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ABSTRACT 

Over the past decade, adipose tissues have been increasingly known for their endocrine 

properties, that is, their ability to secrete a number of adipocytokines that may exert local and/or 

systemic effects. In addition to these hormonal peptides, adipose tissues have long been 

recognized as significant sites for steroid hormone transformation and action. We hereby provide 

an updated survey of the many steroid-converting enzymes that may be detected in human 

adipose tissues, their activities and potential roles. In addition to the now well-established role of 

aromatase and 11β-hydroxysteroid dehydrogenase (HSD) type 1, many enzymes have been 

reported in adipocyte cell lines, isolated mature cells and/or preadipocytes. These include 11β-

HSD type 2, 17β-HSDs, 3β-HSD, 5α-reductases, sulfatases and glucuronosyltransferases. Some 

of these enzymes are postulated to bear relevance for adipose tissue physiology and perhaps for 

the pathophysiology of obesity. This elaborate set of steroid-converting enzymes in the cell types 

of adipose tissue deserves further scientific attention. Our work on 20α-HSD (AKR1C1), 3α-

HSD type 3 (AKR1C2) and 17β-HSD type 5 (AKR1C3) allowed us to clarify the relevance of 

these enzymes for some aspects of adipose tissue function. For example, AKR1C2 expression 

down-regulation in preadipocytes seems to potentiate the inhibitory action of dihydrotestosterone 

on adipogenesis in this model. Many additional studies are warranted to assess the impact of 

intra-adipose steroid hormone conversions on adipose tissue functions and chronic conditions 

such as obesity, diabetes and cancer.  

Abbreviations: HSD, hydroxysteroid dehydrogenase; AKR, aldo-ketoreductase; HPA, 
hypothalamo-pituitary-adrenal; E2, estradiol; LPL, lipoprotein lipase; FFA, free fatty acids; IL, 
interleukin; TNF-α, tumor necrosis factor alpha; CYP, cytochromeP450; E1, estrone; PPARγ, 
peroxisome proliferator-activated receptor gamma; α-HSD, alpha-hydroxysteroid 
dehydrogenase; siRNA, small interfering RNA; DHEA, dehydroepiandrosterone; DHEA-S, 
dehydroepiandrosterone sulphate; 4-dione, androstenedione; DHT, dihydrotestosterone; UDP, 
uridine diphosphate; P450SCC, cytochrome P450 cholesterol side-chain cleavage enzyme; BMI, 
body mass index. 
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1. INTRODUCTION  

As a result of our modern lifestyles which have been increasingly characterized by physical 

inactivity and consumption of widely available low-cost, energy-dense foods, we have seen an 

obesity epidemic emerge in many industrialized societies [1]. Yet, individual responses to this 

“obesigenic environment” remain highly variable, and body fatness is, consequently, highly 

heterogeneous [2]. In a similar manner, the susceptibility to develop complications in relation to 

excess body weight is also highly variable among overweight and obese individuals. Even in the 

obese range, some appear to benefit from short-term protection from the development of medical 

problems in relation to their excess body fatness [3-5]. In this regard, one of the most critical 

predictors of disease in overweight or obese men and women is the presence of visceral obesity, 

that is, of large, centrally-located fat stores within anatomical structures such as the mesentery 

and greater omentum [6, 7]. 

 

One of the critical determinants of elevated cardiometabolic risk or the metabolic syndrome is 

adipose tissue function impairments, which include adipocyte hypertrophy, impaired 

adipogenesis, low free fatty acid uptake, reduced triglyceride synthesis, resistance to the 

inhibitory effect of insulin on lipolysis, immune cell infiltration and inflammatory cytokine 

secretion [8]. Body composition is sexually dimorphic in humans as women are often 

characterized by higher body fat percentages compared to men, who proportionally have higher 

bone and muscle masses [9-12]. Body fat distribution is also sexually dimorphic in humans [13]. 

Men usually have an android body fat distribution pattern, with adipose accumulation in the 

abdominal region, and women often display a body fat distribution pattern described as gynoid 

with a greater proportion of gluteal and femoral adipose tissue. The amount of fat located inside 
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the abdominal cavity, termed intra-abdominal or visceral fat, includes omental, mesenteric and 

retroperitoneal fat [14], and is found in amounts that are significantly higher in men compared to 

women at every body size [8]. Within a given sex however, large interindividual variations in the 

amount of visceral fat are found: approximately 10-fold in samples of lean to moderately obese 

Caucasian men and women [13]. In both males and females, large accumulation of visceral 

adipose tissue is a critical determinant of obesity-related metabolic alterations which are known 

to increase the risk of type 2 diabetes and cardiovascular disease [15, 16]. In fact, abdominal-

visceral obesity is recognized as the most prevalent manifestation of the metabolic syndrome, 

and certainly represents an essential feature of the current obesity epidemic [8, 17]. 

 

Sex steroid hormones, and more generally steroid hormones, have long been recognized as 

important modulators of body fat distribution patterns [8]. However, many etiological factors 

remain to be identified to fully understand preferential deposition of fat within the abdomen in 

some individuals in conditions of excess energy intake [8]. Of note, the mechanisms by which 

steroids influence the various aspects of adipose tissue function have generally remained elusive, 

especially in humans [18]. While physiologists have been aware of the local uptake and 

conversion of steroid hormones in adipose tissue for many years [2], not all studies have taken 

into consideration the presence of numerous steroid-converting enzymes that may alter the 

ultimate fate and action of a given steroid entering adipose cells. A little more than a decade ago, 

we have published a first survey of the steroid-converting enzymes that had been detected in 

adipose tissue up to that time [2]. The present article presents an updated survey, and addresses 

the potential role of steroid-converting enzymes in modulating active steroid availability and 
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adipose tissue homeostasis in a depot-specific manner. Their involvement in chronic conditions 

such as abdominal obesity, diabetes or hormone-dependent cancers is reviewed where relevant. 

  

2. MODULATION OF GLUCOCORTICOID DYNAMICS 

11β-HSD type 1 

Excessive circulating glucocorticoid concentrations, as observed in Cushing’s syndrome, create a 

pathological phenotype with features such as abdominal obesity, dyslipidemia, insulin resistance, 

and hypertension [19]. For most cases, cortisol hypersecretion originates from the pituitary gland 

(Cushing’s disease) and results from excessive adrenocorticotropic hormone secretion [20]. 

Although individuals with non-Cushing, idiopathic abdominal obesity share some of the 

morphological and metabolic alterations of Cushing’s syndrome, alterations in the sensitivity and 

drive of the hypothalamo-pituitary-adrenal (HPA) axis are much more subtle [21, 22]. Hence, 

there is a distinction to be made between systemic and adipose tissue hormone levels. In non-

Cushing abdominal obesity, circulating cortisol is normal and HPA axis alterations are modest at 

best [22]. Accordingly, detailed analyses of urinary glucocorticoid metabolites in these patients 

have shown that peripheral conversion of glucocorticoids is altered [23, 24], that adipose tissue 

cortisol has a slow turnover, and that it is fairly independent from systemic cortisol variation 

[25]. Increased cortisol synthesis specifically in adipose tissues likely predominates in these 

cases. The effects of glucocorticoids on adipose tissue are summarized in Figure 1. 

 

The main reaction of 11β-HSD type 1 is the activation of glucocorticoids with inactive 

circulating 11-keto steroids as substrates. In humans, 11β-HSD1 reduces inactive cortisone to 

active cortisol, especially in visceral adipose tissue (reviewed in [2]). In animal models, the 
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impact of 11β-HSD1 on the development of abdominal obesity has been clearly established. In 

11β-HSD1 knockout mice, resistance to hyperglycemia induced by obesity is observed [26]. 

Conversely, when the 11β-HSD1 gene is overexpressed in adipose tissue, even only moderately, 

animals develop abdominal obesity and metabolic disorders such as dyslipidemia and insulin 

resistance [27]. Visceral adipocyte size and non-esterified fatty acid release are also increased in 

this model [27]. In humans, some studies reported higher expression of the enzyme in omental 

vs. subcutaneous fat [28, 29]. However, most reported no regional difference [30, 31]. Some 

found positive correlations between 11β-HSD1 expression in subcutaneous adipose tissue and 

obesity level [28, 30-32], and a limited number of studies that had access to human visceral fat 

samples showed positive associations between 11β-HSD1 expression in omental (OM) adipose 

tissue and overall adiposity [28, 31-33]. In a study of 36 women for whom we had obtained 

visceral and subcutaneous adipose tissues and performed detailed characterization of body 

composition and fat distribution [34], we have reported that omental adipose tissue 11-

oxoreductase activity on cortisone was positively associated with visceral adipose tissue area 

measured by computed tomography as well as omental fat cell size. In addition, women with the 

highest cortisone oxoreductase activity in omental fat were those characterized by increased 

omental fat cell lipolysis, high lipoprotein lipase activity, low circulating levels of high-density 

lipoprotein cholesterol, low adiponectin levels, and high insulin resistance index compared to 

women with low activity [34]. In another study [35], in vivo conversion of cortisone to cortisol in 

subcutaneous adipose tissue was found to be increased in obese diabetic patients compared to 

non-diabetic obese or lean individuals. Finally, 11β-HSD1 is expressed in immune cells in both 

mice and humans [36] and it may modulate the inflammatory response [37, 38]. Overall, studies 
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in humans and rodent models provide strong evidence of a major etiologic role for 11β-HSD1 in 

abdominal, visceral obesity and related metabolic alterations. 

 

11β-HSD1 has now clearly become a potential therapeutic target for the treatment of type 2 

diabetes [39, 40]. For example, 11β-HSD1 inhibitor INCB13739 was added to metformin 

therapy in type 2 diabetic patients with inadequate glycemic control and was effective in 

improving hyperglycemia over a 12-week period [41]. Inhibition of 11β-HSD1-generated 

cortisol in adipose tissue may offer a new approach in the control of abdominal obesity-related 

alterations and cardiometabolic risk factors in type 2 diabetes. 

 

11β-HSD type 2 

11β-HSD2 is highly expressed in the kidney, where it drives the conversion of cortisol into 

cortisone and by doing so, protects cells from active glucocorticoid exposure [42]. It also has 

been detected in adipose tissues, the likely source being the stroma-vascular cell fraction [33, 

43]. Expression of 11β-HSD2 in subcutaneous adipose tissue was negatively associated with 

BMI in one study [43]. Moreover, expression of 11β-HSD2 was increased in subcutaneous 

adipose tissue in an obese rat model compared to lean controls [44]. Overexpression of 11β-

HSD2 in mice led to resistance to diet-induced obesity through lower food intake and increased 

energy expenditure [45]. The enzyme has been suggested to limit excess fat storage by 

inactivating active glucocorticoids and preventing access to their receptor. However, in a study 

by our group, expression levels of 11β-HSD2 were 10 times lower than those of 11β-HSD1 and 

did not track with adiposity levels of the donors assessed by dual-energy absorptiometry and 

computed tomography [46]. Another study demonstrated that conversion of cortisol to cortisone 
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in subcutaneous adipose tissue did not correlate with the presence of obesity and type 2 diabetes 

[35]. The actual physiological impact of this enzyme subtype on human adipose tissue function 

remains to be established. 

 

3. MODULATION OF ESTROGEN DYNAMICS 

Central effects of estradiol (E2) have been described on energy intake in rodents [47, 48], but 

other studies also have reported direct estrogen impact on adipose tissue metabolism [49]. 

Estrogenic action in adipose tissue is supported by the presence of receptor isoforms α and β [50, 

51]. Sex- and depot-related differences in estrogen receptor levels have been reported [51-54]. In 

mice, knockout of the estrogen receptor α is associated with increased adiposity [55]. In women, 

genetic variants in the genes coding for estrogen receptors α and β are associated with slightly 

increased body fat mass and visceral fat accumulation [56-58]. In addition, menopause has been 

related to increased central adiposity and visceral fat accumulation, a phenotype that is 

attenuated by hormone replacement therapy [59-64]. In a recent study, we found that estrogenic 

status influences circulating levels of Acylation Stimulating Protein (ASP) as well as gene 

expression level of its receptor in adipose tissues [65]. 

 

Regarding the impact of E2 on adipose tissue, exogenous administration of the hormone to 

premenopausal women decreased lipoprotein lipase (LPL) activity in the gluteal fat compartment 

[66] whereas opposite effects were found in postmenopausal women [67]. Hormone replacement 

significantly decreased adipose tissue FFA release by 10 to 20% in postmenopausal women [68]. 

While some studies reported little effects of ovarian hormonal status on basal and catecholamine-

stimulated lipolysis in subcutaneous adipose tissue [67, 69], higher LPL and basal lipolysis were 
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observed in visceral adipose tissue samples of ovarian hormone-deficient women [69]. These 

results suggest that E2 may decrease adiposity and abdominal fat accumulation through both 

central and peripheral effects, some of which take place in adipose tissue (Figure 1). However, 

more studies are needed to firmly establish the effect of E2 on adipose tissue homeostasis in pre- 

and post-menopausal women. For example, in vitro E2 treatment of subcutaneous mature 

adipocytes leads to a decrease in LPL and to an increase in hormone-sensitive lipase (HSL) 

expression in subcutaneous mature adipocytes, but only at high concentrations, suggesting a 

biphasic action on adipose tissue lipogenic and lipolytic capacity [70]. Estrogens may also 

stimulate preadipocyte proliferation with a more pronounced impact in women than in men [71, 

72]. Overall, even if many aspects of estrogenic action remain to be clarified, most investigators 

agree that E2 likely plays an important role in the modulation of adipose tissue metabolism and 

function. Enzymes responsible for E2 synthesis contribute not only to local availability of the 

hormone, but also to whole-body estrogen dynamics, as discussed in the sections below. 

 

Aromatase 

Estrogens are secreted by the ovaries in premenopausal women, and extragonadal sites represent 

a significant source, especially in postmenopausal women and men [73]. This occurs mainly in 

adipose tissue through conversion of androstenedione (4-dione) and testosterone by P450 

aromatase. The relationship between aromatase and adipose tissue was first highlighted in the 

1970’s when Edman and MacDonald [74, 75] observed a correlation between aromatase activity 

and body weight in pre- and postmenopausal women. Subsequently, conversion of 4-dione to E1 

was reported in the stromal cell fraction of human subcutaneous adipose tissue [76]. A plethora 

of scientific articles has now firmly established the critical importance of this enzyme for 
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estrogen dynamics and pathological conditions such as breast cancer and obesity (Reviewed in 

[77]). As one of many examples, male and female aromatase-knockout mice are obese and show 

increased visceral fat accumulation [78, 79]. 

 

As demonstrated and reviewed by Simpson [77], P450 aromatase gene expression is controlled 

by different promoters that are alternatively used, explaining that transcripts of this enzyme in 

different tissues differ by their 5’-termini. On the other hand, the coding regions and the 

expressed proteins remain the same among the various tissues. Each promoter is stimulated by a 

specific pathway. In adipose tissue, promoter I.4 is regulated by inflammatory cytokines such as 

IL-6 and TNF-α [80, 81]. Glucocorticoids are also required for I.4 stimulation [82]. 

 

In human breast preadipocyte cultures, short term exposure to PPAR-γ agonists decreased the 

mRNA and activity of aromatase [83]. Conversely, we have demonstrated that several days after 

inducing preadipocyte differentiation, P450 aromatase expression is rather increased, at least in 

subcutaneous abdominal preadipocytes [52]. Further studies are required to firmly establish the 

impact of adipogenesis on aromatase activity and expression. 

 

Obesity has emerged as an important risk factor of breast cancer in post-menopausal women 

[84]. The mechanisms underlying this association are currently being investigated [85-87]. 

Adipose tissue-derived estrogens may play a role by stimulating breast tumor growth as adipose 

tissue surrounding breast tumors expresses higher levels of aromatase. Accordingly, aromatase 

inhibitors now represent a treatment of choice in postmenopausal breast cancer [88]. 
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17β-HSDs 

The 17β-hydroxysteroid dehydrogenases (17β-HSDs) play a critical role in the biological activity 

of estrogens and androgens by catalyzing the reduction of 17-ketosteroids or the oxidation of 

17β-hydroxysteroids using NAD(P)H or NAD(P)+ as cofactor [89]. The enzyme activities 

associated with the various 17β-HSD isoenzymes are widespread in human tissues, not only in 

classic steroidogenic tissues such as the testis, ovary, and placenta, but also in a large series of 

peripheral intracrine tissues [90, 91]. In the nineties, several new types of 17β-HSDs were 

described, indicating a fine, tissue-specific regulation. To date, 14 17β-HSD isoenzymes were 

identified in mammalians. Even if they participate in the formation of sex steroids, certain types 

are expressed exclusively in some peripheral tissues [89]. More importantly, many 17β-HSDs 

have a selective substrate affinity, directional activity in intact cells (reductive or oxidative), and 

a particular tissue distribution. These characteristics are important determinants of the activity of 

the 17β-HSD family. Estrogenic 17β-HSDs in particular catalyze the conversion of E1 to E2. 

This activity has been observed in human adipose tissue [91, 92] and in human preadipocyte 

cultures [93]. In vitro, differentiation of preadipocytes to lipid-storing cells has been 

demonstrated to increase 17β-HSD activity on E1 [93]. The isoenzyme(s) responsible for 

estrogenic 17β-HSD activity in adipose tissues remain(s) to be formally identified. 

 

Type 1 17β-HSD is expressed in preadipocytes and differentiated adipocytes, but induction of 

differentiation does not seem to modulate its expression level [93]. Interestingly, type 1 17β-

HSD protein was not detected by immunoblotting in the latter study. Corbould et al. [94] had 

demonstrated that type 1 17β-HSD mRNA could be detected but that it was incompletely 

spliced, possibly leading to an inactive protein. Another study reported no significant expression 
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of this isoenzyme [95]. Type 1 17β-HSD is unlikely to be involved in E2 synthesis in adipose 

tissues. 

 

17β-HSD type 12 was initially discovered as mammalian ortholog for yeast (S. cerevisiae) 

microsomal enzyme 3-ketoacyl CoA reductase, which has the ability to elongate long and very 

long chain fatty acids. Human 17β-HSD type 12 catalyzes the same reaction [96] and also plays 

a role in estrogen formation as it catalyzes the conversion of E1 to E2. The expression rate of 

17β-HSD type 12 is high in organs related to lipid metabolism such as liver, kidney, heart and 

skeletal muscle. 17β-HSD type 12 is also expressed in endocrine-related organs such as the 

pancreas, pituitary gland, adrenal gland, testis and placenta as well as the gastrointestinal tract, 

suggesting a role in the regulation of both fatty acid synthesis and steroid metabolism [97].  

 

In our studies [93], the increase in estrogenic 17β-HSD activity taking place with preadipocyte 

differentiation coincided with an increase in protein level of the type 12 isoenzyme, and mRNA 

expression of its transcript was substantially higher compared to the very low mRNA expression 

levels of two other estrogenic 17β-HSD enzymes, namely types 1 and 7. These results indirectly 

suggest that type 12 17β-HSD may act as one of the steroid-converting enzymes involved in the 

local conversion of E1 into E2 in differentiated adipocytes [93].  

 

The isolation of 17β-HSD type 4 showed its ability to oxidize E2 to E1 [98]. The enzyme is 

expressed in estrogenic tissues and the highest expression level was found in liver [99]. This 

isoenzyme is also involved in the β oxidation of very long chain fatty acids (like C24:0 and 

C26:0) [100]. It also plays a role in the β oxidation of branched fatty acids [101] and in the 
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synthesis in bile acids (di- and tri-cholestanoic acids (DHCA and THCA) [102]. Quinkler et al 

[95] observed significant expression of this enzyme in omental and subcutaneous adipose tissue. 

The depot difference in expression levels of this enzyme and its impact on adipose tissue biology 

are uncertain [95]. 

 

17β-HSD type 7 was initially discovered as a prolactin receptor-associated protein [103]. 

Subsequently, the enzymatic action of 17β-HSD7 was established as the reduction of E1 using 

NADPH to produce E2 [104]. Moreover, the enzyme is involved in postsequalene 

cholesterogenesis [105, 106] and has an important role in cholesterol metabolism [106-108]. 

Recently, a shorter form of 17β-HSD7 has been described [109]. This isoenzyme is present in 

liver, prostate, uterus and placenta. It catalyzes the conversion of E1 to E2 and DHT into 5α-

androstane-3β, 17β-diol in HEK293 cells [105]. Mackenzie et al measured its expression in 

adipose tissue and observed that it was more highly expressed in omental than in subcutaneous 

fat [110]. Its role remains to be established. 

 

17β-HSD type 8 is the protein product of the Ke6 gene which is involved in the development of 

cystic kidney disease in the mouse [111]. 17β-HSD type 8 is expressed in liver and kidney [112], 

ovaries and testes [111] and in other tissues [113]. It primarily catalyzes the oxidation of E2 but 

also can catalyze the E1 to E2 reaction [111]. Recent studies suggested that 17β-HSD type 8 may 

use fatty acyl thioesters as substrates [114], suggesting a role of 17β-HSD type 8 in fatty acid 

metabolism rather than in steroid metabolism. Type 8 17β-HSD mRNA was first described in 

adipose tissue by Blouin et al. in both the omental and subcutaneous depots [115]. Further 
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studies need to be performed to determine whether this isoform has some relevance for adipocyte 

physiology.  

 

4. MODULATION OF PROGESTERONE DYNAMICS 

Some in vivo and in vitro studies have shown that progesterone may stimulate fat accretion by 

increasing LPL activity, lipid synthesis and steroid-mediated differentiation of preadipocytes 

[116-122]. These results, however, are far from being unanimous. For example, some researchers 

reported no effect of progesterone on LPL activity in rat adipose tissue [123] while others 

suggested that progesterone could be involved in the female fat distribution pattern through anti-

glucocorticoid action in abdominal adipose tissue [124]. This notion is supported in part by the 

finding that progesterone inhibits glucocorticoid-induced fat cell differentiation, lipogenesis, or 

body fat accumulation [125, 126]. In cultured rodent preadipocytes, progesterone increased gene 

expression of sterol regulatory element binding transcription factor 1 (Srebf1) which in turn 

controls the transcription of fatty acid synthase [117]. In female rats treated with progesterone, 

mRNA levels of leptin and resistin increased while there was a decrease in adiponectin 

expression in inguinal white adipose tissue. In contrast, in male rats treated with progesterone 

there was no effect on the expression of leptin, resistin and adiponectin in the same tissue 

compartment [127] (Figure 1). In our experiments, progesterone had no consistent effect on fat 

cell differentiation and progesterone receptor mRNA expression was barely detectable [128]. 

 

20α-HSD (AKR1C1) 
 
A member of the aldo-ketoreductase 1C family, 20α-HSD (AKR1C1), is known to inactivate 

progesterone (20-oxoreductase activity), synthesize testosterone from 4-dione (17-oxoreductase 
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activity) and inactivate dihydrotestosterone (3-oxoreductase activity) [129]. Stable transfection 

assays show, however, that conversion of progesterone to 20α-hydroxyprogesterone is the 

predominant activity of this enzyme [129]. In adipose tissue, we have shown that 20α-HSD is 

expressed at relatively high levels and that 20-oxoreductase activity is easily detected [116, 130]. 

Expression levels are higher in subcutaneous than in omental adipose tissue in both men and 

women [130, 131]. Moreover, expression of 20α-HSD and 20-oxoreductase activity are both 

strongly induced by adipocyte differentiation in primary preadipocyte cultures [116]. Consistent 

with the notion that adipose tissue expansion involves preadipocyte differentiation (hyperplasia) 

and fat cell hypertrophy, we also have demonstrated that women with higher visceral fat 

accumulation have higher AKR1C1 mRNA expression and higher 20-oxoreductase activity in 

omental adipose tissue [130, 132].  

 

We have characterized the metabolites that are generated by preadipocytes and differentiated 

adipocytes upon incubation with progesterone [128]. Interestingly, we found that preadipocytes 

efficiently generate a complex mixture of 5α-, 5β-, 20α- and 3α/β-reduced metabolites. Overall 

metabolite formation increased in differentiated adipocytes, with 20α-hydroxyprogesterone as 

the main product [116]. Such effective catabolism is consistent with the rather modest effects of 

progesterone on abdominal fat cell differentiation. 

 

5. MODULATION OF ANDROGEN DYNAMICS 

Androgens modulate body fat distribution patterns in men, as described in our review articles on 

this topic [18, 115, 133]. Correlation studies have confirmed that low plasma testosterone 

concentrations are often found with abdominal obesity and elevated visceral fat accumulation 
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[134-137]. Androgen treatment in hypogonadal men leads to a decrease in abdominal fat 

accumulation, especially when normal plasma androgen level is reached during the treatment and 

remains within the physiological range [18, 138, 139]. These effects appear to be dose-dependent 

[140] and lead to concomitant improvements of glucose and insulin homeostasis [138, 141, 142], 

but they have modest effects on the lipid profile [143]. 

 

Our review of the relationship between endogenous DHEA and abdominal obesity [144] showed 

that in men, most studies assessing the free form of this steroid found a significant negative 

association between DHEA levels and abdominal fat accumulation [145-147]. Studies which 

examined the correlation between computed tomography measures of visceral adipose tissue area 

and plasma DHEA also reported a negative correlation, suggesting that low DHEA levels are 

associated with greater accumulation of fat within the abdominal cavity [146, 147]. The 

association between plasma levels of the sulphate ester (DHEA-S) and body fat distribution is 

less consistent. Some studies reported a negative association between plasma DHEA-S and 

central fat accumulation [145, 146], and others reported the opposite [147, 148]. The association 

between computed tomography-measured visceral adipose tissue areas and DHEA-S was 

negative in one study [146] and positive in another [147]. Studies on DHEA replacement 

continue to be notoriously discordant with respect to their impact on body fat distribution and 

variables of the metabolic profile in humans [144, 149, 150]. Some studies convincingly 

demonstrated that this hormone precursor had relatively small effects which could not be 

sustained in long-term therapies when given orally [149, 151-153]. Several discrepancies 

observed in previous studies on DHEA and abdominal obesity could actually result from 
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interindividual differences in the ability of peripheral sites such as adipose tissues to transform 

DHEA into more potent hormones.  

 

We have known for a long time that androgens are detectable in adipose tissue [154-158]. 

DHEA, 4-dione and testosterone are the most abundant [156, 159]. We also detected the most 

potent androgen, DHT, using more sensitive techniques [159]. Although adipose tissue levels of 

most androgenic steroids are strongly correlated with levels in the circulation, the amount of 

steroids is generally higher in adipose tissue than blood [155-157, 159]. Such plasma-to-adipose 

tissue gradient indirectly supports the notion that adipose tissue is a site for androgen uptake, 

metabolism and action [155]. 

 

We examined differences in the steroid content of subcutaneous and omental adipose tissue in 

men [159]. Similar testosterone levels were observed in both adipose tissue compartments. 

However, DHEA, 4-dione and DHT levels were higher in omental compared to subcutaneous 

adipose tissue. We postulate that regional differences in steroid-converting enzyme activities 

may partly explain depot differences in the availability of active androgens as discussed below. 

In obese men, testosterone and DHT levels of omental fat tissue were negatively associated with 

waist circumference [159]. Moreover, tissue 4-dione, testosterone and DHT levels were all 

positively associated with adipocyte lipolytic responsiveness to catecholamine stimuli. The 

correlations were stronger in omental than in subcutaneous adipose tissue and are consistent with 

the stimulatory effect of androgens on lipolysis [159]. These results support the notion of a 

depot-specific regulation of androgen action in adipose tissue.  
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We have previously reviewed the impact of androgens on adipose tissue function [133]. 

Discrepant results were often reported. Figure 1 summarizes androgenic effects on selected 

aspects of adipose tissue function. At least 3 studies concluded that androgens had no effect on 

preadipocyte proliferation in cultures from rodent and human adipose tissues [72, 160, 161]. 

However, a clear inhibitory effect of testosterone and DHT has been reported on adipogenesis in 

several models [162-166], including human primary preadipocytes from our patients [167]. We 

[167] and others [165, 166] found that these effects were partially reversed by anti-androgens 

flutamide or bicalutamide. One study reported that DHEA inhibits adipogenesis specifically in 

omental fat [168] which could be mediated by androgenic metabolites of this steroid [169].  

 

Studies on androgens and lipolysis are not unanimous. Testosterone treatment enhanced 

norepinephrine-stimulated lipolysis in abdominal subcutaneous fat of normal men [170]. Studies 

in human and rodent adipocytes confirmed these observations using testosterone [171] and 

DHEA [172]. However, others [173] observed an inhibitory effect of testosterone on 

catecholamine-induced lipolysis in differentiated subcutaneous preadipocytes. Modulation of β-

adrenoreceptors and hormone-sensitive lipase as well as adenylate cyclase activity have been 

proposed as mediators of androgenic action on lipolysis [173-177]. Androgen effects on lipolysis 

likely occur through the androgen receptor as they are blunted by flutamide [160]. Most studies 

also reported that androgens reduce lipid uptake and synthesis in adipose tissue. Testosterone 

supplementation in men decreased lipoprotein lipase activity and triglyceride uptake in 

abdominal adipose tissue compartments [170, 178]. Discordant effects were reported in isolated 

mature adipocytes [160] or in fat from monkeys that were castrated and replaced with 

testosterone [179]. Finally, adipokine/cytokine concentrations may also be influenced by 
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androgens. Testosterone administration in men lowered plasma adiponectin and leptin levels 

[180-182]. Leptin and adiponectin secretion were also decreased by DHT in subcutaneous 

explant cultures and in differentiated 3T3-L1 cells [183, 184]. Others [185] corroborated the 

inhibitory effect of androgens on leptin, but found no modulation of adiponectin by androgens. 

DHEA-S also inhibited adiponectin expression in omental adipocytes [186]. Finally, testosterone 

replacement in hypogonadal men also lowered TNF-α, IL-1β and increased IL-10 plasma levels 

[187].  

 

Overall, active androgens testosterone and possibly DHT seem to favor fat mass reductions that 

manifest through inhibition of adipogenesis and lipogenesis and possible stimulation of lipolysis. 

Adipokine and inflammation are likely modulated, but the impact on adiponectin is uncertain. 

Effects have been reported to vary according to the fat depot examined and as a function of the 

nature and dose of the androgen tested. Considering the clear impact of androgens on adipose 

tissue distribution patterns, local synthesis or inactivation of active androgens could logically 

have depot-specific effects on androgen availability and possibly adipose tissue accumulation. 

This is addressed in the next few sections.  

 

17β-HSDs 

17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2) catalyzes the conversion of active 17β-

hydroxysteroids into less active 17-ketosteroids, which for example decreases tissue levels of 

active estrogens and androgens with NAD+ as a cofactor [188]. It is highly expressed in placenta 

which means that this isoenzyme may affect steroid dynamics in this tissue [189]. In adipose 
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tissue, 17β-HSD2 is expressed at higher levels in omental adipose tissue than in subcutaneous 

adipose tissue [52]. Its relevance for adipose tissue physiology and obesity is unknown. 

 

17β-HSD type 3 converts 4-dione to testosterone [89]. It is expressed in human subcutaneous 

and visceral adipose tissues [52, 94, 110]. However, no expression level difference is observed 

between these depots [52]. In preadipocyte cultures, differentiation tends to increase expression 

of this enzyme [52, 95]. Its specific contribution to the availability of androgens in adipose tissue 

remains unclear at this time. The ratio of 17β-HSD3-to-aromatase mRNA in intra-abdominal 

adipose tissue was positively correlated with BMI in a study [190], which led the authors to 

suggest increased androgenicity in visceral fat. This hypothesis remains to be functionally tested 

in light of the presence of 17β-HSD type 5, which is expressed at much higher levels than type 3 

(see below). 

 

17β-HSD type 5 (AKR1C3) is involved in the conversion of 4-dione to testosterone. Expression 

level of the enzyme was found to be associated with visceral as well as overall adiposity indices 

and with the waist-hip ratio [191]. Its expression is strongly induced by adipocyte differentiation. 

For example, testosterone formation is increased by 5 fold in differentiated adipocytes from the 

subcutaneous and omental fat depots, and expression levels of AKR1C3 follow a similar pattern 

[52, 93, 192]. Expression levels of the enzyme are higher in the subcutaneous depot [52, 192]. In 

addition, adipocyte size could have an impact on AKR1C3 expression since some observed that 

it is expressed at higher levels in larger than in smaller adipocytes from the same subject [193]. It 

remains to be confirmed whether increasing expression levels and activity of this enzyme with 

obesity contribute to make adipose tissue more androgenic. The role of 17β-HSD type 5 in the 
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synthesis of prostaglandins, which are known modulators of PPARγ [194], or its impact on 

estrogens could also mediate its relationship with obesity. 

 

5α-reductases 

DHT can be produced either by 5α-reduction of testosterone, or from 5α-reduction of 4-dione 

and subsequent 17-oxoreduction by 17β-HSDs. Literature in general assumes that the main 

reaction is that of testosterone to DHT [195]. However, work by our group in the sebaceous 

gland has shown that DHT formation also likely results from 4-dione transformation [196]. 

Enzymology data indirectly support that this possibly also applies to adipocytes [197]. In 

primary preadipocytes, we reported that DHT formation from testosterone decreased very 

significantly upon induction of differentiation [52]. 

 

Literature currently assumes that one out of two isoenzymes of 5α-reductase mediates local DHT 

formation, but a third isoform of 5α-reductase (designated type 3) has been identified [198]. The 

enzyme seems to be expressed in many tissues, although fat was not tested [198]. The 5α-

reductase isoenzyme playing a role in adipose tissue androgen homeostasis remains to be 

determined. In addition to androgens, 5α-reductases may contribute to the metabolism of other 

steroids including progesterone metabolites [116] and glucocorticoids [199].  

 

3α-HSD type 3 (AKR1C2) and UDP-glucuronosultransferases 

We have published original studies suggesting increased circulating levels of the DHT 

metabolite 3α-diol-glucuronide in abdominal obese men [200-202]. These initial results were 

later confirmed in a large cohort study by a Swedish group [203]. We have previously shown 
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significant expression of UDP-glucuronosyltransferase in adipose tissue [204]. Our work has 

also shown that the conversion of DHT to the inactive androgen metabolite 3α-diol was detected 

in fat tissue of both men and women [131, 132, 192]. Activity was higher in subcutaneous 

compared to omental fat, and, most importantly, androgen inactivation rates in omental fat were 

positively correlated with measurements of obesity level including BMI, fat cell size and visceral 

adipose tissue area assessed by computed tomography [131, 132, 192]. The enzyme responsible 

for most of the DHT-to-3α-diol conversion in humans is 3α-HSD-3 (AKR1C2). 

 

Our initial finding of higher expression and activity of AKR1C2/3α-HSD3 in subcutaneous vs. 

omental fat of both men and women [131, 132, 192] suggested that cell composition of the tissue 

might affect the enzyme. Accordingly, we found that mature adipocytes had higher rates of 

androgen inactivation compared to preadipocytes [131]. Further experiments showed that 

induction of fat cell differentiation increased androgen inactivation rates and AKR1C2 mRNA 

expression [52]. 

 

Androgen-glucocorticoid interaction 

We have examined various factors that could modulate DHT inactivation rates in preadipocytes. 

We were intrigued by the finding of a robust, dose-dependent stimulation of androgen 

inactivation by dexamethasone alone [52]. Such stimulation was apparent after only 24 hours, 

was completely reversed by the glucocorticoid receptor antagonist RU486, and did not require 

additional lipogenic factors (insulin or PPAR-γ agonist). These results suggest that this 

stimulation is an early event in the process of fat cell differentiation.  
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Active glucocorticoids stimulate adipogenesis and are synthesized locally by 11β-HSD-1 in 

proportion to mature adipocyte size and number [27, 205]. On the other hand, as mentioned, 

androgens inhibit adipogenesis and are inactivated locally by enzymes that are responsive to 

glucocorticoids. We have suggested that the stimulation of AKR1C2 expression and DHT 

inactivation by glucocorticoids in preadipocytes may remove some of the inhibitory effect of 

androgens and allow adipogenesis. Other interactions have been noted in adipose tissue between 

the androgen and glucocorticoid signalling pathways [206, 207]. Interaction of these hormonal 

signals at the local level may represent a significant modulator of body fat distribution patterns.  

 

6. OTHER ENZYMES 

3β-HSD 

The conversion of DHEA to 4-dione and of androst-5-ene-3β,17β-diol (5-diol) to testosterone is 

catalyzed by 3β-HSD. This enzyme was found to be more highly expressed in subcutaneous 

adipose tissue than in omental adipose tissue [52]. Expression of 3β-HSD is also higher in 

subcutaneous adipose tissue of women with polycystic ovary syndrome compared to control 

women [208]. Expression levels of 3β-HSD (HSD3B1) were found to be decreased in visceral 

adipose tissue in mice that gained weight under a high-fat diet, suggesting decreased androgen 

synthesis [209]. Fujioka et al. [210] tested the effect of testosterone and DHEA on preadipocyte 

differentiation in the 3T3-L1 murine preadipocyte cell line and showed that both steroids 

decreased adipogenic proliferation and differentiation. Interestingly, the effects of DHEA were 

abolished in the presence of 3β-HSD inhibitor Trilostane, suggesting that conversion to 

androgens or other steroids through this enzyme is required to observe an effect of DHEA in 

adipocytes [210]. In addition to their androgenic action, 3β-HSDs can also convert 17-OH-
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pregnenolone into 17-OH-progesterone and pregnenolone into progesterone [2, 211]. Overall, 

the specific role of 3β-HSD activity in adipose tissue steroid homeostasis remains to be formally 

established. 

 

Steroid Sulfatase 

Steroid sulfatase (STS) converts DHEA-sulfate (DHEA-S) and estrone-sulfate (E1-S) into their 

free forms, DHEA and E1 [212]. While it is uncertain that adipose tissue generates de novo 

DHEA and E1 directly from cholesterol, the sulfated forms of these steroids are highly abundant 

in the circulation and may represent a significant source for these steroids in adipose tissue, 

provided that STS is indeed, active [213]. Martel and colleagues [214] were the first to describe 

that mesenteric fat from rhesus monkeys displays significant DHEA and E1 sulfatase activities. 

More recently, STS mRNA, protein and activity have been observed in human subcutaneous 

adipose tissue from men and women [215]. We reported that mRNA expression of STS is 

strongly induced by differentiation in primary preadipocyte cultures [52]. Since DHEA-S and 

E1-S are positively charged, they need a transporter from the organic anion transport polypeptide 

family (OATP) to enter adipocytes. These transporters, more specifically OATP-B, OATP-D and 

OATP-E, have been detected in subcutaneous adipose tissue [215]. The physiological 

importance of the conversion of sulfated precursors to free steroids with estrogenic activities by 

STS is recognized in breast cancer, where these steroids are proven to stimulate tumor cell 

proliferation through the estrogen receptor [216]. This pathway may also provide a significant 

source of estrogens that would originate from breast adipose tissue. On the other hand, consistent 

with their high circulating E1 and E1-sulfate levels, obese individuals may produce increased 

amounts of estrogenic steroids that may have some physiological relevance [215]. 
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7α-hydroxylase (CYP7B1) 

The 7α-hydroxylase enzyme is a hydroxylase which transforms steroids into their corresponding 

7α-hydoxysteroid form. Seven-α hydroxylation of DHEA to 7α-hydroxyl-

dehydroepiandrosterone (7α-OH-DHEA) is one of its known activities [217]. This gene is mainly 

expressed in the liver, brain, kidney and pancreas and to a lower extent in other tissues [217]. To 

our knowledge, CYP7B1 expression has not yet been investigated in human adipose tissues. On 

the other hand, 7α-hydroxylation predominates in differentiated breast adipose tissue stromal 

cells metabolizing DHEA [218, 219]. In differentiated 3T3-L1 adipocytes incubated with DHEA, 

7α-hydroxylase activity is also detected [220]. Recent observations in a population of obese boys 

showed that circulating levels of 7α-hydroxy-dehydroepiandrosterone were more elevated than 

in lean boys and correlated positively with anthropometric data [221]. These results indirectly 

suggest that adipose tissue may be a site for 7α-hydroxylation of DHEA. This possibly plays a 

role in modulating the availability of hormones regulating fat storage and distribution. Some 

studies reported that 7α-hydroxy-dehydroepiandrosterone has antiobesigenic effects in humans 

[222]. 7α-hydroxylated metabolites of DHEA also have a role in triggering the immune response 

in mice [223].  

 

P450SCC, StAR and 17α-hydroxylase  

De novo steroid hormone synthesis from cholesterol requires Steroidogenic acute regulatory 

protein (StAR) and P450 side chain cleavage enzyme (P450SCC or CYP11A1), which are 

implicated in the delivery of cholesterol to the inner mitochondrial membrane and cholesterol 

side-chain cleavage, respectively [224]. StAR has low mRNA expression level in subcutaneous 



Manuscript SBMB-D-13-00086-Revised II, page 26 

and visceral adipose tissue samples of obese subjects [225]. However, this transcript was much 

more highly-expressed in the adrenal gland than in adipose tissues of women [110]. In the 

C57BL/6J mouse model, P450SCC expression in visceral adipose tissue was reduced in animals 

fed a high-fat vs. a low-fat diet [209]. In obese rats, vitamin C supplementation was shown to 

reduce StAR expression in subcutaneous fat and also to decrease body fat mass [226]. It may be 

tempting to extrapolate that de novo steroid synthesis from cholesterol takes place in adipose 

tissue. However, Mackenzie et al. [110], when showing that 17α-hydroxylase (P450C17 or 

CYP17) was not detected, stated that cholesterol use for steroid hormone synthesis was not 

possible. Moreover, since 11β-hydroxylase (CYP11B1) and 11/18β-hydroxylase (CYP11B2) 

were also undetectable, these authors concluded that 11-deoxycorticosterone may be the final 

product of de novo steroid synthesis in adipose tissue. Conversely, Puche et al. [227] showed 

significant 17α-hydroxylase activity in subcutaneous adipose tissue of women. Yet, another 

study failed to detect 17α-hydroxylase activity in subcutaneous adipose tissue [208]. Thus, 

although unlikely, the ability of adipose tissue to synthesize active steroid hormones from 

cholesterol remains to be formally excluded.  

 
 
Aldosterone Synthase (CYP11B2) 

Aldosterone induces the differentiation of 3T3-L1 cells into lipid-storing adipocytes [228]. The 

impact of the renin-angiotensin-aldosterone system on adipose tissue is considerable. Its 

hyperactivity inhibits preadipocyte differentiation and contributes to the formation of large and 

dysfunctional adipocytes that are more insulin resistant and will generate inflammatory 

adipokines [229, 230]. During preadipocyte differentiation, the expression of angiotensinogen, 

angiotensin-converting enzyme (ACE) and renin mRNA is increased. Aldosterone alone has a 
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stimulatory effect on adipocyte differentiation which is mediated through activation of the 

mineralocorticoid receptors found in adipose tissue. The renin-angiotensin-aldosterone system is 

now a target of interest for the treatment for type 2 diabetes since development of the disease is 

found to be altered by ACE inhibitors and angiotensin receptor blockers by improving insulin 

sensitivity in high-risk patients (reviewed in [230]). Some studies observed a positive correlation 

between the degree of obesity and plasma aldosterone concentrations, a finding that is reversed 

when hypertensive obese patients lose weight [231]. While this may be mediated by changes in 

steroid production by adrenocortical cells in response to other factors, the hypothesis that it may 

involve mineralocorticoids produced by adipocytes has been considered. 

 
Whether adipose tissue generates its own pool of aldosterone is controversial. The CYP11B2 

gene encodes aldosterone synthase (11/18β-hydroxylase) which is responsible for catalyzing 

three reactions for converting of 11-deoxycorticosterone into aldosterone inside the mitochondria 

of the zona glomerulosa in rat adrenal cortex [232-234]. Briones et al. observed significant 

expression of CYP11B2 mRNA and protein in 3T3-L1 preadipocytes and adipocytes, with a 

higher expression in adipocytes and with angiotensin II treatment [231]. As proposed by these 

authors, the mechanism for aldosterone production by adipocytes would involve angiotensin II 

modulation of the calcineurin/nuclear factor of the activated T cells (NFAT) system, which 

would enhance expression of CYP11B2. Conversely, a review of possible non-adrenal 

aldosterone production sites proposed that adipose tissue production of aldosterone was unlikely 

[110, 235].  
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7. CONCLUSION 

Since body fat distribution is sexually dimorphic, sex hormones have been suspected as key 

regulators. For a very long time, adipose tissue physiologists have been aware of the capacity of 

adipose tissue to act as a steroid reservoir and site of steroid conversion [2]. In this review we 

have provided an updated survey of the steroid-converting enzymes that are detected or may be 

present in adipose tissues (Figure 2). The large body of evidence supporting the existence of such 

an elaborate set of steroid-converting enzymes in adipose tissue can no longer be ignored when 

considering the biological impact of steroid hormones on fat cells. We have discussed the role of 

some enzymes which may be involved in the modulation of the effects of steroid hormones in 

adipose tissue. The transformation of a given hormone to another by steroid-converting enzymes 

may modulate metabolic pathways and other adipose tissue functions. Additional studies should 

be performed to further decipher the complexity of this enzyme network and its effects on 

adipose tissue functions. 

 

ACKNOWLEDGEMENTS 

Work cited in this manuscript was funded by Canadian Institutes of Health Research Operating 

Grants MOP-53195 (A.T.), MOP-102642 (A.T.), MOP-130313 (A.T.) and MOP-77698 (V.L.T.). 

  



Manuscript SBMB-D-13-00086-Revised II, page 29 

FIGURE HEADINGS 

Figure 1: Summary of documented androgen, estrogen, progesterone and glucocorticoid effects 

on adipose tissue function and metabolism.  

 

Figure 2: Pathways of steroid hormone metabolism in adipose tissue. Grey arrows and steroids 

indicate putative pathways requiring confirmation. Black arrows and steroids indicate confirmed 

pathways. StAR: Steroidogenic acute regulatory protein, P450SCC: side-chain cleavage enzyme, 

3β-HSD: 3β-hydroxysteroid dehydrogenase, 3β-HSD1: 3β-hydroxysteroid dehydrogenase type 1, 

3α-HSD3 (AKR1C2): 3α-hydroxysteroid dehydrogenase or aldo-ketoreductase 1 C type 2, 

11/18β-hydroxylase: aldosterone synthase, 11β-HSD1: 11β-hydroxysteroid dehydrogenase type 

1, 11β-HSD2: 11β-hydroxysteroid dehydrogenase type 2, OATP: transporter from the organic 

anion transport polypeptide family, 17β-HSD2: 17β-hydroxysteroid dehydrogenase type 2, 17β-

HSD3: 17β-hydroxysteroid dehydrogenase type 3, SRD5A1-2: steroid 5α-reductase type 1-2, 

17β-HSD5 (AKR1C3): 17β-hydroxysteroid dehydrogenase type 5 or aldo-ketoreductase 1 C type 

3, 17β-HSD12: 17β-hydroxysteroid dehydrogenase type 12. *: Progesterone can also be 

transformed by 20α-hydroxysteroid dehydrogenase (20α-HSD or AKR1C1) into 20α-

hydroxyprogesterone and a mixture of 5α-, 5β-, 20α- and 3α/β-reduced metabolites through 

activity of other enzymes (see text).  
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Figure 1: 
 

Glucocorticoids 
• ↑ in vitro LPL activity in human primary 

adipocytes; 
• ↑ in vivo basal lipolysis in men & women; 
• ↑ in vitro basal lipolysis in rat primary 

adipocytes; 
• ↑ in vitro catecholamine-stimulated lipolysis in 

human fat samples  & rat primary adipocytes; 
• ↓ preadipocyte proliferation in rodent primary 

adipocytes; 
• ↑ preadipocyte differentiation.  

Progesterone 
• Antiglucocorticoid effect: Blocks the action of 

dexamethasone on LPL and lipolysis in rodent 
adipose tissue; 

• Role in fatty acid synthesis control; 
• ↑ leptin & resistin mRNA expression & ↓ 

adiponectin in female rats. Absence of these 
effects in male rats; 

• Many progesterone metabolites generated. 

Estradiol 
• ↓ premenopausal & ↑ postmenopausal 

women in vivo LPL activity; 
• ↑/↓ in vitro LPL activity in human primary 

adipocytes; 
• ↓ in vivo basal lipolysis in postmenopausal 

women; 
• ↑ in vitro basal lipolysis in human primary 

adipocytes; 
• ↑ preadipocyte proliferation rate. 

 

 
 

  

 

Androgen 
 

• ↓ OM in vivo LPL activity & TG accumulation 
and lesser effect on SC; 

• ↓ OM & SC in vitro LPL activity; 
• ↑SC in vivo catecholamine stimulated lipolysis; 
•  ↑ in vitro catecholamine stimulated lipolysis in 

rat  & human primary adipocytes; 
• ↓ primary preadipocyte differentiation. 
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Figure 2: 
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