). Ordinarily, however, economists model economic decisions by means of
a utility function. Even though the concept of utility has a long tradition in economics
(for instance, utility is the central concept in utilitarianism), in modern economics utility
is conceptualized as a function that summarizes the information conveyed by the con-
sumer’s preference relation. Mathematically, existence of a continuous real-valued utility
function representing the preference relation is guaranteed if the latter is complete, tran-
sitive, continuous, and strictly monotonic. Whereas continuity provides regularity con-
ditions, the assumption of strict monotonicity implies local nonsatiation and is directly
related with the economic idea of ‘more is better’. If the assumption of strict convex-
ity of preferences is added, then the utility function is continuous, strictly increasing,
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and strictly quasiconcave. Convex consumer tastes imply that balanced combinations
of goods are preferred to extreme combinations, i.e. strict convexity translates into the
economic principle of diminishing marginal rates of substitution. The continuous, in-
creasing and quasiconcave utility function implies the usual indifference mapping that
is depicted in economic problems. In fact, with these properties, it is possible to repre-
sent the consumer’s problem as a formal utility-maximization problem, where behavior
depends on the set that maximizes utility subject to a budget constraint (Figure ??): in
the context of purchase behavior, actions have an economic price.

As we can see – even though the economic formulation is mathematically stricter –,
the entire concept of economic preferences is closely related to the concept of attitudes
reviewed in section 2.2. In effect, both preferences and attitudes appear as hypothetical
constructs explaining (choice) behavior. The conceptualization of the utility function as
an index representing preferences through a combination of quantities or attributes and
tastes appears akin to the TRA attitudinal index of beliefs and values. In fact, both
indexes are maximized to predict behavior. In addition, note that the budget constraint
in the consumer’s problem works as a behavioral control function.

Thus, economic preferences and attitudes are related. In fact, economic preferences ap-
pear as a special case of attitudes explaining purchase behavior and economic choice in
general. However, as noted by Becker (2000), economists ordinarily take preferences as
given, whereas other social sciences focus their attention on the origin, structure, and
change of preferences/attitudes. In addition, economic preferences can be described as
a special sort of attitude dominated by the assumption of rationality in neoclassical eco-
nomics7, and the behavioral assumption behind consumer choice is utility maximization.

In the next section I describe the bases of a particular type of consumer preference model,
known as discrete choice, which is especially suitable for economically representing choice
behavior in a context of alternative selection.

2.4.1 Standard discrete choice models

Discrete choice models aim to explain the process of individual choice among a mutually
exclusive, exhaustive and finite group of alternatives (?). The choice of a specific brand

7Rationality comes from the preference relation being a total preorder. In addition, the attitude
object is a choice set of goods and services, and the behavior we try to explain is the choice of a
consumption bundle or plan.



Chapter 2. Attitudinal response in discrete choice: the hybrid choice model 27

of detergent at the supermarket, personal choice of entering or not entering the labor
market, a particular household’s heating-fuel choice, and individual travel mode choice8:
these all are examples of discrete choice. According to consumer theory the decision
process reflects preferences set by utility-maximization behavior. In the case of standard
consumption theory, the utility function representing the preference relation depends on
the continuous quantities in the consumption set. However, when the nature of a specific
good is discrete, we adopt a hedonic approach and the preference relation is assumed
to depend on a group of attributes (?)9 combined according to individual tastes. A
decision is then made based on the alternative that has the highest level of satisfaction.
For example, how much one is satisfied with using his or her car for a specific trip depends
on the personal valuation of how much money one spends to use it, how much time one
travels in it, how hard it is to park at the destination, among other attributes. In a modal
choice context, one might use his or her car but this is choice is made among a group of
countable available alternatives (car, bus, subway, tram, and walk). The decision process
is characterized by the utility (expected satisfaction) trade-off according to the attribute
values of each alternative, namely cost, travel time, waiting time and walking time. One
chooses the alternative that is the most convenient according to one’s individual tastes.

Suppose that the whole individual consumer problem is described by a separable con-
sumption set where it is possible to identify n continuous goods x ∈ Rn

+ and one discrete
choice10. The discrete choice is characterized by a choice set C with J polytomous dif-
ferent alternatives that the individual considers or perceives, and a group Qi containing
the attribute levels that describe each alternative i ∈ C. Because of the assumption of a
mutually exclusive process for the discrete choice, the utility level is conditional on the
discrete choice i ∈ C (represented by its attribute values). Essentially, we can formulate
the consumer problem in this case as

max
x∈Rn

+,i∈C
U(x1, x2, . . . , xn, Qi) s.t. p · x + ci ≤ y, (2.4)

where p represents the price vector of the continuous goods, ci is the price of the discrete
good i, and y represents income.

This problem can be solved in two stages: one problem associated with the continuous
portion of the problem, and another problem characterized by the discrete choice. First

8Even though discrete choice models are used in multiple disciplines, research has been led by the
analysis of disaggregate behavioral travel demand. This tradition emerged through the work of Domen-
cich and McFadden in the 1970s (See ?).

9Based on ideas introduced by ?.
10Separability of the continuous and discrete goods implies that the satisfaction derived from the

consumption of the continuous goods does not depend on the qualitative attributes of the discrete good.
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we solve the continuous-goods portion and as a result we obtain the indirect utility
conditional on the discrete choice.

max
x∈Rn

+

U(x1, x2, . . . , xn, Qi) s.t. p · x ≤ y − ci

⇒ x∗ = x(p, y − ci, Qi)⇒ (p, y − ci) = U(x∗, Qi).

Since the continuous problem is solved conditional on the discrete choice, the resulting
indirect utility can be evaluated for each discrete alternative. Because of the discrete
nature of this second stage, we solve the discrete portion of the problem simply by com-
paring each conditional indirect utility and choosing the one that achieves a maximum
value.

max
i∈C

V (p, y − ci, Qi) ≡ i∗{V (p, y − c1, Q1), . . . , V (p, y − cJ , QJ)}.

When comparing the conditional indirect utility functions, only the terms that are
alternative-specific survive. The price vector of the continuous goods and the total
income are common to all of the conditional utility functions and are not relevant in de-
termining the maximum. The utility of the discrete alternatives is built as a truncated
conditional indirect utility function, where we keep only the attributes whose levels vary
between alternatives as well as cost. In discrete choice modeling, the truncated condi-
tional indirect utility is simply called the utility of a certain alternative. To incorporate
heterogeneity among individuals, empirically it is usual to consider socio-demographic
characteristics of the decision-maker. If we assume a linear-in-parameters specification,
then Vin – which is the utility of alternative i and individual n – can be written as
a function of a vector of taste parameters β and the attributes Xin – enclosing the
alternative-specific attributes Qi, the cost of choosing the alternative ci, characteristics
of the individual Sn and an alternative-specific constant (ASC):

Vin = V (ci, Qi, Sn) = Xinβ.

In discrete choice modeling, the most common approach is based on random utility
theory (?), which introduces the concept of individual choice behavior being intrinsi-
cally probabilistic11. Whereas the Random Utility Model (RUM) framework recognizes
the existence of a systematic component of individual behavior, RUM also takes into
account the incapacity of the analyst to observe all the variables that influence the de-
cision (incomplete information that entails uncertainty). ? identifies four sources of

11Random utility theory has its roots in psychology. The idea was introduced by ?, who built on
a model of imperfect discrimination; later ? linked the concept of random utility with the theory of
individual choice behavior developed by ?.
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uncertainty: unobserved alternative attributes, unobserved individual attributes or ran-
dom taste variations, measurement errors (including incorrect perception of attributes),
and proxy or instrumental variables. Therefore, utility is modeled as a random vari-
able, consisting of an observable systematic and deterministic component Vin, and an
unobservable random component εin:

Uin = Vin + εin.

Different discrete choice RUMs can be derived based on various assumptions on the
distribution of the random term εin. The probabilistic nature of the choice behavior
implied by the RUM framework leads to the individual probabilities of each consumer
selecting each available alternative:

Pn(i) = P(i|Cn) = P(Uin ≥ Ujn,∀j ∈ Cn, j 6= i) = P(Vin−Vjn ≥ εjn−εin, ∀j ∈ Cn, j 6= i).

In the continuous search for flexible models capable of dealing with different practical and
realistic situations, discrete choice modeling has developed especially quickly: the simple
but restrictive multinomial logit model (?) has evolved into the powerful mixed logit
model (???), which offers a flexible covariance structure together with the possibility of
approximating any random utility model (?). Research in discrete choice modeling in
the last two decades has devoted an enormous effort toward understanding the flexibility
of the distribution of the error term and developing estimation methods that account
for this flexibility.

The link between attitudes and economic preferences expressed through a utility function
becomes clearer when we analyze willingness to pay (WTP) measures, which are a usual
output of preference models and, in particular, of discrete choice models. Economic WTP
reflects how much money a consumer is ready to pay for a good - or for an increase of a
desirable attribute in the case of discrete choice models. For example, consider a vehicle
purchase situation. Usually low-emission vehicles are pricier, but some consumers are
willing to pay this higher price because they want a vehicle that produces less GHG
emissions. The WTP of those consumers reflects not only an economic preference but
also an environmental preference that can be understood as an (economic) attitude
related to the consumer’s environmental concerns.

2.4.2 Discrete choice econometrics as SEM

In econometrics, the problem of latent endogenous variables has led to specific models
of qualitative dependent variables, including discrete (or qualitative) choice. Note that
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under the RUM framework, standard discrete choice is a special case of SEM. The
(truncated indirect) utility function is a latent construct that measures the individual
level of satisfaction conditional on each alternative according to a structural equation
derived from microeconomic principles. The structural relationship involves (observable)
attributes of the alternatives and socioeconomic characteristics of the individuals, both
as exogenous variables. Although the utility function is unobservable, revealed or stated
choices serve as indicators of the underlying choice process (Figure ??):

U = Xβ + ν

y = choice
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U y = choice

n

b1
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Figure 2.9: Standard discrete choice

Not only does the structural equation representing economic preferences through a utility
function make discrete choice a special case of SEM, but also the specific nature of
choice as an effect indicator of the preferences. In effect, choice (representing the label
of the alternative chosen after utility maximization) is a nominal scale for the discrete
response resulting from maximizing the underlying continuous utility function. Thus, the
alternatives represent a qualitative concept that is represented by the hedonic attributes.
Note further that the discrete response represents a measure of utility differences: we
cannot observe the utility of an individual, but after an overt choice we know that the
utility is higher for the chosen alternative, i.e. the utility difference with the non-chosen
alternatives is positive12. Observing choice data for a group of individuals (or repeated
data for a single individual in a dynamic choice situation) we can map the utility function,
yielding the estimation of the unknown parameters of the structural equation.

12Considering the absolute value of each utility.
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In a revealed preference (RP) study real choices are observed, but in a stated preference
(SP) experiment (also termed conjoint analysis), respondents are faced with hypothetical
choice situations. Note that SP choices can be understood as an elicitation of behavioral
intentions (or an attitude toward purchase), whereas RP data correspond to manifest
variables of current or past behavior.

2.4.3 Extending the discrete choice framework

According to Daniel Kahneman, there still remains a significant difference between
economists who develop practical models of decision-making and behavioral scientists
who focus on a cognitive understanding of agent behavior beyond utility maximization.
Both groups have fundamental interests in behavior but each works with different as-
sumptions and tools. ?? points out the need to bridge these worlds by incorporating
attitudes in choice models. In his 2000 Nobel lecture, McFadden emphasized the need to
incorporate attitudinal constructs in conventional economic models of decision making.

Effectively, under the standard random utility approach ? discrete choice models repre-
sent the decision process as an obscure black box, where attitudes, perceptions and
knowledge are neglected (??). This is a serious problem if we consider that, as dis-
cussed above, psychometric studies have proven that attitudes affect behavior. From
an econometric point of view, since we expect attitudes to have a causal impact on eco-
nomic choice (based on TPB, for instance), omitting attitudinal factors leads to omitting
a relevant variable, leading to concomitant endogeneity problems.

The black box described by ? is sketched in Figure ??. The idea of the black box is
that, even though the study of economic preferences has a solid mathematical basis,
the axioms explaining economic consumer behavior do not explain the cognitive process
involved in terms of how tastes are formed and how perceptions and attitudes affect
preferences.
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Figure 2.10: The black box as described by ?

Another representation of the choice process, sketched by McFadden and Ben-Akiva in
the late 1990s (see ?), is presented in Figure ??. Here not only perceptions, beliefs
and attitudes are fundamental in the process, but the role of information, experience,
and affect are relevant too. In this model, which is not precisely a path diagram, the
thicker arrows correspond to the standard economic preference model of choice, where
information is processed as perceived attributes and then a utility maximization cog-
nitive process results in choice. The lighter arrows represent the relevant relationships
according to behavioral science. Note that in this model it is clear that the interaction
between perceptions, attitudes, and preferences depends on whether we use an economic
preference approach or a theory based on psychology. In fact, as McFadden points out,
the standard economic model appears as a simplified form of the more general model
that takes into account the whole system.

Because attitudes affect the cognition of the choice process (?), to generate a more
comprehensive economic representation of the decision-making task, it is essential to
consider behavioral science research on the links among attitudes, perceptions, behavioral
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Figure 2.11: Representation of the choice process (?)

intentions, and actual behavior13. In economic preference models, choice behavior is
explained through the cognitive process of utility maximization. We will see that the
effect of attitudes on behavior can be indirectly incorporated through the attitude effects
on the utility function.

2.5 Hybrid Choice Modeling

Hybrid choice models are a generalization of standard discrete choice models where dif-
ferent expanded models are considered simultaneously (see ?). A hybrid choice model
(HCM) expands on discrete choice modeling by combining the following important mod-
eling extensions (?): heterogeneity through flexible error structures (such as the use of
mixed logit); the combination of revealed (RP) and stated preference (SP) data; the
presence of latent classes explaining underlying market segments (through a latent class
model); and the integration of latent (unobserved) constructs according to an Integrated
Choice and Latent Variable (ICLV) model (Figure ??). It is the ICLV model inside the
HCM conceptual framework which permits the inclusion of latent attitudinal constructs

13For a review of empirical research on the inclusion of attitudes in travel behavior modeling, see ?.
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in such a way that understanding of consumer behavior is improved while the model
gains in predictive power.
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Figure 2.12: Hybrid Choice Model as sketched by ?

Research on the inclusion of attitudes into discrete choice models started in the late 1970s
with the work of ?, who considered manifest variables directly in the utility function. The
next step was to conduct factor analysis to get fitted attitudinal factor scores that are
introduced as explanatory variables of the discrete choice (??). However, this sequential
estimation approach results in estimates that are not only inefficient but also inconsistent.
Although ? and ? propose different methods for achieving consistency and efficiency
in the two-step estimator (?), the required procedure is complex and often neglected in
empirical work. ? and ? set the theoretical fundamentals for later development of a
comprehensive framework of hybrid choice models and ICLV simultaneous estimation,
where the whole model is viewed as a system of equations involving a standard SEM
system and discrete choice. These fundamentals were revisited by Ben-Akiva, Walker
and Bolduc in a seminal work (??) that has motivated the reemergence of ICLV models
as an important research subject in discrete choice modeling.

Methodologically, the modeling challenge in hybrid choice modeling arises in simultane-
ous estimation of the ICLV model and the consideration of flexible disturbances. In fact,
in recent literature the terms hybrid choice and hybrid discrete choice have both been
used to describe a joint ICLV model.
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Combining the SEM and DCM notations, the hybrid choice model can be written as

U = Xβ + Γz + ν (2.5)

z = Πz +Bw + ζ

y = choice,

I = Λzz + ε

x = ξx

w = ξw

where U and z are latent endogenous variables (although z also enters as an explanatory
variable in the structural equation of U). X is a matrix of attribute characteristics and
socioeconomic variables; the last equation, which is usually omitted, indicates that this
matrix is observable. w is a (latent) vector of exogenous variables. y is a choice indicator
and I is a vector of effect-indicators. β, Γ, Π, B, and Λz are unknown parameters; ν, ζ,
and ε are disturbance terms. A schematic path diagram is presented in Figure ??.
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Figure 2.13: Hybrid Choice Model

When we look at the equations describing the hybrid choice model, we can clearly dis-
tinguish a particular extension of the SEM system. In a more general form, the hybrid
model is nothing other than an SEM where the exogenous14 latent variables has been

14Exogenous to the utility function.
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endogenized, and hence there is an additional structural equation that is specific to what
I will call a causal latent variable. However, the hybrid model is a particular instance of
this generalized SEM because the dependent latent variable (the ‘original’ endogenous
latent variable) represents a utilitarian function of economic preferences and the indica-
tor is relative to choice behavior. In this sense, the label ICLV is somewhat redundant:
as noted above, the standard discrete choice model is already an integration of latent
variables and economic choice. In fact, the standard discrete choice model can be inter-
preted somewhat as the MIMIC version of the hybrid choice model. Whereas the name
“hybrid choice model” gives the idea of a model that consolidates different portions or
sub-models that can be plugged in to gain flexibility, the name itself is not particularly
self-explanatory. As we have seen, the hybrid choice model is a discrete choice
model with endogenous latent causal variables.

What do these endogenous latent causal variables represent? Consider first qualitative
attributes. Qualitative attributes, as opposed to quantitative attributes, do not have a
natural order or an overt measurement scale. Because quality is hard to conceptualize, it
is also hard to measure (owing, for example, to the multidimensional nature of quality),
and therefore quality needs to be operationalized as a latent construct.

The most naive approach toward qualitative attributes is to simply ignore them. How-
ever, this is equivalent to assuming incorrectly that consumers do not consider quality
when evaluating alternatives before purchase. In fact, assuming that quality is a relevant
attribute in explaining consuming behavior, the omission of quality will cause potentially
severe econometric problems. In the best case, if the omitted relevant variable is inde-
pendent of the other attributes in the model, then the estimated parameters will be
unbiased (although the standard errors will be invalid). It is not difficult, however, to
argue that quality and price are closely related. The omission of quality means that part
of this variable’s effect goes to the error term, but because quality and price are corre-
lated, then price will be correlated with the error term. This leads to the econometric
problem of endogeneity which provokes biased parameters.

A less naive approach uses a proxy variable for the qualitative construct. Effectively,
qualitative attributes are often introduced as categorical variables on a nominal scale.
The nominal scale may be adequate if the qualitative attribute is discrete in nature.
But if there is some continuity in the evaluation of quality, the nominal scale becomes a
proxy variable that measures the true qualitative attribute with error.

A typical example of the proxy variable approach can be seen in stated preferences (or
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conjoint analysis) studies in which respondents are faced with alternatives described
as having ‘poor’, ‘standard’, or ‘high’ quality. Represented through these discrete cat-
egories, quality is inserted into the utility function using dummy variables or effects
coding (representing the nominal scale), or even by means of an arbitrary continuous
scale. If we replace quality for a proxy variable, without taking into account the mea-
surement error involved, then we again have endogeneity. In the SEM terms, the proxy
variables correspond to the effect-indicators or manifest variables of the latent construct.
Taking SEM as modeling framework, we know that we do not insert the indicators di-
rectly into the structural equation, but we have a measurement model that allows us to
identify and hence correctly integrate the latent variable inside the structural equation.
For instance, income is very likely to be misspecified. Using hybrid choice modeling, the
solution is simple: we include in the choice model a latent income variable to account
for the measurement errors associated with reported income classes (which can be taken
as effect-indicators of income).

Attitudes present a second kind of endogenous causal latent variable. The theory of
planned behavior asserts that attitudes cause action through their role in explaining
behavioral intentions15. In hybrid choice modeling, the structural relationship between
choice behavior and attitudes is given by the presence of attitudes as latent causal vari-
ables in the utility function. In an HCM attitudes play a role in the choice process
through a corresponding marginal utility. For instance, a consumer with positive at-
titudes toward sustainability is ready to pay more for organic produce because food
that is farmed following socially responsible practices provides more satisfaction to the
consumer.

Note that the attitudes (or qualitative attributes) that we incorporate in an HCM are
endogenous to the economic choice model (the structural equation of the utility function),
but we manage to treat this endogeneity by means of the structural and measurement
equations of the latent variable. Since the simultaneous system of equation yields efficient
and consistent estimators, HCMs appear as a tool for dealing with endogeneity in discrete
choice models.

Other methods for treating endogeneity have also been discussed (?). In particular,
the control function method (?) has recently been attracting the attention of DCM
researchers. ? compare the control function method with a specific HCM where fitted
errors of an IV regression for price are used as effect-indicators. The authors conclude

15In addition, TPB provides a theoretical framework that allows us to consider attitudes as relevant
variables inside a structural equation.
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that the HCM performs better in terms of consistency. My discussion here, however,
extends beyond instrumental variables, because the latent variable approach allows us to
explicitly incorporate the variable that, when omitted, provokes endogeneity problems.

Several examples of empirical applications of the HCM framework are found in the
literature16, most of them using a two-step estimator. In the last couple of years, a
vivid interest has arisen in developing a generalized efficient and consistent simultaneous
estimator. Effectively, although the idea behind the ICLV model is not new, recent
research on simultaneous estimation of the HCM has renewed interest in the integration
of psychometric models in the field of discrete choice microeconometrics. ? present
the first example of such an analysis of a general situation characterized by a large
number of latent variables and a large number of choices17. A recent application of the
Hybrid Choice setting applied to the freight sector appears in ?. For a personal-vehicle-
technology choice, ?18 analyze the practical use of a large number of indicators.

2.5.1 HCM as an attitudinal model of choice

The HCM system of equations introduces attitudes in different dimensions of the choice
process. Interpreting the model from an attitudinal point of view, we model the con-
sumer’s problem as a special case of planned behavior. For instance, in the context
of purchase behavior, we can distinguish purchase intentions from actual purchase be-
havior. Purchase intentions represent general behavioral-utilitarian attitudes toward the
purchase of a specific good. These utilitarian or economic attitudes can be understood as
the economic preference valuation summarized by a utility function. Purchase intentions
reflect a consumer’s desires as well as the evaluative process prior to actual purchase.
Of course, purchase intentions are also affected by a behavioral control function, specifi-
cally by the budget constraint. Since economic preferences are unobservable, this utility
function is treated as a latent variable. The economic preferences that underlie purchase
intentions are manifested through self-reported stated choices.

In practice, purchase intentions are measured in stated preference (SP) experiments us-
ing conjoint analysis. The economic preferences (summarized in the utility function), the

16However, in the vast literature on discrete choice, the inclusion of attitudinal factors is rather
sporadic.

17This paper is also the first attempt to develop a Bayesian estimator. However, the authors provide
only the outline of a Gibbs sampler which is not ready for full implementation.

18See chapters 3 and 4.
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budget constraint, and the stated choices conjointly determine purchase intentions. Once
the taste parameters are determined, it is possible to forecast the consumer’s response in
terms of purchase intentions beyond the experimental values of the attributes considered
in the SP choice situations. Even though purchase intentions do not necessarily reflect
actual purchase behavior, measuring purchase intentions is especially important when
introducing new products. Moreover, according to the theory of planned behavior, in-
tentions should serve to explain actual behavior. In a discrete choice framework, actual
behavior is also determined by the individual utility function. Actual purchase behav-
ior is measured by actual choice (current or previous purchase behavior.) In practice,
this measurement is done using revealed preference (RP) studies which take choice as a
behavioral manifest variable.

In its current state of development, the HCM handles the effect of behavioral intentions
on actual behavior through joint estimation of the utility function mixing RP and SP
data. In practice, joint RP-SP yields more accurate predictions of purchase behavior,
basically because the experimental trade-offs of the SP choice situations can be used
to identify the taste parameters that explain revealed choice. However, research on the
causal effect of intentions on actual choice needs to be pursued further.

Additionally, the HCM allows us to include latent variables as attributes of the alterna-
tives. These latent variables may represent qualitative attributes, but may also repre-
sent other attitudinal dimensions related to consumer behavior, beyond the behavioral
dimension provided by the utility function. Effectively, we can introduce into the choice
process affective and cognitive attitudes. In the HCM these attitudinal dimensions indi-
rectly affect behavior through their impact on the behavioral dimension determined by
the utility function.

For example, in the case of a purchase of low-emission vehicles, the cognitive attitude
related to a positive evaluation of low-emission vehicles as a means to alleviate oil depen-
dency may have an effect on readiness to buy an enviro-friendly car, and this disposition
is the behavioral attitude determined by the utility function. We can also include behav-
ioral attitudes associated with other behavioral contexts. For example, the willingness
to buy an iPad (as determined by the utility function in this particular purchase con-
text) can be affected by the behavioral attitude determined by promptness to adopt new
technologies in general. For these explanatory latent variables (Figure ??), the HCM
considers both causal and effect indicators that must be introduced into the choice pro-
cess simultaneously with the preference model for consumer behavior. In sum, the HCM
is an effective tool for incorporating the economic grounds of decision making into well-
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Figure 2.14: Integrating attitudes toward new technologies

established psychometric models of attitude-behavior. However, additional research is
needed to explore other HCM expansions such as: the inclusion of subjective norms (im-
pact on demand by reference groups); the integration of cognitive theories explaining the
formation of, and stability and change in, attitudes; the impact of information, knowl-
edge and habits on both stated intentions and actual actions; and potential semiotic
effects (?) on the dynamics of choice behavior.

2.5.2 Extended Examples of HCMs

To clarify the concepts covered in this chapter I will discuss two examples of potential
latent explanatory variables. Consider first voice-service reliability of mobile telephony.
Reliability is a qualitative variable that is intangible. A naive approach will take an
indicator variable as a proxy for the original concept of quality. For example, an SP
survey could define a 3-level proxy of reliability as ‘low number of dropped calls’, ‘medium
number of dropped calls’ and ‘high number of dropped calls’. Clearly, if reliability is a
relevant variable in the choice of mobile telephony provider and we take the proxy as
an explanatory variable we will have measurement error problems such as endogeneity.
According to SEM, we recognize the latent nature of reliability and assume that it can
be indirectly observed (manifested) through other variables such as the ‘average number
of dropped calls’, the stated ‘perceived reliability of the service’, and the ‘strength of the
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signal measured by the number of bars’, among other indicators19. At the same time, we
take as granted that the reliability of the cell phone service depends on variables such as
the ‘volume of network traffic’, ‘weather conditions’ and the ‘cell site network density in
the service area’20. Although we do not observe the latent reliability, the simultaneous
system of SEM equations allows us to estimate the unknown parameters to explain the
latent construct.

Causal Indicators

· Number of dead spots in the service area
· Volume of network traffic
· Cell site network density in the service area
· Topography
· Interference with other cell sites

Effect Indicators

· Average number of dropped calls
· Average number of access failures
· Perceived reliability of the service
· Strength of the signal measured by number 
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Figure 2.15: Example: Hybrid Choice Model including reliability of mobile telephony

In an HCM for the decision of mobile telephony provider we consider two problems simul-
taneously (Figure ??). The first is the estimation of the utility function that describes
the individual economic choice process. The second is the estimation of the equations

19The relationship between reliability and its indicators is represented through measurement equa-
tions.

20The causal relationship between reliability and its explanatory variables is represented through a
structural equation.
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that are related to reliability, which we assume as a relevant explanatory variable of the
utility function in the first problem.

It is important to understand the role of each equation of the SEM system defining the
HCM. Continuing with the mobile telephony example, the utility function is a latent
variable that is manifested through choice; the latter in turn indicates that the utility
function is greater for the chosen provider than for the rest of the alternative providers21.
As mentioned above, we have assumed that reliability enters the utility function as a
qualitative explanatory variable and as such it is recognized as a latent variable. Thus,
reliability is modeled using the SEM combination of the structural and measurement
equations outlined previously. But since reliability enters into the utility function, there
is also an interaction between the SEM describing the consumer’s preference and the
SEM describing the qualitative reliability. All the equations need to be considered si-
multaneously in order to estimate the unknown parameters.

Although it is clear how the system works for estimation, it is also relevant to discuss how
the system works for forecasting. If a provider decides to make an effort to improve the
reliability of the company, then the consumer faces a different scenario than the one used
for estimation of the parameters. Assuming that tastes are stable, the company’s efforts
toward improved reliability will positively affect the likelihood of this particular provider
being chosen. Even though for improved reliability the indicators will change (i.e. the
number of dropped calls will fall and the customers should report an improved level of
satisfaction), the manifest variables for a future situation are not known a priori. This is
not a problem, however, because the current indicators served only for identification of
the latent variable: once the parameters have been estimated, we need only the structural
model to make predictions. Effectively, if the provider decides to expand their network
coverage aiming at improving the reliability of their services, then by using the structural
model for reliability of the HCM, we can ascertain the impact of such an expansion on
the reliability of the provider, and then obtain the change in the market shares of each
provider that this expansion provokes.

The discussion above is valid for latent variables as qualitative attributes. When model-
ing attitudes the causal and effect indicators may however have a different nature. For
example, when choosing a cell phone plan, the consumer’s intentions and actual purchase
of a smartphone can be explained by his or her behavioral attitude toward adopting new
technologies (Figure ??). Someone who has a more favorable view of new technologies
will be more likely to have a smartphone. When incorporating the latent promptness to

21This is a direct result of utility maximization behavior.
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adopt new technologies in an HCM, we need to identify both causal and effect indica-
tors. In this example, the adoption of new technologies may present differences across
socio-demographic groups that can be tested using MIMIC models.

Causal Indicators – high-tech segments
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Figure 2.16: Example: Latent disposition to adopt new technologies

In effect, causal indicators such as social class, age, and education translate the structural
equation of the latent variable into a model for market segmentation of new technology
adoption. For instance, a young professional may be more likely to adopt new tech-
nologies than a retired worker. Or, lifestyle characteristics may also serve as causal
indicators. For example, someone who texts and emails, and who belongs to a social
networking or microblogging website, may be more inclined to demand a smartphone.
Effect indicators for the adoption of new technologies can be self-reported responses,
such as ‘self-perception of the consumer as an early adopter of new technologies’, or the
‘importance of being a trendsetter’, as well as previous or current purchase behavior,
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such as ‘currently using e-mail’ and ‘Internet browsing in a non-smartphone’, ‘owning
portable media devices’, ‘using a laptop’, or ‘owning an e-book reader’.

Thus, using an HCM for this particular choice context not only are we able to understand
the consumer’s preferences in terms of, for example, willingness to pay to have access
to a smartphone, but we can also assess how much more likely someone is to choose
a smartphone on a high-tech segment, where the different segments are simultaneously
obtained.

As can be inferred from this example, usual manifest variables for attitudes are perceptual-
attitudinal (opinions) or behavioral (overt actions) indicators. Additionally, natural
causal indicators that account for heterogeneity are characteristics of individuals. Ef-
fectively, empirical HCM work that employs a structural model of attitudes makes use
of explanatory variables are basically sociodemographic (for example ?). Conversely,
in HCMs with qualitative attributes (??) the structural equation makes use of both
socioeconomic variables and observable attributes.

Two generalizations can be made from both of the telecom examples. When introduc-
ing latent variables, on the one hand we have qualitative attributes, for which causal
indicators can be alternative-specific. For example, in a travel mode HCM ? use age,
terminal time (rail-auto), number of transfers by rail, and availability of free parking for
auto as exogenous variables causing a latent convenience attribute. On the other hand,
we have attitudes, for which causal indicators are often individual-specific. For example,
in a travel mode HCM ? use gender, age, and the presence of children in the household
as causal variables to explain general attitudes toward the environment.) Hence, it is of
fundamental importance to determine the causality relationship necessary for building
the structural and measurement equations.

These distinctions are important in forecasting, because by incorporating observable
attributes in the structural model of the latent attribute we are able to predict the
effects on choice after an expected change in the latent attribute; the discussion on
forecasting with HCMs is also outlined by ?. For example, in a travel mode choice
example a change in the transportation system that reduces the number of transfers by
rail entails greater convenience for rail and hence rail becomes more attractive and more
likely to be chosen. Likewise, frequency can explain comfort inasmuch as low frequency
of high-demand buses entails a loss in comfort because the buses are crowded. So in an
HCM context, a policy aiming to improve frequencies can affect choice not only through
a direct effect but also through the effect of frequency on the structural equation of



Chapter 2. Attitudinal response in discrete choice: the hybrid choice model 45

comfort. The role of certain other variables, such as passenger density, is less obvious,
especially when there is simultaneity between the qualitative attribute and the variable
being analyzed: passenger density might be a factor explaining comfort, or it might
instead be a manifestation of this qualitative variable.

2.6 Summary and concluding remarks

Throughout this chapter I have discussed the importance of developing a more compre-
hensive economic model that takes into account the potentially complex relationships
among perceptions, attitudes, economic choice behavioral intentions, and overt behavior.
Hybrid choice models (HCMs) are a generalized structural equation model (SEM) sys-
tem that simultaneously accommodates a discrete choice model with latent explanatory
variables, where these variables in turn enter the system as a standard SEM.

As discussed earlier, there are several reasons why it is desirable to include latent vari-
ables as explanatory variables in standard economic preference models. Explanatory
latent variables can represent variables that are difficult to measure or that do not
possess an associated measurement scale. A variable that can be measured (but with
difficulty) may entail working with measurement errors. Variables that are unobservable
by nature need a special treatment. Two relevant types of latent explanatory variables
of consumers’ preferences appear: qualitative attributes and attitudes.

Note that whereas the study of the attitude-behavior relationship is fundamental in so-
cial psychology and cognitive science research, in economics the impact of attitudes as
explanatory variables of consumer behavior has mostly been neglected, yielding econo-
metric problems arising from the omission of a relevant variable.

In econometrics, latent variables are modeled using structural equation models (SEMs)
that represent the unobserved construct as a system of equations. First, the struc-
tural equation links the endogenous latent variables22 to exogenous (latent or observed)
variables23 according to a causal relation. Second, the measurement equation provides
identification of the latent variable through manifest variables or effect-indicators24 (See
Figure ??).

22I.e. qualitative attributes or attitudes, or both.
23I.e. explanatory variables of the qualitative attributes or attitudes according to some general model.
24Variables that are dictated by the level of the qualitative attribute or attitude.
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Figure 2.17: Causal and effect indicators for attitudinal and qualitative attributes

Finally, because attitudes together with qualitative attributes motivate the development
of an integrated model of economic preferences and latent variables, the HCM is ulti-
mately a more realistic econometric model. Because the HCM integrates the effect of
attitudes on consumer behavior, the economic choice model of an HCM is only a part of
the whole behavioral process incorporates individual attitudes, opinions and perceptions.
This chapter has made clear the need to incorporate attitudinal data into discrete choice
models. Even though some effort has been made in this direction, several economet-
ric challenges remain to be addressed. In the following chapters I analyze econometric
estimation of HCMs, using both classical and Bayesian techniques.
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Chapter 3

On classical estimation of hybrid
choice models

Within the continuous search for flexible models capable of dealing with
different practical and realistic situations, discrete choice modeling has de-
veloped especially quickly: the simple but restrictive multinomial logit model
has evolved into the powerful mixed logit model. This search for flexibility
has continuously faced the problem of a more involved and extremely de-
manding estimation process: the curse of dimensionality. In the last few
years the flexibility search has been extended to the next level, integrating
attitudinal data into standard choice models through hybrid choice models
(HCMs). The estimation of HCMs is not absent of econometric challenges
to be addressed and solved.

In this chapter I describe the classical estimation techniques for a full infor-
mation simulated maximum likelihood solution for a general hybrid choice
model, allowing for interactions among the latent variables and for different
distributions for the indicator variables. I also discuss the formulation and
problems of a limited information maximum likelihood solution, which is the
method mostly used in practice. A case study using real data where the joint
estimation is applied completes the chapter.
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3.1 HCM estimation: an econometric challenge

As discussed in Chapter 2, hybrid choice models (HCMs) integrate standard discrete
choice modeling (DCM) and structural equation modeling (SEM), taking into account
the impact of attitudes on the decision process. The econometric representation of a gen-
eral HCM setting involves solving a simultaneous equation system defined by structural1

and measurement2 equations for both the DCM and SEM sub-models.3

Assuming a linear specification, the HCM system of structural and measurement equa-
tions may be written as follows:

Structural equations

z∗n = Πz∗n +Bwn + ζn = (IL − Π)−1Bwn + (IL − Π)−1ζn, ζn ∼ N(0,Ψ) (3.1)

Un = Xnβ + Γz∗n + υn (3.2)

Measurement equations

In = α + Λz∗n + εn, εn ∼ N(0,Θ) (3.3)

yin =

{
1 if Uin ≥ Ujn, ∀j ∈ Cn, j 6= i

0 otherwise,
(3.4)

where z∗n is a (L × 1) vector of latent variables; we introduce the (L × L) matrix Π

allowing the eventual presence of simultaneity or interactions among the latent variables
– we assume that (IL − Π) is invertible, where IL represents the identity matrix of
size L; wn is a (M × 1) vector of explanatory variables affecting the latent variables;
B is a (L × M) matrix of unknown parameters used to describe the global effect of
(IL − Π)−1Bwn on the latent variables; and Ψ is a (L × L) variance covariance matrix
which describes the relationship among the latent variables through the error term. The
choice model in equation (??) is written in vector form where we assume that there are
J alternatives. Therefore, Un is a (J×1) vector of utilities; υn is a (J×1) vector of error
terms associated with the utility terms. Xn is a (J × K) matrix with Xin designating
the ith row. β is a (K × 1) vector of unknown parameters. Γ is a (J × L) matrix of

1For unobservable dependent variables.
2For manifest variables.
3For the structural equation latent variable sub-model we use a MIMIC specification.
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unknown parameters associated with the latent variables present in the utility function,
with Γi designating the ith row of matrix Γ.

In the set of measurement equations, In corresponds to a (R × 1) vector of indicators
of latent variables associated with individual n; α is a (R × 1) vector of constants and
Λ is a (R × L) matrix of unknown parameters that relate the latent variables to the
indicators. The term εn is a (R × 1) vector of independent error terms. This implies
that Θ is a diagonal matrix with variance terms on the diagonal. Finally, we stack the
choice indicators yin’s into a (J × 1) vector called yn.

If the latent variables were not present, the choice probability of individual n select-
ing alternative i would correspond exactly to the standard choice probability P (yin =

1 |Xn, β ) ≡ Pn(i |Xn, β ). In a setting with given values for the latent variables z∗n, the
choice probability would be represented by Pn(i |z∗n, Xn, θ ) where θ contains all the un-
known parameters in the choice model of equation (??). Since latent variables are not
actually observed, the choice probability is obtained by integrating the latter expression
over the whole space of z∗n:

Pn(i|Xn, wn, θ, B,Π,Ψ) =

∫
z∗n

Pn(i |z∗n, Xn, θ )g(z∗n|wn, B,Π,Ψ)dz∗n, (3.5)

which is an integral of dimension equal to the number of latent variables in z∗n and where
g(z∗n|wn, B,Π,Ψ) is the density of z∗n defined in equation (??).

Indicators are introduced in order to characterize the unobserved latent variables, and
econometrically they permit identification of the parameters of the latent variables. In-
dicators also provide efficiency in estimating the choice model with latent variables,
because they add information content. The variables yn and In are assumed to be corre-
lated only via the presence of the latent variables z∗n in equations (??) and (??). Given
our assumptions, the joint probability P (yin = 1, In) ≡ Pn(i, I) of observing yn and In
may thus be written as:

Pn(i, I|Xn, wn, δ) =

∫
z∗n

Pn(i |z∗n, Xn, θ )f(In|z∗n,Λ,Θ)g(z∗n |wn, B,Π,Ψ)dz∗n, (3.6)

where f(In|z∗n,Λ,Θ) is the density of In defined in equation (??). The term δ designates
the full set of parameters to estimate jointly the discrete choice and the latent variable
models (i.e. δ = {θ, B,Π,Ψ,Λ,Θ}).
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3.2 Full information maximum likelihood

This section provides the analytical details regarding the maximum simulated likelihood
implementation of a general HCM with a mixed logit kernel for the DCM sub-model.
To gain generality and flexibility, we expand the method presented in ? in two relevant
ways. In our model we allow for both the presence of simultaneity among the latent
variables (through equation ??) and the incorporation of latent variables with associated
indicators that can be not only continuous but also discrete (binary or multinomial).

3.2.1 Evaluating the joint choice probability

For efficiency reasons, we only focus on a full information solution. Following ?, HCM
classical full information estimation requires the evaluation of the joint probability
Pn(i, I|Xn, wn, δ) defined in equation (??). This joint probability depends, first, on
the discrete choice kernel Pn(i |z∗n, Xn, θ ). In addition, the analytical form of the discrete
choice kernel depends on the assumptions regarding the distribution of the random term
υn defined in equation (??).

Indeed, if υn is i.i.d. extreme value type 1 distributed, then conditional on z∗n the
probability of choosing alternative i has the multinomial logit (MNL) form, which leads
to the following expression:

Pn(i, I|Xn, wn, δ) =

∫
z∗

exp(Xinβ + Ciz
∗
n)∑

j∈Cn

exp(Xjnβ + Cjz∗n)
f(In|z∗n,Λ,Θ)g(z∗n|wn, B,Π,Ψ)dz∗n. (3.7)

Assuming an MNL kernel provides an easier calculation of Pn(i, I|Xn, wn, δ) because the
choice probability Pn(i |z∗n, Xn, θ ) has a closed form. However, the same modeling disad-
vantages found in the standard case still obtain. MNL assumes a restricted covariance
structure, with no correlation and no heteroscedasticity.

We can derive a probit kernel if we make the assumption that the error terms υn are
multivariate Normal distributed. The probit kernel solves the problem of restrictive
simplifying assumptions of MNL. However, in the probit case the choice probability no
longer has a closed form. In fact, probit classical estimation has proven to be burdensome
in practice.
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For classical estimation, a mixed logit (MMNL) kernel is the most convenient assumption
to model flexible error structures. We will decompose υn assuming a Normal distributed
factor analytic structure:

υn = PTξn + νn, (3.8)

where P is a (J × F ) matrix of factor loadings; T is a (F × F ) diagonal matrix that
contains factor specific standard deviations (T ∈ θ); ξ is a (F × 1) of i.i.d. normally
distributed factors; and ν is a (J×1) vector of independent and identically distributed ex-
treme value type 1 error terms. The mixed logit kernel adds an additional F -dimensional
integral to the joint probability Pn(i, I|Xn, wn, δ), which now implies solving:

Pn(i, I|Xn, wn, δ) =

∫
ξn

∫
z∗n

Pn(i |z∗n, Xn, θ, ξn )f(In|z∗n,Λ,Θ)g(z∗n |wn, B,Π,Ψ)Nξ(0, IF )dz∗ndξn.

(3.9)

Since ν is i.i.d. extreme value type 1, note that Pn(i |z∗n, Xn, θ, ξn ) has the following
MNL form:

Pn(i |z∗n, Xn, θ, ξn ) =
exp(Xinβ + Ciz

∗
n + PiTξn)∑

j∈Cn

exp(Xjnβ + Cjz∗n + PjTξn)
, (3.10)

where Pi denotes row i of P . Assuming that z∗n and ξn are mutually independent,
equation (??) can be incorporated directly into equation (??).

Regarding the measurement model and its distribution f(In|z∗n,Λ,Θ), we assume that
each equation that links the indicators and the latent variables corresponds to a contin-
uous, a binary, or a multinomial ordered response. A measurement equation r in the
continuous case is given by Irn = I∗rn with:

I∗rn = αr + Λrz
∗
n + εrn, εrn ∼ N(0, θ2

r). (3.11)

In the binary case, we rather get instead:

Irn =

{
1

0

if I∗rn ≥ 0

otherwise,
(3.12)

while in the multinomial ordered case with Q responses, we obtain:

Irn =


1

2
...
Q

if γ0 < I∗rn ≤ γ1

if γ1 < I∗rn ≤ γ2

if γQ−1 < I∗rn ≤ γQ,

(3.13)
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where Irn and εrn are the rth element of In and εn respectively. θ2
r is the rth element

on the diagonal of Θ, and Λr denotes row r of Λ. In the multinomial cases, the γq’s
are estimated. By convention, γ0 and γQ are fixed to values that represent −∞ and ∞
respectively. We assume that Θ is diagonal, which implies that the indicators are not
cross-correlated.

Given our assumptions, the density f(In|z∗n,Λ,Θ) that we denote as f(In) to simplify,
corresponds to:

f(In) =
R∏
r=1

f(Irn). (3.14)

According to the assumptions of equation (??), if measurement equation r is continuous,
then

f(Irn) =
1

θr
φ

(
Irn − αr − Λrz

∗
n

θr

)
, (3.15)

where φ denotes the probability density function (pdf) of a standard normal. If the
measurement equation r corresponds to a binary response, then

f(Irn) = Φ

(
αr + Λrz

∗
n

θr

)Irn (
1− Φ

(
αr + Λrz

∗
n

θr

))(1−Irn)

, (3.16)

where Φ denotes the cumulative distribution function (cdf) of a standard normal. Finally,
if measurement equation r corresponds to a multinomial ordered response, then

f(Irn = q) = Φ

(
γq − Λrz

∗
n

θr

)
− Φ

(
γq−1 − Λrz

∗
n

θr

)
. (3.17)

Additionally, g(z∗n |wn, B,Π,Ψ) corresponds simply to the multivariate normal distribu-
tion MVN((IL − Π)−1Bwn, [(IL − Π)−1]Ψ[(IL − Π)−1]′).

3.2.2 Simulated maximum likelihood solution

Now that we have described each component of the joint probability shown in equation
(??), we can write the likelihood equation as:

`(δ) =
N∏
n=1

∏
i∈Cn

Pn(i, I|Xn, wn, δ)
yin , (3.18)
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which leads to the following maximum log-likelihood problem:

max
δ
L(δ) =

N∑
n=1

∑
i∈Cn

yin lnPn(i, I|Xn, wn, δ). (3.19)

The evaluation of the joint probability Pn(i, I|Xn, wn, δ) is required to find the solution
of the problem (??) δ̂ = argmax{L(δ)}. The number of latent variables has an impact
on the computation of this probability, since each additional latent variable adds an
additional dimension to the integral. In fact, for the case of a MMNL kernel, note that
equation (??) implies the computation of an integral of dimension F +L. In a moderate
size model with say F = 5 factors and L = 4 latent variables, this integral is of dimen-
sion 9. Clearly, the evaluation of the joint probability rapidly becomes intractable and
simulation would be required (see ?). In practice, with a large number of latent variables
(more than 3), we replace the multidimensional integral with a smooth simulator which
has good properties.

Taking advantage of the expectation form of equation (??), we can take an empirical
mean that provides a valid estimator of the true probability:

P̃n(i, I |Xn, δ ) =
1

S

S∑
s=1

Pn(i |z∗n, Xn, θ, ξ
s
n )f(In |z∗sn ,Λ,Θ), (3.20)

where z∗sn corresponds to a random draw s from the g(z∗n|wn, B,Π,Ψ) distribution, and
ξsn is a random draw s taken over the distribution of ξ. This sum is computed over S
draws.

This simulator is known to be unbiased, consistent (as S →∞) and smooth with respect
to the unknown parameters. Replacing Pn(i, I|Xn, wn, δ) with P̃n(i, I|Xn, wn, δ) in the
log likelihood leads to a maximum simulated likelihood (MSL) solution. We therefore
consider the following objective function – often called the sample average approxima-
tion (SAA):

∑N
n=1

∑
i∈Cn

yin ln P̃n(i, I |Xn, wn, δ) .

Calling h(in, In|Xn, δ, ξn, z
∗
n) ≡ Pn(i |z∗n, Xn, θ, ξn )f(In |z∗n,Λ,Θ), the first order condi-
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tions (FOC) of the SAA problem imply calculating the derivative:

∂L̃(δ)

∂δ
=

N∑
n=1

∑
i∈Cn

1

P̃n(i, I |Xn, wn, δ )

1

S

S∑
s=1

∂h(in, In|Xn, δ, ξ
s
n, z
∗s
n )

∂δ
(3.21)

=
N∑
n=1

∑
i∈Cn

1

P̃n(i, I |Xn, wn, δ )

1

S

S∑
s=1

∂h(in, In|Xn, δ, ξ
s
n, z
∗s
n )×[

∂ lnPn(i |z∗sn , Xn, θ, ξ
s
n )

∂δ
+
∂ ln f(In |z∗sn ,Λ,Θ)

∂δ

]
.

Numerical maximization of the simulated likelihood function requires finding analytical
expressions for both derivatives:

∂ lnPn(i |z∗n, Xn, θ, ξn )

∂δ

and
∂ ln f(In |z∗n,Λ,Θ)

∂δ
.

Also, note that in the case of an MMNL kernel we have

P̃n(i, I |Xn, wn, δ ) =
1

S

S∑
s=1

exp(Xinβ + Ciz
∗s
n + PiTξ

s
n)∑

j∈Cn

exp(Xjnβ + Cjz∗sn + PjTξsn)
f(In |z∗sn ,Λ,Θ). (3.22)

In the past few years, a lot of progress has been made regarding MSL estimation. ? gives
an in-depth analysis of the properties of MSL estimators. Recent results, based mainly
on the analysis of mixed logit models and mostly attributable to ?, suggest the use
of Halton draws. Halton-type sequences are known to produce simulators with a given
level of accuracy using fewer draws than when using conventional uniform random draws
(??). Currently, the HCM estimation software makes use of both Halton sequences and
standard pseudo-random numbers.

Simulated maximum likelihood is now well known and has been applied in numerous
circumstances. The logit probability kernel present in equation (??) makes the simu-
lated log likelihood fairly well behaved. Asymptotically, meaning as S → ∞ and as
N →∞, the solution becomes identical to a solution arising from maximizing the actual
log likelihood function:

∑N
n=1

∑
i∈Cn

yinlnPn(i, I |Xn, wn, δ ).
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3.2.3 Identification discussion

Whereas identification issues are now well understood in the context of traditional dis-
crete choice models (??), general necessary and sufficient conditions for identification of
hybrid choice models have not yet been developed. A sufficient but not necessary tech-
nique for HCM identification is a two-step approach, where we apply separate conditional
identification rules for the choice model and the latent variable model (?).

On the one hand, in discrete choice models what matters are differences between utilities
and not the level of the utilities itself. Therefore and as a general framework, we have
an order condition that establishes a limit for the total number of nuisance parameters
that can be estimated. This boundary, which is a necessary condition for identification,
is equal to the number of potentially different cells in the deviated covariance matrix.
The next step is to examine the rank condition, which is more restrictive than the order
condition and which is a sufficient condition for identification. This condition states that
the number of nuisance parameters that can be estimated is generally equal to the rank
of the Jacobian matrix of the vector that contains the different elements of the deviated
covariance matrix, minus one term which sets scale. ?, ? and ? study the identification
conditions for the case of multinomial probit models, which is equivalent to the case of
the mixed logit model, discussed specifically in ? and ?.

On the other hand, conditions for identification of some specific latent variable models
can be applied. First, the measurement scale of the latent variables is unknown and
hence normalization is required. The normalization can be achieved either by setting a
unit variance for each latent variable4 or by setting to 1 one nonzero coefficient in each
column of the matrix Λ (see ?). When the measurement equations are not correlated
(i.e. Θ is assumed diagonal), then the matrix Ψ is identified. To complete identification
of the parameters of the measurement equation of the latent variable model (equation
??), the constant terms αr must be set to 0 in the non continuous cases. Additionally
–except for the continuous case– the variances θr cannot be estimated. In that case they
need to be fixed to 1.

4Normalizing the variance of the SEM latent variables is equivalent to the normalization of the scale
of the utility function.
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3.3 Simultaneous vs Sequential Estimation

3.3.1 Sequential Estimation

Because of the complexity associated with the simultaneous SML approach, most of the
current applications of HCMs use sequential estimation that makes use of a two-step
estimator (???). First is the solution of the MIMIC model; second is the estimation of
the DCM parameter vector through maximum likelihood using the predicted conditional
mean of the latent variables.

First, we describe a limited information maximum likelihood (LIML) solution. Note that
by inserting equation ?? into equation ??, we obtain the following regression equation5:

In = α + ΛB̃wn + ε̃n, ε̃n ∼ N(0,ΛΨ̃Λ′ + Θ). (3.23)

Now that we have rewritten the MIMIC model as one equation, we can estimate the
unknown parameters δSEM 6 by standard maximum likelihood techniques:

max
δSEM

L(δSEM) = −N
2

ln |ΛΨ̃Λ′+Θ|+
N∑
n=1

(In − α− ΛB̃wn)′(ΛΨ̃Λ′ + Θ)−1(In − α− ΛB̃wn).

(3.24)
Taking δ̂SEM = arg max{L(δSEM)}, we can evaluate the conditional mean Ê(z∗n|wn, In) =

E(z∗n|δ̂SEM , wn, In). Let δDCM be the vector of unknown parameters in the discrete choice
model. Consider the conditional mean of the utility function:

Ê(Un|In) = Xnβ + ΓÊ(z∗n|wn, In). (3.25)

This conditional mean together with the conditional variance V(z∗n|δ̂SEM , wn, In), can be
used to obtain the choice probabilities Pn(i|In, Xn, wn, δDCM , δ̂SEM).

To find δ̂DCM , we need to solve the maximum log-likelihood problem:

max
δDCM

L(δDCM ; δ̂SEM) =
N∑
n=1

∑
i∈Cn

yin lnPn(i|In, Xn, wn, δDCM , δ̂SEM). (3.26)

This maximization problem is not the same as equation ??. Even more, since we are
conditioning on In and because δ̂SEM allows us to use a predictor of the latent variable,
the problem reduces to a standard discrete choice model.

5To simplify notation, we define B̃ = (IL −Π)−1B, and Ψ̃ = [(IL −Π)−1]Ψ[(IL −Π)−1]′
6δSEM represents the vector of unknown parameters for the MIMIC model.
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Note that the sequential solution δseq = (δDCM , δSEM) is not the maximum likelihood
estimator of the hybrid model but an approximation. In fact, the LIML solution results
in consistent but inefficient estimates. Even though the asymptotic variance of the
second step can be corrected, additional computation is needed (?).

In practice an even simpler approach is used, where after estimating δSEM fitted values
for the latent variable ẑ∗n are calculated. These fitted values are taken as non-stochastic,
exogenous, and observable attributes that enter the discrete choice model. Then, keep-
ing the hypotheses of the choice model, δSEM is calculated using maximum likelihood.
Despite the simplicity of this sequential approach, the resulting estimates are not only
inefficient but also inconsistent. A solution to this problem is to take into account the
distribution of the fitted latent variables (as we did in the LIML case) either considering
numerical integration of the expectation of the choice probabilities conditional on the
fitted latent variables (?), or an alternative approach that makes use of a method of
simulated moments (as proposed by ?).

In sum, proper use of a sequential method for HCM estimation implies a sufficient degree
of complexity that vanishes the simplicity of method’s conceptualization.

3.3.2 Comparing Simultaneous and Sequential methods using
Monte Carlo

We carried out a simulation experiment with the purpose of checking the empirical
performance of both the simultaneous and the sequential estimation methods for hybrid
choice models (?). In particular, with this controlled experiment we aim to study the
effect of data variability on both estimation methods.

We consider a situation with two alternatives i = 1, 2 described by two attributes X1

and X2, for a population of N = 50, 000 individuals. The systematic utility function was
built assuming an incremental specification, linear both on the attributes and the latent
variables, considering also one alternative specific constant associated with alternative 2.
In addition to the attributes of the alternatives, we make the hypothesis that underlying
attitudes and perceptions are incorporated into the choice process as latent variables.
Although the simultaneous estimation method does not impose any restriction on the
number of latent variables involved, the sequential estimation method, because of iden-
tification constraints, requires at least 2 different latent variables. Hence we consider
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two latent variables z1 and z2, both directly affecting the utility function of alternative
2. Thus, for each individual n we have:

U2n−U1n = β0+β1(X21,n−X11,n)+β2(X22,n−X12,n)+Γ1z
∗
1n+Γ2z

∗
2n+(υ2n−υ1n). (3.27)

The two attribute differences (X21,n−X11,n) and (X22,n−X12,n) were built taking random
draws from independent truncated Normal distribution functions with arbitrary lower
and upper bounds.7 To test the impact of the variability of the data on the estimated
parameters – an aspect related with empirical identification and parameter recovery (?),
we vary the coefficient of variation (CV ) of each truncated Normal distribution according
to the following table:

Case
(X21,n −X11,n) ∼ TNR(µ, σ2) (X22,n −X12,n) ∼ TNR(µ, σ2)

µ σ CV µ σ CV

1 5.00 2.50 0.50 -5.00 10.00 -2.00
2 5.00 0.50 0.10 -5.00 10.00 -2.00
3 5.00 0.25 0.05 -5.00 10.00 -2.00
4 5.00 0.10 0.02 -5.00 10.00 -2.00

Table 3.1: Parametric definition of the distribution of the attribute differences

Note that the second attribute difference has a (high-variance) constant CV , whereas the
first attribute difference has a decreasing low-variance CV . In fact, in our experimental
databases the CV of the first attribute difference goes from a moderately low-variance
(Case 1, with CV = 0.50) to a case with an extremely low-variance (Case 4, with
CV = 0.02).

The error terms υ1n and υ2n are i.i.d. Gumbel(0, 1) leading to an MNL kernel for the
discrete choice model.8 By setting the Gumbel scale factor to 1, we are able to directly
analyze the estimated parameters without scale concerns. By setting the scale factor to
1, the resulting percentage error in the data in Cases 1 to 4 is about 20% (i.e. about one
of every five simulated individuals change their choices because of the random term).
This number assures that the choice process is neither completely deterministic nor
completely random.

The choice model is completed with the underlying choice process reflected by the mea-
surement equations:

y1n =

{
1 if U1n ≥ U2n

0 otherwise,
,∀n ∈ N ; y2n =

{
1 if U2n ≥ U1n

0 otherwise,
, ∀n ∈ N . (3.28)

7We considered a range of R =[ −100, 100 ]
8Conditional on the unobserved latent variables
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We assume that each latent variable is respectively explained by two different variables
w1n and w2n, through the structural equations:

z∗1n = b1w1n + ζ1n (3.29)

z∗2n = b1w1n + ζ2n,

where ζ1n ∼ N(0, 1) and ζ2n ∼ N(0, 1), ∀n ∈ N . In general, the variables wn correspond
to individual characteristics that usually take the form of dummy variables. To simulate
this effect we consider that w1n and w2n are i.i.d. Bernoulli(p = 0.5). Regarding the
number of explanatory variables to be considered in the MIMIC model, the sequential
approach requires at least as many explanatory variables as latent variables for parameter
identification. In this case, working with two different individual characteristics for each
latent variable is necessary for the sequential estimation method as an identification
constraint that the simultaneous method does not require.

Finally, since the variables z∗1n and z∗2n are unobserved, we need measurement equations
for the latent variable model. A minimum of two indicator variables per latent variable
is required by the sequential estimation method. We thus assume that each latent
variable is measured by two different continuous indicator variables, leading to 4 distinct
measurement equations:

I11n = λ11z
∗
1n + ε1n (3.30)

I21n = λ21z
∗
1n + ε2n

I32n = λ32z
∗
2n + ε3n

I42n = λ42z
∗
2n + ε4n,

where ε·n ∼ N(0, 1),∀n ∈ N .

The path diagram for the set of structural and measurement equations of the experi-
mental HCM is sketched in Figure ??.

To construct the estimated parameters for each coefficient of variation of the data (cases
1 to 4 defined in Table ?? on page ??), we considered 15 randomly selected sub-samples
of 1500 individuals from an original database of N = 50,000 individuals. In effect, the
reported results correspond to the means of the estimates for the 15 repetitions of the
sub-sampling process. The results of the parameter estimation using both approaches,
as well as the respective t-values, are presented in Tables ??,??,??, and ??; the t-values
against the (known) target values are also shown. The simultaneous results were obtained
using a full information simulated maximum likelihood code in Fortran for hybrid choice



Chapter 3. On classical estimation of hybrid choice models 65

U

y

choice

X1

X2

Individual Characteristics

A
tt
ri
b

u
te

s
 o

f 
th

e
 

A
lt
e

rn
a

ti
v
e

s

b

u

z1*

z1

Indicator Variables

I11

w1

e

w2

I21

I32

I42

z2*

b

G

z2
l

Figure 3.1: Experimental Hybrid Choice Model

models. To approximate the maximum log-likelihood solution we used 250 repetitions
based on Halton draws. The results of the sequential method are not corrected for
efficiency.

In the first case (Case 1, CV(X21,n−X11,n) = 0.50), we observe not only that the estimates
are significant but also that they significantly replicate the target values, which corre-
spond to those used to build our simulated database. Specifically, the t-target value is
calculated to test the null hypothesis that each estimate of each parameter of interest is
equal to its target value.

However, note that for the lower-variance cases there is a problem recovering a significant
constant (Cases 2 to 4). In fact, in the two most extreme low-variance cases (Cases 3 and
4), there is also a problem recovering a significant parameter for the first attribute (which
is the parameter associated with the attribute with a low-variance). Even though in the
extremely low-variance cases we are still replicating the target values, the (asymptotic)
point estimates for both β0 and β1 are far from the target value (compare to Case 1).
This situation results from inflated standard errors due to working with a variable with
low-variance among the individuals (i.e. the data are not rich enough to estimate the
model).

Regarding the latent variables, even though both methods recover the true parameters,
there is a persistent problem with the t statistics of the sequential results. When using
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δ Target
Sequential Estimation Simultaneous Estimation
δ̂ s.e. t-stat t-target δ̂ s.e. t-stat t-target

β0 0.50 0.506 0.187 2.70 0.03 0.517 0.172 2.99 0.10
β1 -0.40 -0.393 0.032 -12.16 0.22 -0.408 0.034 -12.02 -0.22
β2 -0.20 -0.192 0.011 -18.12 0.78 -0.200 0.011 -17.73 -0.02
Γ1 -0.30 -0.284 0.177 -1.61 0.09 -0.280 0.089 -3.10 0.22
Γ2 -0.40 -0.364 0.299 -1.22 0.12 -0.373 0.093 -3.99 0.29
b1 0.80 0.784 0.077 10.25 -0.21 0.802 0.058 13.75 0.03
b2 0.50 0.471 0.070 6.75 -0.42 0.484 0.050 9.62 -0.32
λ11 0.40 0.382 0.032 11.88 -0.58 0.381 0.029 13.04 -0.65
λ21 1.00 0.978 0.036 27.20 -0.62 0.980 0.036 27.50 -0.56
λ32 0.60 0.614 0.034 18.18 0.42 0.611 0.032 19.23 0.34
λ42 1.00 0.993 0.036 27.72 -0.21 0.998 0.036 28.08 -0.05

Table 3.2: Estimation results, Case 1 CV(X21,n−X11,n) = 0.50

δ Target
Sequential Estimation Simultaneous Estimation
δ̂ s.e. t-stat t-target δ̂ s.e. t-stat t-target

β0 0.50 0.299 0.686 0.44 -0.29 0.381 0.711 0.52 -0.17
β1 -0.40 -0.343 0.138 -2.49 0.41 -0.369 0.142 -2.59 0.22
β2 -0.20 -0.200 0.027 -7.31 0.01 -0.202 0.012 -17.27 -0.15
Γ1 -0.30 -0.313 0.168 -1.87 -0.08 -0.370 0.089 -4.16 -0.79
Γ2 -0.40 -0.430 0.272 -1.58 -0.11 -0.408 0.092 -4.41 -0.09
b1 0.80 0.800 0.076 10.52 -0.002 0.797 0.057 13.91 -0.05
b2 0.50 0.491 0.070 7.02 -0.13 0.488 0.050 9.84 -0.24
λ11 0.40 0.385 0.032 12.10 -0.48 0.385 0.029 13.12 -0.51
λ21 1.00 0.995 0.036 27.70 -0.13 0.996 0.036 27.81 -0.11
λ32 0.60 0.598 0.034 17.78 -0.05 0.605 0.033 18.49 0.15
λ42 1.00 0.998 0.036 27.89 -0.05 0.997 0.035 28.39 -0.09

Table 3.3: Estimation results, Case 2 CV(X21,n−X11,n) = 0.10
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δ Target
Sequential Estimation Simultaneous Estimation
δ̂ s.e. t-stat t-target δ̂ s.e. t-stat t-target

β0 0.50 0.497 1.348 0.37 -0.002 0.610 1.406 0.44 0.08
β1 -0.40 -0.386 0.269 -1.43 0.05 -0.421 0.282 -1.50 -0.07
β2 -0.20 -0.190 0.010 -18.50 0.99 -0.199 0.011 -17.92 0.09
Γ1 -0.30 -0.255 0.165 -1.54 0.27 -0.306 0.086 -3.56 -0.07
Γ2 -0.40 -0.440 0.280 -1.57 -0.14 -0.406 0.090 -4.52 -0.07
b1 0.80 0.816 0.076 10.73 0.21 0.823 0.058 14.17 0.40
b2 0.50 0.490 0.070 7.03 -0.15 0.485 0.050 9.78 -0.31
λ11 0.40 0.385 0.032 12.15 -0.49 0.389 0.030 13.16 -0.39
λ21 1.00 1.001 0.036 27.86 0.02 1.003 0.036 28.07 0.08
λ32 0.60 0.603 0.034 17.96 0.10 0.605 0.033 18.41 0.15
λ42 1.00 1.010 0.036 28.17 0.27 1.012 0.036 28.04 0.32

Table 3.4: Estimation results, Case 3 CV(X21,n−X11,n) = 0.05

δ Target
Sequential Estimation Simultaneous Estimation
δ̂ s.e. t-stat t-target δ̂ s.e. t-stat t-target

β0 0.50 1.721 3.349 0.51 0.37 1.993 3.416 0.57 0.44
β1 -0.40 -0.628 0.670 -0.94 -0.34 -0.698 0.684 -1.01 -0.44
β2 -0.20 -0.191 0.010 -18.61 0.88 -0.199 0.011 -17.97 0.10
Γ1 -0.30 -0.307 0.173 -1.78 -0.04 -0.325 0.086 -3.78 -0.29
Γ2 -0.40 -0.447 0.288 -1.55 -0.16 -0.340 0.089 -3.78 0.68
b1 0.80 0.781 0.075 10.37 -0.25 0.790 0.056 14.16 -0.17
b2 0.50 0.476 0.070 6.84 -0.35 0.489 0.050 9.75 -0.22
λ11 0.40 0.391 0.032 12.27 -0.28 0.396 0.030 13.40 -0.14
λ21 1.00 1.004 0.036 27.94 0.13 1.005 0.036 27.98 0.14
λ32 0.60 0.599 0.034 17.81 -0.03 0.598 0.033 18.19 -0.05
λ42 1.00 1.011 0.036 28.19 0.31 1.014 0.036 28.42 0.39

Table 3.5: Estimation results, Case 4 CV(X21,n−X11,n) = 0.02
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the sequential estimation method and for all experiments9, the latent variables are not
significant at a confidence level of 95%. This is a very important issue, as the t-stat
is commonly used to define which variables are included in the utility function. Thus,
even though the latent variables in this controlled experiment we know that the latent
variables have an effect on choice, the associated parameters are statistically significant
only by using the simultaneous full information SML solution.

Finally, the full information SML estimates capture efficiency gains that are reflected by
smaller standard errors than those obtained with the sequential LIML.

3.4 Case Study: travel mode choice in Santiago

This case study presents an empirical application to modal choice of the code developed
for the full-information simulated likelihood solution for HCMs. The data corresponds to
revealed preferences from the fourth wave of the Santiago Panel (?), a five-day pseudo-
diary reporting information about commute trips in the morning rush hour in Santiago
de Chile.10 On the fourth wave of the panel, survey participants were asked to state
their perceptions on different characteristics of the modes of transportation. Having
attitudinal data makes it possible to build an HCM for the Santiago Panel (?).

The sample of the fourth wave consists of 258 individuals who live in Santiago and com-
mute to work at one of the five campuses of the Pontifical Catholic University of Chile.
After a clean-up of inconsistencies on the perception module of the survey, there remain
1107 usable observations for HCM estimation.11 Ten different modes of transportation
are considered, both pure and combined: car-driver, car-passenger, shared taxi12, metro,
bus, car-driver & metro, car-passenger & metro, shared taxi & metro, bus & metro,
and shared taxi & bus. For each mode, the following level of service variables are avail-
able: travel time (TT ), walking time (WALKT ), waiting time (WAITT ), travel cost
(COST ), and number of transfers made (TRANSF ). Socioeconomic information about
the respondents is also available.

9Even for the best case with the highest variability.
10The whole study considers a panel of four different waves, from December 2006 to October 2008.

Each wave consists on a five-day pseudo-diary.
11Each individual reports five choices, one per each working day.
12Shared taxis, or colectivos in Spanish, are a common mode of transportation in Latin America. In

Santiago, shared taxis take up to 4 passengers and drive along a fixed route.
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Regarding the attitudinal data, respondents were asked to rate their satisfaction on
various aspects of the pure modes using a scale from 1 to 7.13 The rated aspects are:
safety regarding accidents, safety regarding theft, ease of access, comfort during the
trip, availability of suitable information, possibility of calculating the travel time prior
to the trip, and possibility of calculating the waiting time prior to the trip. Using
factor analysis, three dimensions were identified: accessibility-comfort (ACC&COM),
reliability (REL), and safety SAF . The path diagram for hybrid choice modeling of the
travel mode choice for the Santiago Panel is presented in Figure ??.
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Figure 3.2: Travel Mode Choice HCM

For the indirect utility function, a specification based on the wage rate ωn is used.
13Ratings from 1 up to 7 are based on the Chilean grading system. Grading in Chile considers a

linear scale, where 1 stands for very deficient and 7 means outstanding.
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Systematic taste variations in travel time are also incorporated (See ?).

Vin = βcost
COSTin
ωn

+ (βTT + βTTwFemn)TTin + βwalkWALKTin + βwaitWAITTin(3.31)

+ βtransfTRANSFin + Γacc&comACC&COMin + ΓrelRELin + ΓsafSAFin + νin,

where β(·) and Γ(·) represent unknown parameters. Note that systematic taste variations
for the travel time (TT ) variable are introduced; since Fem is a gender indicator for
women, the marginal disutility of travel time is βTT for men, and βTT +βTTw for women.

Since levels of satisfaction were provided only for the pure modes (without combinations),
the alternative-specific latent variables ACC&COMin, RELin, and SAFin affect the
utility functions of the travel modes car-driver, car-passenger, shared taxi, metro, and
bus. Also, because of the alternative-specific nature of the latent variables in this case,
the three concepts (accessibility-comfort, reliability, and safety) are operationalized as
15 different latent variables.

The results for the choice model are presented in Table ??. Estimation of the parameters
was performed using 250 Halton-based repetitions for the simulator.14 For reference, an
MNL (without latent variables) was also considered. Details about the rest of the joint
HCM estimation, including the structural and measurement equations, are provided in
?. In ? a comparison with simultaneous estimation results is provided.

The signs of all the estimated parameters are consistent with microeconomic theory:
the marginal utilities of the latent variables are positive15, whereas the time-related
attributes, cost, and transfers represent a disutility to individuals. Also, note that all
the parameters in the HCM are statistically significant, at least at the 90% confidence
level.

Even though men are more sensitive to travel time than women according to the HCM
results, in the MNL case (without the latent variables) the opposite effect is observed.
In fact, the difference in magnitude of the marginal disutility of travel time for women
is remarkably high (nearly a 500% difference between the HCM and the MNL). These
differences, in sign and magnitude, show a potential serious problem when using a model
that neglects latent variables for forecasting.

To have a notion of the impact of these differences, willingness to pay (WTP) measures
14Note that since 15 latent variables are considered, this case study is a large-scale application of

FISML for HCMs.
15A positive sign indicates that accessibility-comfort, reliability, and safety are desirable features of a

travel mode.
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Mode Choice Model
HCM MNL

est t-stat est t-stat

βcost/w -0.022 -7.32 -0.019 -8.13
βTT -0.006 -4.67 -0.033 -4.82
βTTw -0.001 -3.01 0.03 2.98
βwait -0.015 -1.69 -0.009 -0.53
βwalk -0.022 -2.89 -0.016 -1.8
βtransf -1.102 -8.21 -1.11 -8.2

Γacc&com 0.622 3.79 -
Γrel 0.441 2.7 -
Γsaf 0.613 1.87 -

ASCcar−dr 0.733 2.03 1.22 5.84
ASCcar−pass -0.889 -2.12 -0.8 -3.64
ASCshared−taxi -1.331 -1.78 -1.42 -4.6
ASCmetro 0.247 0.81 0.241 1.56

ASCcar−dr/metro 0.223 0.51 0.779 2.65
ASCcar−pass/metro -0.882 -2.22 -0.309 -1.28
ASCshared−taxi/metro -0.913 -1.55 -0.078 -0.36

ASCbus/metro 0.342 1.41 0.608 4.59
ASCshared−taxi/bus -1.005 -3.68 -0.473 -1.68

Table 3.6: Santiago case study, choice model results
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were reported. Table ?? presents the subjective values of travel, waiting and walking
time16, as well as the valuations associated with transfers and the three latent variables.
95% confidence intervals for these WTP measures were calculated using the approach
proposed by ?. For all the valuations shown, an individual mean wage rate of $5.35
[USD] per work hour was considered.17

Subjective Value of HCM MNL

TT for men [$/hr] 1.201 [0.11,2.73] 0.457 [0.03,1]
TT for women [$/hr] 1.029 [0.14,2.76] 6.431 [0.81,16.48]

WAITT [$/hr] 2.544 [0.06,5.29] 1.758 [0.01,3.53]
WALKT [$/hr] 3.716 [0.26,8.33] 1.729 [0.09,6.55]

TRANSF [$/transfer] 3.087 [0.9,13.71] 3.644 [0.94,14.32]
ACC&COM [$/unit] 1.744 [0.3,4.29] - -

REL [$/unit] 1.229 [0.11,2.77] - -
SAF [$/unit] 1.715 [0.11,3.66] - -

Table 3.7: Santiago case study, subjective valuations

Whereas the HCM produces reasonable valuations of travel time savings (on the order
of 20 to 25% of the wage rate) it is clear that the subjective value of travel time obtained
from the model without latent variables is problematic. In fact, for men it appears to be
underestimated (it represents only 8.6% of the mean wage rate), while for women it is
clearly overestimated (20% higher than the mean wage rate). This clear disadvantage of
the model without latent variables reaffirms the importance of including latent variables
in the formulation of the model: the decision about including or not latent variables
in demand models may have significant consequences when forecasting or evaluating
transportation policies.

3.5 Conclusions

In this chapter I have described the system of equations associated with hybrid choice
models. This system is composed of a group of structural equations describing the
(potentially interrelated) latent variables in terms of observable exogenous variables,
and a group of measurement relationships linking latent variables to certain observable

16Subjective values of time represent the amount of money a traveler is willing to pay to reduce in 1
unit the time spent (traveling, waiting, or walking).

17This value was obtained from the socio-demographic data of the Santiago Panel.
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Figure 3.3: Santiago de Chile and its transportation system
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(continuous or discrete) indicators. I have shown that although classical HCM estima-
tion requires the evaluation of complex multi-dimensional integrals, a simulation-based
approximation can be successfully derived. This full information simulated maximum
likelihood (SML) solution is a valid estimator of the true solution and offers an unbiased,
consistent and smooth estimator of the true probabilities. However, classical estimation
of HCMs is computationally very demanding in situations with numerous latent variables
and large sets of potentially interrelated choices. In fact, the latent variables affect the
behavior of the simulated likelihood function in such a way that a standard optimization
algorithm may require a huge number of iterations to converge.

I also described an alternative estimation method, based on a sequential two step proce-
dure. Although this method appears as conceptually simpler than the full information
estimator, the limited information maximum likelihood (LIML) estimator is not efficient.
Moreover, the sequential method as it is applied in practice does not offer consistent es-
timators either. The problems of inefficiency and inconsistency can be overcome by
correcting the covariance matrix of the second step at the expense of a highly complex
procedure. The results of a Monte Carlo simulation study show that a two step estima-
tor may have problems recovering the parameters of the latent variables. Also, in the
simulation experiments the full information SML estimates capture efficiency gains that
are reflected by smaller standard errors than those obtained with the sequential LIML.

Finally, I presented a case study showing that the full information SML solution for
HCMs is genuinely capable of adapting to practical situations. The travel mode choice
results show differences in magnitude for certain parameters when latent variables are
omitted. This omission translates into problems in the willingness to pay measures
derived from the model without latent variables. A clear example of this are the low
subjective value of time obtained for men and the high subjective value of time obtained
for women (which is even larger than the mean wage rate), when latent variables are
not considered. This empirical disadvantage of omitting latent variables reaffirms the
importance of the HCM framework: the decision about including or not latent variables
in demand models may have severe consequences when forecasting or evaluating policies.
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Chapter 4

Incorporating environmental
preferences toward low-emission
vehicles

Modeling private vehicle purchase decisions using discrete choice models has
a long tradition; more recently this kind of model has been used to analyze
choice among different automobile technologies, such as the use of alternative
fuels. Although environmentally-conscious consumers should be more likely
to choose low-emission vehicles, current demand models have a hard time
representing this likelihood.

Using stated data on both vehicle purchase decisions and environmental con-
cerns, I analyze the practical feasibility of a Bayesian estimator for hybrid
choice models. I show that the Bayesian approach for HCMs is methodolog-
ically easier to implement than simulated maximum likelihood because the
inclusion of latent variables translates into adding independent ordinary re-
gressions; and also because forecasting and deriving confidence intervals for
willingness to pay measures is straightforward. My empirical results coin-
cide with a priori expectations, namely that environmentally-conscious con-
sumers are aware of the dangers of climate change and oil dependency; their
concerns about the role of transportation in global warming change their
consuming behavior, and they are willing to pay more for sustainable solu-
tions (low-emission vehicles) despite potential drawbacks (such as a reduced
refueling availability). The model outperforms standard discrete choice mod-
els because it not only incorporates pro-environmental preferences but also
provides tools to build a profile of eco-friendly consumers.
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4.1 Environmental effects of individual travel behavior

Individual travel behavior is related to how people move over space and time. People
travel to accomplish diverse activities that need to performed in locations that are dis-
tant, and therefore travel demand is derived from the activity system. In this sense,
traveling is a necessity. Transportation is extremely important, since it is a key motor
for the economy.1 Because of the strong relationship between transportation, energy
consumption, the environment, and the economy in general, the negative externalities
produced by our individual travel behavior2 need to be addressed and mitigated. We
need a transportation system that is not only quick and efficient, but also cleaner and
sustainable. Thus, the effects of individual travel behavior on the environment are of
special interest.

Transportation, broadly defined, plays a major role in oil dependency. To illustrate this
fact, in Figure ?? the US oil demand by sector is depicted. Note that the share associated
with transportation (shown on the secondary vertical axis) reached 70% in recent years.
Canada is the top supplier of both crude oil and total petroleum for the US. In the
internal Canadian market, the estimated oil consumption for 2010 is 2,260,000 barrels
per day.

Figure 4.1: US oil demand by sector

Given the fact that the internal combustion engine is the current dominating technology
1For instance, we commute to work and we travel for shopping. In general, economic growth requires

a transportation system that can move people, goods and services quickly and efficiently.
2Such as pollution, congestion, accidents, and road deterioration.
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in the automobile industry, oil is nearly the sole energy source for transportation (See
Figure ??.) There are several issues associated with oil dependency. On the one hand,

Figure 4.2: Energy Supply Sources for Transportation

dependence on foreign production is a potential problem for national and economic
security. On the other hand, as revealed by the 2010 Gulf of Mexico oil spill, security
concerns related to our oil dependency go beyond reliance on foreign imports.

In the case of fossil fuels, energy use is accompanied by emissions that may have an
impact on climate change. As Figure ?? shows, in the last decade transportation became
the principal source of carbon dioxide. Because of dependence on oil, the vast majority

Figure 4.3: Carbon dioxide emissions from energy consumption by end-use sector

of emissions come from burning oil (See Figure ??.) In Canada, total carbon dioxide
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Figure 4.4: Carbon dioxide from energy consumption by end-use sector and source

emissions from consumption of fossil fuels achieved 29,195 million metric tons in 2008.
Private transportation in Canada accounts for almost 15% of the total greenhouse gas
emissions, including NOx, CO, SO2, COV , and PM10.

To achieve a clean and more secure energy future, we need to study solutions that target
the goals of energy independence and security, as well as reduce greenhouse gas emis-
sions and other pollutants. Technological innovation and the use of cleaner alternative
fuels have traditionally been proposed as sustainable solutions to transportation prob-
lems such as oil dependency and greenhouse gas emissions. Henceforth, a transition to
sustainable transportation technologies (and behavior) will be desirable, including de-
velopment of low emission cars3 and alternative fuels. While automobile manufacturers
have been working in research and development of cleaner and more efficient vehicles, it
is not possible to forecast the future market conditions based on the supply side alone4.
Effectively, consumer response is essential to understand and predict the reasons for a
successful introduction and penetration of low emission vehicles in the market. The de-
mand side is also relevant for planning investments related to fuel supply, as well as for
planning government actions such as policies and economic incentives. Thus, to under-
stand the effects of climate change and energy security concerns on travel behavior it is
relevant to model how a consumer decides which vehicle to purchase.

3In particular, automobile use is associated with numerous problems including greenhouse gas emis-
sions.

4The supply side corresponds to the different vehicles that will become available as a result of research
and development programs looking at technical success and cost reductions from volume production of
low emission vehicles.
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4.2 Car purchase decisions and environmental prefer-
ences

New car purchasing is an example of discrete choice. Effectively, economic-preference
models of discrete choice aim to explain the process of individual choice among a mu-
tually exclusive, exhaustive and finite group of alternatives (?). According to consumer
theory the decision process reflects rational preferences set by a utility-maximization
behavior. In the case of standard consumption theory, the utility function representing
the preference relation depends on the continuous quantities composing the consump-
tion set. However, when the nature of a specific good is discrete, the preference relation
is assumed to depend on a group of attributes (?) combined according to individual
tastes. In the context of private vehicle purchase decisions, each vehicle is described
by a group of attributes, such as make and model, purchase price, performance, relia-
bility, durability, comfort, style, and safety. According to individual preferences, each
consumer selects the alternative that has the highest level of satisfaction. Then, the mar-
ket demand for private vehicles is determined by the market share of each alternative,
which is constructed as the number of consumers choosing each particular alternative.
In discrete choice modeling, the most common approach is based on random utility the-
ory (?), which introduces the concept of individual choice behavior being intrinsically
probabilistic. Whereas the Random Utility Maximization (RUM) framework recognizes
the existence of a systematic component of individual behavior (the decision maker is
capable of perfect discrimination), RUM also takes into account the incapacity of the
analyst to observe all the variables that have an influence on the decision (incomplete
information that implies the presence of uncertainty; ?). Different RUM discrete choice
models can be derived based on various assumptions on the distribution of the random
term. The probabilistic nature of the choice behavior implied by the RUM framework
leads to individual probabilities of each consumer selecting each available alternative.

Modeling the private vehicle purchase decision using RUM discrete choice models has
a long tradition (for example ?????). In these applications, the alternatives are differ-
ent types of private vehicles, such as choice between car and SUV. Each alternative is
described using attributes such as purchase cost, fuel economies, vehicle size and age of
the vehicle. More recently – owing to the interest in studying sustainable solutions to
the environmental problems created by personal transportation – this kind of model has
been used to analyze choice among different automobile technologies, namely the use of
alternative fuels (?????). In this context, the baseline is the use of standard attributes
such as purchase price, operating costs (including both maintenance and fuel costs), and
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power (comprising motor power, performance, top speed, and acceleration). However, to
characterize vehicles with alternative technologies and/or fuel types we must introduce
new sets of attributes that take into account special features or requirements for the new
alternatives (??????). These attributes include variables such as service station avail-
ability (stations selling the proper fuel – relevant in the case of new fuels), driving range
(some new technologies such as electric cars suffer from a limited driving range between
refueling), whether or not the vehicle would be granted certain priorities (such as express
lane access), and greenhouse gas emissions GHG (CO2 concentrations play a key role
in global warming; and hence a reduction on this variable – which in fact is the leading
objective of climate policies – determines how ‘green’ the new technology is). However,
it is hard to maintain that these characteristics alone permit a full representation of
consumer behavior that allow us to understand demand for ‘green’ (low-emission) per-
sonal vehicles. For instance using greenhouse gas emissions, environmental concerns are
represented only by emission reductions without any consideration to other dimensions
such as eco-friendly habits (cf. ?).

Consumers’ preferences for green vehicles must be understood first in a context where
the new technologies often have a low market share (or even a zero market penetra-
tion in the case of the introduction of a new alternative) and hence the role of knowl-
edge, experience and information is critical. Second, demand for low-emission vehicles
is a decision-making process guided by environmental preferences, among other dimen-
sions such as desires for energy independence and for advanced technologies. ? finds
that households with environmental knowledge and attitudes own fewer and more fuel-
efficient vehicles; these households actually show an eco-friendly travel behavior because
they drive their vehicles less. Environmentally-conscious consumers are aware of the
dangers of climate change and oil dependency; their concerns about the role of trans-
portation in global warming has a consequent change in their purchasing and travel
behavior, and they are willing to pay more for sustainable solutions (low-emission ve-
hicles) despite potential drawbacks (such as a reduced refueling availability). Although
environmentally-conscious consumers should be more likely to choose vehicles that are
good for the environment, current demand models have a hard time representing this
likelihood. The key is then how to incorporate the consumer’s environmental concerns
into an economic model for private vehicle purchase decisions.

According to cognitive psychology, preferences and behavior (toward green technologies
in the case of environmental psychology) are affected by perceptions and attitudes. On
the one hand, perception variables measure the individual cognitive capacity to repre-
sent the attributes of different alternatives. Perceptions are relevant because the choice
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process depends on how attribute levels are perceived according to the individual beliefs
of a specific consumer. On the other hand, attitude variables measure the evaluation
of favor or disfavor assigned by the individual to the features of different alternatives.
Attitudes influence behavioral intentions (e.g. to adopt a new technology), are related
to individual heterogeneity (taste variations) and reflect individual tastes, needs, values,
goals, and capabilities that develop over time and are affected by knowledge, experience
and external factors, such as the socioeconomic characteristics of the decision-maker
(?).5

Attitudinal research6 for green vehicles has mainly been centered on public acceptance
of hydrogen and fuel cell technologies using attitudinal/perceptual surveys (???). Con-
sumers reveal highly positive attitudes toward green vehicles, although knowledge of the
new technologies is low (for a more comprehensive review of the attitudinal approach see
?). ? also review the economic preference approach as well as the semiotic approach ap-
plied by ?. An important problem with the attitudinal approach (if used independently
from economic models of choice) is that it does not necessarily explain economic choice
behavior, and in some cases the attitudes being measured are not even directly related to
actual purchase intentions (for instance, ??, measured general attitudes and knowledge
toward hydrogen vehicles, as a concept for technological development not as a choice). In
fact as noted by ?, economic preference surveys usually provide lower acceptance levels
for new technologies than those predicted by attitudes alone.

In sum, there are two important modeling tools to analyze vehicle choice, namely
economic-preference models (discrete choice models) and attitudinal models. Although
it is clear that both approaches should be integrated, the literature does not offer any
example of such an expansion. Hybrid choice modeling provides the methodological
framework to accomplish the task of integrating latent pro-environmental preferences
into an economic model for private vehicle purchase decisions.

In this chapter I analyze stated choices made by Canadian consumers when faced with
green personal vehicle alternatives (?). I seek to implement both theoretically and em-
pirically a Bayesian approach to an HCM of personal vehicle choice (cf. ?, where using
the same data we analyzed classical estimation of HCMs). Specifically, I construct an
HCM setting where I take perceptual indicator variables about transport policies and
problems, and then define an environment-related latent variable which enters directly
into the choice process. This paper expands on my previous research (??) by introduc-

5For a discussion related to transportation see ?
6Psychometric studies, mostly focused on factor analysis.
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ing Bayesian methods to analyze the data, not only for estimation of parameters and
willingness to pay measures but also for forecasting policy scenarios.

4.3 Personal vehicle choice data

I use data from a survey conducted in 2002 by the EMRG (Energy and Materials Re-
search Group, Simon Fraser University) of stated personal vehicle choices made by Cana-
dian consumers when faced with technological innovations. Full details regarding the
survey, including the design of the questionnaire, the process of conducting the survey,
and analysis of the collected data can be found in ?.

Survey participants were first contacted in a telephone interview used to personalize a
detailed questionnaire that was then mailed to them. The mailed questionnaire had 5
different parts:

• Part 1: Transportation options, requirements and habits;
• Part 2: Personal vehicle choice (stated preference experiment);
• Part 3: Transportation mode preferences;
• Part 4: Views on transportation issues; and
• Part 5: Additional information (gender, education, income).

SP questions in Part 2 considered four vehicle types:

1. Standard gasoline vehicle (SGV): operating on gasoline or diesel,
2. Alternative fuel vehicle (AFV): natural-gas vehicle,
3. Hybrid vehicle (HEV): gasoline-electric, and
4. Hydrogen fuel cell vehicle (HFC).

For each of these alternative vehicle types, the attributes were defined as:

• Purchase price: capital cost associated with the purchase of a new car [CAD2002/10000],
• Fuel cost : monthly operating costs [CAD2002/100-month],
• Fuel availability : proportion of stations selling the proper fuel [ratio],
• Express lane access: whether or not the vehicle would be granted express lane access,
• Emissions data: emissions compared to a standard gasoline vehicle [ratio], and
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• Power : horsepower of engine compared to current vehicle [ratio].

The sampled individuals were randomly drawn from households living in Canadian ur-
ban centers with populations of more than 250,000 people. Respondents have an average
household income approximately equal to $62,000 CAD, and a high level of education
(75% of the sample attained undergraduate degrees or completed graduate school). The
sample has a 59% proportion of females, and 59% of the sampled individuals are 41
years or older. Each participant needed to either have access to a vehicle, or commute
to work. The respondents who met these criteria were asked to make up to four consec-
utive virtual choices while the vehicle attribute values were modified after each round
according to randomized blocks of an individual-customized labeled SP experimental
design (?, see Table ??). The sample has 866 completed surveys (of the total of 1150
individuals, 75% response rate). After a clean up where we retain only the individuals
who answered the whole perceptual-attitudinal rating exercise, there remain 1877 usable
observations (pseudo-individuals) for HCM estimation. This analytic sample consists
mainly of workers (80%) who commute, mostly driving alone (68%).

SGV AFV HEV HFC

Purchase Price (PP)

100% PP 105% PP 105% PP 110% PP
105% PP 110% PP 120% PP 120% PP
110% PP
115% PP

Fuel Cost (FC)

100% FC 110% FC 75% SGV 110% FC
110% FC 120% FC 120% FC
120% FC
130% FC

Fuel Availability
100% 25% 100% 25%

75% 75%

Express lane access
No No = AFV No

Yes Yes
Emissions Equal 10% less 25% less 100% less

Power
Equal Equal Equal Equal

10% less 10% less 10% less

Table 4.1: Experimental attribute levels, ?

According to my literature review, emission data is the standard way to describe choice
behavior of environmentally-conscious consumers when using discrete choice models for
vehicle purchase decisions. But in the EMRG survey the emission variable does not
vary across choice situations in the SP design. This simplifying assumption was made to
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avoid an explosive number of choice situations (see discussion in ?, a fractional factorial
design was used – this problem could have been avoided using an efficient SP design).
The consequence of this assumption is that the effects of environmental benefits related
to emission reductions cannot be distinguished from the alternative specific constants of
a discrete choice model. This is a major problem if we make the hypothesis that ecologi-
cally motivated consumers have a different purchase behavior. However, the introduction
of a latent variable will solve this issue.

In fact, using this data I want to model the impact of environmental-related cognitive
factors on the private vehicle purchase decision. The first step to address this issue
through an HCM is to set the latent variables involved. My hypothesis here is that
the private vehicle purchase decision is affected not only by the attributes of the dif-
ferent vehicles but also by the environmental awareness of the consumer. Ultimately,
an environmentally-conscious consumer should prefer a cleaner automobile technology
associated with less environmental impact. In my model, this effect is taken into account
by introducing the latent variable Environmental Concern (EC), related precisely to
transportation and its environmental impact.

I continue the analysis focusing on two different relevant questions of the survey that
translates into both transport policies support and transport problems evaluation.

Transport Policies Support (TPS): Evaluation of 8 different policies or government
actions that influence the transportation system - according to degree of support: 5
levels from Strongly Opposed to Strongly Supportive (see Figure ??).

1. Improving traffic flow by building new roads and expanding existing roads.
2. Discouraging automobile use with road tolls, gas taxes, and vehicle surcharges.
3. Making neighborhoods more attractive to walkers and cyclists by using bike lanes

and speed controls.
4. Reducing vehicle emissions with regular testing and manufacturer emissions stan-

dards.
5. Making carpooling and transit faster by giving them dedicated traffic lanes and

priority at intersections.
6. Making transit more attractive by reducing fares, increasing frequency, and ex-

panding route coverage.
7. Reducing transportation distances by promoting mixed commercial, residential,

and high-density development.
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8. Reducing transportation needs by encouraging compressed workweeks and working
from home.

Figure 4.5: Transport Policies Support

Transport Problems Evaluation (TPE): Evaluation of 6 different problems related
to transportation according to degree of seriousness: 5 levels from Not a Problem to
Major Problem (see Figure ??).

1. Traffic congestion that you experience while driving.
2. Traffic noise that you hear at home, work, or school.
3. Vehicle emissions that affect local air quality.
4. Accidents caused by aggressive or absent-minded drivers.
5. Vehicle emissions that contribute to global warming.
6. Unsafe communities because of speeding traffic.

The answers to these questions serve as perceptual indicator variables, which are used for
construction of the environmental concern (EC) latent variable. This way, the EC vari-
able measures consumers’ concerns and awareness about transportation issues affecting
the natural environment (e.g. possibility of reducing car emissions or the introduction of
road tolls and gas taxes; problems related to poor local air quality, emissions and global
warming) as well as the mobility environment (e.g. traffic congestion, traffic noise, safety
concerns). The structure defining EC as a unidimensional construct – as opposed to a
diverse structure differentiating, for instance, the natural and mobility environmental
concerns – was tested among alternative relationships according to different MIMIC
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Figure 4.6: Transport Problems Evaluation

models. We did not use factor analysis (FA) basically because FA does not allow us
to distinguish the effects of market segments that are taken into account when estimat-
ing the MIMIC models. We checked the reliability of the current structure for the EC
variable getting an acceptable level of internal consistency (Cronbach’s α = 0.7018.)

4.4 Private vehicle Hybrid Choice Model

4.4.1 The HCM setting

In this particular choice context, I aim to explain the process of individual choice among
the mutually exclusive, exhaustive and finite group of the personal vehicle alternatives:
standard gasoline vehicle (SGV), alternative fuel vehicle (AFV), hybrid electric vehicle
(HEV), and hydrogen fuel cell vehicle (HFC). At the same time, I postulate that the la-
tent environmental concern (EC) variable, which reflects pro-environmental preferences,
has a significant impact on the vehicle purchase decision. The whole behavioral process is
represented by the following HCM group of structural and measurement equations (cf. ?):

Structural equations
ECn = wnb+ ζn, ζn ∼ N(0, 1) (4.1)

Un = Xnβ + Γ · ECn + υn (4.2)
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Measurement equations

In = Λ · ECn + εn, εn ∼MVN(0, I14) (4.3)

yin =

{
1 if Uin ≥ Ujn, ∀j ∈ Cn, j 6= i

0 otherwise,
(4.4)

where EC is the latent environmental concern variable; wn is a (1×10) vector of explana-
tory variables affecting the latent variable; b is a (10× 1) vector of unknown parameters
used to describe the effect of wn on the latent variable. The choice model in equation
(??) is written in vector form where we include the 4 private vehicle alternatives. There-
fore, Un is a (4×1) vector of utilities; υn is a (4×1) vector of error terms associated with
the utility terms. Xn is a (4× 8) attribute matrix – including 5 experimental attributes
and 3 alternative specific constants (ASC) – with Xin designating the ith row of Xn. β
is a (8 × 1) vector of unknown parameters. Γ is a (4 × 4) diagonal matrix of unknown
parameters associated with the latent variable EC, with Γi designating the ith diagonal
element of matrix Γ.

In the set of measurement equations (??), In corresponds to a (14× 1) vector of the 14
indicators of latent variable EC associated with individual n; and Λ is a (14×1) vector of
unknown parameters that relate the latent variable EC to the indicators. Even though
the indicator variables are ratings (1-5), we treat them as being continuous according
to standard practice in latent variable models. The term εn is a (14 × 1) vector of
independent error terms with unitary variance – I14 being the identity matrix of size
14. Regarding independence of the measurement equations, we do recognize in our
model that indicators are highly correlated variables, but we assume that the correlation
structure is due to commonality of each indicator with the latent construct EC. Once we
account for this commonality by modeling each indicator as a function of EC, then the
residual of each indicator can reasonably be assumed to be uncorrelated with the other
residuals. Additionally, a diagonal matrix is required for identification of the model.

Finally, we stack each individual choice indicator variable yin into a (4× 1) vector called
yn. For a full description of the equations and variables, see Appendix A.

The hybrid model setting that we consider is represented in Figure ??, where the com-
plete set of structural and measurement equations is sketched, depicting the relationships
between explanatory variables and each partial model. Specifically, we can distinguish
the choice model, which is centered on the utility function (equation ??) and on the
stated choice (equation ??); the latent variables structural model (equation ??), which
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links the latent variable EC with the characteristics of the traveler, and the latent vari-
ables measurement model (equation ??), which links EC with the indicators.
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Figure 4.7: Private vehicle purchase HCM

If the latent variable EC were not present, the personal vehicle choice probability would
correspond exactly to the standard choice probability P (yin = 1 |Xn, β ) ≡ Pn(i |Xn, β ).
In a setting with given values for the EC variable, the choice probability would be
represented by Pn(i |EC, Xn, θ ) where θ contains all the unknown parameters in the
choice model of equation (??). Since EC is not actually observed, the choice probability
is obtained by integrating the latter expression over the whole space defined by EC:

Pn(i|Xn, wn, θ, b) =

∫
EC

Pn(i |EC, Xn, θ )g(EC|wn, b)dEC, (4.5)

where g(ECn|wn, b) is the density of N(wnb, 1).
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The indicators are manifest variables that permit identification of the parameters present
in the distribution of the latent variable EC. Given our assumptions, the joint probability
P (yin = 1, In) ≡ Pn(i, I) of observing jointly the choice yn and the indicators In may be
written as:

Pn(i, I|Xn, wn, δ) =

∫
EC

Pn(i |EC, Xn, θ )f(In|EC,Λ)g(EC |wn, b)dEC, (4.6)

where f(In|EC,Λ) is the density of In implied by equation (??). The term δ designates
the full set of parameters to estimate (i.e. δ = {θ, b,Λ}).

As I discussed in chapter 2, including numerous attitudes in HCMs with large sets of
potentially interrelated choices directly entails the simulation of high dimensional inte-
grals. We can address this problem using classical methods, which use a valid simulator
for the choice probability through maximum simulated likelihood (MSL) estimation (?).
HCM classical full information estimation requires maximizing the log likelihood func-
tion:

∑N
n=1

∑
i∈Cn

yinlnPn(i, I |Xn, wn, δ ). In practice, with a large number of latent
variables we need to replace the multidimensional integral with a smooth simulator with
good statistical properties, leading to a maximum simulated likelihood (MSL) solution
(??). Although feasible, the MSL approach necessary for classical HCM estimation is
very demanding in situations with a huge choice set of interdependent alternatives with
a large number of latent variables. Even though classical estimation of HCMs is possible
using a sequential approach (???), the results of this method are not efficient (?).

For these reasons, we propose to go beyond classical methods by introducing Bayesian
techniques. Building on the rapid development of Markov Chain Monte Carlo (MCMC)
techniques, and on the idea that Bayesian tools (with appropriate priors) can be used
to produce estimators that are asymptotically equivalent to those obtained using clas-
sical methods, we define the goal of both theoretically and empirically implementing a
Bayesian approach to hybrid choice modeling. This chapter represents the first step in
developing a Bayesian estimator for HCMs, specifically for the vehicle purchase context
I have introduced.

4.4.2 HCM Gibbs sampler implementation

The parameters to estimate in the private vehicle choice case we are analyzing are θ′ =

[ASCAFV ASCHEV ASCHFC β1 β2 β3 β4 β5 ΓEC,AFV ΓEC,HEV ΓEC,HFC ], b and Λ. Bayes
estimation implementation for these parameters requires making draws from the joint
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posterior distribution:
P (θ, b,Λ|y, I), (4.7)

or, using data augmentation from:

P (EC, θ, b,Λ|y, I), (4.8)

where EC = (EC1, . . . ,ECN)′, y = (y1, . . . , yN)′ and I = (I1, . . . , IN)′ capture the infor-
mation for the full group of individuals.

Using Gibbs sampling, the estimators are obtained from draws inside an iterative process
involving the set of full conditional distributions. Namely, at the g-th iteration:

EC(g)
n ∼ π(ECn|θ(g−1), b(g−1),Λ(g−1), yn, In),∀n (4.9)

b(g) ∼ π(b|EC(g), θ(g−1), b(g−1), y, I) (4.10)

Λ(g) ∼ π(Λ|EC(g), θ(g−1), b(g), y, I) (4.11)

θ(g) ∼ π(θ|EC(g), b(g),Λ(g), y, I). (4.12)

Since the latent variable EC is not observable, we need to incorporate the information
provided by the indicator In on EC. This information is explicitly given by the condi-
tional probability π(EC|In) whose expression depends on the assumptions we make. We
assume then a multivariate normal distribution:[

ECn

In

]
∼ N

([
wnb

Λwnb

]
,

[
1 Λ′

Λ ΛΛ′ + I14

])
, ∀n, (4.13)

where I14 represents the identity matrix of size 14. Equation ?? implies

π(EC|θ, b,Λ, yn, In) ∼MVN(µECn|In , σ
2
ECn|In),∀n, (4.14)

where

µECn|In = wnb+ Λ′ [ΛΛ′ + I14]
−1

[In − Λwnb] (4.15)

σ2
ECn|In = 1− Λ′ [ΛΛ′ + I14]

−1
Λ. (4.16)

Note that the latter expression is independent of individual n, so we can write σ2
EC|I .

When using data augmentation, the latent variable EC becomes observable through
π(EC|θ, b,Λ, yn, In). This fact implies that the conditional distributions for b and Λ

simply correspond to ordinary Bayesian regressions (b and Λ are assumed independent):

π(b|EC, θ, b,Λ, y, I) ∼ N(b̄, V̄b) (4.17)

π(Λ|EC, θ, b, y, I) ∼ N(Λ̄, V̄Λ). (4.18)
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If prior beliefs for b and Λ are described by p(b) ∼ N(b̌, V̌b) and p(Λ) ∼ N(Λ̌, V̌Λ)

respectively, then I can show that

V̄b = (V̌ −1
b + w′w)−1, b̄ = V̄b(V̌

−1
b + w′EC) (4.19)

V̄Λ = (V̌ −1
Λ + EC′EC)−1, Λ̄ = V̄Λ(V̌ −1

Λ + EC′I). (4.20)

4.4.3 The discrete choice kernel

The analytical form of the conditional distribution π(θ|EC, b,Λ, yn, In) for the discrete
choice kernel depends on the assumptions regarding the distribution of the random term
υn defined in equation (??).

We can derive a probit kernel if we make the assumption that the error terms υn are mul-
tivariate normal distributed. When using classical techniques, the burdensome classical
multinomial probit estimation process reduces the practicability of the standard probit
model. In fact, simulated maximum likelihood estimation (SML) of mixed logit models
outperforms the SML estimation of probit because of the good statistical properties that
can be derived for the former estimator (?). However, Bayesian methods breaks down
the complexity of classical estimation of the probit model (?). HCM Bayesian estimation
with a probit kernel is straightforward because the properties of the normal distribution
allow us to exploit data augmentation techniques, basically because the utility function
follows a normal distribution (??).

In discrete choice models, decisions are based on utility differences, so we can consider a
utility difference model with respect to the base alternative SGV that, in our particular
case, leads us to write the structural equation in a system of three equations:

Ũn = Ṽn + υ̃n, υ̃ ∼MVN(0, I3), (4.21)

where I3 is the identity matrix of size 3 – which is the number of alternatives for the utility
difference model. We can get the vector form of the model by stacking the individual
utilities into Ũ = Ṽ + υ̃, where υ̃ ∼MVN(0, I(N×3)).

Note that to obtain the differenced model in its estimable form (equation ??) from
equation (??), we use the matrix difference operator ∆SGV (·)jn = (·)jn − (·)SGV n, j =

{AFV,HEV,HFC}:
∆SGVUn = ∆SGV Vn + ∆SGV υn, (4.22)
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where ∆SGV Vn denotes the (3× 1) extended deterministic part of the differenced utility
expression for individual n, composed by ∆SGV Vjn = ASCj + β1∆SGVX1jn + · · · +

β5∆SGVX5jn+ΓEC,jECn ≡ X̃jnθ, j = {AFV,HEV,HFC}, where X̃jn is a row vector that
contains the incremental specification of the attributes of alternative j (attribute changes
with respect to the base alternative’s values) and the latent variable EC, and where θ is a
column vector of unknown parameters. The matrix X̃ is built by stacking the vectors X̃jn

for each alternative j and each individual n. The assumption for a probit model is that
υn ∼MVN(04×4,Σ4×4), and so we have ∆SGV υn ∼MVN(03×3,Ω3×3 = [∆SGV Σ∆′SGV ]).
Let L be the Cholesky root of Ω−1. Then, the model can be reexpressed as:

L′∆SGVUn = L′∆SGV Vn + L′∆SGV υn, (4.23)

leading to equation (??) above.

Assuming that Ũ is observable, that Ω is known, and that prior beliefs for θ are described
by p(θ) ∼ N(θ̌, V̌θ), then the model becomes a simple Bayesian regression with known
variance (??):

π(θ|Ũ ,Ω,EC, b,Λ, y, I) ∼ N(θ̄, V̄θ), (4.24)

V̄θ = (V̌ −1
θ + X̃

′
X̃)−1, θ̄ = V̄θ(V̌

−1
θ + X̃

′
Ũ). (4.25)

In the conditional distribution of θ, π(θ|Ũ ,Ω) indicates the use of data augmentation
techniques. This is possible if and only if the conditional distributions of Ũ and Ω are
easy to describe. Note that ŨAFV n ∼ N(ṼAFV n, 1), ŨHEV n ∼ N(ṼHEV n, 1), and ŨHFCn ∼
N(ṼHFCn, 1). However, since yn = i ⇐⇒ Uin = max(USGV n, UAFV n, UHEV n, UHFCn)

then conditional on yn, Ũn follows a truncated multivariate normal (TMVN) distribution:

π(Ũn|EC,Ω, θ, b,Λ, yn, In) ∼ TMVN<|yn
(
Ṽn, I3

)
,∀n, (4.26)

where the truncation region < is defined by the measurement equation of yn:

yn =


SGV if (ŨAFV n < 0) ∧ (ŨHEV n < 0) ∧ (ŨHFCn < 0)

AFV if (ŨAFV n ≥ 0) ∧ (ŨAFV n > ŨHEV n) ∧ (ŨAFV n > ŨHFCn)

HEV if (ŨHEV n ≥ 0) ∧ (ŨHEV n > ŨAFV n) ∧ (ŨHEV n > ŨHFCn)

HFC if (ŨHFCn ≥ 0) ∧ (ŨHFCn > ŨAFV n) ∧ (ŨHFCn > ŨHEV n)

. (4.27)

Finally, if prior beliefs for Ω are described by an inverted-Wishart IW (ν̌, V̌ ) distribution,
then it can be shown that

π(Ω|EC, Ũn, θ, b,Λ, yn, In) ∼ IW (ν̄, V̄ ), (4.28)
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where ν̄ = ν̌ +N and V̄ = V̌ +
∑N

n=1(∆SGV υn)(∆SGV υn)′. This conditional distribution
completes the set of distributions needed for Gibbs sampling with a probit kernel.

Note that it is uncomplicated to make an extension of the probit-kernel Gibbs sampler
we developed to a normal error component model – such as randomly normal distributed
taste variations with a probit kernel.

On the other hand, when modeling a normal error component model with a multinomial
logit kernel – which results in a mixed logit or MMNL model – we no longer have
the advantageous properties that make implementing the probit-kernel Gibbs sampler
straightforward. Since the MMNL distribution of Ũ is hard to describe, i.e. there is no
closed form full conditional distribution for Ũ , data augmentation implementation for the
utility function is no longer as simple. Thus, MMNL Bayesian estimation does not allow
us to use a simple regression for θ and, as we will show, the use of Metropolis-Hastings
(MH) methods is needed. The Bayesian procedure for a standard MMNL – without an
associated structure of latent variables – described by ? can be simply plugged into the
HCM Gibbs sampler. If we focus on the normal random taste parameters case, then

Un = Xnβn + Γn · ECn + υn ≡ X̃nθn + υn, (4.29)

where X̃ is the extended matrix of the alternative attributes, including the latent variable
EC; θn ∼MVN(θ,Σθ) is the unknown vector of randomly distributed taste parameters,
with θ representing the population mean; and υn is a vector of independent and identi-
cally distributed extreme value type 1 error terms.

Following ?, if prior beliefs for θ and Σθ are described by p(θ,Σθ) = p(θ)p(Σθ), where
p(θ) ∼ N(θ̌, Σ̌) with extremely large variance, and p(Σθ) is inverted-Wishart IW (ν̌Σ, V̌Σ),
then the mixed logit kernel HCM Gibbs sampler is completed considering the following
conditional posteriors:

π(θ|EC, θn,Σθ, b,Λ, yn, In) ∼ MVN(θ̄,Σθ/N) (4.30)

π(Σθ|EC, θ, θn, b,Λ, yn, In) ∼ IW

(
ν̌Σ +N,

ν̌ΣV̌Σ +NΣ̄

ν̌Σ +N

)
, (4.31)

where θ̄ =
∑
θn/N , Σ̄ =

∑
(θn − θ)(θn − θ)′/N ; and

π(θn|EC, θ,Σθ, b,Λ, yn, In) ∝ eX̃ynnθn

eX̃SGV nθn + eX̃AFV nθn + eX̃HEV nθn + eX̃HFCnθn
ϕ(θn|θ,Σn),∀n

(4.32)
where ϕ(θn|θ,Σn) is the normal density function. Note that the Metropolis-Hastings
algorithm is needed in order to draw θn from the distribution in equation ??. We will
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describe the MH algorithm for the multinomial logit (MNL) model. The MNL model
is a particular case of the mixed logit model, where the taste parameters are fixed to
the population means. In the MNL case, we fail to find a closed form full conditional
distribution for θ. However, we can use an asymptotic approximation to the posterior
(?):

π(θ|EC, b,Λ, yn, In) ∝ |H|
1
2 exp

(
1

2
(θ − θ̂)′H(θ − θ̂)

)
, (4.33)

with θ̂ being the maximum likelihood solution for θ, and with H being the asymptotic
variance obtained from the expected sample information matrix (⊗ denotes the Kro-
necker product):

H = −E
[
∂2 ln l

∂θ∂θ′

]
= −

N∑
n=1

(diag(Pn)− PnP ′n)⊗ X̃nX̃
′
n, (4.34)

which is the Hessian matrix of the observed MNL log-likelihood ln l =
∑N

n=1 lnPyn , where
Pn = (PSGV n, PAFV n, PHEV n, PHFCn), and with Pin below being the standard MNL form
of the choice probability of alternative i for individual n:

Pin =
eX̃inθn

eX̃SGV nθn + eX̃AFV nθn + eX̃HEV nθn + eX̃HFCnθn
. (4.35)

For Metropolis-Hastings implementation, a candidate θcand is drawn from a given dis-
tribution depending on whether we are using a random walk chain or an independence
chain (?). The candidate realization θcand is then compared to the current θcurr through:

α = min

{
1,
l(θcand|y, X̃)π(θcand)

l(θcurr|y, X̃)π(θcurr)
× q(θcand, θcurr)

q(θcurr, θcand)

}
, (4.36)

where q(i, j) is the probability of generating candidate j given i. The candidate is
accepted as the new θcurr = θcand with probability α, while the old one is preserved
θcurr = θcurr with probability 1 − α. By plugging this MH procedure into the Gibbs
sampler developed in the previous section for b and Λ, we obtain a Bayesian MNL
solution for the full set of parameters to estimate.

4.5 Application to vehicle choice data

In the previous section I discussed how to methodologically implement Bayesian esti-
mation using different models for the discrete choice kernel. Although the probit kernel
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formulation is analytically straightforward, taking draws from a truncated multivariate
normal distribution is necessary. For our empirical application we implemented an MNL
kernel to avoid convergence problems due to truncation. HCM estimation with an MNL
kernel requires an MH-within-Gibbs algorithm that does not make use of draws from
a multivariate normal distribution. Thus, we do not expect a slowed-down estimation
process because of rejection methods for truncation. Additionally, implementation of an
MNL kernel also facilitates the comparison of our results with models estimated previ-
ously using the same data, namely classical estimation of an HCM with an MNL kernel
to incorporate environmental preferences (?), as well as the standard discrete choice
model originally calibrated after the survey (?).

I will now present the results of the HCM Bayesian estimation process for the vehicle
choice data. Using the R language, I implemented the MNL Kernel Gibbs sampling
routine presented earlier:

π(θ|EC, b,Λ, y, I) ∝ |H|
1
2 exp

(
1

2
(θ − θ̂)′H(θ − θ̂)

)
(4.37)

π(ECn|θ, b,Λ, yn, In) ∼ N(µECn|In , σ
2
EC|I),∀n (4.38)

π(b|EC, θ, b,Λ, y, I) ∼ N(b̄, V̄b) (4.39)

π(Λ|EC, θ, b, y, I) ∼ N(Λ̄, V̄Λ). (4.40)

To construct the reported results I considered 5,000 draws – or iterations of the Gibbs
sampler sequence – with a burn-in period of the first 500 draws. The mean of the Gibbs
sampler draws is a consistent estimator for the posterior mean of the parameters of inter-
est. Recall that under fairly weak conditions (?), the Gibbs sampler sequence of random
draws forms an irreducible and ergodic Markov chain representing the joint posterior
distribution. For this application, we adopt diffuse priors. In addition, the standard
deviations used for the calculation of t-statistics are simply the standard deviations of
the artificial samples generated by the Gibbs sampler. 5,000 draws (4,500 without the
burn-in period) appear to be enough to reproduce the maximum likelihood results with
a fair degree of accuracy. In fact, to test whether we achieved convergence we made
several trials, including broken MCMC chains (for instance we tried 25,000 draws with
thinning parameter k=5); using more draws or breaking the MCMC chain we recovered
the same results. To give an idea from a similar context, note that in the case of mixed
logit, ? find that 5,000 draws appear as a good number to assure convergence even in
the presence of serial correlation. The total time taken for parameter estimation was
120 minutes in an ordinary PC (cf. 90 minutes for classical estimation; note however
that the processing time for the Bayesian approach is for the whole distribution of the
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parameters and not for just the point estimates, as is the case of the classical approach.
Also, the processing time for the Bayesian approach includes the calculations needed for
prediction).

Although the estimation process implies that all the equations are calibrated simultane-
ously, I will present the results separately for each HCM sub-model, i.e. the car choice
model, the latent variable structural model and the latent variable measurement model.
Since this is the first application of MCMC methods to a hybrid choice model, I first
focus on the results of the estimated parameters using diffuse priors. We also present
the results of a classical HCM with an MNL kernel (?).

4.5.1 Car Choice Model

First, I present the results of the car choice model (Table ??.) As explained before,
the car choice corresponds to the (MNL) discrete choice kernel, where the parameters
to estimate are described by the taste parameter vector θ of the utility function. The
deterministic utility contains the experimental attributes purchase price, fuel cost, fuel
availability, express lane access, and power, as well as alternative specific constants for
the alternative fuel vehicle AFV, the hybrid vehicle HEV, and the hydrogen fuel cell
vehicle HFC. The utility specification also contains the effect of the latent variable EC.
The latent variable related to environmental concern (EC) was not considered for the
standard gasoline vehicle SGV.

Unsurprisingly – and yet, reassuringly – Gibbs sampling and classical maximum like-
lihood parameters have the same sign and magnitude. The environmental concern la-
tent variable enters very significantly and positively into the choice model specification.
Thus, environmental concern (EC) encourages the choice of green automobile technolo-
gies through a positive impact in the choice probability of those alternatives. In fact,
EC has the highest effect on the Hydrogen fuel cell vehicle HFC, followed by the alter-
native fuel vehicle AFV, and then the hybrid vehicle HEV. Note that HFC represents
the cleanest engine technology of the experimental alternatives. The fact that HEV still
makes use of standard fuel could explain the lower EC impact.

It is important to mention that my results for both the Bayesian and classical HCM to
some extent reproduce the results of an MNL (without latent variables ??): common pa-
rameters with the standard multinomial logit model have the same sign and magnitude,
except for alternative specific constants (which now are affected by the inclusion of the
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Car Choice Model
Bayesian Estimates Classical Estimates
estimates t-stat estimates t-stat

ASC_AFV -6.185 -7.52 -6.189 -9.73
ASC_HEV -2.530 -3.67 -2.541 -4.43
ASC_HFC -4.049 -5.66 -4.093 -7.82

Purchase Price -0.895 -4.21 -0.894 -4.22
Fuel Cost -0.852 -4.27 -0.854 -4.18

Fuel Availability 1.388 7.42 1.398 7.31
Express Lane Access 0.158 2.26 0.160 2.26

Power 2.729 4.01 2.752 4.13
Latent Variables

EC on AFV 0.585 3.68 0.592 4.09
EC on HEV 0.411 4.88 0.420 4.45
EC on HFC 0.674 7.37 0.692 6.95

Number of pseudo-individuals 1877 1877
Number of draws (Burn-in) 5000 (500) -

Number of Halton draws - 500
Number of iterations - 326

Loglikelihood -1955.34 -1987.52
Adjusted ρ2 0.249 0.236

Table 4.2: Car Choice Model Results

latent variable). It is especially interesting to note that convergence is assured for the
maximum likelihood estimation of the standard MNL. Thus, because of the MNL kernel
assumption I can take the MNL estimates as ‘reference values’ for an informal test not
only for assuring that the global maximum is achieved (classical estimation), but also
for convergence of the Gibbs sampler I have implemented. In fact, since I used diffuse
priors, the informal test of convergence – set as reproducing the classical estimates with
a certain degree of accuracy – seems appropriate. Also note that the starting values were
not data-based. The results presented were calculated using starting values set to zero,
and I checked independence of the results and the starting values used for both Bayesian
and classical estimation (for the latter, in order to check that a global maximum was
attained).

To give an idea of the posterior distribution of θ I also present the Bayesian estimates
for the quantiles needed to construct confidence intervals for the parameters.



Chapter 4. Incorporating environmental preferences toward low-emission vehicles 100

Quantiles
2.5% 5% 50% 95% 97.5%

ASC_AFV -7.88 -7.56 -6.18 -4.83 -4.53
ASC_HEV -3.95 -3.69 -2.53 -1.38 -1.13
ASC_HFC -5.47 -5.24 -4.06 -2.86 -2.59

Purchase Price -1.34 -1.26 -0.89 -0.55 -0.47
Fuel Cost -1.27 -1.19 -0.85 -0.53 -0.43

Fuel Availability 1.01 1.08 1.39 1.70 1.77
Express lane access 0.01 0.04 0.16 0.27 0.30

Power 1.34 1.58 2.74 3.86 4.16
Latent Variables

EC on AFV 0.26 0.32 0.58 0.86 0.91
EC on HEV 0.24 0.27 0.41 0.55 0.59
EC on HFC 0.48 0.52 0.67 0.83 0.87

Table 4.3: Car Choice Model - Bayesian Quantiles

4.5.2 Structural Model

The structural equation links consumer characteristics with the latent variables through a
linear regression equation based on the usual mode of transportation (driving, carpooling
or public transportation) either to commute (in the case of workers) or for other main
purposes for the rest of the sample, the individual’s gender, age, education level, and
household income. The estimation results are shown in Table ??:

Structural Model
Bayesian Estimates Classical Estimates

est t-stat est t-stat

Intercept 1.840 4.63 2.067 7.08
Driving Alone User -0.157 -2.23 -0.143 -1.86
Carpool User 0.236 2.15 0.241 1.72
Transit User 0.482 4.76 0.468 3.92
Female Indicator 0.344 6.06 0.342 5.52
High Income Indicator (>80K$) 0.046 0.77 0.050 0.75
University Indicator 0.274 4.62 0.285 4.41
Age level: 26-40 years 0.447 3.96 0.439 3.35
Age level: 41-55 years 0.544 4.81 0.538 4.07
Age level: 56 years & above 0.839 6.70 0.829 5.79

Table 4.4: Structural Model Results

From this model, I can conclude that environmental concern (EC) is more important
for public transportation users than for carpool users. We in fact observe a negative
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parameter for those who mostly drive alone. The results are in line with the idea that
regular drivers may be unaware of the environmentally adverse effects of private car use
(air pollution and congestion). Good public transportation service has been proposed as
an alternative for car use reduction; our results show that transit users are more green
with regard to the adoption of new transportation technologies.

I also find that concern about environmental issues in the car purchase choice context is
more developed in women, older people and more educated people (cf. ?). The effect of
the high income variable is positive but not significant.

Since each respondent offers up to four SP vehicle-choices, we have repeated individuals
in the sample. The structural equation implies that the problem of correlation between
observations is addressed indirectly by the individual-specific latent variable via the
socio-demographic variables. In effect there is no variation in these socio-demographic
variables for a single individual’s choice exercise, but there is variation among different
groups of individuals. Only people who belong to the same cluster (defined by equal
socio-demographic characteristics) will have a common variable (the deterministic part
of the latent variable) that does not vary across choice situations. However I do recognize
that in this application the structural model for the latent variable assumes independent
error terms, even for different responses of the same individual. To address this issue it
is possible to assume a common latent variable parameter that varies across individuals.
This approach translates into incorporating exactly the same random draw of the latent
variable for each choice exercise of a same individual. I tested this specification and the
results were not significantly different from zero (implying that the underlying cluster
classification was enough to address the problem of repeated choices).

Finally, I present the Bayesian quantile estimation:

4.5.3 Measurement Model

Lastly, several indicators were considered in the latent variable measurement model,
which links the latent psychometric environmental concern variable to answers to at-
titudinal/perceptual qualitative survey questions. The questions selected to define the
indicator variables concern the respondent’s level of support for or opposition to various
transport policies (Transport Policies Support), and their opinions on various transport-
related issues (Transport Problems Evaluation). The results are shown in Table ??.
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Quantiles
2.5% 5% 50% 95% 97.5%

Intercept 1.04 1.15 1.87 2.44 2.52
Driving Alone User -0.29 -0.27 -0.16 -0.04 -0.02
Carpool User 0.02 0.06 0.24 0.42 0.45
Transit User 0.28 0.31 0.48 0.65 0.68
Female Indicator 0.23 0.25 0.34 0.44 0.46
High Income Indicator (>80K$) -0.07 -0.05 0.05 0.14 0.17
University Indicator 0.16 0.18 0.27 0.37 0.39
Age level: 26-40 years 0.23 0.26 0.45 0.63 0.67
Age level: 41-55 years 0.32 0.36 0.54 0.73 0.77
Age level: 56 years & above 0.59 0.63 0.84 1.05 1.08

Table 4.5: Structural Model - Bayesian Quantiles

Measurement Model
Bayesian Estimates Classical Estimates
estimates t-stat estimates t-stat

Transport Policies Support
Expanding & Upgrading Roads -0.358 -12.56 -0.375 -13.77
Road Tolls & Gas Taxes 0.541 17.40 0.547 20.05
Bike Lanes & Speed Controls 0.339 13.29 0.344 8.85
Regular Testing for Reducing Car Emissions 0.277 10.86 0.283 8.01
High Occupancy Vehicles & Transit Priorities 0.426 16.08 0.426 11.63
Improving Transit Service 0.278 11.49 0.278 7.08
Promoting Compact Communities 0.257 8.77 0.250 10.77
Encouraging Short Work Weeks 0.234 9.14 0.230 7.67
Transport Problems Evaluation
Traffic Congestion 0.365 12.01 0.355 13.20
Traffic Noise 0.575 19.17 0.569 18.28
Poor Local Air Quality 0.649 23.26 0.655 15.04
Accidents Caused by Bad Drivers 0.313 11.99 0.305 8.71
Emissions & Global Warming 0.445 17.32 0.446 9.32
Speeding Drivers in Neighborhoods 0.472 18.02 0.466 13.57

Table 4.6: Measurement Model
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As explained previously, this model measures the effect of the latent variable on each
indicator. While indicator variables permit identification of the latent variables and
provide efficiency in estimating the choice model with latent variables (indicators add
information content), at the same time some interesting conclusions can be drawn from
the estimations. For instance, the effect of environmental concern EC on the indicator
related to the support of expanding and upgrading roads is negative. This sign reflects the
idea that environmentally-conscious consumers negatively perceived the priority given
to cars by policies aimed at raising road capacity because of the negative impact on the
environment. Expansion of the road network is not environmentally sustainable for city
development, and our results show that green consumers are aware of this problem.

In addition, we see that the effect of environmental concern EC on the indicator related
to support for applying road tolls and gas taxes is positive, indicating a perceived positive
environmental impact of measures allowing for a presumably more rational use of private
vehicles. A similar analysis can be done for the remaining indicator variables – all of
them with a significant positive impact – with the corresponding effect of encouraging
sustainable transport. For example, the positive sign of the effect of EC on support for
reducing vehicle emissions with regular testing and manufacturer emission standards;
the perception of poor local air quality motivating the adoption of green vehicles; and
the encouragement of the expansion of the bicycle path network.

Note that according to the results poor local air quality is a major problem (respondents’
opinions about this issue in our model weigh higher than other transport problems).
At the same time, the variable road tolls and gas taxes has the highest weight among
transport policies. Considering both results we can identify carbon pricing as an efficient
instrument to encourage the adoption of low-emission vehicles.

We can also see that the effect of other indicators that may seem conceptually unrelated
to environmental preferences do not have lower coefficients when compared to more tra-
ditional indicators. For instance, the correlation between EC and speeding drivers in
neighborhoods, clearly a concept related to safety, is almost the same as the correlation
between EC and concerns about emissions and global warming. Even though the alter-
natives in our model are differentiated by their impacts on the natural environment, as
we mentioned earlier, the EC latent variable reflects concerns about the adverse effects
of personal transportation on both the natural (e.g. emissions and global warming) and
the mobility (e.g. speeding drivers in neighborhoods) environments. Other concepts af-
fect both, such as traffic congestion (reflecting indiscriminate car use with corresponding
externalities such as higher emission levels produced at low speeds), noise (that can be
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viewed as an externality of traffic congestion), promoting compact communities (imply-
ing reduced distances and therefore less emissions) and encouraging short work weeks
(through a reduction of transportation needs). The derived correlation structure is a
posterior justification of the unidimensionality of the EC variable.

Quantiles
2.5% 5% 50% 95% 97.5%

Transport Policies Support
Expanding & Upgrading Roads -0.42 -0.41 -0.36 -0.31 -0.30
Road Tolls & Gas Taxes 0.48 0.49 0.54 0.59 0.60
Bike Lanes & Speed Controls 0.29 0.30 0.34 0.38 0.39
Regular Testing for Reducing Car Emissions 0.23 0.24 0.28 0.32 0.33
High Occupancy Vehicles & Transit Priorities 0.37 0.38 0.43 0.47 0.48
Improving Transit Service 0.23 0.24 0.28 0.32 0.32
Promoting Compact Communities 0.20 0.21 0.26 0.30 0.31
Encouraging Short Work Weeks 0.18 0.19 0.23 0.28 0.29
Transport Problems Evaluation
Traffic Congestion 0.31 0.32 0.37 0.42 0.42
Traffic Noise 0.52 0.53 0.57 0.63 0.64
Poor Local Air Quality 0.60 0.60 0.65 0.70 0.71
Accidents Caused by Bad Drivers 0.26 0.27 0.31 0.36 0.36
Emissions & Global Warming 0.40 0.40 0.45 0.49 0.49
Speeding Drivers in Neighborhoods 0.42 0.43 0.47 0.52 0.52

Table 4.7: Measurement Model - Bayesian Quantiles

In sum, using real data about virtual personal vehicle choices I have shown that HCM is
genuinely capable of adapting to practical situations. HCM combines the direct effect of
environment-related underlying latent variables on the private vehicle choice probabilities
with the socio-demographic characteristics of the consumers that enter the choice proba-
bilities through the environmental concern latent variable. HCM also takes into account
opinions and attitudes through the consumer’s response to attitudinal environment-
related rating exercises. Finally, these responses are taken as indicators of the environ-
mental concern latent variable.

4.5.4 Forecasting

For forecasting, we have to consider the results of both the discrete choice kernel and
the structural model. The choice model explains behavior and the structural model not
only serves to build clusters of consumers, but also to predict values of the unobserved
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EC variable necessary for the choice model. Even though indicators are necessary for
identification of the latent variable, for forecasting there is no need for the latent variable
measurement model.

Forecasting with discrete choice models is a question of consumers’ trade-offs produced
by changes in the values of the attributes. The first step in understanding these trade-
offs is to derive willingness to pay (WTP) values from the estimates of the discrete
choice kernel. Although the parameters associated with each attribute in the discrete
choice kernel represent marginal utilities, since the utility function is ordinal it is hard
to interpret the estimates of the model. However, the ratios of the parameters represent
marginal rates of substitution that provide information about the trade-offs being made.
For instance, WTPs correspond to marginal rates of substitution of some characteristics
and price, in this case how much additional money the consumer is willing to pay to
purchase a particular car given the increase (decrease) of an attribute that provides
a higher (dis-)utility level while keeping the same level of satisfaction. In Table ?? I
report the WTPs obtained from the model. A negative sign represents the amount of
money [CAD/10000] that the consumer is willing to pay for the increase of one unit of an
attribute that raises the general utility level, while a positive sign indicates the expected
reduction in price for the increase of an attribute that decreases the utility level (or the
willingness to pay for a reduction in one unit of that particular attribute). For instance,
on average a consumer is willing to pay $166 for an increase of 1% of the service network
density (cf. ?). Note that I am presenting not only the mean WTPs but also the WTPs’
standard deviations and quantile estimates. The distribution of the WTPs is a direct
result of Bayesian estimation, whereas the estimation of confidence intervals for WTP is
particularly tricky when using classical techniques (see ?).

WTP [CAD/10000-unit ] mean s.e.
Quantiles

2.5% 5% 50% 95% 97.5%

Fuel Cost 1.018 0.42 0.45 0.53 0.96 1.72 2.00
Fuel Availability -1.660 0.59 -3.01 -2.63 -1.56 -1.02 -0.92

Express lane access -0.189 0.11 -0.44 -0.37 -0.18 -0.05 -0.02
Power -3.258 1.35 -6.39 -5.43 -3.08 -1.63 -1.35

Latent Variables
EC on AFV -0.701 0.32 -1.42 -1.21 -0.66 -0.33 -0.27
EC on HEV -0.492 0.19 -0.97 -0.82 -0.46 -0.27 -0.23
EC on HFC -0.807 0.29 -1.49 -1.29 -0.76 -0.50 -0.45

Table 4.8: Willingness to pay - Bayesian Quantiles

An interesting exercise is to derive the capital-cost equivalency from the results of the
WTPs, i.e. how much (or less) of each attribute would be equal to an increase of $1000
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in purchase price (see Table ??, where I also present the original equivalencies based on
the MNL results by ?). According to my results, if the cost of fuel is reduced in $9.82 per
month, the consumer is willing to buy a new vehicle costing $1000 more. This measures
a trade-off that is important for policy making: a reduction in taxes on alternative
fuels (or an increase in taxes on fossil fuels) can compensate for higher prices of green
technologies.

WTP [CAD/10000-unit ]
Change equal to 1000 CAD increase

in capital cost
HCM ?

Fuel Cost -9.82 [CAD/month] -19.59 [CAD/month]
Fuel Availability 6.02% 8.00%

Express lane access 53.00% 56.00%
Power 3.07% 4.00%

Table 4.9: Capital-cost equivalency for vehicle attributes

Since the measurement scale for the EC latent variable is unknown, it is hard to interpret
the values obtained for WTPs related to environmental preferences. However, from the
Bayesian estimates we can describe the density function for EC. For instance, EC has a
mean of 2.687 [units], a standard deviation equal to 0.908, and maximum and minimum
values equal to 4.891 and -0.017, respectively. In addition, we can compare the different
degrees of EC given by the different clusters obtained in the structural model. Women
are more environmentally concerned than men; the mean value of EC for women is
2.816, while it is equal to 2.513 for men. Using the WTPs obtained from the model, this
difference implies that on average women are willing to pay more for green technologies
than men are. In Table ?? we show the derived average marginal WTPs for women
and drive-alone commuters (the latter showing a environmentally indifference tendency
according to our model). For example, women are willing to pay $2440 more than men
for an HFC vehicle. Drive-alone commuters are willing to pay $2486 less for an AFV
than commuters who carpool or do not use private vehicles.

Green Vehicles
Average marginal WTP

Women Drive-alone commuters

AFV 2119 [CAD] -2486 [CAD]
HEV 1487 [CAD] -1745 [CAD]
HFC 2440 [CAD] -2862 [CAD]

Table 4.10: Average marginal willingness to pay for low-emission vehicles
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Finally, I simulate the impact of different policies. It is important to mention first that
the experimental market shares obtained from the survey differ from current conditions
in the automotive market (see ?). In fact, actual market shares show that green vehicles
still have a small penetration. HFC technologies have not even been introduced into
the market yet. Thus, the hypothetical market conditions for the baseline scenario can
be interpreted as a future market where green technologies have been introduced and
where the attributes for the different alternatives have reached levels comparable to those
considered in the experimental design. I consider the following scenarios:

• Baseline scenario: experimental situation presented in the survey.
• Scenario 1 : 100% fueling network density for every alternative.
• Scenario 2 : 25% increase in fueling network density for green vehicles.
• Scenario 3 : 25% tax on fossil fuel costs.
• Scenario 4 : 10% reduction in purchase price for green vehicles.
• Scenario 5 : 50% increase in purchase price for new technologies (HEV and HFC).
• Scenario 6 : Augmentation in EC equal to its mean value.
• Scenario 7 : Baseline considering only women.

Whereas in the case of classical estimation extra simulation of the choice probabilities
is required in forecasting, when using Bayesian techniques we make use of the sample of
draws generated by the Gibbs sampler for estimating the model. (The Gibbs sampler
generates simulations from the unconditional posterior distribution for the parameters.)
For each draw a predicted policy outcome is calculated; what we obtain is a sample of
simulations for the predictive distribution of the effects of each scenario (?). From the
sample of draws for each policy simulation we obtain the point estimates – the predicted
average market share for each scenario – with standard deviations provided in Table ??.

First, the baseline scenario (simulated market shares) replicates the known market shares
of the SP experiment: this can be statistically assessed through the Chi-squared index
χ2 = 4.63 < χ2

c,(95%,3) = 7.815 (?).

Limited fuel availability for green vehicles is an important concern for consumers (??).
Scenario 1 represents an ideal situation where the fueling station network is expanded to
its maximum (set by the SGV fueling network). In this context, important differences in
the market shares are obtained. AFVs and HFCs are the alternatives that benefit from
the increase in fuel availability (the increase being in the range of 25%-75%) and the
model predicts that the market shares of both alternatives would increase significantly
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Market Shares
SGV AFV HEV HFC

Observed 11.35% 3.73% 48.85% 36.07%
Baseline 12.88% 3.75% 48.45% 34.92%

s.d. 0.73% 0.44% 1.13% 1.07%
Scenario 1: 100% fuel net 9.53% 5.16% 35.32% 49.99%

s.d. 0.69% 0.62% 1.98% 2.25%
Percent Change -25.95% 37.41% -27.10% 43.14%

Scenario 2: ↑ 25% fuel net for AFV & HFC 10.62% 4.30% 45.31% 39.80%
s.d. 0.74% 0.52% 1.23% 1.33%

Percent Change -17.55% 14.67% -6.48% 13.97%
Scenario 3: 25% tax on fossil fuel 11.80% 4.10% 46.13% 37.97%

s.d. 0.72% 0.52% 1.48% 1.59%
Percent Change -8.32% 9.17% -4.78% 8.72%

Scenario 4: ↓ 10% price of green vehicles 11.41% 3.79% 49.26% 35.55%
s.d. 0.75% 0.45% 1.15% 1.09%

Percent Change -11.42% 0.92% 1.67% 1.79%
Scenario 5: ↑ 50% price of HEV & HFC 20.67% 6.20% 41.73% 31.41%

s.d. 3.33% 1.48% 2.88% 1.93%
Percent Change 60.53% 65.14% -13.88% -10.07%

Scenario 6: Social marketing campaign 3.87% 6.01% 41.65% 48.46%
s.d. 0.77% 1.47% 3.01% 3.19%

Percent Change -69.97% 60.29% -14.03% 38.78%
Base (women) 12.08% 3.90% 48.55% 35.47%

s.d. 0.71% 0.46% 1.15% 1.09%
Percent Change -6.16% 3.98% 0.20% 1.57%

Table 4.11: Policy Scenarios - Predicted Market Shares
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to the extent that the market shares of both SGVs and HEVs decline (hybrid vehicles
share the same network as SGVs). Because Scenario 1 represents an extreme situation, I
simulate scenario 2 where the fueling network for alternative fuels is expanded by 25%.
Both scenarios show that green alternatives become more attractive to consumers when
the fueling infrastructure is competitive (?).

Because of the environmental externalities caused by gasoline consumption, carbon pric-
ing is increasingly considered by policy makers as a valid instrument to reduce oil depen-
dency and as an appropriate response to deal with the problems causing global warming
(?). Scenario 3 considers an augmentation in fossil fuel costs by 25%, simulating the
impact of a gas tax policy – which is equivalent to a carbon emission tax. As expected,
both SGVs and HEVs reduce their market shares. The impact of the fuel tax is higher
for SGVs (a reduction equivalent to 8.32% compared to 4.78% for HEVs), simply because
hybrid vehicles require less fuel than standard vehicles do.

To encourage the adoption of new automobile technologies, certain Canadian provinces
are considering providing tax incentives for buyers of low-emission vehicles. The impact
of such a policy can be measured by reducing the purchase price of the green alternatives
(scenario 4). A reduction by 10% of the capital cost of clean vehicles implies a reduction
by 11.42% in the market share of SGVs. The resulting market share gains are bigger
for HEVs, but small overall. According to ?, the attribute levels for the low-emission
vehicles were set in the survey to values that seem particularly attractive, especially
when compared with the actual market conditions. Thus I construct scenario 5, where
we consider less attractive purchase prices for the most expensive technologies, namely
HEVs and HFCs. The market shares of SGVs and AFVs rise dramatically; the overall
penetration of green vehicles is however still high.

The previous scenarios can all be studied using standard discrete choice models (although
the results will vary because of different ASCs and potentially different parameters). The
innovation of my model results from incorporating environmental concerns through the
latent construct EC. As discussed above, even though we do not know the measurement
scale of the EC variable, once the model is estimated we can describe its distribution.
EC reflects environmental preferences, and the higher its level the more likely consumers
are to choose a low-emission vehicle. Scenario 6 seeks to represent a situation where
through a social marketing campaign, environmentally unaware consumers are exposed
to information on the benefits of reducing carbon emissions and the problems associated
with the indiscriminate use of private cars (especially when using fossil fuels). Techni-
cally, this scenario is constructed by censoring the density function of the EC variable:
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all consumers are constrained to have an EC level at least equal to the mean of the EC
variable. In practical terms, the information campaign has successfully changed the con-
cerns of the formerly environmentally unaware consumers. The impact of this simulated
campaign is huge, reducing by 69.97% the number of consumers who decide to buy an
SGV. In line with the magnitude of the estimated parameters for EC, the augmentation
of the market shares is bigger for AFVs and HEVs.

The last scenario is built by considering the baseline but for female consumers only,
making it easier to interpret the effect of the EC variable. (Note however that this is
not a ceteris paribus analysis.) Our results show that women are more environmentally
aware (they constitute a cluster of consumers with a higher level of EC), and so the
expected result will be that women favor more low-emission vehicles. Even though the
results here are not striking, the predicted market shares do show an increase in favor
of green technologies.
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4.6 An interesting extension of the model

In addition to the environmental concern variable, in the data I identified another latent
dimension related to car purchase decisions and how important are the characteristics
of the new alternative:

Appreciation of new car features (ACF): Evaluation of 7 different factors that
influence the decision to purchase a new vehicle, according to degree of importance: 5
levels from Not Important to Very Important (see Figure ??).

1. Purchase price.
2. Fuel economy.
3. Horsepower.
4. Safety.
5. Seating capacity.
6. Reliability.
7. Appearance and styling.

Figure 4.8: Appreciation of new car features

The extended model also includes a third latent variable, the latent income variable
(REV), to account for the measurement error problem in quantifying the income variable.
Note that modeling measurement errors as latent variables as well as other practical
situations such as self-selection are cases where the application of the HCM framework
naturally fits to solve the related problems (bias) that eventually arise.
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The set of equations for the mode choice model alone are given by:

USGV n = VSGV n + Γ1,2ACFn + υSGV n (4.41)

UAFV n = VAFV n + Γ2,1ECn + Γ2,2ACFn + υAFV n

UHEV n = VHEV n + Γ3,1ECn + Γ3,2ACFn + υHEV n

UHFCn = VHFCn + Γ4,1ECn + Γ4,2ACFn + Γ4,3REVn + υHFCn,

where Vin = Xinβ denotes the deterministic part of the utility expression for alternative
i and individual n.

The path diagram of the extended model is sketched in Figure ??. The results of this
extension will be quickly described.
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Figure 4.9: Extended private vehicle purchase HCM

In Table ?? the results of the extended choice model are presented. Note that both
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EC and ACF have a significant positive impact on the probability of choosing one of
the green technologies. However, ACF also had a positive impact on the probability of
selecting a standard vehicle.

Hybrid Choice Model
estimates t-stat

ASC_AFV -6.626 -5.162
ASC_HEV -4.383 -5.688
ASC_HFC -6.403 -8.750

Capital Cost -0.943 -4.369
Operating Cost -0.849 -3.917
Fuel available 1.384 7.096

Expess lane access 0.162 2.229
Power 2.710 3.985

Latent Variables
ACF on SGV 3.160 25.984
EC on AFV 0.798 2.695

ACF on AFV 2.810 30.708
EC on HEV 0.770 3.965

ACF on HEV 2.810 30.708
EC on HFC 1.085 5.620

ACF on HFC 3.054 31.048
REV on HFC 0.456 3.373

Number of individuals 1877
Choice Model adj. rho-square 0.236

Number of draws (burn-in) 5000 (500)

Table 4.12: Extended Car Choice Model Results

For each one of the three latent variables (environmental concern EC, appreciation of new
car features ACF, and income REV), we assume a linear structural regression equation
whose estimation results are shown in Table ??.

As in the original model, environmental concerns appear to be more developed in women
and more educated people, as well as for transit users. Vehicle features are more appre-
ciated by people who drive alone than by those who carpool. They are also more valued
by women and by older and more educated people.

High education level has a significant positive effect on the latent income variable (REV)
while the effect is positive but not significant on both variables environmental concern
and appreciation of new car features. The effect of age on ACF is the highest for people
between 41 to 55 years old. Not surprisingly, the effect of age on the latent income
variable REV is small and not significant for people older than 55 years of age (an effect
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of people being retired).

EC ACF REV
est t-stat est t-stat est t-stat

Intercept 2.434 9.660 -3.094 -18.495 1.293 7.374
Driving Alone User -0.020 -0.428 -0.118 -2.244 - -
Car Pool User 0.097 1.135 0.100 0.938 - -
Transit User 0.204 2.572 - - - -
Female Dummy 0.258 7.392 0.283 6.474 - -
High Income Dummy (>80K$) -0.011 -0.294 -0.001 -0.017 - -
Education: University 0.064 1.712 0.008 0.170 0.598 9.522
Age level: 26-40 years 0.187 2.279 0.328 3.961 0.592 5.363
Age level: 41-55 years 0.262 3.105 0.621 6.657 0.889 7.952
Age level: 56 years & more 0.332 3.702 0.525 5.278 0.228 1.840

Table 4.13: Extended Structural Model Results

Finally, the latent variable measurement model links the latent variables with the indi-
cators, and a typical equation for this model has the form:

TPS2 = αTPS2 + λEC,TPS2ECn + λAF,TPS2ACFn + εTPS2 . (4.42)

In this example, we can see that the effects on the second indicator related to the
Transport Policies Support (TPS) question are measured using a constant and the latent
variables environmental concern EC and appreciation of new car features ACF. We have
considered 21 indicators, so it is necessary to specify 21 equations. Their relation with
the latent variables is depicted in Figure ?? and the results are displayed in Table ??.

On the one hand, we see that the effect of environmental concern EC on the indicator
related to the support of applying road tolls and gas taxes is positive, indicating a
perceived positive environmental impact of measures allowing a rational use of the car.
Note also that the effect on the same indicator of the appreciation of new car features
ACF, the other transport related latent variable considered, is negative although not
significant. This sign can be explained because of the perceived negative impact of this
kind of car use restrictions, especially if the user is considering to buy a new car. A similar
analysis can be done for the other indicators. For example, the positive sign of the effect
of both EC and ACF on the support for reducing vehicle emissions with regular testing
and manufacturer emissions standards: it is perceived with a positive environmental
impact but also it is positively perceived by consumers as a good attribute of a potential
new car.
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estimates t-stat

Transport Policies Support
EC on Expanding & Upgrading Roads -0.392 -5.405
EC on Road Tolls & Gas Taxes 0.581 6.600
ACF on Road Tolls & Gas Taxes -0.091 -1.389
EC on Bike Lanes & Speed Controls 0.532 8.507
EC on Reducing Car Emissions 0.478 7.944
ACF on Reducing Car Emissions 0.295 7.856
EC on High Occupancy Vehicles & Transit Priorities 0.606 8.143
EC on Improving Transit Service 0.491 8.352
EC on Promoting Compact Communities 0.206 2.994
EC on Encouraging Short Work Weeks 0.396 7.159
Transport Problems Evaluation
EC on Traffic Congestion 0.735 9.154
EC on Traffic Noise 0.901 9.495
EC on Poor Local Air Quality 1.000 -
ACF on Poor Local Air Quality -0.061 -1.416
EC on Accidents Caused by Bad Drivers 0.837 14.472
EC on Emissions & Global Warming 1.113 16.200
EC on Speeding Drivers in Neighborhoods 1.107 15.790
Car Attributes Importance
ACF on Purchase Price -0.004 -0.087
ACF on Fuel Economy Importance 0.259 5.008
ACF on Horsepower Importance 0.433 7.220
ACF on Safety Importance 1.000 -
ACF on Seating Capacity Importance 0.684 11.563
ACF on Reliability Importance 0.537 16.241
ACF on Styling 0.371 6.660
Income Class
REV on rev 1.00 -

Table 4.14: Extended Structural Model Covariates

In sum, some interesting conclusions can be made from this extended model, particularly
with regard to sustainable transportation. As in the original model, environmental con-
cerns would discourage expansion of the road network, but would support expansion of
the bicycle path network, implementation of tolls and increase of fuel taxes. Conversely,
the appreciation of vehicles would have a negative impact on supporting sustainable
transportation policies, such as the imposition of fees and emission standards.
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4.7 Variations on a theme: taking account for safety

Beyond the role of environmental concerns that I have addressed throughout this chapter,
in this section, I use the same data and tools to specifically analyze the role of safety-
related attributes on pro-environmental choice.

When looking at the list of attributes frequently used in previous research in vehicle
purchase modeling, a question arises on the role of safety in the vehicle purchase decision.
Is safety an attribute that consumers do not consider when they are evaluating the
different alternatives before buying a new car?

? is the first application of vehicle safety – through collision rates and the probability of a
severe accident – as a relevant attribute in the choice of a new vehicle to purchase. Using
a multinomial logit model (MNL), ? defines vehicle safety as a subset of the attributes
of the vehicle. Based on ? and ?, ? considers the following related-to-safety attributes:
head stroke (distance from the windshield to the seat back), passive restraint (airbag
or passive seat belt), crashworthy index (according to model-year), and vehicle weight.
In general, the results show that consumers do prefer safer vehicles, with significant
parameters for the safety-related attributes. However, how well those safety attributes
reflect individual preferences for safety is debatable.

The problem is that safety is a qualitative variable that is cognitively built using different
dimensions. When we define measurable attributes for safety, one modeling possibility
is to work with a quantitative approach of proxy variables, just as ? did in his article.
However, the use of proxy variables for safety should involve dealing not only with vehicle
attributes (such as the presence of air bags, ABS, or other technical specifications related
to vehicle safety) but also with attributes that reflect the environment where the vehicle
is used: road conditions (road safety), number of accidents, presence of speeding drivers,
and winter driving conditions and requirements. If the external factors define a less safe
driving environment, then the likelihood of a consumer choosing a safer vehicle should
be higher.

The problem with this approach is that, first, it is very complex to have an exhaustive list
of measurable safety proxy attributes. Additionally, the safety proxy attributes together
explain the effect of one variable only. This fact suggests that it is likely that these proxy
variables will be correlated, with the corresponding modeling problems associated with
collinearity.
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Recognizing its qualitative nature, a better modeling approach is to consider safety as
a perceptual/attitudinal latent construct. Different studies have been centered on the
attitudinal dimension of safety, measuring the relative importance of vehicle safety in the
vehicle purchase decision (????????). What these studies do is, in a real/hypothetical
situation of buying a new car, ask consumers to rate the importance of different vehicle
attributes (see ?, for a quick but comprehensive discussion of most of those studies). Usu-
ally, the conclusion is that safety is an important attribute but is repeatedly outranked
by other attributes, namely purchase price, appearance and reliability. If consumers are
asked to mention the most important factor for a particular cluster of vehicles defined
by price range and vehicle type, then safety appears as the main answer (?).

However, in the interesting work of ?, the authors found that safety is the the most
important factor in the purchase process for new vehicle consumers, whereas purchase
price was ranked third. The authors also found that preference for safety shows cultural
patterns, vehicle safety being more appreciated by Swedish participants than Spanish
participants. Finally, they also showed that consumers conceptualize vehicle safety using
safety-related features (such as air bags or ABS) rather than crash/safety test results
or a crashworthy index. This particular finding, also mentioned in other works such as
? and ?, questions the use of crashworthiness as an attribute to model vehicle safety
– which was used, for example, in the work of ?. Once again, the problem with the
attitudinal approach alone is that it does not explain choice behavior.

4.7.1 Safety in Canadian consumer’s response to green vehicles

Whereas safety was not considered directly as an experimental attribute in the vehicle
choice data I analyze throughout this chapter, there are safety-related factors appearing
in two different questions of the survey. First, using 5 different levels, from not at
all important (level 1) to very important (level 5), the participants were asked to rate
the importance that a group of different factors had in the decision to purchase their
current vehicle.7 The factors to be evaluated were: purchase price, vehicle type, fuel
economy, horsepower, vehicle safety, seating capacity, reliability and styling (see Figure
??). While reliability tops the list, with 81% of the participants rating reliability as a very
important factor, both purchase price and vehicle safety are almost as likely to be rated
very important, reaching a very important evaluation of 61% and 59%, respectively. In
fact, considering together the two highest levels of importance (grouping levels 4 and 5),

7I will take the responses to this rating exercise as attitudinal indicator variables for a latent variable
related to appreciation of car features (ACF) of the consumer, just as I did in section ??.
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then vehicle safety comes second with 81%, after reliability (93%), and before purchase
price (76%), which ends up closer to vehicle type (72%).

Additionally, participants were asked to evaluate both different policies or government
actions that would influence the transportation system according to degree of support,
as well as different problems related to transportation according to degree of serious-
ness. I used these indicators to identify the environmental concern variable in section
??. However, note that among the policies and problems being evaluated, 4 of them are
related to experienced safety while driving: bike lanes and speed controls, traffic conges-
tion, accidents caused by bad drivers, and presence of speeding drivers in neighborhoods.
The answers to these questions are related to safety environment and, together with the
vehicle safety variable, they serve as perceptual indicator variables for a general latent
construct related to safety (SAF).

4.7.2 An HCM of vehicle choice including safety

As ? points out, since vehicle safety was not included as an attribute in the SP exercise of
virtual vehicle choice, it is not possible to use a standard discrete choice model to consider
the answers related to safety we just described. However, using an appropriate Hybrid
Choice Model we can quantify the impact of the safety-related cognitive factors on the
private vehicle purchase decision. Our hypothesis is that the decision of a new private
vehicle purchase is affected not only by the experimental attributes of the different
vehicles, but also by both the attitudinal appreciation of car features (ACF) of the
consumer, including vehicle safety, and the latent construct related to safety (SAF).
This version of the model is presented in Figure ??.
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Figure 4.10: Private vehicle purchase HCM centered on safety

Expanding on the results of section ??, the Bayesian Gibbs sampling routine for this
case with two latent variables is:

π(θ|ACF, SAF, bACF, bSAF,Λ, y, I) ∝ |H|
1
2 exp

(
1

2
(θ − θ̂)′H(θ − θ̂)

)
(4.43)

π(ACFn|θ, bACF,Λ, yn, In) ∼ N(µACFn|In , σ
2
ACF|I), ∀n (4.44)

π(SAFn|θ, bSAF,Λ, yn, In) ∼ N(µSAFn|In , σ
2
SAF|I),∀n (4.45)

π(bACF|ACF, θ, bACF,Λ, y, I) ∼ N( ¯bACF, V̄bACF) (4.46)

π(bSAF|SAF, θ, bSAF,Λ, y, I) ∼ N( ¯bSAF, V̄bSAF) (4.47)

π(Λ|ACF, SAF, θ, bACF, bSAF, y, I) ∼ N(Λ̄, V̄Λ). (4.48)

First, I present the results of the discrete choice model. As explained before, the private
vehicle choice corresponds to the discrete choice kernel, in this case a multinomial logit,
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where the parameters to estimate are described by the taste parameter vector θ of the
utility function. The deterministic utility contains the experimental attributes capital
cost, operating costs, fuel available, express lane access, power as well as alternative
specific constants for the alternative fuel vehicle AFV, the hybrid vehicle HEV, and the
hydrogen fuel cell vehicle HFC. The HCM utility specification also contains the effect
of the latent variables. Thus, the set of equations for the mode choice model alone are
given by:

USGV n = VSGV n + υSGV n (4.49)

UAFV n = VAFV n + ΓAFV,SAFSAFn + ΓAFV,ACFACFn + υAFV n (4.50)

UHEV n = VHEV n + ΓHEV,SAFSAFn + ΓHEV,ACFACFn + υHEV n (4.51)

UHFCn = VHFCn + ΓHFC,SAFSAFn + ΓHFC,ACFACFn + υHFCn, (4.52)

where Vin = Xinβ denotes the deterministic part of the utility expression for alternative
i and individual n.

Car Choice Model
HCM

estimates t-stat

ASC_AFV -0.824 -0.936
ASC_HEV 1.509 2.276
ASC_HFC 0.397 0.576

Capital Cost -0.931 -4.366
Operating Cost -0.811 -3.931
Fuel available 1.334 7.000

Express lane access 0.145 2.026
Power 1.509 2.026

Latent Variables
SAF on AFV 0.715 2.767
ACF on AFV 0.152 0.525
SAF on HEV 0.488 3.640
ACF on HEV -0.197 -1.293
SAF on HFC 0.369 2.773
ACF on HFC 0.230 1.445

Number of individuals 1877
Choice Model adj. rho-square 0.237

Number of draws (burn-in) 5000 (500)

Table 4.15: Car Choice Model Results, preferences for safety

As shown in Table ??, the significance of the latent variable parameters shows a relevant
effect on the individual utilities. Through its positive sign, the safety latent variable
SAF has a pro-environmental impact encouraging the choice of green technologies. In
fact, SAF has the highest effect on the alternative fuel vehicle AFV, followed by the
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hybrid vehicle HEV and then the hydrogen fuel cell vehicle HFC. Interestingly, the order
appears to be reversed when compared with the results when an environmental concern
variable is included (cf. Table ??).

Note that we obtain an unexpected negative sign for the effect of the ACF latent vari-
able on the probability of choosing the HEV alternative. This unexpected sign can be
explained by the switch in sign of the HEV specific constant, which was negative in the
standard MNL case and then changed sign in the HCM case. Thus, to adjust to the
observed market shares, a negative sign for the effect of ACF on HEV is obtained.

The structural equation links consumer characteristics with the latent variables through
a linear regression equation based on the usual mode of transportation to get to work or
school (driving, carpooling or trasit), the individual’s gender, age, education level, and
household income. The estimation results are shown in Table ??:

Structural Model
SAF ACF

est t-stat est t-stat

Intercept -3.900 -10.67 -0.597 -7.74
Driving Alone User 0.069 1.10 -0.153 -3.14
Car Pool User 0.205 1.99 0.089 0.94
Transit User 0.136 1.40 - -
Female Dummy 0.402 8.52 0.280 6.95
High Income Dummy (>80K$) 0.029 0.58 0.001 0.02
Education: University -0.112 -2.26 0.058 1.34
Age level: 26-40 years 0.053 0.59 0.334 4.41
Age level: 41-55 years 0.147 1.60 0.624 7.45
Age level: 56 years & more 0.410 3.98 0.490 5.54

Table 4.16: Structural Model Results, preferences for safety

Interestingly, from this model we can conclude that safety (SAF) is more important for
car pool users than for driving alone users. We also find that concern about safety issues
in the vehicle purchase choice context is more developed in women and older people.
These results show a risk-aversion behavior and are in line with previous findings. For
example ? find that older participants were more likely to list safety as their most
important consideration than younger or middle-aged participants. In addition, the
effect of the high income variable on safety is positive but not significant.

Whereas I obtain an unexpected negative sign for the variable indicating university
studies on safety, the effect of this variable on the appreciation of car features (ACF) is
positive (although with a low significance). In addition, the effect of age on ACF is the
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highest for people between 41 to 55 years.

Lastly, the measurement model identifies the effect of the latent variable on each indicator
variable. Several indicators were considered in the latent variable measurement model,
which links the latent variables SAF and ACF to answers to attitudinal/perceptual qual-
itative survey questions. As explained before, the questions selected to define the indi-
cator variables concern the respondent’s level of support for or opposition to transport
policies (Transport Policies Support), their opinions on various transport-related issues
(Transport Problems Evaluation), and their evaluation of car attribute importance. The
results are shown in Table ??.

Measurement Model
estimates t-stat

Transport Policies Support
ACF on Road Tolls & Gas Taxes 0.075 1.161
SAF on Bike Lanes & Speed Controls 0.174 4.460
ACF on Emission Testing & Standards 0.442 10.804
Transport Problems Evaluation
SAF on Traffic Congestion 0.461 8.648
ACF on Poor Local Air Quality 0.200 3.801
SAF on Accidents Caused by Bad Drivers 0.832 15.427
SAF on Speeding Drivers in Neighbourhoods 1.000 -
Car Attribute Importance
ACF on Purchase Price 0.107 2.276
ACF on Fuel Economy Importance 0.385 7.163
ACF on Horsepower Importance 0.530 9.065
SAF on Vehicle Safety Importance 0.213 6.909
ACF on Vehicle Safety Importance 1.000 -
ACF on Seating Capacity Importance 0.784 14.558
ACF on Reliability Importance 0.532 15.483
ACF on Styling 0.347 6.151

Table 4.17: Measurement Model, preferences for safety

Some interesting conclusions can be drawn from the estimated parameters, especially
about perceptions related to safety. For example, we confirm that the latent variable
SAF is related to safety driving conditions. In this context, the factor with the highest
weight is speeding drivers in neighborhoods confirming the idea that a major worry for
individuals are drivers who do not respect speed limits, risking fatal crashes. Next
comes accidents caused by bad drivers, which could be interpreted as an outcome of the
presence of speeding drivers, among other attributes defining bad drivers. Thus, to favor
consumers’ perception of a safer driving environment some policies in this regard could
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be implemented, such as effective speeding reduction interventions. Although reducing
speed limits can be cited as one of these interventions, the estimated parameter for speed
controls is low when compared to the other safety indicators. However, it is essential
to note that the actual indicator in our database is bike lanes & speed controls. This
definition does not allow us to identify a specific weight only for speed controls. As for
vehicle safety, the lower weight is explained by a lower correlation with the concept of
safety environment.

The results of the indicator variables for the relative importance of different car at-
tributes show the highest weight for the vehicle safety indicator. This result must be
understood in a context where some attributes that are being evaluated also appear in
the utility function of the discrete choice model, namely purchase price (as capital cost),
fuel economy (as operating cost), power, and type of car (through the set of available
alternatives). Our results should be interpreted then as evidence from a more general
framework for the result we find in the literature stating that for a particular cluster of
vehicles, safety appears as the major concern when choosing a new car to purchase.

Understanding consumers’ preferences for safety is essential for encouraging safe driving
behavior and for developing a safer driving environment: if we can model consumers’
demand for safety, we can also test the impact of both different public policies related to
safety as well as private improvements to vehicle safety. However, rating the importance
of safety variables for vehicle consumers has been the dominant modeling tool in those
few studies which have so far been done on the role of safety in the new vehicle purchase
process. Although this approach allows us to determine the current relative importance
of different safety-related features even when compared to other vehicle features (such as
reliability or comfort), the use of rating techniques lacks predictive power because there
is no representation of the behavioral choice process.

In this application, using empirical data, I developed, implemented and applied a hybrid
choice model (HCM) to explain consumers’ preferences for safety in the private vehicle
choice context. Although the data were flexible enough to construct the first application
of an HCM with a safety latent variable, it is important to mention that the database
was not conceived to evaluate the role of safety in the vehicle purchase decision. How-
ever, my results introduce the elements for future applications focused on safety. Stated
or revealed preference data about vehicle purchase decisions using standard measurable
vehicle attributes (such as make and model, purchase price, performance, reliability, and
durability) can be combined with attitudinal rating exercises that will be used to con-
struct latent variables related to safety, just as I did in this application. To have a more
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complete description of factors, I suggest including, first, the assessment of the impor-
tance of different vehicle safety technologies (such as airbags, ABS, seat belts, seat belt
reminders, speed alerts, parking assistance). This evaluation will permit us to construct
a latent variable related specifically to vehicle safety (in the current database, vehicle
safety appears as a general concept without a clear definition). Then, the attitudinal
evaluation of a general and more exhaustive list of vehicle features (such as purchase
price, performance, style, comfort, size) can be completed with the resulting vehicle
safety latent variable. From a modeling perspective, this can be done by permitting si-
multaneity among the latent variables, an extension that can be easily incorporated using
the HCM framework. To quantify the safety environment perceptions, I also suggest the
evaluation of different safety policies related to road safety, such as traffic calming pro-
grams (for example speed cushions and speed bumps), and other traffic safety measures
(speed controls, pedestrian and bicycle plans, educational programs for young drivers,
improved safer road networks, and traffic engineering measures such as protective road
fencing for vehicles). The evaluation of those policies, together with the perception of
unsafe driving conditions (traffic congestion, speeding drivers, high accident rates, poor
road conditions), will provide indicator variables to build a latent variable related to a
safe driving environment.

This more general framework will permit us to understand even better the role of safety
as a cognitive factor of vehicle consumers, with the concomitant gain in predictive power
useful not only for manufacturers – who will have information about clusters of consumers
according to their safety perceptions –, but also policy makers: if we understand better
consumers’ perceptions of safety it will be easier to plan more effective safety policies
and safety campaigns. An example of this would be to reinforce the importance of an
eventually low appreciated safety vehicle feature that has proven to avoid causalities in
crash tests.

4.8 Conclusions

In this chapter, using survey data, I have developed, implemented and applied a hybrid
choice model (HCM) to explain environmental preferences in a private vehicle choice
context. My specification is consistent with the new trend in discrete choice modeling
toward incorporating perceptual/attitudinal factors into the behavioral representation of
the decision process. The HCM formulation offers an attractive improvement in model-
ing private vehicle choice behavior, because the choice model is only a part of the whole
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behavioral process in which we now incorporate individual attitudes, opinions and per-
ceptions, thus yielding a more realistic econometric model. This improved representation
outperforms standard discrete choice models because now it is possible to build a profile
of Canadian consumers and their ability to adapt to technological innovation with regard
to sustainable private vehicle alternatives. Indeed, a latent environmental concern EC
variable enters very significantly and positively in the discrete choice kernel of my model,
favoring the adoption of green automobile technologies through a positive impact in the
choice probabilities.

In addition, I can summarize some of the practical results of my research: environmen-
tal concerns (ECs) are more important for public transportation users than for car pool
users; car drivers may be unaware of the environmentally adverse effects of private car
use; concern about environmental issues is more developed in women, older people and
more educated people; environmentally-conscious consumers negatively perceived the
priority given to cars by policies aimed at raising road capacity, and hence there is a
perceived positive environmental impact of measures allowing a rational use of private
vehicles as well as a measurable positive effect of encouraging sustainable transport.
Whereas the discrete choice kernel and the structural model are used for policy simu-
lations, the measurement model serves to infer which policies can be more effective in
encouraging the adoption of green technologies. For instance, my results support fossil
fuel taxation: road tolls and a tax on vehicle carbon emissions are the transport poli-
cies that show the highest correlation level with the EC variable. Then, if fuel taxes
are applied, my policy simulation consistently predicts deeper market penetration for
low-emission vehicles.

Beyond the interesting results showing that environmental concern encourages the choice
of green automobile technologies, this application also proves the practical feasibility of
the Gibbs sampler I have developed for HCM estimation, exploiting data augmenta-
tion techniques for the latent variables. To my knowledge, this is the first empirical
application of the HCM Gibbs sampler. Whereas Gibbs sampling for a probit kernel is
analytically straightforward because it also admits the use of data augmentation, in the
case of both a multinomial logit (MNL) kernel and a mixed logit (MMNL) kernel one
fails to find a closed form full conditional distribution for the taste parameters of the
utility function. However, I showed that it is possible to exploit Metropolis-Hastings
(MH) methods for both the MNL and MMNL cases. In fact, my numerical application
concerns an MNL kernel. Even though the probit kernel formulation breaks down the
methodological complexity of the model, the data augmentation step for the utility func-
tion is very demanding in computational terms, and eventually could be outperformed by
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a logit-based kernel – even with the additional MH step required by logit models. In ad-
dition, classical estimation of HCMs is very demanding in situations with a large number
of latent variables – each additional latent variable sums another dimension in the joint
choice probability. Thus, Bayesian HCM estimation clearly outperforms simulated maxi-
mum likelihood: the inclusion of additional latent variables under the Bayesian approach
implies simply working with ordinary regressions (i.e. sampling additional draws from a
normal distribution). Another advantage of the Bayesian approach is that it allows us to
forecast using the same sample generated for estimation. In fact, the Bayesian estimates
describe the posterior distribution, permitting a direct calculation of confidence intervals
for WTPs as well as standard deviations for both the choice probabilities and market
shares.
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Appendix A: Variable description

In the following tables we give the details of the different components of the vectors of
equations ??, ??, ?? and ??.

Variable Description

USGV Utility associated with a Standard Gas Vehicle (SGV)
UAFV Utility associated with an Alternative Fuel Vehicle (AFV)
UHEV Utility associated with a Hybrid Electric Vehicle (HEV)
UHFC Utility associated with a Hydrogen Fuel Cell vehicle (HFC)
EC Environmental Concern latent variable
I1 Expanding & Upgrading Roads - Support Indicator
I2 Road Tolls & Gas Taxes - Support Indicator
I3 Bike Lanes & Speed Controls - Support Indicator
I4 Reducing Car Emissions - Support Indicator
I5 High Occupancy Vehicles & Transit Priorities - Support Indicator
I6 Improving Transit Service - Support Indicator
I7 Promoting Compact Communities - Support Indicator
I8 Encouraging Short Work Weeks - Support Indicator
I9 Traffic Congestion - Evaluation Indicator
I10 Traffic Noise - Evaluation Indicator
I11 Poor Local Air Quality - Evaluation Indicator
I12 Accidents Caused by Bad Drivers - Evaluation Indicator
I13 Emissions & Global Warming - Evaluation Indicator
I14 Speeding Drivers in Neighborhoods - Evaluation Indicator

Table 4.18: Dependent Variables



REFERENCES 132

Parameter Variable Description

b1 w1 Intercept
b2 w2 Driving Alone User
b3 w3 Car Pool User
b4 w4 Transit User
b5 w5 Female Indicator
b6 w6 High Income Indicator (>80K$)
b7 w7 Education: University
b8 w8 Age level: 26-40 years
b9 w9 Age level: 41-55 years
b10 w10 Age level: 56 years & more

ASCAFV XAFV,1 Alternative Fuel Vehicle (AFV) constant
ASCHEV XSGV,2 Hybrid Electric Vehicle (HEV) constant
ASCHFC XSGV,3 Hydrogen Fuel Cell Vehicle (HFC) constant

β1 X·,4 Purchase Price
β2 X·,5 Fuel Cost
β3 X·,6 Fuel Availability
β4 X·,7 Express lane access
β5 X·,8 Power

ΓAFV,EC EC EC effect on AFV
ΓHEV,EC EC EC effect on HEV
ΓHFC,EC EC EC effect on HFC

λ1 EC EC effect on Expanding & Upgrading Roads
λ2 EC EC effect on Road Tolls & Gas Taxes
λ3 EC EC effect on Bike Lanes & Speed Controls
λ4 EC EC effect on Reducing Car Emissions
λ5 EC EC effect on High Occupancy Vehicles & Transit Priorities
λ6 EC EC effect on Improving Transit Service
λ7 EC EC effect on Promoting Compact Communities
λ8 EC EC effect on Encouraging Short Work Weeks
λ9 EC EC effect on Traffic Congestion
λ10 EC EC effect on Traffic Noise
λ11 EC EC effect on Poor Local Air Quality
λ12 EC EC effect on Accidents Caused by Bad Drivers
λ13 EC EC effect on Emissions & Global Warming
λ14 EC EC effect on Speeding Drivers in Neighborhoods

Table 4.19: Independent Variables and Parameters
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Appendix B: Posterior distributions and MCMC se-
quences

Figure 4.11: Posterior distribution of selected parameters



REFERENCES 134

Figure 4.12: MCMC sequence of selected parameters



Chapter 5

Generalization of an MCMC method
for Bayesian estimation of HCMs

In this chapter I introduce a general Gibbs sampler for Bayesian estimation
of hybrid choice models. Then, using a virtual case of travel mode choice, I
discuss the specification, estimation, and point estimate analysis of a hybrid
choice model that allows one to include qualitative attributes in a standard
discrete choice setting in a way that avoids problems of inconsistency. In
particular, I set up a Monte Carlo experiment where I compare the point
estimation results of two alternative methods of estimation, namely frequen-
tist full information simulated maximum likelihood and Bayesian Metropolis
Hastings-within-Gibbs sampling. Even though the two estimation methods I
analyze are based on different philosophies, both the frequentist and Bayesian
methods provide estimators that are asymptotically equivalent. The results
show that both methods are feasible and offer comparable results with a large
enough sample size. However, the Bayesian point estimates outperform max-
imum likelihood in terms of accuracy, statistical significance, and efficiency
when the sample size is low.
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5.1 Introduction: Hybrid Choice Modeling

As discussed in previous chapters, HCMs generalize standard DCMs for assessing how
perceptions and attitudes, introduced as latent variables, affect choice (?). Whereas
perceptual and attitudinal data can be modeled through standard structural equation
modeling1, discrete choice is a latent variable model where the indicator variable cor-
responds to the alternative that maximizes an unobserved conditional indirect utility.
Hence, the econometric representation of an HCM corresponds to the following system
of simultaneous equations2:

Structural equations

z∗n
(L×1)

= Πz∗n +Bwn + ζn = [IL −Π]−1Bwn + [IL −Π]−1ζn, ζn ∼MVN(0, H−1
Ψ ) (5.1)

= B̃
(L×M)

wn
(M×1)

+ ζ̃n
(L×1)

, ζ̃n ∼MVN(0, H−1
Ψ̃

)

Un
(J×1)

= Xn
(J×K)

β
(K×1)

+W ∗n(Xn, z
∗
n)

(J×Q)

%
(Q×1)

+ Γ
(J×L)

z∗n
(L×1)

+ Pn
(J×F )

T
(F×F )

ξn
(F×1)

+ νn
(J×1)

(5.2)

Measurement equations

In
(R×1)

= α
(R×1)

+ Λ
(R×L)

z∗n
(L×1)

+ εn
(R×1)

, εn ∼MVN(0, H−1
Θ ) (5.3)

yn
(1×1)

= i ∈ Cn iff Uin − Ujn ≥ 0,∀j ∈ Cn, j 6= i. (5.4)

where z∗n is an endogenous random vector of latent variables; the matrix Π allows for
the eventual presence of simultaneity or interactions among the latent variables – we
assume that (IL − Π) is invertible, where IL represents the identity matrix of size L;
wn is a vector of explanatory variables affecting the latent variables; B is a matrix of
K unknown regression coefficients used to describe the global effect of (IL − Π)−1Bwn
on the latent variables; and H−1

Ψ is a covariance matrix which describes the relationship
among the latent variables through the error term. To simplify notation, we define
B̃ = (IL − Π)−1B, ζ̃n = (IL − Π)−1ζn, and H−1

Ψ̃
= [(IL − Π)−1]H−1

Ψ [(IL − Π)−1]′.

The choice model in equation (??) is written in vector form where we assume that there
is a total of Jn available alternatives in the set Cn. Hence, Un is a vector of indirect

1Without loss of generality, I adopt a MIMIC model (?).
2This system of equations represents a case that is slightly more general than the one introduced in

Chapter 3.
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utility functions; Xn is a matrix with Xin designating its i th row; and β is a vector of
unknown parameters. W ∗

n(Xn, z
∗
n) is a matrix of Q interactions between the observable

Xn and the latent z∗n as well as interactions within the latent variables; % is a vector
of unknown parameters associated with these interactions. Γ is a matrix of unknown
parameters associated with the latent variables present in the utility function, with Γi
designating the i th row of matrix Γ. The analytical form of the discrete choice kernel
depends on the assumptions regarding the distribution of the random term νn.

In the set of measurement equations, In corresponds to a vector of manifest variables
that serve as indicator responses for the latent variables z∗n; α is an intercept vector and
Λ is a matrix of G unknown factor loadings. The term εn is a vector of error terms with
covariance matrix H−1

Θ . Finally, we stack the choice indicators yin’s into a vector called
yn.

5.2 HCM Gibbs sampler

If we call θ the joint set of parameters of the choice model3, the parameters to estimate
in an HCM are θ, B̃, α, Λ, Ψ̃, and Θ. Bayes estimation implementation for these
parameters requires making draws from the joint posterior distribution:

P (θ, B̃, α,Λ, Ψ̃,Θ|y, I), (5.5)

or, using data augmentation from:

P (z∗, θ, B̃, α,Λ, Ψ̃,Θ|y, I), (5.6)

where z∗ = (z∗1 , . . . , z
∗
N)′, y = (y1, . . . , yN)′ and I = (I1, . . . , IN)′ capture the information

for the full group of individuals.

Using Gibbs sampling4, the estimators are obtained from draws inside an iterative process
3We include in θ the parameters of the deterministic part of the utility function as well as the

parameters associated with the random terms, i.e. ASCs, β, %,Γ, T, and Σ.
4The Gibbs sampler discussed in this chapter is a generalization of the specific Gibbs sampler intro-

duced in Chapter 4.
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involving the set of full conditional distributions. Namely, at the g-th iteration:

z∗(g)n ∼ π(z∗n|θ(g−1), B̃(g−1), α(g−1),Λ(g−1), Ψ̃(g−1),Θ(g−1), yn, In),∀n
θ∗(g) ∼ π(θ|z∗(g), B̃(g−1), α(g−1),Λ(g−1), Ψ̃(g−1),Θ(g−1), y, I)

B̃∗(g) ∼ π(B̃|z∗(g), θ(g), α(g−1),Λ(g−1), Ψ̃(g−1),Θ(g−1), y, I)

α∗(g) ∼ π(α|z∗(g), θ(g), B̃(g),Λ(g−1), Ψ̃(g−1),Θ(g−1), y, I)

Λ∗(g) ∼ π(Λ|z∗(g), θ(g), B̃(g), α(g), Ψ̃(g−1),Θ(g−1), y, I)

Ψ̃∗(g) ∼ π(Ψ̃|z∗(g), θ(g), B̃(g), α(g),Λ(g),Θ(g−1), y, I)

Θ∗(g) ∼ π(Θ|z∗(g), θ(g), B̃(g), α(g),Λ(g), Ψ̃(g), y, I)

Although the Gibbs sampler is performed simultaneously for the whole HCM, I present
the conditional distributions separately for both the MIMIC and discrete choice sub-
models.

5.2.1 Conditional distributions of the MIMIC model

From a frequentist point of view5, the unknown parameters of equations ?? and ??
cannot be estimated using standard regression methods. However, whereas the latent
variables are unobservable by definition, Bayesian estimation allows one to augment the
observed data by simulating the random latent variables z∗n through MCMC methods.
With the parameter set augmented by z∗n we obtain a normal linear model posterior such
that inference becomes straightforward.

First the data augmentation step for z∗n will be described. The indicator variables In pro-
vide information on z∗n that one needs to take into account in the conditional probability
π(z∗n|In) to make use of data augmentation techniques. In fact, the indicator variables
serve for parameter identification of z∗n. The joint distribution of z∗n and In is then a key
element for deriving the conditional distribution of z∗n. It is possible to show that[

z∗n
In

]
∼MVN

([
B̃wn

α + ΛB̃wn

]
,

[
Ψ̃ Ψ̃Λ′

ΛΨ̃ ΛΨ̃Λ′ + Θ

])
,∀n, (5.7)

where I14 represents the identity matrix of size 14. Equation ?? implies

π(z∗n|θ, B̃, α,Λ, Ψ̃,Θ, yn, In) ∼MVN(µz∗n|In ,Σ
2
z∗n|In),∀n, (5.8)

5Classical estimation of HCMs is introduced and discussed in Chapter 3.
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where

µz∗n|In = B̃wn + [Ψ̃Λ′][ΛΨ̃Λ′ + Θ]−1[In − α− ΛB̃wn] (5.9)

Σ2
z∗n|In = Ψ̃− [Ψ̃Λ′][ΛΨ̃Λ′ + Θ]−1[ΛΨ̃]. (5.10)

Note that the latter expression is independent of individual n, so we can actually write
Σ2
z∗|I .

To estimate the remaining parameters of the latent variable model, we can apply equa-
tion ?? to simulate observations of the latent variable z∗n. Moreover, using the simulated
values for z∗n, equations ?? and ?? become linear regression models with general covari-
ance matrices. First, we rewrite these equations considering the regression coefficients
in vector form6 and the explanatory variables as a design matrix. Then we stack the N
observations together. For the structural equation we obtain

z∗
(LN×1)

= W
(LN×K)

b̃
(K×1)

+ ζ̃
(LN×1)

, ζ̃ ∼MVN(0, H−1

Ψ̃N
), (5.11)

where W is a design matrix containing the elements in wn, ∀n; b̃ is the vector of free
parameters in B̃; and ΨN is a LN × LN covariance matrix. For instance, if ζ̃n are
assumed to be independent across individuals, then H−1

Ψ̃N
would be a block-diagonal

matrix given by

H−1

Ψ̃N
=


H−1

Ψ̃
0L×L · · · 0L×L

0L×L H−1

Ψ̃

. . . ...
... . . . . . . 0L×L

0L×L · · · 0L×L H−1

Ψ̃

 .

For the measurement equation, we get

I
(RN×1)

= α
(RN×1)

+ Z∗
(RN×G)

λ
(G×1)

+ ε
(RN×1)

, ε ∼MVN(0, H−1
ΘN

), (5.12)

where Z∗ is a specification matrix formed by appropriately using the elements in z∗n, ∀n;
λ is the vector of free factor loadings in Λ; and H−1

ΘN
is a LN × LN covariance matrix.

For instance, if εn is assumed to be independent across individuals, then H−1
ΘN

would be

6Note that in equations ?? and ??, the unknown regression coefficients are written as matrices. This
corresponds to the standard SEM notation.



Chapter 5. Generalization of an MCMC method for Bayesian estimation of HCMs 140

a block-diagonal matrix given by

H−1
ΘN

=


H−1

Θ 0R×R · · · 0R×R

0R×R H−1
Θ

. . . ...
... . . . . . . 0R×R

0R×R · · · 0R×R H−1
Θ

 .

If prior beliefs for b and λ are described by p(b) ∼MVN(b̌, V̌b) and p(λ) ∼MVN(λ̌, V̌λ)

respectively, then it can verified that, conditional on the other parameters of the model,
the posteriors of b and λ are multivariate normal:

π(b|Z∗, θ, b, λ, y, I) ∼ MVN(b̄, V̄b) (5.13)

π(Λ|Z∗, θ, b, y, I) ∼ MVN(λ̄, V̄λ), (5.14)

where

V̄b = (V̌ −1
b +W ′HΨ̃N

W )−1, b̄ = V̄b(V̌
−1
b +W ′HΨ̃N

Z∗) (5.15)

V̄λ = (V̌ −1
λ + Z∗′HΘN

Z∗)−1, λ̄ = V̄λ(V̌
−1
λ + Z∗′HΘN

I). (5.16)

The conditional posterior for a general covariance matrix, either for H−1

Ψ̃N
or H−1

ΘN
, does

not have an easily recognized form. However, as for any linear model with general
covariance matrix, it is possible to derive appropriate posterior simulators for particular
covariance structures. For instance, if the error terms are assumed to be i.i.d., then
the resulting block-diagonal structure, combined with Wishart prior beliefs p(HΨ̃) ∼
W (ν̌Ψ̃, ȞΨ̃), and p(HΘ) ∼ W (ν̌Θ, ȞΘ) allow us to obtain

π(HΨ̃) ∼ W (ν̄Ψ̃, H̄Ψ̃) (5.17)

π(HΘ) ∼ W (ν̄Θ, H̄Θ), (5.18)

where

ν̄Ψ̃ = ν̌Ψ̃ +N, H̄−1

Ψ̃
= Ȟ−1

Ψ̃
+

N∑
n=1

ζ̃nζ̃
′
n (5.19)

ν̄Θ = ν̌Θ +N, H̄−1
Θ = Ȟ−1

Θ +
N∑
n=1

εnε
′
n. (5.20)
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5.2.2 Conditional distributions of the discrete choice model

The HCM Gibbs sampler is completed by determining the posterior simulator for the
discrete choice model, which is a particular case of structural equation modeling. Note
that the vector of conditional indirect utility functions is an unobservable dependent
variable. As discussed previously, having a latent dependent variable does not allow us
to consider the estimation problem as a classical regression problem. However, once again
the use of data augmentation allows us to treat equation ?? as a standard regression.
Note that the analytical form of the choice model depends on the assumptions regarding
the distribution of the random term νn defined in equation ??. In fact, as I show below,
the use of data augmentation is straightforward only when working with a multinomial
probit model.7

Just as in the case of the MIMIC model, the measurement equation provides identifi-
cation of the latent variable in the structural equation. However, because the choice
indicator depends on a discrete maximization, in discrete choice models only utility dif-
ferences can be identified. Hence, we work with utility differences with respect to an
arbitrary base alternative.8 Let ∆1(·)jn = (·)jn − (·)1n be a matrix difference operator.
For example, ∆1Un takes each element of Un and subtracts the base element U1n such
that

∆1Un
(J−1×1)

= ∆1


U1n

U2n

...
UJn

 =

 U2n − U1n

...
UJn − U1n

 .

If we rewrite equation ?? in stacked form and consider the regression coefficients in vector
form, we get a regression expression with an unobserved dependent variable, unobserved
explanatory variables and interactions between the observed and unobserved attributes:

∆1U = ∆1Xβ + ∆1W
∗(X,Z∗)%+ ∆1Z

∗γ + ∆1PTξ + ∆1ν, ∆1ν ∼MVN(0,ΣN),

∆1U = X∆θ + ∆1PTξ + ∆1ν (5.21)

where θ′ = (β′, %′, γ′) is the vector of regression coefficients of the utility function;
X∆ is an extended attribute matrix built by appropriately stacking the matrices ∆1X,

7We can derive a probit kernel if we make the assumption that the error terms νn are i.i.d. multi-
variate normal, i.e. νn ∼MVN(0,Σ),∀n.

8Without loss of generality we take the first alternative as base.
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∆1W
∗(X,Z∗) and ∆1Z

∗; and where

ΣN
((J−1)N×(J−1)N)

= ∆1


Σ 0J×J · · · 0J×J

0J×J Σ
. . . ...

... . . . . . . 0J×J
0J×J · · · 0J×J Σ

∆′1.

We get a standard discrete choice model in the case without unobserved attributes.
By definition an HCM considers the presence of the endogenous set of latent variables.
However, in the previous subsection we developed a simulator for the latent variable Z∗.
Therefore, if we take the unconditional observations of the latent attributes, the terms Z∗

and W ∗(X,Z∗) simply enter equation ?? as standard observable exogenous attributes.
In addition, given PTξ, if we simulate observations for the latent utility function then
equation ?? transforms into a linear regression model with a block-diagonal covariance
matrix. In the case of a probit kernel, the properties of the normal distribution make
it straightforward to exploit data augmentation techniques for performing simulations
for the latent utility function, basically because the utility function follows a normal
distribution. However we need to describe the conditional distribution of the utility
function taking into account the choice indicators yn. Since

yn =

{
1 if max∆1Uin ≤ 0

i if ∆1Uin > max{0,∆1U−in}
, (5.22)

where U−in represents the set of all utility functions except Uin, then conditional on yn,
∆1Un follows a truncated multivariate normal (TMVN) distribution:

π(∆1Un|Z∗, θ, T, ξ,Σ∆, yn) ∼ TMVN<|yn (X∆θ + ∆1PTξ,Σ∆),∀n., (5.23)

where Σ∆ = ∆1Σ∆′1 corresponds to the (J − 1× J − 1) covariance matrix of the utility-
difference error term ∆1νn ∼MVN(0,Σ∆); and where the truncation region < is defined
by the inequalities in the measurement equation ??.

Although data augmentation transforms the estimation problem of the discrete choice
kernel into a Bayesian regression, simulations required for Σ∆ must address some identifi-
cation issues. Because we are working with the equation that considers utility differences,
using the information contained in the covariance matrix of the utility-difference model
Σ∆ it is not possible to identify the J(J − 1) elements in the original covariance matrix
Σ. Standard practice is to set the scale of the model by fixing the first diagonal element
of Σ∆ such that σ2

∆,11 ≡ V (∆1ν1n) = V (ν2n − ν1n) = 1. Following ?, it is possible
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to generate Wishart draws given a diagonal element if we assume the Wishart prior
p(Σ−1

∆ ) ∼ W (ν̌Σ∆
, Σ̌−1

∆ ) |σ2
∆,11=1 such that

π(Σ−1
∆ ) ∼ W (ν̄Σ∆

, Σ̄−1
∆ ) |σ2

∆,11=1, (5.24)

where

ν̄Σ∆
= ν̌Σ∆

+N, Σ̄∆ = Σ̌∆ +
N∑
n=1

∆1νnν
′
n∆′1. (5.25)

Finally, we take p(θ) ∼MVN(θ̌, V̌θ) as prior belief, and the regression coefficients of the
discrete choice kernel can be sampled from the following posterior conditional distribu-
tion:

π(θ|Z∗,∆1Un, T, ξ,Σ∆, yn) ∼MVN(θ̄, V̄θ), (5.26)

where

V̄θ = (V̌ −1
θ +X ′∆Σ∆

−1X∆)−1, θ̄ = V̄θ(V̌
−1
θ +X∆

′Σ∆
−1(∆1U − PTξ)). (5.27)

In the literature, the usual way to incorporate flexible error structures into a discrete
choice model is by assuming a mixed logit (MMNL) model. However, when considering
an MMNL kernel we no longer have the advantageous properties that make implementing
the probit-kernel HCM Gibbs sampler straightforward. Effectively, in the case of a
MMNL kernel there is no closed form full conditional distribution for Ũ , and hence it is
not possible to augment the data. Thus, MMNL Bayesian estimation does not allow us to
use an ordinary regression for θ and, as I will show, the use of Metropolis-Hastings (MH)
methods is needed. However, the Gibbs sampler for the MIMIC portion of the HCM is
still valid, and hence the estimation problem reduces to an MH-within a Gibbs sampler.
This MH-within-Gibbs algorithm is simpler to derive than it may sound, because the
Bayesian procedure for a standard MMNL – without latent explanatory variables –
described by ? can simply be plugged into the HCM Gibbs sampler for the MIMIC
model.

I now describe the MH-within-Gibbs algorithm for the multinomial logit (MNL) kernel.
The MNL model is a particular case of the mixed logit model where the taste parameters
are fixed to the population means. In the MNL case, since there is no closed form
full conditional distribution for θ, we cannot implement a Gibbs sampler with data
augmentation for the utility function. However, we can use an asymptotic approximation
to the posterior (?) that will be used for deriving an MH algorithm for θ:

π(θ|EC, b,Λ, yn, In) ∝ |H|
1
2 exp

(
1

2
(θ − θ̂ML)′H(θ − θ̂ML)

)
, (5.28)



Chapter 5. Generalization of an MCMC method for Bayesian estimation of HCMs 144

with θ̂ML being the maximum likelihood solution for θ, i.e. the value θ̂ML(y) that
maximizes the likelihood function `(y; θ) once y is observed, and with H being the
asymptotic variance obtained from the expected sample information matrix (⊗ denotes
the Kronecker product):

H = −E
[
∂2 ln `

∂θ∂θ′

]
= −

N∑
n=1

(diag(Pn)− PnP ′n)⊗ X̃nX̃
′
n, (5.29)

which is the Hessian matrix of the observed MNL log-likelihood ln ` =
∑N

n=1 lnPyn , where
Pn = (P1n, . . . , PJnn), with Pin being the standard MNL form of the choice probability
of alternative i for individual n:

Pin =
eX̃inθn

Jn∑
j=1

eX̃jnθn

. (5.30)

Thus, a candidate θcand ∈ Θ is drawn from the transition probability q(θcand|θcurr) of
generating candidate θcand given θcurr ∈ Θ, such that θcurr ∼ p(θ, y). The candidate
realization θcand is then compared to the current θcurr ∈ Θ through the acceptance ratio:

α = min

{
1,
p(y|θcand)p(θcand)
p(y|θcurr)p(θcurr)

· q(θ
cand|θcurr)

q(θcurr|θcand)

}
.

Starting with an arbitrary value θ(0), in the MH algorithm at the gth iteration the
candidate is accepted as the new θ(g) = θcand with probability α, while the old one is
preserved θ(g) = θcurr with probability 1 − α. In a random-walk Metropolis chain, the
candidate realization is defined as θcand = θcurr + ε, where ε ∼ N(0, s2H−1) and s2 is
the precision. The candidate generating process is a Metropolis independence chain if
θcand ∼ MSt(υ, θ̂ML, s

2H−1), i.e. θcand is drawn from a multivariate t distribution with
mean θ̂ML, dispersion s2H−1, and υ degrees of freedom.

5.2.3 Bayesian estimates of the HCM

Under fairly mild conditions (?) and for a sufficiently large number of draws, the Gibbs
sampler sequence of random draws forms an irreducible and ergodic Markov chain con-
verging at a exponential rate to the joint posterior distribution. In practice, the Bayesian
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estimates are calculated taking the sample means of the Gibbs sampler draws, as in

θ̂ = G−1

G∑
g=1

θ(g), ˆ̃B = G−1

G∑
g=1

B̃(g), α̂ = G−1

G∑
g=1

α(g) (5.31)

Λ̂ = G−1

G∑
g=1

Λ(g), ˆ̃Ψ = G−1

G∑
g=1

Ψ̃(g), Ω̂ = G−1

G∑
g=1

Ω̃(g).

The mean of the Gibbs sampler draws – the Bayesian estimates – are consistent esti-
mators of the corresponding posterior means (?). Even though it is complex to derive
analytic forms for the covariance matrices of the parameters, consistent estimates of these
matrices can be obtained from the sample covariance matrices implied by the Gibbs sam-
pler. In other words, the standard deviations used for the calculation of t-statistics are
simply the standard deviations of the artificial samples generated by the Gibbs sampler:

V̂(θ|y, I) = (G − 1)−1

G∑
g=1

(θ(g) − θ̂)(θ(g) − θ̂)′ (5.32)

V̂(B̃|y, I) = (G − 1)−1

G∑
g=1

(B̃(g) − ˆ̃B)(B̃(g) − ˆ̃B)′

V̂(α|y, I) = (G − 1)−1

G∑
g=1

(α(g) − α̂)(α(g) − α̂)′

V̂(Λ|y, I) = (G − 1)−1

G∑
g=1

(Λ(g) − Λ̂)(Λ(g) − Λ̂)′

V̂(Ψ̃|y, I) = (G − 1)−1

G∑
g=1

(Ψ̃(g) − ˆ̃Ψ)(Ψ̃(g) − ˆ̃Ψ)′

V̂(Ω|y, I) = (G − 1)−1

G∑
g=1

(Ω(g) − Ω̂)(Ω(g) − Ω̂)′

5.3 Pre-posterior analysis

To test the Bayesian estimation of HCMs, in this section I carry out a pre-posterior anal-
ysis based on simulated data. To construct the choice situation, we take the example
first outlined by ?. In line with the development of discrete choice models, where travel
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behavior modeling has played a major role, this example considers a tri-modal choice.9

Although for the sake of simplicity we study here a specific travel mode choice situa-
tion, the equations and analysis can be easily generalized. Consider three travel modes
characterized not only by the standard attributes travel time and travel cost, but also
by two alternative-specific qualitative attributes: comfort and convenience. Qualitative
attributes, as opposed to quantitative attributes (such as travel time), do not have a
natural order or an overt measurement scale. As discussed in Chapter 2, qualitative
attributes are often introduced as categorical variables on a nominal scale. The nominal
scale may be adequate if the qualitative attribute is discrete in nature. But if there is
some continuity in the evaluation of quality, the nominal scale becomes a proxy variable
that measures the true qualitative attribute with error. If we omit a relevant qualita-
tive attribute, it is clear that the estimators will be biased. Including the qualitative
attribute using a proxy variable does not offer much of a solution, because endogeneity
is still a problem. The HCM system of equations accounts for the real nature of the
qualitative attributes, and avoids biased and inconsistent estimators.

In my example, each of the three modes of transportation is characterized by the observ-
able attributes travel time xi1n and travel cost xi2n.10 In addition, two alternative-specific
unobservable attributes are considered: comfort z∗in1 and convenience z∗in2, as perceived
by each individual n for mode i. Under these assumptions and without considering any
interaction nor any additional error component, the utility function of individual n (from
equation ) corresponds to the following parametric linear-in-parameter specification:

 U1n

U2n

U3n

 =

 0 0 x11n x12n

1 0 x21n x22n

0 1 x31n x32n




ASC2

ASC3

β1

β2

+

 Γ1 Γ2 0 0 0 0
0 0 Γ3 Γ4 0 0
0 0 0 0 Γ5 Γ6



z∗11n

z∗12n

z∗21n

z∗22n

z∗31n

z∗32n

+

 ν1n
ν2n
ν3n

 .
(5.33)

Travel time and travel cost of each alternative are represented through x1̇n and x2̇n, re-
spectively, with generic marginal utilities β1n and β2n. Instead of introducing individual
attitudes (which have mostly motivated the study of HCMs, as discussed in Chapter
2), when modeling qualitative attributes we can consider alternative-specific latent vari-
ables. For instance, the unobservable-to-the-modeler comfort experienced by a particular
individual for one alternative is not necessarily the same as the perceived comfort for a

9Since we are working with simulated data, the modal choice situation was chosen for no other than
an illustrative purpose.

10The original example considered only one attribute. In this chapter we include a second attribute
because we want to test how well parameter ratios are recovered.
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competing alternative. Thus, each qualitative attribute (comfort and convenience) is op-
erationalized in 3 latent variables, leading to the 6 variables z∗11n, z

∗
12n, z

∗
21nz

∗
22n, z

∗
31n, z

∗
32n.

For example, z∗11n is comfort of alternative 1, z∗31n represents comfort of alternative 3, and
z∗22n is convenience of alternative 2. Conversely, attitudes usually are individual-specific
latent variables. In this example we considered alternative-specific taste parameters for
the latent variables (Γ), but generic marginal utilities are also possible for qualitative
attributes.

Equation ?? represents the standard structural equation of a discrete choice model.
Depending on the assumptions made for the distribution of the random error term,
different HCM kernels can be derived (see Ben-Akiva and Lerman, 1985.) I assume
ν(·n) ∼ Gumbel(0, 1) leading to a normalized MNL kernel. Recognizing the latent nature
of the qualitative attributes we need to introduce structural equation modeling (SEM),
such as a multiple indicators multiple causes (MIMIC) model. Note that most recent ap-
plications of HCMs have considered the introduction of attitudes as the latent attribute
(see for example Chapter 4, where I introduced environmental concerns as an attitu-
dinal variable in a vehicle choice context.) When the latent attributes are attitudes,
natural explanatory variables in the structural equation are socioeconomic variables.
However, socio-demographic variables are not always causal, which is especially the case
in latent constructs representing qualitative attributes. For instance, level of service
variables such as frequencies and parking availability may serve as explanatory variables
of the qualitative convenience of travel modes. In addition, measurable attributes of
the alternatives (or proxies of the alternative attributes) as well as perceived levels of
service serve as indicators of the qualitative attribute. For example, perceived levels
of relaxation and ease can be taken as indicators for convenience. In our virtual case
study, we consider structural equations for the qualitative attributes with two explana-
tory variables (individual-specific w1n and w2n in this example, but these variables can
be alternative-specific as well), and with generic effects across alternatives 2 and 3 (in
the parameters b·), as in

z∗11n

z∗12n

z∗21n

z∗22n

z∗31n

z∗32n


=



b1 0

b2 b3

b4 b5

b6 b7

b4 b5

b6 b7


[
w1n

w2n

]
+



ζ11n

ζ12n

ζ21n

ζ22n

ζ31n

ζ32n


, (5.34)

where we assume that the error terms are ζ·n ∼ N(0, 1). Since the measurement scale of
the qualitative attributes is unknown, by setting a unit variance for each latent variable
we normalize the model.
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Since the latent variables are unobserved, we need to introduce indicator variables. For
instance, let Ii1n, Ii2n and Ii3n denote relaxation, reliability and ease of mode i as per-
ceived by individual n, respectively. We assume that both relaxation and reliability serve
to measure comfort, whereas the indicator variables reliability and ease provide identi-
fication for convenience. Making the effect to be generic across modes 2 and 3, we get:



I11n

I12n

I13n

I21n

I22n

I23n

I31n

I32n

I33n


=



z∗11n z∗12n 0 0 0 0 0 0

0 0 z∗11n 0 0 0 0 0

0 0 0 z∗12n 0 0 0 0

0 0 0 0 z∗21n z∗22n 0 0

0 0 0 0 0 0 z∗21n 0

0 0 0 0 0 0 0 z∗22n

0 0 0 0 z∗31n z∗32n 0 0

0 0 0 0 0 0 z∗31n 0

0 0 0 0 0 0 0 z∗32n





λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8


+



ε11n

ε12n

ε13n

ε21n

ε22n

ε23n

ε31n

ε32n

ε33n


,

(5.35)
where ε·n ∼ N(0, ω2

· ). The variances ω2
· do not need to be the same. Even though

a heteroscedastic general covariance matrix is possible for the measurement equations,
because of identification restrictions the measurement equations cannot be correlated. If
the indicator variables are continuous, no further identification restrictions are necessary.

The HCM of travel mode choice is given by the simultaneous system of equations ??, ??,
and ??. This system simultaneously permits identification of the qualitative attributes,
of the effects of these on choice through the utility function effect, as well as identification
of the parameters of the structural equation. The latter is particularly relevant for policy
analysis, because once the model is estimated there is no need for the measurement
equation and effects on choice produced by changes in the qualitative attributes come
only via the structural relationship. In Figure ?? we sketch the path diagram of the
HCM system of equations representing the virtual travel mode choice that we analyze
in the present chapter.

I discuss now the parametric assumptions taken for implementation of the Monte Carlo
experiment. I consider a fixed value for θ. The parameters that define θ were calibrated
to assure both that the choice process is neither completely deterministic nor completely
random and that the choices are relatively balanced. The population was set to N =

100, 000 individuals. The attributes were generated as independent random terms with
continuous uniform distributions x11

iid∼ U(0, 1), x21
iid∼ U(0, 1), x12

iid∼ U(0, 1), x22
iid∼

U(0, 1), x31
iid∼ U(0, 3), and x32

iid∼ U(0, 1). Without loss of generality the explanatory
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variables for the latent variables were assumed following a discrete Bernoulli distribution,
w1, w2

iid∼ Bernoulli(p = 0.5). Error terms of both the structural and measurement
equations of the latent variables were drawn from standard normal distributions, ζjk

iid∼
N(0, 1), j ∈ {1, 2, 3}, k ∈ {1, 2}. εjk

iid∼ N(0, 1), j ∈ {1, 2, 3}, k ∈ {1, 2, 3}. Finally, the
error term for the utility function was drawn according to νi

iid∼ Gumbel(0, 1), i ∈ {1, 2, 3}.
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Figure 5.1: Path diagram of the virtual travel mode choice case

5.3.1 Classical and Bayesian estimation of an MNL kernel

In this section I perform a Monte Carlo study for studying point estimation of θ for both
the frequentist11 and Bayesian12 estimators. For estimating the model, both frequentist
and Bayesian estimation use simulation. In the frequentist case, the estimator θ̂ML is

11Frequentist estimation of HCMs is based on full information simulated maximum likelihood. See
Chapter 2 for a discussion of this method.

12The Gibbs sampler derived in the previous section of this chapter.
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given by the simulated maximum likelihood solution which depends on the number of
repetitions of the simulator. For each iteration of the simulator, an average likelihood
is calculated. In the case of the Bayesian simulator, each iteration defines a draw from
the posterior distribution. Then, the Bayesian point estimator θ̂ is obtained from the
posterior means. In both cases, as the number of repetitions increases we get a better
approximation of θ. However, increasing the number of repetitions is highly resource
consuming. In practice, we use a given number of repetitions that assures a certain
level of parameter accuracy. Another critical factor in point estimation is sample size.
Recall that the properties of frequentist estimators are asymptotic, in the sense that
we know that frequentist estimators work in large samples, but it is not clear whether
frequentist estimators will perform well for small samples. Considering both the number
of repetitions and the sample size as experimental variables, I construct the simulation
plan for a Monte Carlo study defined in Table ?? below.

Bayesian Frequentist
Sample Size Repetitions Sample Size Repetitions

150 500 150 25
150 2500 150 100
150 10000 150 250
500 500 500 25
500 2500 500 100
500 10000 500 250

Table 5.1: Simulation Plan

For each sample size (N = 150, 500) we take 50 random samples from the simulated
population, and then we estimate the model with each method, varying the number of
repetitions used for the respective simulators. The number of FISML repetitions is lower
because we seek to get a point estimate, but for Bayesian estimation we need a higher
number because we are mapping a whole distribution. Note that the simulation results
correspond to the average of the sampling process.

For assessing the presence of eventual bias I compare the true parameter recovery, specif-
ically through a t-stat against the true δ0, as well as a summary measure of distance
between the point estimates and the true δ0. Effectively, as a measure of general accu-
racy for each simulation case I report the Euclidean distance between both δ̂ and δ, as
in

D(δ̂, δ0) =

√
(δ̂ − δ0) · (δ̂ − δ0) =

√√√√ P∑
p=1

(
δ̂p − δ0p

)2

, (5.36)
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which provides a scalar measurement of the closeness between the average estimates and
the true parameters used to generate the data.

The HCM point estimates using both estimation methods are presented in Tables ??-
tab5-5. A first important issue is that frequentist estimation with a relatively low number
of repetitions (25 Halton draws) failed to converge for some of the samples in the repeated
sampling process. Specifically, frequentist estimation with 25 Halton draws failed to
converge in 33% of the samples for N=150, and in 20% of the samples for N=500. It
is important to recall that the since we have 6 latent variables (2 qualitative attributes
that are specific for each of the 3 alternatives), the Halton draws are being used to
approximate a 6-dimensional integral. The calculated average results we provide consider
only the samples where convergence was achieved. No convergence problems for the
maximum likelihood simulator were observed for the higher numbers of Halton draws
considered.

We are interested, first, in the accuracy of the estimates in the sense of the capacity
of the model to reproduce the true parameters. To analyze how accurate the estimates
are we look at the t-statistic under the null hypothesis H0 : δ̂i = δ0i. These individual
statistics are reported as t-target in the tables. In the case of Bayesian estimation,
all of the estimated parameters reproduce the true values at the 95% confidence level,
independently of both the sample size and number of Bayesian repetitions. Frequentist
estimates recover the true parameters at the 95% level when the number of Halton
draws is high enough. However, when the number of repetitions is too low, problems are
detected. In fact, for the larger sample size (N=500), using just 25 Halton draws yields
serious problems in reproducing the true values of the measurement parameters for the
qualitative attributes. As discussed above, to facilitate comparing the accuracy of the

Figure 5.2: Accuracy of the frequentist and Bayesian estimates
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δ 500 Bayes repetitions 2500 Bayes repetitions 10000 Bayes repetitions
est t-stat t-target est t-stat t-target est t-stat t-target

ASC2 -0.6 -0.422 -1.24 0.52 -0.598 -1.71 0.01 -0.554 -1.63 0.14
ASC3 0.8 0.768 1.60 -0.07 0.914 1.90 0.24 0.755 1.64 -0.10
β1 -1.2 -1.242 -4.78 -0.16 -1.113 -4.45 0.35 -1.063 -4.43 0.57
β2 -0.8 -0.774 -3.37 0.11 -0.832 -3.47 -0.13 -0.805 -3.35 -0.02
Γ1 -0.4 -0.396 -1.58 0.02 -0.371 -1.48 0.12 -0.402 -1.68 -0.01
Γ2 0.5 0.503 2.19 0.01 0.482 2.19 -0.08 0.406 1.93 -0.45
Γ3 0.5 0.452 1.88 -0.2 0.546 2.10 0.18 0.449 1.80 -0.20
Γ4 -0.6 -0.468 -1.67 0.47 -0.562 -1.96 0.13 -0.563 -1.98 0.13
Γ5 0.5 0.543 2.17 0.17 0.459 1.91 -0.17 0.493 2.05 -0.03
Γ6 0.6 0.566 2.10 -0.13 0.493 1.76 -0.38 0.517 1.91 -0.31
b1 0.5 0.486 2.86 -0.08 0.525 3.09 0.15 0.592 3.29 0.51
b2 0.8 0.988 3.53 0.67 1.030 3.12 0.70 1.103 2.45 0.67
b3 1.5 1.772 5.06 0.78 1.744 4.15 0.58 1.742 4.58 0.64
b4 0.3 0.363 2.59 0.45 0.303 2.33 0.02 0.318 2.27 0.13
b5 1.8 1.852 9.75 0.27 1.750 9.72 -0.28 1.897 9.49 0.49
b6 0.5 0.551 4.24 0.39 0.540 4.15 0.31 0.515 3.96 0.12
b7 1.0 1.014 6.76 0.09 1.145 7.16 0.91 1.067 7.11 0.45
λ1 0.7 0.659 5.49 -0.34 0.611 5.09 -0.74 0.687 5.73 -0.11
λ2 0.5 0.459 5.10 -0.46 0.439 4.88 -0.68 0.392 4.36 -1.20
λ3 1.0 0.996 8.30 -0.03 0.991 9.01 -0.08 0.971 8.83 -0.26
λ4 0.7 0.612 6.80 -0.98 0.652 5.93 -0.44 0.586 5.33 -1.04
λ5 0.5 0.461 6.59 -0.56 0.482 6.03 -0.23 0.478 5.98 -0.28
λ6 0.8 0.757 9.46 -0.54 0.732 9.15 -0.85 0.763 8.48 -0.41
λ7 1.0 0.959 13.70 -0.59 1.025 12.81 0.31 0.968 12.10 -0.40
λ8 1.0 0.960 12.00 -0.50 0.925 11.56 -0.94 0.980 12.25 -0.25

Table 5.2: Bayesian point estimates, N=150
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δ 500 Bayes repetitions 2500 Bayes repetitions 10000 Bayes repetitions
est t-stat t-target est t-stat t-target est t-stat t-target

ASC2 -0.6 -0.585 -3.25 0.08 -0.512 -2.84 0.49 -0.546 -3.03 0.30
ASC3 0.8 0.819 3.28 0.08 0.769 3.20 -0.13 0.731 2.92 -0.28
β1 -1.2 -1.176 -8.40 0.17 -1.099 -8.45 0.78 -1.129 -8.68 0.55
β2 -0.8 -0.816 -6.28 -0.12 -0.799 -6.15 0.01 -0.720 -6.00 0.67
Γ1 -0.4 -0.376 -2.89 0.18 -0.271 -2.08 0.99 -0.363 -2.79 0.28
Γ2 0.5 0.465 3.88 -0.29 0.371 3.09 -1.08 0.398 3.32 -0.85
Γ3 0.5 0.491 3.51 -0.06 0.405 3.12 -0.73 0.465 3.58 -0.27
Γ4 -0.6 -0.542 -3.61 0.39 -0.533 -3.55 0.45 -0.545 -3.63 0.37
Γ5 0.5 0.472 3.63 -0.22 0.429 3.30 -0.55 0.397 3.31 -0.86
Γ6 0.6 0.560 4.00 -0.29 0.494 3.53 -0.76 0.612 4.37 0.09
b1 0.5 0.600 6.67 1.11 0.524 5.82 0.27 0.517 5.74 0.19
b2 0.8 0.870 5.44 0.44 0.914 6.09 0.76 0.959 5.99 0.99
b3 1.5 1.714 8.57 1.07 1.644 8.22 0.72 1.717 7.80 0.99
b4 0.3 0.328 4.69 0.40 0.320 4.57 0.29 0.306 4.37 0.09
b5 1.8 1.851 16.83 0.46 1.869 16.99 0.63 1.867 16.97 0.61
b6 0.5 0.510 7.29 0.14 0.534 7.63 0.49 0.502 7.17 0.03
b7 1.0 1.083 12.03 0.92 1.062 13.28 0.78 1.072 13.40 0.90
λ1 0.7 0.647 9.24 -0.76 0.669 9.56 -0.44 0.675 9.64 -0.36
λ2 0.5 0.434 8.68 -1.32 0.439 8.78 -1.22 0.432 8.64 -1.36
λ3 1.0 0.964 16.07 -0.60 0.973 16.22 -0.45 0.990 16.50 -0.17
λ4 0.7 0.641 10.68 -0.98 0.648 10.80 -0.87 0.613 10.22 -1.45
λ5 0.5 0.434 10.85 -1.65 0.457 11.43 -1.08 0.458 11.45 -1.05
λ6 0.8 0.808 16.16 0.16 0.778 15.56 -0.44 0.779 15.58 -0.42
λ7 1.0 0.975 19.50 -0.50 0.972 24.30 -0.70 0.971 24.28 -0.73
λ8 1.0 0.963 24.08 -0.93 0.966 24.15 -0.85 0.984 24.6 -0.40

Table 5.3: Bayesian point estimates, N=500
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δ 25 Halton repetitions 100 Halton repetitions 250 Halton repetitions
est t-stat t-target est t-stat t-target est t-stat t-target

ASC2 -0.6 -0.812 -1.98 -0.52 -0.853 -1.94 -0.58 -0.831 -1.89 -0.53
ASC3 0.8 1.246 2.31 0.83 0.954 1.59 0.26 0.970 1.70 0.3
β1 -1.2 -1.188 -3.96 0.04 -1.291 -3.91 -0.28 -1.273 -3.86 -0.22
β2 -0.8 -1.049 -3.50 -0.83 -1.029 -3.32 -0.74 -1.024 -3.3 -0.72
Γ1 -0.4 -0.625 -1.89 -0.68 -0.596 -1.66 -0.54 -0.491 -1.44 -0.27
Γ2 0.5 0.329 1.32 -0.68 0.426 1.58 -0.27 0.428 1.48 -0.25
Γ3 0.5 0.255 0.98 -0.94 0.490 1.53 -0.03 0.495 1.55 -0.02
Γ4 -0.6 -0.401 -1.11 0.55 -0.527 -1.35 0.19 -0.584 -1.46 0.04
Γ5 0.5 0.31 1.29 -0.79 0.460 1.59 -0.14 0.450 1.55 -0.17
Γ6 0.6 0.396 1.24 -0.64 0.726 1.96 0.34 0.687 1.91 0.24
b1 0.5 0.521 3.26 0.13 0.527 3.10 0.16 0.532 2.96 0.18
b2 0.8 1.04 3.85 0.89 1.139 2.42 0.72 0.970 2.94 0.52
b3 1.5 1.804 5.15 0.87 2.091 2.95 0.83 1.784 3.64 0.58
b4 0.3 0.405 3.12 0.81 0.332 2.55 0.25 0.310 2.38 0.08
b5 1.8 2.283 8.15 1.73 1.960 9.33 0.76 1.878 8.94 0.37
b6 0.5 0.513 4.66 0.12 0.527 4.39 0.23 0.490 3.77 -0.08
b7 1.0 1.076 8.28 0.58 0.974 6.96 -0.19 0.999 6.66 -0.01
λ1 0.7 0.606 5.05 -0.78 0.620 4.77 -0.62 0.658 5.06 -0.32
λ2 0.5 0.431 5.39 -0.86 0.434 4.34 -0.66 0.448 4.48 -0.52
λ3 1.0 0.906 8.24 -0.85 0.943 8.57 -0.52 0.939 7.83 -0.51
λ4 0.7 0.599 5.99 -1.01 0.581 5.28 -1.08 0.633 5.28 -0.56
λ5 0.5 0.437 7.28 -1.05 0.487 6.96 -0.19 0.492 7.03 -0.11
λ6 0.8 0.702 10.03 -1.40 0.768 9.60 -0.4 0.785 9.81 -0.19
λ7 1.0 0.790 11.29 -3 0.916 11.45 -1.05 0.951 11.89 -0.61
λ8 1.0 0.920 11.50 -1 0.986 12.33 -0.18 0.989 12.36 -0.14

Table 5.4: Frequentist point estimates, N=150
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δ 25 Halton repetitions 100 Halton repetitions 250 Halton repetitions
est t-stat t-target est t-stat t-target est t-stat t-target

ASC2 -0.6 -0.519 -2.73 0.43 -0.561 -2.81 0.20 -0.575 -2.88 0.13
ASC3 0.8 0.782 3.01 -0.07 0.794 3.05 -0.02 0.843 3.24 0.17
β1 -1.2 -1.121 -8.01 0.56 -1.168 -7.79 0.21 -1.184 -7.89 0.11
β2 -0.8 -0.726 -5.58 0.57 -0.743 -5.31 0.41 -0.758 -5.41 0.30
Γ1 -0.4 -0.283 -2.02 0.84 -0.364 -2.43 0.24 -0.400 -2.67 0.00
Γ2 0.5 0.387 3.23 -0.94 0.448 3.45 -0.40 0.485 3.46 -0.11
Γ3 0.5 0.447 3.19 -0.38 0.504 3.36 0.03 0.522 3.48 0.15
Γ4 -0.6 -0.600 -3.53 0.00 -0.710 -3.74 -0.58 -0.724 -3.81 -0.65
Γ5 0.5 0.410 3.15 -0.69 0.466 3.33 -0.24 0.475 3.39 -0.18
Γ6 0.6 0.535 3.57 -0.43 0.562 3.51 -0.24 0.552 3.45 -0.30
b1 0.5 0.535 6.69 0.44 0.503 6.29 0.04 0.490 5.44 -0.11
b2 0.8 0.987 6.17 1.17 0.858 6.13 0.41 0.815 5.82 0.11
b3 1.5 2.176 8.70 2.70 1.749 9.72 1.38 1.677 9.32 0.98
b4 0.3 0.315 5.25 0.25 0.319 5.32 0.32 0.308 4.40 0.11
b5 1.8 2.074 20.74 2.74 1.853 18.53 0.53 1.822 18.22 0.22
b6 0.5 0.557 11.14 1.14 0.514 8.57 0.23 0.521 8.68 0.35
b7 1.0 1.117 15.96 1.67 1.026 12.83 0.33 0.999 12.49 -0.01
λ1 0.7 0.671 11.18 -0.48 0.715 11.92 0.25 0.724 12.07 0.40
λ2 0.5 0.364 9.10 -3.40 0.441 11.03 -1.48 0.463 9.26 -0.74
λ3 1.0 0.880 17.60 -2.40 0.963 16.05 -0.62 0.946 15.77 -0.90
λ4 0.7 0.519 10.38 -3.62 0.632 12.64 -1.36 0.661 13.22 -0.78
λ5 0.5 0.428 14.27 -2.40 0.467 11.68 -0.82 0.486 12.15 -0.35
λ6 0.8 0.726 18.15 -1.85 0.794 19.85 -0.15 0.784 19.60 -0.40
λ7 1.0 0.857 21.43 -3.58 0.956 23.90 -1.10 0.972 24.30 -0.70
λ8 1.0 0.881 22.03 -2.98 0.971 24.28 -0.73 0.984 24.60 -0.40

Table 5.5: Frequentist point estimates, N=500



Chapter 5. Generalization of an MCMC method for Bayesian estimation of HCMs 156

estimates we analyze the Euclidean distance D(δ̂, δ) as in equation (13). In Figure ??
we present the calculated distance D(δ̂B, δ0) for the Bayesian estimates (graph on the
right), as well as the distance D(δ̂ML, δ0) for the FISML estimates (graph on the left.)

For both estimation cases, the overall distance between the estimates and true values is
smaller when the sample size is larger (reflecting consistency of the estimators.) Note
that in the case of classical estimation, the distance D(δ̂ML, δ0) between the estimate δ̂ML

and the true δ0 is decreasing with the number of repetitions. For N=500 it is clear that
increasing the number of repetitions has a decreasing marginal effect on the accuracy of
the estimator. Effectively, for N=500 we can see a dramatic effect on D when passing
from 25 to 100 Halton draws for simulation of the likelihood function, but the gains
when using 250 Halton draws are not striking.

For the lower sample size (N=150) it is not clear at what level of repetitions we will
achieve a limiting point. (Even though the graph may suggest a constant effect on the
accuracy of the parameters, we expect that after a certain number of repetitions the
increase in accuracy will be marginal.) In the case of Bayesian estimation, even though
the distance D(δ̂B, δ0) presents a slight increase for a larger number of repetitions, D is
almost flat. Note that for N = 500, frequentist estimation with 100 Halton draws (which
marks a sort of limiting point for important accuracy gains in our experiment) offers an
accuracy level that is comparable with the one obtained with Bayesian estimation. With
250 Halton draws, frequentist accuracy outperforms Bayesian results. However, Bayesian
accuracy outperforms frequentist results for the smaller sample size, independently of
the number of frequentist repetitions being used. In fact, the Bayes estimates for the
smaller sample size perform quite well when compared to the larger sample size in terms
of the distance D(δ̂B, δ0).

Even though both estimation methods recover the true parameters well (with an ade-
quate number of frequentist repetitions), for small samples in the frequentist approach
the parameters associated with the latent variables as qualitative attributes in the utility
function are not statistically significant. At the 95% confidence level for the frequentist
results when N=150, we cannot reject the null hypothesis that the latent variables do
not affect choice, which is a result that evidently contradicts the assumptions of the
model. Note that for N=150 the Bayesian estimates are statistically significant for every
qualitative attribute, at least at the 90% confidence level (in fact for about half of the Γ’s
the estimates are significant at the 95% level.) The results of both estimation methods
allow us to reject the null hypothesis, as the sample size becomes larger (N=500.)
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Finally, we can examine efficiency and interval estimation results. In general, the stan-
dard errors obtained from averaging the precision of the Metropolis Hastings-within-
Gibbs sampling estimates for θ (the taste parameters of the utility function) are always
lower than those obtained in the case of FISML. In both cases, the standard errors are
relatively constant within different numbers of repetitions for each simulator but show
a precision increase for the larger sample size. Because of θ̂B having a higher precision
than θ̂ML, the resulting asymptotic Bayesian confidence intervals are tighter than those
obtained for the frequentist approach. For instance, in Figures 4 and 5 (in Appendix B)
we show the point estimates and confidence intervals at the 95% level, focusing on the
marginal utilities of the qualitative attributes (Γ).

We observe that the precision of the estimates is higher when the sample size is bigger, as
well as that the average Bayesian confidence intervals are tighter than their frequentist
counterparts. Because of the latter, when we pass to a 90% confidence level for the
smaller sample size, all Bayesian point estimates emerge as statistically significant, which
is not necessarily the case for the frequentist estimates (as discussed above.) Note
however that the higher precision in the Bayesian estimates of the marginal utilities is
somewhat compensated for by a lower precision in the rest of the parameters for N=500.
In general, for the larger sample size, the efficiency gains in the Bayesian approach are
marginal (representing about 0.2% of reduction in the standard errors.) However, this
compensation does not appear in the case of the smaller simple size; and for N=150 the
Bayesian standard errors are on average 10% lower.

5.4 Conclusions

In this chapter I have introduced how to use a general hybrid choice model for incorpo-
rating relevant qualitative attributes in the context of travel mode choice, which is the
most common discrete choice problem in travel behavior analysis.

In Chapter 3 I have studied and applied a full information maximum likelihood solution
for the estimation of HCMs. In this chapter I have described how to use this simulator in
a virtual travel mode choice situation, but I also have generalized a Bayesian Metropolis
Hastings-within-Gibbs sampler that is valid for an MNL kernel and, in the context of
repeated sampling, provides a solution that is equivalent to the maximum likelihood
estimator.
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Using a particular example of virtual travel mode choice, I presented the system of
equations that allows one to introduce qualitative attributes, as well as the equations and
methodological steps required for implementation of frequestist and Bayesian estimation.
Then, using a Monte Carlo experiment I have analyzed the results of the point estimators
for both estimation methods. In particular, I analyzed two sample sizes (small and large)
as well as the effects of the number of repetitions needed for the simulators.

In theory, when using a repeated sampling process, the Bayesian and frequentist esti-
mators are asymptotically equivalent. The results have shown that even though both
procedures give similar results for the larger sample size in terms of accuracy, statistical
significance, and efficiency, some specific problems are found for the frequentist approach
when the sample size is small. In particular, the frequentist marginal utilities of the qual-
itative attributes are not statistically significant. This is a problem because based on
the resulting t-statistics we cannot reject the null hypothesis that the qualitative at-
tributes have no effect on choice (even though in this virtual choice experiment we know
they do.) Additionally, the Bayesian confidence intervals are tighter than the frequentist
intervals for the smaller sample size. That the Bayesian estimator outperforms the clas-
sical estimator for a reduced sample size is a direct result of the properties of the latter
being asymptotic. On the one hand, properties of the maximum likelihood estimator
are only valid for large enough samples, because frequentist inference is based on infinite
hypothetical repeated experiments. On the other hand, the Bayesian point estimates
represent the optimal estimator summarizing the whole posterior distribution. The pos-
terior distribution corresponds to our beliefs about the unknown parameters after the
sample realization of the data, and in this sense, Bayesian inference works independently
of the size of the sample. Thus, the results are in line with statistical theory.
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Appendix A: Confidence Intervals

Figure 5.3: Frequentist confidence intervals for Γ1, Γ2, and Γ3
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Figure 5.4: Frequentist confidence intervals for Γ4, Γ5, and Γ6
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Figure 5.5: Bayesian confidence intervals for Γ1, Γ2, and Γ3
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Figure 5.6: Bayesian confidence intervals for Γ4, Γ5, and Γ6



Chapter 6

Consumer behavior toward IP
telephony access in Japan

Knowledge and awareness are key elements in the decision to adopt new
technologies, especially when these technologies are at an early stage of de-
velopment or their overall penetration in the market is low. In this chapter, I
analyze the role of knowledge, awareness and promptness to adopt new tech-
nologies as qualitative attributes in the choice of adopting IP telephony. IP
telephony allows telephone calls to be made through an Internet connection.
IP telephony requires consolidated broadband access to achieve sufficient
quality of service to compete with traditional telephony. Because of the dy-
namics of the Japanese telecom market, it is particularly interesting to study
the adoption of IP telephony in Japan. In this chapter I derive and apply a
hybrid choice model with a probit kernel with dichotomous effect indicator
variables to analyze consumer behavior toward IP telephony. The model al-
lows one to measure the effect of qualitative attributes related to knowledge
as well as the individual attitude toward the adoption of new technologies on
the choice probabilities of adopting IP telephony. The main findings of this
study suggest that consumers desire a quality of service of IP telephony that
will assure some features that in best effort IP telephony are not guaranteed.
In particular, according to the forecasts of the model, in order to increase
the penetration of IP telephony it is essential to provide access to emergency
calls. Additionally, the hybrid choice model yields the profile of those users
who can be labeled as early adopters.
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6.1 IP telephony and the Japanese telecom market

6.1.1 IP telephony

IP telephony (Internet Protocol telephony) or VoIP (voice over Internet Protocol) is a
relatively new technology that allows telephone calls to be made through an Internet
connection rather than through the public switched telephone network (PSTN). VoIP
can be accessed through traditional telecom service providers, as well as through web
telephony services such as Skype. In VoIP, voice data as well as other signals such as
facsimile are digitally encoded as packets of data and sent via the Internet (Figure ??)
at costs far below normal long-distance telephone charges. Whereas PSTN carries data
as a single packet over a dedicated circuit-switch connection, VoIP shares information
over separate paths through a packet-switched Internetwork following a TCP/IP model.
A VoIP phone-to-phone call typically requires converting the voice data from analog
to digital, and then compressing and dividing the digital signal for transmission over
the Internet after receiving the signal at an IP gateway; the process is reversed at the
receiving end. To avoid packet loss and for a reliable and high-quality service a sufficient
bandwidth is essential.

Internet

VoIP phone

VoIP phone

VoIP 
Gateway

Computer

PSTN

VoIP phone
adapter

Standard phone

Standard phone

Figure 6.1: VoIP diagram
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Note that VoIP is an emerging market, even though ? argue that “unlike some services
that have emerged out of the electronic revolution, VoIP does not involve a new good
per se, but rather a new way of providing an existing good at possibly lower cost and
in a possibly more convenient manner.” However, the development of services such as
mobile VoIP (boosted by the emergence of smartphones), VoIP micro-blogging, and
videoconferencing may open new markets for VoIP, changing the nature of personal
telecommunications. But VoIP market penetration faces some important challenges.
In particular, since VoIP packets are considerably latency-sensitive, quality of service
(QoS) has been criticized. QoS is related to the ability to guarantee in advance a
certain level of performance for data transmission in terms of avoiding packet delay
variation (jitter) and packet loss through latency and jitter bounds. Background noise,
interrupts, call echo, robotic sound, general delays, and even dropped calls are typical
problems of best effort VoIP, for which QoS depends on traffic load (i.e. the network
capacity is insufficient.) Whereas quality of experience (QoE) of best effort VoIP is
comparable to a cell phone call (or worse under high load conditions), customers of
QoS guaranteed VoIP cannot distinguish from Plain Old Telephone Service (POTS).
Even though conventional IP routers provide best effort service, taking advantage of
current broadband characteristics modern IP routers are able to provide guaranteed
QoS to specific data flows, including VoIP. In sum, VoIP can be perceived by consumers
as a real alternative to the traditional telephone service only when QoS is guaranteed,
and modern broadband networks are focusing on satisfying the requirements of QoS by
maximizing bandwidth and minimizing delays on voice data. Since VoIP is becoming
more and more popular, it is interesting to understand the consumers’ response to VoIP
services. In this chapter, I analyze choice of telephony access for Japanese consumers.

6.1.2 Overview of the Japanese telecom industry

In 1985 the Japanese telecommunications industry was deregulated1 and the Nippon
Telegraph and Telephone (NTT) corporation, a publicly traded company regulated by
the Law Concerning Nippon Telegraph and Telephone Corporation, replaced the govern-
ment monopoly. Since then, the incumbent NTT has faced a dynamic process of change
to competition, including the introduction of new carriers. However, NTT still domi-
nates the telecom market in Japan. In fact, acting as a policy agency Japan’s Ministry of

1After World War II, the Japanese government created the Nippon Telegraph and Telephone Public
Corporation as a government monopoly. This decision was taken arguing a reconstruction strategy.
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Internal Affairs and Communications (MIC)2 has advocated competition in the Japanese
telecom market through reduction of NTT’s oligopolistic market power. In 1999 NTT
was established as a holding company with three subsidiary telecom companies (NTT
East, NTT West, and NTT Communications.)

To exemplify how dynamic the Japanese telecom industry is with regard to the adoption
of new technologies we can look at some figures describing the mobile telephone market.
First, Figure ?? presents the total number of Japanese mobile telephone subscribers
from 1998 to 2004. In this period the total number of subscribers more than doubled,
with annual increases in the order of 20% by the late 1990s. Japan was the first country
to introduce both Internet access (i-Mode or 2.5G made broadly available in 1999) and
third generation 3G3 (2001) for mobile telephones. Accessing the Internet using a cell
phone became a desirable feature for Japanese consumers who rapidly subscribed to a
service providing a mobile phone with Internet access.

Figure 6.2: Mobile telephone subscribers in Japan. Source: MIC

Figure ?? shows the increase in the share of mobile phones with Internet access. In
effect, in 5 years the penetration of mobile phones with Internet access achieved 85% of
the market (see Figure ??). In fact, as of 2006, the penetration of 3G represented more
than 55% (51 million subscribers).

Mobile telephony is basically dominated by three companies: NTT DoCoMo, KDDI,
and SoftBank (Figure ??.)

2Japan’s Ministry of Posts and Telecommunications (MPT), before 2001; Ministry of Public Man-
agement, Home Affairs, Posts and Telecommunications (MPHPT), from 2001 to 2004.

3First generation (1G) was first provided in 1979. Second generation (2G) mobile telephone services
began in 1993.
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Figure 6.3: Penetration rate of mobile phones with Internet access. Source: MIC

Figure 6.4: Market shares of mobile telephony providers. Source: NTT DoCoMo (Feb
2007)
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Following a timid beginning in the late 1990s, after the e-Japan strategy was imple-
mented in 2000 and during the first years of the 2000s the broadband (BB) penetration
in the Japanese market experienced a remarkable increase (see Figure ??.) The huge
development of BB services, which were accompanied by low prices4 and very high qual-
ity in terms of speed, offered a perfect scenario for both an increasing demand for BB
Internet access and the consequent deep penetration of IP telephony in Japan.

Figure 6.5: Internet access. Source: MIC

The dominating BB networks in Japan are asymmetric digital subscriber line (ADSL),
cable television (CATV), and, more recently, fiber to home (FTTH)5 (See Figure ??.)
The main providers of BB services are NTT (through NTT East and West), KDDI, and
Softbank (Figure ??.)

In Japan, IP telephony is regulated by the MIC. Figure ?? shows the expansion of VoIP
in recent years. Calls between VoIP subscribers of a same provider or group are usually
free of charge; calls from VoIP to POTS or personal handy-phone system (PHS6) are
charged uniformly all over the country according to a fixed rate. When first introduced,
IP phones did not carry a phone number and VoIP served only to make calls. Phone
numbers were assigned to IP phones in 2002, and in 2005 local number portability was
made available for FTTH subscribers. In fact, FTTH subscribers can switch from POTS
to IP Telephony keeping the same phone number. To be more precise, currently in Japan
both best-effort and QoS guaranteed VoIP are available. Best-effort VoIP, which is also
known in Japan as 050-type, is mostly used by ADSL subscribers and has an associated

4Charges per bps are the lowest in the world.
5Typical maximum speed for these BB services in Japan are 50 Mbps (ADLS), 30 Mbps (CATV),

and 100 Mbps (FTTH).
6Voice and data are sent through a narrow band service for a fixed rate.
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Figure 6.6: Evolution of broadband services in Japan: number of subscribers (left) and
penetration rate (right). Source: MIC

Figure 6.7: Market shares of ADSL and FTTH services. Source: MIC (Second quarter
2006)

Figure 6.8: Evolution of the telephony market. Source: MIC
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050 prefix for direct-dial calls from fixed telephones to VoIP terminals. QoS guaranteed
IP telephony (0ABJ-type) is mostly used by FTTH subscribers and its voice quality is
equivalent to normal telephony. 0ABJ-VoIP has a related location code that allows the
provider to use the same numbering format used for fixed telephones (0AB-J); other
features of 0ABJ-VoIP include the possibility of making emergency calls and fax usage.
Ida et al. (2008) conclude that, in a market that is predominantly dominated by best-
effort VoIP, IP telephnoy is perceived more as an add-on option of BB Internet access
rather than as a perfect substitute for POTS. Effectively, most of IP telephony users
show a parallel use of VoIP and POTS. Figure ?? shows the market shares for the main
providers of VoIP.

Figure 6.9: Market shares of VoIP providers. Source: MIC (Second quarter 2006)

6.1.3 Discrete choice models for telecom access demand

The discrete choice modeling framework is perfectly suited for the analysis of the demand
for telecommunication access. Typically, different providers offer various options that
the final consumer can choose from. For example, when searching for a new cell-phone
we gather information about the different plans offered by each company. For a monthly
charge, each plan offers a certain amount of voice minutes; a certain amount of data,
including text messages and mobile browsing; long distance, roaming, and out-of-plan
charges, as well as other features such as caller ID and call forwarding. Each plan-
company pair presents an option or alternative that summarizes the associated cost
and features, and final consumers choose the alternative that is most convenient for
their needs. The same choice process applies to other telecom choice situations such
as broadband choice and decisions regarding home telephony services. Discrete choice
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models (DCMs) consider choice to be a result of a utility maximizing behavior, where
the final consumer evaluates the available alternatives and makes a decision according
to individual tastes.

Even though there has been some interesting research on the application of DCMs for
telecom disaggregated demand, this particular field has not achieved the same level of
development as some other areas, such as travel behavior, where DCMs are the dominant
tool for analyzing consumer response. In telecommunications, there has been a lot of
analysis in terms of industrial organization concepts. Regarding the demand side, the
typical econometric modeling is based on panel data analysis7.

The earliest contributions in the application of DCMs to telecom access demand is the
work of ???. With U.S. data and using both logit and probit models (as well as lin-
ear probability models), Perl studied willingness to pay and access elasticities at the
household level for residential phone services. In 1987, ? used a nested logit to study
aggregate price elasticities for different patterns of residential phone service demand. In
Canada, one of the earliest applications of binary telephone subscription demand models
is ?. ? uses the DCM framework to analyze policy implications of extended area service
developments in the U.S. In ?, the analysis is extended to include the effect of the local
service rate on residential demand for fixed phones. ? apply DCMs to the study of the
relationship between consumption and self-selecting tariffs in the context of residential
demand for local telephone services. ? and ? analyze long distance carrier choice in the
United States and in Japan, respectively.

Following the trends of the telecom industry, more recent work has focused on mobile
telephony access and Internet service choice, also incorporating recent advances in dis-
crete choice modeling. For instance, ? use a mixed logit model with Japanese data to
analyze heterogenous substitution patterns and elasticity of demand of second (2G) and
third (3G) generation mobile phone services. The same authors have also studied the
market of broadband Internet in Japan (?). Using multinomial and nested logit models,
the authors analyze choice between narrow and broadband services. They conclude that
the ADSL market is independent of other BB services such as CATV and FTTH, and
that within the ADSL submarkets, both low-speed and high-speed ADSL are highly
elastic and compete with narrow brand (dial up) and BB, respectively. In the context
of Internet service choice, ? introduced discrete choice analysis with stated preference
(SP) data. Using Australian consumers’ revealed responses, ? estimated a DCM of

7For a comprehensive review of telecommunication demand forecasting, see ?. Note that this paper
reviews only one application of DCMs to Internet access, and no model of IP telephony.
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subscriber churn for Internet service providers. Other relevant work includes ???????,
and ?. Of particular interest is the work of ? who study consumers’ Internet awareness,
access, and use, as well as the willingness to pay for particular attributes by different
clusters of consumers beyond the trade-off between subscription price and access speed.
For instance, reliability of the service is, on average, the most valued attribute, followed
by (with corresponding decreasing WTPs) service speed, always-on connectivity, and
installation delays.

Again for the Japanese BB market, ? focused on the explosive demand for FTTH. Using
a mixed logit model with SP data the authors analyze the willingness to pay for public
services over FTTH for urban and provincial areas (an important issue associated with
the digital divide debate.) Expanding on the analysis of ? and using a mixed logit with
RP data, ? study consumer shift within BB services (basically from ADSL to FTTH)
and show that the migration is determined by variables such as income and service usage
(motion-picture viewing and IP telephony.)

Finally, for the specific case of access demand for IP telephony, ? provide an early
discussion on the effects of substituting POTS by an Internet-based phone service in
terms of the detriment to the profitable long distance market of telecom companies. ?
apply contingent valuation techniques to analyze demand for IP telephony. Using stated
WTPs for VoIP services in the US, the authors conclude that the demand is elastic (over
the range of current prices) and ascertain that the overall market for best-practice VoIP
in the US is rather small. Using Japanese stated preference data gathered in 2005, ?
estimate an MNL for choice between fixed phone, IP phone, and parallel fixed and IP
service. Each of these three alternatives were described in terms of fixed monthly charges,
voice quality, number portability, emergency calling availability, FAX usage availability,
and call charges. Based on the MNL estimates, a simulation of future scenarios was
carried out to study the penetration of IP telephony. The authors conclude that the two
most important features consumers are willing to pay for are access to emergency calls
and a better voice quality. In fact, the overall quality of service is fundamental for the
consolidation of VoIP in the market.

In this chapter I build on the model of telephony choice developed by ? to explain
IP telephony demand, which in fact is part of a more comprehensive model of Internet
demand including I-net access and IP telephony choice. The original model of ? considers
a hybrid choice formulation (?) with a mixed logit kernel. Estimation of the model was
performed using full information simulated maximum likelihood. In my model, I consider
an MCMC-based Bayesian estimator for a hybrid choice model with a multivariate probit
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kernel.

6.2 A hybrid choice model with a probit kernel and
dichotomous indicators

To model IP telephony choice in Japan, I consider a hybrid choice model with a probit
kernel and dichotomous indicators. Hybrid choice models are a generalization of discrete
choice models where endogenous latent variables enter the utility function of standard
discrete choice as explanatory variables. The econometric representation of hybrid choice
models consists of a simultaneous system of structural equation models. In the next
subsection I present the structural model that constitutes the system of equations.

6.2.1 Structural model

Consider the following system

Structural equations

z∗n
(L×1)

= Π
(L×L)

z∗n + B
(L×M)

wn
(M×1)

+ ζn
(L×1)

, ζn ∼MVN(0, H−1
Ψ ) (6.1)

U∗tn
(J×1)

= Xtn
(J×K)

β
(K×1)

+W ∗tn(Xtn, z
∗
n)

(J×Q)

%
(Q×1)

+ Γ
(J×L)

z∗n
(L×1)

+ νtn
(J×1)

, νtn ∼MVN(0, H−1
Σ )(6.2)

I∗n
(R×1)

= α
(R×1)

+ Λ
(R×L)

z∗n
(L×1)

+ εn
(R×1)

, εn ∼MVN(0, H−1
Θ ) (6.3)

Measurement equations

Irn
(1×1)

= 1[I∗rn>0],∀r, n (6.4)

ytn
(1×1)

= i ∈ Cn iff Uitn − Ujtn ≥ 0,∀j ∈ Cn, j 6= i,∀n ∈ N. (6.5)

where z∗n is an endogenous random vector of latent variables that enters the utility
function as a latent explanatory variable; the matrix Π allows for the eventual presence
of simultaneity or interactions among the latent variables – we assume that (IL − Π) is
invertible, where IL represents the identity matrix of size L; wn is a vector of explanatory
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variables affecting the latent variables; B is a matrix ofK unknown regression coefficients
used to describe the global effect of (IL − Π)−1Bwn on the latent variables; and H−1

Ψ is
a covariance matrix which describes the relationship among the latent variables through
the error term. To simplify notation, we define B̃ = (IL − Π)−1B, ζ̃n = (IL − Π)−1ζn,
and H−1

Ψ̃
= [(IL − Π)−1]H−1

Ψ [(IL − Π)−1]′.

The choice model in equation (??) is written in vector form where we assume that there
is a total of Jn available alternatives in the set Cn. Hence, Un is a vector of indirect
utility functions; Xn is a matrix with Xin designating its ith row; and β is a vector of
unknown parameters. W ∗

n(Xn, z
∗
n) is a matrix of Q interactions between the observable

Xn and the latent z∗n as well as interactions within the latent variables; % is a vector
of unknown parameters associated with these interactions. Γ is a matrix of unknown
parameters associated with the latent variables present in the utility function, with Γi
designating the ith row of matrix Γ. The analytical form of the discrete choice kernel
depends on the assumptions regarding the distribution of the random term νn.

In the set of measurement equations, In corresponds to a vector of manifest variables
that serve as indicator responses for the latent variables z∗n; α is an intercept vector and
Λ is a matrix of G unknown factor loadings. The term εn is a vector of error terms with
covariance matrix H−1

Θ . Finally, we stack the choice indicators yin’s into a vector called
yn.

The structural model translates into a parametric hybrid choice model dominated by
the Lebesgue measure

(Y ,P = Pδ = `(y, I; δ), δ ∈ ∆ ⊆ Rp, p ≥ 1) (6.6)

where Y = Cn×{0, 1}R is the sample space of a hybrid choice sampling model composed
by both choice y among the alternatives in the set Cn and the group of R dichotomous
indicators stacked in I; P is a parameterized family of probability density functions Pδ
on Y , `(y; θ) is the likelihood function as in equation ??, δ is a vector of p parameters,
and ∆ is the parameter space.

Given our assumptions, the joint probability P (yin = 1, In) ≡ Pn(i, I) of observing yn
and In may thus be written as:

`(y, I; δ) =
N∏
n=1

∏
i∈Cn

∫
z∗n

Pn(i |z∗n, Xn, θ )f(In|z∗n,Λ,Θ)g(z∗n |wn, B,Π,Ψ)dz∗n

yin

, (6.7)
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where

f(In) =
R∏
r=1

Φ

(
αr + Λrz

∗
n

θr

)Irn (
1− Φ

(
αr + Λrz

∗
n

θr

))(1−Irn)

,

with Φ being the cumulative distribution function (cdf) of a standard normal distribu-
tion; and where g(z∗n |wn, B,Π,Ψ) corresponds to the multivariate normal distribution
MVN((IL − Π)−1Bwn, [(IL − Π)−1]Ψ[(IL − Π)−1]′).

6.2.2 Reduced form

The system of structural equations ??, ??, and ?? can be written in the reduced form
??. z∗n

I∗n
U∗

 =

 0 B̃ 0 0

α ΛB̃ 0 0

0 ΓB̃ β %

Xn (1, wn, Xn,W
∗
n(Xn, z

∗
n)) +

 1 0 0

Λ 1 0

Γ 0 1


 ζ̃n
εn
νn

 (6.8)

Taking advantage of the fact that each error term is assumed to be normal distributed,
the reduced form of an HCM with a probit kernel follows the following multivariate
distribution: z∗n

I∗n
U∗n

 ∼ MVN


 µz∗n
µI∗n
µU∗

n

 ,
 Ψ̃ Ψ̃Λ′ Ψ̃Γ′

ΛΨ̃ ΛΨ̃Λ′ + Θ ΛΨ̃Γ′

ΓΨ̃ ΓΨ̃Λ′ ΓΨ̃Γ′ + Σ


 , (6.9)

where

µz∗n = B̃wn

µI∗n = α + ΛB̃wn

µU∗
n

= Xnβ + ΓB̃wn +W ∗
n(Xn, z

∗
n)%.

It is possible to show that

π(z∗n|I∗n) ∼ MVN (E(z∗n|I∗n),V(z∗n|I∗n)) (6.10)

π(U∗n|I∗n) ∼ MVN (E(U∗n|I∗n),V(U∗n|I∗n)) , (6.11)

where

E(z∗n|I∗n) = B̃wn + ΨΛ′ (ΛΨΛ′ + Θ)
−1

(I∗n − (α + ΛBwn)) (6.12)

E(U∗n|I∗n) = Xnβ + ΓB̃wn +W ∗
n(Xn, z

∗
n)%+ ΓΨΛ′ (ΛΨΛ′ + Θ)

−1
(I∗n − (α + ΛBwn))

= Xnβ + ΓB̃wn +W ∗
n(Xn, z

∗
n)%+ ΓE(z∗n|I∗n), (6.13)
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and

V(z∗n|I∗n) = Ψ−ΨΛ′ (ΛΨΛ′ + Θ)
−1

ΛΨ (6.14)

V(U∗n|I∗n) = ΓΨΓ′ + Σ− ΓΨΛ′ (ΛΨΛ′ + Θ)
−1

ΛΨΓ′. (6.15)

6.2.3 MCMC estimator

Consider the following partition of the parameter space ∆: the taste parameters of the
utility function θ = (β, %,Γ)′, the parameters associated with the covariance structure
implied by the precision matrix H−1

Σ , the parameters of the structural equation B, and
Λ which contains the measurement equation parameters. This partition allows us to
implement the Gibbs sampler developed in Chapter 5. Note that equations ?? and ??
provide the conditional distributions that are necessary for implementing Gibbs sampling
with data augmentation.
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6.3 The Data

I use data from a survey conducted in 2004 by NTT (Nippon Telegraph and Telephone
Corporation) Labs in Japan. The market research survey gathered information about
stated behavioral intentions of accessing the Internet and IP Telephony under hypothet-
ical future scenarios. Information on current usage of both the Internet and telephone
service was also collected. The sample consists of 3369 Japanese consumers living in
different metropolitan areas. Figure ?? shows how the sample is composed by gender,
and also how many current VoIP users are represented.

Figure 6.10: Total number of respondents and VoIP users by gender

Figure 6.11: Total number of respondents by age range

In terms of Internet access, most of the individuals are subscribed to BB services8 (Figure
??). ADSL dominates with 45.83%, followed by CATV with 24.55%, and FTTH with
13%. Access to BB is important since it is a requisite for VoIP; current BB subscribers

8The BB penetration rate of the sample (83%) is higher than the actual penetration rate in 2004
(66%).
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that are not currently subscribed to VoIP represent an easily approachable potential
market. Narrowband access is represented by only 10.00% in the sample. 6.62% of the
sample does not have Internet access.

Figure 6.12: Number of respondents and average income by Internet service

Because each of the 3369 individuals that were interviewed responded to 5 different
choice situations, there is a total of 16845 pseudo-individuals for estimation. The stated
preference experiment considered choice over 3 alternatives: plain old telephone service
(POTS), combination of POTS and IP telephony (POTS/IP or POIP), and VoIP (IP).
In Table ?? the experimental attributes are shown.

Experimental attribute Mean Stdv Min Max

POTS monthly usage charge [¥] 1.40 0.33 1.00 1.80
POTS charge for 3 minutes of local conversation [¥] 6.99 0.82 6.00 8.00
POTS charge for 3 minutes of long distance conversation [¥] 31.09 8.10 20.00 40.00
POTS charge for calling a mobile phone [¥] 89.71 20.99 60.00 120.00
POTS/IP charge for 3 minutes of local conversation [¥] 6.01 0.82 5.00 7.00
POTS/IP charge for 3 minutes of long distance conversation [¥] 6.01 0.82 5.00 7.00
POTS/IP charge for calling a mobile phone [¥] 67.51 28.07 30.00 120.00
IP initial cost of service [¥] 0.27 0.21 0.00 0.50
IP monthly usage charge [¥] 0.27 0.20 0.00 0.50
IP charge for 3 minutes of local conversation [¥] 6.01 0.82 5.00 7.00
IP charge for 3 minutes of long distance conversation [¥] 6.01 0.82 5.00 7.00
IP charge for calling a mobile phone [¥] 22.40 23.62 0.00 60.00

Table 6.1: Descriptive statistics of experimental attributes
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6.4 Modeling the adoption of VoIP

I will now present the results of the HCM Bayesian estimation process for the telephony
choice data. Using the R language, I implemented a specific case of the Gibbs sam-
pler for a hybrid choice model with a probit kernel with dichotomous indicators and
individual-specific latent variables. The probit kernel is more general than an MNL,
since a general structure of covariance can be tested. When dichotomous effect indi-
cators are introduced, mathematically the problem involves additional latent variables
that are not necessary in the continuous case9. In addition, the telephony choice model
I implement takes into account the repeated observation problem. Effectively, the latent
variables represent individual attitudes, so that for each individual the same realization
of each latent variable is considered.

After analyzing the data it is possible to recognize 5 underlying dimensions that may
affect the decision of adopting VoIP. Specifically, knowledge (of VoIP functionalities,
requirements, and charges), VoIP awareness, and early adoption of new technologies are
tested to determine their effect on telephony choice (Table ??).

Variable Description

z∗1n Knowledge of IP telephony functionalities
z∗2n Knowledge of IP telephony requirements
z∗3n Knowledge of IP telephony charges
z∗4n Awareness of IP telephony
z∗5n Early adoption of new technologies

Table 6.2: Latent variables

The latent variables are manifested through a subset of the effect indicators shown in
Table ??10. Note that the possible answers for each indicator are binary perceptions.

Before introducing the results of the model, note that Appendix A presents the notation
for both the dependent and independent variables. Using this notation11, the following
table provides the results of the choice model. The simultaneously estimated structural
and measurement models for the latent variables are shown in Appendix B.

9The empirical applications in the previous chapters consider continuous effect indicators.
10The actual subset for each latent variable is shown when presenting the results of the estimated

model.
11The notation of the coefficients follows the general notation introduced to present the general model.
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Indicator Description

I1 It is possible to make calls from IP phone to fixed phone
I2 It is possible to make calls from IP phone to cellular phone and PHS
I3 It is possible to make calls from IP phone to overseas
I4 It is possible to make calls from overseas to IP phone
I5 It is possible to make calls from fixed phone to IP phone
I6 It is possible to make calls from cellular phone or PHS to IP phone
I7 It is possible to send faxes from IP phone
I8 Ordinary telephone sets can be used for IP phone service
I9 A dedicated special device is needed
I10 A PC is not needed to use IP phone service
I11 No special knowledge is needed to use IP phone service
I12 Charge for a local call from IP phone to a fixed phone is lower than from a fixed phone
I13 Charge for a long distance call is less expensive from an IP phone than from a fixed phone
I14 Charge for a call to a cell phone is less expensive from an IP phone than from a fixed phone
I15 Charge for an overseas call is less expensive from an IP phone than from a fixed phone
I16 There is no charge for a call between IP phones from same provider or same provider group
I17 There is no initial subscription charge for IP phone service
I18 Monthly basic charge for IP phone service is less than ¥1000
I19 Have you heard about IP phone service?
I20 I prefer to adopt new products or services ahead of other people
I21 I prefer to take up new products or services after they have become generally accepted
I22 Are you already using IP phone service?

Table 6.3: Telephony choice: Effect Indicators

In the choice model, each paramater is estimated according to a probit model. The
estimates are displayed in Table ??. The effect of the latent variables is added to the
probit kernel. These latent variables are individual-specific (to account for repeated
observations) with parameters that are alternative-specific (for the alternatives POIP
and IP).

Some interesting results can be derived from the estimates. For instance, all attributes
associated with cost12 have a negative marginal utility, which means that the probability
of choosing a given alternative will decrease if its cost increases. Other valuations are
related with certain features that VoIP sometimes does not provide. As discussed in the
introduction to this chapter, the lack of certain features within the VoIP services may be
an issue when QoS is not guaranteed13. If it is not possible to call mobile phones using

12Namely monthly fixed charges, charges for local and long distance calls, mobile charges, and initial
cost.

13Lack of QoS is a characteristic of the earliest stages of VoIP. However, when the broadband is
adequate QoS can be guaranteed and VoIP can be offered featuring number portability, emergency
calling, and fax capabilities. However, as in 2008 the Japanese market was still dominated by best-
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Parameter Description Estimate s.e. t-stat
ASCPO PO Constant -0.5200 0.1978 -2.63
ASCPOIP POIP Constant -0.0880 0.1366 -0.64

β1 Monthly Charge PO -0.2400 0.0392 -6.12
β2 Monthly Charge IP -0.7800 0.1219 -6.40
β3 Initial Cost IP -0.2200 0.0858 -2.56
β4 Local Call -0.0130 0.0089 -1.46
β5 Long Distance -0.0023 0.0013 -1.77
β6 Call Mobile -0.0011 0.0003 -3.67
β7 No Mobile IP -0.3500 0.0422 -8.29
β8 Emergency 0.3300 0.0422 7.82
β9 Special Number 0.1200 0.0235 5.11
β10 Tokyo POIP -0.0310 0.0381 -0.81
β11 Tokyo IP -0.0370 0.0452 -0.82
β12 Web POIP -0.2300 0.0494 -4.66
β13 Web IP -0.3000 0.0440 -6.82
β14 Male POIP -0.0670 0.0303 -2.21
β15 Male IP 0.0840 0.0368 2.28
β16 Age 30- POIP 0.0026 0.0047 0.55
β17 Age 30- IP -0.0140 0.0056 -2.50
β18 Age 30-50 POIP 0.0069 0.0024 2.88
β19 Age 30-50 IP 0.0041 0.0026 1.58
β20 Age 50+ POIP 0.0120 0.0036 3.33
β21 Age 50+ IP 0.0000 0.0041 0.00
β22 Mobile Charge 8- POIP 0.0069 0.0045 1.53
β23 Mobile Charge 8- IP -0.0064 0.0052 -1.23
β24 Mobile Charge 8+ POIP 0.0051 0.0029 1.76
β25 Mobile Charge 8+ IP 0.0048 0.0033 1.45
β26 PO Charge 3- POIP -0.0072 0.0143 -0.50
β27 PO Charge 3- IP -0.1600 0.0194 -8.25
β28 PO Charge 3+ POIP 0.0240 0.0079 3.04
β29 PO Charge 3+ IP -0.0006 0.0092 -0.07
β30 Voice Often POIP 0.1200 0.0423 2.84
β31 Voice Often IP 0.1600 0.0464 3.45
β32 Switched I-net POIP 0.0031 0.0240 0.13
β33 Switched I-net IP 0.1300 0.0302 4.30
β34 Awareness x Monthly Charge IP -0.0870 0.0518 -1.680
Γ11 z1 on POIP 0.0580 0.0266 2.180
Γ12 z2 on POIP 0.1100 0.0275 4.000
Γ13 z3 on POIP -0.0110 0.0190 -0.579
Γ14 z4 on POIP 0.2400 0.0370 6.486
Γ15 z5 on POIP 0.0590 0.0203 2.906
Γ21 z1 on IP -0.0680 0.0321 -2.118
Γ22 z2 on IP 0.1300 0.0264 4.924
Γ23 z3 on IP 0.0610 0.0233 2.618
Γ24 z4 on IP 0.2600 0.0213 12.207
Γ25 z5 on IP 0.0650 0.0212 3.066
`(θ) -15136.78

`(ASC) -18096.36

Table 6.4: Telephony choice model
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VoIP, then the overall satisfaction with the VoIP service is reduced. However, when
other services are provided, the overall satisfaction improves. For instance, when VoIP
does offer the possibility of making emergency calls there is a consequent satisfaction
perceived by the user, which can be derived from the positive marginal utility of the
corresponding attribute (Emergency). The same conclusion holds when VoIP allows
users to call other special numbers. In addition, users dislike the constraint of some
VoIP services which do not allow them to make calls to mobile phones; this is reflected
by the negative marginal utility of the variable No mobile IP.

A complete subset of the parameters represents the effect of user segmentation. For
instance, there is the effect of where the sample was taken14, gender, and age. For
example, men prefer VoIP over the combination of POTS and VoIP.

Finally, the HCM specification allows us to determine the effect of the latent constructs15

that were identified on the choice probabilities. Alternative-specific parameters were
adopted for each of the latent variables for the alternatives POIP and IP. It is expected
that the latent variables have positive marginal utilities. The results show that this fact
is almost always true, with two exceptions. The third latent variable has a negative
effect on POIP, but this result is not significantly different from zero. However, the
first latent variable has a negative effect on the utility function of IP. Note however that
since the the first latent variable represents knowledge of VoIP functionalities, this latent
construct may reflect the situation of the constraints of best-effort VoIP. Because of these
constraints, VoIP is preferred when combined with POTS rather than as a service by
itself16. But in general the results show that knowledge17 as well as a positive attitude
toward the adoption of new technologies favor the adoption of VoIP either directly (IP)
or in combination with traditional telephony (POIP). Note that the marginal effect on
the utility function of both the POIP and IP alternatives (and hence the marginal effect
on the choice probabilities of adopting these two alternatives) is considerably higher for
the latent variable awareness of VoIP. Awareness of VoIP is an underlying measure of
general knowledge of VoIP and it summarizes the specific dimensions covered in the first
three latent variables. In effect, the more people know about VoIP, the more they are
willing to accept this new service.

effort VoIP.
14Tokyo or Web sample.
15Knowledge of VoIP functionalities, Knowledge of VoIP requirements, Knowledge of VoIP charges,

Awareness of VoIP, and Early adoption of new technologies.
16The effect of the first latent variable on POIP is positive.
17The first four latent variables are related to different dimensions of knowledge about VoIP services.
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In Table ?? the Bayesian quantiles are given. These quantiles are calculated from the
posterior distribution of the parameters. Recall that unlike frequentist estimation, in
the Bayesian approach the parameters have an associated distribution.

Since a probit kernel was adopted, the covariance matrix for the model expressed in dif-
ferences with respect to VoIP is estimated (Table ??). The results indicate the presence
of both heteroscedasticity and correlation. Because of this result, it can be argued that
a simpler model, such as an MNL, should be avoided.

The choice model that has been discussed in detail is estimated simultaneously with
the structural and measurement equations of the latent variables. Both the structural
and measurement equations make it possible to have draws for the latent variables that
are introduced in the choice model. I emphasize the choice model since the analysis of
the marginal effects of the latent variables on the choice probabilities of adopting VoIP
is made using the discrete choice kernel. However, some interesting conclusions can be
deduced from the structural equations (Table ??). For instance, broadband access has
a positive effect on all latent variables. This positive effect can be seen in the effect
of the type of I-net access that the user currently has (through the estimates of the
indicator variables DU user, ADSL/CATV user, and FTTH user). The faster the I-net
connection, the higher the effect on the latent variables. This is particularly true for
users with FTTH access, which appears as a significant explanatory variable of early
adoption of new technologies.

In Appendix B I show the complementary results of the estimation for the measurement
equations which provide identification of the latent variables.

6.5 Forecasting consumer response to VoIP

The marginal utilities as well as the parameters of the structural equations of the latent
variables18 describe user behavior in terms of the probability of adopting VoIP. For
instance, the marginal utilities weigh the attributes and latent explanatory variables,
allowing us to model the trade-offs faced by the consumers and to forecast the market
shares of the different alternatives. However, a true understanding of the meaning of
the estimates beyond analyzing sign and magnitude of the marginal utilities comes from
applying the model to forecast different scenarios. Taking the experimental design as

18The measurement equations provide identification of the latent variables.
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Parameter Description 2.50% 5% 50% 95% 97.50%
ASCPO PO Constant -0.9247 -0.8473 -0.5147 -0.1969 -0.1392
ASCPOIP POIP Constant -0.3480 -0.3102 -0.0904 0.1366 0.1784

β1 Monthly Charge PO -0.3206 -0.3062 -0.2323 -0.1768 -0.1673
β2 Monthly Charge IP -1.0215 -0.9846 -0.7784 -0.5861 -0.5569
β3 Initial Cost IP -0.4028 -0.3663 -0.2149 -0.0874 -0.0626
β4 Local Call -0.0308 -0.0281 -0.0128 0.0012 0.0039
β5 Long Distance -0.0049 -0.0045 -0.0023 -0.0002 0.0002
β6 Call Mobile -0.0017 -0.0016 -0.0011 -0.0005 -0.0004
β7 No Mobile IP -0.4234 -0.4101 -0.3493 -0.2709 -0.2568
β8 Emergency 0.2499 0.2597 0.3308 0.3988 0.4100
β9 Special Number 0.0717 0.0792 0.1156 0.1572 0.1647
β10 Tokyo POIP -0.1094 -0.0948 -0.0300 0.0309 0.0454
β11 Tokyo IP -0.1267 -0.1121 -0.0366 0.0376 0.0500
β12 Web POIP -0.3363 -0.3184 -0.2254 -0.1557 -0.1451
β13 Web IP -0.3854 -0.3720 -0.3002 -0.2266 -0.2128
β14 Male POIP -0.1341 -0.1193 -0.0653 -0.0217 -0.0127
β15 Male IP 0.0110 0.0226 0.0861 0.1436 0.1531
β16 Age 30- POIP -0.0064 -0.0050 0.0025 0.0105 0.0121
β17 Age 30- IP -0.0250 -0.0234 -0.0141 -0.0047 -0.0031
β18 Age 30-50 POIP 0.0027 0.0033 0.0067 0.0112 0.0121
β19 Age 30-50 IP -0.0009 -0.0002 0.0040 0.0083 0.0092
β20 Age 50+ POIP 0.0054 0.0063 0.0113 0.0183 0.0195
β21 Age 50+ IP -0.0080 -0.0067 -0.0001 0.0068 0.0081
β22 Mobile Charge 8- POIP -0.0017 -0.0004 0.0067 0.0146 0.0163
β23 Mobile Charge 8- IP -0.0165 -0.0148 -0.0065 0.0023 0.0036
β24 Mobile Charge 8+ POIP -0.0002 0.0006 0.0050 0.0102 0.0113
β25 Mobile Charge 8+ IP -0.0016 -0.0007 0.0048 0.0103 0.0112
β26 PO Charge 3- POIP -0.0344 -0.0302 -0.0074 0.0163 0.0219
β27 PO Charge 3- IP -0.2005 -0.1950 -0.1653 -0.1310 -0.1240
β28 PO Charge 3+ POIP 0.0100 0.0121 0.0234 0.0377 0.0410
β29 PO Charge 3+ IP -0.0188 -0.0157 -0.0005 0.0144 0.0172
β30 Voice Often POIP 0.0388 0.0499 0.1120 0.1905 0.2065
β31 Voice Often IP 0.0655 0.0792 0.1578 0.2329 0.2452
β32 Switched I-net POIP -0.0465 -0.0375 0.0036 0.0408 0.0472
β33 Switched I-net IP 0.0644 0.0759 0.1269 0.1749 0.1854
β34 Awareness x Monthly Charge IP -0.1892 -0.1727 -0.0863 -0.0013 0.0135
Γ11 z1 on POIP 0.0115 0.0173 0.0565 0.1053 0.116
Γ12 z2 on POIP 0.0656 0.0725 0.1126 0.1639 0.1738
Γ13 z3 on POIP -0.0503 -0.0431 -0.0108 0.0185 0.0257
Γ14 z4 on POIP 0.1788 0.1839 0.2398 0.305 0.3149
Γ15 z5 on POIP 0.0231 0.0292 0.0581 0.0945 0.1022
Γ21 z1 on IP -0.1296 -0.1199 -0.0689 -0.0142 -0.003
Γ22 z2 on IP 0.0807 0.0898 0.1331 0.1768 0.1835
Γ23 z3 on IP 0.0147 0.0226 0.0607 0.0988 0.1055
Γ24 z4 on IP 0.2188 0.2241 0.2608 0.2938 0.2993
Γ25 z5 on IP 0.0246 0.0306 0.0648 0.0994 0.1062

Table 6.5: Telephony choice model - quantiles
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Estimates s.e.
1.00 0.35 - 0.20
0.35 0.67 0.20 0.13

Table 6.6: Telephony choice model - covariance matrix

z1 z2 z3 z4 z5

est. s.e. est. s.e. estimate s.e. est. s.e. est. s.e.
Intercept -1.6000 0.506 0.0680 0.337 0.1600 0.367 -4.8000 0.173 0.9900 0.321
Age 30- 0.0530 0.015 0.0065 0.013 0.0030 0.012 0.0920 0.006 -0.0390 0.011

Age 30-50 -0.0290 0.007 0.0150 0.005 0.0081 0.005 -0.0170 0.002 -0.0180 0.004
Age 50+ -0.0110 0.009 0.0140 0.008 0.0080 0.008 -0.0045 0.003 0.0047 0.007

male 0.3100 0.072 -0.2900 0.061 0.0025 0.057 0.5300 0.028 0.3800 0.054
DU user -0.1400 0.179 0.4100 0.177 0.2000 0.205 0.3300 0.087 0.0450 0.157

ADSL/CATV user 0.3600 0.165 0.6300 0.155 0.0025 0.201 1.2000 0.083 0.0840 0.124
FTTH user 0.4300 0.183 0.3300 0.174 0.2600 0.210 1.1000 0.090 0.6200 0.143
Cell only - - - - - - -0.6100 0.112 - -

Years PC [2,10] 0.3900 0.122 -0.2500 0.122 -0.0600 0.123 1.1000 0.055 -0.0900 0.098
Years PC 10+ 0.6700 0.142 -0.4000 0.129 -0.4000 0.133 1.5000 0.060 0.1200 0.105

Table 6.7: Telephony structural latent variable model

baseline, I simulate the impact on the choice probabilities (and thus on the market shares
of POTS, POIP, and VoIP) of the following eight hypothetical market conditions:

1. Scenario 1: No initial charges for VoIP service

2. Scenario 2: Initial charges drop to 50% of the experimental figures

3. Scenario 3: Experimental monthly VoIP charges are cut by half combined with no
initial charges for VoIP

4. Scenario 4: Emergency calls are made available for all users

5. Scenario 5: Awareness of VoIP is increased by 50%

6. Scenario 6: Early adoption of new technologies is increased by 100%

7. Scenario 7: All consumers become early adopters

8. Scenario 8: All consumers become aware of VoIP

The first 3 scenarios consider situations where the costs of accessing (initial charge) or of
using (monthly charge) VoIP are reduced. Scenario 4 reflects the situation where calling
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to emergency numbers from VoIP is no longer an issue because this feature is made
available to everyone. The last 4 scenarios are related with latent awareness and early
adoption. Scenarios 5 and 6 both represent a situation where the distribution of the
latent variables is adjusted. Scenarios 7 and 8 consider a degenerate distribution of the
latent variable where all the mass is concentrated at its maximum. For instance, from
the estimation procedure it is possible to describe the distribution of the latent early
adoption. Early adopters show an increased probability of adopting VoIP. The highest
early adoption is taken and in Scenario 7 we make the assumption that all consumers
behave as the best new adopter. In a similar way, in Scenario 8 all consumers are
assumed to have the same behavior as the most aware user (for example, as a result of
informative campaigns.)

In Table ?? the predicted market shares and percent change are displayed (See also
Figure ??.) Because a probit kernel was assumed, 200 repetitions of the GHK simulator
for the choice probabilities were used for forecasting with the model.

Market shares Percent change
POTS POIP VoIP POTS POIP VoIP

Base SP experimental design 41.4% 38.3% 20.3%
Scenario 1 No initial charge IP 41.1% 37.9% 20.9% -0.7% -1.0% 3.0%
Scenario 2 50% initial charge IP 41.3% 38.1% 20.6% -0.2% -0.5% 1.5%
Scenario 3 50% monthly charge IP + no initial charge 40.6% 37.3% 22.1% -1.9% -2.6% 8.9%
Scenario 4 Emergency calls always available 37.9% 33.8% 28.3% -8.5% -11.7% 39.4%
Scenario 5 150% more awareness 40.4% 37.1% 22.6% -2.4% -3.1% 11.3%
Scenario 6 200% more adoption of new technologies 41.0% 37.8% 21.2% -1.0% -1.3% 4.4%
Scenario 7 Max adoption 39.6% 36.1% 24.4% -4.3% -5.7% 20.2%
Scenario 8 Max awareness 39.3% 36.0% 24.7% -5.1% -6.0% 21.7%

Table 6.8: Predicted VoIP penetration

All of the hypothetical scenarios represent situations where VoIP becomes more attrac-
tive. As a result of the improved features of VoIP, its market share increases in all
situations. However, the impact on the market share of VoIP depends on the scenario
being modeled. For instance, the biggest impact on the VoIP market share within the
considered scenarios is the capability of calling emergency numbers. When this feature
is made available for all users in the sample, the VoIP penetration increases by 39.4%.
As discussed previously, VoIP may not be able to perform emergency calls19 (basically
because of how VoIP works it is not trivial to locate the position from where the call is
being made.) This result shows the importance that users allocate to this VoIP feature,
and hence in order to increase the current market shares and to consolidate the presence

19Even though QoS VoIP makes it possible to call emergency numbers, the Japanese market is cur-
rently dominated by best-effort VoIP for which emergency calls are not available.
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of VoIP in the market it is essential to provide access to emergency calls (which is pos-
sible with QoS VoIP). Increasing general awareness of and knowledge about VoIP20 also
considerably increases the penetration of VoIP. Almost the same result is obtained for
underlying early adoption. Information campaigns can be targeted as a tool to increase
knowledge about how VoIP works.

Figure 6.13: Predicted shares for VoIP

6.6 Conclusions

Hybrid choice modeling is a powerful tool for modeling the adoption of new technologies
because it allows one to incorporate the effect of qualitative attributes and attitudes on
the probabilities of adopting the new technologies. Effectively, using an HCM with a

20Recall that Scenarios 7 and 8 consider a situation where all users are assumed to have the maximum
value obtained during the estimation process for the latent variables describing early adoption and
awareness.
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probit kernel and dichotomous effect indicator variables I have shown that knowledge as
well as a positive attitude toward the adoption of new technologies favor the adoption
of VoIP either directly or in combination with traditional telephony. For instance, the
model describes the segments of the population that can be identified as early adopters.
Technically, early adopters in the model are individuals with a high value for the at-
titude early adoption of new technologies, which is statistically identified through self
reported behavior related to technological adoption habits. According to my results,
early adopters of new technologies in Japan are men that have FTTH I-net access, and
that have had access to a computer for more than 10 years. This segment of the pop-
ulation has a correspondingly higher probability of adopting VoIP. According to the
forecasts of the model, in order to increase the penetration of IP telephony it is essential
to assure QoS in order to provide access to desired features such as emergency calls.
Information campaigns targeted at improving telephony users’ knowledge about VoIP
also appear as a suitable tool to consolidate the adoption of VoIP in Japan.

Regarding the estimation of the model, the main finding is that the Bayesian approach is
perfectly suited for a complex hybrid choice model that considers the presence of corre-
lation and heteroscedasticity, together with a relatively large number of latent variables
and dichotomous effect indicators. Finally, the inclusion of latent variables provides a
very interesting approach for taking into account the problem of repeated observations
in stated preference studies.
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Appendix A: Variable description

Variable Description

UPO Utility associated with Plain Old Telephone Service POTS
UPOIP Utility associated with mixed use of both POTS and VoIP
UIP Utility associated with VoIP
EC Knowledge of VoIP functionalities
EC Knowledge of VoIP requirements
EC Knowledge of VoIP charges
EC Awareness of VoIP
EC Early adoption of new technologies
I1 It is possible to make calls from VoIP to fixed phone
I2 It is possible to make calls from VoIP to cellular phone and PHS
I3 It is possible to make calls from VoIP to overseas
I4 It is possible to make calls from overseas to VoIP
I5 It is possible to make calls from fixed phone to VoIP
I6 It is possible to make calls from cellular phone or PHS to VoIP
I7 It is possible to send faxes from VoIP
I8 Ordinary telephone sets can be used for VoIP service
I9 A dedicated special device is needed
I10 A PC is not needed to use VoIP
I11 No special knowledge is needed to use VoIP
I12 Charge for a local call from VoIP to a fixed phone is lower than from a fixed phone
I13 Charge for a long distance call is less expensive from VoIP than from a fixed phone
I14 Charge for a call to a cell phone is less expensive from VoIP than from a fixed phone
I15 Charge for an overseas call is less expensive from VoIP than from a fixed phone
I16 There is no charge for a call between IP phones from same provider or same provider group
I17 There is no initial subscription charge for IP phone service
I18 Monthly basic charge for VoIP is less than ¥1000
I19 Have you heard about IP phone (VoIP) service?
I20 I prefer to adopt new products or services ahead of other people
I21 I prefer to take up new products or services after they have become generally accepted
I22 Are you already using VoIP?

Table 6.9: Dependent Variables



REFERENCES 193

Variable Description

Monthly Charge PO PO monthly usage charge / log(income) [Thousand ¥]
Monthly Charge IP VoIP monthly usage charge / log(income) [Thousand ¥]

Initial Cost IP Initial cost of VoIP service / log(income) [Thousand ¥]
Local Call Charge for 3 minutes of local conversation [¥]

Long Distance Charge for 3 minutes of long distance conversation [¥]
Call Mobile Charge for calling a mobile phone from an IP telephone [¥]
No Mobile IP IP telephone offered cannot connect to a mobile phone
Emergency IP telephone offered can make emergency calls

Special Number IP telephone offered can make special number calls
Tokyo Respondent is in the Tokyo sample
Web Respondent is in the Web sample
Male Gender indicator

Age 30- Piecewise linear on age (less than 30 years)
Age [30,50] Piecewise linear on age (30-50 years)
Age 50+ Piecewise linear on age (more than 50 years)

Mobile Charge 8- Piecewise linear on monthly charge usually spent on cell (less than ¥8)
Mobile Charge 8+ Piecewise linear on monthly charge usually spent on cell (¥8 or more)
PO Charge 3- Piecewise linear on monthly charge usually spent on fixed phone (less than ¥3)
PO Charge 3+ Piecewise linear on monthly charge usually spent on fixed phone (¥3 or more)
Voice Often Voice telecommunications used very often

Switched I-net Respondent switched internet Service Provider 2 times or more
DU user Respondent currently uses Dial Up

ADSL user Respondent currently uses ADSL
CATV user Respondent currently uses CATV I-net

ADLS/CATV user Respondent currently uses either ADSL or CATV I-net
FTTH user Respondent currently uses FTTH
No I-net Respondent does not have Internet access
Cell only Only a cellular phone is used at home

Years PC 2- Respondent has been using a PC for less than 2 years
Years PC [2,10] Respondent has been using a PC between 2 and 10 years
Years PC 10+ Respondent has been using a PC for more than 10 years

Table 6.10: Dependent Variables
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Appendix B: Measurement Model

Intercept z1 z2 z3 z4 z5
Ind. est. s.e. est. s.e. est. s.e. est. s.e. est. s.e. est. s.e.
I1 1.5000 0.352 1.0000 - -0.0710 0.019
I2 0.4800 0.040 1.2000 0.027 0.6400 0.012
I3 0.2800 0.073 -0.1100 0.023 0.7500 0.022
I4 -0.2900 0.106 0.7900 0.015 0.2700 0.017
I5 0.7200 0.036 -0.2400 0.022 0.9400 0.019
I6 0.2100 0.062 0.7700 0.015 0.1700 0.018
I7 -0.3700 0.051 -0.3500 0.025 0.5900 0.015
I8 0.0420 0.142 1.0000 - 0.0260 0.018
I9 0.2400 0.054 -0.0140 0.020 0.7500 0.015
I10 0.1200 0.043 0.8600 0.017 0.0027 0.018
I11 0.5700 0.035 -0.2100 0.025 0.0550 0.009
I12 -0.5200 0.114 1.0000 - 0.0017 0.017
I13 0.1800 0.049 -0.1700 0.020 0.1900 0.010
I14 -0.8400 0.033 0.5300 0.015 -0.0700 0.020
I15 -0.4500 0.032 0.9700 0.026 0.3900 0.010
I16 -0.9000 0.012 -0.2800 0.021 0.1200 0.018
I17 -1.3000 0.016 0.2500 0.010 -0.0670 0.009
I18 -0.4300 0.021 -0.0920 0.020 -0.2600 0.019
I19 0.2500 0.041 1.0000 -
I20 -0.8900 0.173 0.0830 0.025 1.0000 -
I21 -0.2300 0.046 0.1200 0.021 0.7500 0.020
I22 -1.1000 0.056 0.5400 0.014 0.7100 0.016 0.7000 0.014 -0.0740 0.019 -0.0480 0.018

Table 6.11: Telephony measurement latent variable model
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Appendix C: Posterior distributions and MCMC se-
quences
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Figure 6.14: Posterior distributions of the latent variable parameters on POIP



REFERENCES 196

43

d
e
n
s
ity

0.10 0.15 0.20

0
5

1
0

1
5

| ||||

44

d
e
n
s
ity

0.00 0.05 0.10

0
5

1
0

1
5

| ||||

45

d
e
n
s
ity

0.22 0.24 0.26 0.28 0.30 0.32

0
5

1
5

| ||| |

46

d
e
n
s
ity

0.00 0.05 0.10 0.15

0
5

1
0

| ||||

z2 on IP z3 on IPz2 on IP z3 on IP

z4 on IP z5 on IP

Figure 6.15: Posterior distributions of the latent variable parameters on IP
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Figure 6.16: MCMC sequence of selected parameters
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Figure 6.17: Knowledge of IP telephony functionalities

Figure 6.18: Knowledge of IP telephony requirements
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Figure 6.19: Knowledge of IP telephony charges

Figure 6.20: Awareness of IP telephony
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Figure 6.21: Early adoption of new technologies



Chapter 7

Conclusion

Hybrid choice models are a generalization of standard discrete choice models where in-
dependent expanded models are considered simultaneously. In particular, the extension
that accommodates a discrete choice kernel with latent explanatory variables is of par-
ticular interest. The hybrid choice model that represents integrated choice with latent
variables is written as a simultaneous system of structural equation models, where the
latent variables are mapped using effect and causal indicators.1

The results of my dissertation, which has as its main objective to study the applica-
tion of hybrid choice models both theoretically and empirically, is consistent with the
reemerged trend in discrete choice modeling toward incorporating attitudinal factors
into the behavioral representation of the decision process. Hybrid choice models offer an
attractive improvement in modeling choice behavior, because the choice model is only a
part of the underlying behavioral process in which we now incorporate individual atti-
tudes, opinions and perceptions, thus yielding a more realistic econometric model. As
discussed in Chapter 2, the introduction of attitudes into a structural model of choice is
supported by different theories in social psychology and cognitive science. If we omit the
role of attitudes, which is the case in standard economic preference models, we may face
problems related to endogeneity.2 In addition, the hybrid choice modeling framework is
also perfectly suited for the introduction of quality as an explanatory variable of choice.
Qualitative attributes3, as opposed to quantitative attributes4, do not have a natural

1For a definition of these concepts, consult Chapter 2.
2I.e. an independent variable may be correlated with the error term.
3Such as comfort in a travel mode choice context. See the case study example in Chapter 3.
4Such as travel time in a travel mode choice context
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order or an overt measurement scale, thus qualitative attributes are often introduced
as categorical variables on a nominal scale. When the qualitative attribute is measured
with error, econometric problems related to endogeneity arise; however, a hybrid choice
model is capable of representing the underlying structure of quality.

From the point of view of econometrics, the most important contribution of my
current research is that even though the estimation of hybrid choice models
requires the evaluation of intractable complex multidimensional integrals,
frequentist full information simulated maximum likelihood5 and Bayesian
MCMC6 methods can successfully be implemented to practical situations,
and both offer unbiased, consistent, and smooth estimators of the true prob-
abilities.

Although feasible, the estimation of HCMs using frequentist (classical) methods can
become extremely complex; however in this dissertation I have verified the practical fea-
sibility of the Gibbs sampler I developed for HCM Bayesian estimation7, exploiting data
augmentation techniques for the latent variables. Whereas Gibbs sampling for a probit
kernel is analytically straightforward because it also admits the use of data augmenta-
tion, in the case of both a multinomial logit (MNL) kernel and a mixed logit (MMNL)
kernel one fails to find a closed form full conditional distribution for the taste parameters
of the utility function. However, I have shown that it is possible to exploit Metropolis-
Hastings (MH) methods for both the MNL and MMNL cases. In fact, I have shown that
even though the probit kernel formulation breaks down the methodological complexity
of the model, the data augmentation step for the utility function is very demanding in
computational terms, and eventually could be outperformed by a logit-based kernel -
even with the additional MH step required by logit models. In addition, classical esti-
mation of HCMs is very demanding in situations with a large number of latent variables
- each additional latent variable sums another dimension in the joint choice probability.
Thus, according to my analysis Bayesian HCM estimation outperforms simulated maxi-
mum likelihood: the inclusion of additional latent variables under the Bayesian approach
entails simply working with ordinary regressions (i.e. sampling additional draws from a
normal distribution.) Another advantage of the Bayesian approach is that it allows us
to forecast using the same sample generated for estimation. In fact, since the Bayesian
estimates describe the posterior distribution, I have shown that we can directly calculate

5See Chapter 3.
6See Chapter 5 for a general description and evaluation of the Bayesian estimator, and Chapters 4

and 5 for empirical applications.
7Gibbs sampler for a specific choice context is derived in Chapter 4. In Chapter 5, the Gibbs sampling

procedure is generalized.
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confidence intervals for willingness to pay measures as well as standard deviations for
both the choice probabilities and market shares.

Because of the empirical applications used to test the performance of the frequentist
and Bayesian estimators, my work also has interesting applied contributions. In general,
the hybrid choice modeling approach is extremely promising for studying behavioral
intentions in choice situations where qualitative attributes or consumers’ attitudes play
major roles.8 Among these choice situations we can envision consumer response to
new products. When new products are developed it is important to forecast consumers’
reactions in terms of purchase behavior not only for marketing plans aimed at introducing
the new product in the market but also for policymaking.9

In particular, in this dissertation I analyzed pro-environmental preferences toward low-
emission vehicles.10 The relevance of this choice situation comes from understanding
the effects of climate change and energy security concerns on travel behavior. Using a
hybrid choice model to explain purchase intentions by Canadian consumers, I show that
environmentally-conscious consumers are aware of the dangers of climate change and
oil dependency. Whereas standard demand models have a hard time representing eco-
friendly behavior, the hybrid choice model is capable of modeling the consequent change
in consuming behavior motivated by the consumer’s concerns about the environmental
externalities of transportation. Effectively, in the model I propose that environmentally-
conscious consumers are willing to pay more for sustainable solutions (low-emission ve-
hicles) despite potential drawbacks (such as a reduced refueling availability). This is the
first empirical application of Gibbs sampling to a hybrid choice model with real data.

I also analyzed consumer response to innovation in telecommunications11. The telecom
industry is especially dynamic, with new products12 and services being constantly in-
troduced. With standard choice models it is hard to explain the decision to adopt new
technologies that are at an early stage of development or that currently have a low over-
all penetration in the market. The adoption of new products depends on behavioral
intentions that are not only a result of observable attributes but also of perceptions,
attitudes and knowledge. I specifically study the role of knowledge as well as awareness

8In Chapter 2, I discussed how attitudes and behavioral intentions that may eventuate in actual
behavior are closely (and causally) related. I also introduced the role of qualitative attributes.

9For example, use of a new product may need to be regulated depending on potential externalities.
Products that are environmentally friendly may have subsidies seeking a higher penetration rate.

10See Chapter 4.
11In Chapter 6.
12New products that potentially create new needs.
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and promptness to adopt new technologies as qualitative attributes in the choice of IP
telephony access in Japan. Using stated IP telephony choice by Japanese consumers, I
consider and apply a hybrid choice model with a probit kernel and dichotomous effect
indicators. The model allows one to measure the effect of qualitative attributes related
to knowledge as well as the individual attitude toward the adoption of new technologies
on the choice probabilities of adopting IP telephony. The main findings of this study
suggest that consumers desire a quality of service of IP telephony that will assure some
features that in best effort IP telephony are not guaranteed. In particular, according
to the forecasts of the model, in order to increase the penetration of IP telephony it is
essential to provide access to emergency calls.

7.1 Future Research

Based on the results of my dissertation I identify three immediate lines of future research,
where the hybrid choice modeling framework can be applied:

1. Econometric challenges in choice modeling

2. Toward a more comprehensive attitudinal model of choice behavior

3. Consumer response to innovation

7.1.1 Econometric challenges in choice modeling

There are several econometric challenges that emerge from expanding the standard dis-
crete choice modeling framework. Effectively, the estimation of hybrid choice models is
computationally very demanding in situations with numerous latent variables and large
sets of potentially interrelated choices. To continue the study of hybrid choice modeling
using both Bayesian and frequentist techniques, an analysis of MCMC convergence, and
the application of flexible nonparametric methods (Bayesian and classical) are areas that
can be exploited. In my dissertation I analyzed hybrid choice models that integrate a
discrete choice kernel with latent variables; however, more general estimators need to
be derived when other expansions are considered. Parameter identification analysis and
techniques for forecasting when latent variables are present are two other issues that
need to be addressed.
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In the specific case of classical estimation, the latent variables affect the behavior of the
simulated likelihood function in such a way that a standard optimization algorithm may
require a huge number of iterations to converge. This major weakness translates into
a specific research question: how to speed up the optimization process, while ensuring
consistency properties and numerical convergence. A solution to explore will be the
analysis, implementation and testing of adaptive-sampling trust-region techniques.

7.1.2 Toward a more comprehensive attitudinal model of choice
behavior

In approaching a full understanding of the underlying process of decision making, my
dissertation is only a preliminary investigation of the role of attitudes in discrete choice
behavior. Recent research in social psychology has been centered on analyzing the impact
of attitudes on behavioral intentions. Potential expansions of the hybrid choice modeling
framework can be analyzed by incorporating the economic grounds of decision making
into well-established psychometric models of attitude-behavior, such as the Theory of
Planned Behavior. Other topics of future research include cognitive theories explaining
the formation of, and stability and change in, attitudes; the impact of information,
knowledge and habits on both stated intentions and actual actions; and finally, potential
semiotic effects on the dynamics of choice behavior.

7.1.3 Consumer’s response to innovation

From the empirical application analyzed in my dissertation, hybrid choice modeling
emerges as a powerful tool to model consumer response to innovation. First, it would
be interesting to develop a methodology for designing a survey conceived for the hybrid
choice modeling framework.13 This methodology could be applied to the context of
consumer response to technological innovation in energy supply, which is a relevant
element for energy policies.

Expanding on the empirical and theoretical work of my dissertation, as well as on the
technical outcomes of the two previously mentioned research projects, an immediate
question to address is the demand for low-emission vehicles. Consumers’ preferences for

13Although the data used in this dissertation is valid for estimation of a hybrid choice model, the
surveys were not designed for these models.
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low-emission vehicles must be understood, first, in a context where the new technologies
often have a low or even zero market share and hence the role of knowledge, experience
and information is critical. Second, demand for low-emission vehicles is a decision-
making process guided by environmental preferences. Third, because travel demand is
derived from the activity system, demand for green vehicles shows complex interactions
within the transportation system and with other systems including the natural environ-
ment. A comprehensive research project in the context of demand for cleaner and more
efficient vehicles should provide tools for analyzing all these components together by de-
veloping comprehensive models of travel behavior based on integrating multidisciplinary
complementary methods. These models will have to be consistent with the complexity
of the transportation, environmental and urban systems, allowing us to predict travel
behavior and to model policy scenarios that are compatible with reducing environmental
impacts, as well as with an efficient use of energy resources and existent infrastructure.
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