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Abstract—Assistive Technology (AT) tools and appliances are 

being more and more widely used and developed worldwide to 

improve the autonomy of people living with disabilities and ease 

the interaction with their environments. This paper describes an 

intuitive and wireless surface electromyography (sEMG) based 

body-machine interface for AT tools. Spinal cord injuries (SCIs) 

at C5-C8 levels affect patients’ arms, forearms, hands and fingers 

control. Thus, using classical AT control interfaces (keypads, 

joysticks, etc.) is often difficult or impossible. The proposed system 

reads the AT users’ Residual Functional Capacities (RFCs) 

through their sEMG activity, and converts them into appropriate 

commands using a threshold-based control algorithm. It has 

proven to be suitable as a control alternative for assistive devices 

and has been tested with the JACO arm, an articulated assistive 

device of which the vocation is to help people living with upper-

body disabilities in their daily life activities. The wireless 

prototype, the architecture of which is based on a 3-channel sEMG 

measurement system and a 915-MHz wireless transceiver built 

around a low-power microcontroller, uses low-cost off-the-shelf 

commercial components. The embedded controller is compared 

with JACO’s regular joystick-based interface, using combinations 

of forearm, pectoral, masseter and trapeze muscles. The measured 

index of performance values are 0.88, 0.51 and 0.41 bits/s 

respectively, for correlation coefficients with the Fitt’s model of 

0.75, 0.85 and 0.67. These results demonstrate that the proposed 

controller offers an attractive alternative to conventional 

interfaces, such as joystick devices, for upper-body disabled people 

using assistive technologies such as JACO.  

 
Index Terms—Assistive Technologies, Assistive interfaces, 

gesture-based controller, surface electromyography (sEMG), 

body-computer interactions 

I. INTRODUCTION 

uality of Life (QoL) has become a priority for public health 

systems worldwide, while life satisfaction among people 

living with disabilities has also improved due to efforts in 

infrastructures, services and therapy, and advances in 

biomedical and rehabilitation engineering. Smart devices for 

rehabilitation represent a huge step forward in creating 

favourable living conditions for persons with disabilities [1]. 

Powered wheelchairs [2], smart prostheses [3], dedicated 

assistive robotic tools for therapy and assistance [4] are 

powerful Extrinsic Enablers (EE) that increase the life 

autonomy of their users [5]. 

Assistive technologies (ATs) have been the source of 

considerable research efforts as they have a real impact on 

disabled patients’ living comfort. In [5], the Human Activity 

Assistive Technology (HAAT) model is described as a four-

component framework that represents the interaction between 

disabled people and their activity, using assistive devices, in a 

specific environment. Thus, the importance of a suitable 

human-technology interface is underlined with the idea of a 

decision making tree based on the HAAT components involved.  

Unlike for AT appliances, the use of AT tools require specific 

skills depending on the interaction interface provided [6]. For 

people with spinal-cord injuries (SCIs), the most common 

available interfaces for ATs can be classified into two 

categories. The first group consists of mechanical or 

electromechanical interfaces, which includes mainly switch 

devices (such as head-mounted switches), dedicated keypads, 

mice, trackballs, joysticks, head and hand pointers, sip-and-puff 

tools, mouthsticks, Lip control systems etc [7], [8]. Even though 

such devices are non-invasive, they remain difficult to use for 

persons living with severe SCIs depending on their level of 

injury and remaining abilities. Thus, a significant number of 

patients have to rely on a second group of interfaces which 

include movement tracking or pattern recognition based 

devices, and bio-signals based systems (see Figure 1). Those 

human-machine interfaces (HMIs) provide comfort, 

intuitiveness, discretion and “non-invasivity”, which makes 

them attractive. In [9], the head and shoulders positions are read 

using an intuitive inertial measurement unit (IMU) based 

controller to control a robotic arm wirelessly. The eye 

controlled systems described in [10], [11], facial expression 

based controllers [12] and intraoral tongue-computer interfaces 

[13], [14] are good examples of movement tracking or pattern 

recognition based systems as the eye movement and tongue 

motion are associated to predefined commands. HMIs based on 

bio-signals translation aim at improving the technology in terms 

of intuitiveness and ease of use as the human body’s 

physiological state reflects, inter alia, a user’s willingness to 

move. Another class of emerging HMIs are Brain-Computer 

Interfaces (BCIs) which are devices that use the patient’s brain 

signals to directly interact with the external environment [15], 

[16]. Such systems were proven effective and stand as a 

spectacular reach. However, they can be extremely invasive and 

expensive [17]. In contrast, using surface electromyography 

(sEMG) offers a non-invasive, effective, intuitive and natural 

way to interact with environments for better comfort and ease 

of use [18].  

sEMG has been largely studied over the past thirty years 

[19]-[22] as a means of control and diagnosis, and finds its 

application in several fields [23]. The electrical signals 
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generated by neuromuscular activities can be measured using 

non-invasive electrodes placed on the skin, over target muscles’ 

innervation zones, and a dedicated bioinstrumentation system. 

HMIs based on these biological signals can be classified into 1) 

pattern recognition and 2) non pattern recognition based 

controller categories. Pattern recognition based controllers 

(PRBCs) are employed in diverse applications, from 

rehabilitation and gaming to human-robot interaction etc. [24]-

[26]. These systems are able to identify a set of discriminant 

features, in time or frequency domain, from a small number of 

channels, using recognition algorithms based on linear 

discriminant analysis (LDA) [27], artificial neural networks 

(ANN) [28], neuro-fuzzy architectures [29], hidden Markov 

models (HMM) [30] and Gaussian mixture models (GMM) 

[31]. Then, the classifier’s performance is quantified with an 

accuracy rate, usually above 90% [32]-[34]. Exoskeletons and 

intelligent prostheses are perfect examples of assistive devices 

that usually require the use of PRBCs and sEMG, the 

requirements in terms of intuitiveness are critical. However, the 

required computational resources for PRBCs lead to significant 

complexities in terms of implementation and power autonomy, 

which is often unsuitable for a low-cost and/or embedded 

controller solution. At the opposite, non-pattern recognition 

based controllers (NPRBCs), as described in [34], consist in 

finite state machines based approaches and onset detection 

algorithms. It is this second category of interface, also referred 

to as amplitude based controllers (ABCs) which is explored in 

this work. ABCs typically require lower implementation 

resources. In such a scheme, one or several thresholds are set 

for each EMG channel depending on a chosen criteria (raw 

amplitude, root-mean-square (RMS), energy …), using an 

appropriate detection technique [35], [36]. Specific control 

events are triggered anytime one or several thresholds are 

reached or whenever the amplitude criteria is within a specific 

range. The control algorithm activates the targeted degrees of 

freedom (DOFs) whose maximum number is determined by the 

number of channels available. Implementing more DOFs 

usually requires more sEMG channels, and a larger acquisition 

system, which can cause a loose in terms of comfort for the user. 

Previously, the common trend has often been to work with 

resource demanding algorithms and powerful systems that are 

specialized for specific environments and fail to be useful in 

real application controlling standalone assistive technology 

(SAT), such as electrical wheelchairs or robotic arms. PRBCs 

are key to address the need of highly intuitive human-body 

interfaces, especially in the cases of prosthetic devices and 

exoskeletons, but are complex to design, implement and operate 

[37]. This complexity not helping, a gap had remained in the 

market for effective and convenient assistive technology 

devices. In fact, most SAT usually don’t require such 

sophisticated controllers and complexity as only few discrete 

commands are necessary for control.  

Besides, devices such as electrical wheelchairs or robotic 

arms can require the activation of several discrete commands 

and DOFs at once while default control means provided 

typically allow a maximum of only two DOFs at a time. Thus, 

for those devices, ABCs represent an excellent alternative to 

mechanical interfaces. For instance, JACO (see Figure 1) is a 

5.7 kg lightweight 6-DOF serial robotic manipulator whose 

main application is to help people with upper-body disabilities 

to accomplish their daily living activities.  The joints of JACO 

have unlimited rotation, which provides effective mobility and 

intuitiveness. The robot can be controlled using effector 

Cartesian coordinates or joint coordinates. Once mounted on an 

electrical wheelchair, its 6 DOFs as well as the 3 flexible fingers 

of the end-effector are controllable via the controller available 

on the wheelchair (joystick, sip-and-puff, chin, head or foot 

control) or alternative controllers such as Penta switches or 

mini-joysticks. People with upper body disabilities who use 

JACO reported concrete positive impacts on their everyday life 

[38]. The joystick-based controller can be individually adapted 

to each patient depending on their specific needs. However, in 

the case of severe disabilities, using such an interface can be 

tiring and difficult due to a lack of dexterity. For instance, 

people living with injuries around the C5-C8 cervical vertebrae 

may lose control of their wrists, hands and fingers and might 

not be able to hold or move objects on their own. Their residual 

functional capacities (RFCs) usually allow them to move their 

shoulders and to control their neck and masseter muscles 

properly [39]. Thus, using the sEMG signals of those parts of 

their body as a means of controlling a robotic arm like JACO 

could provide a more intuitive and easier control compared to a 

joystick based system.  

This paper describes a wireless 3-DOF interface tool 

designed to be used by individuals living with upper body 

disabilities, such as arm or forearm amputations or SCI, 

depending on their RFCs, to facilitate their interactions with AT 

 

Fig. 1. Illustration of Wireless Body Sensor Networks (WBSN) based 
interfaces for people living with disabilities for them to control an assistive 

robotic device like the JACO arm [35]. 

 

 

Fig. 2. JACO's joystick controller. Red arrow indicate the different possible 
positions of the stick, user buttons are numbered from 1 to 7. 

 



devices. The proposed controller offers a flexible and effective 

alternate solution through the use of sEMG compared to 

classical mec hanical and electromechanical control interfaces, 

which are often not accessible to severely impaired people. The 

proposed controller prototype focusses on simplicity and 

flexibility, in terms of algorithm design, hardware 

implementation, and wireless connectivity, while performing 

very well as demonstrated with the JACO arm, a commercial 

SAT application utilized by several end users. The main 

competitiveness of the proposed controller compared to the 

literature is the simplicity and flexibility of implementation and 

utilization, and its integration and validation within a 

commercial SAT application. Section II provides details on the 

methodology and the control algorithm used to design the 

proposed HMI. Section III describes the wireless prototyping 

platform employed to test the proposed controller while 

sections IV and V provide the performance measurements and 

conclusion.  

II. METHODOLOGY AND CONTROL ALGORITHM 

Joystick devices such as JACO’s default controller provide a 

3-axis translation (forward, backward, right and left 

inclinations, clockwise and anti-clockwise rotations) and up to 

7 user buttons of which only 3 are necessary to fully control the 

robotic arm in real time (see Figure 2). Although it can be a 

sensitive and effective tool, target users often have difficulties 

to fully control the robotic arm since the manipulation of the 

joystick’s handle can become complex and tiring.   

 Two groups of users are considered in this study (group A for 

people living with injuries around the C5-C8 cervical vertebrae 

and group B for persons who have forearm amputations). Thus, 

the sEMG-based HMI is designed to work with various target 

muscles, depending on patients’ abilities. Since the JACO arm 

is used to test, at least 3 channels are necessary to provide a 3-

axis translation as similar to the joystick interface. A wireless 

and simple design is crucial to meet the requirements in terms 

of comfort and ease of use. For electroencephalography (EEG) 

signals involved in BCI design, the causal relationship between 

a user’s intent and his EEG pattern is not intuitive at first glance. 

Specific features are extracted from the raw signals before 

processing and classification, to confer a reliable classification 

scheme [40]. Depending on the chosen criteria, analyzing s 

EMG signals can be a lot easier and more intuitive. This work 

employs an ABC to process the sEMG signals and control the 

JACO arm. 

 As mentioned, 3 sEMG channels are used to assess motion 

in the 3 Cartesian directions (�⃗�, �⃗�, 𝑧) depicted in Figure 3 and, 

for ease of use, a dedicated software interface allows their 

dynamic mapping. A positive displacement along X axis (or Y, 

or Z) corresponds to a translation in the direction of vector �⃗� (or 

�⃗�, or 𝑧), while a negative displacement along any of the 3 axes 

correspond to a displacement in the opposite direction. Figure 

4 describes the controller’s behavior with a flow chart. The 

control algorithm proposed with the body-machine interface, 

referred to as the double- trigger mode, uses two hysteresis 

thresholds (one per allowed muscle contraction levels – low and 

high) for each channel to calculate the proper control output. 

The lower threshold corresponds to a lower level of muscle 

contraction and uses threshold levels L1 and L2 as depicted in 

Figure 4 and Figure 7. The higher hysteresis threshold, labeled 

of U1 and U2 in Figure 4 and Figure 7, corresponds to a higher 

level of contraction. The operator determines the threshold 

levels separately, based on the minimum and maximum values 

of the envelope during a lower or a higher contraction of the 

user. By default, activation of the higher hysteresis threshold 

triggers a negative displacement along the control axis, while 

activation of the lower threshold corresponds to a positive 

displacement (Fig. 4). Thereby, each control channel has 3 

states: states 1 and 2 correspond to negative and positive 

displacements respectively, and state 0 defines the case when 

no significant sEMG activity is detected. More details and 

illustrative Figures (Figures 7 and 8) are provided on that topic 

in Section III.E. This strategy assumes that the user is able to 

perform two distinct levels of contractions that are tunable in 

case of fatigue, and repeat them over time, after calibration. 

Another type of control algorithm, the Pulse algorithm, is also 

used. In this method, channel states are triggered by pulse 

contractions. Although its implementation would be simple, 

this method may suffer from safety issues for utilization in real. 

 

Fig. 4. Double-trigger mode illustration with an sEMG channel mapped to 

displacements on X. e(t) refers to the sEMG envelope signal as described in 
Section III.E and depicted in Figure 7. L1, L2, U1 and U2 are the lower and 

higher hysteresis thresholds’ levels, respectively. Move is reported in figure 7.  

 
Fig. 3. Displacement of the JACO arm along axes X, Y, and Z corresponding 

to translations along the direction of vector 𝑥, �⃗� 𝑜𝑟 𝑧. 

 



Indeed in this mode, once a control action is triggered by a 

contraction, the user has no control until the next pulse 

contraction transpires. 

The prototyping platform used to test the proposed sEMG 

amplitude based human-machine interface for upper-body 

disabled people is described in the next section. 

III. THE WIRELESS PLATFORM PROTOTYPE 

A. System overview 

Figure 5 provides an overview of the wireless sEMG based 

interface prototype that has been implemented. Simplicity, low-

cost, comfort and ease of use are among the most important 

features. The sensor platform was fixed around users’ hips 

using a belt which provided comfort throughout the tests. 

Although much of the design effort have been dedicated 

towards the design of a practical and reliable control algorithm 

for patients, low-power design considerations have prevailed in 

the selection of integrated circuits and discrete components 

used in the implementation of the platform prototype and the 

firmware. For instance, power consumption is decreased 

through the utilization of an idle mode that is activated between 

analog-to-digital conversions to save energy. The following 

subsections describe the implemented platform prototype in 

detail, while the measured performance is presented in the next 

section. 

B. The sEMG front-end circuit 

A low-cost, efficient and non-invasive sensor architecture is 

necessary to confer a reliable control scheme for the proposed 

HMI. The instrumentation chain to collect sEMG signals is 

shown in more details in Figure 6 [41]. The front-end amplifier 

has 3 channels. It includes, an instrumentation amplifier with 

DC restoration providing differential inputs, a high common 

mode rejection ratio, a software selectable gain ranging from 1 

to 128 V/V (AD8231, Analog Device), and a 20-Hz to 1000-Hz 

bandwidth band pass filter. To ensure user safety, high-voltage 

input protection circuits connected to the seven electrode leads 

(six differential inputs and one common ground electrode 

connected to the voltage reference) prevent damages that may 

result from electrostatic discharges or large input transient 

voltages. For noise performance, radio frequency interference 

(RFI) filters are used with the protection circuits and a DC 

restoration network with a cut-off frequency of 1.6 Hz is used 

to cancel the DC offset resulting from electrodes. After the 

signal is digitized, samples are transmitted to a remote PC host 

and transferable in real time into Matlab using an optional UDP 

communication. All measurements with the sensor prototype 

were performed using adhesive silver chloride electrodes. 

Although comfort issues might arise for long term patient 

usage, Ag/AgCl wet electrodes revealed to be stable throughout 

the measurements made in this wor k, and they are also very 

practical as noise artefacts are minimized compared to dry or 

 

Fig. 6. Schematic of front-end circuit. The 3 sEMG channels are represented with their different connections (input channels (Ch i), the ground electrode 
(GE) and gain select (GS) signals) and output signals (EMGi). 

 

Fig. 5. Architecture diagram of the proposed interface. 



non-adhesive electrodes, even over long utilization periods. 

Thus, they were well indicated to accurately measure the 

controller performance.  

C. Low-power microcontroller and firmware design 

A development kit (em430f6147rf900, Texas Instrument) is 

used for prototyping the controller and the wireless transceiver. 

It features a system-on-chip (cc430f6147, Texas Instruments) 

which combines a low-power MSP430 microcontroller and a 

CC1101 sub-1-GHz RF transceiver. Digitization is performed 

using 3 analog input channels using the controller’s 10 bits 

ADC at a sampling frequency at 2 kHz. The acquired data are 

buffered using the DMA module. In order to extend battery 

lifetime, the MCU is shut down during analog to digital 

conversions, consuming only 0.3 µA, and wakes up once all 

channels have been scanned, ensuring an efficient power 

consumption. Also, due to low power concerns, the sensor 

platform starts sending the measurement data only on demand, 

once the base station is connected to the PC host and the 

software interface (Section III.E) is initialized with the right 

acquisition parameters.  

D. Wireless transceiver 

The wireless communication is done using the 

aforementioned CC1101 sub-1-GHz RF module. The data 

acquired by the multi-channel sEMG front-end amplifier are 

used to construct a dedicated packet structure, which is fed to 

the transmitter, and then decapsulated and interpreted after 

reception. The RF transceiver performs a FSK-2 modulation 

using a 915 MHz carrier signal, resulting into an effective 

baudrate of 200 kbit/s. A 16-bit code redundancy check is also 

used to ensure data integrity, and a Clear Channel Assessment 

(CCA) detection improves data communications efficiency by 

preventing packet collisions when t he base station needs to 

transmit configuration data to the wireless sensor nodes. In fact, 

from the interface, the user initially sets the sensor’s working 

parameters such as the number of channels to use and their 

respective gain (see Section III-B), and this information is sent 

via the base station transceiver board. A 1 byte ACK response 

from the sensor is then needed within 10ms and the 

transmission fails after 4 s of latency. A CP2102 uart-to-usb 

adapter from Silicon Labs connects the base station to the PC 

host at a serial baud rate of 460800 bits per second. 

 

Fig. 7. sEMG signal processing and double-trigger algorithm control scheme. First the raw sEMG signal (1), x(t), measured with the wireless prototyping 

platform described in II-B is filtered as described in III-E. x(t) is squared to obtain y(t) and the low-pass filter helps measuring the signal envelope e(t), depicted 

in (2), which is translated into the right control channel state, state(t), and the right output command, move(t), depending on the hysteresis thresholds (U1-U2) 
and (L1-L2), as detailed in II-B. NEG and POS stands for negative and positive displacement, respectively. 

 

Fig. 8. Illustration of the control of JACO using the double trigger mode. The AT device is controlled along the X axis using one sEMG channel. 

 



E. The user software interface and sEMG signals 

processing 

Once sEMG signals have been measured and transmitted to 

the PC host by the wireless platform, a user software interface 

developed in C# allows the user to visualize the data. The 

program integrates JACO’s software libraries and uses a 

dedicated API to communicate with the robotic arm and to 

provide its control and configuration data in proper format. 

First, data acquisition parameters, including the number of 

channels and their gains, can be selected by the user and sent to 

the wireless sEMG sensor node. The raw sEMG signal is band-

pass filtered using a high-pass and a low-pass direct-form II 

biquad filters: the high-pass frequency is set to 20 Hz to reduce 

the impact of the DC offset in the analog circuits and the 

movement artefacts, while the low-pass frequency is set to 1000 

Hz to pass sEMG signals, while increasing signal to noise ratio 

and avoiding aliasing. The resulting signal is squared, and pass 

to a 1st order FIR low-pass filter of 0.2 Hz cut-off frequency to 

extract the envelope of the muscles activity (see Figure 7). 

Indeed, since time response is a critical parameter, FIR filtering 

is well suited for this application, and a 0.2-Hz cut-off 

frequency provides a good signal envelope for sEMG signals 

whose bandwidth lies between 20 and 1000 Hz. It is up to the 

user to define the right mapping of sEMG channels with the 

DOFs provided by the controlled AT (for example channels 

number 1, 2, and 3 associated with displacements on  �⃗�, �⃗� and 

𝑧 respectively by default for the JACO arm). The software 

interface allows to finely set the hysteresis thresholds (see Fig. 

7), for any individual user to perform a proper control 

depending on his functionalities. The proposed controller is 

used as an alternative to the joystick to control the JACO arm. 

Thus, for each Cartesian axis, the output command consists of 

a constant speed parameter, whether positive of negative, to 

determine the direction of displacement that will occur. Thus, a 

simultaneous activation of the 3 DOFs can be performed 

according to the sEMG channels signal level, for performing 

motion along a diagonal, for instance. Figure 8 describes a 1-

channel control sequence of the robotic arm, on the �⃗� axis, using 

the double trigger mode and showing the control channel’s state 

(see section II.B). Also, JACO’s specific parameters such as 

speed and velocity are selectable from the graphical user 

interface (GUI). 

As the most important parameters in designing a HCI are 

functionality and usability [42], the controller has been tested 

by five able-bodied participants, using different target muscles 

to test efficiency for patients of group A and B, according to 

their RFCs. Results were compared to the use of the default 

joystick controller. The next section describes the measured 

performances and experimental results. 

IV. MEASURED PERFORMANCES 

The wireless sEMG sensor prototyping platform measures 

13x10 cm2 and is designed to be used with wet Ag/AgCl 

electrodes with shielded leads and low-cost commercial off-the-

shelf components. It is powered by 4 AAA Li batteries, which 

ensures a 22h autonomy (Figure 9).  

As abovementioned, the control strategy (Section II) is based 

on the ability for the users to generate two distinct and 

repeatable myoelectric signals, in terms of average amplitude, 

for each target muscle. Five able-bodied subjects agreed to 

evaluate the comfort, intuitiveness and ease of use of the 

proposed interface, by performing several pointing tasks, and 

 
Fig. 9. The sEMG sensor node prototype.  a) Top view of the 3-channel 

sensor showing batteries and the microcontroller development board 
(MDB), b) Bottom view of the prototype with the analog front-end 

channels outlined in dashed black, the dashed red box representing the 

power management unit (PMU) and the data bus transceiver (DBT) in 
yellow. 

 
 

Fig. 11. Pointing task: The 3 different target dimensions are shown (4 cm, 8 cm 
and 10 cm) along the 5 different pointing angles (0°, 180°, 225°, 270° and 315°) 

at 3 different distances (20 cm, 35 cm and 50 cm). Targets are pinned on a board 

placed at 35 cm from JACO’s fingers. 

 

 
Fig. 10. Electrodes’ placements over target muscles during tests. F-P = a) 

Forearm and b) Pectoral muscles, M-T = c) Masseter and d) Trapezes. The 

ground electrode’s placement is also depicted in e). Displacements along X are 

done using forearm and masseter muscles, while translations along Z are trigger 

by pectoral and trapeze muscles contractions. 

 



the results were compared with the robotic arm’s joystick co 

ntroller (Figure 2). To demonstrate the efficiency for target 

users of group A (SCIs at C5-C8 levels), neck, masseter and 

trapeze muscle groups have been used, according to their RFCs. 

However, preliminary control tests revealed difficulty to use the 

neck muscle with the control algorithm implemented as a 

particular effort was often required to define two distinct 

contraction levels. In fact, although voluntary control was 

possible within a short time with these muscles, utilization over 

a long time period often caused discomfort. Therefore, the 

masseter and trapeze muscles, which are usually available for 

patients of group A, has been preferred for (see Fig. 10). For 

people living with arm or forearm amputation (group B), tests 

have been performed using wrist extensor muscles and pectoral 

zones (see Figures 10a and 10b). Participants were instructed 

on the controller’s working principle and their ability to take 

control of the robotic arm were measured within a 2D pointing 

task whose procedure is described below. Two sEMG control 

channels were necessary to move JACO along X and Z axes 

(Fig. 3). Figure 11 shows electrode placements over the muscles 

groups and their mapping. For each channel, the calibration of 

the two thresholds needed to perform the control took 5 minutes 

and 35 seconds (5m35s) in average. Depending on users’ trials, 

the operator had to set the proper values for hysteresis 

thresholds. This is visually done from the GUI that has been 

designed. Users particularly observed the complexity in 

determining the two contraction levels needed to perform the 

control, for each single channel. All protocols were performed 

in accordance with guidelines for ethical research at Laval 

University, and participants signed a written consent form. 

A. Test procedures 

The test procedure allowed for a 10-minutes user training 

phase for the test participants to familiarize with the proposed 

body-machine interface. During this training phase, test 

participants were allowed to freely control the robotic device 

along the 2 axes (X and Z) and to prepare for the pointing task. 

After this short training phase, they reported appropriate 

readiness to interact with the interface, and strong repeatability 

with respect to the calibration of the threshold levels.  

Users ability to point at objects using the JACO arm guided 

with the proposed controller was evaluated for 5 pointing angles 

(0, 180, 225, 270 and 315ᵒ) (see Fig. 11). Circular targets with 

three different diameters (40, 80 and 100 mm) were pinned on 

a board placed at 35 cm from JACO’s fingers, at 3 distances 

from its home base position (200, 350 and 500 mm) [43]. 

Participants were told to point at a specific target by the 

operator who timed all tasks durations, and participants gave 

appreciation scores from 1 to 5 (1 for easy and 5 for difficult) 

at end. 

First, the joystick controller depicted in Fig. 2 has been used 

and the test results over the 5 participants are reported in Table 

I. Then, Table II presents test results when using the proposed 

interface with the forearm and pectoral (F-P) muscles. Finally, 

TABLE I 

MEAN POINTING TASK RESULTS USING THE JOYSTICK CONTROLLER 

  A1
 = 200 A = 350 A = 350 [mm] 

  W2 = 40 W = 80 W = 100 W = 40 W = 80 W = 100 W = 40 W = 80 W = 100 [mm] 

P
o

in
ti

n
g
 

A
n

g
le

s 

0° 4.47 1.20 1.52 3.81 3.77 2.17 3.74 3.12 4.82 

[s] 
180° 2.36 1.45 1.35 3.77 2.81 3.25 4.21 3.63 5.51 

225° 3.21 1.84 2.09 4.81 4.81 3.60 4.33 4.33 4.50 

270° 4.12 1.61 1.70 2.95 4.09 2.82 3.68 3.37 3.61 

315° 3.15 1.56 1.44 2.56 3.51 2.04 4.016 2.81 4.28 
1 = pointing distance, 2 =target width 

 

 

 

TABLE II 
MEAN POINTING TASK RESULTS USING THE PROPOSED INTERFACE PROTOTYPE AND FOREARM AND PECTORAL MUSCLES 

  A = 200 A = 350 A = 350 [mm] 

  W = 40 W = 80 W = 100 W = 40 W = 80 W = 100 W = 40 W = 80 W = 100 [mm] 

P
o

in
ti

n
g
 

A
n

g
le

s 

0° 5.70 3.00 3.60 5.65 5.37 4.83 6.48 5.87 7.12 

[s] 
180° 3.00 3.60 2.70 6.33 3.26 6.32 7.20 6.21 7.85 

225° 4.15 2.90 4.55 7.00 6.30 5.23 7.64 7.58 7.23 

270° 6.32 3.40 3.00 6.15 6.00 3.70 7.42 7.02 6.45 

315° 6.56 3.45 3.27 5.97 6.20 3.00 8.03 7.26 7.94 

 
 

 

 

TABLE III 

MEAN POINTING TASK RESULTS USING THE PROPOSED INTERFACE PROTOTYPE AND FOR MASSETER AND TRAPEZE MUSCLES 

  A = 200 A = 350 A = 350 [mm] 

  W = 40 W = 80 W = 100 W = 40 W = 80 W = 100 W = 40 W = 80 W = 100 [mm] 

P
o

in
ti

n
g
 

A
n

g
le

s 

0° 2.45 2.71 4.075 4.195 7.27 6.32 13.505 10.405 6.935 

[s] 
180° 3.90 4.06 3.645 5.845 4.665 4.415 5.745 6.585 6.38 

225° 5.20 7.45 5.035 8.725 7.335 15.72 17.765 8.24 13.55 

270° 5.15 4.74 3.305 5.97 5.32 5.20 6.71 6.485 10.86 

315° 2.79 4.55 3.97 6.83 6.6 7.505 10.095 12.925 8.215 

 
 

 

 

rCTRL =  [(X225 + X315)/2] / [(X0 + X180 + X270)/3],      (1) 

where XΩ is the average task duration over angle Ω 

TABLE IV 

POINTING TASK APPRECIATION SCORES 

 USER 1 USER 2 USER 3 USER 4 USER 5 

Joystick 1 1 1 1 1 

F-P 4 3 2 4 2 

M-T 3 4 4 5 5 

F-P = Forearm and Pectoral muscles, M-T = Masseter and Trapeze muscles 

Appreciation score: 1 = easy .. 5 = difficult 

 
 

 



Table III reports test results when the masseter and trapeze (M-

T) muscles are used as control channels with the proposed 

interface. Figure 12 and 13 help visualizing task duration results 

overs the pointing angles and pointing distances respectively 

which are analyzed in Section IV.B.  

The total times needed to perform all pointing tasks, 

calculated as a sum of all the 45 task duration times for each 

control method (see Table I, II and III), were 247.8 s and 309 s, 

when using the proposed controller with F-P and M-T muscles 

respectively, compared to 143.8 s for the joystick controller. 

For indication, the average appreciation scores were 3/5, 4.25/5 

and 1/5, respectively (Table IV). Indexes of difficulty (IDs) 

were computed, according to Fitt’s Law, from pointing 

distances and target diameters, and their corresponding mean p 

ointing task times. Experimentation results showed a good 

correlation with Fitt’s model [44]. The regression coefficient r 

equals 0.85 for F-P muscles, 0.67 for M-T and 0.75 with the 

joystick device (see Figure 14) which shows relevance for Fitt’s 

model representation, for index of performance (IPs) of 0.51, 

0.41 and 0.88 bits/s, respectively. The section below provides 

comments and analysis of experimental results reported. 

B. Performance analysis 

The sEMG amplitude-based controller presented here is the 

result of investigation on alternate human-machine interfaces 

for assistive technologies, especially for the JACO arm. 

Evaluation results and a comparison with a joystick interface 

showed encouraging results and interesting research directions 

which have the potential to lead to significant improvements. A 

significant statistical concordance with Fitt ’s model has been 

noticed. Task durations and IPs show that the proposed 

prototype is 1.66 times less efficient then the joystick device 

when used with F-P muscles, and 2.15 times less efficient when 

the JACO arm is controlled with M-T muscles. Regarding the 

pointing angles’ influence on experiments, the maximum 

average times measured corresponds to 225ᵒ and 315ᵒ 

directions. In fact, ratios of results over those pointing angles 

with respect to other directions, calculated using (1), equal 

1.089 and 1.4 when using the proposed prototype with F-P an d 

M-T muscle, respectively. It shows how more difficult it is on 

average to point at targets at 225ᵒ and 315ᵒ, compared to 

performances on other pointing angles (see Figure 12). As a 

comparison, this ratio decreases to 1.04 for the joystick 

 
Fig. 12. Pointing task results over pointing angles. 

 
Fig. 13. Pointing task results over pointing distances. 

 



controller. Since for those tasks users had to control the robotic 

device into both �⃗� and 𝑧 axes, the experimental results reveal 

the increased complexity when it comes to focus on both sEMG 

controlling channels simultaneously. In fact, only 40% of the 

participants performed a synchronous control of JACO on both 

�⃗� and 𝑧 directions while other users activated the 2 DOFs 

sequentially until they reached their targets. In [45], authors 

reported the same observation. According to appreciation 

scores, users found that using the joystick was 3 and 4.25 times 

less complicated than interacting with JACO through the 

proposed interface for the pointing tasks, using F-P and M-T 

muscles respectively. These results are acceptable somehow 

and shows how people who can’t use mechanical interfaces like 

joysticks due to their disabilities could benefit from the 

proposed interface. In addition to the complexity in finding the 

two contraction levels during the calibration, we noticed that 

some participants suffered from fatigue after the tests, 

particularly on their forearm and masseter muscles, due to long 

contraction cycles. This could be improved by increasing the 

sensitivity of the analog front-end.  

The proposed interface uses smart and robust threshold based 

algorithms and revealed good results and interesting directions 

for research. The choice of an ABC as an answer to the need of 

a low cost and simple design was a real challenge which has 

been addresses, as possibilities are limited compared to PRBCs. 

Future work will more focus on designing the proper sEMG 

based interface for people with no or very limited residual 

ability to use their upper limbs in order to reach more potential 

users. Although the proposed system has been tested with 

signals from forearm, biceps, pectoral, trapezes, neck and 

masseter muscles, which are usually available for a large 

category of users, we estimate that this controller has the 

flexibility to work wherever there is measurable electrical 

muscle activity on the body which can be voluntarily elicited 

by the user. Tests revealed that the performance does depend on 

the chosen target muscles, as shown in Section IV.A, but the 

system can be optimized and can adapt to a wide range of 

people by adjusting the threshold levels according to the user’s 

target muscle type and signal strength. 

V. CONCLUSION 

In this paper, a sEMG-based ABC interface for assistive 

devices has been presented. The target users of such a 

technology are people living with severe upper-body 

disabilities that are totally or partially limited to the use of 

classical interfaces for assistive technologies. We tested the 

proposed controller with able-bodied users using masseter and 

shoulder muscles, which are usually available for people living 

with injuries situated around the C5 and C8 vertebrae. Using 

the forearm and pectoral muscles also revealed good 

performance and a promising alternative for people who have 

had their arm or forearm amputated or congenital limitations, 

such as the system described in [46]. The entire system has been 

described and the measure d performance has been reported as 

well. Fitt’s model has been used as a measurement tool and tests 

with five able-bodied subjects have shown that the proposed 

sEMG controller has the potential to facilitate and improve 

JACO’s control compared to the use of the joystick, 

exclusively, for people living with severe disabilities. 

Increasing the number of degrees of freedom of the controller 

remains an open challenge. In future work, the control strategy 

as well as the complete hardware and software architectures 

will be further improved for better comfort and precision 

control. As example, inertial measurement units are being 

combined with sEMG signals to improve performance. 

REFERENCES 

 

[1] Steven W. Brose, Douglas J. Weber, Ben A. Salatin, Garret G. Grindle, 

Hongwu Wang, Juan J. Vazquez, and Rory A. Cooper. “The Role of 
Assistive Robotics in the Lives of Persons with Disability.” American 

Journal of Physical Medicine & Rehabilitation / Association of Academic 

Physiatrists 89, no. 6 (June 2010): 509–21. 
[2] M. Henderson, S. Kelly, R. Horne, M. Gillham, M. Pepper, and J.-M. 

Capron. “Powered Wheelchair Platform for Assistive Technology 

Development.” In 2014 Fifth International Conference on Emerging 
Security Technologies (EST), 52–56, 2014. 

[3] A.H. Al-Timemy, G. Bugmann, J. Escudero, and N. Outram. 

“Classification of Finger Movements for the Dexterous Hand Prosthesis 
Control With Surface Electromyography.” IEEE Journal of Biomedical 

and Health Informatics 17, no. 3 (May 2013): 608–18. 

[4] Shuai Zhang, S.I. McClean, C.D. Nugent, M.P. Donnelly, L. Galway, 
B.W. Scotney, and I. Cleland. “A Predictive Model for Assistive 

Technology Adoption for People With Dementia.” IEEE Journal of 

Biomedical and Health Informatics 18, no. 1 (January 2014): 375–83. 
[5] Albert M. Cook, and Janice Miller Polgar. “Cook and Hussey’s Assistive 

Technologies: Principles and Practice.” Elsevier Health Sciences, 2013. 

[6] Albert M. Cook, and Janice Miller Polgar. Essentials of Assistive 
Technologies. Elsevier Health Sciences, 2014. 

[7] Jacob O. Wobbrock, and Krzysztof Z. Gajos. “Goal Crossing with Mice 

and Trackballs for People with Motor Impairments: Performance, 
Submovements, and Design Directions.” ACM Trans. Access. Comput. 1, 

no. 1 (May 2008).  
[8] Jose M. Archajo, and R. de Deus Lopes. “Human-Computer Interface 

Controlled by the Lip.” IEEE Journal of Biomedical and Health 

Informatics 19, no. 1 (January 2015): 302–8. 
[9] C. L. Fall, P. Turgeon, V. Maheu, A. Lecours, M. Boukadoum, S.Roy, D. 

Massicotte, C. Gosselin, and B. Gosselin. “Intuitive Wireless Control of 

a Robotic Arm for Upper Body Disabled People,” The 37th Annual 
International Conference of the IEEE Engineering in Medicine and 

Biology Society (EMBC’15), 4399 - 4402, 2015. 
[10] Iestyn Jowers, Miquel Prats, Alison McKay, and Steve Garner. 

“Evaluating an Eye Tracking Interface for a Two-Dimensional Sketch 

Editor.” Computer-Aided Design 45, no. 5 (May 2013). 

 

Fig. 14. Fitt’s models with correlation coefficients for the joystick controller 

(red) and the proposed controller, both for the Forearm and Pectoral muscles 

(blue) and for the Masseter and Trapeze muscles (black). 



[11] Jiaxin Ma, Yu Zhang, Yunjun Nam, A. Cichocki, and F. Matsuno. 

“EOG/ERP Hybrid Human-Machine Interface for Robot Control.” In 
2013 IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS), 859–64, 2013. 

[12] Zhen-Peng Bian, J. Hou, Lap-Pui Chau, and N. Magnenat-Thalmann. 
“Facial Position and Expression Based Human Computer Interface for 

Persons with Tetraplegia.” IEEE Journal of Biomedical and Health 

Informatics PP, no. 99 (2015): 1–1. 
[13] Hangue Park, M. Kiani, Hyung-Min Lee, Jeonghee Kim, J. Block, B. 

Gosselin, and M. Ghovanloo. “A Wireless Magnetoresistive Sensing 

System for an Intraoral Tongue-Computer Interface.” IEEE Transactions 
on Biomedical Circuits and Systems 6, no. 6 (December 2012): 571–85. 

[14] Xueliang Huo and Maysam Ghovanloo, “Evaluation of a wireless 

wearable tongue–computer interface by individuals with high-level spinal 
cord injuries,” Journal of Neural Engineering, vol. 7, no. 2, p. 026008, 

2010. 

[15] José del R. Millán, Rüdiger Rupp, Gernot Mueller-Putz, Roderick 
Murray-Smith, Claudio Giugliemma, Michael Tangermann, Carmen 

Vidaurre, et al. “Combining Brain–computer Interfaces and Assistive 

Technologies: State-of-the-Art and Challenges.” Neuroprosthetics 4 
(2010): 161. 

[16] M. Smith, K. Weaver, T. Grabowski, and F. Darvas. “Utilizing High 

Gamma (HG) Band Power Changes as a Control Signal for Non-Invasive 

BCI.” In Brain-Computer Interface Research, edited by Christoph Guger, 

Brendan Z. Allison, and Günter Edlinger, 83–91. SpringerBriefs in 

Electrical and Computer Engineering. Springer Berlin Heidelberg, 2013. 
[17] Eleanor A. Curran, and Maria J. Stokes. “Learning to Control Brain 

Activity: A Review of the Production and Control of EEG Components 
for Driving Brain–computer Interface (BCI) Systems.” Brain and 

Cognition 51, no. 3 (April 2003): 326–36. 

[18] M.V. Liarokapis, P.K. Artemiadis, K.J. Kyriakopoulos, and E.S. 
Manolakos. “A Learning Scheme for Reach to Grasp Movements: On 

EMG-Based Interfaces Using Task Specific Motion Decoding Models.” 

IEEE Journal of Biomedical and Health Informatics 17, no. 5 (September 
2013): 915–21. 

[19] R. N. Scott, and P. A. Parker. “Myoelectric Prostheses: State of the Art.” 

Journal of Medical Engineering & Technology 12, no. 4 (January 1, 
1988). 

[20] A. Hiraiwa, K. Shimohara, and Y. Tokunaga. “EMG Pattern Analysis and 

Classification by Neural Network.” In IEEE International Conference on 
Systems, Man and Cybernetics, 1989. Conference Proceedings, 1113–

1115 vol.3, 1989. 

[21] K.R. Wheeler, M.H. Chang, and K.H. Knuth. “Gesture-Based Control and 
EMG Decomposition.” IEEE Transactions on Systems, Man, and 

Cybernetics, Part C: Applications and Reviews 36, no. 4 (July 2006). 

[22] Cinthia Itiki, Sergio S. Furuie, and Roberto Merletti. “Compression of 
High-Density EMG Signals for Trapezius and Gastrocnemius Muscles.” 

BioMedical Engineering OnLine 13, no. 1 (March 10, 2014). 

[23] Marco Barbero, Roberto Merletti, and Alberto Rainoldi. “Introduction 
and Applications of Surface EMG.” In Atlas of Muscle Innervation Zones,  
3–6. Springer Milan, 2012. 

[24] Ping Zhou, and Xu Zhang. “A Novel Technique for Muscle Onset 
Detection Using Surface EMG Signals without Removal of ECG 

Artifacts.” Physiological Measurement 35, no. 1 (January 1, 2014): 45. 

[25] D. Yang, W. Yang, Q. Huang, and H. Liu. “Classification of Multiple 
Finger Motions during Dynamic Upper Limb Movements.” IEEE Journal 

of Biomedical and Health Informatics, no. 99 (2015): 1–1.  

[26] E. Scheme, B. Lock, L. Hargrove, W. Hill, U. Kuruganti, and K. 
Englehart. “Motion Normalized Proportional Control for Improved 

Pattern Recognition-Based Myoelectric Control.” IEEE Transactions on 

Neural Systems and Rehabilitation Engineering 22, no. 1 (January 2014): 

149–57. 

[27] Zhijun Li, Baocheng Wang, Fuchun Sun, Chenguang Yang, Qing Xie, 

and Weidong Zhang. “sEMG-Based Joint Force Control for an Upper-
Limb Power-Assist Exoskeleton Robot.” IEEE Journal of Biomedical and 

Health Informatics 18, no. 3 (May 2014): 1043–50. 

[28]  G. R. Naik, and H. T. Nguyen. “Nonnegative Matrix Factorization for the 
Identification of EMG Finger Movements: Evaluation Using Matrix 

Analysis.” IEEE Journal of Biomedical and Health Informatics 19, no. 2 

(March 2015): 478–85. 
[29] M. Khezri, M. Jahed, and N. Sadati. “Neuro-Fuzzy Surface EMG Pattern 

Recognition For Multifunctional Hand Prosthesis Control.” In IEEE 

International Symposium on Industrial Electronics, 2007. ISIE 2007, 
269–74, 2007. 

[30] A. D. C. Chan, and K. B. Englehart. “Continuous Myoelectric Control for 

Powered Prostheses Using Hidden Markov Models.” IEEE Transactions 
on Biomedical Engineering 52, no. 1 (January 2005): 121–24. 

[31]  Yonghong Huang, K. B. Englehart, B. Hudgins, and A. D. C. Chan. “A 

Gaussian Mixture Model Based Classification Scheme for Myoelectric 
Control of Powered Upper Limb Prostheses.” IEEE Transactions on 

Biomedical Engineering 52, no. 11 (November 2005): 1801–11.  

[32] G.R. Naik, A. Acharyya, and H.T. Nguyen. “Classification of Finger 
Extension and Flexion of EMG and Cyberglove Data with Modified ICA 

Weight Matrix.” In 2014 36th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society (EMBC), 3829–32, 
2014. 

[33] Kexin Xing, Peipei Yang, Jian Huang, Yongji Wang, and Quanmin Zhu. 

“A Real-Time EMG Pattern Recognition Method for Virtual Myoelectric 
Hand Control.” Neurocomputing, January 10, 2014. 

[34] Asghari Oskoei, Mohammadreza, and Huosheng Hu. “Myoelectric 

Control systems—A Survey.” Biomedical Signal Processing and Control 
2, no. 4 (October 2007): 275–94.  

[35] M.B.I. Raez, M.S. Hussain, and F. Mohd-Yasin. “Techniques of EMG 

Signal Analysis: Detection, Processing, Classification and Applications.” 
Biological Procedures Online 8 (March 23, 2006): 11–35. 

[36] Aaron J. Young, Lauren H. Smith, Elliott J. Rouse, and Levi J. Hargrove. 

“A Comparison of the Real-Time Controllability of Pattern Recognition 

to Conventional Myoelectric Control for Discrete and Simultaneous 

Movements.” Journal of NeuroEngineering and Rehabilitation 11, no. 1 

(January 10, 2014): 5. 
[37] J. L. Contreras-Vidal, A. Kilicarslan, H. Huang, and R. G. Grossman. 

“Human-centered design of wearable neuroprostheses and 
exoskeletons.” AI Mag. 36, (2015). 

[38] A. Campeau-Lecours, V. Maheu, S. Lepage, S. Latour, L. Paquet and N. 

Hardie. “JACO Assistive Robotic Device: Empowering People With 
Disabilities Through Innovative Algorithms.” 2016 Rehabilitation 

Engineering and Assistive Technology Society of North America (RESNA) 

annual conference (July 2016). 
[39] William McKinley, Ajit B. Pai, and Udayan Kulkarni. “Functional 

Outcomes per Level of Spinal Cord Injury,” July 27, 2015. 

http://emedicine.medscape.com/article/322604-overview. 
[40] M. S. Al-Quraishi, A. J. Ishak, S. A. Ahmad, M. K. Hasan. “Impact of 

feature extraction techniques on classification accuracy for EMG based 

ankle joint movements,” In 10th IEEE Asian Control Conference (ASCC), 
(pp. 1-5), 2015. 

[41] A. Yousefian, S. Roy, and B. Gosselin. "A Low-power wireless multi-

channel surface EMG sensor with simplified ADPCM data compression." 
2013 IEEE International Symposium on Circuits and Systems (ISCAS), 

2013. 

[42] A.R. Mathew, A. Al Hajj, and A. Al Abri. “Human-Computer Interaction 
(HCI): An Overview.” In 2011 IEEE International Conference on 

Computer Science and Automation Engineering (CSAE), 1:99–100, 2011. 

[43] Outi Tuisku, Veikko Surakka, Toni Vanhala, Ville Rantanen, and Jukka 
Lekkala. “Wireless Face Interface: Using Voluntary Gaze Direction and 

Facial Muscle Activations for Human–computer Interaction.” Interacting 

with Computers 24, no. 1 (January 2012): 1–9. 
[44] Charles E. Wright, and Francis Lee. “Issues Related to HCI Application 

of Fitts’s Law.” Human–Computer Interaction 28, no. 6 (November 2, 

2013): 548–78. 
[45] M. R. Williams and R. F. Kirsch. “Evaluation of head orientation and neck 

muscle EMG signals as command inputs to a human–computer interface 

for individuals with high tetraplegia.” In IEEE Transactions on Neural 
Systems and Rehabilitation Engineering, 16, no. 5 (2008): 485-496. 

[46] Mei-Hua Lee, Rajiv Ranganathan, A. Florian Kagerer, and Ranjan 

Mukherjee. “Body-Machine Interface for Control of a Screen Cursor for 

a Child with Congenital Absence of Upper and Lower Limbs: A Case 

Report.” Journal of NeuroEngineering and Rehabilitation 13 (2016). 
 

Cheikh Latyr Fall (S’14) received his 

Master’s degree in Automatic Control and 

Electrical Engineering from the Institut 

National des Sciences Appliquées (INSA) 

of Toulouse, France, in 2013. He is 

pursuing the Ph.D. degree in Electrical 

Engineering at the Biomedical 

Microsystems Laboratory, Laval 

http://emedicine.medscape.com/article/322604-overview


University, Quebec, Canada. His main research interests are 

assistive technologies, rehabilitation robotics, human-machine 

interfaces, wireless body sensor networks and biomedical 

instrumentation. 

  

 

Gabriel Gagnon-Turcotte (S’14) received 

the B.Sc. degree in Computer Engineering 

from Laval University, Quebec, Canada, in 

2014, and the M.Sc. degree in Electrical 

Engineering from Laval University, 

Quebec, Canada, in 2015. He is currently 

pursuing the Ph.D. degree in Electrical 

Engineering at the Biomedical 

Microsystems Laboratory, Laval University, Quebec, Canada. 

His main research interests are neural compression algorithms, 

wireless low-power biomedical systems, system-level digital 

design and VLSI signal processing. 

 

 

Alexandre Campeau-Lecours (S’10-

M’15) received the B.Eng. degree in 

Mechanical Engineering (mechatronics) 

from École Polytechnique de Montréal, 

Quebec, Canada, in 2008 and Ph.D. degree 

from Laval University, Quebec, Canada, in 

2012. From 2012 to 2015, he worked in 

industry at Kinova as a research and 

development project manager in control and robotic algorithms. 

He is an assistant professor in the Department of Mechanical 

Engineering at Laval University since 2015. His main research 

interests focus on physical human-robot interaction, assistive 

technologies and intelligent robotic algorithms. 

 

 

Clément Gosselin (S’88-M’89-F’13) 

received the B. Eng. degree in Mechanical 

Engineering from the Université de 

Sherbrooke, Québec, Canada, in 1985, 

and the Ph.D. degree from McGill 

University, Montréal, Québec, Canada in 

1988. 

He was then a post-doctoral fellow at 

INRIA in Sophia-Antipolis, France in 1988-89. In 1989 he was 

appointed by the Department of Mechanical Engineering at 

Université Laval, Québec where he is a Full Professor since 

1997. He is currently holding a Canada Research Chair in 

Robotics and Mechatronics since January 2001. He was a 

visiting researcher at the RWTH in Aachen, Germany in 1995, 

at the University of Victoria, Canada in 1996 and at the 

IRCCyN in Nantes, France in 1999. 

His research interests are kinematics, dynamics and control 

of robotic mechanical systems with a particular emphasis on the 

mechanics of grasping, the kinematics and dynamics of parallel 

manipulators and the development of human-friendly robots. 

His work in the aforementioned areas has been the subject of 

numerous publications in international journals and 

conferences as well as of several patents and two books. He has 

been directing many research initiatives, including 

collaborations with several Canadian and foreign high-

technology companies and he has trained more than 100 

graduate students. He is an Associate Editor of the IEEE 

Robotics and Automation Letters and of the ASME Journal of 

Mechanisms and Robotics. 

Dr. Gosselin received several awards including the ASME 

DED Mechanisms and Robotics Committee Award in 2008 and 

the ASME Machine Design Award in 2013. He was appointed 

Officer of the Order of Canada in 2010 for contributions to 

research in parallel mechanisms and underactuated systems. He 

is a fellow of the ASME, of the IEEE and of the Royal Society 

of Canada. 

 

 

Benoit Gosselin (S’02–M’08) obtained the 

Ph.D. degree in Electrical Eng. from École 

Polytechnique de Montréal in 2009, and he 

was an NSERC Postdoctoral Fellow at the 

Georgia Institute of Technology in 2010. 

He is currently an Associate Professor at 

the Depart. of ECE at Université Laval, 

where he is heading the Biomedical 

Microsystems Lab. His research interests 

include wireless microsystems for brain computer interfaces, 

analog/mixed-mode and RF integrated circuits for neural 

engineering, interface circuits of implantable sensors/actuators 

and point-of-care diagnostic microsystems for personalized 

healthcare. 

Dr Gosselin is an Associate Editor of the IEEE Transactions 

on Biomedical Circuits and Systems and he is Chair and 

Founder of the Quebec IEEE CAS/EMB Chapter (2015 Best 

New Chapter Award). He served on the committees of several 

int’l conferences such as IEEE BIOCAS, IEEE NEWCAS, 

IEEE EMBC/NER, and IEEE ISCAS, and he currently serves 

on the committee of the IEEE NEWCAS’17. His research 

consists of developing innovative microelectronic platforms to 

collect and study brain activity through advanced multimodal 

bioinstrum-entation and actuation technology. In addition to 

earn several awards, such as the 2015 Mitacs Award for 

Outstanding Innovation and the IEEE BioCAS’15 Best paper 

Award, his contributions led to the commercialization of the 

first wireless bioelectronic implant to combine optogenetics and 

large-scale brain monitoring capabilities within a single device, 

with partner Doric Lenses Inc. 

 

Jean-François Dubé photograph and biography not available 

at the time of publication 

 

Jean Simon Gagné photograph and biography not available at 

the time of publication 

 

Yanick Delisle photograph and biography not available at the 

time of publication 

 

 

View publication statsView publication stats

https://www.researchgate.net/publication/311865056

