
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-017 March 25, 2011

Multicore Performance Optimization
Using Partner Cores
Eric Lau, Jason E Miller, Inseok Choi, Donald
Yeung, Saman Amarasinghe, and Anant Agarwal

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4426465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Multicore Performance Optimization Using Partner Cores

Eric Lau1, Jason E Miller1, Inseok Choi2, Donald Yeung2, Saman Amarasinghe1, and Anant
Agarwal1

1MIT Computer Science and Artificial Intelligence Laboratory
2University of Maryland Dept. of Electrical and Computer Engineering

Abstract

As the push for parallelism continues to increase the
number of cores on a chip, and add to the complexity
of system design, the task of optimizing performance
at the application level becomes nearly impossible for
the programmer. Much effort has been spent on de-
veloping techniques for optimizing performance at run-
time, but many techniques for modern processors employ
the use of speculative threads or performance counters.
These approaches result in stolen cycles, or the use of
an extra core, and such expensive penalties put demand-
ing constraints on the gains provided by such methods.
While processors have grown in power and complexity,
the technology for small, efficient cores has emerged.
We introduce the concept of Partner Cores for maximiz-
ing hardware power efficiency; these are low-area, low-
power cores situated on-die, tightly coupled to each main
processor core. We demonstrate that such cores enable
performance improvement without incurring expensive
penalties, and carry out potential applications that are im-
possible on a traditional chip multiprocessor.

1 Introduction

As multicore chips scale to larger numbers of cores, sys-
tems are becoming increasingly complex and difficult to
program. Parallel architectures expose more of the sys-
tem resources to the software and ask programmers to
manage them. In addition, with energy consumption now
a primary system constraint, programmers are forced to
optimize for both performance and energy; a task that’s
nearly impossible without knowing the exact hardware
and environment in which an application will run. As
a result, it is no longer possible for the average pro-
grammer to understand and manage all of the constraints
placed upon them.

One approach to reducing the burden placed on pro-
grammers is the use of self-aware systems. Self-aware

systems (sometimes also known as autonomic, adap-
tive, self-optimizing, etc.) attempt to automatically mon-
itor the system and dynamically optimize their behavior
based on runtime conditions. This reduces the amount of
optimization a programmer must perform and frees them
from the need to anticipate all possible system configu-
rations a priori. However, on modern multicores, self-
aware software systems must share the same resources
being used by the application. Many run as extra threads,
requiring additional context switches or a dedicated core.
Some even interrupt the application to collect statistics
and perform adaptations. Both of these can increase ap-
plication runtime and energy consumption thereby re-
quiring larger gains for the self-aware technique to be
worthwhile.

To help reduce these costs and even enable new types
of self-aware systems, we propose a new hardware struc-
ture called a Partner Core. A partner core is essentially
a small, low-power core that is tightly-integrated with a
primary core, allowing it to observe and adjust the be-
havior of the primary (or main) core. The self-aware
runtime code can then be off-loaded to the partner core,
freeing the main core to concentrate on the application.
Whereas the main cores in a system are optimized for
performance, the partner cores are optimized for energy-
efficiency and size. This allows the self-aware algo-
rithms to be run very cheaply, and so it can more easily
produce a net positive effect. Since the self-aware algo-
rithms generally do not require as much computation as
the application, the lower performance is perfectly ac-
ceptable.

Partner cores can be used for a variety of tasks in-
cluding introspection, decisions, and adaptations, the key
components of the ODA (Observe-Decide-Act) loop that
is characteristic of self-aware systems. Introspection in-
cludes the observation of main core state such as status
registers, performance counters, cache contents, mem-
ory operations, and on-chip network traffic and well as
application status through something like the Heartbeat

API [10]. A variety of decision algorithms can be used
including those based on control theory, machine learn-
ing, pattern matching, and simple heuristics. Finally,
partner cores have the ability to take action by modifying
cache state or contents, communicating with the applica-
tion via APIs, controlling adaptive hardware structures,
etc.

We have analyzed the performance of a partner core
augmented processor using memory prefetching imple-
mented in Helper Threads [13] on the EM3D benchmark
from the Olden suite [23]. Using partner cores and helper
threads we are able to achieve application speedup of up
to 3x and increase power efficiency by up to 2.23x.

2 Architecture

At a high-level, a Partner Core is simply a small, low-
power core attached to a larger primary compute core.
What makes it unique is its emphasis on low-power
rather than performance and the way in which it is con-
nected to the primary core. This section describes the
architecture of a partner core, how it connects to the
main core, and discusses some of the design consider-
ations. Because we are targeting future multicore pro-
cessors containing hundreds of cores, we assume a tiled
architecture with on-chip mesh networks (similar to the
Intel Tera-Scale prototype [3] or a Tilera TILE64 [27]) as
a baseline. However, Partner Cores could also be used in
other architectures and even make sense for single-core
chips.

2.1 Partner Core Design
Figure 1 shows the contents of a single tile in our pro-
posed multicore architecture. The major components are
the main compute core, the partner core, and the on-chip
network switches. The main core contains a conventional
64-bit datapath with FPU plus L1 and L2 caches which
miss to DRAM over the on-chip network.

The partner core uses a smaller, simpler pipeline to
save area and energy. A narrower datapath is sufficient as
long as the ISA allows it to manipulate the larger words
of the main core when needed (probably taking multi-
ple cycles). The partner core probably doesn’t require an
FPU although it is possible that future self-aware algo-
rithms might demand one. By reducing the size of the
register file and number of pipeline stages, we can fur-
ther reduce the complexity and footprint of the partner
core.

Although the partner core contains its own L1 caches
(or possibly a unified L1 cache), it shares the L2 cache
with the main core. This allows the partner core to easily
observe and manipulate the main core’s memory. Partner
core accesses can be throttled or given lower priority to

Partner Core Architecture

L1
I$

64b Pipeline

FPU

PC L1
D$

Low-V
L1 I$

32b Pipeline

PCLow-V
L1 D$

Unified
L2 Cache

Request
Queue

Throttled or
low priority

On-chip
Network
Switch

Event
Q’s

Fr
om

 P
ro

be
s

Main
Core

Partner
Core

Soft Events

P1
P2

Low-power
Partner

Network

Figure 1: Architecture of multicore tile showing main
and partner cores and the connections between them.

reduce the chances that partner core accesses will nega-
tively impact main core performance.

Just as the main cores need to communicate to work
together, the partner cores in different tiles may need
to communicate to coordinate their actions. Providing a
separate network for this purpose has several advantages:
there is no chance of stealing bandwidth from the main
cores; the Partner Network can be matched to the specific
bandwidth needs of the partner cores, and optimized for
size and energy; and the isolation provides greater pro-
tection when using Partner Cores to implement fault de-
tection or security algorithms.

The most important features of the partner core are the
observation and action interfaces with the main core. The
tight coupling between the two cores is what enables the
partner core to run self-aware algorithms efficiently. The
partner core has the ability to directly inspect some of
the main core’s key state such as status registers, perfor-
mance counters, L2 cache, etc. However, it would be
extremely inefficient if the partner core had to poll for
everything. Therefore, the main core is augmented with
event probes, small pieces of hardware that watch certain
state and generate events when specified conditions are
met. Event probes are essentially performance counters
with a programmable comparator and extra registers to
store trigger values. They can be set to watch for specific
values or values within or outside of a specified range.
When the conditions are met, an event is generated and
placed in a queue between the cores (Figure 1). Events
can also be generated directly from software, e.g., to im-
plement the Heartbeats API [11].

2

Core Node SRAM Size Scaled Size
(nm) (bytes) (mm2) (mm2)

µcontroller 65 128K 1.5 0.05
RAW 180 128K 16 0.25

Intel Core 2 65 2M/4M 80 9.0

Table 1: Size specifications for selected core types;
scaled sizes are for the 22nm node.

2.2 Area

A key feature of the partner core is that it will be purely
speculative, meaning that its instructions are never com-
mitted in the main computation. This relaxes the speed
requirement, allowing us to design partner cores without
much concern for switching speed. This relaxed con-
straint allows partner cores to be implemented with min-
imal complexity and area. In this way, partner cores can
be situated physically close to the main core, and benefit
from the tight architectural coupling. Much of the recent
work in small, low-power processors for embedded sys-
tems can be used for the design of a partner core. A good
example is found in [16], where a 65nm ultra-low power
16-bit microcontroller contains core logic that occupies
just 0.14mm2, and 128K of low-power SRAM that occu-
pies 1.36mm2.

This is in contrast with modern general-purpose cores
like the Intel Core 2, where logic alone covers 36 mm2

of silicon [7]. Admittedly, a tiled multicore system will
have cores that are considerably less complex. A better
basis for comparison may be a tile in the RAW system,
which contains sixteen single-issue, in-order RISC pro-
cessors at 180nm technology [26].

Table 1 shows the sizes of these cores in their native
technology, and also scaled to the 22nm node using first-
order scaling trends. The microcontroller was adjusted
to accommodate a 64-bit datapath, and a 16K SRAM. At
this feature size, such a microcontroller would occupy
around 20% of a RAW tile. Since processors in future
manycore systems will likely be more complex than the
RAW processor, 10% tile area is a reasonable target for
a partner core.

2.3 Power

One of the primary design metrics for massively parallel
systems is energy per operation, rather than clock speed
or silicon area. Another advantage of this relaxed con-
straint is that it allows us to design for the lowest energy
consumption without much concern for switching speed.

Voltage scaling has already emerged as one of lead-
ing low-power solutions for energy efficient applica-
tions, mainly due to the quadratic savings in power (eg.
[12, 4]). As the technology for ultra-low voltage circuits

µController TilePro64 Intel Core 2
Energy 27.2pJ 286pJ 101nJ

Table 2: Energy per cycles for selected core types.

becomes more mature, work has been done in the design
of entire low-power systems-on-a-chip. Sub-threshold
circuits have received particular attention: [29] imple-
mented a 130nm processor with an 8-bit ALU, 32-bit
accumulator, and a 2Kb SRAM functioning at 200mV;
[16] demonstrated a 65nm processor with a 16-bit mi-
crocontroller and 128Kb of SRAM functioning down to
300mV. These implementations are likely too simple for
a primary application core, but the energy efficiency of
such microcontrollers are ideal for a partner core.

Table 2 shows the energy consumption per cycle of
several cores [1, 9, 16], where it is clear the 16-bit mi-
crocontroller’s power demands are a fraction of the full
application cores. The Tilera TilePro64 tile contains a
RISC processor that most closely resembles a core in a
massively multicore system, and consumes 10x more en-
ergy per instruction than the microcontroller.

Dynamic voltage and frequency scaling (DVFS) is an-
other method for energy conservation commonly used in
the design of embedded systems. The speculative na-
ture of the partner core and its low speed constraints
means that for most operations, a partner core can run
at frequencies that allow for lower supply voltages. Volt-
age scaling can be implemented with power regulators,
but these often require passive devices that necessitate
the use of off-chip components, posing scalability chal-
lenges for multicores. Switched-capacitor converters are
a viable on-chip alternative for supplying power to a part-
ner core, but a major criticism is that they occupy large
silicon area [25]. Fortunately, recent work has seen inte-
grated converters taking up as little as 0.16mm2 of sili-
con area [22], which maintains the plausibility of voltage
scalable partner cores.

3 Potential Applications

The tight coupling of a partner core and its main core
affords the former direct access to many of the latter’s
native architecture. Along with the favorable energy ef-
ficiency of a partner core, this opens the door for many
applications. This section describes a number of pon-
tential areas where a system implementing partner cores
might benefit.

3.1 Self-Aware Computing
Traditional systems require the programmer to develop
procedures that a processor executes irrespective of run-
time conditions, and it is up to the programmer to balance

3

system constraints for optimal source code. Unfortu-
nately, this has become increasingly difficult for increas-
ingly complex parallel systems. Self-aware systems re-
lieve some of this burden by monitoring itself and adapt-
ing to meet performance objectives [8, 10].

Of course, such a system must be provided with a
way to monitor itself, which can be done purely in soft-
ware [10, 5], or with the support from native hardware.
A hardware approach is attractive because several pa-
rameters are not available through a standard ISA, and
many parameters can be monitored simultaneously in
hardware. However, continuous observation on an appli-
cation core is difficult: polling performance counters for
a rare event is unrealistic, and an interrupt-based scheme
is expensive. Furthermore, often the appropriate time to
act on an observation is exactly during the critical sec-
tion: possibly at a thermal emergency, or a sudden drop
in throughput. Thus, time is spent away from the appli-
cation exactly when it is most valuable!

A partner core possesses an execution context that is
decoupled from the main core, so interrupting partner
cores have no effect on the application. In addition, many
actions can be executed by the partner core, such as allo-
cating more resources, or dynamically scaling frequency,
so the main core remains dedicated to the application
when it is most critical.

3.2 Reliability

Another pressing issue with the growth of complexity
and reduction of supply voltages is the increased vul-
nerability to transient faults. One fault-detection ap-
proach for microprocessors is redundant multithreading
(RMT), which simultaneously runs two identical threads
and compares the results [21]. This can be implemented
on a standard SMT processor, where the trailing thread
waits for confirmation with the leading thread before
committing any results. Another approach is to run the
threads in separate processors in lockstep, which can
be found in commercial fault-tolerant systems [28, 24].
Lockstepping has the added advantages of speed and the
detection of permanent faults. However, as a result, re-
sources are wasted because mis-speculations and cache
misses are repeated in both cores. Chip-level redundant
multithreading (CRT) executes a loosely synchronized
redundant thread on a separate processor, and eliminates
the threat of repeating cache misses and mis-speculations
by sharing load and store queues between cores. This re-
lies on the assumption that the distance between cores is
short [21], which has obvious scalability issues for mas-
sively multicore systems. With the emergence of wire
delay being the dominant contributor to latency, CRT
loses its advantage of speed as well.

partner cores are ideal for this approach on fault de-

tection. First, it runs redundant threads on separate hard-
ware, so it avoids the slowdown that affects RMT im-
plementations. Second, it gains all the advantages of
a CRT implementation and overcomes its issues at the
same time. Since partner cores are paired with each com-
pute core, it is easily scalable to tiled multicore architec-
tures. As well, since the partner core shares the L2 cache,
executing the leading thread on a partner core allows it
to hide the cache miss latency for the trailing application
thread. Finally, the physical proximity of the partner core
provides it access to the compute core’s pipeline, provid-
ing access to the branch history table and branch table
buffer, allowing explicit elimination of mis-speculations.

3.3 Security

Since a partner core needs only improve the performance
of a multicore system, there is no need for it to run
application-level code. This keeps the partner core de-
coupled from potentially malicious code running on the
main cores, allowing it to monitor the health of the sys-
tem at a separate layer from the application.

As an example, the partner core can monitor the mem-
ory accesses that its application core is executing, flag-
ging illegal accesses to kernel memory, or any other
space not belonging to the application. Such a security
feature could incorporate pointer tainting. Pointer taint-
ing is a form of dynamic information flow tracking that
marks the origin of data by a taint bit inaccessible by the
application (e.g., in a partner core). Tracking the prop-
agation of the tainted data, a secure system can deter-
mine whether any data derived from the tainted origin is
stored in an illegal location. While this is implementable
in software, hardware implementations of pointer taint-
ing accumulate minimal overhead [6].

4 Case Study: Memory Prefetching

One of the main bottlenecks on performance is memory
latency. While clock frequencies of modern processors
have advanced rapidly, memory access times have re-
mained remarkably slow in relation. Memory prefetch-
ing attempts to hide cache miss latency by addressing
problematic loads at the thread level. This section studies
the potential benefits of running helper threads on partner
cores.

4.1 Methodology

We instrumented helper threads for EM3D, a benchmark
from the Olden suite [23], using the techniques described
in [13, 14]. In particular, we created a single helper
thread to run in parallel with EM3D (i.e., the “compute

4

thread”). The helper thread triggers cache misses nor-
mally incurred by the compute thread, but omits all com-
putations unrelated to cache-miss generation.

The EM3D benchmark and its helper thread were ex-
ecuted on the MIT Graphite simulator [20]. Graphite
was configured to simulate a single compute and part-
ner core, with each core issuing 1 instruction per cy-
cle in program order. The main core clocks at 1 GHz
while the partner core clock is varied between 100 MHz–
1 GHz to simulate different design points. Accessing the
L1, L2, and main memory takes 3, 9, and 100 ns, re-
spectively. Prefetch commands are communicated from
the partner core to the main core via a FIFO queue; a
prefetcher on the main core reads these commands and
executes prefetches into the main core’s L2 cache. Fi-
nally, while we do not simulate power, we assume a 1
GHz partner core consumes the same power as the main
core, with partner core power reducing quadratically as
its clock frequency decreases.

4.2 Experimental Results

Figure 2 presents our results. The light-shaded bars re-
port the execution time of EM3D with helper threads
normalized against the execution time without helper
threads. We see that a 1 GHz partner core achieves a 3x
performance gain, demonstrating that EM3D is memory
bound, and that the helper thread can effectively toler-
ate cache-miss latency when running on a fast core. The
figure also shows that helper threads can still provide a
performance gain on slower partner cores. In fact, the
performance gain for a 500 MHz partner core (64%) is
still significant. Even with a 100 MHz partner core, the
performance gain is still 33%. This demonstrates that the
helper thread exhibits significant slack which can be used
to tolerate slower Partner Core execution.

The dark-shaded bars in Figure 2 report the power effi-
ciency (performance/watt) of EM3D with helper threads
normalized against the power efficiency without helper
threads. These bars show several interesting results.
First, with a 1 GHz partner core, the normalized power
efficiency is 1.46. Even though the partner core doubles
the system power in this case, power efficiency still im-
proves because the helper thread provides a three-fold
performance boost. This shows helper threading can im-
prove power efficiency given symmetric cores. Second,
power efficiency is higher for the 100–500 MHz partner
cores compared to the 1 GHz partner core. Although per-
formance decreases on the slower partner cores, the per-
formance loss is smaller than the corresponding power
reduction. This shows better power efficiency can be
achieved using asymmetric cores. Finally, the 500 MHz
partner core achieves the best normalized power effi-
ciency, 2.23. Due to the slack exhibited by the helper

thread, very little performance loss occurs when slowing
the partner core to 500 MHz, resulting in large power ef-
ficiency gains. These results show that a partner core is
capable of considerable performance gains even at low
frequencies, where it can benefit from superior power ef-
ficiency.

5 Related Work

The Partner Core is most closely related to heteroge-
neous architectures that combine CPU and hardware
accelerators on the same die. Historically, accelera-
tors were designed as ad hoc solutions to specific prob-
lems such as graphics, encryption, or codec handling,
but lately these systems have moved to include general-
purpose accelerators like GPGPUs [19]. While an ac-
celerator can share on-die resources, it still accrues the
latency of communicating through a network. A key fea-
ture of the Partner Core concept is that it is tightly cou-
pled to the main core, and so resources such as cache,
performance counters, and registers, are directly accessi-
ble. Sharing physical resources between cores directly is
not a novel idea, but most implementations require sig-
nificant routing and run into similar problems in latency
and power [15].

Prefetching helper threads have been studied exten-
sively in the past. Early work on helper threads inves-
tigated techniques for generating effective helper thread
code for Simultaneous Multithreading (SMT) proces-
sors [2, 13, 30]. In addition to SMT processors, re-
searchers have also investigated helper threads in the
context of chip multiprocessors (CMPs) [17, 18]. Our
work is similar to these techniques since we execute
helper threads on a separate core from the compute
threads. However, to the authors’ knowledge, we are the
first to use asymmetric cores to execute the helper and
main computations.

6 Conclusion

The development of complex multicores has caused the
task of optimization to be impossible for the average pro-
grammer. A potential solution is to employ algorithms
that dynamically optimize performance, but many such
systems utilize extra execution contexts, extra cores, or
cycle stealing, incurring penalties that make it difficult
to develop useful algorithms. In this paper, we introduce
the concept of Partner Cores as a small, low-power core
that is tightly coupled to each core in a parallel system.
We showed that because of the relaxed speed constraints
of speculative and self-aware algorithms, the technology
is available for constructing Partner Cores that are 10%
the size of each application core, and 10x lower in en-

5

Partner Core Clock Frequency

Figure 2: Execution time and power efficiency of EM3D with helper threads normalized to reference with no helper
support. The partner core clock frequency is varied between 100MHz–1GHz.

ergy per instruction. We evaluated the Partner Core con-
cept by running helper threads for memory prefetching,
showing performance gains even at low frequencies.

Acknowledgements

This research was, in part, funded by the U.S. Govern-
ment as part of the DARPA UHPC program. The views
and conclusions contained in this document are those of
the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the
U.S. Government.

References
[1] A.AGARWAL. Realizing a Power Efficient, Easy to Pro-

gram Many Core: The Tile Processor. Presented at the
Stanford Computer Systems EE380 Colloquium. Available
online: http://www.stanford.edu/class/ee380/Abstracts/100203-
slides.pdf.

[2] ANNAVARAM, M., PATEL, J. M., AND DAVIDSON, E. S. Data
Prefetching by Dependence Graph Precomputation. In Proceed-
ings of the 28th Annual International Symposium on Computer
Architecture (Goteborg, Sweden, June 2001), ACM.

[3] BARON, M. Low-Key Intel 80-Core Intro: The Tip of the Ice-
berg. Microprocessor Report (April 2007).

[4] BHAVNAGARWALA, A., KOSONOCKY, S., KOWALCZYK, S.,
JOSHI, R., CHAN, Y., SRINIVASAN, U., , AND WADHWA, J.
A transregional CMOS SRAM with single, logic V and dynamic
power rails. In Symp. VLSI Circuits Dig. Tech. Papers (2004),
pp. 292–293.

[5] BITIRGEN, R., IPEK, E., AND MARTINEZ, J. F. Coordinated
management of multiple interacting resources in chip multipro-
cessors: A machine learning approach. In Proceedings of the 41st
annual IEEE/ACM International Symposium on Microarchitec-
ture (2008), MICRO 41, IEEE Computer Society, pp. 318–329.

[6] DALTON, M., KANNAN, H., AND KOZYRAKIS, C. Raksha: a
flexible information flow architecture for software security. In
ISCA ’07: Proceedings of the 34th Annual International Sympo-
sium on Computer Architecture (2007).

[7] DOWECK, J. Inside the CORE microarchitecture. In presented
at the 18th IEEE Hot Chips Symp. (Palo Alto, CA, August 2006).

[8] EASTEP, J., WINGATE, D., SANTAMBROGIO, M., AND AGAR-
WAL, A. Smartlock: Lock Acquisition Scheduling for Self-
Aware Synchronization. In Proceeding of the 7th international

conference on Autonomic computing (2010), ICAC ’10, ACM,
pp. 213–224.

[9] GROCHOWSKI, E., AND ANNAVARAM, M. Energy per instruc-
tion trends in. Intel microprocessors. Technology Intel Magazine
4, 3 (2006), 1–8.

[10] HOFFANN, H., EASTEP, J., SANTAMBROGIO, M., MILLER, J.,
, AND AGARWAL, A. Application heartbeats: A generic in-
terface for expressing performance goals and progress in self-
tuning systems. In SMART Workshop 2010. Online document,
http://ctuning.org/dissemination/smart10-02.pdf (2010).

[11] HOFFMANN, H., EASTEP, J., SANTAMBROGIO, M. D.,
MILLER, J. E., AND AGARWAL, A. Application heartbeats: a
generic interface for specifying program performance and goals
in autonomous computing environments. In ICAC (2010).

[12] KIM, D., WEI LIAO, S. S., WANG, P., DEL CUVILLO, J.,
TIAN, X., ZOU, X., WANG, H., YEUNG, D., GIRKAR, M.,
AND SHEN, J. Physical Experimentation with Prefetching Helper
Threads on Intel’s Hyper-Threaded Processors. In Proceedings
of the 2004 International Symposium on Code Generation and
Optimization with Special Emphasis on Feedback-Directed and
Runtime Optimization (San Jose, CA, March 2004).

[13] KIM, D., AND YEUNG, D. Design and Evaluation of Compiler
Algorithms for Pre-Execution. In Proceedings of the 10th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (San Jose, CA, October 2002),
ACM, pp. 159–170.

[14] KIM, D., AND YEUNG, D. A Study of Source-Level Compiler
Algorithms for Automatic Construction of Pre-Execution Code.
ACM Transactions on Computer Systems 22, 3 (August 2004).

[15] KUMAR, R., JOUPPI, N., AND TULLSEN, D. Conjoined-Core
Chip Multiprocessing. In Proc. Int’l Symp. Microarchitecture
(2004), IEEE CS Press, pp. 195–206.

[16] KWONG, J., RAMADASS, Y., VERMA, N., AND CHAN-
DRAKASAN, A. A 65nm Sub-Vt Microcontroller with Integrated
SRAM and Switched Capacitor DC-DC Convertor. IEEE Journal
of Solid-State Circuits 44, 1 (January 2009), 115–125.

[17] LEE, J., JUNG, C., LIM, D., AND SOLIHIN, Y. Prefetching
with Helper Threads for Loosely Coupled Multiprocessor Sys-
tems. IEEE Transactions on Parallel and Distributed Systems 20,
9 (July 2009).

[18] LU, J., DAS, A., HSU, W.-C., NGUYEN, K., AND ABRAHAM,
S. G. Dynamic Helper Threaded Prefetching on the Sun Ultra-
SPARC CMP Processor. In Proceedings of the 38th International
Symposium on Microarchitecture (November 2005).

[19] LUEBKE, D., HARRIS, M., KRUGER, J., PURCELL, T., GOVIN-
DARAJU, N., BUCK, I., WOOLLEY, C., AND LEFOHN, A.
GPGPU: general purpose computation on graphics hardware. In
ACM SIGGRAPH 2004 Course Notes SIGGRAPH ’04 (Los An-
geles, CA, 2004), ACM.

6

[20] MILLER, J., KASTURE, H., KURIAN, G., III, C. G., BECK-
MANN, N., CELIO, C., EASTEP, J., AND AGARWAL, A.
Graphite: A Distributed Parallel Simulator for Multicores. In
16th IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA) (January 2010).

[21] MUKHERJEE, S., KONTZ, M., AND REINHARDT, S. Detailed
Design and Evaluation of Redundant Multithreading Alterna-
tives. In ISCA ’02: Proceedings of the 29th Annual International
Symposium on Computer Architecture (2002).

[22] RAMADASS, Y., FAYED, A., HAROUN, B., AND CHAN-
DRAKASAN, A. A 0.16mm2 Completely On-Chip Switched-
Capacitor DC-DC Converter Using Digital Capacitance Modu-
lation for LDO Replacement in 45nm CMOS. In IEEE Inter.
Solid-State Circuit Conference (February 2010), pp. 208–210.

[23] ROGERS, A., CARLISLE, M., REPPY, J., AND HENDREN, L.
Supporting Dynamic Data Structures on Distributed Memory
Machines. ACM Transactions on Programming Languages and
Systems 17, 2 (March 1995).

[24] SLEGEL, T., AND ET AL. IBM’s S/390 G5 Microprocessor De-
sign. IEEE MICRO 19, 2 (March 1999), 12–23.

[25] SU, L., MA, D., AND BROKAW, A. P. A Monolithic Step-Down
SC Power Converterwith Frequency-Programmable Subthresh-
old z-Domain DPWM Control for Ultra-Low Power Microsys-
tems. In ESSCIRC (September 2008), pp. 58–61.

[26] TAYLOR, M. B., LEE, W., MILLER, J. E., WENTZLAFF, D.,
BRATT, I., GREENWALD, B., HOFFMANN, H., JOHNSON, P.,
KIM, J., PSOTA, J., SARAF, A., SHNIDMAN, N., STRUMPEN,
V., FRANK, M., AMARASINGHE, S., AND AGARWAL, A. Eval-
uation of the Raw microprocessor: An exposed-wire-delay archi-
tecture for ILP and streams. In ISCA ’04: Proc of the 31st annual
International Symposium on Computer Architecture (June 2004),
pp. 2–13.

[27] WENTZLAFF, D., GRIFFIN, P., HOFFMANN, H., BAO, L.,
EDWARDS, B., RAMEY, C., MATTINA, M., MIAO, C.-C.,
BROWN, J. F., AND AGARWAL, A. On-chip interconnection
architecture of the Tile processor. IEEE Micro 27, 5 (Sept-Oct
2007), 15–31.

[28] WOOD, A. Data Integrity Concepts, Features, and Technology.
White paper, Tandem Division, Compaq Computer Corporation.

[29] ZHAI, B., NAZHANDALI, L., OLSON, J., REEVES, A., MIN-
UTH, M., HELFAND, R., PANT, S., BLAAUW, D., , AND
AUSTIN, T. A 2.60 pJ/Inst subthreshold sensor processor for op-
timal energy efficiency. In Symp. VLSI Circuits Dig. Tech. Papers
(June 2006), pp. 154–155.

[30] ZILLES, C., AND SOHI, G. Execution-Based Prediction Using
Speculative Slices. In Proceedings of the 28th Annual Interna-
tional Symposium on Computer Architecture (Goteborg, Sweden,
June 2001).

7

