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Résumé

La considération adéquate des différentes sources d’incertitude est un aspect crucial de la
prévision hydrométéorologique. La prévision d’ensemble, en fournissant des informations
sur la probabilité d’occurrence des sorties du modèle, représente une alternative séduisante
à la prévision déterministe traditionnelle. De plus, elle permet de faire face aux différentes
sources d’incertitude qui se trouvent le long de la chaîne de modélisation hydrométéorolo-
gique en générant des ensembles là où ces incertitudes se situent.

Le principal objectif de cette thèse est d’identifier un système qui soit capable d’appréhender
les trois sources principales d’incertitude que sont la structure du modèle hydrologique, ses
conditions initiales et le forçage météorologique, dans le but de fournir une prévision qui
soit à la fois précise, fiable et économiquement attractive. L’accent est mis sur la cohérence
avec laquelle les différentes incertitudes doivent être quantifiées et réduites. Notamment,
celles-ci doivent être considérées explicitement avec une approche cohésive qui fasse en sorte
que chacune d’entre elles soit traitée adéquatement, intégralement et sans redondance dans
l’action des divers outils qui composent le système.

Afin de répondre à cette attente, plusieurs sous-objectifs sont définis. Le premier se penche
sur l’approche multimodèle pour évaluer ses bénéfices dans un contexte opérationnel. Dans
un second temps, dans le but d’identifier une implémentation optimale du filtre d’ensemble
de Kalman, différents aspects du filtre qui conditionnent ses performances sont étudiés en
détail. L’étape suivante rassemble les connaissances acquises lors des deux premiers ob-
jectifs en réunissant leurs atouts et en y incluant la prévision météorologique d’ensemble
pour construire un système qui puisse fournir des prévisions à la fois précises et fiables.
Il est attendu que ce système soit en mesure de prendre en compte les différentes sources
d’incertitude de façon cohérente tout en fournissant un cadre de travail pour étudier la
contribution des différents outils hydrométéorologiques et leurs interactions. Enfin, le der-
nier volet porte sur l’identification des relations entre les différents systèmes de prévisions
précédemment créés, leur valeur économique et leur qualité de la prévision.
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La combinaison du filtre d’ensemble de Kalman, de l’approche multimodèle et de la prévi-
sion météorologique d’ensemble se révèle être plus performante qu’aucun des outils utilisés
séparément, à la fois en précision et fiabilité et ceci en raison d’une meilleure prise en compte
de l’incertitude que permet leur action complémentaire. L’ensemble multimodèle, composé
par 20 modèles hydrologiques sélectionnés pour leurs différences structurelles, est capable
de minimiser l’incertitude liée à la structure et à la conceptualisation, grâce au rôle spéci-
fique que jouent les modèles au sein de l’ensemble. Cette approche, même si utilisée seule,
peut conduire à des résultats supérieurs à ceux d’un modèle semi-distribué utilisé de façon
opérationnelle. L’identification de la configuration optimale du filtre d’ensemble de Kalman
afin de réduire l’incertitude sur les conditions initiales est complexe, notamment en raison
de l’identification parfois contre-intuitive des hyper-paramètres et des variables d’état qui
doivent être mises à jour, mais également des performances qui varient grandement en fonc-
tion du modèle hydrologique. Cependant, le filtre reste un outil de première importance car
il participe efficacement à la réduction de l’incertitude sur les conditions initiales et contri-
bue de façon importante à la dispersion de l’ensemble prévisionnel. Il doit être malgré tout
assisté par l’approche multimodèle et la prévision météorologique d’ensemble pour pouvoir
maintenir une dispersion adéquate pour des horizons dépassant le court terme. Il est égale-
ment démontré que les systèmes qui sont plus précis et plus fiables fournissent en général
une meilleure valeur économique, même si cette relation n’est pas définie précisément.

Les différentes incertitudes inhérentes à la prévision hydrométéorologique ne sont pas tota-
lement éliminées, mais en les traitant avec des outils spécifiques et adaptés, il est possible de
fournir une prévision d’ensemble qui soit à la fois précise, fiable et économiquement attrac-
tive.
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Abstract

A proper consideration of the different sources of uncertainty is a key point in hydrome-
teorological forecasting. Ensembles are an attractive alternative to traditional deterministic
forecasts that provide information about the likelihood of the outcomes. Moreover, ensem-
bles can be generated wherever a source of uncertainty takes place in the hydrometeorolog-
ical modeling chain.

The global objective of this thesis is to identify a system that is able to decipher the three
main sources of uncertainty in modeling, i.e. the model structure, the hydrological model
initial conditions and the meteorological forcing uncertainty, to provide accurate, reliable,
and valuable forecast. The different uncertainties should be quantified and reduced in a co-
herent way, that is to say that they should be addressed explicitly with a cohesive approach
that ensures to handle them adequately without redundancy in the action of the different
tools that compose the system.

This motivated several sub-objectives, the first one of which focusing on the multimodel ap-
proach to identify its benefits in an operational framework. Secondly, the implementation
and the features of the Ensemble Kalman Filter (EnKF) are put under scrutiny to identify
an optimal implementation. The next step reunites the knowledge of the two first goals by
merging their strengths and by adding the meteorological ensembles to build a framework
that issues accurate and reliable forecasts. This system is expected to decipher the main
sources of uncertainty in a coherent way and provides a framework to study the contri-
bution of the different tools and their interactions. Finally, the focus is set on the forecast
economic value and provides an attempt to relate the different systems that have been built
to economic value and forecast quality.

It is found that the combination of the EnKF, the multimodel, and ensemble forcing, allows
to issue forecasts that are accurate and nearly reliable. The combination of the three tools
outperforms any other used separately and the uncertainties that were considered are deci-
phered thanks to their complementary actions. The 20 dissimilar models that compose the
multimodel ensemble are able to minimize the uncertainty related to the model structure,
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thanks to the particular role they play in the ensemble. Such approach has the capacity to
outperform more a complex semi-distributed model used operationally. To deal optimally
with the initial condition uncertainty, the EnKF implementation may be complex to reach
because of the unintuitive specification of hyper-parameters and the selection of the state
variable to update, and its varying compatibility with hydrological model. Nonetheless, the
filter is a powerful tool to reduce initial condition uncertainty and contributes largely to the
predictive ensemble spread. However, it needs to be supported by a multimodel approach
and ensemble meteorological forcing to maintain adequate ensemble dispersion for longer
lead times. Finally, it is shown that systems that exhibit better accuracy and reliability have
generally higher economic value, even if this relation is loosely defined.

The different uncertainties inherent to the forecasting process may not be eliminated, nonethe-
less by explicitly accounting for them with dedicated and suitable tools, an accurate, reliable,
and valuable predictive ensemble can be issued.
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Introduction

Although the equations that describe atmospheric circulation have been mastered for a long
time, weather forecasting remains complex. Indeed, many phenomena are difficult to grasp
because of the extreme sensitivity to initial conditions illustrated by Lorenz and chaos theory
(Lorenz, 1963), or because of the non-linearity of the physical processes (Lions et al., 1992).
For these reasons, weather forecasts are still uncertain and will likely remain so despite ma-
jor dedicated efforts aimed at reducing this uncertainty.

Hydrological forecasting relies heavily on precipitation and temperature forecasts. Given the
uncertainty that remains in precipitation forecast, predicting river streamflows is a daunting
task. Hydrological forecasting adjoins additional complexity by implicitly or explicitly tak-
ing into account every process that lies between precipitation and the catchment outlet. All
these physical processes are associated with some uncertainty, stochastic or deterministic.
These uncertainties represent a real challenge for operational hydrological forecasting and
scientific knowledge. Nonetheless, if uncertainties are well understood and properly han-
dled, informative and reliable forecasts can be issued.

This thesis aims to evaluate, improve, and develop the understanding of operational fore-
casting techniques through the use of meteorological ensemble prediction, hydrological mul-
timodel approach, and streamflow data assimilation.

Hydrological modeling: General statements

Hydrological modeling is used in many fields to deal with numerous issues. The very def-
inition of hydrology even varies depending on the viewpoint and interests. Penman (1961)
defines it asking the following question: "What happens to the rain?". Under this simple
formulation actually lays a lot of complexity.

Indeed, although the water cycle is relatively well understood as a whole, the description
and quantification of the physical processes and their uncertainties at the watershed scale is
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a major challenge in modeling. Components of the water cycle such as snowmelt, runoff,
flow routing, evaporation, and interception are all elements that convey uncertainty (Elkadi,
1989; Goodrich and Woolhiser, 1991). These different aspects of the watershed dynamic are
closely related to each other and are in practice extremely difficult to assess separately.

Hydrological models allow to understand and predict the watershed response to precipita-
tion and to provide answers to practical case study of land use change, irrigation manage-
ment, preservation of natural habitat, flood forecasting and mitigation, dam management,
and water quality (Singh and Woolhiser, 2002). They also represent a considerable source
of information for the understanding the watershed physics (Kirchner, 2006), specifically to
identify interactions between climate, snow cover, land use, etc. The models are now a key
component of management, engineering, and scientific research toolboxes that contribute to
the overall understanding of watershed systems.

Development of the first components of what will eventually become hydrological models
is often attributed to Mulvany in the middle of the XIXth century with the conceptualization
of the rational method, followed by Sherman in the ’30s with the introduction of the unit
hydrograph, and Horton with the formalization of the infiltration process. Later, Penman
(1948) and Thornthwaite (1948) formulated equations to describe evapotranspiration equa-
tions, which are now frequently used in hydrological modeling.

In the ’50s, the numbers of new theories sprang up and contributed to modern hydrology.
With the development of computers in the ’60s, it became possible to set models at the catch-
ment scale by integrating different hydrological processes. The Stanford Watershed Model
is often presented as the first model to describe all the main dynamics of a watershed. Other
famous models including TOPMODEL (Beven et al., 1984), SWMM (Metcalf and Eddy, 1971)
and SHE (Abbott et al., 1986), for example, continue to be developed and are still used today.
Singh and Woolhiser (2002) and Goodrich and Woolhiser (1991) draw up a more exhaustive
list of hydrological models that are considered to have contributed substantially to the de-
velopment of watershed modeling.

Quality of hydrological data is a crucial aspect for modeling, in particular their consistency
and accuracy should be considered prior to model forcing (Silberstein, 2006). This is espe-
cially true with the use of new remote acquisition techniques such as satellites (Gourley and
Vieux, 2006; Lorenc, 2003) and radars (Georgakakos et al., 2004; Gourley and Vieux, 2006;
Ranzi et al., 2009; Turcotte et al., 2001). These techniques may allow to get round the lack of
field measurements to better identify spatial properties of the watershed and its initial state
and to provide a better picture of precipitation spatial distribution.
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Also, the choice of an appropriate model may be conditioned by the type of data available –
physical and fully distributed models usually necessitate more data than conceptual lumped
models. Required data usually include hydrometeorological data for the forcing (solid and
liquid precipitations, temperature, radiation, humidity, vapor pressure, solar radiation, and
wind speed), land use, geology and topography (soil type, porosity, soil moisture, etc.).

Uncertainty: A primer

The definition of uncertainty varies depending on the user and field, and forecast expec-
tation. It is defined here as " any deviation from the unachievable ideal of completely de-
terministic knowledge of the relevant system" (Walker et al., 2003). Uncertainty has three
dimensions: location, level, and nature.

The notion of location refers to the structure of a system where it is possible to situate the
various sources of uncertainty. Five locations are identified:

• the context: identification of boundaries, i.e. completeness of the modeling represen-
tation

• model uncertainty: the structural model uncertainty that comes from the failure in our
understanding of the system and the technical model uncertainty

• inputs: external forces that lead to changes in the system

• parameter uncertainty: calibrated time invariant model components that are implicitly
associated with input, structure, and calibration

• output: also called prediction error, which is aggregation of the uncertainties of the
modeling chain

The level of uncertainty ranges between fully deterministic understanding that it is not pos-
sible to reach and total ignorance. We can define an axis of increasing level of uncertainty
as such: determinism, statistical uncertainty, uncertainty about the scenario, recognized ig-
norance, total ignorance (Walker et al., 2003; Pappenberger and Beven, 2006). Ideally, all
decisions should take into account the possibility of unknown changes, not just the uncer-
tainty around the phenomenon known (Walker et al., 2003). Hence, the goal here is to reduce
adverse impacts from the unexpected rather than hoping to eliminate them.

Finally, the nature of the uncertainty indicates if the uncertainty is due to the imperfection of
knowledge that can be reduced by carrying out more fundamental research (the epistemic
uncertainty) or the variability inherent to natural chaotic systems (uncertainty of variation).
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Ensembles

The vast majority of hydrological models are deterministic and the error laying in their out-
put can be hard to estimate properly. An alternative to the deterministic approach is the
creation of ensembles.

Flood forecasting systems rely on rainfall estimations that can be gathered for example from
rain gauges, radars for now-casting, or Numerical Weather Prediction (NWP) systems that
allow to extend hydrological forecast beyond the catchment concentration time, typically up
to 10 or 15 days ahead.

The past decade has witnessed a growing use of Ensemble Prediction Systems (EPS) that
are a collection of deterministic forecasts. These can be used, among other applications, in
operational flow forecasting (e.g. Dietrich et al., 2009; Georgakakos et al., 2004; Hopson and
Webster, 2010; Renner et al., 2009; Roulin, 2007), for climate change studies (e.g. Christensen
and Lettenmaier, 2007; Murphy et al., 2004; Seiller et al., 2012), and soil occupation investi-
gation (e.g. Breuer et al., 2009; Huisman et al., 2009; Viney et al., 2009).

As such, many meteorological agencies have adopted ensembles (MEPS) like the Meteoro-
logical Service of Canada, the European Center for Medium-Range Weather Forecasts, the
Japan Meteorological Agency. This move toward probabilistic forecast has been followed by
flood forecasting agencies like the European Flood Alert System, the Finnish Hydrological
Service, Georgia-Tech/Bangladesh project, and more.

Meteorological ensembles

Weather forecasting is a complex task because of the difficulties inherent to numerical mod-
eling of the atmospheric circulation patterns, atmosphere and ground coupling, horizontal
and vertical resolution issues, and the great sensitivity to initial conditions. To characterize
these uncertainties, ensemble forecasting provides a sample of likely outcomes, i.e. several
predictions for a given place at a given time.

Ensembles are usually generated from a set of initial conditions identified from an analy-
sis. Thus, a set of typically ten to fifty initial conditions is obtained and is used to initiate
simulations. Alternative techniques to form ensembles include the poor man’s ensemble
(Jasper et al., 2002; Davolio et al., 2008) that explicitly accounts for meteorological model
structural and data assimilation error, lagged ensembles (Dietrich et al., 2009), and the cre-
ation of super ensembles such as the THORPEX Interactive Grand Global Ensemble (TIGGE,
Park et al., 2008; He et al., 2009) that combines several MEPSs to provide extensive estimates
of meteorological uncertainty. These ensembles show increasing performance (e.g., Cloke
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and Pappenberger, 2009; Charron et al., 2010; Buizza et al., 2007), which suggests forthcom-
ing progress in hydrological forecasting.

Studies show that the meteorological ensemble forecasts are often more accurate than deter-
ministic ones (Bourke et al., 2004; Palmer et al., 2004; Doblas-Reyes et al., 2000; Kang and Yoo,
2006), more consistent on consecutive days (Buizza, 2008) in addition to provide information
about the uncertainty. However, in view of the MEPS remaining imperfections, it is possible
and often desirable to process them prior to using, by correcting their bias (Christensen and
Lettenmaier, 2007; Goddard et al., 2001) or dispersion (Boucher et al., 2015). For instance,
Fortin et al. (2006) shows that it is possible to improve MEPSs’ performance by processing
their output, resulting in an improvement in temperature and precipitation prediction.

To reconcile meteorological and hydrological model scales, meteorological forecast frequently
needs to be downscaled in order to provide higher resolution information. Several scaling
techniques exist (Maraun et al., 2010) but are subdivided into two main groups: statistical
and dynamical downscaling. Statistical downscaling aims to estimate statistical relation-
ships between observed variables at local and larger scale variables, using neural networks,
analog methods, multifractal cascades (Deidda, 2000), weather type (Boe et al., 2006),regres-
sion techniques, and disaggregation (Segond et al., 2006). On the other hand, dynamic
scaling carries out a transfer from GMC outputs to regional models. Note that MEPS are
mostly Global Circulation Models (GMC) but there exists also some regional MEPSs such as
COSMO-LEPS (Molteni et al., 2001).

Hydrological ensembles

Hydrological Ensemble Prediction Systems (HEPS) rely on the same concept as the MEPS
by providing a set of members that aims at grasping the sources of uncertainty. Several
techniques are commonly used to create HEPS:

• a unique hydrological model with MEPS

• several models with deterministic forcing

• variants of the same model used together

• probabilistic data assimilation

• a combination of the above methods

There are many recent publications that build HEPS forecasts from a single hydrological
model (e.g. Dietrich et al., 2009; He et al., 2009; Hopson and Webster, 2010; Jaun and Ahrens,
2009; Li et al., 2009; Randrianasolo et al., 2010; Ranzi et al., 2009; Renner et al., 2009; Thie-
len et al., 2009; Thirel et al., 2010b,a). These authors agree that the HEPS have substantial
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advantages over deterministic forecast or statistical ensembles1, including greater reliability
and better uncertainty handling. The uncertainty deciphered by the MEPS can be cascaded
through the hydrological model (Pappenberger et al., 2005) and can be used in an opera-
tional context. First results of the project Distributed Model Intercomparison Project show
that the simple average of all forecasts is very often better than any of the models within the
ensemble (Reed et al., 2004; Smith et al., 2004).

Ensembles are generally better to predict extreme events even if they remain difficult to de-
tect several days in advance. They allow not only to identify the most likely outcome but
also to evaluate the probability of occurrence of rare and extreme events (Cloke and Pappen-
berger, 2009). Notheless, simulated flood peaks are often shifted in time or their amplitude
is misjudged (Regimbeau et al., 2007).

When several models with fundamentally different structures are pooled, the subsequent
ensemble is referred to as a multimodel ensemble. Clemen (1989) lists multimodel applica-
tions in a wide variety of fields (management, economics, social sciences, etc.) and states that
the gain is important and obtained at low cost. The principle of multimodel is based on the
fact that it is now broadly recognized that there is no model that provides the best results in
every situation and that the increase of performance for a certain model and watershed is of-
ten realized at the expense of the performance on other watersheds (Oudin et al., 2006; Clark
et al., 2008b; Reed et al., 2004; Smith et al., 2004). Thompson (1977) attributes the superiority
of the multiple model approach by "the incontrovertible fact that two or more inaccurate but
independent predictions of the same future events may be combined in a very specific way to
yield predictions that are, on the average, more accurate than either or any of them taken in-
dividually". Results reported by Velázquez et al. (2011) show that simple pooling of existing
models generally gives similar or superior performance than the best model of the ensemble.

A smaller number of studies, adopting a more comprehensive approach, combine meteoro-
logical and hydrological ensembles (Block et al., 2009; Velázquez et al., 2010, 2011). These
forecasting systems have the advantage to take into account both the uncertainty of weather
forecasting and hydrological models.

This type of ensemble characterizes more comprehensively uncertainties but exhibit a draw-
back in their larger size. The large number of members can be an obstacle in practical use,
but solutions like member selection that allow to reduce ensemble size without loss of pre-
dictive skill were proposed (Brochero et al., 2011b,a; Marshall et al., 2005).

1Ensembles that are initially deterministic and made probabilistic by taking into account the assumed error.
Members are probabilistically distributed around a mean.
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Distributed models and lumped models

The question of the adequate spatial scale to represent catchment properties is still a contro-
versial topic. With increasing computational power, the use of distributed models becomes
more common, often at the expense of lumped models.

A distributed model takes into account the spatial variability of the geophysical characteris-
tics of the watershed. The digital elevation models (geometry of the basin, the hydrographic
network, topographic gradient) and digital terrain model provide required data, usually on
a grid, to the hydrological models. An advantage of distributed models is that it is theo-
retically possible to have access to any variable at a specific location within the watershed.
However, such a system requires a larger amount of data that may be difficult to gather. A
second obstacle to their use is that their structure usually relies on a large number of param-
eters that make them more complex to calibrate.

Physically distributed models are necessary for understanding the processes that govern the
dynamics of a watershed (Kirchner, 2006) but rarely improve upon lumped models perfor-
mance in forecasting (e.g. Bormann et al., 2009; Refsgaard and Knudsen, 1996).

The spatial resolution faces the problem of variability. Sources of variability can be stochas-
tic, deterministic, or both at the same time depending on the scale, and it is not possible
to describe accurately the watershed according to a single characteristic length (Singh and
Woolhiser, 2002). This justifies the simplifications made by hydrological models (lumped
and distributed) as long as the behavior of the watershed is preserved.

Kavvas (1999) shows that large scale processes that are formed by a set of smaller scale pro-
cesses, can be described directly at the resolution of interest since processes with high fre-
quency at small scale are eliminated by averaging effect. Lumped models are partly based
on this idea. It is assumed that it is not necessary to know all the physical phenomena at ev-
ery location of the watershed in order to understand its evolution and to predict its behavior
through its global dynamic. Lumped models therefore present an integrated response at the
watershed scale. They generally require fewer inputs and are consequently much easier to
calibrate and implement. In return, the validation of lumped models is less "complete" as
it is only possible to compare a single value against observations, typically the flow at the
outlet.

There are physical equations that can describe more or less accurately every step of the
rainfall-runoff process but they are nevertheless difficult to apply and notably to integrate on
large scale. It is convenient to use so-called conceptual models that reduce complexity. They
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are no longer based on a bottom-up description, but on an overall description of the sys-
tem. Hydrological processes that are located between rainfall and the outlet are no longer
expressed explicitly with physical equations but through concepts. The structure of these
models is simpler, they have fewer parameters, and are therefore easier to calibrate (Perrin
et al., 2001).

A third type of model, the semi-distributed ones, achieves a trade-off between the two types
mentioned above. Semi-distributed models simulate hydrological processes at a scale where
catchment properties are deemed homogeneous – the relatively homogeneous hydrologi-
cal unit. Smith et al. (2004), Breuer et al. (2009), Bormann et al. (2009), and Refsgaard and
Knudsen (1996) show that the different types of models may reach similar performance if a
preliminary calibration is performed.

Snow modeling

Snow accumulation and melting modeling requires a particular attention since the process
contributes significantly to the spring freshet. The melting of the snowpack can cause ex-
treme events and proper identification of snowpack properties is necessary to enable pre-
vention of adverse events. Solid precipitation delays the reaction of the watershed over
periods that can vary widely. Modeling the accumulation of snow and its melting requires a
specific module, the snow accounting routine. Snow and hydrological models faces similar
issues, namely the adequate level of complexity to accurately describe relevant processes,
the definition of spatial and temporal resolution, the identification of parameters and their
calibration. Concealing the importance of snowmelt in streamflow forecasting leads to poor
performance (e.g. Nicolle et al., 2011; Valery et al., 2014b).

Klemeš (1988) identifies several difficulties inherent to snow modeling. First, observations
that are critical for model calibration and validation are hardly obtainable and often scarce.
Also, the accuracy of the measurements is often dubious because of the large range of inher-
ent difficulties that are associated with this type of data. Lastly, the data representativeness is
often questionable as, for example, wind and shade can affect snowpack thickness and mat-
uration, respectively. Although remote measurement techniques can provide a more reliable
estimate than simple spot measurements, these techniques are still perfectible and interpre-
tation of results is still tricky (Turcotte et al., 2001).

The snow accounting routine must perform several operations at each time step:

• interpolate meteorological data available for snow cover
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• separate solid and liquid precipitations

• calculate the melting rate at different points

• integrate snow melting at catchment scale to get the runoff that directly contributes to
streamflow

• update the snow covered area and/or snowpack

Melting description can be done by either conceptual models with reservoirs or fully dis-
tributed physical models. Gurtz et al. (2003), Martin (2005), and DeBeer and Pomeroy (2009)
advocate a thermodynamic approach based on mass conservation equations and energy bal-
ance. On the other hand, conceptual modules favor the degree day approach since air tem-
perature and the main components of the energy balance are highly correlated (Ohmura,
2001; Eckert, 2002; Hock, 2003; Kienzle, 2008). In this case, the only variable of interest is
the temperature that is supposed to describe the melting. Mellow (1999) concluded that
one should not favor any particular type of model, but should adapt his approach based on
available data and model use.

Separation of liquid and solid precipitation can be performed by setting a threshold tempera-
ture (typically set to 0o C but it can be adjusted for each watershed and season, Kienzle, 2008),
or by setting a temperature range in which snow is represented as partially solid/liquid
(Valery et al., 2014a,b; Nicolle et al., 2011).

An additional difficulty in snow melting estimation is its highly heterogeneous spatial distri-
bution that is linked to dissimilar sun exposure and topographic influence. It is thus difficult
to define melting rate that are characteristic of catchment scale. Ferguson (1999) diagnoses
interpolation of input data as the first step to be considered for the study of snow. The de-
crease of temperature with increasing altitude, the variation of this gradient during the year,
etc., are aspects that need to be considered. To describe this variability, conceptual snow
accounting routine frequently discretize the catchment in several bands of equal altitude or
rely on snow stock depletion curve.

Data assimilation

A brief overview

Although hydrological models gained in efficiency, our understanding of hydrology remains
incomplete and model outputs remains consequently quasi-systematically different from ob-
servations. Data assimilation (DA) has the capacity to reduce these deviations from the ideal
value. Liu and Gupta (2007) defines assimilation as the "procedures that aim to produce
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physically consistent representations or estimates of the dynamical behavior of a system by
merging the information present in imperfect models and uncertain data in an optimal way
to achieve uncertainty quantification and reduction". Practically, DA aims at improving sim-
ulation by including new observations in the modeling process as they become available.
DA is opposed to the open loop scheme, where the model evolves only according to the in-
put forcing and remains otherwise unperturbed.

Data assimilation is now broadly used in hydrometeorological sciences and begins to be used
operationally since it proved to have the capability to improve simulation quality. DA has
been applied in many fields and can be used to assimilate various sources of observations.
These assimilated data can be obtained from direct field measurements, such as watershed
discharge, thickness and state of the snowpack, or soil moisture (e.g., Seo et al., 2009; Clark
et al., 2008b; Thirel et al., 2010a; DeChant and Moradkhani, 2011; Franz et al., 2014), but also
from remote sensing of soil moisture estimates (Forman et al., 2012; Meier et al., 2011; Ren-
zullo et al., 2014; Alvarez-Garreton et al., 2014), snow sensing (Kuchment et al., 2010), and
radar forcing (Harader et al., 2012; Kim and Yoo, 2014).

DA typically acts on forecast initial conditions, namely the internal states of the hydrologi-
cal models that contain, for instance, information about soil moisture, conceptual reservoir
levels, or snow cover and snowpack state. When comparing observations and "model first
guess", this difference is used to reinitialize the model to ensure to minimize the observed
discrepancy. Therefore, DA improves model initial conditions with the possibility to en-
hance forecasting by providing better initial conditions. Also, DA differs from error "diag-
nostic only" tool as it does not only aim at quantifying uncertainty but also at reducing the
differences between observation and simulation. In the case of probabilistic DA techniques,
in addition to set the model back "on the right path", the assimilation can control the shape
of the predictive function and usually contributes to provide more meaningful confidence
intervals.

As uncertainties may be located at several levels in the forecasting system and may be of a
different nature, DA techniques may take different forms. In particular, depending on the
DA technique used, it can act at several places to correct model predictions (Refsgaard, 1997).

• input updating: typically concerns temperature and precipitation and is often itera-
tively performed by experimented modelers. It acts on state variables through manu-
ally perturbed forcing, or may be automatized through an optimization scheme.

• state variable updating: adjustment of state variable that can be carried out by either
a substitution of the value if the observation corresponds directly to the nature of the
state variable or by more sophisticated techniques if the model state is hidden.
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• parameters updating: modify originally time invariant parameters (obtained through
calibration). This technique is often considered controversial but can compensate cali-
bration error and explicitly account for parameter uncertainty.

• output updating: deterministic or probabilistic correction of model outputs. It relies
on the assumption that outputs are frequently correlated through time. A major ad-
vantage resides in its simplicity since it may be associated to a post-processing step.

Occasionally, DA may be performed simultaneously at several places, like dual state-parameter
updating (Vrugt et al., 2005; Moradkhani et al., 2005; Nie et al., 2011).

In the past decade, state updating techniques became dominant thanks to their efficiency.
A broad range of techniques have been created with many variations that claim to improve
upon the initial technique they are derived from. However, they usually fall into one of
the following category: variational assimilation, particle filtering, and Kalman filtering ap-
proaches.

Variational assimilation uses past observations included in a specified temporal window to
update state variables. It relies on the definition of a cost function representing the aggre-
gated model error that should be minimized (Seo et al., 2003; Lorenc, 2003; Seo et al., 2009;
Lee et al., 2011; Abaza et al., 2014).

The particle filter estimates recursively model states by providing a complete probability
distribution of state variables. It does not update states based on observations but rather
performs a resampling of the sets of states, named particles, to create an accurate posterior
distribution with according weights (DeChant and Moradkhani, 2012; Thirel et al., 2013;
Moradkhani et al., 2006).

Kalman filters

The Kalman filter (KF), the extended Kalman filter (EKF), and the ensemble Kalman filter
(EnKF) belong to sequential assimilation methods. Sequential data assimilation rests upon
studies of the system states in order to find a set that statistically fits best the observations.
These methods rely on the Markov property, i.e. that future states depend only upon the
present states and the equations that describe the evolution of the process. They intend to
update one or more of the states of hydrological models and may be applied to high dimen-
sional systems. In their basic form, the state-space models are based on the assumption that
all probability distributions involved are Gaussian.

In 1960, Kalman describes a recursive solution for linear filtering problems with discrete
data, which was named later the Kalman Filter (KF). The field of potential applications is
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wide and KF efficiency has been demonstrated from satellite trajectory correction to econ-
omy purpose and communication.

The extended Kalman filter (EKF, Jazwinski, 1970) realizes an improvement over the KF in
the relaxation of the linearity constraint. Indeed, hydrological processes and models are rec-
ognized to be broadly non linear and this filter has been logically applied to hydrological
modeling (Katul et al., 1993; Walker and Houser, 2001) and assimilation of snow cover (Sun
et al., 2004). However, EKF presents major difficulties in its implementation, mainly in the
derivation of linear tangent operators and convergence (Evensen, 1992; Bouttier, 1994) and
felt in disuse for hydrological applications.

The ensemble Kalman filter was introduced in 1994 (Evensen) and then corrected (Burgers
et al., 1998) to offer a stochastic alternative to the EKF. Unlike KF and EKF, in the EnKF,
errors are statistically represented by a cloud of points that is propagated by the evolution
model without any required linearization. The Monte Carlo approach enables to identify the
error covariances that are necessary to compute the updated states values. Once this step
achieved, the analysis is similar to the traditional KF.

Like most DA technique, the EnKF requires some prior knowledge about the uncertainty
contained in the modeling process. This is particularly apparent in the specification of the
perturbations of the model inputs and observations even if little attention has been dedicated
to this topic (Moradkhani et al., 2005). All states variables are generally updated for lumped
or semi-distributed models, but few studies like Vrugt et al. (2006) argue that updating only
3 out of the 9 model states leads to an improvement of 50% with the SAC-SMA model and
that the remaining error is mostly uncorrelated.

Objectives

Despite dedicated efforts, quantification and reduction of the uncertainty between meteoro-
logical forecasts and predicted discharges remains imperfect. Several aspects of the rainfall-
runoff modeling are still considered as problematic and many authors stress out that more
work is needed to address these shortcomings.

It is now widely recognized that quantification and reduction of uncertainty have critical
importance. Nonetheless, there is still no existing framework for uncertainty handling that
makes consensus, as existing ones remain often incomplete. Cloke and Pappenberger (2009)
concluded that a key challenge will be to elaborate an optimal framework that will make use
of formal and explicit statistical treatment. Bourdin et al. (2012) substantiated this statement
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by emphasizing that the existing frameworks are typically confined to decipher one or two
sources of uncertainty and that progress will be realized by developing broader uncertainty
accounting. Therefore, an optimal framework should take into account all the hydrometeo-
rological uncertainties, regardless of their location.

Even though hydrological model performance increased, none of them was shown to be su-
perior in all circumstances. Moreover, we cannot observe a consequent increase in individual
model performance over the last decade indicating that hydrology may have hit a hurdle in
the improvement of model structure (Todini, 2007; Singh and Woolhiser, 2002). Although
the use of multiple models is usually accompanied by higher computational cost than single
model simulation, it exhibits a higher flexibility and robustness that is so far unmatched by
any deterministic model. Further investigation of the multimodel approach should be car-
ried out as most studies focused on the assessment of the ensemble gain over the individual
models composing it, or on land use change, and little work has been done in a context of
operational forecasting. Also, the role that individual models composing the multimodel
pool and capacity of the multimodel approach to decipher structural uncertainty deserves
more attention.

Meteorological ensembles are now recognized for their ability to represent the meteorolog-
ical uncertainty. Since many meteorological agencies now provide meteorological ensem-
ble products, these data become more easily available. As a consequence, flood forecasting
agencies and research are progressively moving from deterministic forcing to ensemble pre-
diction systems. Another important aspect raised by Cloke and Pappenberger (2009) is that
the majority of studies using MEPS focus only on the prediction of a particular event and
more rarely on long time series. The value of hydrological ensembles was demonstrated for
flood events but little work addresses both streamflow forecasting through the whole year
(thus including the lowest flows) and on the prediction of larger events. Moreover, despite
the generalization of the use of such ensembles, most HEPS are still only generated by MEPS
forcing and the combination of ensemble forcing with other tools remains under exploited.

Liu and Gupta (2007) insists that an integrated framework for the consideration of uncer-
tainty that facilitates the implementation of data assimilation in a more cohesive, coherent,
and systematic way should be established. Among others, Vrugt and Robinson (2007) draws
positive conclusions about the use of the Ensemble Kalman Filter in an operational context.
However, it remains unclear what sources of uncertainty are explicitly accounted for with the
EnKF as generated ensembles are not systematically reliable. According to Liu and Gupta
(2007), there is a lack of experience, knowledge and guidelines in the implementation of data
assimilation techniques. They add that assimilation used alone is not sufficient to decipher
all sources of uncertainty. Thus, there is room for improvement in the understanding, quan-
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tification, and reduction of uncertainty to reach an optimal framework for hydrological data
assimilation.

General thesis objective

This thesis aims to identify a suitable framework to explicitly decipher, characterize, and
reduce the main sources of uncertainty of the hydrometeorological modeling chain, in a co-
herent way in order to issue accurate, reliable, and valuable forecast. To obtain a coherent
description and reduction of uncertainty, the different sources of uncertainty need to be ad-
dressed individually, with specific tools in a transparent way, avoiding "black boxes". There-
fore, the action of these tools should not overlap each other by deciphering twice the same
uncertainty and possibly compensating for other unaddressed uncertainties. This relates to
Kirchner’s statements (2006): "Getting the right answers for the right reasons". To achieve
the aim, four goals are defined.

Objective 1: Multimodel approach in an operational context

The first objective is to set up 20 hydrological models on catchments at hand and to force
them with deterministic meteorological forecasts to assess the benefits related to the addi-
tional information provided by a hydrological multimodel approach. At this stage, data
assimilation will be performed with a simple output updating technique. This allows to
investigate the multimodel contribution for handling rainfall-runoff model structural un-
certainty and to explore the role that ensemble members play. To go beyond traditional
assessment against best member or ensemble mean, the multimodel ensemble is also com-
pared to Hydrotel, a distributed hydrological model that is currently used operationally for
watershed management and climate change studies.

This objective presents an operational interest since it is based on a substantial database that
will broaden the knowledge about multimodel, simple data assimilation, and applications
for regions where snow has a great influence on the hydrological regime. This objective is
the basis of the project since the subsequent elements of a more comprehensive forecasting
framework will be built upon directly on this base.

It is expected that ensemble constituted by the 20 hydrological models exhibits performance
at least comparable to that of Hydrotel.

Objective 2: Implementation and investigation of the EnKF

The second objective aims at identifying EnKF parametrization in order to reduce uncer-
tainty related to hydrological initial conditions. To do so, the EnKF will be implemented on
the 20 hydrological models to perform model state updating based on streamflow assimila-
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tion.

There is no clear guideline concerning the EnKF optimal setting, notably the specification
of model input and output perturbations that are needed to account for the various sources
of uncertainty and the identification of the state variables that should be updated. Thus
a comprehensive screening of required perturbations will be carried out for each model to
ensure streamflow simulations accuracy and reliability. Also, a systematic testing of all pos-
sible state variable combinations will be tested to identify the ideal set of state variables that
has to be included in the updating process. Additionally, a particular attention will be paid
to the EnKF and hydrological model adequacy. To minimize additional interferences with
meteorological forecast uncertainty, perfect forecast (i.e. observations) will be used to force
the models.

This objective should contribute to a better understanding of the EnKF in a hydrological con-
text and more specifically, to the identification of the amount of uncertainty it can decipher
in simulation and forecasting modes.

Objective 3: Accounting for the three main sources of uncertainty

The third step of this thesis intends to create a framework that explicitly accounts for the
three major sources of uncertainty in hydrometeorological modeling, i.e. meteorological
forcing, model structure, and initial condition uncertainty.

The benefits that the EnKF, MEPS forcing, and multiple models bring to the forecasting sys-
tem will be investigated by either combining or alternating these tools. This will lead to the
creation of several dissimilar systems. It thus becomes possible to investigate precisely their
role and contribution to the quality of the forecast prediction as a function of the forecasting
horizon, but also to study their interactions. Particular attention will be paid to the forecast
reliability as it reflects the capacity to properly take into account the different sources of un-
certainty. This framework can be regarded as potentially operational since it uses MEPS.

Finally, a framework that offers fully probabilistic description of the main sources of uncer-
tainty should be obtained and it is expected that streamflow prediction are both accurate and
reliable. Also, the identified forecasting system should decipher uncertainties in a coherent
manner, by specific action of the different tools to address their dedicated sources of uncer-
tainty in a cohesive way, without overlapping in their actions and without compensation for
uncertainty that may not be addressed. If these requirements are fulfilled, resorting to post
processing techniques should not be necessary to achieve reliability.

15



Objective 4: Investigation of the economic value of dissimilar systems

The last objective aims to investigate the economic value of the different systems that were
developed while fulfilling objective 3. Thus, it becomes possible to assess the economic
value of systems that decipher a different amount of total uncertainty with the forecasting
tools previously mentioned. The relation between economic value and forecast quality (ac-
curacy and reliability) will also be investigated.

For this purpose, several early warning systems based on the previously developed forecast-
ing systems will be assessed with the relative economical value that is a flexible theoretical
framework that scales the forecast value between the no-warning and perfect forecast cases.

Practically, this objective should help to quantify the economic gain that can be obtained
through increasing system complexity required to decipher the different sources uncertainty
and to relate economical value and forecast quality.
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Chapter 1

Assessment of a multimodel ensemble
against an operational hydrological
forecasting system1

1.1 Abstract

Ensemble forecasts present an alternative to traditional deterministic forecasts by provid-
ing information about the likelihood of various outcomes. An ensemble can be constructed
wherever errors are likely to occur within a hydrometeorological forecasting chain. This
study compares the hydrological performance of a multimodel ensemble against determin-
istic forecasts issued by an operational forecasting system, in terms of accuracy and reliabil-
ity. This comparison is carried out on 38 catchments in the province of Québec for more than
2 years of 6-day-ahead forecasts. The multimodel ensemble is comprised of 20 lumped con-
ceptual models pooled together, while the reference forecast originates from an operational
semi-distributed model. The results show that probabilistic forecast outperforms its deter-
ministic counterpart and the deterministic operational forecast system, thanks to the role
that each member plays inside the multimodel ensemble. This analysis demonstrates that
the multimodel ensemble is potentially an operational tool, even though the specific setup
for this study still suffers from underdispersion and needs to take into account additional
sources of uncertainty to reach an optimal framework.

1The content of this chapter has been published in Canadian Water Resources Journal / Revue canadienne des
ressources hydriques, Vol. 40, Iss. 3, 2015. A. Thiboult, F. Anctil, Assessment of a multimodel ensemble against
an operational hydrological forecasting system. Authorship: A. Thiboult and F. Anctil designed the experimental
setup and performed the analysis. Coding and simulations were carried out by A. Thiboult. The text has been
written by A. Thiboult and revised by F. Anctil.
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1.2 Introduction

Streamflow forecasting is a cornerstone for water management, civil protection and reservoir
operation (Krzysztofowicz, 1999; Block et al., 2009; Dietrich et al., 2009; Ramos et al., 2010).
Despite efforts dedicated toward the development of efficient operational systems, attaining
accuracy and reliability remains a daunting challenge as the sources of uncertainty in the
hydrometeorological chain are many (Walker et al., 2003).

Uncertainty sources are spread from the initialization of meteorological prediction systems
to decision-making tools. Among them, it is generally admitted that the main sources in-
clude meteorological forcing, hydrological initial conditions, time-invariant parameters and
model structure (Ajami et al., 2007).

For the last few years, in seeking reliable simulations, the hydrometeorological community
has been progressively shifting from deterministic simulations to probabilistic ones based
on ensembles: a representative sample of the possible future outcomes. An ensemble al-
lows framing uncertainty but, moreover, its median is frequently more accurate than any
of the members (Velázquez, 2010). This stems mainly from the fact that inaccurate models
presenting uncorrelated errors may be combined in a way that is on average better than the
members taken individually (Thompson, 1977). These ensembles can be built wherever un-
certainty exists along the hydrometeorological modeling chain.

Many meteorological agencies have now adopted ensemble forecasting (e.g. the Meteoro-
logical Service of Canada, the European Center for Medium-Range Weather Forecasts, the
Japan Meteorological Agency and more). This venue directly benefits hydrological forecast-
ing for issuing probabilistic hydrological predictions based on an ensemble weather forecast
that explicitly takes into account the meteorological forcing uncertainty (Cloke and Pappen-
berger, 2009; Velázquez et al., 2009). Many studies claim that ensembles allow better decision
making and outperform deterministic forecasts (e.g. Boucher et al., 2012; Abaza et al., 2014).

The uncertainty in hydrological initial conditions has been intensively examined, mainly via
data assimilation to reinitialize a model on externally measured variables, creating a perti-
nent set of initial conditions for the next time step (Liu and Gupta, 2007). Data assimilation
may be used to, among other things, update model states (Clark et al., 2008b; Seo et al., 2009),
possibly along with parameters (Moradkhani et al., 2005), or other variables like snowpack
or some hydraulic information (DeChant and Moradkhani, 2011).

A large part of the total uncertainty arises from the hydrological modelling elements of the
chain, where model parameters, conceptualization and structure add up to form an aggre-
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gate of uncertainty difficult to decipher and predict (Walker et al., 2003).

Model parameter uncertainty has been extensively investigated. Beven and Binley (1992)
pioneered providing multiple possible answers through the Generalized Likelihood Uncer-
tainty Estimation (GLUE), which allows producing an ensemble of parameter sets equally
likely (from a mathematical point of view) to describe the catchment behavior. Because hy-
drologists have yet to identify a perfect model structure, there is no reason that a particular
set of parameters should represent the "truth," so GLUE allows the estimation of uncertainty
related to parameters through the equifinality principle (Beven and Binley, 1992; Beven and
Freer, 2001). Many other techniques have been proposed to estimate uncertainty related to
parameters, focusing on calibration (Vrugt et al., 2003), temporal variability of parameters
(Thiemann et al., 2001), spatial variability (Feyen et al., 2008), combining stochastic meth-
ods and expert knowledge (Dietrich et al., 2009) and varying objective functions (Yapo et al.,
1998; Gupta et al., 1998), sometimes combined with assimilation (Vrugt et al., 2005; Liu and
Gupta, 2007).

Gourley and Vieux (2006) carried out a study to identify the sources of uncertainty in a hy-
drometeorological chain. They argued that dealing with input and parameter uncertainties
may not be sufficient for encompassing the streamflow forecast error and that using different
conceptualizations would be a more appropriate strategy to overcome this issue. This would
create a way out of the endless quest for the perfect model and allow harnessing the inac-
curacies of existing models in an ensemble forecasting framework to issue better estimates
of predictive error. Georgakakos et al. (2004) combined a set of 11 calibrated and uncali-
brated models forced by radar observations to issue forecasts for six catchments, qualifying
their set-up as a potential operational tool. Clark et al. (2008a) confirmed that uncertainty
arises from the structure of the model itself by assessing 79 unique model structures built
out from four pre-existing hydrological models. This framework led them to conclude that
"it is unlikely that a single model structure provides the best streamflow simulation for mul-
tiple basins" (see also Ajami et al., 2006; Breuer et al., 2009). They emphasized that taking
into account the structural uncertainty is as important as considering parameter uncertainty.
It seems that the main limitation to a multimodel ensemble may be the lack of dissimilarity
between structures, which leads to underdispersed forecasts. This statement is substantiated
by Viney et al. (2009), who argued that "the best ensembles are not necessarily those contain-
ing the best individual models," but those bringing diversity.

Ajami et al. (2006) investigated several simple means for merging members, namely the
simple model average, the multimodel superensemble and the weighted average, and con-
cluded that despite their simplicity, the ensemble average generally performs better than
any member taken individually. More sophisticated methods, like Bayesian model aver-
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aging, were explored by Raftery et al. (2005) and Duan et al. (2007) to create probabilistic
forecasts. Ajami et al. (2007) exploited the integrated Bayesian uncertainty estimator scheme
to combine input, parameter and structural errors, and confirmed that merging the outputs
leads to a more reliable forecast since considering only parameter uncertainty resulted in a
large underdispersion. Velázquez (2010) confirmed that retaining all the output members
and offering a fully probabilistic forecast is preferable over an aggregate of outputs, preserv-
ing all the information available.

To the authors’ knowledge, despite the attention that ensemble and, more specifically, mul-
timodel ensemble modelling have aroused, comparisons have mostly been carried out be-
tween an ensemble and one or several members composing the ensemble. These studies
have helped to recognize the benefit associated with the use of several members, but the
comparisons are mostly not made in an independent way. There is a lack of comparisons of
a multimodel ensemble against an independent model, i.e. a model which is not part of the
multimodel ensemble. Comparing a multimodel ensemble to one of its members provides
information only about the ensemble’s relative performances, and one should ensure that
the reference model (the model used for comparison) is proven in order to evaluate the gain
of the system under scrutiny.

This study aims to assess gains related to the additional information provided by a hydro-
logical multimodel ensemble over an operational deterministic model, and to investigate
multimodel properties. The available data set is larger than that used in most previously
mentioned papers, striving for more global and generalized information instead of focusing
on a single event of interest. As Andreassian et al. (2009) recommended, tests are carried out
on demanding conditions. Hydrological forecasts are issued for catchments that are notably
affected by snow accumulation and spring freshet.

Hydrotel, a semi-distributed hydrological model operationally utilized for public dam man-
agement (Turcotte et al., 2004) by the Centre d’Expertise Hydrologique du Québec (CEHQ),
is driven by deterministic weather forecasts from Environment Canada over a 2.5-year pe-
riod to create the reference hydrological forecast. The multimodel ensemble is generated
from 20 lumped hydrologic models selected for their diversity and forced by the same me-
teorological inputs as the operational system, to ensure a fair comparison.

The paper is organized as follows: a brief description of the catchments and computing
tools is provided in the Methodology section, followed by a comparison between hydrologic
forecasts in terms of performance and reliability. Further investigation into the multimodel
ensemble is presented at the end of the Results section. Concluding statements are provided
in the last section.
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1.3 Methodology

The case study catchments and data are presented along with the description of scores se-
lected to assess the performance and reliability of the forecasts, followed by a description of
the output updating used to correct simulated streamflows.

1.3.1 Catchments and hydrometeorological data

The case study spans over 387,000 km2 with coverage primarily of the province of Quebec,
but also Ontario and the states of New York and Vermont (Figure 1.1). The area is situated
between 43◦15’N and 52◦20’N latitudes and 68◦85’W and 81◦20’W longitudes, where the
climate is classified as wet continental and the hydrologic regime is dominated by a spring
freshet. The flows are structured into three major river systems: the Outaouais River, the
Saguenay River and the lower part of the St. Lawrence River downstream of its confluence
with the Outaouais River. More specifically, the database includes 38 catchments of various
sizes and discharge levels (Table 1.1 and Table A.1). Snow data are not directly available as no
continuous in situ measurements are carried out. To estimate the solid precipitation (Table
1), all available precipitation and temperature observations are used to force the snowmelt
module. The annual mean is computed next from simulated snow accumulation time series.

Table 1.1: Mean annual characteristics of the catchments

Catchment area Streamflow Solid precipitation Total precipitation
(km2) (m3/s) (mm) (mm)

Min 236 5 218 985
Max 15342 299 501 1544
Median 1275 27 349 1184

Climatological time series (of minimum and maximum daily temperatures and 24-hour total
precipitation) were provided on a 1220-point grid (of 0.1◦ resolution) by the CEHQ. These
data were created by applying kriging to observations made within the study area, and ap-
plying an elevation-based temperature correction of -0.005◦C/m. The data set extends from
1969 to 2010, yet the 1990-2000 period was chosen for the calibration of the various hydro-
logical models.

Hydrotel processes meteorological inputs. Thiessen polygons are used to define weights as-
sociated to each grid point situated inside each catchment. In order to drive all hydrological
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Figure 1.1: Catchments and hydrological stations.

models with the same meteorological information, the semi-distributed model is run first
and the resulting evaluation of the climatology over the entire catchment is provided next to
the lumped models.

1.3.2 Precipitation and temperature forecasts

The deterministic meteorological forecasts were issued by the Canadian Meteorological Cen-
ter regional model over a 2-day horizon at spatial and temporal resolutions of 15 km and 3
hours, respectively. The forecast lead time is extended to 6 days by adjoining forecasts from
the 35 km resolution global model. All forecasts from October 2008 to December 2010 were
disaggregated by the CEHQ to the 0.1◦ grid of the climatological data by the nearest neigh-
bor method (Gaborit et al., 2013). For the sake of this study, the meteorological data are
aggregated to a daily time step.

The 3 years preceding the forecast period are used for model spin-up. Models are then
forced with observations to bring their states to values that are representative of the catch-
ment conditions at the beginning of the period of interest. In forecasting mode, hydrological
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forecasting and continuous simulation alternate. The forecast is issued by forcing the models
with the meteorological forecast from t = 0 to t = 6. Models are then forced with observa-
tions from t = 0 to t = 1 to create the new initial condition set for the forecasts from t = 1 to
t = 7. These steps are repeated over the entire forecasting period.

1.3.3 Hydrological models

Hydrotel is a semi-distributed model that simulates typical hydrological variables and pro-
cesses such as soil water content, snow accumulation and melt, evapotranspiration, vertical
water balance and surface runoff. It was conceptualized from a physical description of the
catchment by Fortin et al. (1995). The model is mostly used by the CEHQ for the manage-
ment of public dams in the Province of Québec (Turcotte et al., 2004). The present study
relies on a calibration performed by the CEHQ using the Shufle Complex Evolution (SCE;
Duan et al., 1992).

The multimodel ensemble pools 20 lumped models chosen for their structural diversity. The
initial model selection was carried out by Perrin (2000) to investigate structures and param-
eter complexity performance following an extensive bibliographic research. This selection
was revised by Seiller et al. (2012) for hydrological projections. Careful attention has been
given to favor parsimony: model complexity should remain low except if more complexity
provides a substantial gain in performance and robustness. This also ensures limiting issues
related to parameter uncertainty and equifinality (Beven and Binley, 1992) during the cali-
bration process, as the number of parameters is kept low.

The retained models rely on conceptual reservoirs to describe the principal processes of the
hydrological cycle, and were developed in different contexts as some were initially intended
for daily or monthly simulation or specifically for Nordic hydrology, for instance.

Some original models needed to be modified to match the ensemble frame. Potential evap-
otranspiration and snow accumulation and melting are computed externally. Additional
model modifications have been performed upon model parameters, structure or space dis-
cretization. For some models, the number of calibrated parameters has been reduced by
fixing parameters identified according to developers’ comments, or after a sensitivity analy-
sis. Simplifications in the structure may have also been carried out. The new structures were
kept if they provided better results than original models. A time-delay function for routing
is implemented for models that do not possess one in order to simulate catchments with a
time of concentration greater than 1 day. Finally, a parametric logistic function is added to
the models that required other catchment characteristics than hydrometeorological series.

23



Figure 1.2 summarizes the repartition of parameters and reservoirs of the 20 models. The
final selection exhibits models with low to moderate complexity (four to 10 calibrated pa-
rameters and two to seven reservoirs). A more detailed description of model modifications
can be found in Perrin (2000). Acronyms are used to emphasize that the models may sub-
stantially differ from their original version.

The lumped models are driven by precipitation and potential evapotranspiration. The latter
is calculated from the empirical formulation proposed by Oudin et al. (2005), based on the
daily mean air temperature and the calculated extraterrestrial radiation.

A single snow module (Cemaneige, Valery et al., 2014b) is used prior to running the lumped
models. The two-parameter module accumulates solid precipitation and relies on a degree-
day approach modulated by an energy balance index. It discretizes the catchment into five
bands of equal elevation. The precipitation provided to the lumped models is thus the sum of
the liquid precipitation and snowmelt water. The snowmelt module and individual models
are calibrated together. The parameter sets retained for the snow module are influenced by
the hydrologic model used and their parameterization. The hydrologic ensemble is therefore
coupled with a snow accounting process that takes into account the snow module parameter
uncertainty.

The lumped models are calibrated using the SCE method and the root mean squared error
(RMSE) of square-rooted streamflow as the objective function over the same 10-year period
(1990 to 2000) selected by the CEHQ for the calibration of the Hydrotel model.

1.3.4 Hydrologic forecast correction via streamflow assimilation

A simple assimilation technique is used to adjust hydrological forecasts. Output updat-
ing (Refsgaard, 1997) compares forecasted and observed streamflow on the date of forecast.
Then the difference between observed and simulated streamflow at time t=0 is subtracted
from each day of the 6-day forecast with a damping coefficient that depends on lead time,
starting with 1 the first day and decreasing to 0 on day 6:

Qupd(t = i) = (Qobs(t = 0)−Q f or(t = 0))σ(i) + Q f or(t = 1) (1.1)

where Qupd(t = 1) is the updated forecast of the ith lead day, Qobs(t = 0) the observed
streamflow at the time of forecast emission, σ(i) the empirically determined damping coef-
ficient which decreases by 0.2 unit every day (i.e. σ = 1 at t = 1, σ = 0.8 at t = 2, etc.) and
Q f or(t = i) the streamflow forecast at the ith day.
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Table 1.2: Main characteristics of the 20 lumped models (from Seiller et al., 2012)

Model Number of Number of Derived from
acronym parameters reservoirs
M01 6 3 BUCKET (Thornthwaite and Mather, 1955)
M02 9 2 CEQUEAU (Girard et al., 1972)
M03 6 3 CREC (Cormary and Guilbot, 1973)
M04 6 3 GARDENIA (Thiery, 1982)
M05 4 2 GR4J (Perrin et al., 2003)
M06 9 3 HBV (Bergström and Forsman, 1973)
M07 6 5 HYMOD (Wagener et al., 2001)
M08 7 3 IHACRES (Jakeman et al., 1990)
M09 7 4 MARTINE (Mazenc et al., 1984)
M10 7 2 MOHYSE (Fortin and Turcotte, 2007)
M11 6 4 MORDOR (Garçon, 1999)
M12 10 7 NAM (Nielsen and Hansen, 1973)
M13 8 4 PDM (Moore and Clarke, 1981)
M14 9 5 SACRAMENTO (Burnash et al., 1973)
M15 8 3 SIMHYD (Chiew et al., 2002)
M16 8 3 SMAR (O’Connell et al., 1970)
M17 7 4 TANK (Sugawara, 1979)
M18 7 3 TOPMODEL (Beven et al., 1984)
M19 8 3 WAGENINGEN (Warmerdam et al., 1997)
M20 8 4 XINANJIANG (Zhao et al., 1980)

It is out of the scope of this study to explore statistical post-processing methods specific to
hydrological ensemble forecasts for achieving a better representation of the uncertainty, such
as regressions (e.g. Gneiting et al., 2005), kernel dressing (e.g. Roulston and Smith, 2003),
Bayesian model averaging (BMA Raftery et al., 2005) and Bayesian processor of ensemble
(BPE Krzysztofowicz and Maranzano, 2004). Exploring a raw multimodel ensemble allows
us to investigate the role played by each hydrological model.

1.3.5 Scores

The hydrological forecasts are assessed in terms of accuracy, resolution and reliability. Re-
liability indicates the degree of statistical consistency between probability forecasts and the
observed frequency of occurrence of a particular event. For instance, a reliable 80% interval
should on average contain the observation eight times out of 10. Resolution evaluates the
ability of discriminating between two events which are different. In the case of deterministic
forecast, resolution is a measure of the distance between forecast and observation.

Traditional deterministic scores like mean absolute error (MAE) cannot be used when us-
ing probabilistic forecast, but distinctive scores need to be used in order to compare forecast
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Figure 1.2: Illustration of model structural diversity (from Seiller et al., 2012)

probability and the observation frequency.

Reliability and resolution are both assessed by the continuous ranked probability score (CRPS
Matheson and Winkler, 1976) (CRPS), which is the integral form of Brier’s score:

BS =
1
N

N

∑
t=1

(pt(x)− Ht)
2 (1.2)

where pt(x) is the forecasted probability of occurrence of an event x and Ht is the heavy side
function which is 1 when the event happens, 0 otherwise, and N the length of the time series.

The CRPS is "sensitive to the average ensemble spread and the frequency and magnitude of
the outliers" (Hersbach, 2000).

CRPS(Ft, xt) =
∫ + inf

− inf
(Ft(x)− H(x ≥ xt))

2dx (1.3)

where Ft(x) is the predictive cumulative distribution function for day t, x is the predicted
variable, xt is the corresponding observed value and H is the heavy side function. CRPS
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evaluates the performance for one time step, so the MCRPS is defined as the average of
CRPS over the entire period. An advantage of this score is that it can be compared to the
MAE (Gneiting and Raftery, 2007), and consequently allows the comparison of determinis-
tic and probabilistic forecasts.

The ranked histogram, also known as the Talagrand diagram, is used to evaluate reliability.
It is an easy way to visualize how the ensemble and its members are located with respect to
the observation. It assesses the reliability of the ensembles by subdividing them into boxes
which are delimited by the members of the ensemble. The representation gives the frequency
at which the observation falls into a specific bin. A flat histogram usually implies a reliable
ensemble since the observation is equally likely to be situated in between any two members
in average. More rarely, a rank histogram may appear uniform even in the presence of a
conditional bias (Hamill, 2001).

The rank histogram is also used in this study in a non-traditional way to track each member
among the ensemble. Instead of looking where the observation falls within the ensemble,
attention is paid to where the individual members fall within the ensemble. This produces
one rank histogram per member, hereafter called model rank histograms. Flatness is not
necessary in that context because shape is not related to reliability anymore, but only to the
place where the member under consideration is situated most frequently. This tool allows
for an investigation of the role of each member of the ensemble (i.e. each different lumped
hydrologic model).

1.4 Results

This section addresses three aspects. The first consists of a qualitative hydrograph compari-
son. The second concerns gains that a multimodel ensemble provides over the deterministic
hydrological prediction system. The last one investigates the role and contribution of indi-
vidual members in the multimodel ensemble.

1.4.1 Hydrograph Analysis

An example of streamflow prediction from 7 February to 7 June for the Dumoine River is
displayed in Figure 1.3. The hydrographs represent the observed and simulated rate of dis-
charge according to time. Unlike traditional forecast hydrographs where the origin of the
hydrograph represents the first forecasting day and the x-axes represents the lead time, the
hydrographs display the concatenation of values for the same lead times (1, 3 and 6 days
ahead). Percentages on the figure and the grey shades associated with them denote the the-
oretical confidence interval of the multimodel ensemble. The theoretical confidence interval
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would be equal to the "true" confidence interval in the case where the multimodel ensemble
is perfectly reliable.
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Figure 1.3: Multimodel ensemble and Hydrotel hydrographs for the Dumoine River. The
grey shades depict the percentage of the theoretical confidence interval.

The principal advantage of the multimodel ensemble over the deterministic hydrological
prediction system is that it is more often capable of predicting events which are harder to
forecast (i.e. rare or extreme events or two consecutive streamflow peaks, as in Figure 1.3).
Indeed, using many distinct models increases the possibility of one or few of them encom-
passing an event. For example, on 29 April for the 6th day in Figure 1.3, two models out of 20
surpass the observed streamflow, while Hydrotel strongly underestimates the observation.
Multiple models also possess the ability to compensate for an erroneous prediction made by
some of the ensemble members. For example, on the first week of April for the 6th day, one
lumped model largely underestimates the streamflow, though the 50% ensemble theoretical
confidence interval is barely affected.

Snowmelt simulations are indirectly influenced by the multimodel. Even if there is only
a single snowmelt module, snowmelt uncertainty is partially taken into account thanks to
the use of several parameter sets leading to differences in the snow accumulation and melt
(Figure 1.4 – only the middle elevation band is represented, as the behavior of the different
bands is very similar because of the weak catchment elevation variations). The dynamic of
the simulated snow cover by the different snow module parameterizations does not differ
substantially, since it still relies on a single structure (snow water equivalents for each snow
module tend to be parallel) but provides an estimate of uncertainty about the snow cover
depth.
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Figure 1.4: Simulated snow water equivalent stock for the different snowmelt module pa-
rameter sets and the middle elevation band for the Dumoine River.

1.4.2 Deterministic and probability forecast performance

Levels of performance of probabilistic and deterministic forecasts are reported in Figure 1.5,
in which catchments are sorted by increasing Hydrotel MAE. The MAE allows a compari-
son of deterministic forecasts (the multimodel ensemble MAE is computed from the median
value of the ensemble), while the MCRPS assesses multimodel ensemble forecast. As men-
tioned earlier, one may compare MAE and MCRPS.

Performance varies with catchments and horizons, but multimodel MAE is systematically
better than Hydrotel MAE for all 38 catchments. This demonstrates that, even if the multi-
model forecast is reduced to its median, the multimodel outperforms traditional determin-
istic forecast. This arises from the fact that models, if they are uncorrelated – or poorly
correlated, tend to cancel out each other’s errors. The gain lies in the combination of models,
and not in the individual performances of the model used in the multimodel ensemble as
shown in Figure 1.6. Individual models exhibit performance that are different but close to
each other while the combination of them clearly stands above all 20 models. Also, Hydrotel
is among the best models with constant performances for the validation period for all catch-
ments, but is outperformed by the ensemble. These results are in agreement with those in
Figure 1.3. The multimodel ensemble reduces the risk inherent in relying on a single (possi-
bly misleading) model (Hagedorn et al., 2005).

There is also a net gain in retaining all multimodel outputs. When the multimodel is reduced
to its median (multimodel MAE), performance decreases. This underlines the added value
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Figure 1.5: Mean Absolute Error (MAE) and Mean Continuous Ranked Probability score
(MCRPS) of the deterministic and probabilistic forecasts for all 6-day horizons and catch-
ments sorted by increasing Hydrotel MAE.

of the probabilistic forecast over the deterministic one, i.e. considering a probability density
function rather than a single point forecast. Note that the difference between Hydrotel MAE
and MCRPS scores grows as performance decreases.

The reliability of the multimodel is assessed. Figure 1.7 shows rank histograms pooled over
all catchments. The multimodel ensemble is consistently underspread. The output updating
preserves the rank histogram shape for the different lead times, but harms the spread (the
members are corrected individually regardless of their initial position in the ensemble and
they are squeezed around a certain value). The predictive uncertainty of the whole system
is therefore lower than the multimodel uncertainty estimation without the output updat-
ing. The multimodel ensemble reliability may possibly be improved using an assimilation
technique that better preserves the spread, and using ensemble meteorological forcing.

1.4.3 Ensemble member characteristics

Model rank histograms are grouped in Figure 1.8. They depict the role played by each
lumped model (i.e. each member) in the multimodel ensemble, by illustrating where they
tend to fall with respect to other ensemble members. A uniform histogram indicates that the
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Figure 1.6: Individual models and Hydrotel Nash Sutcliffe efficiency for a 10-year validation
period and the 38 catchments.
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Figure 1.7: Multimodel ensemble rank histograms for daily discharges for each lead time,
combining the time series from all catchments.

model occupies every rank equally, while a heterogeneous one identifies a model’s prefer-
ence to occupy different areas of the ensemble’s spread. Contrary to the standard rank his-
tograms illustrated in Figure 1.7, they do not assess reliability. Therefore, it is not intended
to obtain a flat histogram, it is used as a tool to investigate the member position within the
ensemble.

The rank histograms of each model in Figure 1.8 are sorted in ascending MAE values in or-
der to relate the role of the model within the ensemble to its individual performance. The
best model is situated in the top left corner, the worst on the bottom right corner. Only the
6th lead time is shown, as it is representative of model characteristics at other lead times.

The different aspects of the rank histograms illustrate the way that the models complement
one another. Some models seem more liable to capture outliers (higher or lower part of the
ensemble) while others remain centered. The sorting of the models according to the level
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Figure 1.8: Model rank histograms sorted by increasing mean absolute error (MAE) values,
from left to right and then top to bottom, for all catchments for the 6-day lead time. Each sub-
plot represents the frequency of falling into a specific rank for the model under consideration
(vertical axes) with its corresponding rank (horizontal axes).

of their individual performance does not reveal any particular behaviors. Interestingly, no
model presents a pronounced U-shaped rank histogram, which means that no model has a
structure/conceptualization that allows it to contribute to both ends of the predictive distri-
bution.

1.5 Conclusion

Issuing accurate and reliable hydrological forecasts is still an outstanding challenge. Proba-
bilistic forecasts grow in popularity in particular because they provide information about the
uncertainty in the hydrometeorological modeling chain and the resulting forecasts. Within
the many sources of uncertainty, hydrologic model structure and conceptualization are among
the dominant ones. A multimodel ensemble that samples these sources of error has been pro-
posed to tackle these issues simultaneously.

This study provided a comparison between a semi-distributed deterministic forecast system
against one derived from an ensemble of 20 lumped conceptual models chosen for their dis-
similar conceptualizations. The multimodel ensemble was also compared to its deterministic
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counterpart (i.e. ensemble median) to identify the benefits of using probabilistic forecasts.
Finally, the characteristics of the multimodel ensemble itself were assessed, exploring the
role that each member plays with respect to the rest of the ensemble.

Ensemble forecast was assessed in terms of resolution and reliability. It performs better than
its deterministic counterpart in terms of resolution assessing MCRPS and MAE. Even if the
multimodel ensemble only takes into account conceptualization and structural uncertainty
(when driven by deterministic meteorological forecasts), it provides overall more accurate
streamflow prediction than deterministic forecast systems do. Multimodel ensembles also
present the advantage of being more likely to encompass events which are harder to predict.
Moreover, the hydrological multimodel allows an indirect partial handling of snowmelt sim-
ulation error through the calibration process. Relying on several models increases the chance
that at least one of them will be able to forecast any specific event (particularly rare extreme
events). According to a rank histogram analysis, multimodel ensembles tend to be reliable,
but they still occasionally lack spread. Attention has also been given to the role that the
members of the multimodel ensemble play. No common pattern between model accuracy
and rank was identified, suggesting that members play different roles inside the ensemble
and that they contribute in diverse ways.

Despite its success with respect to an operational model, this multimodel setup (exploiting
very simple model structures) may still be improved by considering other sources of uncer-
tainty, such as meteorological uncertainty. Since snow accumulation and melt may have a
great influence on the spring freshet simulation, the multimodel approach could be extended
for those processes too. Generating larger ensembles by including different snow modules
may serve to partially encompass this potentially large source of uncertainty. Finally, the
streamflow assimilation technique could be improved by taking into account the ensemble’s
spread.
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Chapter 2

Seeking optimal tuning of the
Ensemble Kalman Filter1

2.1 Abstract

Forecast reliability and accuracy is a prerequisite for successful hydrological applications.
This aim may be attained by using data assimilation techniques such as the popular Ensem-
ble Kalman filter (EnKF). Despite its recognized capacity to enhance forecasting by creating
a new set of initial conditions, implementation tests have been mostly carried out with a
single model and few catchments leading to case specific conclusions. This paper performs
an extensive testing to assess ensemble bias and reliability on 20 conceptual lumped models
and 38 catchments in the Province of Québec with perfect meteorological forecast forcing.
The study confirms that EnKF is a powerful tool for short range forecasting but also that it
requires a more subtle setting than it is frequently recommended. The success of the updat-
ing procedure depends to a great extent on the specification of the hyper-parameters. In the
implementation of the EnKF, the identification of the hyper-parameters is very unintuitive
if the model error is not explicitly accounted for and best estimates of forcing and observa-
tion error lead to overconfident forecasts. It is shown that performance is also related to the
choice of updated state variables and that all states variables should not systematically be
updated. Additionally, the improvement over the open loop scheme depends on the water-
shed and hydrological model structure, as some models exhibit a poor compatibility with
EnKF updating. Thus, it is not possible to conclude in detail on a single ideal manner to
identify an optimal implementation; conclusions drawn from a unique event, catchment, or
model are likely to be misleading since transferring hyper-parameters from a case to another
may be hazardous. Finally, achieving reliability and bias jointly is a daunting challenge as
the optimization of one score is done at the cost of the other.

1A modified version of this chapter has been published in Journal of Hydrology Vol 529, Iss 3, 2015. A. Thiboult,
F. Anctil, On the difficulty to optimally implement the Ensemble Kalman filter: An experiment based on many
hydrological models and catchments. Authorship: A. Thiboult and F. Anctil designed the experimental setup
and performed the analysis. Coding and simulations were carried out by A. Thiboult. The text has been written
by A. Thiboult and revised by F. Anctil.
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2.2 Introduction

Despite the modelling advances in representing hydrological processes and providing more
accurate streamflow forecasts, there is still a need for reducing and quantifying uncertainty.
Most hydrological prediction systems are still deterministic and provide only the most likely
outcome without addressing estimates of their uncertainty. The sources of uncertainty stem
from multiple places in the hydrometeorological chain such as in inputs, initial conditions,
parameter estimation, model structure, and outputs (e.g. Ajami et al., 2007; Salamon and
Feyen, 2010; Liu and Gupta, 2007; Liu et al., 2012) and these uncertainties should be de-
ciphered to enhance model predictive abilities and reliability for efficient decision making
(Ramos et al., 2010).

A broad range of techniques has been developed to control uncertainty at different levels
such as the Generalized Likelihood Uncertainty Estimation (GLUE), Shuffle Complex Evolu-
tion Metropolis algorithm (SCEM) for parameter uncertainty (Beven and Binley, 1992; Vrugt
et al., 2003) and BMA combination technique for structural uncertainty (Jeremiah et al., 2011;
Duan et al., 2007; Parrish et al., 2012; Ajami et al., 2007). Proper initial conditions are fre-
quently identified as one of the main factors that contributes to an accurate forecast (DeChant
and Moradkhani, 2011; Lee et al., 2011). Among others, data assimilation (DA) is commonly
used in hydrometeorology to reduce initial condition uncertainty and proved to be a useful
tool for modelling. DA incorporates observations into the numerical model to issue an anal-
ysis, which is an estimation of the best current state of the system. This has not only been
largely applied to remote sensing for snow (Kuchment et al., 2010), soil moisture estimates
(Forman et al., 2012; Meier et al., 2011; Renzullo et al., 2014; Alvarez-Garreton et al., 2014)
or hydraulic information (Bailey and Bau, 2012), but also to update radar forcing (Harader
et al., 2012; Kim and Yoo, 2014). Many applications also use in situ observations such as
catchment discharge, snowpack measurements, or soil moisture to update models (e.g., Seo
et al., 2009; Clark et al., 2008b; Thirel et al., 2010a; DeChant and Moradkhani, 2011; Franz
et al., 2014). In addition, DA may be coupled with parameter optimization (Vrugt et al.,
2005; Moradkhani et al., 2005; Nie et al., 2011).

Sequential DA techniques such as particle filter and the Kalman filter family are frequently
used for recursive updating of the states of a system, each time an observation is made avail-
able. Among them, the ensemble Kalman filter (EnKF, Evensen, 1994) proved to be a pow-
erful tool for hydrological forecasting (DeChant and Moradkhani, 2012; Rakovec et al., 2012;
Vrugt and Robinson, 2007; Weerts and El Serafy, 2006; Abaza et al., 2014) that is effective
and reliable enough for operational use (Andreadis and Lettenmaier, 2006). Several studies
claim that they developed techniques that improved upon traditional EnKF (e.g., Clark et al.,
2008b; Whitaker and Hamill, 2002) by focusing on the relaxation of constrains of traditional
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EnKF implementation, or by explicitly including time lag between the soil moisture and the
discharge in the updating process (Li et al., 2013, 2014; McMillan et al., 2013).

A key feature of EnKF is the proper specification of hyper-parameters (perturbations of in-
puts and outputs) and model states to be updated (Moradkhani et al., 2005). In most studies,
EnKF implementation is based on an a priori selection of the hyper-parameters and updated
states combination, which is then scarcely justified. Noteworthy exceptions are Moradkhani
et al. (2005) and Chen et al. (2013), but these studies are very specific as they are performed
on a single model and one or two catchments. Accurate perturbations representing error es-
timates are crucial since the EnKF updating scheme is based on the weighting of the model
and observation relative error. However this specification is complex in practice as the dif-
ferent sources of uncertainty experience strong interactions (Moradkhani et al., 2006; Hong
et al., 2006; Kuczera et al., 2006). Several attempts to account explicitly for structural error
have been reported, for example by directly adding perturbations to the state variables (Re-
ichle et al., 2002; Vrugt et al., 2006; Clark et al., 2008b), or by updating model parameters
(Moradkhani et al., 2005; Vrugt et al., 2005; Naevdal et al., 2003).

Moreover, despite encouraging results, DeChant and Moradkhani (2012) points that little
research has been done to examine the effectiveness and robustness of EnKF and that "stud-
ies need to provide a more rigorous testing of these techniques than has previously been
presented". Another issue that needs consideration is that EnKF performance is mostly
discussed as ’standalone’, regardless of the influence of the coupling with the hydrologi-
cal model. This is mainly due to the fact that EnKF is often tested on a single model. Thus,
the question of adequacy between the DA technique and the model is rarely assessed.

The present study aims at identifying EnKF parametrization to reduce and quantify opti-
mally the uncertainty related to initial conditions in a forecast mode. A second scope ad-
dresses the question of EnKF and hydrological model adequacy. In order to achieve this,
the analysis is conducted on 20 structurally dissimilar lumped conceptual models, 38 catch-
ments, 12 hyper-parameter sets, and all possible combinations of the state variables to strive
for general results. Finally, the effectiveness of identifying the best EnKF parametrization
without exploring all combinations is discussed.

Section 2.3 presents EnKF’s basics, models, basins and scores. Section 2.4 presents the results
of the DA techniques followed by a discussion and the conclusion statements are provided
in section 2.5.
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2.3 Material and methods

2.3.1 Hydrological models, snowmelt modules, and PET

The EnKF is tested individually on the 20 lumped conceptual models that were presented
in Section 1.3.3. Because they are based on diverse hydrological concepts and present differ-
ent degrees of complexity (4 to 10 calibrated parameters and 2 to 7 reservoirs to represent
perceptual and conceptual hydrologic processes), they allow to test the EnKF in a compre-
hensive manner according to structure diversity (see Table 1.2).

The models exploit various conceptualizations and thus their parameters and state variables
perform particular roles in simulating rainfall-runoff processes. Their reservoirs may de-
scribe systems ranging from precipitation interception to routing (or more conceptual func-
tions). The role of state variables is not detailed in the article for concision purpose. For the
same reason, the state variable values before and after the analysis step will not be discussed
here but only the outputs of the models, i.e., simulated streamflow will be considered. For
further details on state variable meaning, refer to Perrin (2000).

The potential evapotranspiration formulation and the snow accounting routine are the same
as in Chapter 1.

2.3.2 State updating and EnKF implementation

EnKF addresses explicitly initial conditions uncertainty by creating an ensemble of possible
model reinitializations by updating state variables according to a recursive Bayesian esti-
mation scheme. It estimates the true probability density function of the model states condi-
tioned by the observations.

The evolution of the model state variables vector x may be described through time with
a non-linear forward operator M driven by the previous states, the deterministic forcing
u that includes an error term ζt, and the (time-invariant) model parameters θ to which a
model error η is added. The η error term does not include only state variable error but also
implicitly other sources of error such as the structural and parameter error or forcing error.

xt = M(xt−1, ut−1, θ) + ηt (2.1)

States and observations z are related through the following expression

zt = H(xt, θ) + εt (2.2)

with H being the observation function and εt the observation error.
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The EnKF relies on an approximation of Bayesian rule to identify the conditional density of
the model states, p(xt|z1:t), given the previous time steps observations z1:t, where xt is the
state vector that contains the model states. EnKF needs several realizations (N members) to
derive the model error matrix. As the real true state is unknown, it is approximated by the
ensemble mean:

xt =
1
N

N

∑
i=1

xi
t (2.3)

where i refers to the ith member. The model error matrix is thus defined as the difference
between the true state and the single hydrological model realisations:

Et = (x1
t − xt, x2

t − xt, ..., xN
t − xt) (2.4)

Therefore, the model covariance matrix can be defined as:

Pt =
1

N − 1
EtET

t (2.5)

When an observation is available, model states are updated (X+) as a combination of the
prior states X− and the difference between the prior estimate HtX−t and observation.

X+
t = X−t + Kt(zt −HtX−t ) (2.6)

The Kalman gain Kt represents the relative importance of the observation error with respect
to the prior estimate (i.e. model simulation) and acts as a weighting coefficient. Rt denotes
the covariance of the observational noise.

Kt = PtHT
t (HtPtHT

t + Rt)
−1 (2.7)

Since the identification of the Kalman gain equation members is complex, the term PtHT
t

is approximated by the forecasted covariance between the model states and the simulation
estimates and HtPtHT

t by the variance of the estimate.

PtHT
t =

1
N − 1

N

∑
i=1

(xi
t − xt)(Htxi

t −Htxt)
T (2.8)

HtPtHT
t =

1
N − 1

N

∑
i=1

(Htxi
t −Htxt)(Htxi

t −Htxt)
T (2.9)

A more detailed description of EnKF equations and mathematical background can be found
in Evensen (2003). In this study, the filter has been implemented following Mandel’s (2006)
computational recommendations.

A critical point in the EnKF implementation is a proper identification of the errors ε, ζ, and
η because they will determine the observation predictive distribution. In a vast majority of
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cases, model error is not directly identifiable. Users need to estimate it by using stochastic
perturbations through ε and ζ computation if no more direct estimation of model error η is
made through perturbation of states or updating state variable and parameters conjointly.
Note that adding perturbations to states and parameter updating are also subject to inac-
curacies since they are "based on order-of-magnitude considerations, and may therefore be
statistically unreliable" (Liu et al., 2012). In the present study, only ε and ζ are considered.”
Errors are assumed to be normally distributed with zero mean but their variances need to be
put under scrutiny.

Hyper-parameters define the statistical properties of the forcing and observations ensembles.
This study concentrates on the influence of the uncertainty in precipitation and temperature
forecasts and in streamflow observation. Three precipitation perturbations (with a standard
deviation corresponding to 25%, 50%, and 75% of the initial precipitation forecast magni-
tude), two streamflow perturbations (with a standard deviation corresponding to 10% and
25% of the observation), two temperature perturbations (standard deviation of 2oC and 5oC)
are evaluated. These perturbations are centered around the perfect forecast or the observa-
tion. We thus obtain 12 sets of hyper-parameters. All errors are assumed to be uncorrelated.
Note that the potential evapotranspiration is not directly perturbed but it is computed by
the Oudin et al. formula (2005) forced with a temperature ensemble creating a subsequent
set of perturbed PET values.

The present updating scheme relies on the Markov property that asserts that the future of
the system is dictated only by the present state, not on the anterior sequence of observations.
Model states are consequently updated according to the instantaneous covariance between
states and the current streamflow observation while observations that preceded it are not
incorporated. Li et al. (2013) affirms that this assumption may harm updating performance
of models that incorporate unit-hydrograph routing but do not affect models that include
dynamic routing stores, which is the case for 19 of the 20 models used in this study. Only
model 5 (GR4J) is based on a unit-hydrograph approach.

Prior to the hyper-parameters evaluation, the number of members composing the EnKF en-
semble is investigated. Four sizes (25, 50, 100 and 200 members) are tested on two sets of
hyper-parameters. The experiment concerning the number of members was not conducted
on all hyper-parameter sets to reduce computational cost.

The number and the combination of states to be updated are next put under scrutiny. Batch
testing is used to investigate all states (reservoirs) combinations for each model regardless of
their physical meaning. The number of possible combinations thus depends on the model at
hand, varying from 3 for the 2-reservoir models up to 127 for the 7-reservoir model. As all
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combinations of state variables and hyper-parameters are tested, some cases turned out to
be unrealistic and prone to make the EnKF unstable. This difficulty was overcome by setting
back unrealistic states within their theoretical boundaries identified during calibration.

The EnKF is used to update daily model’s states whenever streamflow observations are
available. The model is then forced with the perfect meteorological forecast to issue a 10-
day hydrological forecast. This lead time is sufficiently long to be able to see the effect of DA
vanishing. A series of tests (not shown here) indicated that after 10 days, the influence of
data assimilation is almost negligible for almost every model and catchments. Thus extend-
ing the forecast would bring no additional information.

Finally, every 20 models are tested on 38 catchments, 12 different hyper-parameter sets, and
all possible reservoir combinations.

2.3.3 Scores

Probabilistic scores offer the possibility to evaluate more than individual member or ensem-
ble mean and provide to the forecaster a better picture of the forecast probability distribution
quality. Probabilistic forecasts should be assessed both in terms of accuracy and reliability
to assess where the verification is situated among the ensemble, how the frequency of fore-
casted events corresponds to the frequency at which events are observed, and the gain of
ensemble over deterministic forecast.

The Normalized Root-mean-square error Ratio (NRR) is used to quantify the spread of the
ensemble with regard to its predictive skills (Murphy, 1988). A value of 1 indicates an appro-
priate spread, while greater and smaller values than 1 reflect too narrow and wide ensembles
respectively. The NRR is function of the observation yt, the ensemble forecast average, the
number of members in the ensemble N, and time t.

NRR =

√
1
T

T
∑

t=1

([
1
N

N
∑

n=1
ŷn

t

]
− yn

t

)2

1
N

{
N
∑

n=1

√
1
T

[
T
∑

t=1
(ŷn

t − yn
t )

2
]}√

N+1
2N

(2.10)

A complementary view of the NRR is the Spread Skill Plot (SSP) which is a graphical as-
sessment that represents at the same time the bias of the ensemble, its spread and therefore
its reliability. The SSP relies on the fact that the Root-Mean-Square Error (RMSE) should
match the spread to achieve reliability (Fortin et al., 2014). In the case where the RMSE is
greater than the spread, the ensemble is overconfident regarding to its predictive skills and
vice versa.
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The commonly used Nash Sutcliffe efficiency (Nash and Sutcliffe, 1970) is used to assess the
bias of the median of the EnKF ensemble. A NSE value equals to 1 identifies a perfect pre-
diction while a value below 0 indicates that the average observation is more skillful.

To evaluate the improvement or deterioration of the quality of the simulations, NSE and
NRR gains are computed as:

G =
Ssim − Sre f

Sopt − Sre f (2.11)

with G the gain, Ssim the score after the state updating, Sre f the score without updating (the
open loop), and Sopt the perfect score. In the case of the NRR, which is not a monotonic
score (i.e. the minimization or maximization of the value does not systematically indicate
an improvement or a decrease of the reliability), a substitution is performed to compute the
gain. We consider that under and overdispersion should be penalized the same way which
is reflected by the distance from the optimal score 1.

NRR∗ = |NRR− 1| (2.12)

NRR∗ is then negatively oriented and bounded by 0 and can be used to compute the gain G.

2.3.4 Catchments and hydrometeorological data

The 38 watersheds used for this study are identical to the ones presented in Section 1.3.1.

2.3.5 Individual model performances

The study investigates EnKF implementation for many models i.e. the performance of the
coupling of hydrological models and DA. It is not intended to compare models performances
to each other. The 20 models are thus investigated separately and the comparison of models
performance with or without EnKF updating is out of scope. However, one should recognize
that models have different initial performance as shown on Figure 1.6. Their individual
performance varies largely over the 38 catchments but no model consistently out performs
or under performs the others in all situations. Best (or worst) results are frequently obtained
by different models for different catchments. Therefore, performance after EnKF updating
should be compared to each other only in terms of gain.

2.3.6 Meteorological forecast

The first scope of this paper is to reduce and quantify the uncertainty related to the water-
shed initial conditions for hydrological forecasting. Thus, to focus on that specific aspect,
we do not use actual weather forecasts but meteorological observations to force the models.
This ensures to minimize the error related to forcing as the remaining inaccuracies can be
attributed to the representativeness of the measurements and the measurement errors rather
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than the many uncertainties related to weather forecasting. This forcing will be referred
hereafter as ’perfect forecast’.

2.4 Results

2.4.1 An estimation of the required ensemble size

Ideally, one would propagate a large number of members to ensure to accurately sample the
state variable probability density functions but this would increase drastically the compu-
tational cost. Thus, the first part of the study aims at identifying an approximation of the
minimal number of member necessary to drive EnKF without performance loss. For this
case, the hyper-parameters are fixed to 0.50P for precipitation, 0.1Q for streamflow, and 2o

for temperature for graphical convenience, and different numbers of members are tested
(N = 25, 50, 100, 200). The influence of the number of members has been carried out with
other sets of hyper-parameters and led to the same conclusions.

Figure 2.1 shows simulations general behavior according to the number of members N.
NSE and NRR are used to assess forecast accuracy and reliability, respectively. On the up-
per sub-plots are displayed 12768 points corresponding to all simulations per set of hyper-
parameters, i.e. the results in simulation for every catchment, model and existing reservoir
combination for a given model. As we want to quantify the effect of N on every simulation
but also more precisely on best performing ones, the lower sub-plots display the best results
by catchment and model. This implies to retain only the best state variable combination for
updating. A single best simulation can be identified for a particular score for a catchment,
but the simulation may be different whether it is assessed regarding its reliability or its bias.
To overcome this selection issue, we retained the simulation offering the highest NSE among
the three best NRR. This combined criterion ensures to keep the most reliable simulation in
first place and then the lowest bias. Reliability is chosen as first order criterion to ensure
to cover as well as possible the initial condition uncertainty without diminishing the EnKF
spread.

Interest is set on forecasts with NSE and NRR close to 1, thus the vertical axis has been
truncated for readability. Negative NSE are not shown even if they represent about 1.5% of
the total number of simulations. Note that the NRR score is bounded for underdispersed
distribution by 1/

√
(N + 1)/2N) and thus a NRR score below 0.8 or above 1.2 indicates

doubtlessly a poorly reliable ensemble. For this purpose, an area is defined to delimit the
ranges for deemed acceptable results (0.8 < NRR < 1.2 and 0.7 < NSE) and is represented
as a grey shade on Fig 2.1. The ratio φ of simulations having performance falling inside the
aforementioned range to total number of simulations is displayed for every N. Additionally,
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Figure 2.1: Influence of the number of members N on NSE and NRR in simulation

median NSE and median NRR of simulations are depicted as a cross on each plot. The range
of acceptable results may seem permissive, but it has to be wide enough to encompass a rea-
sonable number of models and watersheds. By defining a more demanding range, there is a
risk that all the points inside it belong to a small number of model and catchment pairs and
that the variations inside this range are only due to the state variable choice which therefore
harms the representativeness of the φ ratio.

Results are very similar for different values of N, for all the simulations or only the best ones.
The sampling of the states variable probability density function is more subject to stochastic
errors when the number of member is low, but results are largely similar with various values
of N. The weak difference between the number of members indicates that it is reasonable to
keep only 25 or 50 members to limit sampling error. Further results will be presented for 50
members.

2.4.2 Influence of hyper-parameters

Figure 2.2 depicts the bias and reliability for the 12 hyper-parameter sets for day 1. Unlike
the number of members, the additional error to forcing and observation is a driving param-
eter. The precipitation perturbations have the greatest influence on performance followed
by temperature and streamflow. Note that the importance of the temperature perturbations
has to be considered regarding the dominant role of the spring freshet for the studied water-
sheds.

For a given hyper-parameter set, the cloud of simulations is greatly dispersed on both relia-
bility and bias axes. The diversity of performance is important and depends on model and
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Figure 2.2: Influence of added perturbations to precipitations, temperatures and stream-
flows on NSE and NRR for day 1

catchment for a specific hyper-parameter set.

Reliability is more often achieved by using important perturbations. The lowest perturbation
set (P 25%, T 2oC, Q 10%) fails to encompass initial condition uncertainty as only 15% of sim-
ulations fall into the acceptable range of performance. Reliability best results are obtained
with perturbations that are clearly unrealistically high to describe measurement uncertainty.
However, few simulations using a hyper-parameter set that include low input perturbations,
are close to perfect reliability. These simulations are very likely to become over-dispersive
when the added noise magnitude increases, indicating that using too large perturbations
also contributes to decrease reliability.

On the other hand, best NSE are found for lower perturbations. Though, the calibration of
hyper-parameters is more sensitive to reliability as the drop in bias is less severe than the
drop in reliability.

The simulations indicate that in a vast majority of cases, EnKF should not be used with
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best estimates of real forcing uncertainty as it will lead to under-dispersive ensemble if no
additional technique is used to explicitly decipher other sources of uncertainty. To achieve
optimal implementation, the noisy forcing has to take into account not only real forcing un-
certainty but it needs to compensate for the model structural and parameter uncertainty.
This contributes to drastically increase the difficulty of identifying the correct covariances.
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Figure 2.3: Influence of added perturbations to precipitations, temperatures and stream-
flows on NSE and NRR for day 3

Figure 2.3 displays the same bias-reliability representation in forecasting mode, but for the
3-day-ahead lead time where a global loss of reliability is observed. Ensembles become over-
confident with increasing lead time but the bias remains approximatively the same. Only a
75% perturbation of the precipitation manages to provide more than 30% of acceptable re-
sults. For the 7th day (result not shown here), the percentage of acceptable results never
exceeds 13%. This suggests that the uncertainty in initial conditions does not account for all
sources of uncertainty, even if it encompasses more than real forcing and observation error.
As this trend becomes more obvious with increasing lead time, it may also indicate that the
information provided by the EnKF ensemble is not propagated during forecasting process.

Relative performance of hyper-parameters remains unchanged with lead time as the best
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performing hyper-parameter sets for reliability or bias are the same for day 1 or day 9. The
model’s performance in forecasting thus depends on the quality of the DA initialization.

Typical results are plotted on Figure 2.4 to illustrate the spread and the bias (RMSE) of the
EnKF ensemble and the gain which is related to the difference between EnKF RMSE and the
open loop RMSE. The most common situations are cases a) and b) in which the ensemble is
reliable or close to reliability for the first forecasting day as the spread matches or is close to
match the EnKF RMSE. The spread diminishes quickly after the first forecasting day while
the error of the ensemble increases. Although the ensemble spread should grow to match the
increasing error, it collapses and the ensemble becomes overconfident. However, the error
remains lower than the open loop forecasting confirming the gain provided by the EnKF.
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Figure 2.4: Typical spread-skill plots in forecasting. a) model 9 and watershed 28, b) model
5, watershed 28, c) model 1, watershed 36, d) model 5, watershed 26, e) model 7, watershed
13.

Less frequently, the spread may remain constant up to three days (case c) or for a very partic-
ular situation as in case d), which happens only for model number 5 (GR4J), the spread may
increase for up to 2 days before eventually dropping. Finally, case e) reports a case where
DA is unable to improve forecasting. In the latter case, EnKF simulation is quite similar to
the open loop. This is explained by the state variable selection process where only the best
state variable combination is kept. For this very particular model-watershed pair, DA works
poorly and all state variable combinations deteriorate accuracy beyond the open loop per-
formance. Consequently, the best simulation is achieved by the state variable combination
influencing the least the streamflow and this combination is therefore selected. In an oper-
ational context and such case, the EnKF would not be used as it does not provide any gain
and increases computational costs vainly.

In every cases, DA assimilation starts loosing its efficiency right after the spin up and the
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spread stops matching the EnKF RMSE for longer lead times. This confirms that additional
sources of uncertainty should be taken into account from the first forecasting day to achieve
a reliable system and also implies that finding the best hyper-parameters only guarantees
to find the optimal initialization without ensuring forecasting performances. Also, as the
decrease in spread is always observed independently of model and catchment, it is possible
to conclude that this behavior is specifically related to the EnKF.

To investigate the possible relation between models and hyper-parameters, Figure 2.5 shows
the frequency at which a hyper-parameter set outperforms the other for a given model. Each
of the 20 sub-plot corresponds to a model. The 12 hyper-parameters are referred to by num-
bers as following:

1: P25%Q10%T2oC 2: P25%Q10%T5oC 3: P25%Q25%T2oC
4: P25%Q25%T5oC 5: P50%Q10%T2oC 6: P50%Q10%T5oC
7: P50%Q25%T2oC 8: P50%Q25%T5oC 9: P75%Q10%T2oC
10:P75%Q10%T5oC 11:P75%Q25%T2oC 12:P75%Q25%T5oC

The bars represent the frequency at which a hyper-parameter set outperforms the other. The
upper part and lower part of the figure refer to the bias and reliability respectively. For in-
stance, the hyper-parameter set number 10 is the best one for approximatively 10% of the
catchments for the bias and 35% for reliability for the model 1.

The repartition of the best performing hyper-parameters confirms that no hyper-parameter
set performs better than others systematically for the NSE or the NRR and exceeds rarely
40% for any model. Thus, to ensure to get optimal updating performance, an optimal hyper-
parameter should be chosen according to model and catchment.

An additional difficulty arises from the fact that bias and reliability are optimized by dif-
ferent hyper-parameters. Optimal NSE values are often obtained by low to moderate noise
magnitude while the best NRR are obtained with higher perturbations. This highlights the
challenge to optimize bias and reliability collectively during EnKF updating, leaving to the
modeler the burden of prioritizing one over the other.

2.4.3 Influence of the choice of states variables

For the present section, results are shown for a particular hyper-parameters set P 50% Q 10%
T 5% but similar conclusions could be drawn from the other tested sets.

This section addresses the question of identification of state variables that should be updated
with the EnKF. For a N-state-variable-model, it exists 2N − 1 combinations and none is fa-

48



1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M1

N
R

R
N

S
E

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M2

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M3

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M4

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M5

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M6

N
R

R
N

S
E

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M7

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M8

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M9

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M10

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M11

N
R

R
N

S
E

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M12

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M13

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M14

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M15

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M16

N
R

R
N

S
E

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M17

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M18

Hyper−parameter sets

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M19

1 2 3 4 5 6 7 8 9 101112

40

20

0

20

40

M20

Figure 2.5: Frequency at which each of the 12 sets of hyper-parameters is better than others
in term of accuracy (NSE) and reliability (NRR). Each boxplot corresponds to a model and
results are displayed for day 3

vored during testing. Thus, the number of possibilities depends on the model; see Table 1.2
for the number of states.

As the reservoirs are situated at different levels in the models (from interception to routing),
their individual updating is expected to affect differently model outputs; more precisely they
affect the time-lag between state perturbation and the change in simulated streamflow. Seo
et al. (2003) suggest to not perturb reservoirs concerning soil moisture as it is a long-term
component that has an influence which lasts much longer than the longest operationally
used lead time. On the contrary, Wöhling et al. (2006) encourage soil moisture updating as
it will act on all lead times. Physically based models offer the possibility to deal with val-
ues that are theoretically measurable. The knowledge about these values allows to estimate
critical values that are the most subject to uncertainty. Conceptual models states values do
not refer directly to a measurable value and the identification of variable states for updat-
ing is thus complex. The amount of uncertainty related to these variables is hardly definable
and there is no apparent clue to update a certain reservoir rather leaving others unperturbed.

Figure 2.6 presents the distribution of performance of every individual state combination
per model, to illustrate the variability of NSE over the 38 catchments. Five models with dif-
ferent numbers of state variable are used to highlight the general 20 models behavior. Each
box plot refers to a combination of updated state variable for a model. The box plot situated
on the right of each sub-plot corresponds to the case where all model states are updated.

49



0

0.5

1

D
a
y
1

0

0.5

1

N
S

E
 

D
a
y
3

0

0.5

1

D
a
y
6

M02 M05 M08

Updated state variables

M13 M20

Figure 2.6: Distribution of NSE performance over the 38 catchments for model 2, 5, 8, 13,
and 20 according to the updated states parameters for lead time 1, 3, and 6. The boxplot on
the right of each sub-plot corresponds to the case where all states variable are updated. For
details on the state variable combinations, see Table B.1

The main conclusion is twofold: the success of the updating procedure lies as much in the
model as in the choice of the state variables. Most models best state combinations exhibit a
median NSE higher than 0.75 for first lead time even if few models (model 2 in particular)
seem to react poorly to the state updating. Best short-lead-time-model performance needs
to be qualified as it frequently decreases with increasing lead time.

As median NSE values are frequently close to each other, it is possible to conclude that there
is no obvious outperforming combination for any model – however, there are combinations
that perform consistently poorly. Additional complexity in the choice of the best state com-
bination to update arises from the performance variability over catchments for a specific
updated set of states. As the median performance is close and the variability over catch-
ments is important, it is very likely that one combination for a model on a catchment will be
outperformed by another combination on another catchment.

As the state updating procedure is numerically implemented in the same way for all models,
bad performance may be attributed to the suboptimal choice of updated model states or the
potential inadequacy of the EnKF to a specific hydrologic model rather than the EnKF tech-
nique itself. On this subject, model number 2 open loop performances are often comparable
with other models (see also Fig. 1.6) while its performance after updating are undoubtedly
worse.
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The question of best state set identification arises also as a function of the lead times (results
not shown). In this study, we disregarded lead time specific states combinations since the
use of different set of state combinations lead time dependent may improve performance for
each lead time in average but it would imply to run in a parallel fashion several simulations
for each lead time. An issue arising from such a technique would be the creation of discon-
tinuities in the forecasting streamflows from one lead time to another.

Reservoirs which should be updated in priority are frequently –but not always– the closest
reservoirs to the model outputs in the description of the rainfall-runoff process. The question
of the number of reservoir to update is more complex as few global patterns emerge from
the results. It is common practice to update all model states variable in lumped and semi-
distributed models but this does not systematically lead to the best results. On Fig 2.6, model
13 illustrates this since the updating of some state variable sub-ensembles shows improved
performance for first, second and third quartiles. Therefore, for some models, optimal up-
dating may be obtained by leaving some stores unperturbed, for instance the routing store
for model 13. Generally, the number of updated states remains rather low, never exceeding 4
even for high dimensional states models (model 7, 12 and 14). All states should be updated
for model 5, 6, 10 and 19 but other models states should be partially updated. Models with a
large number of state variables (high degree of freedom) are more prone to encounter equi-
finality issues as many outcomes frequently end up close for a specific conditions. This lead
to an already known problem that requires the user to take an arbitrary decision or possibly
to retain several combination with the associated computational cost increase. Also, likewise
for traditional model parameter estimation, the identification of best set depend on the score
used as objective function. Selecting states set based on a NSE criterion does not guaran-
tee to maximize other accuracy scores, and even less to achieve highest possible reliability.
Thus, different sets of updated states may capture more or less accurately specificities of the
hydrograph.

2.4.4 Global and local updating schemes

Setting EnKF catchment specificities is possible and may be operationally conceivable and
worth considering. This case is more computationally demanding as states identification
needs to be carried out for all watersheds. Thus, the gain of such approach needs to be
quantified to justify the increase in commitment. In the opposite case, the forecaster takes
a risk relying on optimal updated states set identified from only one catchment if this set is
transferred onto another catchment.

Figure 2.7 displays gains obtained by EnKF over open loop. Two EnKF updating schemes
are compared:
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• A global scheme: updating is carried out with a single set of state variables and hyper-
parameter per model, identified as best according to the combined criterion in average
over all catchments. The updated states and the hyper-parameters are the same re-
gardless of catchment.

• A local scheme: updating is carried out with a different set of state variables and set
of hyper-parameters for each catchment identified as the best set of state variable per
catchment. The approach is thus catchment specific.

The gain between the two updating schemes is also examined.
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Figure 2.7: EnKF - open loop gains in NSE gains over the 38 catchments for global and
locally defined hyper-parameters and state variable for day 1, 3 and 6.

Overall, both EnKF schemes enhance open loop forecasts in the vast majority of cases, from
short to longer lead time. However, the gain in accuracy depends heavily on model and to
a lesser extent on the global-local updating scheme. One can notice that models 2, 13 and
20 have a structure that react poorly to EnKF updating, especially for global states updating.
The increase of computational resources may not be worth the potential gain in performance
for the majority of catchments. Yet, these results are improved in the case where catchment
specific state variable sets are used.

It is frequent –and normal– that the differences between the two updating schemes global/local
for the same model are small. This is the case when a model has frequently the same best set
of state variable over the 38 catchments which therefore turns to be the best in average over
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Figure 2.8: EnKF - open loop gains in NRR over the 38 catchments for global and locally
defined hyper-parameters and state variable for day 1, 3 and 6.

catchments and explains the frequent small dispersion of the local/global updating gain.
However extrema are high as they are obtained when the global updating fails badly on a
catchment. The local scheme is logically better than global as it is designed to perform on all
catchments but this does not ensure to be better than the global scheme in all cases. Indeed,
even if the local updating is catchment specific, it is still averaged on lead times and thus the
global state variable set may perform better for a particular lead time.

Figure 2.8 represents the gain between the local and the global updating procedure in relia-
bility (no comparison is possible with the open loop as it is a deterministic forecast). The gain
in reliability is consistently high for the first lead time as the second quartile is always pos-
itive and third quantile higher than 0.8 for most of the models. Some models, as the model
9, 12, 14 should be preferentially updated in a local way because their gain is substantial
(third quartile is greater than 0.95). Interestingly, these models are among the most complex
ones in the model pool and seem to require a more detailed setting to exploit optimally the
EnKF for the first lead time. As with the NSE, the NRR gain decreases with lead time but
stays mostly positive up to day 6 (see also Fig. 2.4). The gain may be negative for the reasons
aforementioned with the NSE.
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2.4.5 Influence of the catchments

To assess the importance of the catchments on forecasting performance, Figure 2.9 repre-
sents the models’ NSE over the 38 watersheds. This complementary vision of Figure 2.7
reveals that catchments also have an influence on simulations that is as important as hyper-
parameters, model structure, and the state variable selection.
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Figure 2.9: EnKF - open loop gains in NSE over the 20 models for global and locally defined
hyper-parameters and state variable for day 1, 3 and 6 according to catchments

The majority of the catchment can benefit from EnKF updating, especially in the case where
local updating is used. Yet, there is a disparity in the gain as few catchments display a nega-
tive median gain, namely catchments 4, 8, 9, 10, 11, and 12 for the first lead time and global
updating and catchments 9 and 11 for local updating.

The gain diminishes with increasing lead time except for the catchments that exhibit a neg-
ative gain from day one. The underlying reason is that EnKF is not able to update correctly
the state variables, attributing erroneous values to the state variable, combined with the fact
that the updated state variables have a greater influence for short lead times.

EnKF performance and gain were compared to the available climatic data and catchments
characteristics. Specifically, the average annual total and liquid precipitation, the area and
the estimated concentration time were put under scrutiny. No clear correlation between
these values and EnKF performance has been identified.
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2.5 Conclusion and recommendations

This paper discusses the performance and implementation of EnKF in forecasting over a
wide variety of catchments and rainfall-runoff lumped models. An extensive testing was
carried out to assess EnKF state updating and how it relates to model, catchment, and lead
times.

The results show that an optimal implementation of the EnKF is more complex than fre-
quently suggested and that a detailed attention should be paid to the specification of hyper-
parameters and updated state variable. While identification of the minimal number of mem-
bers is relatively straightforward as a vast majority of models and catchment agree, there is
no single and universal optimal EnKF implementation for any model. In practice, it is un-
likely that the best state combination and hyper-parameter set in average are optimal for all
watersheds. Unlike many case studies, it is not reasonable to recommend precise values, as
the best EnKF settings are frequently case specific.

The hyper-parameters and more specifically, the perturbations of the inputs are frequently
unintuitive to identify as there are often unrealistically high to implicitly account for other
sources of uncertainty, especially parameter and structural uncertainty, and to eventually
ensure model simulation reliability. An additional challenge arises from the difficulty to op-
timize reliability and ensemble median bias jointly as the improvement of one criterion is
achieved at the expense of the other.

Models encounter important differences in their results and in the way they should be up-
dated. Models with a high number of state variables (high degree of freedom) should receive
an increased attention as they are more prone to encounter equifinality issues as many out-
comes frequently end up close for a specific condition.

Regardless of the model, ensemble reliability decreases quickly with lead time as the ensem-
ble spread drops from first days while the bias increases. This also underlines that taking
into account explicitly initial condition uncertainty solely is not sufficient for medium range
forecasting and that structural error and forcing error are dominant in modelling rainfall-
runoff processes.

Despite these constrains, the gain that EnKF provides over open loop is substantial, espe-
cially if the optimization is carried out locally. The later implies a detailed testing of all
combination to identify best performing EnKF implementation but is computationally more
expensive. As the EnKF is not efficient with every model and catchment, we recommend
to investigate data assimilation coupling with several models to go beyond EnKF - model
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structure compatibility issue.

Finally, we encourage EnKF users to perform a detailed analysis addressing the question of
hyper-parameter and state variable selection of their system to ensure to make the most of
EnKF. For further improvement, we also suggest to report explicitly the hyper-parameters
and state variables they used to contribute to a better understanding of EnKF parametriza-
tion and to identify techniques that would allow to robustly identify the pertinent state vari-
ables that should be updated without the need to run all possible combinations.
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Chapter 3

Accounting for three sources of
uncertainty in ensemble hydrological
forecasting1

3.1 Abstract

Seeking for more accuracy and reliability, the hydrometeorological community has devel-
oped several tools to decipher the different sources of uncertainty in relevant modeling pro-
cesses. Among them, the Ensemble Kalman Filter, multimodel approaches and meteoro-
logical ensemble forecasting proved to have the capability to improve upon deterministic
hydrological forecast. This study aims at untangling the sources of uncertainty by studying
the combination of these tools and assessing their contribution to the overall forecast qual-
ity. Each of these components is able to capture a certain aspect of the total uncertainty and
improve the forecast at different stage in the forecasting process by using different means.
Their combination outperforms any of the tools used solely. The EnKF is shown to con-
tribute largely to the ensemble accuracy and dispersion, indicating that the initial condition
uncertainty is dominant. However, it fails to maintain the required dispersion throughout
the entire forecast horizon and needs to be supported by a multimodel approach to take into
account structural uncertainty. Moreover, the multimodel approach contributes to improve
the general forecasting performance and prevents from falling into the model selection pit-
fall since models differ strongly in their ability. Finally, the use of probabilistic meteorologi-
cal forcing was found to contribute mostly to long lead time reliability. Particular attention
needs to be paid to the combination of the tools, especially in the Ensemble Kalman Filter
tuning to avoid overlapping in error deciphering.

1A modified version of this chapter is published in Hydrology and Earth System Sciences Discussion, 12, 7179-
7223, 2015, doi: 10.5194/hessd-12-7179-2015. A. Thiboult, F. Anctil, and M.-A. Boucher. Accounting for three
sources of uncertainty in ensemble hydrological forecasting. Authorship: A. Thiboult and F. Anctil designed
the experimental setup and performed the analysis. Coding and simulations were carried out by A. Thiboult.
Meteorological data were provided by M.-A. Boucher. The text has been written by A. Thiboult and revised first
by F. Anctil and then by M.-A. Boucher
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3.2 Introduction

The complexity of hydrometeorological systems is such that it is not possible to perfectly rep-
resent their "true" descriptive physical processes, and even less to integrate them forward in
time with mathematical models. These models are only an approximation of varying qual-
ity to represent and predict variables of interest, yet they proved to be skillful and useful
for water resource management and hazard prevention (e.g. Bartholmes et al., 2009; Pagano
et al., 2014; Demargne et al., 2014).

Inadequacies between simulation or predictions and observations can be largely attributed
to the many sources of uncertainty that are located along the meteorological chain (e.g.
Walker et al., 2003; Beven and Binley, 2014). Hence, it is admitted that improvement of the
forecast ought to go through understanding and reducing the sources of uncertainty (e.g. Liu
and Gupta, 2007). These sources have different nature that range from epistemic uncertainty
due to the imperfection of our knowledge to variability uncertainty where the imperfections
are due to the inherent system variability (e.g. Walker et al., 2003; Beven et al., 2008). They
also differ in location, i.e. where they lay in the hydrometeorological modeling process: me-
teorological forcing, model parameter and structure, hydrological initial conditions, and, to
a lesser extent, observations (Walker et al., 2003; Vrugt and Robinson, 2007; Ajami et al., 2007;
Salamon and Feyen, 2010).

As all models are exposed to these sources of uncertainty, they necessarily lead to forecasts
with imperfections. It is thus possible – and frequent – that several models can simulate the
process of interest with the same accuracy. These simulations are equally likely in the math-
ematical sense; it is referred as the principle of equifinality (Beven and Binley, 1992).

Ensembles provide a probabilistic answer to the equifinality problem. They are a collec-
tion of deterministic predictions issued by different models to simulate the same event and
attempt to produce a representative sample of the future. They can be built by a suitable
method wherever a source of uncertainty needs to be put under scrutiny. Additionally, the
ensemble means generally have better skills than deterministic systems and offer a better
ability to forecast extreme events (e.g. Wetterhall et al., 2013).

As the sources of uncertainty differ in their location, nature and statistical properties, they
need specific tools to be deciphered efficiently (Liu and Gupta, 2007). A wide range of meth-
ods have been developed in the past year to cater hydrological forecast needs.

At the beginning of the 90s, meteorologists pioneered the operational use of ensembles by
constructing Meteorological Ensemble Prediction Systems (MEPS), mostly to take into ac-
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count imperfect initial conditions that is a prime importance uncertainty source in view
of the chaotic nature of the atmospheric physics. Several methods have been proposed to
tackle this issue. For instance, to define the initial condition uncertainty, the European Cen-
ter for Medium-Range Weather Forecasts (ECMWF) generates an ensemble by initiating their
model with singular vectors (Molteni et al., 1996) to which a stochastic scheme is added to
deal with the model physical parametrization uncertainty (Buizza et al., 1999).

The increasing accessibility of MEPS benefited to the hydrology community to issue prob-
abilistic hydrological forecasts that take into account meteorological uncertainty forcing with
Hydrological Ensemble Prediction Systems (HEPS, e.g. Cloke and Pappenberger, 2009; Brochero
et al., 2011b; Boucher et al., 2012; Abaza et al., 2014).

A lot of attention has been paid to the identification of hydrological model parameters and
the non-uniqueness of the solutions. Among other technique, Vrugt et al. (2003) proposed the
Shuffled Complex Evolution Metropolis Algorithm (SCEM-UA), a calibration technique that
retains several sets of parameters instead of a single one for a more realistic assessment of
parameter uncertainty. Beven and Binley (1992) suggested a more comprehensive approach
for model acceptance or rejection with the Generalized Likelihood Uncertainty Estimation
(GLUE) that allows to include different forms of competing models.

Gourley and Vieux (2006) assert that dealing only with input and parameter uncertainty is
likely to issue unreliable forecast and that hydrological model structural uncertainty should
be deciphered explicitly. This statement is substantiated by Clark et al. (2008b) who com-
pares 79 unique model structures and concludes that a single structure is unlikely to perform
better than the others in all situations. Poulin et al. (2011) adds that the structural uncer-
tainty is larger than the parameter estimation uncertainty and provides more diverse out-
puts. Combining dissimilar hydrological model structures proved to possess a great poten-
tial (Breuer et al., 2009) even with simple combination patterns (Ajami et al., 2006; Velázquez
et al., 2011; Seiller et al., 2012).

Initial condition uncertainty has also aroused scientific interest. Many studies using vari-
ous data assimilation techniques to incorporate observations within the simulation processes
demonstrated that the specification of catchment descriptive states is a crucial aspect of short
and medium range forecasts (DeChant and Moradkhani, 2011; Lee et al., 2011). Among
them, sequential data assimilation technique such as the Particle Filter (e.g. DeChant and
Moradkhani, 2012; Thirel et al., 2013), the Ensemble Kalman Filter (e.g. Weerts and El Serafy,
2006; Rakovec et al., 2012) and variants (Noh et al., 2013; Chen et al., 2013; McMillan et al.,
2013; Noh et al., 2014) substantially improve forecast over the open loop scheme, by reduc-
ing and characterizing the uncertainty in initial conditions.
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Considerable efforts have been made in the development of these sophisticated techniques
and this gave rise to many tools that have been individually tested useful. As Bourdin et al.
(2012) points out, "To date, applications of ensemble methods in streamflow forecasting have
typically focused on only one or two error sources [...] A challenge will be to develop en-
semble streamflow forecasts that sample a wider range of predictive uncertainty". As under-
lined, the forecasting tools frequently tackle different sources of uncertainty and therefore do
not exclude each other but can be seen as complementary, combining their assets to compose
an overall better system.

The present study identifies three efficient tools, namely a hydrological multimodel ap-
proach, Ensemble Kalman Filter, and MEPS forcing that are used together to decipher the
traditional hydrometeorological sources of uncertainty. The paper scope is to identify how
they are complementary to each other, to assess their individual contribution to the hydro-
logical forecast reliability and accuracy, and to eventually evaluate the possibility of achiev-
ing reliability without resorting to post-processing.

This is achieved by issuing a hindcast on 20 watersheds using the aforementioned tech-
niques, either individually or combined, to investigate their specific role in the forecasting
process. Each of them produces an ensemble that can be cascaded through the next ensemble
technique in order to produce a larger ensemble that possesses a more comprehensive error
handling. Finally, if all sources of error are accounted for, the ensemble should generate a
forecast that is reliable (Bourdin et al., 2012).

This paper is organized as follow: section 3.3 presents the catchments, models, the Ensem-
ble Kalman Filter basics and scores, section 3.4 sums up the systems specificities and their
respective performances followed by a conclusion in section 3.5

3.3 Material and methodology

3.3.1 Catchments and hydrometeorological data

20 watersheds situated in the south of the Province of Québec have been selected for this
study (Fig. 3.1). The catchments experience a mixed hydrological regime with a spring
freshet resulting from the important winter snow cover and a lesser second peak in autumn.

The climatology of the catchments is varied, with a mean annual snow fall ranging from 2.9
meters to 4.5 meters and total precipitation fluctuates between 877 mm to 1236 mm. The size
of the watersheds extends from 512 km2 to 15342 km2 and annual mean streamflow from 9
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m3/s to 302 m3/s.

#

#
#

#

#

#

#

##

##

#
#

#

##

#

#
##

#

P R O V I N C E  O F  Q U E B E C

C A N A D A

U N I T E D  S T A T E S  O F  A M E R I C A

Ü

0 200 400100 km

Quebec

Montreal

Figure 3.1: Spatial distribution of the watersheds

Daily total precipitation, maximum and minimum temperature and streamflows are pro-
vided by the Centre d’Expertise Hydrique du Québec. They performed kriging on the ob-
servations over a 0.1◦ resolution grid to which a temperature correction with an elevation
gradient of -0.005◦C/m is added. The data base is split into three periods: 1990-2000 for
the calibration of the models, October 2005-October 2008 for the spin up, while November
2008-December 2010 is committed to the hydrological forecast assessment.

The MEPS used as inputs to the hydrological model were retrieved from the TIGGE database.
The temperatures and precipitation forecasts from the European Center for Medium range
Weather Forecasts (ECMWF) were chosen for this study. They are formed by 50 exchange-
able members (Fraley et al., 2010) with a 6 hours time-step and a 10 day horizon. However,
after conversion from Greenwich time to local Quebec time, the horizon reduces to 9 days.
For the sake of the study and to match the common framework of the hydrological models,
weather forecast is aggregated at a daily time step. The forecast is provided on a regular
grid with a 0.5◦ resolution (N200 Gaussian grid) that is downscaled to a 0.1◦ resolution dur-
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ing data retrieval by using bilinear interpolation. As the rainfall-runoff models are lumped,
a single representative point forecast is obtained for each MEPS member by averaging the
grid points situated within the catchment boundaries. The weather forecast displays ac-
ceptable performance over the 20 selected catchments. In fact, in the initial group of 38
catchments, 18 displayed unsatisfactory performances so they were withdrawn from the ex-
periment from the beginning, as pre-processing the meteorological inputs falls outside the
scope of the project. When compared to the meteorological observations, rainfall and tem-
perature MCRPS over the 9 days (see sect. 3.3.4) remain below 3 mm and 3◦C respectively
for selected catchments.

An alternative to the ECMWF ensemble is used to simulate a deterministic meteorological
forcing with equivalent theoretical skill. For this purpose, a single member is drawn ran-
domly among the 50 exchangeable members.

3.3.2 Models, snow module and evapotranspiration

The multimodel ensemble, the snow accounting routine and the potential evapotranspira-
tion formulation are similar to the ones presented in the previous Chapters.

3.3.3 Forecasting approaches

Two approaches are used and compared for forecasting, the open loop and the Ensemble
Kalman Filter. Regardless of the method used, the meteorological observations over the
three years preceding the forecast period are used for model spin up to bring models states
to values that estimates the catchment conditions.

Open loop forecasting

When the open loop forecast is activated, the state variables are obtained in simulation mode
and used as starting point to initiate the hydrological forecast. The simulation and forecast
steps then alternate as follow: 1) the models are forced with observations up to the first day
t of the forecast and 2) the models are next forced with the meteorological forecast to issue
the hydrological prediction until t + 9. The procedure is repeated as the models are brought
forward in time with the observations from t.

Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is a sequential data assimilation technique that uses a
recursive Bayesian estimation scheme to provide an ensemble of possible model reinitializa-
tions. The model state variable vector X is updated according to its likelihood probability
density function that is inferred by the observations z, p(X t|zt) with the indices t referring
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to the time.

When an observation becomes available, model states are updated (X+, the a posteriori
estimation) as a combination of the predicted (X−, also called the a priori states) and the
difference between the prior estimate of the variable of interest HX− and the corresponding
observation zt.

X+
t = X−t + Kt(zt − H tX−t ) (3.1)

where H is the observation model that relates the state vectors and observations, and K is
the Kalman gain matrix that defines the relative importance given to the output error respect
to the prior state estimate.

The Kalman gain is defined with the model error covariance matrix Pt and the covariance of
observation noise Rt as:

Kt = PtHT
t (H tPtHT

t + Rt)
−1 (3.2)

A detailed explanation of the EnKF mathematical background and concepts can be found in
Evensen (2003). In this study, the filter has been implemented following Mandel (2006).

The EnKF is able to decipher catchment initial condition as it acts on variables after the spin
up time, i.e. at the very start of the hydrological forecast. Thus, it is frequently presented
as a tool that describes catchment descriptive states uncertainty such as soil moisture but it
also implicitly takes into account model parameter and structural uncertainty as these are
reflected in the model states and outputs errors. The forecast system comprises inaccura-
cies at several levels and consequently the error statistics that the EnKF uses to update state
variables are not only intrinsic variability but also epistemic uncertainty that lay also in the
value of the state variables.

The EnKF performance is highly influenced by its setting, in particular by the required noise
specification of inputs and outputs (Noh et al., 2014) and also by the choice of the state
variable vector (Li et al., 2011). This affects directly the spread of the ensemble and the cor-
responding uncertainty description. As the level of uncertainty varies from the model used
and the simulated watershed, the optimal EnKF implementation also depends to a great ex-
tent on these aspects.

In this study, the EnKF is tuned to optimize reliability and accuracy per catchment and per
model. The retained specification were identified after the extensive testing that has been
carried out in Chapter 2. More precisely, two or three noise levels for each input and output
were tested (a 25-50-75% standard deviation of the mean value with a gamma law for precip-
itation, 10-25-50% standard deviation of the mean value with the normal law for streamflow
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observations and 2-5◦ standard deviation with a normal law for the temperature). Addition-
ally, as the choice of updated state variables is also a key component of the EnKF, all possible
combinations of the state vector were tested with the 12 noise combinations described above.
The retained EnKF setting were based on a two-step criterion; firstly the 3 settings that pre-
sented the best reliability are kept and then the one among them that led to the lowest bias.
Therefore, the optimal setting may use unrealistically high perturbations that compensate
partially for the structural error.

3.3.4 Scores

The continuous ranked probability score (CRPS, Matheson and Winkler, 1976) is a common
verification tool for probabilistic forecasts that assesses accuracy and resolution. A cumula-
tive distribution function is built based on the raw predictive ensemble, i.e. the collection of
deterministic forecasts and then compared to the observation.

CRPS(Ft, xobs) =
∫ +∞

−∞
(Ft(x)− H(x ≥ xobs))

2 dx (3.3)

where Ft(x) is the cumulative distribution function at time t, x the predicted variable, and
xobs is the corresponding observed value. The function H is the Heaviside function which
equals O for predicted values smaller than the observed value, 1 otherwise. The CRPS shares
the same unit as the predicted variable x.

As the CRPS assesses the forecast for a single time step, the MCRPS is defined as the average
CRPS over the entire period. The MCRPS can reduce to the Mean Absolute Error (MAE) if
a single member is considered and thus it allows to compare deterministic and probabilistic
forecasts (Hersbach, 2000; Gneiting and Raftery, 2007). Finally, a 0 value indicates a perfect
forecast and there is no upper bound.

The reliability diagram (Stanski et al., 1989) is a graphical method to assess the reliability of
a predictive ensemble by plotting forecasted against observed event frequencies. A perfectly
reliable forecast is represented by a 45◦ line that indicates that forecasted and observed fre-
quencies are equal. If the joint distribution curve differs from the perfect reliability lines, it
indicates that the spread of the ensemble does not perfectly match its predictive skills. If
the curve is situated above the perfect reliability line, this denotes an overdispersion of the
ensemble, and an underdispersion in the opposite case.

The reliability is twofold. Since the reliability curve assesses the dispersion regarding the
predictive skills of the ensemble, it is possible to have a perfectly reliable system with a low
predictive capability in the case the dispersion is very high. For disambiguation, the ensem-
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ble spread is added to the plots.

Practically, one can define the deviation from perfect reliability by estimating a measure of
distance between the forecast reliability curve and the perfect reliability line by computing
the Mean Absolute Error (MAE) or Mean Square Error (MSE, Brochero et al., 2013). This
dimensionless score allows to reduce the measure of reliability to a scalar. In the case where
the MAE is used, it can be easily interpreted as the average distance between forecasted fre-
quencies and the observed frequencies over all quantiles of interest. This verification score
is henceforth referred as Mean absolute error of the Reliability Diagram, MaeRD.

Additional information about reliability can be obtained from the Spread Skill Plot (SSP,
Fortin et al., 2014). It compares the Root Mean Square Error RMSE and the square root of
average ensemble variance that is a measure of the ensemble spread. The reliability is thus
somehow decomposed into an accuracy error part and a spread component. Ideally, the
spread should match the RMSE.

3.4 Results

Table 3.1 summarizes the specificities of the nine variants of the hydrometeorological fore-
cast framework according to the three "forecasting tools": multimodel, EnKF, and ensemble
meteorological forcing. Each of these switch may be activated or not and are marked as
on/off in the table.

The multimodel switch dictates if the members issued by the 20 individual models are
pooled together to create a single probabilistic forecast. In the case where the multimodel
approach is not used, the models outputs are kept individually and 20 distinct ensembles –
one per model – are considered.

Table 3.1: Description of the nine systems

Systems A B C D E F G H H’
Multimodel Off Off Off Off On On On On On
EnKF Off Off On On Off Off On On On
Met. ensemble Off On Off On Off On Off On On
Nb of members (20x)1 (20x)50 (20x)50 (20x)2500 20 1000 1000 50000 50000

The EnKF switch indicates if sequential data assimilation or the open loop procedure is ap-
plied. When EnKF updating is used, an ensemble of 50 members is created from 50 likely
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initial condition sets identified by the filter. Otherwise, a single set of state variable values
determined from the simulation is provided to the forecasting step. Note that the H and H’
system differ by the EnKF perturbations magnitude, where H uses perturbations that aim at
optimizing the combined criterion while H’ uses lower perturbations that are deemed to be
more realistic.

Lastly, the meteorological forcing employed during the forecast step can be either determin-
istic or probabilistic, using one randomly picked member or all 50 MEPS members.

These tools can be used alternatively or combined. For instance, if the EnKF and the mete-
orological ensemble forcing are used collectively, each of the 50 initial conditions sets will
serve as starting point for each of the 50 meteorological forecast member creating a larger
hydrometeorological ensemble that contains 2500 members.

We chose to disregard more complex or "hybrid" cases in this study, where for example, the
final ensemble is composed with some models that benefit EnKF state updating while others
are used in an open loop forecasting mode as these setups do not add additional information
about the role of the tools, increase the degree of freedom for the system optimization and
would shoot up computational costs.

The results for each of the nine systems applied to every catchment, lead time and possi-
bly every model are not systematically detailed and compared to each other. The following
graphs are deemed sufficient to interpret the role and benefits that the system components
play on the forecast quality. Additional graphs representing the resolution and reliability of
each system are provided in Annex E for readers who are interested in a specific set up.

To picture an overview of the results, Figure 3.2 represents the accuracy in terms of MCRPS
(or MAE for system A that is fully deterministic) and MaeRD. For graphical convenience,
the full distribution of performance according to various factors is not displayed but only a
single representative value. To reduce the whole of the results to a single scalar, the median
performance has been considered. In the case where a multimodel approach is used, the
median performance over the 20 catchments is displayed on the figure. Otherwise, when in-
dividual models are considered, firstly the median performing model is identified and then
the median performance over the catchment is represented. This implies that the perfor-
mance of individual models systems (A, B, C, and D) may refer to a different model for each
lead time.

The four radar plots situated on the top of the figure illustrate the MCRPS performance. As a
reference, the center of the disk consist of the median MCRPS value of the climatology over
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Figure 3.2: Synthetic results of the 9 systems that are referred by their code letter (see Ta-
ble 3.1). The 4 top radar plots illustrate the MCRPS with the center indicating the climatol-
ogy reference performance, and the perimeter representing a perfectly accurate simulation.
The 4 bottom plots describe the measure of distance from perfect reliability, with the center
indicating a MaeRD=0.5 while the perimeter corresponds to a perfect reliability. For detailed
numerical values, see Table E.1 and Table E.2 in annex

the 20 catchments while the perimeter represent a perfect MCRPS equals to 0. The radius
lines represent the nine systems described in Table 3.1 and are referred by their correspond-
ing letter.

The nine systems present varying performance but all decrease logically with lead time. Sys-
tem A, which is deterministic, undoubtedly performs worse for every lead time. It is chal-
lenged from the 3rd day and is outperformed for medium range forecast by the hydrological
climatology. System B presents a quite similar behavior to A but with a lower decrease of ac-
curacy with lead time. System C may be considered as competitive for shorter lead times but
looses quickly its edge. These preliminary results tend to indicate that simpler HEPS may
not be appropriate to accurately forecast streamflows over a nine day horizon. However, all
versions including the simpler version except system A are more informative than the cli-
matology for all lead times. Systems G, H and H’ stand out from the others for all lead times.

The second row in Figure 3.2 illustrates the reliability of each system. The center of the disk
corresponds to a MaeRD equals to 0.5. System A is artificially placed at the center of the
radar plot to denote that no reliability information is communicated since it is deterministic.

The reliability results shares similarities with the accuracy assessment. Simpler systems face
difficulties to provide a reliable forecast. Despite the use of meteorological ensemble forcing,
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system B is far from providing the right dispersion. Systems C and D provide some infor-
mation for short lead times but experience a substantial loss with increasing lead time. Once
again, G, H and H’ are performing best.

3.4.1 Multimodel approach and structural uncertainty

To assess the gain related to the multimodel approach, Figure 3.3 presents a comparison of
the individual model MAE (A) and the MCRPS that pools all model output together (E).
At this step, only the structural uncertainty is taken into account as the meteorological forc-
ing is kept deterministic and no initial condition uncertainty estimation is provided for both
cases. These systems are computationally cheap as they contain either 20x1 member or 20
members.
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Figure 3.3: Comparison of individual models daily discharges MAE and multimodel
MCRPS sorted by increasing multimodel MCRPS for the first day (version A vs E)

In Figure 3.3, each boxplot represents the distribution of performance (minimum, quantiles
0.25, 0.5, and 0.75, and maximum) of the 20 models while the curve details the multimodel
accuracy. On the x axis, the 20 test catchments are sorted according to increasing multimodel
MCRPS for the first lead time. This allows to notice that certain catchments exhibit a faster
growing error.

The multimodel performs consistently better than the median performance of the model but
also better than any model in the large majority of cases. Exceptions can be occasionally
observed for catchment 3 and 17 where only one or two models outperform the ensemble.
However, the best performing models differ from a catchment to another while the multi-
model presents the advantage of being more robust than any of the models. This is explained
by the varied individual model behaviors. Each model may grasp different specificities of
the hydrograph by focusing more specifically on different (conceptual) hydrological pro-
cesses. Consequently, the ensemble members – the models – have disparate errors. When-
ever the mismatch between forecast members and observation is poorly correlated, their
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errors tend to cancel out each other.

Figure 3.4 presents the reliability of the system E. Each curve refers to one of the 20 catch-
ments. As mentioned, the structural uncertainty of the hydrological models is solely explic-
itly taken into account by the combination of the models.
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Figure 3.4: Reliability of the multimodel ensemble (system E) for all individual catchments.
The spread represents the square root of mean ensemble variance averaged over all catch-
ments.

System E is generally slightly over confident for all lead times and this trend becomes more
apparent as the lead time increases. This is expected as the meteorological forcing uncer-
tainty increases with time while the deterministic forcing does not support that aspect. One
can notice that the reliability also depends on the catchments. For the first lead time, most of
the catchments are close to reliability while there are two outliers for which accuracy skills do
not match their corresponding spread. In fact, these catchments exhibits a constant hydro-
logical wet bias – partially explained by a meteorological forecast wet bias that over-forecasts
precipitations by almost 15% – that is not captured by any of the models even if the global
tendency is respected. Consequently, the models errors are highly correlated and this pre-
vents the members to form a performing ensemble. This bias indicates that the aggregation
of the other sources of uncertainty drive the system toward an inaccurate state.

3.4.2 Data assimilation and initial condition uncertainty

Figure 3.5 illustrates the increase of performance related to the data assimilation by compar-
ing systems E and G. System G improves upon E as it benefits from the EnKF data assimi-
lation to handle the initial condition uncertainty. The models states are updated according
to the last available observations and an ensemble is created for each model based on the
probabilistic estimation of best initial conditions.

The EnKF provides considerable gain over open loop forecasts for all watersheds and re-
duces the number of lower performance watersheds. Data assimilation is in our case, par-
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Figure 3.5: Comparison of open loop and EnKF multimodel MCRPS sorted by increasing
EnKF MCRPS (system E vs G)

ticularly effective on catchments that present a systematic bias. This indicates that inaccu-
racies accumulated and stored during the spin up period in the state variable as the results
of structural and forcing errors can be significantly reduced by providing adequate model
reinitialization.

As the EnKF acts on model state variables right after the spin up period, it is not surprising
to see its efficiency decreasing with lead time. This clarifies why the EnKF is beneficial for
all lead times but that its skill decreases faster than the open loop scheme one. Moreover, the
EnKF provides satisfactory initial condition distribution to minimize the error at the time
the observation becomes available but does not sample the posterior states to be optimally
integrated through time.

Figure 3.6 details the reliability of system G. There is a considerable increase of spread in
comparison to system E for shorter lead time that goes beyond adequate dispersion and
lead to a slightly overdispersed forecast for the first lead time. This was expected as the
EnKF was initially implemented to maximize individual model reliability for system G (see
Chapter 2). As the EnKF also takes into account the parameter and structural uncertainties
and is combined with a multimodel approach, there may be a redundancy in the error deci-
phering. The structural error and the corresponding ensemble spread that it should describe
may be somewhat accounted twice in that particular case. However, the overestimation of
the ideal spread diminishes as the EnKF influence fades away quickly and the system goes
back toward a better reliability for medium range forecast and underdispersion from days
4-5.

To explain the rapid decrease of reliability, Figure 3.7 displays the ensemble mean RMSE
and the square root of average ensemble variance. This individual spread skill plot (one
model and one catchment) is typical. The spread and the RMSE are close to a perfect match
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Figure 3.6: Reliability of the EnKF multimodel ensemble (system G) for all individual catch-
ments. The spread represents the square root of mean ensemble variance averaged over all
catchments.

for the first day indicating an appropriate dispersion, yet, they diverge rapidly. The relia-
bility deterioration of the system is twofold: the increase of the ensemble mean bias and the
decrease of the spread. The loss of hydrological predictive skill is coherent regarding that
the meteorological accuracy diminishes with increasing lead time. Concerning the second
point, in most cases, the ensemble of initial conditions that EnKF provides often differ little
from each other – few percent – indicating that the posterior distribution of each parameter is
rather narrow (DeChant and Moradkhani, 2012; Abaza et al., 2015). These dissimilarities are
not large enough to provoke a divergence in the behavior of EnKF members during the fore-
casting step as the models are resilient. The different initial conditions thus tend to merge
toward a certain value – often close the open loop one – which may not be accurate.
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Figure 3.7: Typical Spread Skill plot of a single model EnKF ensemble

3.4.3 Contribution of the meteorological ensemble forcing

One step further in the system complexity is taken as the MEPS forcing is introduced. Fig-
ure 3.8 compares the MCRPS of systems G and H. They differ only in their meteorological

71



forcing as the latter uses the 50 member probabilistic forecast. Difference between them is
negligible until the 7th or 8th day where a slight improvement in performance can be noticed
on most catchments. For these longer lead times, the probabilistic forcing is somewhat more
efficient for the MCRPS but the main difference lies in the reliability (Figure 3.9). In fact,
the reliability is substantially improved for the longest lead times when the meteorological
uncertainty is provided to the system.
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Figure 3.8: Comparison of EnKF multimodel MCRPS with deterministic and ensemble me-
teorological forcing (system G vs H)
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Figure 3.9: Reliability of the EnKF multimodel ensemble with MEPS forcing (system H)

The ECMWF MEPS dispersion grows with lead time and logically contributes to the HEPS
spread accordingly. This is confirmed by comparing the spread of the G and H systems
as they decrease at a different pace. While they are almost identical with a value of 0.58
mm/day and 0.59 mm/day respectively for the day 3, G spread drops to 0.45 mm/day for
day 9 while the use of the MEPS maintains the spread to 0.59 mm/day. The evolution of the
spread also indicates that the tool that contributes the most to the HEPS dispersion is the
EnKF since the raw MEPS forcing is not able to balance the decrease of the spread induced
by the EnKF.

The main sources of uncertainty – structure, initial conditions, and meteorological forcing –
are cascaded through the different components of the forecasting system to provide better
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forecast than any of the systems previously described. Yet the system reliability is not perfect
as the forecast for day 1 and day 9 are slightly overdispersive and underdispersive in addi-
tion to present sensitivity to the watersheds. To realistically represent the uncertainty of the
system, the spread should grow with lead time as the future is more uncertain. This suggests
that further improvement of this setup and particular application could be obtained with a
more dispersed meteorological forcing.

3.4.4 Simplification of the framework

A potential drawback for operational use of such system is that it is computationally ex-
pensive as 50000 members are exploited to build it. The efficiency of a simpler system is
assessed on Figure 3.10. Eight typical catchments are displayed in the sub plots to illustrate
the conclusion. The box plots represent the MCRPS distribution of the 20 models results
from system D that benefits EnKF state updating and MEPS forcing. Each of these models
can be considered as a sub-ensemble of the large ensemble H driven by a single model in-
stead of using a multimodel approach. This is a more consistent approach with the EnKF
individual optimization that is carried out to aim for reliability for each model one at a time.
The numbers at the top of the sub-plots refer to the model number that are better than the
multimodel for each lead time.
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Figure 3.10: Comparative examples of the MCRPS on 8 watersheds of the EnKF individual
models and the EnKF multimodel, both using MEPS forcing (system D vs H)
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In Figure 3.10, sub-ensembles are more skillful than the hydrological climatology for all lead
times but rarely outperform the multimodel forecast. More precisely, the median perform-
ing sub-ensemble is always poorer than the multimodel and only the best models among the
20 occasionally exhibit lower MCRPS. Individual models that outperform the multimodel
frequently differ from a catchment to another and from a lead time to another. This empha-
sizes the difficulty to choose a priori a single model as half of the 20 models never behave
better than the multimodel and only model 1, 5, and 17 perform better than the multimodel
for several catchments. Choosing a sub-ensemble doubtlessly enhances the system compu-
tational requirements and eases operational implementation but relying on a single model
may be misleading or, at least, minimize the expectation that one can have from the HEPS.

Figure 3.11 assesses the reliability of the same system with the MaeRD score. Like for the
previous plots, the box plots contain the 20 ensembles that correspond to the 20 models
and are sorted by catchment with increasing multimodel MaeRD. Note that the MaeRD
does not provide precise information about dispersion but only about the distance from
perfect reliability. Nevertheless, individual model ensemble may be either slightly over or
underdispersive for the first lead time but are systematically underdispersive for longer lead
times. On the other hand, system H can be either over or underdispersive depending on the
watershed. Overdispersive forecasts, like for the catchment 20, can be recognized as they
tend to become more reliable for longer lead time.
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Figure 3.11: Comparison of the deviation from perfect reliability of EnKF individual models
and the EnKF multimodel, both using MEPS forcing sorted by increasing EnKF multimodel
MaeRD for the first day (system D vs H)

For the first lead time, the best individual model ensembles may be competitive with the
multimodel but are already less efficient from day 3 and are drastically underdispersive for
day 9. Even if the EnKF takes into account the structural uncertainty at t = 0, it loses its
efficiency during the forecast. The information that the updated state sets contain about
the structural uncertainty vanishes when the sets converge toward a common value. The
multimodel approach, by its nature, allows to take over the role of the EnKF by dynamically
preserving the required diversity.
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3.4.5 Required EnKF perturbations

H’ is identical to system H except that it relies on a different optimization of the EnKF. In-
stead of maximizing the combined criterion for individual models (see section 2), the EnKF
noise specification is set lower to values that are more consistent with real uncertainties esti-
mations of observed climatological and streamflow observations at catchment scale. Namely,
precipitation is perturbed with a gamma law with a standard deviation of 25% of the mean
value, temperatures with a normal law with a 2◦ standard deviation and streamflow obser-
vations with normal law with a 10% standard deviation.

This would correspond to a potential optimal EnKF implementation if the total uncertainty
could be summarized to the input and output error and were perfectly identified, i.e. in a
perfectly controlled environment with a negligible model structural error. Consequently, the
structural error is theoretically only deciphered through the multimodel pooling. Yet this
needs to be qualified as it is practically hard to untangle the source of uncertainty within
the actual configuration of the EnKF but it reduces the risk that the tools effects overlap. By
choosing these perturbations, the user also gets rid of a fastidious EnKF tuning by screening
adequate perturbation (Chapter 2 and for e.g. Moradkhani et al., 2005) and hence simplifies
the system implementation.
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Figure 3.12: Comparison of EnKF multimodel MEPS systems using either individually opti-
mized EnKF perturbations or lower input-output perturbations (system H vs H’)

In Figure 3.13, system H’ improves reliability for first lead times by reducing the overdis-
persion with a sensible decrease in the ensemble spread from 0.72 mm/day to 0.57 mm/day
for day 1 without any degradation of the MCRPS. System H’ maintains a more constant
spread and reliability with increasing lead time as the main sources of uncertainty are more
accurately deciphered specifically by their corresponding tool, leading to an overall better
forecast.

Finally, there is still a difference in reliability between catchments indicating that it is unrea-
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Figure 3.13: Reliability of the EnKF multimodel ensemble with MEPS forcing and lower
input-output perturbations (system H’)

sonable to assume that uncertainties are invariant from one catchment to another. Part of the
misfit probably originates from the structures composing the multimodel ensemble that can
be maladapted to simulate some catchments, from doubtful streamflow measurements, or
from meteorological ensemble forcing that seems slightly underdispersive for this particular
application.

3.5 Conclusion

This work investigates the contribution of three different probabilistic tools commonly used
in hydrometeorological sciences. They are used conjointly and alternatively to identify their
effect on the hydrological predictive ensemble and to untangle sources of uncertainty that
are aggregated in the outputs.

Each of these tools is dedicated to capture a certain aspect of the total uncertainty. A multi-
model approach is used to quantify and reduce explicitly the hydrological model error, the
Ensemble Kalman Filter to decipher the uncertainty related to initial conditions and the me-
teorological ensemble to account for the forcing uncertainty.

The experiment shows that important gain may be achieved in terms of accuracy and relia-
bility by adequately using these techniques. Their action differs substantially by their mean
and range of action.

The EnKF provides accurate quantification of initial error but fails to maintain reliability as
its effect fades out quickly after model spin up. The information about the structural uncer-
tainty deciphered by the EnKF, which is contained in the state variable posterior distribution,
is not propagated with time integration during the forecast step. However, the EnKF remains
a key component of the system as it is the one that provides the most dispersion. This also
indicates that the accumulation of past errors in the initial conditions is a dominant source
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of uncertainty.

The multimodel approach is able to partially compensate for the EnKF decreasing action by
taking over the structural uncertainty. Moreover, the combination of independent models
improves accuracy as their errors may cancel each other. Lastly, the use of ensemble meteo-
rological forecast contributes to the reliability of medium range forecast by representing the
meteorological forcing errors.

Their actions are complementary as they decipher different nature of uncertainty at different
locations by acting at particular stages in the forecasting process. When combined, they need
to be set according to the tools they are juxtaposed with to prevent overlapping actions. This
is particularly the case for the EnKF that has important degree of freedom in its implementa-
tion. It can eventually be tuned with more realistic input perturbations by coupling with the
multimodel ensemble and therefore, facilitate its implementation by relaxing the constraints
of optimal perturbation screening.

Possible avenues for further improvements may be achieved through a multimodel state
updating rather than individual model updating, i.e. by treating initial condition in a single
step as a whole. Lastly, the meteorological forecast shown to be a little underdispersed for
this application and could be possibly improved by applying suitable pre-processing tech-
niques.
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Chapter 4

Forecast quality and value in
decision-making1

4.1 Abstract

In an operational context, efficient decision making is usually the ultimate objective of hy-
drometeorological forecasts. Because of the uncertainties that lay within the forecasting pro-
cess, decisions are also subject to uncertainty. A comparison of five Early Warning Systems
(EWS) based on different forecasting systems is performed to investigate how uncertainties
affect the decision quality. These systems differ by the location of the sources of uncertainty
and the total amount of uncertainty that they are expected to decipher. They are assessed
with the Relative Economic Value, which is a flexible measure that assesses the economic
benefits of the EWS. All systems provide a gain over the no-forecasting case for every hori-
zon but most complex systems, which decipher more uncertainties, are found to reduce the
most the expected damages. Systems with better accuracy and reliability are generally the
most valuable even if this relation is loosely defined.

4.2 Introduction

Floods are recognized as one of the most devastating natural disasters. Related hazards and
risks are considerable in numerous places and require adequate prevention measures. Gov-
ernments and communities seek to reduce risk – the product of the hazard and its frequency
of occurrence – uppermost in urban and industrial zones and to protect environmental and
agriculture areas.

1This chapter has not been submitted to a journal yet. Authorship: A. Thiboult and F. Anctil designed the
experimental setup and performed the analysis. Coding and simulations were carried out by A. Thiboult. The
text has been written by A. Thiboult and revised by F. Anctil
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Traditionally, risk prevention is preferred over relief for economical and human considera-
tions (Rogers and Tsirkunov, 2010). Three types of answers for reducing flooding risk are
advocated: the construction of dedicated infrastructures, the use of early warning systems
(EWS) and the respect of environmental buffers. To date, the combination of these three ap-
proaches has shown to be the most efficient practical answer to minimize economic damages
and loss of lives. In the case where all these answers are not available, an EWS is estimated
to serve the best the neediest people (Rogers and Tsirkunov, 2010). Streamflow manage-
ment is not limited to risk management since lower streamflows may also be of interest for
agriculture, construction, energy, telecommunication, tourism, transport, logistics and water
availability (Frei, 2010).

Merz et al. (2010) and Priest et al. (2011) noticed a progressive shift from structural measures
(e.g. building dikes and retention basins) that aim at decreasing the occurrence and intensity
of flood discharge toward non-structural measures that include a wide panel of responses
such as the adoption of policies and laws, public awareness raising and education, for in-
stance. This stresses the actual move from hazard prevention to risk prevention and follows
the recommendation of Bavarian State Ministry for the Environment (2006) and Ministry Of
Transport (2006) to enhance co-existence with rivers.

A non-structural measure, such as an evacuation alert, relies on the available mitigation
time, i.e. the amount of time available between the beginning of the mitigation response and
the moment the flooding occurs. A flood alert solely based on upstream observation will
provide a mitigation time that is limited to the flood wave travel time, but an EWS based on
meteorological and rainfall-runoff forecast, will have the capacity to greatly extend mitiga-
tion time. The longer the mitigation time is, the more the population has time to evacuate
the flooded area or the authorities to take preventing actions. With increasing lead time, the
amount of property and infrastructures that can be protected increases, but there is at the
same time an increment in the number of costly false alarms (Rogers and Tsirkunov, 2010;
Priest et al., 2011).

The maximal potential flood warning effectiveness provided by the forecast needs to be qual-
ified, as many social considerations have to be accounted for (Molinari and Handmer, 2011).
The steps that include the understanding of the alert, the action that may be taken and their
effectiveness makes that there is a difference, possibly large, between maximal and effective
damage reduction.

Nonetheless, numerous studies demonstrated that flood alerts are economically efficient
(e.g. Priest et al., 2011; Molinari and Handmer, 2011; Verkade and Werner, 2011; Perrels
et al., 2013). Frei (2010) estimated that benefits generated by weather services in Switzer-
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land amount to some hundreds of millions of US$ per year. Similar results were obtained by
Anaman and Lellyett (1996); Lazo and Chestnut (2002) and Leviäkangas et al. (2007) in other
industrialized countries, i.e. ratios of invested and saved money oscillating between 1:4
and 1:6. Pappenberger et al. (2015) determined that the European Flood Awareness System
(EFAS, Thielen et al., 2009; Bartholmes et al., 2009) which provides information to national
authorities and to the Emergency Response Coordination Center of the European Commis-
sion up to 10 days ahead, reaps benefits as high as 400 Euros for every 1 Euro invested.

A complete warning system is typically composed of four facets: the risk knowledge, the
monitoring-forecasting and warning, the dissemination and communication and the response
capability (Rogers and Tsirkunov, 2010). The failure of one of these components will be cas-
caded through others and will consequently decrease or suppress the flood mitigation ef-
fectiveness. Among them, the forecasting step, always imperfect, is critical and complex.
It is subject to many uncertainties because of the inaccuracies that lay in the mathematical
representation of hydrometeorological systems, mainly in the system state and its dynamic
behavior (e.g. Ajami et al., 2007; Salamon and Feyen, 2010; Liu and Gupta, 2007; Liu et al.,
2012).

Ensemble prediction systems (EPS) provide a probabilistic answer that is able to incorporate
different modeling sources of uncertainty. The approach is gaining in popularity and starts
being used by operational agencies (see the review by Cloke and Pappenberger, 2009). In a
decision making context, the value of an EPS proved to be efficient and is capable to improve
upon traditional deterministic forecast (e.g. Richardson, 2000; Zhu et al., 2002; Verkade and
Werner, 2011; Boucher et al., 2012; Stephens and Cloke, 2014), even if the communication of
probabilistic forecasts remains a challenge (Ramos et al., 2010; Demeritt et al., 2013).

Despite the different investigations concerning EWS and decision making systems, no eco-
nomic study provides a comprehensive comparison between different systems that goes be-
yond the probabilistic and deterministic forecasts confrontation (Verkade and Werner, 2011;
Boucher et al., 2012). Moreover, the question of forecast economic value is often tackled alone
and the relation between quality and value is rarely addressed. As Verkade and Werner
(2011) point out, it is expected that the value will increase with increasing sharpness but ef-
fort should be dedicated to clarify what are the mandatory qualities that the forecast needs
to improve its economic value.

This study adopts a simple framework to evaluate the economic gain that could be reached
for the different forecasting systems presented in Chapter 3. These systems differ by the way
they decipher the different sources of uncertainty and the amount of total uncertainty they
handle. As a result, they vary in terms of performance and reliability. The framework allows
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to compare their economic value on the same database. The second aim of the study is to
attempt to relate the hydrometeorological forecasting system quality and economic value.

Section 4.3 presents the methodology, including the hydrometeorological data, the descrip-
tion of the relative economic value framework, the decision rules and the scores. Results are
presented Section 4.4 where the relative economic value and the relation between forecast
quality and value is exposed. Finally, concluding statements are provided Section 4.5.

4.3 Methodology

4.3.1 Description of hydrometeorological data

This chapter uses the same hydrometeorological data than Chapter 3.

4.3.2 Hydrological model calibration

The models were individually calibrated on a 10-year period and the RMSE on square-
rooted streamflows as objective function. The calibration is consequently not designed to
capture specifically higher discharges, which makes the present system assessment demand-
ing as it focuses on the highest discharge percentiles.

4.3.3 Hydrological forecast economic value

Justification of the use of the relative economic value

Attempts to realistically define the damage associated to a particular river stage and avoided
loss are subject to many approximations and errors and limited by the spatial and tempo-
ral boundaries (Merz et al., 2010). The intangible costs resulting from deaths or traumas,
for instance, are hardly economically quantifiable by their nature. When damages are tan-
gible, the cost evaluation is more straightforward but also subject to approximations as the
flood indirect consequences may be difficult to identify. To properly quantify damages, the
approach has to be sufficiently holistic to encompass all effective consequences that can be
social, political and environmental (Merz et al., 2010).

To assess the economic gain related to protected values, Parker et al. (2007) uses an estima-
tion of the proportion of moveable inventory within a property. The main limitation of this
approach is the fact that there are plenty of other measures, potentially more efficient that
can be taken to prevent damage loss. Moreover, the flood alert is not systematically followed
by people and efficient preventing measures are not always taken. More generally, decisions
are made under constrains and can be encumbered by cues that are fallible, ambiguous and
altered by judgement (Choo, 2009).
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This gave rise to the concept of maximum potential reduction of flood damage that relates
the actual flood damage avoided to other factors that stands in the way of optimal mitiga-
tion (Parker, 1991). The relation is defined as the product of the maximal potential reduction
for a perfect system, the probability that the forecast is issued sufficiently ahead to react, the
fraction of concerned people that will respond to the warning and the fraction of people who
will take effective measures. This product is estimated to 0.5 in UK by the Department for
Environment, Food and Rural Affairs (Verkade and Werner, 2011).

To free ourselves from these constrains and approximations, we propose to use the Relative
Economic Value (REV) and the cost-loss ratio to compare the different forecasting systems at
hand. The REV is a more theoretical assessment of the value of a forecast as it is not based
on real damage statistics but can be easily transferable to more practical cases providing an
extensive knowledge of the area, residents, economical activities and goods at risk.

Cost-loss ratio

The cost-loss ratio (CLR) represents the ratio of the costs of mitigation and the avoidable
losses due to adverse event and is defined as:

r =
C
La

(4.1)

where r is the CLR, C is the cost of the mitigation warning response, and La the avoidable
damage. In the following study, results are presents for values of r such as 0 ≤ r ≤ 1, as
it does not economically make sense to take preventive measures that are more expensive
than avoidable damages. On the other hand, the CLR cannot equal 0 as operating an EWS
already implies some cost and such hypothetical case would benefit from continuous warn-
ing as they are free. In practice, the cost-loss values are situated in a narrower range but the
definition of realistic CLR is out of scope. This definition is convenient as it can theoretically
encapsulate different costs (costs to set/initialize the EWS, costs of operation, and costs asso-
ciated with the event mitigation), and all sources of avoidable loss. Therefore, a wide range
of potential cases can be built upon this synthetic value.

Relative economic value

The Relative Economic Value (REV) is a dimensionless factor that scales between the case
where no warning is issued and the perfect warning case (Zhu et al., 2002). A REV equals
to 1 denotes the best possible forecast decision system while a REV equals to 0 indicates that
the system does not provide gain over the no warning case. The REV is negative whenever
the sum of costs of issued warnings is greater than the sum of avoided loss.

The estimation of the costs of an Early Warning System (EWS), a no-warning system and
perfect forecast cases can thus be estimated from a contingency table. Table 4.1 describes the
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Table 4.1: Contingency table with costs associated with each type of event.

Forecast/action

Yes No

O
bs

er
va

ti
on

Ye
s Hit (h) Miss (m)

Mitigated Loss (C + Lu) Loss (La + Lu)

N
o False Alarm (f) Correct false (c)

Cost (C) No Cost (–)

4 possible cases and their frequency of occurrence, hit (h), false alarm (f), missed events (m)
and correct false (c), and the different types of expenses, i.e. avoidable loss (La), unavoidable
loss (Lu), and operating cost (C).

If no warning system is available, the expected damages over the assessment period are
given by:

Enowarn = (h + m)(La + Lu) (4.2)

The no-warning case can also be seen as a system that has the same skill as the climatol-
ogy as the frequency of river stages exceeding the critical threshold is statistically low, i.e.
sufficiently low that the user will not issue warning if no forecast information is available
(Verkade and Werner, 2011).

On the other hand, the damages for a perfect forecast is the product of the number of events
that lead to damages and the sum of the warning and response costs and the unavoidable
losses.

Eper f ect = (h + m)(C + Lu) (4.3)

Finally, the expected damages for an early warning system includes the costs associated
with correct alarms, missed and therefore unprotected adverse events, and the costs of false
alarms.

EEWS = h(C + Lu) + m(La + Lu) + f C (4.4)

The expected damages with EWS, the no-warning, and the perfect warning system can be
therefore compared with the REV. It is the equivalent of a skill score that scale between the
optimal value Eper f ect and the reference value Enowarn.

REV =
Enowarn − EEWS

Enowarn − Eper f ect

=
(h + m)La − (h + f )C−m(La)

(h + m)La − (h + m)C

=
(h + m)− (h + f )r−m

(h + m)(1− r)

(4.5)
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Optimal decision rule

The above decision-making framework accepts deterministic or probabilistic hydrological
forecasts. If the decision to issue a warning is solely based on mathematical evidence, the
forecaster will issue a warning if the expected damages with mitigation action are lower than
the expected value without mitigation. The optimal decision rule is therefore

C + PLu < P(La + Lu)

C
La

< P

r < P

(4.6)

In the case of the deterministic forecast, the probability of exceeding the threshold is either 0
or 1 depending if the forecast is under or above the defined threshold.

4.3.4 Flood threshold

In practical cases, flooding thresholds are expressed in terms of river stages. However, as we
do not possess rating curves nor critical river stages, we define a streamflow threshold and
make the assumption that at each stage corresponds a unique streamflow.

A threshold is thus set for each catchment and defined as the quantile 0.9 of the observed
streamflows on the assessment period. Unlike a streamflow value determined from a return
period for instance, it allows to have the same number of adverse events on all catchments.
Moreover, with a 2-year return period streamflow, almost 75% of the studied catchment
would not experience any event needing mitigation measures during the testing period.
Therefore, this streamflow threshold may not refer to flooding hazards but can be related to
the needs for smooth functioning of many aspects in economy, administration and society
(Frei, 2010) or dam management (Boucher et al., 2012).

4.3.5 System selection

For concision purpose and graphical convenience, only 5 out of the 9 systems presented in
the previous chapter are retained. The economic value of systems A, B, C, E and H’ will be
presented. The choice is based on the differences in devising these systems.

• A: Most simple and fully deterministic case

• B: Ensemble weather forecast

• C: Probabilistic streamflow assimilation with EnKF

• E: Hydrological multimodel

• H’: Most complex case. Combines multimodel, ensemble forcing, and data assimila-
tion.
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Table 4.2: Description of the five selected hydrological ensemble prediction systems

Systems A B C E H’
Multimodel Off Off Off On On
EnKF Off Off On Off On
Met. ensemble Off On Off Off On
Nb of members 1 50 50 20 50000

H’ has been retained over the system H since it proved to be the most consistent with the
description of uncertainty and offers overall better predictions. Other cases have not been
kept because they are combinations of the selected systems. For systems A, B and C that
do not include a multimodel approach, a model selection is necessary. For this purpose, the
median performing model over catchment and lead times is kept. The model for the systems
A and B is M09 and M06 for system C.

4.4 Results

4.4.1 System relative economic value

Figure 4.1 illustrates the REV for the 20 catchments, the 5 selected systems, and day 1. Each
of the color line corresponds to a system and is function of the cost-loss ratio. The first ob-
servation is that the REV varies according to catchment which was expected as the systems
simulate catchment behavior with various quality levels. Nonetheless, all systems remain
economically efficient for most CLR values.

The second finding from Figure 4.1 is that the value of the forecast depends on the system.
Indeed, system H’ proves to be the most valuable since it provides the highest economic
value for most catchments and CLR, and always (except for catchment 022301) exhibits pos-
itive REV even in the most demanding situations, i.e. for cost-loss ratios close to 1. It may
be occasionally challenged by system C on a few catchments and specific CLR values. By
contrast, systems A and B frequently the systems that offer the lesser improvement over the
no-warning expected damage. These two systems only differ by their meteorological forc-
ing, (i.e. probabilistic or deterministic) and exhibit identical REV for day 1. This indicates
that picking randomly one member does not contribute to any difference in economic value
for the first lead time as the difference between meteorological members is too little.

Occasionally, REV remains constant regardless of the CLR. This particular situation arises
when no false alarm is issued. Also, an increase in REV can be sometimes noticed with in-
creasing CLR. This is explained by a diminishing number of false alarms, which is related
to the optimal decision rule. With increasing CLR, the degree of certainty of exceeding the
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Figure 4.1: Relative Economic Value (REV) according to the cost-loss ratio for the 20 catch-
ments, the 5 early warning systems and day 1. The differences between systems A and B
results are not distinguishable.

streamflow threshold needs to be higher before issuing a warning and may therefore con-
tribute to the rejection of a false alarm.

Figure 4.2 exhibits similar results than Figure 4.1 but for day 5. The value of forecast logically
decreases as the number of false alarms and missed event increases. An increasing number
of false alarm may be identified by a rapid decrease in REV for higher CLR. However, in
an operational context, the deterioration of the forecast value needs to be qualified as the
cost-lost ratio describing the situation is susceptible to be lower with increasing mitigation
time. This refers to the notion of trade-off between the forecast value and lead time, a topic
that is not addressed in this study. In fact, lead times used in this study are considerably
longer than most of the study previously mentioned. For instance, the maximum mitigation
time is 6 hours in Verkade and Werner (2011).

The superiority of system H’ is confirmed in Figure 4.2. By contrast, system C, which was
often the second best system in day 1, experiences a substantial decrease and henceforth is
now challenged by system E. It is that the influence of the EnKF vanishes and may in some
cases become worse than the open loop. System B that was indistinguishable from system
A in day 1 gains in relative efficiency as it outperforms system A by taking into account the
meteorological forcing uncertainty.
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Figure 4.2: Relative Economic Value (REV) according to the cost-loss ratio for the 20 catch-
ments, the 5 early warning systems and day 5.

General conclusion from this analysis indicates that, following the example of forecast qual-
ity (Chapter 3), the economic value of a system can be improved by accounting explicitly for
the principal hydrometeorological sources of uncertainty. Therefore, more complex systems
that decipher more sources of uncertainty, but that are eventually also more demanding in
development, tuning and computational requirement, are overall more economically attrac-
tive. Moreover, the difference in cost among the five systems is possibly small compared to
the costs engaged in mitigation actions, avoidable damages, or damage flood relief.

4.4.2 Relation between value and quality

This section aims relating the forecast economic value to accuracy and reliability. Figure 4.3
is based on the definition of a REV threshold set to 0.5 and its corresponding CLR (referred
as CLR threshold). More precisely, the CLR threshold is equal to the CLR value when the
REV curve falls lower than 0.5 for the first time, or in other terms, this measure indicates from
which CLR a system has a relative economic value that becomes lower than 0.5. If the REV is
always lower than 0.5, then the CLR threshold is 0. This allows to condense the information
and to merge lead times. To be able to identify the first lead time, the corresponding marker
is a circle while others are denoted by asterisks. The decrease of the performance in accuracy
and reliability is monotonic, thus, other lead times are easily identified. Note that the X-axis
has been truncated and therefore, not all simulation are systematically represented. Missing
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Figure 4.3: Relation between Nash Sutcliffe Efficiency (NSE) and the cost-loss threshold. The
circles indicate day 1 results.

systems thus exhibit poor performance according to the NSE criterion.

Most catchments exhibit a correlation between NSE and CLR threshold, but these relations
vary. For catchments 061020, 061502, and 050135, the relation between economic value and
accuracy can be described relatively precisely by a simple polynomial relation, while rela-
tions for catchment 041902 or 062701 are less obvious. Highest NSE systems usually implies
highest economic value but this may occasionally not be true where it can be over performed
by few other simulations, as for catchments 041902, for instance. However, for a given CLR
threshold it is frequent to observe different values of NSE. Thus, the relation between NSE
and CLR threshold is not uniquely defined. This is particularly apparent for catchment
061801 where CLR threshold around 0.45 are obtained with NSE ranging from approxima-
tively 0.8 to 0.2.

Once more, system H’ clearly stands above the other systems both in terms of value and
quality. Often, the CLR threshold of the H’ for the second or third day (occasionally up to
five days like for catchments 043012 and 050144) lies in the same area as other systems first
lead time. This indicates that the equal-quality decision can be taken a few days earlier with
most performing systems, while the most simple ones (A and B) are rarely competitive.

Figure 4.4 illustrates the distribution of CLR thresholds as a function of the NRR. System
A is not represented as it is deterministic, so no associated reliability exists. A decrease in
reliability is often accompanied by a decrease in expected economic value but the relation is
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Figure 4.4: Relation between Normalized Root-mean-square-error Ratio (NRR) and cost-loss
threshold. The circles indicate day 1 results.

not as evident as for the NSE. Also, system B does not follow the same logic as the others,
since its spread is only generated by the meteorological forcing and logically increases with
lead time. The increasing spread (and thus reliability in that case) combined with a drop in
accuracy explains the reason why system B relation is oriented in the other direction. This
also indicates that relying only on a reliability measure and to tune a system based solely on
reliability maximization may be deceptive.

In the case we omit system B, the relation between reliability and economic value becomes
clearer for most catchments. From there, it is worth noticing that the relations between eco-
nomic value and NRR are explicit for the same catchments as the relation between economic
value and NSE. Therefore, Figure 4.5 is used to verify if reliability and accuracy are corre-
lated to each other, and to economic value together.

Figure 4.5 plots NRR against NSE for system B, C, E, and H’ for all lead times. It reveals
that NSE and NRR are correlated by systems. Again, the relation between reliability and
accuracy of system B differs from the other ones because of the use of meteorological forcing
alone. The relations actually differ according to catchments and systems, but generally a
decrease in reliability is accompanied by a decrease in accuracy. This emphasizes that both
aspects of forecast quality cannot be fully separated with the tested systems. The manner
the forecasting systems were developed here makes that an improvement in the description
of uncertainty with the use of the different hydrometeorological tools, improves reliability
and accuracy together (see also Chapter 3).
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Figure 4.5: Relation between Normalized Root-mean-square-error Ratio (NRR) and Nash
Sutcliffe Efficiency (NSE). The circles indicate day 1 results.

However, attention should be paid uppermost on accuracy, as even if reliability is shown to
generally contribute to the REV for ensemble prediction, it is not a strict prerequisite since
the deterministic system – although it provides the worse results among the tested EWS –
still provides improvement over the no-warning case.

Finally, it becomes obvious that it not possible to precisely establish a relation between prob-
abilistic forecast quality and value based on a conjoint measure of accuracy and reliability.
Other scores have been tested (MaeRD, RMSE, CRPS) without any change in the conclu-
sions. This explains that no clear threshold on accuracy and reliability from which the fore-
cast is not valuable could be found. Murphy and Ehrendorfer (1987) proves with a more
theoretical framework and the Brier score that the description of the value of a deterministic
forecast cannot be fully described by a one-dimensional measure of accuracy, also referred
as the accuracy/value envelope. This is verified in the present study as to a single measure
of accuracy and reliability may correspond several economic values. Considering a second
dimension in the forecast assessment through reliability measurements do not add more
information as the two scores turn out to be not independent. Thus the confrontation of
accuracy-reliability and value still lead to a multivalued function.

4.5 Conclusion

This paper presents (i) a comparison of five Early Warning Systems (EWS) in terms of eco-
nomic value and (ii) an attempt to relate accuracy and reliability to economic value. Each
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of the EWS includes an imperfect forecasting component that differs from the others by the
way it aims to decipher one or several sources of uncertainty and by their amount of total
hydrometeorological uncertainty. Therefore, the systems vary in complexity, ranging from a
single hydrological model to a system that includes a multimodel approach combined with
ensemble Kalman filtering and meteorological ensemble forcing.

The assessment of the forecast economic value relies on a flexible theoretical framework
where the relative economic value is used to scale the forecast value between the no-warning
and perfect forecast cases. Warnings are issued and subsequent costly mitigation actions are
carried out when the forecasted streamflow exceed a predefined threshold.

All systems are found to provide gain up to 9 days ahead for most catchments and cost-
loss ratios. However, more complex systems provide higher economic value. By addressing
specifically and adequately the three major sources of uncertainty in hydrometeorological
modeling (i.e. initial condition, meteorological forcing and structural uncertainty), the ex-
pected damages are reduced the most efficiently for all lead times.

The study search for a relation between quality and value reveals that in most cases, better
accuracy and reliability provide higher economic values. However, the link is loosely de-
fined since for a given economic value, several NSE and NRR values exist. Therefore, using
forecast quality only provides a rough estimate of the potential forecast value. This is also
partly due to the fact that NSE and NRR are poor estimators of the economic value as, in
practice, they are linked to one another, at least for the systems devised in this study.

Therefore the question of the identification of a relation between quality and value is still
pending and additional work need to be dedicated to this topic as end-users are frequently
interested in economic considerations. Further work is also required for more concrete appli-
cations, especially by a proper consideration of suitable mitigation measures, identification
of actual flood damage avoided, and the possibility of improved decision rules.
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General conclusion

Despite the improvement in the description of hydrometeorological processes that have been
achieved during the past decades, comprehensive handling of uncertainty in modeling re-
mains a daunting challenge. Sources of uncertainty with different characteristics persist at
several locations in the hydrometeorological modeling chain and are aggregated in the fore-
casting predictive distribution, and therefore stand in the way of optimal use of forecasting
and decision-making systems. Efforts have been dedicated to reduce uncertainty by de-
veloping a wide range of tools that capture a fraction of the total uncertainty, notably by
resorting to ensemble techniques, i.e. a collection of deterministic forecasts. This shift from
deterministic to probabilistic approach improved uncertainty deciphering but shortcomings
need to be addressed as these techniques typically focus on a single source. To date, no
framework to handle major sources of uncertainty have been identified.

This thesis aims to broaden the knowledge on the way to explicitly account for the three ma-
jor sources of hydrometeorological forecasting uncertainty, namely the meteorological forc-
ing, the hydrological model initial conditions, and the structural/conceptualization model.
Particular attention should be paid to the coherence of the system to ensure that each sources
of uncertainty is properly tackled by the corresponding and suitable component of the fore-
casting system, without overlapping neither in their action or compensation for unaddressed
uncertainties. Such system is expected to provide, accurate, reliable, and economically valu-
able forecast.

To achieve this goal, a framework that assesses and reduces specifically each source of un-
certainty that have different nature and different location is built from three dedicated tools.
The Ensemble Kalman Filter (EnKF), the multimodel approach, and the meteorological en-
semble forcing are all probabilistic tools that were selected to respectively decipher initial
condition, structural, and forcing uncertainties. To identify their contribution to the reduc-
tion of the predictive uncertainty, they have been alternatively tested alone and combined,
which allow to have a more proficient knowledge of their combination, a point that was
rarely assessed.

93



Therefore, several systems were constructed by including different tool combinations lead-
ing to systems that theoretically decipher different amount of the total uncertainty. When
combining all tools adequately, the forecasting system shown to be more accurate, more
reliable with higher economic value than any other tool sub-combination even if the link
between economic value and forecast quality is not straightforward. This also indicates that
in the identified best system, modeling uncertainties are best estimated and reduced by the
tools that fulfil their objectives.

A multimodel ensemble, composed by 20 dissimilar models, shown to contribute for ex-
plicit accounting of structural and conceptualization uncertainty. A comparison between the
multimodel ensemble and a physically based semi-distributed model was carried out in an
operational context with deterministic meteorological forcing and simple output updating.
It revealed that the multimodel approach is more prone to lead to accurate forecast and cor-
rect representation of complex events, and can be therefore act as an operational solution.
The probabilistic approach should be preferred over its deterministic counterpart not only
because retaining every ensemble members leads to better performance than the ensemble
median or any of the model taken individually in most cases, but also because it provides
more information such as an estimation of the uncertainty through reliability measurements
and prevents from the model selection pitfall. The multimodel approach is superior thanks
to the different locations every model occupies in the ensemble, indicating that they perform
roles that are different and may contribute to the ensemble quality and diversity. Moreover,
in the case where the snow accounting routine is calibrated together with each individual
hydrological model, its parameter values will be different for each model. Therefore, this
multi-parametrization of the snow module will implicitly account for part of the snow accu-
mulation and melt uncertainty through parameter uncertainty.

The superiority of meteorological ensemble prediction system for hydrological purpose is
confirmed in the thesis. Unlike hydrological model pooling, the use of meteorological en-
sembles did not bring clear improvement over deterministic forcing in terms of accuracy,
but remains a key element as it contributes to system reliability from medium range hori-
zons and on.

Lastly, by efficiently reinitializing model states based on streamflow observations, the EnKF,
if properly set, is able to provide suitable initial conditions that greatly improve predictions
for shorter lead times. The EnKF deciphers initial condition uncertainty and contributes
largely to the predictive ensemble accuracy and required dispersion. However the positive
effects of the filter quickly fade out after spin up. The information that is contained in the
different sets of state variables is poorly propagated through time because of hydrological
model resiliency. As a result, the ensemble reliability decreases if the EnKF is used alone
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indicating that deciphering the accumulation of past error is a priority but is not sufficient
for medium range forecasting. In fact, the EnKF is a powerful tool for short range forecasting
but needs to be supported by a dynamical technique to account for other sources of uncer-
tainty, such as multimodel and ensemble forcing.

In order to achieve optimal implementation, the EnKF setting is more subtle than frequently
suggested. Indeed, the specification of the hyper-parameters is not straightforward, as they
have to be set according to tools that are combined with the EnKF. In the case where the
EnKF is used alone, input forcing perturbations will have to be screened in detail and will be
set to unrealistically high values to additionally account for structural and parameter errors.
In such situation, optimizing reliability and accuracy together is complex since the maxi-
mization of one aspect of forecast quality is achieved at the expense of the other. Also, the
choice of the state variables to update may not be intuitive for the tested models. The optimal
selection is often a sub-ensemble of model state variables and no global pattern emerges to
ensure a flawless choice, especially for models with higher degree of freedom that are often
more complex to tune finely. Another difficulty arises in the fact that both hyper-parameters
values and the choice of state variables to update depend on models and catchments. Thus a
transfer of an optimal EnKF tuning from a case to another may be hazardous. Finally, there
are important differences in the expected gain according to models since none equally bene-
fits from states updating.

The tools that were used for building the forecasting system are complementary because
they allow to capture and decipher different uncertainties at different locations. Their com-
bination is found to outperform any of them separately and to provide accurate, reliable, and
valuable forecasts. However, particular attention in the manner to combine them should be
paid to prevent unaddressed uncertainty or overlapping effect, especially in the EnKF, which
presents flexibility in its implementation.

Prospects

In the framework that was suggested, models were reinitialized individually through the
EnKF. As a consequence, error covariances and conditional density of the model states were
estimated one model at a time. Therefore, the EnKF has updated the model states regardless
of the ensemble quality and consistency, only with the goal to optimize the initial conditions
of the model it is dealing with. Intuitively, this is not a major drawback since the ensem-
ble quality depends on its members. By improving each member accuracy, the ensemble
is likely to become more accurate. Hence, updating simultaneously the state variables of
all models would provide a more coherent handling of the uncertainty and a better control
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over the ensemble spread. Possible EnKF finer tuning could be achieved through input and
output perturbations. These perturbation would account for input and output only, with-
out the need to hypothesizing that the error structure were compensated by state variables
or parameters correction. Thus it would not be necessary to overestimate perturbations of
the inputs to subsequently influence states variables like it is the case in Chapter 2, nor to
call upon direct perturbation of state variables, nor to update state variables. Consequently,
the conjoint model reinitialization would theoretically improve the initial condition of the
system itself. The ensemble would not be therefore composed by a collection of models but
by a multistructural system in its own. The suggestion of this novel system raises several
questions.

To continue in the multistructural perspective, for better coherence, models should no longer
be calibrated individually but collectively. This leads to a problem of identification of a
suitable way to calibrate probabilistic forecast. A multicriterion that includes one or sev-
eral measurements of accuracy and reliability could be considered. However, by calibrating
simultaneously every model, the number of parameters increases dramatically leading to
poorly constrained optimization, which is very likely to provoke equifinality issues.

Also, in this thesis, it is shown that the system that performs best includes 50.000 members.
It is clear to us that such amount of values is not needed to sample the predictive density
function, even if its shape is complex. Therefore, some member selection should be carried
out to reduce ensemble size. This selection can be done at several levels. It appears that
selecting meteorological members in a mathematically consistent way is complex as ensem-
ble members are, in theory, exchangeable. A random sampling of forcing members could be
intended, provided that there is no loss in the system predictive skills. An easier way to cut
down in the ensemble size would be to perform a selection in the model pool. Despite 20
dissimilar model structures may be considered mandatory to provide a comprehensive de-
scription of the structural uncertainty, Chapter 2 shown that the compatibility between EnKF
and model structure is not systematic. While the 20 models presented performance in open
loop validation that are of the same order of magnitude, once models are updated, some
exhibit poorer performance in comparison to the others. The model selection could be based
on a backward greedy selection method or by a less systematic approach. We suggest for in-
stance, instead on focusing directly on model performance or dissimilarities in the structure,
to adopt a "negative approach", i.e. to focus on individual model misrepresentation of obser-
vations (individual model predictive error). This is also a key component of the multimodel
approach as it relies on the possible compensation for model errors. Therefore, the emphasis
should be paid on selection of models that present errors that are different. This probably
requires a synthetic experimental framework to get rid of other sources of uncertainty such
as forcing and observation.
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The actual time step of the system (daily) may be considered too coarse for certain opera-
tional applications. Finer temporal resolution may be desirable, especially for small size or
mountainous catchments that are likely to be subjects to flash floods and for hydraulic model
coupling. As MEPS are already able to provide such temporal resolution, attention should
be focused on the structure of the hydrological models. Models such as GR4J were modified
in an hourly version by some simple modifications of model constants (GR4H) or by adding
a reservoir for routing (GR5H). Such an approach could be extended to the 19 other models
to convert them to a more suitable temporal resolution.

Decreasing the size of the ensemble is a critical aspect of the multistructural system updat-
ing since all states of all members should be stored simultaneously to derive the system error
covariance matrix. As demonstrated in Chapter 2, the number of members is not a driving
parameter for the model performances as long as it remains reasonably high. Further testing
with fewer EnKF members is required. Also, even if meteorological studies indicated that
EnKF is able to cope with high dimensional systems, this should be verified with the sug-
gested framework.

Further improvement to the spring freshet forecasting could be obtained by dedicating more
attention to snow processes. To do so, three main avenues are identified. In the presented
framework, the uncertainty in the description of the snow processes was only deciphered
through a multiparametrization of the snow module (Chapter 1) and state updating was
carried out only on the hydrological model states leaving the snow stock unperturbed. Up-
dating the Cemaneige snow reservoir could prevent situations where the freshet driven by
snow melt is still going on, while Cemaneige reservoir ran dry, which is likely to happen
since quantifying accurately the snowpack throughout the whole winter is subject to errors.
The second possibility to improve upon the present snow routing accounting would be to
account for the snow module structural and calibration uncertainty by updating the mod-
ule calibrated parameters such as the melting factor. Such updating is expected to improve
simulations where melting occurs on the catchment while the snow module does not re-
flect it and therefore allow, for instance, to provide more water to the hydrological model
when needed. Finally snow accounting simulation could be enhanced by using additional
observations than streamflows to assimilate. This requires more data, such as snow remote
sensing or direct field observations but would allow to address the question of the snow
independently of the rest of the hydrological processes. Therefore, the uncertainty could be
reduced prior to cascading it to the hydrological models.

Moreover, by adding additional sources of observations, a step further could be done in un-
tangling the modeling processes and their sources of uncertainties. In the thesis, it is not
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possible to state doubtlessly that each tool decipher only its source of uncertainty as they re-
main partly tangled. To overcome this issue, each process should be assessed independently
implying more measurements at every step of the forecasting process.

Meteorological forcing is the element of the system that received the less attention. The as-
sessment of the ECMWF forecast that was not shown in the thesis, revealed that the HEPS
suffers both bias and frequent underdispersion. This was also observed by Verkade et al.
(2013) and the author was able to achieve moderate gain with simple pre-processing tech-
niques in precipitation forecasting but better results were obtained with temperature, which
is a key input in snow modeling. The author adds that the gain in hydrological forecasting
was negligible and this was probably partly related to errors in the initial condition that acts
like a buffer. However, this may not be the case with the suggested system as the error in the
initial condition should be smaller.
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Appendix A

Watershed characteristics

99



Ta
bl

e
A

.1
:M

ai
n

ch
ar

ac
te

ri
st

ic
s

of
th

e
ca

tc
hm

en
ts

St
at

io
n

nu
m

be
r

R
iv

er
na

m
e

R
eg

io
n

C
ha

p
1,

2
C

ha
p

3,
4

A
re

a
(k

m
2)

M
ea

n
an

n.
Q

(m
3/

s)
C

oe
ff

.o
f

va
ri

at
io

n
M

ea
n

an
n.

P
(m

m
)

M
ea

n
an

n.
sn

ow
(c

m
)

02
23

01
Tr

oi
s

Pi
st

ol
es

Ba
s

Sa
in

tL
au

re
nt

X
X

92
3

18
1.

81
11

09
38

2
02

25
07

D
u

Lo
up

Ba
s

Sa
in

tL
au

re
nt

X
X

51
2

10
1.

47
10

50
37

8
02

27
04

O
ue

lle
Ba

s
Sa

in
tL

au
re

nt
X

78
4

16
1.

90
11

22
38

1
02

34
02

C
ha

ud
iè

re
C

ha
ud

iè
re

A
pp

al
ac

he
s

X
58

22
11

5
1.

54
10

99
30

6
02

34
22

Fa
m

in
e

C
ha

ud
iè

re
A

pp
al

ac
he

s
X

69
6

15
1.

59
11

42
32

8
02

40
03

Bé
ca

nc
ou

r
C

en
tr

e
du

Q
ué

be
c

X
91

7
22

1.
40

12
54

34
9

03
01

01
N

ic
ol

et
Su

d-
O

ue
st

Es
tr

ie
X

55
0

12
1.

56
11

99
29

8
03

01
03

N
ic

ol
et

Es
tr

ie
X

15
50

33
1.

60
11

86
29

1
03

02
34

Ea
to

n
Es

tr
ie

X
64

7
13

1.
67

12
56

32
6

03
02

82
A

u
Sa

um
on

Es
tr

ie
X

73
6

18
1.

49
12

62
35

2
03

03
04

N
oi

re
M

on
té

ré
gi

e
X

15
08

25
1.

72
11

43
25

6
03

03
40

Ya
m

as
ka

N
or

d
M

on
té

ré
gi

e
X

23
6

5
1.

22
12

44
27

7
03

09
05

C
ha

te
au

ga
y

M
on

té
ré

gi
e

X
25

03
36

1.
64

10
18

21
8

03
09

07
D

es
A

ng
la

is
M

on
té

ré
gi

e
X

63
8

8
2.

12
97

0
20

7
04

02
04

R
ou

ge
La

ur
en

ti
de

s
X

54
60

10
4

0.
98

10
54

30
8

04
08

30
G

at
in

ea
u

La
ur

en
ti

de
s

X
X

67
96

12
7

1.
08

10
23

33
2

04
13

01
C

ou
lo

ng
e

O
ut

ao
ua

is
X

51
58

72
1.

09
97

3
28

9
04

19
02

D
um

oi
ne

A
bi

bi
ti

X
X

37
43

50
0.

81
96

8
29

7
04

30
12

K
in

oj
év

is
A

bi
ti

bi
X

X
25

72
39

1.
12

92
1

32
4

05
01

19
M

at
aw

in
La

na
ud

iè
re

X
X

13
83

24
1.

11
10

25
32

8
05

01
35

C
ro

ch
e

M
au

ri
ci

e
X

X
15

51
29

1.
24

99
6

36
0

05
01

44
Ve

rm
ill

on
M

au
ri

ci
e

X
X

26
50

39
1.

10
95

7
31

2
05

03
04

Ba
ti

sc
an

M
au

ri
ci

e
X

X
44

83
96

1.
03

11
62

38
1

05
04

08
Sa

in
t-

A
nn

e
C

ap
it

al
e

N
at

io
na

le
X

X
15

39
51

1.
20

14
12

50
2

05
04

09
Br

as
du

N
or

d
C

ap
it

al
e

N
at

io
na

le
X

X
64

3
19

1.
21

13
85

49
9

05
22

12
O

ua
re

au
La

na
ud

iè
re

X
12

62
26

1.
25

11
33

37
6

05
22

19
L’

as
so

m
pt

io
n

La
na

ud
iè

re
X

12
87

24
1.

29
10

72
35

0
05

22
33

D
e

l’A
ch

ig
an

La
na

ud
iè

re
X

64
2

11
1.

55
10

91
29

9
05

28
05

D
u

lo
up

M
au

ri
ci

e
X

X
76

7
12

1.
27

10
20

33
2

06
01

01
Pe

ti
tS

ag
ue

na
y

Sa
gu

en
ay

69
5

15
1.

51
98

6
39

8
06

10
20

A
ux

Ec
or

ce
s

Sa
gu

en
ay

X
X

11
07

28
1.

09
12

36
45

0
06

15
02

M
ét

ab
et

ch
ou

an
e

Sa
gu

en
ay

X
X

22
02

48
1.

19
11

68
42

0
06

18
01

Pé
ri

bo
nk

a
Sa

gu
en

ay
X

X
10

10
19

1.
16

10
00

37
6

06
19

01
A

sh
ua

pm
us

hu
an

Sa
gu

en
ay

X
X

15
34

2
30

0
0.

92
98

4
37

9
06

19
05

A
sh

ua
pm

us
hu

an
Sa

gu
en

ay
X

X
11

20
0

22
7

0.
88

10
01

39
4

06
19

09
A

u
Sa

um
on

Sa
gu

en
ay

X
X

58
6

8
1.

36
87

7
33

4
06

21
01

M
is

ta
ss

ib
i

Sa
gu

en
ay

X
86

76
20

4
1.

01
10

12
42

2
06

21
02

M
is

ta
ss

in
i

Sa
gu

en
ay

X
X

95
34

20
0

1.
08

10
04

40
9

06
27

01
V

al
in

Sa
gu

en
ay

X
X

76
1

24
1.

13
11

23
45

3
06

28
02

Sa
in

te
M

ar
gu

er
it

e
C

ot
e

N
or

d
10

93
31

1.
33

11
20

47
5

100



Appendix B

Model structures
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102



Es

M
0

1
 –

B
U

C
K

 (
6

 p
)

X
1

P
s

X
5

X
6

Q
t

D
él

a
i

X
4

Q
r

X
3

.X
6

Is

P
r

X
2

X
1

 =
 c

a
p

a
c
it

é
 d

u
 r

é
se

rv
o

ir
 s

o
l

X
2

 =
 c

o
n

st
a
n

te
 d

e
 d

is
so

c
ia

ti
o

n
 d

u
 d

é
b

o
rd

e
m

e
n

t 
d

u
 r

é
se

rv
o

ir
 s

o
l

X
3

 =
 c

o
n

st
a
n

te
 d

e
 v

id
a
n

g
e
 d

u
 r

é
se

rv
o

ir
 d

e
 r

o
u

ta
g

e
 (

R
)

X
4

 =
 d

é
la

i

X
5

 =
 c

o
e
ff

ic
ie

n
t 

d
e
 p

a
rt

it
io

n
 d

e
 l

a

P
a

r
a

m
è
tr

e
s

 p
lu

ie

X
6

 =
 c

o
n

st
a
n

te
 d

e
 v

id
a
n

g
e
 d

e
s 

ré
se

rv
o

ir
s 

d
e
 r

o
u

ta
g

e
 (

R
,T

)

S
 =

 R
é
se

rv
o

ir
 d

e
 s

o
l

R
 =

 R
é
se

rv
o

ir
 d

e
 l

a
 c

o
u

c
h

e
 r

a
c
in

a
ir

e
 (

so
u

s-
so

l)

T
 =

 R
é
se

rv
o

ir
 d

e
 r

o
u

ta
g

e
 d

ir
e
c
t

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

R
é
se

r
v

o
ir

s

(P
s-

E
)/

X
1

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

P
s 

=
 (

1
 -

 X
5

) 
×

 P

P
r 

=
 P

 -
 P

s

S
i 

P
s

E

  
  

 S
 =

 S
 +

 P
s 

- 
E

  
  

 I
s 

=
 m

a
x

 (
0

, 
S

 -
 X

1
)

  
  

 S
 =

 S
 -

 I
s

S
in

o
n

  
  

 S
 =

 S
 ×

 

  
  

 I
s 

=
 0

R

e



P
r
is

e 
e
n

 c
o

m
p

te
 d

e 
l'

h
u

m
id

it
é 

d
e
s 

so
ls

R
o

u
ta

g
e

 =
 R

 +
 I

s 
×

 (
1

 -
 X

2
)

Q
r 

=
 R

 /
 (

X
3

 ×
 X

6
)

R
 =

 R
 -

 Q
r

T
 =

 T
 +

 P
r 

+
 I

s 
×

 X
2

Q
t 

=
 T

 /
 X

6

T
 =

 T
 -

 Q
t

Q
 =

 Q
t 

+
 Q

r 
(a

v
e
c
 d

é
la

i 
se

lo
n

 X
4

)

D
é
b

it
 t

o
ta

l

Figure B.2: Structure of model M01 (from Seiller, 2013)
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Figure B.4: Structure of model M03 (from Seiller, 2013)
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Figure B.5: Structure of model M04 (from Seiller, 2013)
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Figure B.6: Structure of model M05 (from Seiller, 2013)
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Figure B.7: Structure of model M06 (from Seiller, 2013)
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Figure B.9: Structure of model M08 (from Seiller, 2013)
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Figure B.10: Structure of model M09 (from Seiller, 2013)
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Figure B.11: Structure of model M10 (from Seiller, 2013)
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Figure B.12: Structure of model M11 (from Seiller, 2013)
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Figure B.13: Structure of model M12 (from Seiller, 2013)
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Figure B.16: Structure of model M15 (from Seiller, 2013)
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Figure B.18: Structure of model M17 (from Seiller, 2013)
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Figure B.19: Structure of model M18 (from Seiller, 2013)
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Figure B.20: Structure of model M19 (from Seiller, 2013)
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Figure B.21: Structure of model M20 (from Seiller, 2013)
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Table B.1: State variable combinations that are updated for the 5 models presented in Fig-
ure 2.6

Models
M02 M05 M08 M13 M20

Po
ss

ib
le

st
at

e
va

ri
ab

le
co

m
bi

na
ti

on
s

1 S R R M M
2 T S S N R
3 S,T S,R T S S
4 R,T T T
5 S,R M,N R,M
6 S,T S,M R,T
7 S,R,T S,N S,M
8 S,T S,R
9 T,M S,T
10 T,N T,M
11 S,M,N R,T,M
12 S,T,M S,R,M
13 S,T,N S,R,T
14 T,M,N S,T,M
15 S,T,M,N S,R,T,M
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Appendix C

Snow module structure
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130



Appendix D

Ensemble Kalman Filter updating
scheme
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Appendix E

Accuracy and reliability of the nine
systems
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Table E.1: Mean continuous ranked probability score (MCRPS) values of the nine systems
in average over the 20 catchments

Day 1 Day 3 Day 6 Day 9
A 0.45 0.48 0.59 0.65
B 0.44 0.43 0.47 0.48
C 0.27 0.29 0.38 0.49
D 0.25 0.27 0.38 0.42
E 0.28 0.30 0.40 0.46
F 0.28 0.30 0.38 0.41
G 0.18 0.20 0.30 0.39
H 0.18 0.20 0.29 0.37
H’ 0.17 0.20 0.29 0.37

Table E.2: Deviation from perfect reliability with the mean absolute error of the reliability
diagram (MaeRD) of the eight systems in average over the 20 catchments

Day 1 Day 3 Day 6 Day 9
B 0.45 0.53 0.43 0.50
C 0.23 0.27 0.38 0.49
D 0.23 0.26 0.35 0.43
E 0.10 0.11 0.15 0.17
F 0.10 0.11 0.13 0.13
G 0.05 0.05 0.08 0.13
H 0.05 0.05 0.05 0.07
H’ 0.05 0.04 0.07 0.09

134



1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

Day 1

M
A

E

A

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

Day 3

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

Day 6

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

Day 9

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

M
C

R
P

S

B

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

M
C

R
P

S

C

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

M
C

R
P

S

D

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

M
C

R
P

S

E

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

M
C

R
P

S

F

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

M
C

R
P

S

G

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

M
C

R
P

S

H

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

1 5 10 15 20
0

0.2
0.4
0.6
0.8

1

M
C

R
P

S

H
’

Catchments
1 5 10 15 20

0
0.2
0.4
0.6
0.8

1

Catchments
1 5 10 15 20

0
0.2
0.4
0.6
0.8

1

Catchments
1 5 10 15 20

0
0.2
0.4
0.6
0.8

1

Catchments

Figure E.1: Continuous Ranked Probability Score (CRPS) and Mean Absolute Error (MAE)
of the 9 systems according to the 20 catchments

135



1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Day 1

M
a
e
R

D

B

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Day 3

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Day 6

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Day 9

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

M
a
e
R

D

C

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

M
a
e
R

D

D

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

M
a
e
R

D

E

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

M
a
e
R

D

F

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

M
a
e
R

D

G

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

M
a
e
R

D

H

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

M
a
e
R

D

H
’

Catchments
1 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

Catchments
1 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

Catchments
1 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

Catchments

Figure E.2: Mean Absolute Error of the Reliability Diagram (MaeRD) of systems B, C, D, E,
F, G, H, and H’ according to the 20 catchments
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Figure E.3: Reliability Diagram of the systems E, F, G, H, and H’ according to the 20 catch-
ments. The spread represents the square root of mean ensemble variance averaged over all
catchments.
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