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Abstract

Office leases are generally agreed upon for extended terms, with possible options to leave

or to renew in favour of the tenant. Tenants who have no options during the life of their lease

expect to pay a lower rent than those who do. In this letter, we built up a conceptual framework

based on binomial tree for the pricing of options embedded in a lease contract. Results show

that lease options are dependent upon market rents volatility.
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1 Introduction

The rent paid by a tenant is the primary cash flow in commercial real estate and is thus the most

influential building block in the valuation of office properties. Office leases vary with property types

and countries: length, expenses and services are non-standard and can be subject to local practices,

market specificities and bargaining power. Due to the difficulty to predict future market rents or

space requirements beyond a lease term, rental agreements often include options that accommodate

the tenant when the contract expires, such as the option to renew or the option to expand in the

same building. The renewal option, which is the focus of this paper, allows a tenant to re-lease the

premises at the end of the term at a pre-specified rent. Since the value of such an option hinges

on expected variations in the market rent which, in turn, is related to the value of the property,

analysing lease options may help characterize the dynamics of real estate prices. As leases are agreed

upon at a much greater frequency than properties are bought and sold, studying leases somehow

bypasses the lack-of-liquidity problem associated with real estate data.

In exchange for more flexibility, a tenant may accept to pay a higher rent (see Miceli & Sirmans,

1999; Amédée-Manesme et al., 2013), and the value of an option can then be expressed as the

difference between the rent of a plain-vanilla lease and that of an option-embedded lease. The value

of the option represents the price paid in each period by the tenant in order to get the flexibility

to leave or to renew on an agreed date, and thus corresponds to an option-adjusted lease spread.

With this option, the tenant may decide - at a specified date - to continue the current lease or to

enter a new contract if market rents drop.

In this letter, using a binomial model, we extract an analytical solution is designed for valuing

an option embedded in a lease contract. In line with the work of Kulatilaka & Marcus (1994), we do

not assume the possibility to build replicating portfolios generating a risk-free world. In particular,

we highlight how the value of the option is affected by the volatility of market rents. We explicitly

distinguish between contractual rents and market rents.

Despite their importance, options embedded in office lease contracts have received little attention

in the literature1. Grenadier (1995), Buetow & Albert (1998) and Stanton & Wallace (2009) develop
1This is not the case though in other fields of research such as automobile lease contracts (see Gamba & Rigon,

2008 and Giaccotto et al., 2007) or options to expand businesses (see Agliardi, 2006) where the literature proves to

be quite abundant.
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partial differential equations models to value lease-embedded options but they rely on numerical

methods in order to characterize the equilibrium. Clapham (2003), on the other hand, obtain an

analytical solution using partial deifferential equations by modifying the approach of Buetow &

Albert (1998). However, Clapham (2003) provides a model to value an option in a risk-free, Black-

Scholes-Merton, setup. By relying on a binomial model, we define a more flexible environment with

regards to both lease-setting and users’ conditions wherein an analytical solution can also be found.

Beside, our proposal allows, among other things, to account for the risk aversion of the tenant, the

negotiation games between landlord and tenants or the possibility for the former to offer rent free

periods.

In practice, the proposed model may be used to compute market rents’ implied volatility. Indeed,

embedded lease options are not traded and thus the pricing of such options is useless for trading

activities. However the implied volatility of related rents can be derived from the prices of embedded

lease options on the market place. This information may be mostly relevant to practitioners. First,

this information is not easily accessible due to both the drawbacks of published indices from which

volatility is usually extracted (appraisal based, sampling errors,...) and the limited number of

observable transactions (see Patel & Sing, 2000). Second, the implied volatility of related rents

contain idiosyncratic information that cannot be obtained from the sole transaction prices of the

underlying properties (As shown by Fleming et al., 1995, predictions based on the implied volatility

prove to outclass those that are based on the price process alone). Therefore, the volatility derived

from our model may be a better estimate of the volatility of direct real estate asset values than the

one derived from traditional methods.

2 The model

Time is discrete and represented by t = 1, 2, . . ., measured in years, and ∆t = 1/12 represents one

month. The one-month market rent prevailing at the beginning of period t is denoted Rt and evolves

according to a binomial model with time steps ∆t. Over a period ∆t, the market rent may go up

by a factor u = eσ
√

∆t or down by a factor d = e−σ
√

∆t, σ being the volatility of the market rent.

Let pu denote the actual probability of an up movement and let µ denote the expected growth rate

of market rents. Then Et[Rt+∆t] = puRtu+ (1− pu)Rtd = Rte
µ∆t, with pu = eµ∆t−d

u−d . Note that to
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have pu ≤ 1, we need µ ≤ σ/
√

∆t.

In what follows, it is assumed that the tenant has the choice between a long-term fixed-lease

contract (2T ) or a short-term renewable lease contract (T ), the shorter term contract being half

the longer term contract. It is also assumed that rent conditions are fixed throughout the full lease

contract and known from start, excluding, more often than not, rent indexation and negotiation

dimensions.

When a W -year lease is signed at the beginning of year t with a fixed ∆t-payment LWt (the

contractual rent), the present value of all rent payments is given by

V W
t = LWt + e−k∆tLWt + e−k(2∆t)LWt + . . . + e−k(W−∆t)LWt =

(
1− e−kW

)
LWt

1− e−k∆t
,

where k is the annual discount rate2. When a contract is signed over W years, the value of the

fixed-lease contract has to be equal to the expected present value of the sum of all market rents3

over the same period, i.e.

V W
t = Et

[
Rt + e−k∆tRt+∆t + e−k(2∆t)Rt+2∆t + . . .+ e−k(W−∆t)Rt+W−∆t

]
= Rt + e(µ−k)∆tRt + e(µ−k)(2∆t)Rt + . . .+ e(µ−k)(W−∆t)Rt

=

(
1− e(µ−k)W

)
Rt

1− e(µ−k)∆t
,

and thus

LWt =

(
1− e(µ−k)W

) (
1− e−k∆t

)(
1− e(µ−k)∆t

)
(1− e−kW )

Rt. (1)

With µ < k, the lease payment under an infinite contract would be

L∞t =
1− e−k∆t

1− e(µ−k)∆t
Rt,

and the present value of all future expected market rents as of time t is given by

V∞t = L∞t + e−k∆tL∞t + e−2k∆tL∞t + e−3k∆tL∞t + . . . =
L∞t

1− e−k∆t
=

Rt

1− e(µ−k)∆t
. (2)

2It is straightforward to add indexation (i) to the process. In this case the geometric progression will be e(−k+i)∆t.

In order to facilitate the readability of the results, this factor has been omitted.
3Contractual rents (Lt) charged to tenants rarely follow market rents (Rt). Rents are usually contracted at a

value close to the market rents at the initiation of the lease. Later on, rents have usually been indexed and do

not necessarily represent the current market value, which may collapse in bear markets or raise in bull markets.

In uncertain economic times, many previously determined contractual rents may end up being above market rents.

Market rents can thus be defined as the most likely lease rate a property would command in an open market.
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The solution to our model assumes that a tenant considers the value of the rent paid into infinity

when considering different types of contract terms (the tenant will never own its real estate). The

equilibrium also assumes that an infinite sequence ofW -year contracts has to be equal to the present

value of expected market rents into infinity, i.e.

V W
t + e−kWEt

[
V W
t+W

]
+ e−2kWEt

[
V W
t+2W

]
+ . . . = V∞t , (3)

and thus the present value of an infinite sequence of W -year contracts can be written as

V W
t + e−kWEt

[
V∞t+W

]
= V W

t + e(µ−k)WV∞t . (4)

Consider now a T -year renewable contract with a ∆t-payment L̃Tt . After T years, the tenant

can renew the lease at the same rate or enter into another T -year renewable contract at a lower

rate. If, at time t+ T , the available renewable contract demands L̃Tt+T > L̃Tt , then the tenant will

renew the contract signed at time t for a lease rate L̃Tt . If, on the other hand, L̃Tt+T ≤ L̃Tt , then the

tenant will exit the current contract and sign a new renewable contract4. Note that equation (3)

must hold with renewable leases as well, and thus the present value of an infinite sequence of T -year

renewable leases at time t + j must equal V∞t+j for all j. The present value of an infinite sequence

of T -year renewable contracts is then equal to(
1− e−kT

)
L̃Tt

1− e−k∆t
+ Pr

(
L̃Tt+T > L̃Tt

)
e−kT

(
1− e−kT

1− e−k∆t
L̃Tt + e−kTEt

[
V∞t+2T

∣∣∣L̃Tt+T > L̃Tt

])
+ Pr

(
L̃Tt+T ≤ L̃Tt

)
e−kTEt

[
V∞t+T

∣∣∣L̃Tt+T ≤ L̃Tt ] .
Since L̃Tt+T ≤ L̃Tt if and only if Rt+T ≤ Rt, the last expression can be rewritten as(

1− e−kT
)
L̃Tt

1− e−k∆t
+ Pr (Rt+T > Rt) e

−kT
(

1− e−kT

1− e−k∆t
L̃Tt + e−kTEt

[
V∞t+2T |Rt+T > Rt

])
+ Pr (Rt+T ≤ Rt) e−kTEt

[
V∞t+T |Rt+T ≤ Rt

]
.

Note that

Et
[
V∞t+2T |Rt+T > Rt

]
= Et

[
Rt+2T

1− e(µ−k)∆t

∣∣∣∣Rt+T > Rt

]
=

eµT

1− e(µ−k)∆t
Et [Rt+T |Rt+T > Rt]

and

Et
[
V∞t+T |Rt+T ≤ Rt

]
=

1

1− e(µ−k)∆t
Et [Rt+T |Rt+T ≤ Rt] .

4In this letter, transaction costs (broker fees, searching costs, moving costs...) have not been considered. However,

one can add the transaction costs δ in the moving decision by comparing L̃Tt+T + δ with L̃Tt .
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As shown in appendix, Et+j [Rt+j+T |Rt+j+T ≤ Rt+j ] = ΩdRt+j for any j ≥ 0, where Ωd is a

constant, and Et+j [Rt+j+T |Rt+j+T > Rt+j ] = ΩuRt+j for any j ≥ 0, where Ωu is a constant. This

gives

Et
[
V∞t+2T |Rt+T > Rt

]
= eµTΩuV

∞
t and Et

[
V∞t+T |Rt+T ≤ Rt

]
= ΩdV

∞
t .

Let θ = Pr (Rt+T ≤ Rt). The present value of an infinite sequence of T -year once-renewable con-

tracts is then equal to(
1− e−kT

)
L̃Tt

1− e−k∆t
+ (1− θ)e−kT

(
1− e−kT

1− e−k∆t
L̃Tt + e(µ−k)TΩuV

∞
t

)
+ θe−kTΩdV

∞
t ,

which can be written as(
1− e−2kT

)
L̃Tt

1− e−k∆t
− θe−kT

1− e−kT

1− e−k∆t
L̃Tt + (1− θ)e(µ−2k)TΩuV

∞
t + θe−kTΩdV

∞
t .

Since (1− θ)Ωu = eµT − θΩd, we can write(
1− e−2kT

)
L̃Tt

1− e−k∆t
− θe−kT

1− e−kT

1− e−k∆t
L̃Tt + e2(µ−k)TV∞t + θΩde

−kT
(

1− e(µ−k)T
)
V∞t . (5)

for the value of an infinite sequence of T -year renewable contracts.

Proposition 1 Consider a world where tenants have two options regarding lease contracts: A fixed-

rent 2T -year contract, or a once-renewable T -year contract. Let L̃Tt and L2T
t represent the renewable

T -year rent and the fixed 2T -year rent, respectively. Then the renewable rent can be expressed as

L̃Tt = L2T
t + Pt,

where Pt ≥ 0 represents the value of the option to sign another renewable contract with a better rate

at time T .

The remaining of this section provides the proof of Proposition 1. In equilibrium, (3) and (5)

must be equal and thus, writing (4) with W = 2T , replacing V 2T
t by (1−e−2kT )L2T

t

1−e−k∆t , and replacing

V∞t by Rt
1−e(µ−k)∆t , we have(

1− e−2kT
)
L2T
t

1− e−k∆t
=

(
1− e−2kT

)
L̃Tt

1− e−k∆t
− θe−kT

1− e−kT

1− e−k∆t
L̃Tt + θΩde

−kT
(
1− e(µ−k)T

)
Rt

1− e(µ−k)∆t

=

(
1− e−2kT

)
L̃Tt

1− e−k∆t
− θe−kT

1− e−kT

1− e−k∆t
L̃Tt + θΩde

−kT
(
1− e−kT

)
LTt

1− e−k∆t
.
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Rearranging the last equation and using the identity 1−e−2kT =
(
1− e−kT

) (
1 + e−kT

)
, we obtain

L̃T
t = L2T

t +
θe−kT

1 + e−kT

(
L̃T
t − ΩdL

T
t

)
= L2T

t +
Pr(Rt+T ≤ Rt)

1 + ekT

(
L̃T
t − Et

[
LT
t+T

∣∣Rt+T ≤ Rt

])
(6)

Define

Pt =
Pr(Rt+T ≤ Rt)

1 + ekT

(
L̃Tt − Et

[
LTt+T

∣∣Rt+T ≤ Rt]) , (7)

which is the premium paid each period in the T -renewable contract over the fixed 2T -year rent.

Pt corresponds to the option-adjusted lease spread between the T -year renewable contract and the

fixed 2T -year contract. In the above equations, LTt would correspond to the monthly rent paid on

a fixed T -year contract (an option that we have not considered available in this framework).

From (6), the T -year renewable rent is given by

L̃Tt =

(
1− θ

1 + ekT

)−1(
L2T
t −

θΩdL
T
t

1 + ekT

)
.

Since L2T
t = 1+e(µ−k)T

1+e−kT
LTt , the last equation can be rearranged as

L̃Tt = L2T
t

(
1− θ

1 + ekT

)−1(
1− θΩd(1− e−kT )

(1 + ekT )(1 + e(µ−k)T )

)
. (8)

3 Application

Table 1 shows some numerical examples with varying volatility σ and two different expected growth

rates in the market rents µ. We can see in this table that the value of the option to renew is

increasing (and convex) with volatility, and that it is inversely related to the expected growth rate

in the market rents µ.

4 Conclusion

Lease options of many types are common in real world leasing agreements. Renewal (or break)

options are the most common of these options and are therefore an important phenomenon. In this

letter, we have derived a closed-form solution to the value of the renewable lease rate as well as the

value of the option to renew using binomial model. In practice, the proposed model may be used to

extract the information content in the embedded options. In particular, such a model can be used

to predict future implied market rent volatility.
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Volatility T -year 2T -year T -year Value of option
σ fixed

(
LT

t

)
fixed

(
L2T

t

)
renewable

(
L̃T

t

)
to renew (Pt)

µ = 2%

10% 104.86 109.69 113.14 3.45

15% 104.86 109.69 115.87 6.19

20% 104.86 109.69 118.73 9.03

25% 104.86 109.69 121.63 11.93

30% 104.86 109.69 124.57 14.88

µ = 4%

10% 110.06 120.73 122.39 1.67

15% 110.06 120.73 124.70 3.98

20% 110.06 120.73 128.68 7.95

25% 110.06 120.73 131.83 11.10

30% 110.06 120.73 135.06 14.33

Table 1: Numerical examples with Rt = 100, T = 5, ∆t = 1/12, k = 5%.

This work opens the doors to many further researches and applications. In particular, extensions

to more flexible lease options models are straightforward and empirical works on lease contracts may

be done. Above all, application of this framework to design risk measurements for direct commercial

office real estate assets may be considered.
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A Technical proof of Ω

Suppose that the market rent at time t+ j is equal to Rt+j and let N = T/∆t denote the number
of time steps during a time period T , N being divisible by 2. In what follows, pd = 1− pu. Then

Et+j
[
Rt+j+T

∣∣Rt+j+T ≤ Rt+j]

=

( N

N/2

)
p
N/2
u p

N/2
d uN/2dN/2Rt+j +

( N

N/2− 1

)
p
N/2−1
u p

N/2+1
d uN/2−1dN/2+1Rt+j + . . .+

(N
0

)
pNd d

NRt+j

Pr
(
Rt+j+T ≤ Rt+j

)

=

( N

N/2

)
p
N/2
u p

N/2
d uN/2dN/2 +

( N

N/2− 1

)
p
N/2−1
u p

N/2+1
d uN/2−1dN/2+1 + . . .+

(N
0

)
pNd d

N

( N

N/2

)
p
N/2
u p

N/2
d +

( N

N/2− 1

)
p
N/2−1
u p

N/2+1
d + . . .+

(N
0

)
pNd

Rt+j

= ΩdRt+j .

Since d = 1/u < 1, Ωd < 1. Note that Ωd is a constant regardless of j. Similarly, we have

Et+j [Rt+j+T |Rt+j+T > Rt+j ] = ΩuRt+j ,

where Ωu > 1 is a constant. Note that

E [Rt+j+T ] = Pr (Rt+j+T ≤ Rt+j) ΩdRt+j + Pr (Rt+j+T > Rt+j) ΩuRt+j = eµTRt+j

and thus

Pr (Rt+j+T ≤ Rt+j) Ωd + Pr (Rt+j+T > Rt+j) Ωu = eµT .

Note also that since LTt is a linear function of Rt, ΩdL
T
t+j = E

[
LTt+j+T

∣∣∣Rt+j+T ≤ Rt+j].
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