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Abstract: The drainage pattern of a river network is the arrangement in which a stream erodes
the channels of its network of tributaries. It can reflect the geographical characteristics of a river
network to a certain extent because it depends on the topography and geology of the land and
as such should be considered during the river network generalization process. There are many
methods for river network generalization in tributary selection but most do not explicitly consider
the network pattern. Validation of the generalized result is performed visually by an expert and may
not be done systematically. An automatic validation technique may help to better understand the
results obtained with each method and check whether the pattern has been preserved. This paper
proposes an approach to evaluate the quality of a generalized river network by assessing how well
its original drainage pattern is preserved. The membership to a drainage pattern is evaluated by
a set of geometric indicators, making use of a fuzzy logic approach which allows for a compromise
between different criteria depending on the membership values. Three tributary selection methods
are tested in this work: selection by stroke and length, catchment area, and a manually generalized
network. Assessing the quality of a generalization is done by comparing pattern memberships before
and after generalization. This research provides a quantitative indicator to assess the generalized
river network in preserving geographical information.
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1. Introduction

Automated map generalization is always an important issue and a major challenge in cartography
and Geographical Information System (GIS) research. Regarded as the skeleton of the terrain,
the drainage system is already considered to preserve terrain features in generalization [1]. However,
in river network generalization, the focus is on individual stream selection and more global information
describing the drainage system (such as the drainage pattern) is not considered. There are several
reasons: (1) rivers are an important part of the land, and need to be represented on maps of any
kind; and (2) rivers are fundamental concepts used for various analyses in geo-science. For instance,
geologists can extract the original terrain structure and perform terrain analysis from the drainage
system [1–3].

Recently, many researchers have started to pay attention to geographical features of river networks
during the generalization process [4–6], which follows the idea that “generalization is not a mere reduction
of information–the challenge is one of preserving the geographic meaning” [7]. The nature of the pattern of
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water bodies is influenced by some geographical factors, such as topography, soil type, and bedrock
type [8]. Considering drainage pattern in river network generalization helps to retain the geographical
meaning of the networks. There are several types of drainage patterns. They are commonly classified as
dendritic, parallel, trellis, rectangular, radial, centripetal and reticulate patterns [9]. Dendritic patterns,
also named tree-like patterns, can usually be found where there is no strong geological control [10].
Parallel, trellis and rectangular drainage patterns develop in areas with strong regional slopes and
have their own specific characteristics. Streams radiating from a high central area form a pattern of
radial drainage, while streams forming a centripetal one gather in low-lying land. Reticulate drainage
patterns are usually found on floodplains and deltas where rivers often interlace with each other [11].
The first four drainage patterns are illustrated in Figure 1.
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Figure 1. Drainage patterns. (a) is an illustration of dendritic pattern, (b) is a parallel pattern, (c) is a 
trellis pattern and (d) is rectangular pattern. 

As a set of line features, river networks are generalized from a large scale to a small scale in two 
main steps: selective omission and selected tributaries simplification [12]. There are many methods 
for selective omission and simplification of tributaries for rivers selected as individual line features 
but, while most research focuses on river networks during the generalization, generalized results are 
still inspected by expert cartographers visually. Drainage patterns can be considered in river network 
generalization as patterns are important in generalization and should be explicitly measured and 
evaluated [13]. As the geological environment of a drainage basin does not change with the map 
scales, the drainage pattern in the basin should be the same before and after generalization. Limited 
concern has been given to evaluate whether the geographical meaning, including the drainage 
pattern, is preserved during the process.  

Extending recent works by Zhang and Guilbert [14], who presented an automatic classification 
technique, this paper proposes a method that estimates whether a drainage pattern is preserved or 
not during its generalization. The method applies to river networks defined by a hierarchical 
structure in vector mode and can identify patterns shown in Figure 1. In their work, the authors of 
[14] identified the drainage pattern by a fuzzy logic approach which allows for a compromise 
between different criteria depending on the membership values. Therefore, the method can be 
applied to evaluate the performances of stream selection techniques in preserving patterns, and is 
used to measure the quality of a generalized network by assessing if its geographic meaning is 
emphasized, preserved or even lost. This paper provides a quantitative indicator to evaluate the river 
network generalization in preserving geographical information. 

The paper is organized as follows: Section 2 reviews related work on tributary selection and 
generalization evaluation. Section 3 describes the new evaluation method, including pattern 
classification and the measurement of the result. In Section 4, the method is applied to a case study, 
and results from two automatic generalization methods are presented. Performances of the methods 
are discussed for different patterns. Finally, the last section provides concluding remarks about the 
method and directions for further works on river network classification and generalization. 

2. Related work 

2.1. Tributary Selection Methods 

Figure 1. Drainage patterns. (a) is an illustration of dendritic pattern; (b) is a parallel pattern;
(c) is a trellis pattern and (d) is rectangular pattern.

As a set of line features, river networks are generalized from a large scale to a small scale in two
main steps: selective omission and selected tributaries simplification [12]. There are many methods
for selective omission and simplification of tributaries for rivers selected as individual line features
but, while most research focuses on river networks during the generalization, generalized results are
still inspected by expert cartographers visually. Drainage patterns can be considered in river network
generalization as patterns are important in generalization and should be explicitly measured and
evaluated [13]. As the geological environment of a drainage basin does not change with the map
scales, the drainage pattern in the basin should be the same before and after generalization. Limited
concern has been given to evaluate whether the geographical meaning, including the drainage pattern,
is preserved during the process.

Extending recent works by Zhang and Guilbert [14], who presented an automatic classification
technique, this paper proposes a method that estimates whether a drainage pattern is preserved or not
during its generalization. The method applies to river networks defined by a hierarchical structure in
vector mode and can identify patterns shown in Figure 1. In their work, the authors of [14] identified
the drainage pattern by a fuzzy logic approach which allows for a compromise between different
criteria depending on the membership values. Therefore, the method can be applied to evaluate the
performances of stream selection techniques in preserving patterns, and is used to measure the quality
of a generalized network by assessing if its geographic meaning is emphasized, preserved or even lost.
This paper provides a quantitative indicator to evaluate the river network generalization in preserving
geographical information.

The paper is organized as follows: Section 2 reviews related work on tributary selection
and generalization evaluation. Section 3 describes the new evaluation method, including pattern
classification and the measurement of the result. In Section 4, the method is applied to a case study,
and results from two automatic generalization methods are presented. Performances of the methods
are discussed for different patterns. Finally, the last section provides concluding remarks about the
method and directions for further works on river network classification and generalization.
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2. Related work

2.1. Tributary Selection Methods

One objective of generalization is to guarantee that when moving to a smaller scale, the number of
objects is reduced but meaningful information is preserved or even emphasized. Therefore, questions
need to be answered as to how many river tributaries have to be removed (or retained) and which of
these should be removed.

In map generalization, a classical principle of selection, the so-called “Radical Law”,
was established by Topfer in 1961 [15]. The method is given as n f = na

√
Ma/M f , where n f is the

number of objects shown at the smaller scale M f , and na is the number of objects shown at the larger scale

Ma. This method is a basic principle, a modified equation is also provided as n f = naCbCz

√
Ma/M f ,

where Cb is the “Constant of Symbolic Exaggeration” and Cz is the “Constant of Symbolic Form” [15].
For a specific situation, new factors should be taken into consideration in hydrographic data
generalization. In addition, Wilmer and Brewer [16] evaluate the United States Geological Survey
(USGS) National Hydrography Dataset and National Atlas hydrography to determine the existing
length of features for comparison to expected results based on the Radical Law equation. The rate
of feature selection is not the same along the continuum of scale. So, a factor called “Constant of
Flowlines” (C f ) is added to the basic equation, and the modified equation is n f = naC f

√
Ma/M f .

From the literature review of previous work, the current methods on river network generalization
have been well developed, and much work has been done on river network selective omission and
selected tributaries simplification. The question of which tributaries should be removed is considered
through different stream selection methods. It has been assessed by Mazur and Castner [17] that
ordering schemes [18] are the most significant parameters to consider in stream selection. Therefore,
the most commonly used methods are based on the Horton-Strahler order—the higher the order
(and therefore closer to the main stream), the more important the stream is—and the stream length—the
longer the stream, the more important it is [19]. Thomson and Brooks [20] built strokes to organize
river networks based on the Gestalt recognition principles and applied it to generalization by judging
the main channel and omitting less important channels. A mainstream is detected based on the strokes
using their Horton order and their length. However, determining the main stream using the longest
path on clipped river network causes large errors. Touya [21] presents a method for river network
selection that relies on the organization of river strokes in hierarchy. His work adds the management
of river islands and irrigation zones, and allows the building of strokes in a clipped area where some
sources are not natural. However, it only focuses on the geometric aspect of river networks, and it
does not select tributaries according to the physiography of the terrain.

Since the distribution of river networks is associated with the terrain surface, Wolf [22] builds
a weighted network data structure integrating the drainage, ridges, and peak and pit points. This data
structure can determine the significance of a river. The river tree structures have various patterns
leading to different generalization strategies. Wu [23] investigates the characteristics of the river tree
and develops a method based on buffer spatial analysis to establish the river tree structure. Ai et al. [4]
present a method where streams are selected according not to their length but to their watershed
area. In order to consider different factors, such as river length, river tributaries spacing, catchment
area, and river network density, a multi-objective optimization process in river tributary selection was
developed. Zhai et al. [24] built a structured river data model regarding the river system’s spatial
knowledge, and selected river tributaries automatically based on a genetic multi-objective optimization
algorithm. In their model, the indicators, such as length, interval and importance of a river, were taken
into account while selecting the rivers.

These methods are still based on topological and geometrical parameters and do not consider
the type of terrain or network being processed. Such types of information were taken into account to
define specific techniques related to the physiography of the terrain [5,25]. The parameters of density
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and the upstream drainage area are also used to prune the river network [6,26]. For man-made ditches,
Savino et al. [27] present a typification method for generalization of groups of ditches, which are
represented as a regular pattern of straight lines.

2.2. Generalized River Network Quality Assessment

Research on assessing generalization results has drawn little attention so far [28,29]. Traditionally,
generalization is evaluated visually by cartographic experts and their quality graded through
questionnaires [30]. This method is based on experts’ knowledge and experience, which is rather
subjective [31,32] and methods to quantify generalization results should be developed [31]. Bard [33]
proposed a general method to evaluate cartographic generalization. The quality of generalized results
is evaluated by an assessment model which compares the characterizations of the data before and
after generalization. However, the method has been implemented and tested in small urban areas only.
For the quality assessment of river network generalization, especially in the operation of selective
omission, related works are few. Results are usually assessed locally by checking the legibility of the
data (whether objects are cluttered on the map or lines are not too complex) and globally by assessing
if main rivers have been preserved. Methods must also maintain the topologic structure of the network,
i.e., no gap must be created. It is important that a Coefficient of Line Correspondence (CLC) be
calculated to compare generalized data with original data [5,6,34]. CLC is given based on length
only, which cannot assess the generalized river network comprehensively. Regarding river tributaries
simplification, only some related studies focus on line features as single geometric primitives [31,35].

These methods are, like the selection methods, mostly based on geometrical and statistical criteria
and consider river streams as individual objects. Information conveyed by the network related to
the drainage pattern and preservation of the terrain physiology is not taken into account by selection
methods and is not assessed in the evaluation of the final result otherwise than visually. Some recent
works have pointed out the importance of modeling and maintaining geospatial patterns and structures
in cartographic generalization [13,36]. Such considerations can indeed be made for stream selection
where a river network can be seen as a geographic object with its own structure, represented by
its drainage pattern, which shall be maintained when removing tributaries. Therefore, a specific
measure can be defined to evaluate whether such pattern has been preserved and if different selection
approaches have an impact on the representation of drainage patterns on the map. The next section
will provide an evaluation method to check how much the generalized river network preserves its
drainage pattern. It includes the classification of sub-networks within a drainage system into different
patterns and the comparison of the different patterns obtained.

3. Assessment of Drainage Pattern Preservation in River Generalization

3.1. Drainage Pattern Classification

Drainage patterns are constrained by the underlying terrain morphology and describe the
organization of tributaries along a stream. This organization can be defined by different variables
translating qualitative descriptions into quantitative indicators describing the geometric properties
of the network. They relate to the junction angle between streams, the shape of tributaries and the
networks. Zhang and Guilbert [14] use four different indicators to characterize the four drainage
patterns presented in Figure 1: the average junction angle (α), the bent tributaries percentage (β),
the average length ratio (γ) and the catchment elongation (δ) (Table 1).
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Table 1. List of geometric indicators.

Indicator Description Illustration

Average junction angle (α)
The angle is composed by upper tributaries. α is
given by the average value of angles measured at
all junctions in a river network.
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the average value of angles measured at all junctions in a 
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Figure 2. Examples of drainage classification. (a) is classified as a dendritic network; (b) is recognized 
as a trellis network; (c) is a typical parallel network; (d) is an unclassified network. 

3.2. Evaluation of Generalized Networks 

Catchment elongation (δ) A ratio of the depth to the breadth of a catchment.
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Figure 2. Examples of drainage classification. (a) is classified as a dendritic network; (b) is recognized 
as a trellis network; (c) is a typical parallel network; (d) is an unclassified network. 

3.2. Evaluation of Generalized Networks 

Indicator values can be computed for each network, however a pattern is based on a combination
of different indicator values and membership to a given pattern depends on the relative importance of
each value. The membership value is defined using fuzzy logic [38] in order to compare membership
to each pattern. Each indicator value is defined on a fuzzy set with appropriate membership functions
(MF) varying between 0 and 1. Membership to each pattern is then defined by a fuzzy rule combining
the membership value of each indicator.

In fuzzy logic, the usage of an indicator is described by a predicate. There are eight predicates in
the classification process:

• α IS acute/very acute/right,
• β IS bent,
• γ IS long/short,
• δ IS broad/elongated.

The value of a predicate is given by an MF which is most commonly a polynomial function
varying between 0 and 1. For example, the predicate “α is acute” will return a value equal or close to 1
if the angle α is small, and a value equal or close to 0 when α is large. Each pattern is characterized by
a combination of predicates defined by IF-THEN rules:

• IF (α IS acute) AND (δ IS broad) THEN pattern IS dendritic.
• IF (α IS very acute) AND NOT (β IS bent) AND (γ IS long) AND (δ IS elongated) THEN pattern

IS parallel.
• IF (α IS right) AND NOT (β IS bent) AND (γ IS short) AND (δ IS elongated) THEN pattern

IS trellis.
• IF (α IS right) AND (β IS bent) THEN pattern IS rectangular.

Figure 2 shows examples of classification for different types of drainage. Although classification
depends on membership function definitions, experimentations conducted by Zhang and Guilbert [14]
showed that the method can classify drainages correctly with a few that remain unclassified. From their
research, the classification is also robust as an alteration of MF parameters has a limited impact on the
result. Unclassified drainages correspond to cases where membership is too low to take a decision,
either because the drainage does not follow any of the definition above or because the network has too
small a number of tributaries (two or three) to conclude.
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3.2. Evaluation of Generalized Networks

Following this method, the drainage pattern of a river network can be recognized automatically.
The method can be applied to assess if the pattern of a generalized river network was modified or
not after generalization. Considering the indicators defined in the previous section, a network can
be assigned a membership value for each pattern and the network’s pattern is determined by the
highest membership value. This value provides a score of how characteristic the pattern is. Therefore,
the score can be used to evaluate the drainage pattern after generalization. If the network belongs
to the same pattern, then the drainage pattern has been preserved. If the membership value for this
pattern has increased, it can be considered that its drainage characteristic has been emphasized.

A drainage system can be partitioned into a hierarchy of systems and each of them can be
characterized by its own pattern. In the context of our work, the river network of a system is defined
by its main river (connecting to the outlet) and all its tributaries. A hierarchy of river networks, each of
them forming a drainage system, can be designed. Each network can be classified so that when
assessing a generalized network, pattern preservation can be evaluated at different levels.

Depending on the amount of generalization, a network can be generalized by being deleted (all its
streams are deleted or only one stream remains), brought to a lower order or maintained at the same
order. Each stream of the network is identified by an ID number. Therefore, generalized drainages can
be linked to their original drainages by taking the two networks which have the same main stream
and compared.

Assessing the performances of a generalization method is done as follows:
For a network defined at large scale, compute the Horton order of each stream and classify all

drainage systems at all levels.

1. Generalize the network by applying a stream selection method.
2. Evaluate the pattern of all drainages in the new network.
3. For each drainage in the simplified network, find its equivalent drainage in the original network

according to the stream ID, then compare them to check if the pattern has been preserved.

4. Experimentation Design

The method of the previous section is applied to the comparison of two generalization techniques,
a first method based on strokes and stream length [20] and a second method based on the drainage
basin area [4]. The former is the most commonly used method for tributary selection [12], and the
second method is based on a different indicator. They are two typical methods for river network
generalization. Techniques are compared by applying both methods on the same network where the
number of tributaries to be selected is fixed.

Experimentation is conducted first by comparing results obtained for both methods with a manual
generalization of the network. Second, generalizations at smaller scales are performed and results are
evaluated by looking at changes in drainage classification.
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4.1. Tributary Selection by Stroke and Length

Thomson and Brooks [20] proposed the “stroke” concept and applied it to generalization and
analysis for geographic networks such as road and river networks. In their work, the Horton stream
ordering after upstream routine is used to build the strokes of a river network. The Horton-Strahler
order scheme is first performed, and then an upstream routine is applied to determine the main
stream [12]. Here, in a river network, the main stream is referred to as a “stroke” because it is a path of
good continuation: it moves through the network with no abrupt change in direction [39]. Figure 3
shows the strokes of a river network.ISPRS Int. J. Geo-Inf. 2016, 5, 230  7 of 22 

 

 
(a) (b)

Figure 3. “Strokes” of a river network (from Li’s work [12]). (a) is a river network performed by the 
Horton-Strahler order scheme. (b) is the network after upstream routine, main streams are regarded 
as strokes. 

4.2. Tributary Selection by Watershed Partitioning 

Ai et al. [4] proposed a method constructing a hierarchy of different level watersheds. It focuses 
on the channel importance during the river network generalization replacing several geometric 
parameters of a river feature by its watershed area. The watershed area is not obtained from the 
Digital Elevation Model (DEM) but constructed on spatial competition by triangulations of the 
network. The Triangulated Irregular Network (TIN) is constructed by constraining edges with river 
segments. The selection method eliminates tributaries according to the catchment area. The tributary 
with smaller catchment area is removed first. An example of the hierarchical watershed partitioning 
is shown in Figure 4. 

 
Figure 4. An example of hierarchical partitioning of river catchments. 

Consequently, the catchment area is the area of the watershed polygon. For a simple polygon 
with n vertices (xi, yi) (1 ≤ I ≤n), the first and last vertices are the same, i.e. xn = x1, and yn = y1. The area 
is given by the Surveyor’s formula [40]: 

A = 12 − , (1)
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Figure 3. “Strokes” of a river network (from Li’s work [12]). (a) is a river network performed by the
Horton-Strahler order scheme. (b) is the network after upstream routine, main streams are regarded
as strokes.

Tributary selection based on order can be done in four possible ways [17]. The easy way is to
eliminate all low order tributaries and preserve high order tributaries in the first place. The drawback is
that all tributaries in an order will be removed in a step. Sometimes, in a specific scale, some tributaries
should be preserved in an order. Therefore, the length is a factor taken into consideration.

Similarly, taking a stroke as an entity, there are two steps in the generalization process: (1) remove
the low order stroke first; (2) remove the shorter strokes if they are in the same order.

4.2. Tributary Selection by Watershed Partitioning

Ai et al. [4] proposed a method constructing a hierarchy of different level watersheds. It focuses
on the channel importance during the river network generalization replacing several geometric
parameters of a river feature by its watershed area. The watershed area is not obtained from the Digital
Elevation Model (DEM) but constructed on spatial competition by triangulations of the network.
The Triangulated Irregular Network (TIN) is constructed by constraining edges with river segments.
The selection method eliminates tributaries according to the catchment area. The tributary with smaller
catchment area is removed first. An example of the hierarchical watershed partitioning is shown in
Figure 4.
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Consequently, the catchment area is the area of the watershed polygon. For a simple polygon with
n vertices (xi, yi) (1 ≤ I ≤ n), the first and last vertices are the same, i.e., xn = x1, and yn = y1. The area is
given by the Surveyor’s formula [40]:

A =
1
2

∣∣∣∣∣n−1

∑
i=1

(xiyi+1 − xi+1yi)

∣∣∣∣∣ , (1)

where A is the area of the polygon. If the vertices are stored sequentially in the counterclockwise
direction, the absolute value sign in the formula can be omitted.

In the experiment, in order to assess whether a river network maintains the same drainage pattern
after generalization, three generalization methods are tested (Table 2). The first two are automatic,
and the last one is the manually generalized data.

Table 2. Testing on three generalization methods.

No. Approaches Methods

I Hierarchy Stroke + Length
II Watershed partitioning (Catchment)
III Manual

4.3. Testing Data

Datasets of the Russian river located in California, USA are tested in the experiment. Two different
scales are used: 1:24,000-scale (1:24K) and 1:100,000-scale (1:100K). The 1:24K data is stored in
a Shapefile from the Russian River Interactive Information System (RRIIS). The 1:100K data is from the
National Hydrography Dataset (NHD) of the USA. The 1:24K hydrographic data are compiled first,
and much of these data have been translated into the first version of the NHD. The 1:100K hydrographic
data are manually scribed from the blue-lines of the 1:24k photo-reduced mosaics. Thus, the 1:100k
data is a generalized version of the 1:24k one, which respects compilation standards controlling manual
procedures [41], and it can be regarded as a partially manual work. The Horton-Strahler order scheme
was then computed. The test data are illustrated in Figure 5.
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To apply the Radical Law in NHD, the constant Cf (“Constant of Flowlines”) in the equation can
take three possible values according to the scale [16]: 1, 1.7 and 0.6. The value 1 corresponds to large
scale (1:24K) to medium scale (1:100K), 1.7 is for local scale (1:5K) to other scale, and 0.6 for changes
between small scales (1:2M). Hence a constant of 1 is used in the experiment.

4.4. MF Parameter Settings

Classifying drainages according to their patterns relies on the definition of membership functions,
including several threshold parameters. This parameter setting is adopted from the previous work [14].
The MF of each predicate are presented in Table 3, and the graphical illustration is shown in Figure 6.

Table 3. Membership function (MF) parameter settings for testing. z(α; a, b) is asymmetrical polynomial
curves open to the left where α is the junction angle and a and b locate the extremes of the sloped
portion of the curve; s(α; a, b) is opposite curve to Z curve; and g(α; σ, m) is a Gaussian distribution
curve where m is the center and σ controls the width of the curve.

Predicate MF

α IS acute z (α; 45◦, 90◦)
α IS very acute z (α; 30◦, 60◦)

γ IS short z (γ; 0, 1)
δ IS broad z (δ; 1, 3)
α IS right g (α; 10◦, 90◦)
β IS bent s (β; 0, 1)
γ IS long s (γ; 0, 1)

δ IS elongated s (δ; 1, 3)
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Figure 6. MFs. (a) shows MFs for very acute, acute and right angle, input is the junction angle α;
(b) shows the MF for bent tributaries, the input is bent tributaries percentage β; (c) shows the MF for
a short tributary, input is average length ratio γ; (d) shows the MF for elongated catchment, input is
catchment elongation δ.

Tributary selection is performed for different scales and for one case, results are compared with
results obtained by manual selection.
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5. Experiment results

5.1. Case Studies in Russian River

5.1.1. Case 1: A Dendritic River Network

Figure 7a shows the tested river network for this case. It is a typical dendritic network with
a membership value of 0.933. The river network with Horton-Strahler order after upstream routine is
illustrated in Figure 7b, which is used to select tributaries by stroke and length.

ISPRS Int. J. Geo-Inf. 2016, 5, 230  10 of 22 

 

5.1.1. Case 1: A Dendritic River Network 

Figure 7a shows the tested river network for this case. It is a typical dendritic network with a 
membership value of 0.933. The river network with Horton-Strahler order after upstream routine is 
illustrated in Figure 7b, which is used to select tributaries by stroke and length. 

 
(a) (b)

Figure 7. Tested river network for dendritic case. (a) is the dendritic network schemed by Horton-
Strahler order. (b) is the network with Horton-Strahler order after upstream routine. The bolder the 
river tributary, the greater the Horton-Strahler order. 

(1) Comparing results with manual case 

Generalized river networks by the three methods are illustrated in Figure 8. The manual 
generalized river network at 100K scale from the NHD is shown in Figure 8c. Too many tributaries 
have been removed and it does not follow the selection principle of Radical Law. Tributaries are 
eliminated by stroke and catchment according to the amount of the manual one, so that they can be 
compared at the same level. River networks generalized by stroke and catchment are shown in Figure 
8a,b respectively. 

  
(a) Stroke + Length (b) Catchment (c) Manual 

Figure 8. Generalized networks by three methods for dendritic case. (a) Stroke + Length; (b) 
Catchment; (c) Manual. 

In Figure 8, all generalized networks are good for visual assessment. However, the manual 
network is better than others in some respects. For example, the tributary in the dashed circle in 
network (a) is short with a twist that should be eliminated. It is preserved in network (a) because its 
order is greater than other longer tributaries. There are some short tributaries maintained in network 
(b) generalized by catchment which are shown in dashed boxes. Network (a) is better than (b), and 
(c) is the best.  

Figure 7. Tested river network for dendritic case. (a) is the dendritic network schemed by
Horton-Strahler order; (b) is the network with Horton-Strahler order after upstream routine. The bolder
the river tributary, the greater the Horton-Strahler order.

(1) Comparing results with manual case

Generalized river networks by the three methods are illustrated in Figure 8. The manual
generalized river network at 100K scale from the NHD is shown in Figure 8c. Too many tributaries
have been removed and it does not follow the selection principle of Radical Law. Tributaries are
eliminated by stroke and catchment according to the amount of the manual one, so that they can
be compared at the same level. River networks generalized by stroke and catchment are shown in
Figure 8a,b respectively.
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In Figure 8, all generalized networks are good for visual assessment. However, the manual
network is better than others in some respects. For example, the tributary in the dashed circle in
network (a) is short with a twist that should be eliminated. It is preserved in network (a) because its
order is greater than other longer tributaries. There are some short tributaries maintained in network
(b) generalized by catchment which are shown in dashed boxes. Network (a) is better than (b); and (c)
is the best.

Table 4 shows the assessment result of generalized river networks by the three methods. From the
table, the membership value of manual network is 0.869, which is the greatest among all generalized
networks. Membership values of network (a) and (b) are 0.801 and 0.730 respectively. Network (a) is
better than (b) from the membership, and that is also confirmed by visual assessment.

Table 4. Assessment result of generalized networks in Figure 8 where “D”, “P”, “T” and “R” stand for
dendritic, parallel, trellis and rectangular patterns respectively.

Method Indicator Membership Value

α β γ δ D P T R

Stroke + Length (a) 59.19◦ 4.00% 1.10 1.20 0.801 0.002 0 0.003
Catchment (b) 61.52◦ 8.57% 0.58 1.16 0.730 0 0.013 0.015

Manual (c) 56.52◦ 10.34% 0.64 0.99 0.869 0 0 0.004

(2) Comparing results at different scales

Table 5 shows generalized networks by stroke and catchment at different scales. In this case study,
1:100K, 1:250K, 1:500K, 1:1M and 1:5M scales are tested. Due to the different methods of structure
construction, the numbers of strokes and catchments are different. So, the Radical Law is used to
decide how many features are eliminated for each method. In the table, the river network (a) is the
original data at a 24K scale used for comparison. All generalized results are good, but in general,
the stroke and length method provides better results by visual checking. At a 1:100K scale, network (c)
has more short tributaries due to the shortage of the method, and (b) has better details in the dashed
box than (c). At the 1:250K, 1:500K and 1:1M scales, networks (d), (f) and (h) look more balanced than
(e), (g) and (i) respectively. Here, the balance is used to check whether the number of tributaries are
similar for both sides of a stream. The first method eliminates tributaries based on strokes that keep the
tributaries straighter and longer than the second method. It can be verified visually from the results of
(e), (g) and (i) compared to (d), (f) and (h) respectively. At a 1:5M scale, network (j) has a better shape
than (k) as the skeleton of the original network is well maintained in network (j). Obviously, network
(j) is better than (k) at this scale.

The assessment result for the generalized river networks by different methods at different scales
during the generalization process is listed in Table 6, and it shows the same findings with the visual
assessment. At the 1:100K, 1:250K, 1:500K, 1:1M and 1:5M scales, the membership values of the
generalized networks by stroke are 0.869, 0.884, 0.762, 0.801 and 0.561 respectively, and they are greater
than the values by catchment at each scale. At the 1:100K scale, the difference of the memberships
between the two methods is very small, which also confirms visually that river network (b) and
(c) in Table 5 are both acceptable. From the membership value of network (k), the pattern changed
from dendritic to rectangular. Therefore, network (j) is better than (k) at the 1:5M scale, which also
corresponded to the visual assessment. Overall, the stroke method brings better results than the
catchment method in this case study from the membership values.
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Table 5. Generalized river network for dendritic case at different scales.

1:24K Method
Scale

1:100K 1:250K 1:500K 1:1M 1:5M
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Table 6. Assessment result of dendritic case at different scales.

Scale Method Indicator Membership Value

α β γ δ D P T R

1:24K (a) 53.24◦ 3.68% 0.69 1.14 0.933 0.010 0.001 0.001

1:100K
I (b) 55.53◦ 2.53% 0.68 1.15 0.869 0.011 0.004 0.001
II (c) 55.85◦ 3.61% 0.86 1.21 0.861 0.022 0.004 0.001

1:250K
I (d) 57.55◦ 4.08% 0.90 1.20 0.844 0.013 0.005 0.003
II (e) 59.26◦ 6.38% 0.62 1.10 0.799 0.001 0.006 0.008

1:500K
I (f) 60.51◦ 2.86% 0.88 1.20 0.762 0 0.013 0.002
II (g) 63.76◦ 6.45% 0.48 1.16 0.653 0 0.014 0.008

1:1M
I (h) 59.19◦ 4.00% 1.10 1.20 0.801 0.002 0 0.003
II (i) 65.16◦ 4.76% 0.63 1.16 0.599 0 0.014 0.005

1:5M
I (j) 66.08◦ 11.11% 1.29 1.23 0.561 0 0 0.025
II (k) 76.83◦ 42.86% 0.63 1.18 0.171 0 0.017 0.367

5.1.2. Case 2: A Trellis River Network

The selected experimental data for this case is a trellis river network shown in Figure 9. In the
automatic drainage pattern recognition, the Horton-Strahler order is used for classification. Here,
as the river network is already classified as a trellis, the order after upstream routine is used to evaluate
generalized results. This is in order to obtain the value of the length ratio indicator based on the
same main streams, because the method of stroke and length builds strokes first according to the
Horton-Strahler order after upstream routine. The length ratio values will be higher if other methods
do not follow the upstream routine as main streams are shorter.
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(1) Comparing results with manual case 

Figure 10 shows results generalized with the three methods. In the figure, (c) shows the trellis 
river network from NHD at the 1:100K scale. It also did not meet the requirement of Radical Law as 
too many tributaries are eliminated at this scale in comparison with the 1:24K scale network. 
Networks (a) and (b) are generalized to the same number of strokes as the manual one. By checking 
visually, network (c) is well distributed as it is more balanced than other results, and tributaries are 
not clustered as tributaries in the dashed circle in network (a). Network (a) is better than (b) because 

Figure 9. Tested river network for trellis case. (a) is the trellis network schemed by Horton-Strahler
order; (b) is the network with Horton-Strahler order after upstream routine. The bolder the river
tributary, the greater the Horton-Strahler order. Dashed polygons show the different main streams
obtained owing to different order schemes.

(1) Comparing results with manual case

Figure 10 shows results generalized with the three methods. In the figure, (c) shows the trellis
river network from NHD at the 1:100K scale. It also did not meet the requirement of Radical Law as
too many tributaries are eliminated at this scale in comparison with the 1:24K scale network. Networks
(a) and (b) are generalized to the same number of strokes as the manual one. By checking visually,
network (c) is well distributed as it is more balanced than other results, and tributaries are not clustered
as tributaries in the dashed circle in network (a). Network (a) is better than (b) because some short
tributaries are preserved by the catchment method such as tributaries in the dashed boxes. Network
(c) is still the best result among all generalized networks.
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Figure 10. Generalized networks by three methods for the trellis case. (a) Stroke + Length;
(b) Catchment; (c) Manual.

The evaluation result is shown in Table 7 and corresponds to the outcome by visual
assessment. The manual network obtains a maximum membership value of all generalized networks.
Its membership is 0.842, which is greater than both 0.684 of network (a) and 0.396 of network (b).
From membership values, network (a) generalized by stroke and length is better than (b) by catchment,
which is also confirmed by visual checking.

Table 7. Assessment result of generalized networks in Figure 10.

Method Indicator Membership Value

α β γ δ D P T R

Stroke + Length (a) 98.73◦ 8.33% 0.21 3.03 0 0 0.684 0.014
Catchment (b) 103.61◦ 5.00% 0.29 3.29 0 0 0.396 0.005

Manual (c) 86.67◦ 4.35% 0.28 3.65 0 0 0.842 0.004

(2) Comparing results at different scales

During the generalization process, the trellis river network is handled to generalize from the
1:24K scale to 1:100K, 1:250K, 1:500K, 1:1M and 1:2M scales in this case. The results of this case study
are listed in Table 8, where network (a) is the original trellis river network at 1:24K scale.

In Table 8, visually, at 1:100K scale, network (c) is better than (b) as (c) looks more balanced,
but (b) is still an acceptable result. Network (e) preserves more short tributaries and (d) has more long
ones due to stroke establishment. From the aspect of length, network (d) is better than (e), because
short tributaries should be removed after generalization. The catchment of a tributary receives all
catchments of its upper stream, so the catchment area would be large even if its length is short. That is
why short tributaries are preserved in networks (e), (g) and (i). Networks (d), (f) and (h) are more
satisfying than (e), (g) and (i) respectively. For the generalized results at 1:2M scale, they are both
trellis pattern since the tributaries are short and straight and all junction angle are large. However,
the tributaries are too few to for discussion of pattern issue. As a result, most of the generalized
networks are better by stroke and length than by catchment at each scale except at the 1:100K scale.



ISPRS Int. J. Geo-Inf. 2016, 5, 230 15 of 22

Table 8. Generalized river network for trellis case at different scales.

1:24K Method
Scale

1:100K 1:250K 1:500K 1:1M 1:2M
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Table 9 shows the assessment result of the trellis river network during the generalization process.
In the table, from the assessment, all generalized networks are preserved as the trellis pattern. At the
1:100K scale the membership of (c) is 0.961, which is greater than 0.870 of network (b), and is confirmed
by visual assessment. The membership values of networks (d) and (e) are almost the same at 0.849
and 0.844 respectively. Network (d) is better than (e), which also corresponds to the results visually.
For other scales, the method of stroke and length brings higher membership values than by catchment
as they are 0.896 > 0.568, 0.907 > 0.843 and 0.679 > 0.615 at the1:500K, 1:1M and 1:2M scales respectively.

Table 9. Assessment result of trellis case at different scales.

Scale Method Indicator Membership Value

α β γ δ D P T R

24K (a) 81.14◦ 1.49% 0.20 3.17 0 0 0.675 0

100K
I (b) 84.72◦ 1.56% 0.20 3.35 0 0 0.870 0.001
II (c) 88.25◦ 1.67% 0.14 3.17 0 0 0.961 0.001

250K
I (d) 84.28◦ 2.50% 0.27 3.35 0 0 0.849 0.001
II (e) 95.83◦ 2.94% 0.17 3.09 0 0 0.844 0.002

500K
I (f) 96.61◦ 3.57% 0.23 3.35 0 0 0.896 0.003
II (g) 100.63◦ 4.55% 0.27 3.09 0 0 0.568 0.004

1M
I (h) 94.13◦ 5.00% 0.22 3.65 0 0 0.907 0.005
II (i) 112.24◦ 6.25% 0.31 3.29 0 0 0.843 0.008

2M
I (j) 98.80◦ 8.33% 0.25 3.65 0 0 0.679 0.014
II (k) 99.87◦ 0 0.29 4.13 0 0 0.615 0

5.2. Evaluation Results in the Russian River

The evaluation method is applied to the whole Russian river to assess generalized river networks.
The data process is as follows: (1) According to the river data from NHD at the 1:100K scale, eliminate
tributaries in the Russian river to obtain the manually generalized river network; rebuild the network
by combining river segments and reassign the Horton-Strahler order. (2) According to the river segment
IDs, obtain the corresponding sub-networks from the Russian river at the 1:24K scale. (3) Generalize
the sub-networks by stroke and catchment method to the same number of river segments as the
manually generalized networks. (4) Assess each generalized river network by the evaluation method.

Table 10 lists the number of preserved or changed drainage patterns after river network
generalization. In the table, the first five rows give the number of preserved patterns, and following
rows are the number of changes of each pattern in detail. There are 164 river networks at different
orders that are extracted and evaluated. From the table, many of the generalized river networks
are preserved drainage patterns by the three methods. There are 90, 108, and 96 generalized river
networks that preserve their patterns by manual work, catchment and stroke respectively. Although
patterns of many networks changed after generalization, most happen in order 2. In manual work,
74 generalized networks alter patterns, but 85% (63/74) of them are in order 2. Similarly, 79% (44/56)
and 85% (58/68) of changed patterns by catchment and stroke respectively are in order 2. The possible
reason is that indicators from a river network are statistical values, which rely on the number of river
segments. If there are few river segments in a river network, the indicators would not be robust enough
to reflect the pattern of the river network. Most of the river networks in order 2 have less than five
river segments. Therefore, if a river network in order 2 is generalized from the network in order 3 or
a higher order, two situations can arise: (1) the pattern does change after generalization; and (2) the
evaluation method is not able to compute a score due to insufficient river segments. In addition, from
the table, most patterns change from dendritic to parallel, trellis and rectangular. There are about 30%
preserved dendritic networks but the other 70% are modified to different patterns after generalization.
For parallel patterns, most networks preserved their pattern because long streams are kept, so there
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are not so many changes. For trellis patterns, most networks are changed to a parallel or unclassified
pattern. It is possible because small perpendicular tributaries are removed in the selective omission
so that drainages most likely become parallel (if long main streams are kept) or unclassified. Overall,
the method based on catchment is the most robust as it is the one which preserves most patterns.
Stroke method is more similar to manual generalization. It turns more dendritic networks to parallel,
because it more easily removes small tributaries than other methods; in order terms, catchment method
probably preserves small tributaries better if they are isolated as their drainage area is in that case
is larger.

Table 10. Number of drainage patterns after generalization. “→” means that one pattern changes to
another. The order is the Horton-Strahler ordering scheme.

Manual Catchment Stroke + Length

Order 2 Order 3 Order 4 Order 2 Order 3 Order 4 Order 2 Order 3 Order 4

Dendritic (D) 15 29 13 14 34 17 13 29 15
Parallel (P) 14 4 0 17 6 0 16 5 0
Trellis (T) 2 6 2 3 7 4 3 6 3

Rectangular (R) 0 2 1 0 3 0 0 3 1
Unclassified (U) 2 0 0 2 1 0 2 0 0

D→P 16 0 0 15 2 0 19 0 0
D→T 15 2 1 13 2 1 9 5 1
D→R 9 4 1 5 5 1 9 3 1
D→U 4 1 0 1 0 0 6 0 0
P→D 2 1 0 1 0 0 2 0 0
P→T 3 0 0 0 0 0 1 0 0
P→R 0 0 0 0 0 0 0 0 0
P→U 0 0 0 0 0 0 0 0 0
T→D 0 0 0 0 0 0 0 0 0
T→P 5 0 0 2 0 0 3 0 0
T→R 1 0 0 0 0 0 0 0 0
T→U 1 1 0 2 0 0 3 0 0
R→D 0 0 0 0 0 0 0 0 0
R→P 1 0 0 0 0 0 0 0 0
R→T 3 0 0 3 1 0 3 0 0
R→U 0 0 0 0 0 0 0 0 0
U→D 1 0 0 0 0 0 1 0 0
U→P 0 0 0 1 0 0 0 0 0
U→T 1 0 0 0 0 0 1 0 0
U→R 1 0 0 1 0 0 1 0 0

Changes count 63 9 2 44 10 2 58 8 2
Changes total 74 56 68

Table 11 shows average membership values of all generalized river networks where their patterns
are preserved. From the table, the average membership value of river networks generalized by
manual work is 0.59, which is slightly greater than by catchment (0.52) and by stroke and length
(0.57). It indicates that, from the aspect of drainage patterns, river networks generalized by manual
work are better than by catchment and stroke, which corresponds to the result from case studies.
The average value given by the stroke and length method is close to the manual generalized river
networks. Here the stroke is established based on the Horton-Strahler order after upstream routine,
which has been considered as the one that “most closely approximates the generalisation decisions made by
a human cartographer” [20].

Table 11. Average membership value of preserved patterns.

Method Stroke + Length Catchment Manual

Average membership value 0.57 0.52 0.59
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Some examples of river networks that change their patterns after generalization are illustrated
in Figure 11. In the figure, (a-1) and (b-1) are original networks; (a/b-2), (a/b-3) and (a/b-4) are
generalized river networks by stroke and length, catchment and manual work. Table 12 shows the
assessment results of the generalized river networks. From the table, network (a-1) is dendritic,
but generalized networks (a-2), (a-3) and (a-4) are changed to rectangular. For another example,
network (b-2) and (b-4) alters the pattern from trellis to parallel, and network (b-3) still maintains
the pattern.
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generalized networks (a-2), (a-3) and (a-4) are changed to rectangular. For another example, network 
(b-2) and (b-4) alters the pattern from trellis to parallel, and network (b-3) still maintains the pattern. 

 
(a-1) Original (a-2) Stroke + Length 

 
(a-3) Catchment (a-4) Manual

 
(b-1) Original (b-2) Stroke + Length 

 
(b-3) Catchment (b-4) Manual

Figure 11. Some generalized river networks with changed patterns. (a-1) Original; (a-2) Stroke + Length; 
(a-3) Catchment; (a-4) Manual; (b-1) Original; (b-2) Stroke + Length; (b-3) Catchment; (b-4) Manual.  

Dendritic Rectangular 

Rectangular Rectangular 

Trellis Parallel

Trellis Parallel 

Figure 11. Some generalized river networks with changed patterns. (a-1) Original; (a-2) Stroke + Length;
(a-3) Catchment; (a-4) Manual; (b-1) Original; (b-2) Stroke + Length; (b-3) Catchment; (b-4) Manual.

From Table 12, the membership value of each river network is not so large. Therefore, we check
the membership values of river networks that preserved or changed their patterns. For river networks
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that preserved their patterns after generalization, the average membership value of original river
networks is 0.57; the average value is 0.30 only for river networks that changed patterns. It indicates
that, in general, if the source river network has high membership value of a pattern (which has
a significant pattern characteristic), it would be easier to preserve its pattern after generalization than
a river network with low membership value.

Table 12. Assessment for river networks in Figure 11.

Network Indicator Membership Value

α β γ δ D P T R

(a-1) 83.52◦ 10% 1.43 1.42 0.041 0 0 0.020
(a-2) 108.65◦ 29% 0.84 1.42 0 0 0.053 0.169
(a-3) 100.80◦ 22% 0.95 1.55 0 0 0.004 0.093
(a-4) 104.98◦ 23% 0.97 1.46 0 0 0.001 0.102

(b-1) 64.03◦ 5% 0.13 3.17 0 0 0.034 0.006
(b-2) 55.23◦ 0 0.23 4.32 0 0.051 0.002 0
(b-3) 67.26◦ 0 0.22 2.78 0.025 0 0.075 0
(b-4) 49.49◦ 0 0.22 4.32 0 0.093 0 0

5.3. Discussion

From the experimental results, several conclusions can be given as follows.

1. In general, the evaluation method based on the membership degree of a fuzzy rule for a drainage
pattern is useful. From a large scale to a small scale, to a generalized river network, the drainage
pattern preserves better if the membership value is high. However, sometimes, the membership
value will be not so robust at small scales, especially when there are not enough river segments
left because proposed indicators, such as average junction angle (α), bent tributaries percentage
(β), and average length ratio (γ), are statistical features.

2. By evaluating generalized river networks from the point of drainage patterns, the method based
on stroke and length is better than based on watershed partitioning. In addition, networks
generalized manually are always with high membership values and preserve a good drainage
pattern. A good generalized result does not only depend on one or two factors; many factors
such as tributary spacing and balance are involved in manual generalization process.

3. One limitation is that this research only focuses on the evaluation of the drainage pattern. Some
other aspects simply cannot be assessed by the membership value. For example, for network (f)
in Table 9 at the 1:500K scale, although the membership value is 0.896, much greater than (g), it is
not an ideal result as the tributaries in the dashed circle are crowded together in Table 10.

4. Another limitation is that the evaluation method is more reliable and accurate in source river
networks with order 3 or higher, but higher order is not always better because sub-networks can
be classified in different patterns inside a large river network. A small river network with order 2
does not have enough river segments to provide robust indicators.

6. Summary

In this article, a quality assessment method based on fuzzy logic is provided to evaluate drainage
patterns of a generalized river network. In these tests, generalization is completed by different tributary
selection operations. The quality is evaluated by checking the membership value to a drainage pattern
from a fuzzy rule. Four drainage patterns are evaluated in this study: dendritic, trellis, parallel and
rectangular. The method was applied to evaluate different tributary selection methods, such as by
stroke and length, by watershed portioning and by manual work. The experimental data is the Russian
river from the RRIIS at 1:24K scale, and the NHD at 1:100K scale.
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From the experimental results, when the membership value is higher, the generalized river
network is better. It is based on the assumption that the NHD data at the 1:100K scale is a better
generalized dataset because it has been produced involving manual procedures which are the
professional experiences of expert cartographers. During the generalization, the membership of
generalized river networks can be higher than the original. That is because a generalized river network
can have more characteristics of the pattern than the original network after generalization. This method
is appropriate for evaluating a generalized river network from the perspective of drainage patterns.
The advantage of this research is that evaluating a generalized river network based on fuzzy logic is
easy to understand and implement. The limitations of the research are: (1) evaluation is focused on the
drainage pattern only according to the membership value, other criteria may also be proposed; (2) the
method is more suitable for a river network with order 3 and 4, which is the order value of the main
stream in the Horton-Strahler ordering scheme. This is because a small network does not have enough
river segments and a large network can have many sub-networks with different patterns inside.

Existing methods of tributary selection do not consider the pattern in the first place, although
at times they can preserve the pattern of a generalized river network. Considering the pattern is
an important factor in river networks, and should be taken into account in river network generalization.
In order to provide a better generalized river network, one future work should propose a tributary
selection method with consideration of drainage patterns. As seen in this work, solely focusing on
drainage patterns cannot generalize a river network as well as the manual method. The indicators
influencing the drainage pattern can be considered in the generalization, however, other factors are
also needed, such as tributaries balance and spacing. The future work needs to provide a solution to
deal with multiple factors at the same time during the river network generalization.
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