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RÉSUMÉ 

Dans ce travail une stratégie de maintenance préventive est proposée pour un 

système multi composants. Cette stratégie suggère d'effectuer des remplacements 

préventifs de certains composants du système à tous les s unités de temps. Si une 

défaillance accidentelle survenait, une réparation minimale est aussitôt entreprise pour 

ramener le système défaillant en état d'opération sans affecter son taux de panne. Après n 

remplacements préventifs, le système est remis à neuf. 

La stratégie considérée est alors définie par deux paramètres n et s. A chaque action 

de maintenance, on associe une durée et un coût. Deux modèles mathématiques ont été 

développés pour déterminer le couple optimal (s*, n*). Le premier modèle permet de 

trouver le couple (s*, n*) qui minimise le coût total moyen sur un horizon infini. Le second 

modèle permet de déterminer le couple optimal (s*, n*) qui maximise la disponibilité 

stationnaire du système. Des procédures numériques ont été mises au point pour traiter les 

deux modèles. Plusieurs résultats numériques ont été obtenus. La stratégie proposée peut 

s'appliquer à plusieurs systèmes multi composants. Les modèles analytiques développés 

peuvent servir de base au développement de nouvelles stratégies. Un modèle d'optimisation 

permettant de déterminer le couple (s*, n*) qui permet de respecter un seuil de disponibilité 

requis, à coût minimal, est actuellement en phase de développement. 



SUMMARY 
In this study, a préventive maintenance strategy is proposed for multi-component 

Systems. This strategy suggests performing a préventive replacement o f certain components 

at the end o f each time interval s. In the case o f failure, a minimal repair is carried out to 

bring the System back to operating state without affecting its failure rate. According to this 

strategy, after n component overhaul the System must be completely renewed. The 

proposed maintenance strategy is defined by the couple o f décision variables (s, n). 

Time duration and cost, which are supposed to be known, are associated with each 

maintenance action. Two mathematical models were developed to détermine the optimal 

couple (s*, n*). The first model is used to find the couple (s*, n*), which minimizes the 

average total cost over an infinité time horizon. The second model is used to détermine the 

optimum couple (s*, n*) which maximizes the availability o f the equipment. Numerical 

methods were developed to détermine the optimal couple (s*, n*) for each mathematical 

model under considération. Several numerical results have been obtained. The proposed 

strategy could be applied many industrial Systems. The developed analytical models may be 

used for modeling other maintenance strategy for multi-componcnt Systems. 
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CHAPTER I 

Introduction 

Today's industry is mainly characterized by a strong compétition depending on the 

quality and the cost criteria among its sector. Companies strive towards this accomplishment by 

using equipment with high performance and new technology [1]. The performance o f equipment 

dépends on how fast it can résume opération after a System failure or breakdown. Companies can 

achieve this objective by using suitable and planned maintenance activities. 

Maintenance management covers ail technical and administrative actions, including 

supervision. It intends to keep a component in function or restore it to a level where it can 

perform the required function [2] . 

Maintenance costs are the major parts o f the total operating costs for every manufacturer. 

They may represent about 15 to 60 percent o f the total production cost [4] . To reduce thèse costs, 

maintenance stratégies must be developed. In this field, several studies have been carried out 

[e.g. 8, 9, 10, 11, and 12]. 

Optimization problems have always been of interest in both académie research areas and 

industrial design. One o f the important problems in our area o f interest is to minimize the cost in 

the factory production line o f [56]. Generally, this cost, includes the minimal repair costs 

(expense) and the préventive maintenance costs. Optimal maintenance policies aim at providing 

optimum System reliability/availability and safety performance at the lowest possible 

maintenance costs [5] . 



Optimal préventive maintenance policies are déterminée for repairable devices by 

minimizing total cost, maximizing availability, or optimizing some other objectives. There are 

many optimal models developed for thèse types of maintenance stratégies [e.g. 11, 36 and 53]. 

Zhang and Jardinets model [7] is one of the most important examples of thèse models. Their 

mathematical model takes into account the optimal cost and détermines the optimal overhaul 

interval s and the number n of overhauls in a renewal cycle. This model considers only the cost 

criteria for solving the problems. 

The présent thesis analyses a préventive maintenance strategy for multi-component 

Systems wherein specified components should be replaced at the end of each time period s. The 

proposed maintenance strategy suggests the performance of three actions, namely minimal 

repair, periodic overhaul, and complète renewal. An overhaul usually consists of a set of 

préventive maintenance actions such as oil change, cleaning, greasing, and replacing some worn 

components of the System, and it is often performed in a workshop [7]. 

From manufacturera' views, both maintenance cost and availability are crucial factors to 

be considered. Thèse two performance indicators are strongly correlated. So, there is a need to 

develop new maintenance stratégies which allow one to increase the System availability at a 

minimal cost. 

1 . 1 . Objectives of the présent study 

The objective of this research is to find the optimal overhaul interval (s) and the number 

(n) of overhauls in a renewal cycle firstly by maximizing the availability and secondly by 

minimizing the cost. Based on the model proposed by Zhang and Jardine [7], this study proposes 

two extensions: 

• The first model aims to fmd the optimal couple (s*,n*) to minimize cost function /(s*, n*) 

with an availability constraint. 

• The second model aims to find the optimal couple (s*,n*) to maximize availability 

function A(s*, n*) with a budget constraint. 



1 .2 . Methodology 

During every maintenance action, we consider n time intervais each having time duration 

s for overhaul action in a renewal cycle. At failure time, a minimal repair is carried out to bring 

back the System to opération state without affecting its failure rate. Once it reaches a certain âge 

or after n overhauls, the equipment is completely renewed. 

In the présent study, we choose two criteria, namely availability and cost criteria. To find 

the optimal overhaul interval s and number n, both criteria are used simultaneously; one is used 

for maximizing the availability and the other for minimizing the cost of the System. 

Two mathematical models were developed to détermine the optimum couple (s*, n*): 

The first model is used to find the couple (s*, n*) which minimizes the average total cost 

over an infinité time horizon. We added a predetermined level of availability constraint to reach 

more sensible values. 

The second one is used to détermine the optimal couple (s*, n*) which maximizes the 

availability of the equipment. In order to achieve this model, we included a cost constraint in the 

model. 

We developed two models by choosing the most common distribution functions, i.e. 

Exponential and Weibull to express the failure rate function. We applied minimal repair, periodic 

overhaul and renewal replacement required in maintenance actions, to the models with p, q rule. 

An item is repaired at failure, with probability p\ the repair is a perfect repair. With probability q, 

the repair is a minimal repair [42]. The models derived by using integer linear programming. As 

a comparison, numerical results obtained by our models are compared with those ones presented 

by [7] in order to confirm the validity of our models. Therefore, it is necessary to select an 

efficient optimization program that enables us for easy, quick and reliable opération. Lingo 

programming language is selected to solve the proposed models. 



1.3. Structure of the research study 

The first chapter (Introduction) is divided into two sections: the first section describes the 

background and the research problem. The second section présents objectives, limitations, and 

the structure o f the thesis. In the second chapter, a detailed literature review is presented. In the 

third chapter, a brief review o f Zhang and Jardine [7] , including their maintenance strategy 

models and basic définitions are presented. The chaptcrs 4 and 5 describe fundamental issues 

regarding models, their assumptions and results. The chapters 4 and 5 présent the main ideas o f 

extended models with their assumptions and results. Finally, in chapter 6, gênerai conclusions o f 

the présent study, discussion and some further research perspectives are presented. 



CHAPTER II 

Theoretical Frame Work and Basic Définitions 

2.1. Introduction 

The performance o f equipment used in manufacturing industry décline with usage and 

âge. This issue is often reflected in higher production costs and lower product quality. To keep 

production costs down while insuring good quality, maintenance is often performed on such 

Systems. Here, the fundamental objective is to optimize the System performance by the optimal 

level o f maintenance. The measure o f the System performance considered for optimization is the 

average cost benefit and availability due to maintenance. In this regard, time o f replacement and 

the quality o f System performance are important required information [18]. 

2.2. Literature review 

In the past several décades, maintenance, replacement and inspection problems have been 

discussed in many literatures [e.g. 2, 14, 43 and 16]. The préventive maintenance (PM) policies 

are adapted to reduce the dégradation process o f the System in operating conditions and to 

prolong the System life. A huge number o f PM policies have been proposed in the literature [3, 

10, 15 and 13]. Thèse policies are defined as the activity undertaken regularly at preselected 

intervais while System is satisfactorily working [58]. One o f thèse policies is minimal repair. The 

basic idea o f this policy is to repair the System with a minimal effort when the failure occurs. The 

concept o f minimal repair was first introduced by Barlow and Hunter [17] proposes a préventive 

maintenance strategy with minimal repair at failure. Many extensions o f this basic model have 

been published [e.g. 57, 10, 16, 19, 20 and 21] . 



In most studies concerned with the reliability and maintenance o f a System, the literature 

indicates that a System, after being subjected to a corrective or préventive maintenance action, 

will not become "as good as new" but younger. In the récent literature, this kind o f maintenance 

is often called as "imperfect maintenance" [5, 24, 25 and 42] . Usually, it is assumed that 

imperfect maintenance restores the System operating state to somewhere between as good as new 

and as bad as old. Clearly, imperfect repair (maintenance) is a gênerai repair which can include 

two extrême cases: minimal and perfect repair (maintenance) [5]. Imperfect maintenance 

problems have received more and more attention in literature [25, 26, 27, 28, 29, 30, 31, 32, 33, 

35, 36 and 37] . 

The System improvement due to an imperfect repair is fundamental for establishing an 

appropriate maintenance model [7]. Three System improvement models have appeared in the 

literature; the first is Malik's model [40] , introducing the concept o f virtual âge or improvement 

factor. This model explains that an imperfect repair makes the System "younger" than it was 

before the action. One o f the advantages o f Malik's model is that it is relatively easy to analyze. 

However, there is a concern over this model, which is the assumption that imperfect repair (an 

overhaul in our case) while only makes the System "younger", it never alters the System failure 

rate function. The second model belongs to Nakagawa [41] , who has assumed that an imperfect 

repair returns the System to "as bad as old" , with a probability ô and "as good as new" with a 

probability ( 1 - 5 ) . This model seems to be more realistic than the Malik's, because as he said 

the failure rate function after an imperfect repair will be différent from the one before the action. 

Zhang and Jardine [7]_proposed two optimization models for minimizing the expected unit-time 

cost or total discounted cost for describing a System improvement due to overhauls. Thus, theirs 

models provide solutions for situations where the following assumptions are justified], [7] . 

The well-known treatment method o f imperfect repair is the so-called treatment method 

o f (p,q) rule [26, 35, 32, 29, 33, 5, and 37] , in which the component is returned to the "as good 

as new" state (perfect) with probability p and it is returned to the "as bad as old" state (minimal) 

with probability q = 1 - p after PM. 

Another equally well-known method for modeling imperfect repair is the (p(t),q(t)) 

rule, in which the imperfect repair for one-unit System is âge dépendent. A repair with 



probability p{t) and with q(t) = \ - p(t), is said to be a perfect one. The repair is a minimal 

repair, where t is the âge o f the item in use at the failure time (since the last perfect repair) [5, 25, 

2 6 , 2 7 , 2 8 , 30 ,31 and 36] . Note that when p = \ in the {p,q) rule or p(t) = 1 in the (p(t),q(t)) 

rule, the repair becomes a perfect repair; and when p = 0 in the (p,q) rule or p = 0 in the 

(p(t),q(t)) rule, the repair becomes a minimal repair. In other words, both (p,q) and 

\p{t),q(t)) are rules that apply for imperfect repair which include perfect repair and minimal 

repair as spécial cases [6]. 

According to treatment methods, work on imperfect maintenance can be classified as in 

Table 2.1. As clearly seen in the table, the "(p,q) rule" and "(/?(/),q(t)) rule" are popular in 

treating imperfect maintenance. This is partly because o f thèse two rules that make imperfect 

maintenance modeling mathematically tractable [5] . 

Table 2.1: Référence classification by treatment methods [5] 

Modeling method Références 

(p, q) rule 

Chan and Downs, 1978; Hclvic, 1980; Nakagawa, 1979a, 
1980; Nakagawa and Yasui, 1987; Brown and Proschan, 
1983; Fontcnot and Proschan, 1984; Lie and Chun, 1986; 
Yun and Bai, 1987; Bhattacharjcc, 1987; Rangan and 
Grâce, 1989; Gacl et al., 1991a,b; Shcu and Liou, 1992; 
Srivastava and Wu, 1993; Wang and Pham, 1996a,b,c 

(p(t), q(t)) rule 

Beichelt, 1980, 1981; Block et al., 1985, 1988; Abdcl-
Hamccd, 1987a,b; Whitakcr and Samanicgo, 1989; Shcu, 
1991, 1992; Shcu and Griffith, 1992; Shcu and Kuo, 
1994; Shcu et al., 1993, 1995; Makis and Jardine. 1991; 
lycr, 1992; Hollandcr et al., 1992; Shcu and Kuo, 1994 

Improvement factor Mahk, 1979; Canficld, 1986; Lie and Chun, 1986; 
Jayabalan and Chaudhuri, 1992a,b,c, 1995; Chan and 
Shaw, 1993; Surcsh and Chaudhuri, 1994 

Virtual âge Ucmatsu and Nishida, 1987; Kijima et al., 1988; Kijima, 

1989; Makis and Jardine, 1993; Liu et al., 1995 

Shock Bhattacharjcc, 1987; Kijima and Nakagawa, 1991; Kijima 

and Nakagawa, 1992; Shcu and Liou, 1992 

(a, (3) rule Wang and Pham, 1996a,b,c 

Multiple (p, q) rule Shakcd and Shanthikumar, 1986; Shcu and Griffith, 1992 

Other 

Nakagawa, 1979b, 1980; Nakagawa, 1986, 1988; 
Subramanian and Natarajan, 1990; Nguycn and Murthy, 
198 1 a,b,c; Yak et al., 1984; Yun and Bai, 1988; Dias, 
1990; Subramanian and Natarajan, 1990, Zhcng and Fard, 
1991; Jack, 199 l ;Chun, 1992; Dagpunar and Jack, 1994; 
Zhao, 1994 



Another important constraint to optimize the System performance is the criterion o f 

availability for repairable System. In the literature, this System constraint is emphasized by a 

wide variety o f models and méthodologies to maximize the availability [39, 44, 45, 46 and 47] . 

Reliability, which is another System constraint, and availability may or may not be directly 

related to each other. It is possible to have a pièce o f equipment that breaks down frequently, but 

for a short period o f time, it also has a reasonable level o f availability. Similarly, it is possible to 

have a pièce o f equipment that is highly reliable, but in the meantime, has a low level o f 

availability because it is out o f service for a long period o f time. 

Pham H., Wang H. [5] has summarized a periodic préventive maintenance policy in 

Table 2.2. 



Table 2.2: Periodic PM policy [5] 

Référence PM CM Treatment 
method 

Optimality 
criterion 

Modeling 
tool 

Planning 
horizon 

N a k a g a w a 
1979a 

Imperfect Minimal (p, 4) rule Cost rate 
Renewal 

theory 
infinité 

N a k a g a w a 
1980 

Imperfect 

Perfect (p, q) rule 

Cost rate 
Renewal 

theory 
infinité 

N a k a g a w a 
1980 

Imperfect 
Minimal X rule 

Cost rate 
Renewal 

theory 
infinité 

Bc i chc l t , 
1981 

perfect imperfect (P(t) , q(t ) ) 
rule 

Cost rate 
Renewal 

theory 
infinité 

F o n t e n o t and 
P r o s c h a n , 

1984 
perfect imperfect (p, q) rule Cost rate 

renewal 
theory 

infinité 

N a k a g a w a , 
1986 

imperfect minimal 
différent 

failure rates 
Cost rate 

Renewal 
theory 

infinité 

A b d e l -
H a m e e d , 

1987a 
perfect imperfect (P(0, q(t ) ) 

rule 
Cost rate 

stochastic 
process 

infinité 

N a k a g a w a 
a n d Y a s u i , 

1987 
imperfect perfect (p, q) rule availability 

Renewal 
theory 

infinité 

K i j i m a et al., 
1988 

perfect imperfect Virtual âge cost rate 
Renewal 

theory 
infinité 

K i j i m a and 
N a k a g a w a , 

1991 
imperfect perfect S h o c k m o d e l Cost rate 

Renewal 
theory 

infinité 

J a c k , 1991 perfect Imperfect others total cost 
Renewal 

theory 
fini te 

C h u n , 1992 Imperfect minimal X rule Total cost probabi l i ty fimite 

S h e u , 1992 Perfect Imperfect (P(0, q(t ) ) 
rule 

cost rate 
Renewal 

theory 
infinité 

Liu et al . , 
1995 

imperfect Minimal Virtual âge cost rate 
Renewal 

theory 
infinité 

W a n g a n d 
P h a m , 1996 

Imperfect imperfect 
{p, q) rule 

cost rate 

availability Renewal 
theory 

infinité W a n g a n d 
P h a m , 1996 

Imperfect imperfect 

( a , P) rule availability 

Renewal 
theory 

infinité 



2.3. Basic définitions 

Reliability: According to Leith [23], the reliability o f a product is the measure o f its 

ability to perform its function, when required, for a specified time, in a particular environment. 

Reliability is also defined as the probability that a System (component) will function over some 

time period / [22]. To express reliability function, a continuous random variable / (t>0) is defined 

to be the time at which the System failure occurs. The reliability R(t) can now be expressed as: 

where R(t) > 0 , and R(0) = 1. 

Another function o f interest is the failure rate or hazard rate o f failure. The failure rate 

function enables us to détermine the number o f failures occurring per unit time [22]. The failure 

rate (k) is mathematically given by équation 2.4. 

(2.1) 

R(t) + F(t) = \ (2.2) 

/ ( 0 = 
dF{t) dR(t) (2.3) 

dt dt 

A(/) = 
fit) (2.4) 
R(t) 

Where 

F(t) : Failure function 

f(t) : Probability density function 



Maintainability: A measure o f the ease and rapidity with which a System or equipment 

can be restored to an operational state following a failure or be retained in a specified condition. 

It is characterized by equipment design and installation, personnel availability in the required 

skill levels, adequacy o f maintenance procédures and test equipment, and the physical 

environment in which maintenance is performed. An alternative expression o f the définition o f 

maintainability would be or is the probability that an item will be retained in or restored to a 

specified condition, within a given period o f time, when the maintenance is performed in 

accordance with prescribed procédures and resources [55]. 

A proper maintainability as illustrated in Figure 2.1 must fulfill some requirements. It 

must be: a) initially planned and included within the overall planning documentation for a given 

program or project; b) specified in the top-level spécification for the applicable system/product; 

c ) designed through the itérative process o f functional analysis, requirement allocation, trade-off 

and optimization, synthesis, and component sélection; and d) measured in terms o f adequacy 

through System test and évaluation. 

C onceptual/Preliminary/D etail 
Design and Development 

Pro duction/C onstruction, System 
Utilization and Support 

Plan Design Measure and evaluate 
for —# for system/product for j — # < 

Maintainability maintainability Maintainability Charactenstic | 
A 

j ] 

Isthe 
system/product 

maintainable 

N o 

Yes 

System 
Utilisation 

Figure 2.1: Maintainability requirements [38] 

The Maintainability that is defined in the broadest sensé could be measured in terms o f a 

combination o f différent maintenance factors. From a System perspective, it is assumed that 

maintenance can be classified into the following gênerai catégories: 

1. Préventive maintenance ( P M ) : actions performed to retain an item in a satisfactory 

operational condition. Thèse actions consist precisely o f undertaking systematic 

inspection, détection, and prévention o f incipient failures [55]. 



2. Corrective maintenance ( C M ) : actions performed to restore an item to a satisfactory 

condition, by correcting the malfunction that has caused the dégradation o f the item in 

question below the specified performance [55]. 

Maintenance downtime constitutes the total elapsed time required (when the S y s t e m is not 

operational) to repair and restore a S y s t e m to full operating status, or retain a S y s t e m in that 

condition. Figure 2.2 illustrâtes the relationship o f the various downtime factors within the 

context o f the overall time domain. 

Scandby Ready 

Time 

Fault Détection 

Uptimc 

System 

Operating Time 

Corrective 

Maintenance 

Time 

Downtime 

Act ive 

Maintenance Time 

Logistie 

Delay Time 

Admimdtration 

Delay Time 

Préventive 

Maintenance 

Préventive Maintenance C v c l e 

Préparation 
Tune 

Inspection 
T ime 

S e m c m g 
T ime 

Checkcmt 
Time 

C o n e e î i v e Maintenance 

Préparation For 
Maintenance 

Locahzat ion 
and Fault 
Isolation 

Disassembly 
(Gain Access. ) 

Or 

Repair o f Item 
in Place 

R e m o r a l o f 
Faulty Item 
and Replace 
with Spare 

Reassembly 
(Bmldup ) 

Adjustment, 
Al ignaient, or 

Calibra tion 

Condit ion 
Véri f ication 
(Checkoxit) 

Figure 2.2: Composite view o f uptime/downtime factors [34] 

In order to increase maintainability, the repair time must be reduced somehow. There are 

several key concepts that should be followed as part o f any design activity that support this 

réduction. The inner circlc in figure 2.3 identifies inhérent maintainability design features, and 

the outer circle lists secondary features that affect the détermination of the total System 

downtime. Secondary factors affecting maintainability focus on the maintenance and supply 
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Figure 2.3: Inhérent and secondary maintainability design features [22] 

Availability: It is a measure o f the degree to which an item is in an opérable state and can 

be used at the start o f a mission, while the mission is called for an unknown (random) point in 

time. Availability as measured by the user is a function o f how often failures occur and 

corrective maintenance is required, how often preventative maintenance is perfonned, how 

quickly indicated failures can be isolated and rcpaired, how quickly préventive maintenance 

tasks can be perfonned, and how long logistics support delays contribute to downtime [54]. 

resources are necessary to support the repair process. Establishing and maintaining the proper 

levels o f thèse resources are is often considered parts o f the logistic process. 
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There are several différent forms o f the steady-state availability that dépend on the 

définitions o f uptime and downtime. Some o f thèse définitions are discussed in the following. 

Availability (achieved): Achieved availability is the probability that a system or 

equipment, when used under stated conditions in an idéal support environment (i.e. available 

tools, parts, manpower, manuals, etc.), shall operate satisfactorily at a given time. Note that 

supply downtime and waiting or administrative downtime are excludcd [55]. 

The availability function of a system, denoted by (A a ) is defined as the probability that 

the System is available at time t in préventive maintenance environment. Achieved availability 

can be measured by the fallowing équation: 

OT: operating time during a given calendar time period, 

TCM: total corrective (unscheduled) maintenance downtime during a given calendar 

time period, 

TPM: total préventive (scheduled) maintenance downtime during a given calendar time 

Availability (inhérent): It is defined as the probability that the system is available at time 

t. Inhérent availability (Ai) can be measured by the fallowing équation: 

Aa = 
OT (2.5) 

OT + TCM + TPM 

Where 

period. 

Ai = 
OT (2.6) 

OT + TCM 

Availability (operational): A measure o f the degree to which an item is either operating 

or is capable o f operating at any random point in time, when used in a typical maintenance and 

supply environment. Operational availability (A0) can be measured by the fallowing équation: 



ST: standby time (not operating, but assumed opérable) during a given calendar time 

period, 

TALDT: total administrative and logistic downtime spent waiting for parts, maintenance 

personnel, or transportation during a given calendar time period, 



CHAPTER III 

Zhang and Jardine Replacement Model 

3.1. Introduction 

In this chapter, the study o f Zhang and Jardine [7] is summarized. Hereafter we call this 

paper as Zhang-Jardine model whenever we refer it. The study describes the maintenance 

strategy o f a repairable system, in which three kinds o f maintenance actions are considered: 

minimal repair, overhaul and (complète) renewal. It proposed a new model for describing a 

system improvement due to overhauls. Based on the improvement model, they established two 

optimization models, namely discounted cost model and unit time cost model, which are used to 

minimize the expected time unit cost. The established cost model is proposed for determining the 

optimal overhaul interval and the numbers o f overhauls in a renewal cycle that minimize the 

expected unit-time cost. 

3.2. Problem définition 

The system is subjected to three kinds o f maintenance action, namely, minimal repair, 

overhaul and (complète) renewal, with différent costs. The system undergoes a minimal repair 

whenever a failure occurs and it is completely renewed once it reaches a certain âge after the last 

renewal. In the cycle between two consécutive renewals, a fixed number n o f overhauls are 

performed by dividing the cycle into n+ 1 period with an equal length s. An overhaul improves 

the system, while a minimal repair returns the system to the condition just before that failure. 



3.3. The objectives of the article 

• The study proposes a new improvement model that can overcome the existing models 

proposed by Malik [40] and Nakagawa [41]. 

• Based on the improvement model, Zhang-Jardine established cost models to find optimal 

couple (n, s) so that the expected unit-time cost or the total discounted cost can be 

minimized. 

3.4. System improvement model 

The improvement model assumes that each overhaul brings the system failure rate back 

to between "bad as o ld" and "good as previous overhaul period" with a fixed degree. As a resuit, 

the model allows the system failure rate function to change from one overhaul period to another 

overhaul period. 

"A system is improved if its failure rate is reduced" 

Let v A _ , ( / )be the system failure rate function just before the overhaul, vk(t) is the 

failure rate function right after the overhaul, s is the overhaul interval and p e [1,0] is a constant. 

The system is improved by a degree p by the overhaul if, for ail t after this overhaul, 

vk(t) = pvk_](t-s) + (\-p)vk_](t) (3.1) 

If the improvement degree p equals 0, then vk (t) = vA_, (t). In this case, the failure rate 

is not disturbed and the overhaul is équivalent to a minimal repair. 

If/? = 1, then vk (t) - vk_] (t -s). In this case, each overhaul restores the system to the 

condition of the previous overhaul period, and thus it is équivalent to a complète renewal. Note 

that, although the définition is made in terms o f overhauls, it can be applied to any regular 

maintenance action that improves the system. 



Optimal maintenance models 

The main resuit o f this section, concerning the failure rate o f a system after a séries o f 

overhauls, is given below. 

Suppose that each overhaul improves a system by a degree o f p . Let v(t) dénote the 

failure rates o f the system without overhaul, v(t) dénote the system with periodic overhauls with 

interval s. Then, for ail integer k >1 and / e [O,S), 

3.5. Unit-time cost model 

3.5.1. Notations 

u{t) : Original failure rate o f the system without overhaul; 

ù(t) : Actual failure rate o f the system with periodic overhauls; 

H{t) = f v{x)dx '• Originally expected failures in the interval [0,t), which is ; 

s : The overhaul interval; 

n : One plus the number o f overhauls in a renewal cycle; 

p,q: p is the improvement degree and q = 1 - p ; 

cm,c0,cr : Costs o f minimal repair, o f overhaul and o f renewal, respectively; 

ô(x)dx Actually expected failures in the interval [0,t), which is; 



f(n,s) : The expected unit-time cost when the system is overhauled n - 1 times with 

3.5.2. Assumptions 

(1) An overhaul improves the system with a fixed degree p . 

(2) A minimal repair does not change the failure rate. 

(3) Ail renewal cycles have the same number o f overhauls dividing each cycle into equal 

length periods. 

(4) Ail renewal cycles have the same length ( ns ). 

(5) The time spent on repairs and overhauls are ignored. 

(6) p, cm , c0, cr, v(t) and H(t) are known; cr > c0 > 0 and cr > cm > 0 ; p < 1. 

3.5.3. The objective function 

The expected cost in a renewal cycle is cr +c0(n-\) + cmH(ns) and the length o f the 

cycle is ns . Thus, the expected unit-cost over an infinité time horizon is given by: 

interval s in a renewal cycle. 

f(n,s) = 
cr+c0(n-l) + cmH(ns) (3.3) 

ns 

Where, 

(3.4) 



3.5.4. Important properties 

Under the condition that the function v(t) is continuous, non-decreasing and unbounded, 

the following conséquences regarding the minimization o f f(n,s) expression can be given: 

(1) When n is fixed, an optimal solution to min s f(n,s) exists and it is a solution to the 

équation below 

frs (ns]s-H(ns)-[cr +c0(n-l)]/cm = 0 , (3.5) 

(2) min s f{n,s) has finite optimal solutions and there exists a bound nh such that 

min s n f{n,s) = min {min v f(n,s) : 1 < n < nh] (3 6) 

(3) For every fixed s > 0, an optimal solution to min s f(n,s) exists and can be obtained as 

the first integer n such that f(n + z),s)>f(n,s) 

Based on the above properties, minimizing f{n,s) can be achieved according to the 

following procédure; first, estimate a range in which the optimal number o f overhauls is located, 

then find sn that minimizes f(n,s) for each fixed n within that range, and finally select n within 

that range and sn such that f{n,sn) is minimized. 

3.5.5. For Exponential failure rate 

For the frequently used Exponential failure rate; we have the expression 

u = Qxp(a{) +a{t). H(ns) and f{n,s) are simplified, and they illustrate how to use the model 

through a numerical example. 

Suppose v(t) = e x p ( a 0 + af) with a} > 0 ; 



H(ns) = ea° {jy^qea^-\l{qa{) (3.7) 

f{n,s) 
cr+c0(n-ï) + cmea° p + qe (3.8) 

Suppose v(î) = exp(or 0 +a}(). Then, for each fixed integer n > 1, s* minimizes f(n,s) if 

and only if it is a solution o f 

ns 
v ~i J a, 

(cr+c0(n-l))q 

ce 
(p qe 

a, 
(3.9) 

Example 1: Suppose that costs o f maintaining the system are cr =$200 ,000 , c0 =$8,000 and 

cm = $2,000 respectively. The original failure rate is given as v = exp (a 0 + axt), where 

a() = - 1 5 and ax =0 .01 . 

Resolution: 

200000+8000(^7 - 1 ) + 2000e 

f(n,s) = 

(p + qeoou) - 1 
(0.01^) 

ns 

Table 3.1: Optimal solutions for différent p 
P n * 

s 
* * 

.fin * ) 
0.5 6 260.3 165.1 
0.6 8 223.3 153.9 
0.7 11 195.6 138.7 
0.8 15 186.2 118.5 



3.5.6. For a Weibull failure rate 

The Weibull function: 

Suppose v ( / ) = ( ^ 
H K/l 

fi-\ 

/ / 1 with p > 

P „ (n\ n-i i-\ -P (3.10) 

And 

cr+c0(n-l)+cMPZj"\P''^i,: ns (3.11) 

The expression o f f(n,s) is obtained by bringing in the expression o f H(ns) 

Suppose v(t) = (fi/r/\t/î]Y~]. Then, (n\s*) minimizes f(n,s) if and only if n' 

minimizes, équation 3.12 below 

m i n pn"q"]i' np fora 11 n>\ } (3.12) 

Minimizing f(n,s) for p = 0.7, we obtain n = 11, / = 195.6 and j(n*,s*) = 138.7. 

The resuit may be interpreted as fallows: the optimal overhaul interval is 195.6 days; the 

system should be completely renewed after 2,156 days or about 6 years. The maintenance cost 

per day is $138.7. Table 3.1 shows the optimal solutions for différent p. 



And 

( c , . + ( « * - l ) c „ ) 

(fi n , . .V 

1=0 

V 

{'J 

•1 
p"~'gl~]i/j 

(3.13) 

Proof: For each n, let F(n) dénote min 5 f(n,s). We notice that (n*,s*) minimizes f(n,s) if 

and only if n minimizes F(n) and s* minimizes f(n ,s). 

For each fixed n, according to équation 3.1, s minimizes f(n,s) if it satisfies (3.5), which 

becomes; 

cr +c0{n-\)+c)ll{s/?lYYJ p q ï 

So, 

( ^ r = ( c , . + c „ ( « - i ) ) / < j / ; n V 

And 

? ( c r + C o ( « - i ) ) / <J7-' i)V.. 

By replacing s in f(n,s) with the above expression, we obtain; 



Clearly, n minimizes F(n) if and only if it minimizes 

> / e . - i + » r z 
/ - ( ) 

If /3 happens to be an integer greater than 1, it is possible to find a short expression o f 

I 

For example, when n > J3 

y - y 

n / o r - /? = 1 
= ^ n2d-/ + np for0=2 

n(n - 1 ) (n - 2 ) q 2 + 3n (n - l ) g + n / o r (3 = 3 

Example 2: Suppose that cr = $200,000, c,, = $8,000, cm =$2,000, p = 0.1 and 

v(t) = {Ph\tlq)p~{ with /? = 2 and 77 = 100. Since 

= « q + np, 



The objective function o f équation 3.1 becomes 

{cr/ca - 1 + n)(p~q + np)/n2 = q(cr/c0 - l ) + p + nq + p(cr/co -l)/n, 

And it is minimized if nq = p(cr/c0 -l)/n . Thus, n is either 

or 

Since g ( c r / c 0 p + nq +p(cr/c0—l)/n = 12A for w = 7 and 8, both n =1 and / ?*=8 

minimize . For w* = 7 

3.6 . Conclusion 

The Zhang-Jardine model which is an optimization model is able to minimize expected 

unit-time cost. W e split their model into two new models in order to firstly minimize cost and 

secondly maximize availability while they are under availability and cost constraints 

respectively. 



CHAPTER IV 

Minimal Cost / Fixed Availability 

4.1. Introduction 

The costs o f maintainability and availability are important factors for developing the 

optimal maintenance model which considers minimal repair, overhaul and complète renewal. 

The basic objective o f the maintenance models is to minimize the total costs o f maintainability 

and to increase availability. The cost model presented by Zhang-Jardine can be efficiently solved 

using the LINGO programming language. This chapter présents additional aspects to extend the 

model proposed by Zhang-Jardine which minimizes the cost while availability is kept fixed. 

Zhang-Jardine model is proposed to détermine the optimal overhaul interval and the 

number o f overhauls in a renewal cycle. The model is able to minimize the expected unit-time 

cost, however; the availability criterion was not considered in the model. Our extended model is 

derived from Zhang-Jardine model with same assumptions by considering an availability 

criterion. As a resuit, the optimal values o f n* and s* could be acceptable not only for the 

estimation o f the unit cost, but also for the level o f the availability. 

The use o f computer programming is also important in the modeling opérations and/or 

optimization studies. It is necessary to select an efficient modeling program for an easy, quick 

and reliable opération. The LINGO programming language was selected for determining the 

optimal maintenance conditions, because it is a comprehensive tool designed to help build and 

solve linear optimization models quickly, easily, and efficiently [48]. Many researchers have also 



used the LINGO for this kind o f studies [51, 52 and 53]. The LINGO programming language 

allows the user to obtain the following important values: 

• Minimum cost (per unit), 

• Optimal .v*, 

• And optimal n*. 

Finally, the objective o f this chapter is to détermine the values of n* and s* that minimize 

the total cost per unit o f time while satisfying a predetermined availability level D. The 

mathematical expression is exprcsscd as: 

Min f(n,s) 

Subjected to: 

A(n,s)>D 

where A is the availability o f the system expressed by %. 

The section 2 o f this chapter présents the notations that will be served in this study. The 

sections 3 and 4 présent the gênerai assumptions and the main models chosen for the study. 

Furthermore, Exponential and Weibull distributions will be used to détermine the failure rate. 

The sections 5 and 6 o f the chapter présent the Lingo language programming and its 

implementation in détail. Finally, at the end o f this chapter, the results obtained from the models 

will be discussed. 

4.2. Notations 

The notations used in following chapters are as follows: 

Tm,TQ,Tr : Downtime o f minimal repair, overhaul and renewal, respectively. Thèse durations 

are constant and known with: T r > T G > T m ; 



/(n,s) : The expected unit-time cost when the system is overhauled n - 1 times with 

interval s in a renewal cycle; 

A : Availability predetermined level o f the system; 

A(n,s) : Steady-state availability o f the system; 

C : Represent f(n,s) in the model. 

4.3. Numerical data 

The following numerical data are used for our mathematical model: 

• C r = $200,000, C 0 = $8,000, C m = $2,000 (taken from Zhang-Jardine model) 

• T r = 150, T 0 = 100, T m = 50 o f hours 

• p = 0.7 (taken from Zhang-Jardine model) 

4.4. Main model 

In the présent study, a new extension o f Zhang-Jardine model is proposed as: 

f(„,s) = C=c'+c<>l"-i) + C * f H n s ) (4.1) 
ns 

W e included availability criteria into the Zhang-Jardine model in order to make it more 

effective to find optimal values o f n and s, so the availability o f the system is obtained by 

following formula: 



A(n,s) = A = \ 
Downtime 
Total time 

(4.2) 

Total time = Up time + Down time 

Downtime of the system = Tr + T0 (n - 1 ) + Tc H(ns) = T(n, s) 

Up Time ofthe system = ns 

Thus, the new model can be given as: 

,4 = 1 -
Tr+T,(n-\) + TcH(ns) 

ns + T+T(n-l) + T H(ns) 
(4.3) 

ns 

ns + T. + T0 (n -1) + T H(ns) 
(4.4) 

A = ns 
T(n,s) 

ÔA 
ds 

^ = 0 
ôn 

Prior to solve the model, we need to obtain the expression o f H(ns). W e will consider 

two spécifie failure rate functions, namely, Exponential failure rate distribution and Weibull 

failure rate distribution. 



4.5. Exponential failure rate distribution 

The Exponential distribution is commonly used in the development o f reliability 

practices, standards and methods. Mathematically, it is a fairly simple distribution, which is 

frequently used in inappropriate situations. It is, in fact, a spécial case o f the Weibull 

distribution, the case where fi= 1. The Exponential distribution is used to model the behavior o f 

units that have a constant failure rate (or units that do not dégrade with time or wear out) [49]. In 

this case this distribution function is used to model the failure rate. 

The model obtained for an Exponential failure rate, its assumptions and results are 

detailed in the following subsections. 

4.5.1. Assumptions 

The assumptions o f the Exponential failure rate distribution are given by the following 

équations. 

In addition, the Exponential distribution characteristics " t f 0 " and "cc1 " were selected as 

-15 and 0.01, respectively. Thèse values are the same as the ones used in Zhang-Jardine model. It 

provides opportunities to compare the results from Zhang-Jardine models. 

4.5.2. Optimization modeling by Lingo 

v(t) = e x p ( a 0 + a , / ) with a, > 0 ; (4.5) 

The Exponential distribution model written by Lingo language is shown in Figure 4.1. 

Minimum unit cost, with optimal 77* and s* values, can be obtained by the use o f this model. As 

shown in figure 4.1, the model includes two constraints: 



• Minimum C; 

• Availability > 0.7 (70%) 

Effective results can be obtained in a very short period o f time. 

Model: 

C = Z / (n * s) ; 
A - <n * s) / ( (n - s) - F) ; 

Z = 200000 4 8000 * (n - 1) - W; 
W = (2000 - 5EXF(-15 )*(T - 1) ) / ( 0.01 - q ) ; 

F = 150 +100*(n-1) 4 L; 
L = (50 * @EXP(-1S )*(T - 1)) / ( 0.01 * q ) 
T = (p - q * §£XP ( 0.01 * s .)) ~ n; 

er.ci 

Figure 4.1: The Exponential distribution model written by Lingo language for a fixed availability 

4.5.3. The results of Exponential distribution model 

The results shown in Figure 4.2 are obtained by solving the model by Lingo. At 7 0 % 

availability, the values o f C, n and s are obtained as 152.0140 $, 5 and 311.4083 days, 

respectively. 



Local cpt.irr.al solution found. 
Objective value: 52 0140 | 
Extended sciver 3 t e p s : 5 
Total solver itérations: 141 

Variable Value Reduced Cost 
C 152.0140 0.000000 
Z 236692.1 0.000000 
n 5.000000 3 .202421 
3 311.4083 0 . 000000 
Â 0.7000000 0 .000000 
F 667 .3035 0.000000 
W 4692.140 0.000000 
T 23009.03 0 . 000000 
Q 0.3000000 0.000000 
L 117.3035 0.000000 
F 0.7000000 0.000000 

Row Slack cr Surpi 12 Duai Frice 
1 152.0140 -1.000000 
2 0.000000 -1.000000 
3 0.000000 352 .2721 
4 0.000000 -0.6422436E- 03 
5 0.000000 -0.6422436E- 03 
6 0.000000 — j.1108 5 9 8 
7 0.000000 -0.1108598 
S -0.591SSÎ9E- 07 -0.6961805E- 03 
9 0.000000 -352.2721 

10 5.000000 0.000000 
11 311.4083 0.000000 
12 0.000000 178.1642 
13 0.000000 -188.9100 

Figure 4.2: The solution o f the model by Lingo program 

Table 4.1 présents the values, n, s and the corresponding cost rate while the increasing 

availability. It shows that as the availability increases, the number o f overhauls becomes smaller. 

http://cpt.irr.al


Table 4.1: n, s and C results in terms o f availability by Exponential distribution model 

A C($) n s (days) 

0.1 445.0659 20 158.7005 

0.2 249.1315 20 151.4616 

0.3 185.8880 19 151.2619 

0.4 156.4192 18 150.9611 

0.5 141.9753 15 163.4382 

0.6 139.3545 9 222.8378 

0.7 152.0140 5 311.4083 

0.8 331.9782 1 602.5252 

For further discussion about the effect o f availability on the parameters, additional 

graphical analyses are performed. 
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Figure 4.3: Unit-time cost versus availability 
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Figure 4.4: Number o f overhaul versus availability 
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Figure 4.5: Overhaul interval versus availability 

Fig. 4.3 shows availability diagram versus unit-time cost. As availability increases from 

0.1 to 0.6, the value o f C tends to decrease from approximately 445 to 139. From this figure, the 

curve reaches a point in which the cost has its minimum value, so the availability at this point is 

optimized. Furthermore, if the availability increases from 0.6 to 0.8, the value o f C increases up 

to 331. Fig. 4.4 shows that as the number o f overhauls becomes smaller, the availability becomes 

higher. Finally, the overhaul interval slightly decreases with the increasing availability up to a 

point o f 4 0 % availability, then it significantly increases from 150.96 to 602.53 with an increase 

in the availability value up to 0.8 (Figure 4.5). 

Parameter estimation is usually a difficult task. However, according to the results 

obtained by solving the model by Lingo, it could be expressed that the optimal solution o f ail 

thèse local results is located at 60 % o f availability. This level o f availability is the maximum 

when the minimum cost is taken into account. In this case, the C is 139.3545 $ for the values o f 

9 and s*= 222.8378 days. 



4.6. Weibull failure rate distribution 

The Weibull distribution is one o f the most widely used lifetime distributions in 

reliability engineering. It is a versatile distribution that can take on the characteristics o f other 

types o f distributions, based on the value o f the shape parameter, fi [50]. 

This section describes Weibull distribution model, its assumption and its results. 

4.6.1. Assumptions 

The assumptions o f this model are similar to the Exponential distribution model and can 

be expressed as: 

For a Weibull failure rate; 

v{t) = {PlriifhY (4.7) 

(4.8) 

(4.9) 

In addition, Weibull distribution characteristics /? and IJ are selected as 2 and 100, 

respectively. 



min = c ; 

C « (200000 4 8000 * en 1) + (I Ç * B) ) / {n*s) ; 

A = (r. * s) / f in * s) - F) ; 

F = 150 +100* 
L = (50 * 3}; 

(n-l) + L; 

3 = ( (n " 2) * q) 4 (n - p ) ; 

K = 2 000 * (( s / 100) A 2 ) ; 

A = 0.7; 
§GIN(n) ; 
n > 1 ; 
s > 0; 
P - 0.7; 
q = 1 - p; 

end 

Figure 4.6: The Weibull distribution model written by Lingo language for a fixed availability 

The program shown in Fig. 4.6 is only an illustrative example to solve the model when 

the availability is taken as 70 %. 

4.6.2. Optimization modeling by Lingo 

The Weibull distribution model is solved by a program written by Lingo language as 

given in Fig. 4.6 Minimum unit cost with optimal n* and s* values can be obtained by the use o f 

this model. As shown in Fig. 4.6, the model includes two requirements, which are: 

• Minimum C and 

• Availability > 0.7 (70 % ) . 



4.6.3. Weibull distribution model results 

The Results shown in Figure 4.7 are obtained by solving the Weibull distribution model 

by Lingo. As seen in the Table, the values of C, n and s are found to be 299.6460 $, 4 and 

484.1667 days, respectively, for a fixed availability o f 0.7 (70%) . 

Local optimal solution foun d. 
| Objective value: 61 6 : 
Extended solver steps: 3 
Total solver itérations: 95 

Variât le Value Reduc ed Cost 
C 299.6460 0 .000000 
n 4.000000 - . 175045 
K 46883.47 0 .000000 
3 7. 600000 0 .000000 
s 484.1667 0 .000000 
_ _A 0.7000QQQ 0 . OjOOOO 
F 830.0000 0 .000000 
1 380.0000 0 .000000 
Q 0.3000000 0 .000000 
9 0.7000000 0 .000000 

Rcw Slack cr Surplus Dual Frxce 
1 2 99.64 60 -1 .000000 
2 0.000000 -1 .000000 
3 0.000000 32 5.3362 
4 0.000000 - o . 3231402E -01 
5 0.000000 _ Q S231402E -01 
6 0.000000 -2 5.32404 
7 -Q.1818Q00E-05 -0 . 3924268E -02 
8 0.000000 -325.3363 
9 3.000000 0 .000000 

10 484.1667 0 .000000 
11 0.000000 339.8885 
12 0.000000 -453.1846 

Figure 4.7: The solution o f the model by Lingo program 

According to the results, the local objective value (minimum cost per unit) is 299.6460 $ 

for an availability o f 7 0 % and the optimal n*, s*. 

Table 4.2 shows estimated (calculated) values o f C, n and s in différent levels o f 

availability. It is concluded that the optimal solution among thèse local results is located between 



5 0 % and 6 0 % while the cost is minimal. In this case, the n* = 5 - 7 and .s-* = 247 - 330 days 

values are acceptable when C is between 282 and 286 $ (Table 4.2). 

Table 4.2: n, s and C results in terms of availability by Weibull distribution model 

A C($) n s (days) 

0.1 345.4831 32 68.50694 

0.2 306.5995 19 105.6579 

0.3 290.7706 13 143.077 

0.4 283.7563 10 193.3333 

0.5 281.7526 7 247.1429 

0.6 285.8061 5 330 

0.7 299.646 4 484.1667 

0.8 334.421 2 760 

0.9 471.1108 1 1799.998 
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Figure 4.9: Number o f overhaul versus availability 
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Figure 4.10: Overhaul interval versus availability 

Fig. 4.8 shows the effect o f availability on the unit-time cost. The value o f C déclines 

from 346 to 281 while A increases from 0.1 to 0.5. On the contrary when the A is increased from 

0.5 to 0.9, C value starts to incrcase from 281 to 471 (Fig. 4.8). This resuit indicates that the 

minimum unit-time cost can be achieved with an availability o f 5 %. However, the availability 

increases as the number o f overhaul become smaller (Fig. 4.9). The overhaul interval increases 

proportionally to the availability (Fig. 4.10). 



Table 4.3: The comparison o f the results obtained by both models according to Exponential 
failure rate 

Exponential failure rate Zhang and Jardine This work 

P 0.7 0.7 

n* 11 9 

s* (day) 195.6 222.8378 

Complète Renewal (days) 2,151.6 2,005.5402 

. /(" V ) ($) 138.7 139.3545 

Availability (%) Not considered 60 

Table 4.4: The comparison o f the results obtained by both models according to Weibull 
failure rate 

Weibull failure rate Zhang and Jardine This work 

P 0.7 0.7 

n* 7 5 - 7 

s* (day) 269 2 4 7 - 3 3 0 

Complète Renewal (days) 1,883 1,235 - 2 , 3 1 0 

An/) ($) 282.3447 2 8 2 - 2 8 6 

Availability (%) Not considered 5 0 - 6 0 

According to above tables (4.3, 4.4); both results are similar. We can clearly see the 

advantage o f using the availability criterion. If we look at the results o f the Table 4.3; for p = 0.7, 

we find the Exponential failure rate as 9 with an overhaul interval o f 222.8378 days, and a cost 

per day of 139.3545 $. Although, the cost per day is slightly expensive comparing with the resuit 

o f Zhang-Jardine model, the différence may be attributed to the effect o f the availability 

criterion. The Figure 4.3 clearly shows that how the cost changes with the availability. The 

4.7. Results and comparison 

The following table (or Table 4.3) compares our results with the results obtained by 

Zhang-Jardine model. 



optimal solution is taken when the point shows the minimal cost with maximum availability. 

Finally, we can say that the model working well with two criteria. 



CHAPTER V 

Maximal Availability / Fixed Cost 

5 .1 . Introduction 

Availability, as mentioned before, is a very important criterion for the development o f 

optimal maintenance stratégies. For that reason finding the exact availability value will be 

bénéficiai for the any system. This chapter deals with the finding o f the acceptable value o f 

availability by using the fixed unit-time cost constraint. Our extended model is based on Zhang-

Jardine model with same assumptions by considering a cost constraint. 

In order to maximize the availability, the unit-time cost is kept fixed. A gênerai 

mathematical expression o f this objective can be denoted as: 

Max A(n,s) 

Subject is: 

C(n,s)<B, 

where B is the constant. 

LINGO program can be used for solving this kind o f équation and displays three main 

results, which are availability, optimal « * and s* values. Thèse values dépend on the B value 

chosen for unit-time cost. The optimal n* and s* values were obtained from LINGO with 

maximizing the availability. 



Second and third sections o f this chapter indicate gênerai assumptions and main models, 

respectivcly. The fourth and fifth sections o f the chapter also include detailed information 

(Model by Lingo language, calculation etc) about the distributions. 

5.2. Exponential failure rate distribution 

In this section, assumptions, the model written by Lingo language for Exponential 

distribution and its results is explained in détail. 

5.2.1. Analytical expression 

For the Exponential failure rate; 

In addition, the Exponential distribution characteristics "ac" and " a ^ " were selected as -

15 and 0.01 respectivcly. 

5.2.2. Optimization modeling by Lingo 

The Exponential distribution's model written by Lingo language is given in Fig. 5.1 

maximum availability with optimal n* and s* values can be obtained by the use o f this model. As 

shown in Fig. 5.1, the model should contain two conditions, which are: 

v(t) = e x p ( a 0 + a , / ) with a, > 0 ; (5.1) 

• Maximum A(nrs)\ A and 

Unit-time cost < B (150$). 



Mcdel: 

MAX = A ; 

C = Z / (n * s ) ; 

A = (n s) / ( (n * s) - F) ; 

Z = 200000 4- 5000 * (n - 1) + ï 
W - (2000 - @EXF(-15 ) * (T - 1); 

v; 
/ ( 0.01 * q ] ; 

F = 150 +100*(n-1) + 1; 
L = (50 * §EXP(-15 )*(T - 1)) , 
T = (p + q - SEXF( 0.01 - s )) 

' ( 0.01 * q ) ; 

n > 0 ; 
3 > 0 ; 
P = 0.7; 
q = - - p ; 
§GIM(M); 

Figure 5.1 : The Exponential distribution model written by Lingo language for a fixed unit-time 
cost 

The model shown in Fig. 5.1 is only an example o f the program when the unit-time cost 

is taken as 150$. The results from the several run will be explained in the next section. 

5.2.3. Results of Exponential distribution model 

Results obtained from the model are shown in Figure 5.2, which shows the objective 

value, and local optimal s and n values. A typical LINGO rcsult is given in Figure 5.2. It includes 

several values. Among them, the A, n and 5 are the most important values. 

According to thèse qualifications the model can be written as a Flowsheet shown in Fig. 

5.1. 



Local optimal solution found. 
Objective value: 0 692 5656 
Extended solver steps: 2 
Total solver itérations: 115 

Variable Value Reduced Cost 
A 0.6923656 0.000000 

153.0003 0.000000 
2 238226.6 0.000000 

1 H 5.000000 0.1693522E-03 
1 s 317.6354 0.000000 
F 705.6646 0.000000 
H 6226.583 0.000000 
T 30533.21 0.000000 
Q 0 . 3000000 0.000000 
L 155.6646 0.000000 
F 0 . 7000000 0.000000 

Row Slack or SurpI Lus Dual Frice 
1 0.6923656 1.000000 
2 -Q.8573949E--0 5 -0.5007766E-02 
3 0.000000 1.000000 
4 0.000000 -0.3153153E-05 
5 0.000000 -0.3153153E-05 
6 û.000000 -0.3015367E-05 
7 0.000000 -0.301S367E-03 
g -0.3674900E--03 -0.21S1914E-05 
9 0.000000 0.5007766E-02 

10 5.000000 0.000000 
11 317.6354 0.000000 
12' 0.000000 -0.5356759 
13 0.000000 -0.7914365 

Figure 5.2: The solution o f the model by Lingo program 

The A, n and s values are obtained as 0.69 (69%) , 5 and 317.64 days, respectively. In this 

example, the objective value (max. availability) is 69 % for a fixed unit-time cost o f 150$. The 

results shown in Figure 5.2 are obtained by solving the model by Lingo. 

Results o f the model for the Exponential distribution by using différent unit-time costs 

are summarized in Table 5.1. 



Table 5.1: n, s and A results in terms of cost by Exponential distribution model 

C($) A n s (days) 

140 0.6142611 9 218.5835 

145 0.6619363 6 286.3155 

150 0.6923656 5 317.6354 

155 0.715443 4 370.3245 

160 0.7314558 3 463.3627 

170 0.7678136 2 626.9631 

From the Table 5.1, following results can be drawn; 

• Availability increases from 0.61 to 0.77 with the increase in the unit-time cost from 140 
to 170 (Fig. 5.3). 

• The value o f the unit-time cost increases when decreasing n value (Fig. 5.4). 

• Overhaul interval value increase from 219 to about 627 as the unit-time cost is increased 
from 140 to 170 (Figure 5.5). 
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Figure 5.3: Availability versus cost 
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Figure 5.4: Number o f overhaul versus cost 
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Figure 5.5: Overhaul interval versus cost 



Thèse results indicate that in every run the availability increases with an increase in the 

cost. Minimizing the cost, we obtained an optimal solution n* = 9 and s* = 219 days, with an 

availability o f 61 %. 

5.3. Weibull failure rate distribution 

In this section, we use Weibull Failure Rate Distribution to maximize availability with 

optimal n* and s* values. The assumptions, the model for Weibull distribution writen by lingo 

language and its results are discussed in détail. 

5.3.1. Assumptions 

Suppose ; 

v(t) = (p'/riXt/TiY~l with p=2 and n = 100. 

For a Weibull failure rate; 

(5.4) 

According to thèse assumptions, the model can be written by Lingo language as shown in 

Fig. 5.5. The détails o f this model will be explained in the next section. 



5.3.2. Optimization modeling by Lingo 

Maximum availability with optimal n* and s* values can be obtained by the use o f the 

model for Weibull distribution (Fig. 5.6). As shown in Fig. 5.5, the model should include two 

conditions. Thèse are: 

• Maximum A(n,s); A and 

• Unit-time cost < B (290$). 

max = A; 

C = (200000 i- SOOC ) * (n-1) 4 (I < * 3))/(n*s) ; 

A = (n * s) / (in * s) 4 F) ; 

F = 150 4100*(n-î) 4 L ; 
1 = (50 * B) ; 

3 = ( (n - 2) * q) 4 (n * p) ; 

K = 2000 * K s / 100) ~ 2 ) ; 

C < 290; 
§GÏN(N); 
n > 1; 
s > 0; 
P = 0.7; 
q - 1 - p; 

end 

Figure 5.6: The Weibull distribution model written by Lingo language for a fixed unit-time cost 



Local optimal solution found. 
[Cc~ ective value : 0 .6367429J 
Extended soiver 3teps: 3 
Total solver itérations: 166 

Variable Value Reduced Cost 
A 0.63 6742 9 0.000000 
C 290.0000 0.000000 
n 5.000000 Q.2876982E-Q1 
K 29742.35 0.000000 
g 11.00000 0.000000 
(s 3S5.6316 1 0.000000 
F 1100.000 0.000000 
L 550.0000 0.000000 
G 0.3000000 0.000000 
F 0.7000000 0.000000 

Row Slack or Surplus Dual Frice 
1 0.636742 9 1. 000000 
2 -0.6145768E -07 -0.4 6S64 05E-02 
3 0.000000 1.000000 

0.000000 -0.2102740E-03 
5 0.000000 -0.2102740E-03 
6 0.000000 -0.52S0276E-01 
7 -0.2 0 665 91E -04 -0.2673559E-04 
8 0.000000 0.4 68 6405E-02 
9 4.000000 0.000000 

10 385.6316 0.000000 
11 0.000000 -2 . 4B40S3 
12 0.000000 -2.070069 

Figure 5.7: The solution o f the model by Lingo program 

According to results, the objective value (max. availability) is 0.64 for a unit time cost o f 

290$ and the optimal n* and s* values. 

Table 5.2 represents the results o f the model for Weibull distribution with différent C 

values. From the Table, following results are drawn; 

Availability increases from 0.64 to 0.91 with an increase in the unit-time cost from 290 to 

500 (Fig. 5. 8). 

5.3.3. Results of Weibull distribution model 

Figure 5.7 indicates the model results for the objective value, optimal s and n values o f 

Weibull distribution. The A, C, n and s values are obtained as 0.64 (64 % ) , 290 $, 5 and 385.63 

days, respectivcly. 



• n value indicates a decrease from 5 to 1 as the unit-time cost is increased from 290 to 500 

(Fig. 5.9). 

• s value indicates an increase from 386 to about 2,000 as the unit-time cost is increased 

from 290 to 500 (Fig. 5.10). 

Table 5.2: n, s and A results in terms o f cost by Weibull distribution model 

C($) A n s (days) 

290 0.6367429 5 385.6316 

300 0.7010750 4 486.6539 

320 0.7699215 3 658.1139 

350 0.8262245 2 903.3649 

380 0.8523540 2 1,096.862 

410 0.8640025 2 1,259.282 

440 0.8811216 2 1,408.272 

470 0.8907766 2 1,549.553 

500 0.9090909 1 2,000 

In order to have a better understanding of the optimal maintenance stratégies, the results 

from the model are also given in Figs. 5.8-5.10. From the Figures, the optimal solution (max, 

availability and min. cost) can be chosen as 0.64 (64%) o f availability and the unit-time cost as 

290 $. In this case, the model gives the parameters as « * = 5 , and s*= 386 days. 
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Figure 5.8: Availability versus cost 
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Figure 5.9: Number o f overhaul versus cost 
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Figure 5.10: Overhaul interval versus cost 

5.4. Results and comparison 

In this chapter, we have presented a model which détermines the acceptable value o f 

availability by using the fixed unit-time cost constraint. A comparison o f our findings to the 

results o f Zhang-Jardine model is given in the following Tables. 

Table 5.3: The comparison o f two works for Exponential failure rate 
Exponential failure rate Zhang and Jardine This work 

P 0.7 0.7 

n* 11 9 

s* (day) 195.6 219 

An/) (S) 138.7 140 

Availability (%) Not considering 61 



Table 5.4: The comparison o f two works for Weibull failure rate 
Weibull failure rate Zhang and Jardine This work 

P 0.7 0.7 

n* 7 5 

s*(day) 269 386 

An/) ($) 282.3447 290 

Availability (%) Not considering 64 

According to thèse Tables (5.3 and 5.4) we can conclude; 

• Both results are similar but our modified model has an advantage o f using the 

criterion o f availability. 

• From the Table 5.3; for a unit-cost o f 140$, we obtained 5 times o f overhaul in 

which each time o f interval is 219 days with 6 1 % o f availability. 

• From the Table 5.4; when the unit-cost is chosen as 290$, we obtained 5 times o f 

overhaul in which each time o f interval is 386 days with 6 4 % o f availability. 

• ln comparison with Zhang-Jardine model, our model has less overhaul with little 

bit more expensive unit-time cost, which resuit from the use o f two criterions in 

same model. 

• The optimal solution is taken when the point shows the minimal cost with 

maximum availability. 

• W e considered the values o f 6 0 % or up as maximum availability. 

According to the results o f two models, the Exponential and Weibull distribution's 

models; the values o f availability (A) increase with the augmentation o f the values o f unit-time 

cost (Figs. 5.3 and 5.8). Although, the results obtained do not model a real-world problem they 

are theoretically suitable and acceptable. We think that our optimal maintenance models 

developed by lingo language offer a solution more or less intégral to problem o f maintenance 

action. The lingo language is also very useful to build up the optimal maintenance model. 



CHAPTER VI 

Conclusion and Discussion 

Maintenance is always a considérable activity in industrial practice. It is very important 

to develop effective maintenance stratégies for reducing maintenance costs and maximizing the 

availability in ail manufacturing and product plants. The most suitable replacement maintenance 

can be used for maintenance stratégies. It is essential to détermine when and how this 

replacement maintenance will be applied. This can be achieved by appropriate models. Several 

models have been developed by literature. There are also detailed research projects related to this 

domain that are in progress. 

In this study, the cost rate criterion model, which has been proposed by Zhang-Jardine, 

was improved by integrating the availability criterion. Thus, the model becomes more interesting 

than the cost rate criterion model by adding the second criterion. The developed model is a 

simple maintenance model for optimal replacement. The results obtained were compared to 

Zhang-Jardine model. 

The model was used to estimate the optimal w* (number o f overhaul) and s* (overhaul 

interval) for a minimal cost according to the constraint o f a fixed availability or a maximum 

availability with given cost. 

The following conclusions can be drawn from the extended model: 

• For the minimum cost, the optimal 17* and s* values for a fixed availability were obtained 

with an acceptable corrélation with theory. 



• For the maximum availability, the optimal and s* values for a fixed cost were also 

obtained with an acceptable corrélation with theory. 

• The values o f n and s from our models are in consistent with the results o f Zhang-Jardine 

model. 

The advantages o f the developed model: 

• It contains two criteria, 

• More effective comparing a model with one criterion, 

• Results comply with each other, 

• Results are similar to Zhang-Jardine model but with us model we known the 

criteria o f availability , 

• Easy, reliable and offers quick opération by LINGO. 

Future work and discussion; 

• It is only limited to two distributions, the model can be developing with other 

distributions. 

• The model was not applied on a real system, only compared with Zhang-Jardine 

model. 

The présent model can be calibrated and further evaluated by comparing with the real 

results. For this modeling study, some modifications may be applied on thèse parts. Studies 

along with the modification o f the model may offer to model a real-world problem. 
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