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Résumé 

L'objectif principal des études présentées dans cette thèse était d'étudier les effets 

métaboliques et anti-inflammatoires des acides gras oméga-3 et leurs dérivés 

bioactifs, nommés résolvines et protectines, dans le contexte d'obésité et 

d'insulino-résistance. Afin d'atteindre ce but, nous avons utilisé une nouvelle lignée 

de souris transgénique, fat-1, qui nous permet d'augmenter les niveaux d'acides 

gras oméga-3 sans modifier la diète expérimentale. 

Dans la première étude, nous avons démontré que le rétablissement des acides 

gras oméga-3 dans les souris obèses nourries avec une diète riche en gras, 

pouvait augmenter la synthèse des dérivés bioactifs des acides gras oméga-3, 

notamment les protectines, dans le tissu adipeux et le muscle squelettique. Ceci 

était associé à une meilleure capacité à résoudre une réponse inflammatoire aigùe 

et à une diminution de l'inflammation dans le tissu adipeux. De plus, les souris fat-

1 obèses ont démontré une meilleure sensibilité à l'insuline et une plus grande 

tolérance au glucose. Tout cela avec un gain de poids et accretion de graisse 

équivalents à leurs homologues sauvages. 

Dans la seconde étude, nous avons analysé les effets métaboliques et anti­

inflammatoires de l'administration de la protectine DX dans des macrophages in 

vitro ainsi que dans les souris in vivo. En plus des activités anti-inflammatoires 

anticipées, nous avons pu observer que la protectine DX possède une activité 

antidiabétique unique qui pourrait être expliquée par une sécrétion d'interleukine-6 

impliquée dans l'inhibition de l'expression des enzymes de la gluconéogenèse 

dans le foie. 

Dans la troisième étude, nous avons effectué une analyse comparative par 

biopuces du tissu adipeux des souris fat-1 obèses et des souris sauvages. Cette 

étude nous a permis de révéler cinq voies ciblées par des acides gras oméga-3 

dans le tissu adipeux. Nous avons pu valider certaines cibles par PCR quantitatif et 

par histologie. 
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L'ensemble de nos études démontre le rôle déterminant des acides gras oméga-3 

et leurs dérivés, notamment les protectines, dans l'homéostasie métabolique. De 

plus, nous avons été en mesure d'identifier la protectine DX comme un nouvel 

agent thérapeutique qui possède un important potentiel pour le traitement du 

diabète de type 2 et de l'obésité. 



Abstract 

The primary objective of this thesis was to evaluate the metabolic and anti­

inflammatory functions of omega-3 fatty acids and their bioactive derivatives 

namely, the resolvins and protectins, in the context of obesity and insulin 

resistance. To achieve this objective we employed a novel line of transgenic mice, 

the fat-1 mice, which allowed us to raise endogenous levels of omega-3 fatty acids 

without altering the experimental diet. 

In the first study we demonstrated that transgenic restoration of omega-3 fatty 

acids in high fat fed obese fat-1 mice raises the synthesis of their bioactive 

derivatives, namely the protectins, in adipose tissue and skeletal muscle. This was 

associated with an improved capacity to resolve an acute inflammatory response 

and reduced inflammation in adipose tissue as well as improved systemic insulin 

sensitivity and glucose tolerance. Importantly, these effects occurred in the 

absence of any changes in weight gain or fat accretion. 

In the second study, we directly evaluated the anti-inflammatory and metabolic 

effects of protectin DX in palmitate-treated macrophages in vitro as well as in lipid-

infused mice in vivo. In addition to the anticipated anti-inflammatory actions, here 

we unraveled a unique glucoregulatory activity of protectin DX. We found that 

protectin DX administration lowers fasting glycemia and improves insulin sensitivity 

by promoting IL-6 dependent suppression of gluconeogenic enzymes in the liver. 

In the third study we performed Affymetrix microarray in adipose tissue from high 

fat fed fat-1 transgenic mice and their wild type counterparts. This study allowed us 

to establish five key pathways that are regulated by omega-3 fatty acids in adipose 

tissue. Importantly, we were able to validate some of these pathways using real­

time RT-PCR and histological analysis. 

Together these works highlight the important contribution that omega-3 fatty acids 

and their bioactive derivatives, namely the protectins, make to the maintenance of 

metabolic homeostasis. Importantly, through our study of omega-3 fatty acids and 
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their metabolites, we were able to identify protectin DX as a novel molecule with 
exciting therapeutic potential for the treatment of obesity and type 2 Diabetes. 
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Introduction 

1 -Type 2 Diabetes: A modem pandemic 
Type 2 Diabetes Mellitus (T2DM) has grown to become one of the greatest threats 

to human health afflicting modern society. Presently it is estimated that - 1 5 0 

million people worldwide suffer from T2DM and its associated complications and 

this number is predicted to escalate to ~ 300 million people by the year 2025 (1). 

As a heterogeneous disease state multiple risk factors contribute to the likelihood 

of a person developing T2DM. These include, but are not limited to, a family history 

of T2DM (2), impaired glucose tolerance (3), prior occurrence of gestational 

diabetes mellitus (4), body fat accumulation (particularly in visceral adipose depots) 

(5), physical inactivity (6), and poor diet (7). Of these factors, those that are lifestyle 

related are considered to be profoundly responsible for the pandemic emergence 

of this disease throughout society. Indeed, the parallel rise in the global prevalence 

and severity of obesity which in most part developed as a product of environmental 

and lifestyle changes towards physical inactivity and nutritional oversupply is 

believed to underlie the advent of T2DM as an epic health problem (8). 

T2DM manifests as a combination of peripheral and hepatic insulin resistance 

alongside pancreatic beta cell dysfunction (9). In the diabetic state, the pancreas 

no longer possesses the capacity to support the elevated insulin requirements for 

maintaining euglycemia and hyperglycemia develops. In most cases of T2DM, 

insulin resistance precedes beta cell dysfunction and the progression towards 

impaired glucose tolerance (10). Devoid of beta cell compensation for peripheral 

insulin resistance, initial impediments in insulin signal transduction would directly 

lead to an ever worsening hyperglycemia resulting from reduced postprandial 

inhibition of hepatic glucose output and diminished glucose uptake by skeletal 

muscle and other peripheral tissues. However, superior insulin secretions from the 

compensating islets ensure that normal glucose tolerance (NGT) is maintained for 

some time, albeit in the presence of deteriorating hyperinsulinemia. Due to this 

highly plastic nature of the pancreatic beta cells the progression from insulin 



resistance to T2DM may be delayed for up to 20 years (11 ). Indeed, it is only when 

the pancreas finally fails to compensate for the waning metabolic response to 

insulin that T2DM develops (12). Thus insulin resistance is considered to be a key 

primary defect in the pathogenic continuum of T2DM. 

2-lnsulin action 
Insulin contributes to the maintenance of glucose and lipid homeostasis via 

coordinated pleiotropic actions in multiple target tissues, including liver (13), 

skeletal muscle (14), adipose tissue (14), pancreas (15), brain (16) and the 

vasculature (17). Insulin resistance is said to occur when insulin signal transduction 

in these tissues is impaired. To enhance understanding of the mechanisms 

underlying the development of insulin resistance, the outcomes and key elements 

of insulin signal transduction will be described for three important peripheral 

metabolic tissues: skeletal muscle, liver and adipose tissue. 

2.1 Skeletal muscle 
Skeletal muscle is responsible for approximately 80% of insulin stimulated glucose 

disposal (18). Thus, inhibition of insulin signaling in this tissue has a major impact 

on whole body glucose homeostasis. The insulin receptor can be found at the 

skeletal muscle sarcolemma, is tetrameric, and contains two extracellular alpha 

and two transmembranous beta-subunits. Insulin binding to the extracellular alpha-

subunits of the insulin receptor, induces a conformational change in the receptor 

via a cam-dependent mechanism (19). This allows the opposing transmembane 

spanning beta-subunits to approach one another and enables the regulatory 

activation loop of each beta-subunit to come into contact with and become 

phosphorylated on three sites by the catalytic domain of the other. This trans-

autophosphorylation of tyrosine sites on the beta-subunits activates the intrinsic 

receptor tyrosine kinases and also provides docking sites for the various 

intracellular src-Homology-2 (SH-2) domain containing proteins that serve as 

insulin receptor substrates. To date those identified include the appropriately 

named insulin receptor substrate (1RS) proteins, as well as GAB-1, She, APS, p60, 

SIRPs, and c-CBL (20). 



Since the signaling intermediates downstream of the 1RS proteins are responsible 

for insulin dependent glucose transport, glycogen synthesis, protein anabolism, 

and transcriptional regulation of target genes, the following description of insulin 

signaling will be focused primarily on this branch of the pathway. Interestingly, the 

roles of the different 1RS isoforms appear to vary among insulin target tissues. The 

generation of knockout models (21) and mice carrying combined heterozygous 

mutations (22) of the insulin receptor with IRS-1 and/or IRS-2 has provided 

important insight in this area. Importantly, genetic deletion of IRS-1 in mice was 

found to be associated with impaired insulin action in skeletal muscle but not liver 

where expression of IRS-2 was found to be more abundant (21). Moreover, 

combined heterozygous mutation of the insulin receptor with IRS-1 produced 

severe skeletal muscle insulin resistance and mild hepatic insulin resistance 

whereas combined heterozygous mutation of the insulin receptor with IRS-2 

resulted in mild skeletal muscle insulin resistance alongside severe impairment of 

hepatic insulin signaling (22). Together these data suggest that IRS-1 plays a 

predominant role in peripheral insulin target tissues whereas the activity of IRS-2 

appears to be more important in liver. 

Both the 1RS proteins contain approximately 22 potential tyrosine phosphorylation 

sites which, once phosphorylated by the receptor kinase, serve as docking sites for 

the SH-2 domain containing p85 subunit of phosphoinositide 3-Kinase (PI3-K) (23). 

Once activated by p85 binding to 1RS, the p110 catalytic subunit of PI3-K 

phosphorylates the D3 position on the inositol ring of the plasma membrane lipid, 

phosphatidylinositol-4,5-bi-phosphate, (PI(4,5)P2) converting it to 

phosphatidylinositol-3,4,5-tri-phosphate, (PI(3,4,5)P3) (24). The newly formed 

PI(3,4,5)P3 then recruits pleckstrin homology domain containing proteins to the 

plasma membrane, namely the serine-threonine kinases, acute transforming 

retrovirus thymoma, (AKT) and phosphoinositide-dependant kinase-1/2, (PDK1/2) 

(25). Once localized at the plasma membrane, PI(3,4,5)P3 bound PDK-1/2 

phosphorylates nearby AKT (26) thereby stimulating its catalytic activity. It is 

noteworthy that PI(3,4,5)P3 bound PDK-1/2 also activates atypical Protein Kinase 

C (aPKC) and p70S6-Kinase (27-28). Activated AKT and aPKC then stimulate 



GLUT-4 glucose transporter translocation from intracellular vesicular pools to the 

sarcolemma by an incompletely resolved mechanism (29). AKT also inhibits 

Glycogen Synthase Kinase-3 (GSK-3) activity (30), induces nuclear extrusion of 

the transcriptional regulator Forkhead BOX class-0 winged helix transcription 

factor-1, (FOX01) (31), activates the mammalian target of rapamycin, (mTOR) 

(32), and inhibits the pro-apoptotic protein BAD from binding to Bcl-2 (33). These 

activities result in enhanced glucose entry into the cell, elevated glycogen 

synthesis, (a rate limiting step in skeletal muscle glucose metabolism), inhibition of 

the transcription of apoptosis related genes such as Fas ligand, and 

phosphorylation of the translation factors p70S6-Kinase and the eukaryotic 

initiation factor 4E binding protein-1, (4EBP-1), that are involved in the 

translational regulation of protein synthesis, and in the case of p70S6-Kinase, 

feedback inhibition of insulin signaling (see figure 1). 

GLUCOSE, INSULIN 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii:]].i](:!!f:.liiiiiii[.]::»!.].iiiiiiiiiiiiii nm miiiiiiiiiiii 
PDK1/2 

Figure 1. Simplified schema of insulin signaling via 1RS in skeletal muscle. 



2.2 Liver 
The liver is a major regulator of energy homeostasis. It is the first site of 

carbohydrate and protein passage following digestion and such metabolic priority 

via the portal circulation allows the liver to act as an energy sensor producing, 

storing, or oxidizing carbohydrates, fats, and proteins when necessary. The liver 

also has priority to insulin and glucagon released from the pancreas and maintains 

glucose homeostasis by coordinating glucose output and storage as signaled by 

these key glucoregulatory hormones among others. 

Glucagon signaling in the liver is cyclic AMP (cAMP)/protein kinase A (PKA) 

dependent and results in enhanced glucose output through a combination of 

gluconeogenesis and glycogenosis (34). Briefly, activation of PKA by glucagon 

promotes phosphorylation of cAMP response element binding (CREB) and 

association of CREB and CREB binding protein (CBP) with transducer of regulated 

CREB activity-2 (TORC2) in the promoter region of the transcription factor 

peroxisome proliferator-activated receptor-y co-activator-1(PGC1) leading to its 

expression (See figure 2)(35-39). PGC1 once expressed then associates with 

hepatocyte nuclear factor 4a (HNF4a) and FOX01 to promote the expression of 

key enzymes involved in hepatic gluconeogenesis and glycogenosis including 

glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), 

and fructose-1-6-biphosphatase (FBP-ase) (40-45). Insulin signaling in liver 

counteracts these actions of glucagon on hepatic glucose output and enhances 

glucose storage as glycogen. Insulin induces this response both indirectly, by 

reducing gluconeogenic substrate release from peripheral tissues (46-48) and by 

inhibiting glucagon secretion from the pancreatic alpha cells (49), and directly by 

acting on the liver itself (50-51). The existence of a gut- brain- liver axis regulating 

hepatic glucose metabolism has also been described (52). The regulation of 

endogenous glucose production by this mechanism appears to be insulin 

independent and involves lipid sensing in the upper intestine which promotes the 

activation of a neuronal network from gut to brain to liver that effectively lowers 

hepatic glucose output (52-54). 
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Figure 2. Simplified schema of the regulation of hepatic glucose production 

Insulin binding to its receptor on the surface of hépatocytes results in activation of 

a similar signaling cascade to that presented for skeletal muscle in figure 1. 

However, hepatic insulin signaling relies on a dynamic functional relay between 

both IRS1 and IRS2 wherein IRS2 is responsible for insulin actions in liver during 

fasting and immediately after refeeding and IRS1 is the predominant isoform in the 

postprandial period (55). Insulin signaling in liver interferes with glucagon induced 

cAMP signaling in multiple ways. Firstly, insulin blunts glucagon mediated cAMP 

release (34; 56). Insulin also promotes the nuclear extrusion of the CREB co-factor 

CBP via a phosphorylation dependent mechanism (57). Furthermore, insulin 

stimulation results in AKT mediated phosphorylation and activation of salt induced 

kinase 2 (SIK2) which phosphorylates and promotes the degradation of TORC2 

another key cofactor for CREB dependent PGC1 expression (58) (see figure 2). 

Moreover, insulin signaling through IRS/AKT in liver also induces the nuclear 

extrusion of the transcription factor FOX01 (59) and thereby inhibits the actions of 



F0X01 and its transcriptional co-activator PGC1 (40) that are primarily responsible 

for increasing the expression of the aforementioned gluconeogenic/glycogenolytic 

enzymes. Finally, insulin promotes the transcriptional activity of liver X receptors 

(LXR) which in turn induce the expression of sterol regulatory element binding 

proteins (SREBP) (60). SREBP expression is thought to negatively regulate the 

transcriptional activity of PGC1 in liver by binding with HNF4a and preventing its 

interaction with PCG1 (61). In addition to their influence on hepatic glucose output, 

SREBP and LXR also play a major role in insulin mediated lipogenesis in the liver 

by coordinating the expression of a lipogenic program comprising enzymes 

responsible for biosynthesis and receptor mediated fatty acid and cholesterol 

transport (62). 

Without these key actions of insulin in liver, liver specific insulin receptor knockout 

(LIRKO) mice display severe hepatic insulin resistance that is characterized by 

elevated hepatic glucose output in both the fasting and postprandial state and 

impaired insulin clearance (63). Interestingly, after two months the liver of these 

mice presented normal morphology with no sign of steatosis but by 6 months 

displayed moderately increased lipid storage, drastically reduced glycogen content 

and enlarged mitochondria (63). LIRKO mice have since been found to be 

particularly susceptible to gall stone formation (64) and the development of 

dyslipidemia and atherosclerosis (65). Importantly, LIRKO mice progress rapidly 

from an initial state of hepatic to full systemic insulin resistance (63), suggesting 

that loss of insulin action in liver can have a spillover effect on other key insulin 

target tissues. Together these findings underscore the importance of hepatic 

insulin action for the maintenance of systemic metabolic homeostasis. 

2.3 Adipose tissue 
For many years the adipose tissue was primarily thought of as a storage depot for 

excess energy; however, the relatively recent discoveries of multiple adipocyte 

derived signaling molecules termed adipokines has changed this way of thinking. 

Indeed, it has become evident with these advances that the adipose tissue itself is 

an endocrine organ that plays a major role in the regulation of energy homeostasis 
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via cross talk with other metabolically significant tissues (i.e. brain, liver, and 

muscle) (66). Like most endocrine organs adipose tissue is also subject to 

neuroendocrine input and regulation. In fact, multiple neural and hormonal signals 

are integrated in adipose tissue to maintain systemic energy homeostasis. In 

energy demanding situations such as exercise or infection, hormonal (e.g. 

catecholamines, glucagon etc.) and neural signals (e.g. sympathetic input) 

combine to enhance lipolysis and the liberation of stored triglycerides from adipose 

tissue via a cAMP/PKA dependant mechanism that results in the up-regulation of 

hormone sensitive lipase (HSL) activity (67-68). In contrast, in times of energy 

excess such as immediately following a meal, insulin signaling in adipose tissue 

enhances carbohydrate and lipid storage via enhanced glucose uptake and the up-

regulation of lipoprotein lipase activity (LPL) (69-70). Insulin also inhibits free fatty 

acid output via the phosphorylation and activation of cAMP specific 

phosphodiesterase-3B (PDE-3B) (71-73) which decreases cAMP levels and 

inhibits the cAMP/PKA dependant up-regulation of HSL activity. This results in 

reduced liberation of stored triglycerides from adipose tissue and enhanced uptake 

of free fatty acids from the plasma. Furthermore, insulin has been shown to 

increase the expression and phosphorylation of the nuclear receptor peroxisome 

proliferator activated receptor gamma (PPARy) (74-75). PPARy is a major 

transcriptional regulator of the adipogenic program that promotes pre-adipocyte 

differentiation, storage of fatty acids, and modulates the expression of multiple 

adipokines (76). 

Accordingly, insulin resistance in adipose tissue results in reduced lipid 

incorporation which may lead to excess storage of triglycerides in other 

metabolically important tissues such as skeletal muscle and liver. Enhanced 

triglyceride storage in these tissues (i.e. ectopic fat) is a hallmark of the insulin 

resistance syndrome and is hypothesized to be a cause of systemic insulin 

resistance (77-80). However, somewhat interestingly, the adipose specific insulin 

receptor knockout model does not display altered glucose homeostasis or develop 

systemic insulin resistance (81), indicating that there is most likely another 

mechanism involved in the development of systemic insulin resistance. 
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3- Inflammation-induced insulin resistance 
It is now widely accepted that inflammation is a key component of the etiology of 

obesity-linked insulin resistance, leading the way to T2DM and cardiovascular 

disease (CVD) (82-83). Over the past decade, genetic and pharmacological 

invalidation of multiple inflammatory mediators, such as inducible nitric oxide 

synthase (iNOS) and c-Jun N-terminal kinase (JNK), in metabolic tissues has 

proved to be an effective means of preventing the development and progression of 

insulin resistance in mice (84-86). Furthermore, metabolic targets for the 

prevention and treatment of insulin resistance such as adiponectin, AMP activated 

protein kinase (AMPK) and PPARy have also been shown to counter inflammation 

(87-89). Recent findings suggest that the origin of inflammation in obesity involves 

immune cell recruitment to adipose tissue (90-97); however, the primary event 

which promotes this phenomenon remains unknown. The next section will describe 

the chronic low grade inflammation present in obesity, discuss the immunological 

response to adipocyte hypertrophy, and provide a detailed description of the 

current state of understanding on how inflammation develops alongside an 

expanding adipose tissue mass. Finally molecular mechanisms by which 

inflammation may promote insulin resistance will be described. 

3.1 Obesity: A chronic low-grade inflammatory state 
It is well established that obesity is a chronic inflammatory disorder (83). Obesity-

linked type 2 diabetes is associated with a cytokine-mediated acute-phase 

response or stress response (98-101) alongside the characteristic formation of 

inflammatory aggregates in metabolic tissues (90-91; 93-96; 102-106). 

Interestingly, levels of C-reactive protein (CRP), an acute-phase response protein 

and a sensitive marker of low-grade inflammation, are associated with higher 

adiposity in children (101) and young adults who are healthy (100) and are 

independently related to insulin sensitivity in subjects who are nondiabetic (107). 

These findings confirm that an early onset, low-level systemic inflammation exists 

in persons who are overweight or obese. This chronic inflammatory state is in line 

with observations of elevated plasma levels of interleukin (IL)-6 and tumor necrosis 
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factor (TNF)a (100) and of overexpression of TNFa, IL-1B, IL-6, and interferon 

(IFN)-y in adipose tissues of humans and animals exhibiting obesity (84; 108). 

Interestingly an ever-increasing number of molecules that are best known for their 

roles in immunity are now being considered as key modulators of energy 

metabolism in insulin target cells (82-83) whereas a growing number of adipose-

specific molecules termed adipokines, including leptin, resistin, and adiponectin, 

now appear to modulate inflammation (109-112). The various immune factors 

influenced by obesity are listed in table 1. 

Table 1. Immune factors influenced by obesity 

Molecule Class Physiological Function 
Adiponectin Adipokine Suppresses macrophage function, NK cell 

cytotoxicity, and myelomonocytic proliferation. 
Induces antiinflammatory cytokine production 
and insulin sensitization (110; 113-115). 

Obesity Effect 
i plasma I ] 
(116) 

Adipsin Adipokine Analogue 
(117) 

of Human Complement Factor D î blood [ ] (118) 

1 CRP 

Ghrelin 

APP Cytokine production, complement activation, 
Phagocytosis, antigenic/apoptotic cell clearance 
(119) ;■■:■■ 

î serum [ ] (99) 

Peptide 
hormone 

Negative regulator of proinflammatory cytokine 
production, orexigenic, stimulates growth 
hormone release, and neurogenesis (120) 

I plasma [ ] 
(121) 

Haptoglobin 

IFN-y 

IL-18 

APP 

Cytokine 

Cytokine 

Prevents iron loss and superoxide production, 
and stimulates angiogenesis (122) 
Proinflammatory, activates innate immune 
system, enhances antigen presentation and 
iNOS expression, regulates TH1/TH2 balance, 
and controls cellular proliferation and apoptosis 
(124) 

î serum [ ] 
11231 
î [ ] adipose 
tissue (84) 

Proinflammatory, induces COX-2, PLA2, & iNOS 
(125) 

î serum [ ] 
1126) 

IL-1Ra Cytokine Antiinflammatory 
(125) 

competitively inhibits IL-1 t serum [ ] 
(127) 

IL-6 Cytokine Activates acute phase response, stimulates 
lymphocytes and hematopoietic colony 
formation (128) 

t serum [ ] 
(129) 

IL-8 Chemokine Neutrophil recruitment and activation (130) î plasma [ ] 
(131) 

IL-10 Cytokine Antiinflammatory, prevents IFN-y, IL-16, TNFa, 
IL-8, IL-12, and NO production by 
macrophages, monocytes, and TH1 cells (132) 

î serum [ ] in 
obesity I 
serum [ ] with 
MS (133) 
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Leptin 

TfâT 

Adipokine 

Eicosanoid 

Central regulation of energy balance, regulation 
of puberty and reproduction, functions in 
hematopoiesis and chemotaxis, modulates 
adaptive immune response, induces synthesis 
of pro-inflammatory cytokines, NO, and 
eicosanoids (134) 
Pro-inflammatory, promotes MCP-1, TNFa and 
IL-6 secretion from adipose tissue and promotes 
HSL expression in adipocytes (136) 

î serum [ ] 
(135) 

î [ ] adipose 
tissue (136-
137) 

MCP-1 

^CST 

Chemokine 

"Ctfokï 

Induces monocyte, basophil, NK cell, and T-cell 
chemotaxis and IL-4, IL-5, IFN-y production 
(138-139) 

t plasma [ ] 
(140) 

ne Primary regulator of mononuclear phagocyte 
survival, proliferation, differentiation, and 
function also mediates adipose tissue growth 
(141) 

T idi 
tissue 
expression 
1142) 

MIF Cytokine Proinflammatory, enhances 
induces TNFa, IL-8, and 
apoptosis, and antagonizes 
glucocorticoids (143) 

phagocytosis, 
IL-12, inhibits 
the effects of 

î plasma [ ] 
(144) 

RANTES Chemokine Induces leukocyte chemotaxis (145) î serum [ ] 
1146] 

Resistin Adipokine Proinflammatory, induces TNFa, IL-1B, IL-6, 
and IL-12, diabetogenic (112) 

î serum [ ] 
(147) 

SAA APP Promotes monocyte and T lymphocyte 
chemotaxis and adhesion, induces expression 
of extracellular matrix degrading 
métalloprotéinases (148) 

t plasma [ ] 
(149) 

TGFP Cytokine Inhibits lymphoid and myeloid cell proliferation, 
Induces differentiation of myeloid dendritic cells, 
suppresses tumor formation (150) 

î plasma [ ] 
(151) 

TNFa Cytokine Proinflammatory, activates neutrophils and 
platelets, enhances macrophage and NK cell 
phagocytosis, stimulates immune system (152) 

î plasma [ ] 
(108) 

Visfatin Adipokine Proinflammatory, B cell growth factor, inhibits 
neutrophil apoptosis, promotes smooth muscle 
cell maturation, possesses insulin mimetic 
activity (153) 

î plasma [ ] 
(154) 

5-HETE Eicosanoid Pro-inflammatory, stimulates MCP-1, IL-6 and 
IL-12 expression in adipocytes (137) 

î [ ] adipose 
tissue (137) 

12-HETE Eicosanoid Pro-inflammatory, stimulates TNFa, MCP-1, IL-6 
and IL-12 expression in adipose tissue (137; 
155) 

î [ ] adipose 
tissue (137; 
155) 

APP, acute-phase protein; COX-2, cyclooxygenase-2; LTB4, leukotriene B4; MCSF, monocyte 

colony stimulating factor; MIF, macrophage migration inhibitory factor; MS, metabolic syndrome; 

NK, natural killer; NO, nitric oxide; PLA2, phospholipase A2; RA, receptor antagonist; RANTES, 

regulated upon activation, normal T-cell expressed, and secreted; SAA, serum amyloid A; TGF-b, 

transforming growth factor beta; TH, T helper; HETE, hydroxyeicosatetraenoic acid; [ ], 

concentration; l , decrease; t, increase. 
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3.2 Immune cell accumulation in adipose tissue 

3.2.1 Adipose tissue macrophages 
In 2003, The Journal of Clinical Investigation simultaneously published two reports 

(90-91) that transformed our understanding of the primary pathogenic changes 

taking place in the visceral adipose tissue during obesity. These revelations clearly 

showed that obesity is characterized by progressive macrophage infiltration into 

adipose tissue that positively correlates with body mass index (BMI) and adipocyte 

size. Importantly, the infiltrating macrophages were shown to be responsible for 

almost all of the local expression of TNFa, IL-6 and iNOS in adipose tissue (90-91 ). 

These studies added depth and clarity to the discovery of Hotamisligil et al (108) a 

decade earlier which demonstrated the presence of pathogenic low-grade 

inflammation in obesity. Although it has become well accepted that inflammation is 

a major player in the development of insulin resistance and metabolic disease in 

obesity, prior to these findings (90-91), the cellular source of adipose inflammation 

remained a mystery. It is now known that adipocyte death and adipose tissue 

remodeling underlie the recruitment of bone marrow derived macrophages to 

visceral adipose tissue (156-157) where macrophages characteristically form 

inflammatory aggregates around dead or dying adipocytes in an arrangement 

termed 'crown like structures' (156). Chemokines such as chemokine (C-C) motif 

ligand 2/monocyte chemotactic protein-1 (CCL2/MCP-1) and osteopontin are 

believed to be critical for the recruitment of macrophages to adipose tissue (158-

159). Importantly, blocking the expression of either of these chemokines blunted 

macrophage infiltration into adipose tissue of obese mice and prevented the 

development of insulin resistance without altering fat mass. Conversely, 

overexpression of CCL2/MCP-1 in the adipose tissue of lean mice resulted in 

macrophage accrual and the development of insulin resistance in the absence of 

obesity (158). 

The work of Lumeng et al (160) has added another dimension to our understanding 

of adipose tissue macrophages by revealing that in contrast to those found in 

adipose tissue of lean animals, the vast majority of macrophages present in the 
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adipose tissue of obese mice are polarized towards a so-called M1 classically 

activated pro-inflammatory state. This subset of macrophages is characterized by 

elevated expression of the cell surface antigen CD11c as well as classic pro­

inflammatory genes such as TNFa and iNOS. In contrast, the predominant 

macrophage population in adipose tissue of lean mice displays an M2 or 

alternatively activated profile that is associated with higher expression of arginase-

1 and IL-10 (160). This characterization of adipose tissue macrophages was not 

surprising since the earlier work of Weisberg et al (161) had shown that it is the 

notoriously pro-inflammatory CCR2+ subset of circulating monocytes that are 

recruited to adipose tissue with obesity (161-162). Accordingly, the work of 

Lumeng et al (160) confirmed that adipose tissue macrophages from obese CCR2 

knock-out mice express M2 markers to a similar degree as lean mice (160). 

The discovery that the adipose tissue macrophage population consists of pro and 

anti-inflammatory subsets has led to the suggestion that it may be possible to limit 

adipose tissue inflammation in obesity by promoting M2 skewing. On this note, it 

has been revealed that cellular metabolic pathways play a key role in the 

determination of the macrophage inflammatory phénotype. Indeed, the M1 

phénotype is associated with glycolysis while the M2 phénotype is closely linked to 

oxidative metabolism (163-164). Importantly, the transcriptional co-activator 

PGC18, that promotes the expression of oxidative enzymes, was identified as a 

transcriptional switch that underlies IL-4 mediated alternate macrophage activation 

(164). Activation of the nuclear receptors PPARy and PPAR5 has also been shown 

to promote the switching of classically activated macrophages towards an 

alternately activated M2 phénotype (89; 165). Interestingly, it is now known that the 

insulin sensitizing actions of thiazolidinediones (TZDs) are significantly reduced in 

mice lacking macrophage PPARy (166-167). These findings suggest that M2 

skewing of adipose tissue macrophages may be a viable therapeutic strategy for 

the prevention of obesity-linked inflammation and insulin resistance. 
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3.2.2 Neutrophils 
Following the discovery of adipose tissue macrophages, flow cytometry based 

profiling of the stromal vascular fraction of visceral adipose tissue has identified 

other types of immune cells such as neutrophils and T-cells that are also 

modulated during the course of obesity (92-93; 95-96). Interestingly, it appears that 

adipose tissue inflammation in obesity resembles a classical inflammatory 

response in that neutrophil recruitment to adipose tissue is transient and precedes 

macrophage accumulation in this tissue (92). However, the precise role of 

neutrophils in promoting adipose inflammation remains unclear since the authors of 

this work did not employ a model that would deplete or inactivate neutrophil 

recruitment to adipose tissue. Despite this shortfall, it has long been well 

appreciated that neutrophil recruitment in other classical inflammatory settings 

serves as a key primer for monocyte recruitment by promoting a local milieu which 

favors monocyte adhesion, extravasation and activation (168). It is conceivable 

that neutrophil recruitment would play a similar role in adipose tissue inflammation. 

Thus studies to determine whether this is the case are highly warranted. 

In addition to being recruited to adipose tissue in the very early stages of obesity, 

(within 3 to 7 days of the commencement of a high fat diet) (92), circulating 

neutrophils are also found to be chronically activated in blood of obese individuals 

(169). Interestingly, studies in lean rats have shown that circulating neutrophils are 

activated within the first 3-4 hours directly following a high fat meal (170). These 

data suggest that neutrophils likely play an important early role linking excess 

nutrient intake to an immune response. However further study in this area is clearly 

required. 

3.2.3 T-cells 
In contrast to neutrophils, the regulation of adipose tissue inflammation by different 

T-cell populations appears rather well defined. In 2009, three simultaneous reports 

in Nature Medicine (93; 95-96) provided complementary discoveries revealing that 

obesity-related modulation of multiple classes of T-cells in adipose tissue plays a 

primordial role in adipose tissue inflammation and insulin resistance. The work of 
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Nishimura et al (93) centered primarily on the role of CD8+ T-cells in obesity. The 

CD8+ subset of T-cells, otherwise referred to as cytotoxic T-cells, are known to 

predominantly produce IFNy and IL-2, cytokines that promote a classical type 1 

inflammatory response (171). Nishimura et al (93) report that numbers of CD8+ T-

cells are increased in adipose tissue with obesity and that this increase precedes 

macrophage recruitment to adipose tissue occurring as early as 2 weeks after the 

commencement of a high fat diet. Complementary immunohistochemistry revealed 

that CD8+ T-cells localize alongside macrophages within crown like structures. 

Importantly, CD8+ T-cell depletion in adipose tissue of obese mice or neutralization 

of CD8+ T-cells with anti-CD8 antibody blunted macrophage recruitment to adipose 

tissue. These data suggest that the expansion of the CD8+ T-cell population is a 

key step in the recruitment of macrophages to adipose tissue. Interestingly, using 

co-culture experiments the authors showed that adipocytes from obese animals 

promote CD8+ T-cell proliferation. Furthermore, they showed that an interaction 

between adipocytes and CD8+ T-cells is required to promote monocyte 

differentiation to macrophages. Indeed, neither adipocytes nor CD8+ T-cells alone 

possessed the ability to promote monocyte differentiation to macrophages. 

However, when in the presence of both adipocytes and CD8+ T-cells, monocytes 

differentiated into macrophages and this differentiation was enhanced significantly 

when adipocytes were derived from obese animals. Moreover, additional co-culture 

experiments revealed that activated CD8+ T-cells secrete the chemokines MCP-1, 

MCP-3 and RANTES and promote macrophage migration. Finally, Nishimura et al 

(93) showed that activated CD8+ T-cells stimulate macrophage expression of TNFa 

and this effect was greatest when using CD8+ T-cells isolated from the adipose 

tissue of obese animals. Taken together this work describes a primary role for 

CD8+ T-cells in the development of adipose tissue inflammation wherein expanding 

adipocytes stimulate CD8+ T-cell proliferation and activation which provokes 

monocyte recruitment, differentiation and activation in adipose tissue. 

In contrast to the work of Nishimura et al (93) which focused primarily on the role of 

CD8+ T-cells the work of Winer et al (95) centered on the obesity-related 

modulation of CD4+ T-cells in adipose tissue. CD4+ T-cells can be divided into 
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multiple subsets which include the pro-inflammatory IFNy expressing Th1 T-cells 

and IL-17 expressing Th17 T-cells as well as the anti-inflammatory GATA3+ Th2 T-

cells and Foxp3+ T-regulatory cells (T-regs) that are known to express high levels 

of anti-inflammatory cytokines IL-4 and IL-10. This work showed that CD4+ T-cells 

are present in visceral adipose tissue and also localize to crown like structures 

alongside macrophages. Importantly, the ratio of Th1 to T-regs and Th2 T-cells in 

visceral adipose tissue increased with increasing adiposity as a result of expanding 

Th1 numbers in the face of static T-regs and Th2 T-cell populations. This Th1 

expansion in visceral adipose tissue with obesity appears to be antigen driven 

since the Th1 cells in adipose tissue of obese mice display a severely biased T-cell 

receptor Va repertoire. However, the antigen/s responsible remain to be identified. 

Remarkably, experimental strategies that restored the balance between Th1 to T-

regs or Th1 and Th2 cells reduced inflammation and restored insulin sensitivity in 

obese mice. Moreover, improving the Th2 population also had an effect on 

adiposity. Together these data suggest that unidentified obesity-related adipose 

tissue antigens promote the specific expansion of the Th1 population of CD4+ T-

cells in adipose tissue resulting in an inflammatory bias in the adipose tissue CD4+ 

T-cell population which leads to the development of adipose tissue inflammation 

and insulin resistance. 

These findings were complemented by the work of Feuerer et al (96) which 

showed that lean adipose tissue contains a unique population of T-regs that 

express extremely high levels of the anti-inflammatory cytokine IL-10. This 

population was shown to decline in adipose tissue with high fat feeding. 

Importantly, widespread depletion of T-regs in lean mice led to increased 

expression of the inflammatory mediators TNFa, IL-6, SAA, MCP-1 and RANTES 

in adipose tissue and increased plasma insulin indicative of the induction of insulin 

resistance. Conversely, in situ expansion of T-regs in obese mice fed a high fat diet 

for 15 weeks significantly reduced plasma glucose and increased adipose 

expression of IL-10. Furthermore, in vitro experiments showed that IL-10 can blunt 

TNFa mediated expression of the inflammatory mediators RANTES, SAA-3 and IL-

6 in adipocytes. These data suggest that T-regs likely play the important role of 
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repressing inflammation in lean adipose tissue and when their numbers are 

reduced in obesity the brake on adipose inflammation is released. Interestingly, 

samples taken from omental (visceral) and subcutaneous adipose tissue of obese 

individuals revealed higher presence of T-regs in the subcutaneous adipose depot. 

This difference may explain in part the lesser inflammatory nature of the 

subcutaneous adipose depot. 

In addition to these three key reports, Ohmura et al (94) recently described a role 

for pro-inflammatory natural killer (NK) CD4+ T-cells in adipose tissue inflammation. 

Here they showed that adipose macrophage infiltration and glucose intolerance is 

greatly reduced in high fat fed mice lacking NK T-cells. Alternatively, when NK T-

cells were activated in high fat fed wild-type mice by the administration of a-

galactosylceramide glucose intolerance as well as adipose macrophage infiltration 

and cytokine expression were exacerbated. These data fit nicely with the overall T-

cell picture which suggests that during the course of obesity a coordinated increase 

of pro-inflammatory subsets (e.g. CD8+, Th1, and NK T-cells) with diminished or 

static populations of anti-inflammatory T-cells (e.g. T-regs and Th2 T-cells) in 

adipose tissue promotes the onset of adipose inflammation that is characterized by 

macrophage infiltration and pro-inflammatory cytokine and chemokine expression. 

3.2.4 Eosinophils 
Recent evidence suggests that eosinophils may also be found in adipose tissue 

where they play a similar role to T-regs suppressing inflammation (172). Since IL-4 

and IL-13 are known to be key to maintaining an alternatively activated 

macrophage population in healthy adipose tissue of lean mice the authors of this 

work searched for IL-4 expressing cells in adipose tissue using IL-4 reporter mice 

that contain a green fluorescent protein (GFP) construct downstream of the 

endogenous IL-4 gene. In this experiment Wu et al (172) found that a resident 

eosinophil population accounts for 90% of all IL-4 expressing cells in adipose 

tissue with basophils, T-regs and Th2 T-cells accounting for the remaining 10%. 

Eosinophils were shown to make up 4-5% of total adipose stromal vascular cells 

however these numbers declined in adipose tissue with increasing adiposity. In 
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accordance with a regulatory role for eosinophils in adipose tissue inflammation, 

eosinophil deficient mice displayed similar numbers of total adipose tissue 

macrophages however there was a significant reduction in the alternatively 

activated M2 population. Importantly, this could be reversed via reconstitution of 

eosinophils with wild-type but not IL-4/IL-3 double knock out bone marrow. These 

data suggest that eosinophil derived IL-4/IL-13 signaling is a key regulator of the 

macrophage inflammatory phénotype in adipose tissue. Interestingly, high fat diet 

studies employing mice with either depleted or enhanced eosinophil populations 

also revealed an important role for adipose eosinophils in the regulation of adipose 

mass. Indeed, whereas eosinophil deficient (AdblGATA) mice displayed elevated 

adiposity, hypereosinophilic IL-5 transgenic (Tg) mice had perigonadal fat pads 

about half the size of their wild-type counterparts. Infection of high fat fed mice, 

with Nippostrongylus brasiliensis, a migratory helminth also increased eosinophil 

numbers in adipose tissue and reduced alternatively activated adipose 

macrophages and adipose mass supporting the findings in IL-5 Tg mice. 

Remarkably these changes were maintained for 35 days post infection despite the 

helminth being cleared after 8 days. Glucose tolerance and insulin sensitivity was 

positively correlated in all studies with adipose eosinophil numbers however this is 

not surprising since experimental manipulation of eosinophils clearly influenced 

adipose mass. These data suggest that eosinophils play a key role in adipose 

biology not only by supplying the signal which maintains adipose tissue 

macrophages in an alternatively activated state but also by limiting adipose tissue 

expansion. Future studies are warranted to determine whether the eosinophil effect 

on adipose tissue mass are directly related to macrophage polarization or a 

separate direct metabolic action of eosinophils and eosinophil secreted factors on 

adipocyte lipogenesis, angiogenesis, energy expenditure or satiety signaling 

among other possibilities. 

3.2.5 Mast cells 
Mast cells like eosinophils are commonly associated with allergic inflammation; 

however, in contrast to eosinophils mast cell numbers appear to be increased in 

adipose tissue with obesity. In a letter to Nature Medicine Liu et al (173) revealed 
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that mast cells are increased in adipose tissue of obese humans and animals 

where they associate with microvessels. Interestingly, Kitw_sh/W"sh mice that are 

mast cell deficient as well as mice treated with the mast cell stabilizers disodium 

cromoglycate (DSCG) or Kitotifen displayed reduced weight gain that was related 

to lower visceral and subcutaneous adiposity. The anti-obesity effect of mast cell 

stabilizers was also present in mice that were rendered obese by 12 weeks of high 

fat feeding prior to stabilizer administration suggesting that a key role of mast cells 

in adipose tissue is to facilitate adipose tissue expansion. The anti-obesity 

phénotype of mast cell deficient/inactive mice was associated with an elevated 

basal metabolic rate that was linked to higher uncoupling protein 1 (UCP-1) 

expression in brown fat as well as reduced mast cell associated protease activity 

and angiogenesis in adipose tissue. These data suggest that adipose tissue mast 

cells co-ordinate basal energy expenditure with adipose tissue expansion. Indeed, 

since extracellular matrix proteolysis plays an important role in promoting 

angiogenesis by releasing proangiogenic peptides the authors proposed that mast 

cell associated protease activity was required for adipose tissue angiogenesis and 

tissue expansion. Importantly, they confirmed that reconstituting the mast cell 

population of Kitw"sh/W_sh mice with bone marrow derived mast cells from wild type 

and TNFa deficient mice but not IL-6 and IFNy deficient mice enhanced cathepsin 

activity and promoted body weight recovery in these mice. Complementary in vitro 

experiments revealed that exposure to bone marrow derived mast cells from wild 

type and TNFa deficient mice but not IL-6 and IFNy deficient mice stimulates 

cathepsin activity in cultured 3T3-L1 adipocytes. Taken together these data 

suggest that mast cell derived IL-6 and IFNy but not TNFa stimulate adipocyte 

derived cathepsin activity which is central to adipose tissue angiogenesis and 

expansion. Despite these interesting findings studies in mice that overexpress 

cathepsin in adipose tissue crossed with Kitw"sh/W"sh mice or treated with mast cell 

stabilizers are warranted to confirm that mast cell dependent proteolysis is the 

major mechanism by which mast cells regulate obesity. 



20 

3.2.6 B-cells 
In addition to these studies on macrophages, neutrophils, T-cells, eosinophils and 

mast cells a remarkable report in Nature Medicine has very recently described in 

great detail the role of B-cells in the etiology of adipose tissue inflammation (174). 

Herein B-cells were shown to accumulate in visceral adipose tissue after only 4 

weeks of high fat feeding and this was associated with an increase in IgG and IgM 

antibodies, especially lgG2c, which was increased 3 fold in adipose tissue of obese 

mice. Importantly IgG and IgM were shown to be localized to crown like structures 

at the interface of multinucleate macrophages and dying adipocytes. Suggesting 

that antibodies are likely employed for dead cell clearance. Spleen IgG secretion 

was also increased and this was associated with an increase in serum lgG2c 

supporting the existence of a specific humoral immune response to obesity. 

Importantly, high fat fed B-cell null mice were as obese as their wild type 

counterparts yet displayed reduced fasting glycemia alongside improved glucose 

tolerance and insulin sensitivity. Reconstituting B-cells from obese mice but not 

lean mice reversed these effects. With regards to adipose inflammation, high fat 

fed B-cell null mice displayed a reduced inflammatory phénotype that was 

characterized by a decrease in M1 macrophages, decreased expression of IFNy 

and TNFa in the stromal vascular fraction, and reduced IFNy expressing CD8+ T-

cells. These data suggest that B-cells play a role in activating rather than recruiting 

macrophages and CD8+ T-cells in adipose tissue. Accordingly, B-cell reconstitution 

in lymphocyte null mice had no detrimental effects on adipose inflammation or 

insulin sensitivity indicating that B-cells require the actions of other immune cells to 

exert their effects. On this note, the observation that B-cell reconstitution in major 

histocompatibility complex I (MHCI) or MHCII null mice had no influence on 

inflammation or glucose metabolism revealed that B-cell modulation of T-cells in 

adipose tissue occurs via antigen presentation in a MHC dependant manner. 

Furthermore, IgG transfer from obese mice worsened insulin sensitivity in obese 

mice but not lean mice and IgG was found to be localized at the crown like 

structures. These data imply that IgG require the presence of an obesity-related 

antigen to exert their effects. As for B-cell reconstitution, IgG increased TNFa and 
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M1 macrophage polarization and it was shown that the Fc region of the IgG was 

critical for these effects on adipose tissue macrophages. Finally, the authors 

examined circulating IgG from lean and obese individuals and found that 122 IgG 

segregate with insulin resistance. Notably, those at the top of the list were reactive 

for intracellular proteins such as RNA polymerase and Golgi proteins. These data 

strongly suggest that there is an auto-immune response specific to obesity that 

involves a humoral response to intracellular proteins released from dead 

adipocytes. This likely also explains the severely biased T-cell receptor Va 

repertoire described for Th1 T-cells. 

3.3 What leads to adipocyte death? 
While it has now become clear that adipocyte death plays a central role in the 

immune response present in adipose tissue during obesity the precise cause of 

this phenomenon remains unknown. Two plausible candidates that have been 

proposed in the literature are endoplasmic reticulum (ER) stress and hypoxia. 

Those proponents of the hypoxia theory suggest that as adipocytes and adipose 

tissue expand they reach a critical size where hypoxia ensues leading to cell death 

and the induction of signals for angiogenesis and adipose tissue remodeling (175). 

Accordingly multiple reports have shown reduced oxygen tension in adipose tissue 

of obese animals and induction of hypoxia related molecular signals such as 

hypoxia inducible factor-1 a (HIF-1 a) and vascular endothelial growth factor (VEGF) 

(175-178). Furthermore, unsurprisingly, experimental hypoxia has been shown to 

cause an inflammatory response in cultured adipocytes and macrophages and to 

also induce adipocyte apoptosis and necrosis (176; 178). The work of Strissel et al 

(157) supports this theory showing that macrophage infiltration in obesity occurs in 

a cyclical manner that is timed to a complete tissue remodeling phenomenon 

where the large cells are replaced by multiple smaller adipocytes. 

Alternatively, the ER stress theory suggests that the endoplasmic reticulum of 

expanding adipocytes may be overwhelmed by the higher protein and lipid 

synthesis demands required to meet the changes in tissue architecture and 

increased secretory profiles (179-180). Indeed, ER stress is known to occur when 
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changes in cellular metabolism result in the accumulation of un/misfolded proteins 

in the ER leading to an unfolded protein response. In mammals, this involves the 

activation of NF-KB and JNK pathways and the transcription of inflammatory genes 

such as those encoding the pro-inflammatory cytokines. Such a response if left 

unresolved, as in the case of increasing obesity, may lead to apoptosis via JNK 

mediated expression of the Fas death receptor (181-182). Work by Ozcan and 

colleagues (183) first linked ER stress to obesity and the development of insulin 

resistance. They demonstrated the presence of ER stress in peripheral tissues 

during obesity and that the genetic induction of ER stress caused insulin resistance 

in the absence of obesity. Furthermore, a follow-up study showed that use of 

chemical chaperones effectively reduces ER stress in obese mice and improves 

insulin sensitivity (184). However, these studies did not describe whether ER stress 

is causally linked to adipocyte cell death or immune cell recruitment in obese 

animals. In support of a role for ER stress in adipocyte death, ER stress is known 

to be involved in beta cell apoptosis in the pancreas of hyperinsulinémie mice (185-

186). It is thus plausible that ER stress may play a similar role in the adipocyte 

which like the pancreatic beta cell has higher secretory demands in obese mice. 

3.4 Pattern recognition receptors: An additional source of 

inflammation in obesity 
Although present evidence based on immune cell localization in adipose tissue 

(156) and antibody/antigen profiles (174) seem to suggest that adipocyte cell death 

is the primordial signal for the induction of obesity-linked inflammation, an 

additional source of inflammation has also been established for obesity. Indeed, 

Toll-like receptors (TLR) 2 and 4, which are an important piece of the innate 

immune system and serve as endogenous sensors for pathogen associated 

molecular patterns (PAMPs), have been found to be prominently activated in obese 

humans and animals (187-192). TLR can be found on the cell surface of sentinel 

immune cells, as well as epithelial and endothelial cells (193-195). Recent cell 

culture studies also suggest that TLR may be present and intact on the surface of 

adipocytes (196), skeletal myotubes (197) and hépatocytes (198). Importantly, 
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genetic invalidation of either TLR-2 or 4 was found to be sufficient to prevent 

obesity-linked inflammation and insulin resistance (189-190; 192; 199-200). 

Two mechanisms have been proposed to explain the higher activation of TLR in 

obesity. Firstly, saturated fatty acids have been suggested to act as endogenous 

ligands for TLR-2 and 4 (191; 197; 199). However, this mechanism is presently 

subject to debate as there is some evidence to suggest that metabolites of 

saturated fatty acids such as ceramides rather than the saturated fatty acids 

themselves are the actual ligands of TLR (201-202). Nevertheless there appears to 

be clear evidence in vivo that lipid infusion leads to activation of TLR (191). 

Furthermore, a lipid dependent mechanism underlying obesity-linked inflammation 

is in line with a recent report from Kosteli et al (203) which shows that fat cell 

lipolysis directly promotes macrophage recruitment to adipose tissue where 

macrophages appear to buffer extracellular lipid. However the involvement of TLR 

in lipolysis mediated macrophage recruitment was not studied in this work. Further 

effort is warranted in this area to determine whether lipid mediated activation of 

TLR is an underlying cause or simply an exacerbating factor by which adipose 

tissue lipolysis propels obesity-linked inflammation. 

In addition to fatty acid mediated activation of TLR in obesity it has also been 

proposed that gut microbiota may promote obesity-linked inflammation via a TLR 

dependent mechanism. Indeed, it is now known that both human and murine 

obesity is characterized by alterations in the gut microbiome that promotes 

increased energy harvest and inflammation (204-206). The obesity-related gut 

microbiome has been shown to contain higher levels of Gram-negative bacteria 

which contain the endogenous TLR ligand, lipopolysaccharide (LPS), in their cell 

wall (205). Importantly, high fat feeding was also found to strongly increase 

intestinal permeability by reducing the expression of genes coding for proteins of 

the tight junctions (206). These two factors appear to combine to raise circulating 

LPS by two to three fold in obese mice, a state termed metabolic endotoxemia 

(205). Importantly, transfer of gut microbiota from obese mice to lean mice induces 

obesity, inflammation and insulin resistance and this can be prevented by genetic 
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deletion of the TLR co-receptor CD14 (205-206). Together these data support a 

role for TLR in obesity-linked inflammation and likely provide a mechanism for the 

inflammation witnessed in tissues other than adipose, such as liver and skeletal 

muscle, where cell death may be less important. However, it is noteworthy that 

TLR are also likely involved in the primary immune response to adipocyte cell 

death since damage associated molecular patterns (DAMPs) such as intracellular 

proteins are important endogenous ligands of TLR (207). 

3.5 Immune cell recruitment in other metabolic tissues 
Although most studies on leukocyte recruitment in obesity are adipocentric some 

studies have also identified leukocyte homing and accrual in other important 

metabolic tissues in obesity, such as liver and skeletal muscle. Indeed, greater 

numbers of macrophages have been found between skeletal muscle fibers in 

obese humans (105) and skeletal muscle of obese animals is also found to be 

characterized by streaks of adipose tissue which also contains higher levels of 

macrophages (90). Furthermore, elevated numbers of hepatic neutrophils, 

macrophages/Kupffer cells, CD4 and CD8 T-cells as well as B cells have been 

described in obesity-related fatty liver (102-104; 106). These data suggest that 

immune cell recruitment is likely fundamentally linked to the changes in metabolic 

homeostasis that occur with obesity and that immune cells recruited to tissues 

other than adipose also contribute to the development of systemic inflammation in 

obesity. Importantly, adipose tissue inflammation appears to precede immune cell 

recruitment to liver (102). However, further studies are warranted to determine the 

precise sequence of immune cell recruitment to each of these important metabolic 

tissues. 

In contrast to adipose tissue, the mechanism responsible for immune cell 

recruitment in skeletal muscle and liver has not been studied in great detail; 

however, it is noteworthy that neutrophils and macrophages in fatty liver have been 

reported to encapsulate steatotic hépatocytes in aggregates that resemble adipose 

tissue crown like structures (104). These data suggest that a cell death related 

mechanism might also contribute to hepatic leukocyte recruitment in obesity. 
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Alternatively, antibiotic treatment which reduces circulating LPS was also shown to 

effectively reduce leukocyte accumulation in liver of obese mice (106). These data 

imply a role for metabolic endotoxemia and TLR in obesity-related liver 

inflammation. Future studies are clearly required to elucidate the precise 

mechanisms responsible for immune cell accrual in skeletal muscle and liver with 

obesity. 

3.6 The evolution of obesity-linked systemic inflammation 
In parallel with adipose tissue expansion in obesity what begins as local 

inflammation induced by leukocyte infiltration and activation spreads into other 

tissues and eventually evolves into a chronic low grade systemic inflammatory 

state. By the time that insulin resistance has developed in obese individuals 

inflammatory signaling pathways have already been activated in most tissues 

throughout the body and vascular damage has likely begun (208). Current 

evidence supports a model wherein leukocyte infiltration and activation in adipose 

tissue leads to the development of pathogenic global inflammation by means of a 

vicious pro-inflammatory cycle. In essence, the primary invading leukocytes in the 

adipose tissue produce pro-inflammatory factors including cytokines, chemokines, 

eicosanoids, antibodies and reactive oxygen and nitrogen species that induce 

insulin resistance and promote pro-inflammatory adipokine, chemokine, cytokine 

and eicosanoid production as well as lipolysis and possibly cell death in the 

surrounding adipocytes. This in turn stimulates further leukocyte infiltration and 

activation, greater production of antibodies and pro-inflammatory mediators, 

increased circulating lipids, lipid deposition in other tissues and the initiation of the 

acute phase response. 

The acute phase response induced by pro-inflammatory cytokines such as TNFa, 

involves a series of reactions in sites distal to the inflammatory foci that promote 

the neutralization of the inflammatory agent(s) (209). Upon the induction of the 

acute phase response hepatic protein synthesis switches to major plasma 

elements required for proper immune function such as complement factors, 

cytokines, coagulation proteins, metal-binding proteins, proteinase inhibitors and 
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major acute phase reactants such as C-reactive protein (CRP) and serum amyloid 

A (SAA) (210). These factors further the spread of inflammation in obesity and are 

involved in the pathogenesis of obesity-related cardio-metabolic complications 

(211). Indeed, while seen to be necessary for the resolution of acute cases of 

inflammation, such as bacterial infection, the acute phase response appears to be 

harmful when sustained over prolonged periods of time, such as in obesity-linked 

chronic low grade inflammation, where circulating concentrations of acute phase 

reactants such as CRP correlate positively with both markers of adiposity and 

cardio-metabolic disease risk (98). Thus it may be said that the chronic feed­

forward production of pro-inflammatory cytokines, chemokines, adipokines, 

eicosanoids, antibodies and acute phase reactants mediates the spread of 

inflammation in obesity (Figure 3). 

THE EVOLUTION OF INFLAMMATION IN OBESITY 
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Figure 3. Proposed model for the evolution of inflammation in obesity 
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3.7 Mechanisms linking inflammation to insulin resistance in 

obesity 
Several lines of evidence support a causal link between inflammation and the 

development of insulin resistance. Indeed, acute inflammatory stimuli (e.g. LPS) 

and also some pro-inflammatory cytokines, adipokines, and chemokines (e.g. 

TNFa, IL-1B, IFN-y, resistin, and MCP-1) overexpressed in obesity are known to 

promote insulin resistance (84; 108; 147; 212-213). We are now aware that this 

pathogenic effect of inflammation is mediated by the activation of protein kinases, 

lipid mediators, and transcriptional pathways in insulin target tissues that may 

impair insulin signal transduction in sites both proximal and distal to the insulin 

receptor. It is noteworthy that some of these pathways, particularly the kinase and 

lipid-mediated, are also involved in free fatty acid and amino acid-induced insulin 

resistance (214-216). The potential mechanisms by which these pathways promote 

the development of inflammation-induced insulin resistance will be discussed in the 

following sections. 

3.7.1 The Lipid Mediators 

3.7.1.1 The sphingomyelin pathway 
The sphingomyelin pathway is a lipid signaling pathway that is initiated upon 

activation of sphingomyelinases by various stress signals (217). The activated 

sphingomyelinases cleave the membrane phospholipid sphingomyelin forming 

ceramide and phosphorylcholine. The newly formed ceramide is metabolically 

active and functions as a second messenger. In humans, skeletal muscle ceramide 

content is inversely related to insulin sensitivity (218), and substantial evidence 

suggests that the pro-inflammatory cytokines TNFa, IL-13, and IFN-y, which are all 

elevated in obesity, employ the sphingomyelin pathway to effect signal 

transduction in target tissues (219-220). Furthermore, enzyme mediated ceramide 

catabolism was recently revealed to underlie the beneficial actions of the insulin 

sensitizing adipokine adiponectin (221). 
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In line with these data, mounting evidence suggests that the ceramide pathway is 

necessary for the induction of inflammation-induced insulin resistance. Indeed, 

TNFa promotes activation of acid-sphingomyelinase (A-SMase) and the formation 

of ceramides that when introduced to 32D cells in culture increase IRS-1 serine 

phosphorylation and subsequently impair the insulin receptor kinase (222-223). 

Other studies suggest that ceramides also act downstream of IRS-1 (224), causing 

insulin resistance either by blocking Akt/PKB recruitment to the plasma membrane 

(225-226), by stimulating protein phosphatase 2A-induced dephosphorylation of 

Akt (227-228), or by promoting the transcriptional repression of the GLUT4 glucose 

transporter (229-230) (see Figure 4). 
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It is noteworthy that generation of ceramide may also lead to the activation of other 

stress signaling pathways including JNK and PKCÇ (231-232). It is therefore likely 

that these pathways act downstream to directly mediate ceramide induced-insulin 
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resistance. Indeed, ceramide induced PKCÇ-mediated phosphorylation of Akt on 

the PH domain appears to be responsible for impaired Akt recruitment to the 

membrane (233). It is likely that a similar indirect mechanism involving the 

activation of stress pathways is also responsible for the ceramide-induced serine 

phosphorylation of IRS-1 but this remains to be demonstrated. Nevertheless, 

substantial support exists for the role of this lipid derivative in inflammation-induced 

insulin resistance. 

3.7.1.2 Gangliosides 
Gangliosides are another class of lipids that have been proposed to mediate the 

insulin desensitizing effect of cytokines. Gangliosides are acidic glycosphingolipids 

that are distributed alongside sphingomyelin and cholesterol within the cell 

membrane in functionally important microdomains known as lipid rafts (234). 

Heightened ganglioside content has been observed in the adipose tissue of two 

animal models of obesity (235) and studies using genetic models of ganglioside 

upregulation (236), and depletion (237), support a role for Gangliosides in insulin-

resistance in vivo. Importantly, TNFa administration was shown to enhance cellular 

ganglioside GM3 content by raising the expression of GM3 synthase and this 

response was seen to be necessary for the insulin-desensitizing effect of TNFa 

(238). Together these data suggest that Gangliosides are involved in inflammation-

induced insulin resistance; however, more work is required to determine the 

precise molecular mechanisms involved. It shall be interesting to see whether 

gangliosides, like ceramides, interact with other stress signaling pathways to exert 

their effects (see Figure 4). 

3.7.2 The Protein Kinase Mediators 

3.7.2.1 The MAP kinases 
It is well known that pro-inflammatory cytokines activate MAP kinases in several 

cell types. The classical MAP kinase pathways include p42/44 (ERK-1/2), p38, and 

the c-jun N-terminal kinase (JNK). TNFa has been reported to activate each of 

these pathways (239-242), and the latter was reported to interact with IRS-1 and 
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increase its phosphorylation on serine 307 (243). Ser307 (Ser312 in humans) is 

located near the phophotyrosine-binding (PTB) domain in IRS-1 and is known to be 

phosphorylated by several mechanisms, including insulin-stimulated kinases and 

TN Fa-activated kinases like JNK1 (242-243). Phosphorylation of Ser307 by JNK1 

disrupts the interaction between the catalytic domain of the insulin receptor and the 

PTB domain of IRS-1, resulting in reduced insulin stimulation of downstream 

effectors such as Pl-3kinase (243). 

In accordance with this mechanism, JNK activation is elevated in insulin target 

tissues in obesity and the absence of JNK, induced by genetic ablation, confers 

resistance to the development of obesity and enhances insulin signaling (86). 

Furthermore, pharmacological inhibition of JNK using the cell permeable JNK 

inhibitory peptide improves insulin sensitivity and glucose tolerance in diabetic 

mice (85) and hepatic expression of a dominant negative JNK decreases the 

expression of gluconeogenic enzymes and reduces hepatic glucose output (244). 

The presence of JNK interaction protein-1 (JIP-1) is essential for the induction of 

JNK induced insulin resistance since JIP-1 acts as a scaffolding protein facilitating 

the interaction between JNK and its upstream signaling partners MAP kinase 

kinase-4 and 7 (245). Interestingly, JNK was shown to be required for both the 

production of TNFa and also its lipolytic effect in adipose tissue (240; 246). These 

data support a role for JNK in the development of obesity-linked inflammation and 

inflammation-induced insulin resistance. It will be interesting to see in the future 

whether this role is ceramide-dependent. 

Although the role of the other members of the MAP kinase family has been less 

studied they also appear to play a part in inflammation-induced insulin resistance. 

Indeed, TNFa-induced insulin resistance is also blocked by PD98059, an inhibitor 

of MEK, the upstream activator of p42/44, (239; 242). Furthermore, p38 MAP 

kinase is rapidly activated in adipocytes upon exposure to TNFa and IL-1, and 

adenovirus-mediated overexpression of p38 down-regulates GLUT4 expression in 

these cells (241). Thus the MAP kinase family appears to play a prominent role in 

inflammation-mediated insulin resistance. However, further research is necessary 
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to elucidate the precise means and extent to which each member is involved (see 

figure 5). 

3.7.2.2 The mTOR/S6K1 nutrient sensing pathway 
First discovered as a target of the immunosuppressive drug rapamycin, mTOR is 

known to integrate signals arising from nutrients as well as growth factors. mTOR 

and its downstream effector S6K1 both possess serine/threonine kinase activity 

and activation of the mTOR/S6K1 pathway by insulin and amino acids is well 

known to inhibit insulin action by increasing phosphorylation of IRS-1 on multiple 

serines (215; 247-250). The mTOR pathway has also been implicated in cytokine-

induced insulin resistance since both TNF-a and IFN-y can activate mTOR/S6K1 

and cause inhibitory serine phosphorylation of IRS-1 (251-253). mTOR/S6K1 

activation is also necessary for endotoxin-induced production of inflammatory 

mediators in macrophages (254). Importantly, TNFa infusion in healthy humans 

induces insulin resistance in skeletal muscle in association with increased 

activation of S6K1 and elevated serine phosphorylation of IRS-1 (255). These data 

support the involvement of the mTOR/S6K1 pathway in inflammation-induced 

insulin resistance (see Figure 5). 

3.7.2.3 Janus Activated Kinase (JAK) 
Jaks act as tyrosine kinases for ligated receptors that lack intrinsic kinase activity. 

Accordingly Jaks are involved in early signal transduction for a wide variety of 

polypeptides which include leptin, TNFa, most interleukins, and IFN-y (256). In 

inflammatory signaling, MAP kinases and also transcriptional mediators of 

inflammation-induced insulin resistance are often downstream of Jak suggesting 

that this protein may be involved in inflammation-induced insulin resistance. In line 

with this rationale, Jak2 is more highly expressed in obese insulin-resistant animals 

(257-259), and recent findings suggest that Jak2 may directly interact with insulin 

signaling intermediates and impair insulin signaling by repressing Akt Ser473 

phosphorylation in insulin-resistant muscle cells (260). Jak2 was also found to 

partially mediate ceramide-induced defects in insulin signal transduction. Thus 

Jaks appear as potential mediators of inflammation-induced insulin resistance. 
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However, the extent of their contribution in obesity remains to be fully elucidated 

(see Figure 5). 
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Figure 5. The protein kinase mediators of insulin resistance 

3.7.3 The Transcriptional Mediators 

3.7.3.1 The IKB kinase (IKK)-NFfcB pathway 
NF-KB , a collective name for inducible dimeric transcription factors of the Rei 

family of DNA-binding proteins, is found in essentially all cell types and is involved 

in the activation of a large number of genes in response to infection and 

inflammation (256). The subcellular location of NF-iq3 is controlled by a family of 

inhibitory proteins, termed IKBS, which bind NF-K0 and mask its nuclear localization 

signal, thereby preventing nuclear uptake. Exposure of cells to pro-inflammatory 

adipokines, cytokines, and endotoxins leads to the rapid phosphorylation, 

ubiquitination, and ultimately proteolytic degradation of IKB, which frees NF-KB to 
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translocate to the nucleus where it regulates gene transcription. The multi subunit 

IKB kinase (IKK) responsible for IKB phosphorylation is the point of convergence for 

most NF-KB -activating cytokines. 

Yuan and colleagues (257) first suggested that IKK was a potential link between 

inflammation and obesity-linked insulin resistance. Using both heterozygous 

deletion of IKKB (IKKB +/-) and pharmacological inhibition of IKK via high dose 

salicylate treatment they were able to improve insulin sensitivity in rodent models 

of obesity. Interestingly, myeloid specific ablation of IKKB was subsequently found 

to prevent the development of insulin resistance in all insulin target tissues (258). 

While LIKK mice that contain a constitutively active form of IKKB in their liver, 

displayed enhanced hepatic cytokine production that was linked to the 

development of global insulin resistance (259). Together these studies suggest that 

IKK likely promotes insulin resistance via the function of its downstream 

transcription factor NF-KB which controls both cytokine production and the 

expression of inflammatory signaling mediators such as iNOS (see Figure 6). 

However, it is noteworthy that IKK has also been shown to interact with and 

promote serine phosphorylation of IRS1 therefore IKK should also be considered 

as a kinase mediator of insulin resistance (260). Future studies wherein IKK is 

constitutively active but NF-KB is lacking its transcriptional activity would be very 

important for delineating the precise contribution that each of these potential 

mechanisms make to insulin resistance. 

3.7.3.2 Inducible nitric oxide synthase 
The radical gas nitric oxide (NO) is synthesized from L-arginine by the enzyme 

nitric oxide synthase (NOS). The expression and activity of the inducible isoform of 

NOS (iNOS) is synergistically stimulated by bacterial endotoxins and also 

inflammatory cytokines. When induced, this NOS isotype generates NO at a much 

higher rate and for longer periods of time than constitutive NOS enzymes (nNOS 

and eNOS) (261). The pathways regulating iNOS expression seem to vary in 

different cells and species, but it is widely recognized that the IKK pathway 

regulates iNOS transcription through multiple NF-KB binding sites on the iNOS 
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promoter (262). Other important transcription factors for iNOS induction are IRF-1, 

STATIa, AP-1 and C/EBP (262). There is also evidence that MAP kinases, and in 

particular, JNK increase iNOS transcription in macrophages (263-265). 

Interestingly the JNK pathway may also regulate iNOS mRNA stability (266) which 

is another major mechanism of iNOS induction by cytokines. 

It was first proposed more than a decade ago that insulin resistance represents a 

deleterious effect of iNOS induction during systemic inflammation. Administration 

of the endotoxin lipopolysaccharide (LPS) in rats was seen to induce iNOS in 

muscle, liver, and adipose tissues (267-268). Furthermore, cytokines and LPS also 

induced iNOS expression in cultured muscle and adipose cells causing marked 

insulin resistance (267; 269) which was significantly abrogated by iNOS inhibition 

(269). Importantly, iNOS was subsequently found to be more highly expressed in 

fat and skeletal muscle tissues of dietary and genetic models of obesity as well as 

type 2 diabetic humans and high-fat fed obese mice lacking iNOS were protected 

from developing skeletal muscle insulin resistance (84; 270-274). These findings 

indicated that iNOS plays a key role in the pathogenesis of insulin resistance. 

iNOS is thought to induce insulin resistance via NO and peroxynitrite (ONOO") 

mediated post translational modifications of insulin signaling proteins (275). 

Indeed, iNOS-derived NO in animal models has been shown to cause S-

nitrosylation (or S-nitrosation) of the insulin receptor, IRS-1 and Akt resulting in 

reduced activation of PI 3-kinase and Akt (274; 276). In biological systems, NO 

also reacts with superoxide (O2-) to form the potent oxidant peroxynitrite (ONOO-) 

which is known to produce nitration of tyrosine residues (277-278). Interestingly, 

increasing ONOO" levels in 3T3-L1 adipocytes with a NO/O2" donor (SIN-1) 

inhibited insulin-stimulated glucose transport and was associated with increased 

nitration of key tyrosine residues within IRS-1 as assessed by mass spectrometry 

(279). This was also found to occur in vivo in a model of lipid-induced insulin 

resistance where lipid infusion was found to increase tyrosine nitration of IRS1 and 

Akt in muscle and liver in vivo (280) (see Figure 6). These data suggest that iNOS 

mediated nitrosative modifications underlie iNOS-induced insulin resistance. 
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3.7.3.3 The suppressors of cytokine signaling (SOCS) 
The SOCS family of proteins, as the name suggests, play an important role in the 

negative feedback control of cytokine-activated pathways (281). SOCS expression 

is rapidly upregulated in response to several cytokines (TNFa, IL-13, IL-6, and IFN-

y) and also adipokines (leptin, resistin) as a means of asserting feedback inhibition 

on inflammatory signaling. Emanuelli and colleagues (282) first demonstrated that 

SOCS might be involved in the development of inflammation-induced insulin 

resistance when they reported the TN Fa-dependent overexpression of SOCS-3 in 

the adipose tissue of obese mice. Since then SOCS overexpression has been 

reported in the skeletal muscle of diabetic patients (283), and also in experimental 

models of obesity and LPS-induced insulin resistance, with the expression of 

SOCS-1 and -3 being greatest in liver, followed by muscle and adipose tissue 

(284). In accordance with this data, SOCS-3 appears to play a major pathogenic 

role in the liver as a mediator of hepatic insulin resistance (285) and hepatic 

steatosis (286). It is also noteworthy that the hepatitis C-mediated downregulation 

of liver IRS-1 and 2 occurs via a SOCS-dependent mechanism (287). On another 

interesting note, the cytokine-mediated upregulation of SOCS proteins in obesity 

may also impact on the hypothalamic regulation of metabolism, as SOCS-3 

deficiency in the brain has been shown to improve leptin sensitivity and to confer 

resistance against the development of diet-induced obesity (288). Furthermore, 

SOCS-3 is also recognized as a mediator of resistin-induced insulin resistance in 

adipocytes (289). 

The molecular action of SOCS on insulin resistance is thought to involve the 

obstruction of several components of the insulin signaling cascade (see Figure 6). 

Indeed, SOCS contain an SH2-domain allowing interaction with phosphotyrosines 

within the insulin receptor leading to downstream inhibition of IRS-1 tyrosine 

phosphorylation (282; 290-292), reduced association with the p85 regulatory 

element of PI-3 kinase (282), and impaired insulin-dependent activation of ERK-1/2 

and Akt/PKB (292). In addition, evidence gathered from SOCS overexpression 

models also suggests that SOCS-1 and -3 may impair insulin signaling by targeting 

IRS-1 and IRS-2 for ubiquitin-mediated proteasomal degradation (293). However, 
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Figure 6. The transcriptional mediators of insulin resistance 
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the physiological relevance of this mechanism is subject to debate, as the degree 

of SOCS-3 induction does not always correlate with the degradation of IRS-1 and 

IRS-2 (294). In any case, the inflammation-mediated induction of SOCS molecules 

can be seen to have a profound impact on hepatic function in particular but also on 

other insulin target tissues including the brain. 

In summary, inflammatory mediators such as adipokines and cytokines may 

employ various mechanisms including lipid derivatives, serine/threonine kinases, 

and transcriptional pathways to inhibit insulin signaling. The influence of each 

mechanism on insulin signaling often varies between tissues and it is most likely 

that global insulin resistance occurs as a result of the combined actions these 

mechanisms rather than one in particular. 

3.8 The interleukin-6 paradox 
While the involvement of inflammation in the development of insulin resistance is 

rather well defined the role of the cytokine IL-6 remains highly controversial (295-

298). It is a widely held viewpoint that IL-6 is a prominent pro-inflammatory 

mediator that instigates insulin resistance in a manner similar to TNFa during the 

course of obesity (295; 299-302). However, this dogma is the subject of current 

debate and has been challenged by multiple observations in the literature that 

suggest a contrary role for IL-6. Indeed, IL-6 has been shown to dampen 

inflammation by suppressing the expression of pro-inflammatory cytokines such as 

TNFa and IL-1 (3 while promoting the secretion of anti-inflammatory factors such as 

IL-1 receptor antagonist and IL-10 (303-305). Furthermore, mice lacking the IL-6 

receptor specifically in liver were recently shown to display elevated hepatic 

inflammation and impaired glucose metabolism (306). These data suggest that IL-6 

might be better thought of as an anti- rather than pro-inflammatory mediator in vivo 

and that increased IL-6 in obesity might actually represent a consequence rather 

than a cause of obesity-related inflammation. 

IL-6 has also been identified as a skeletal muscle derived cytokine or 'Myokine' 

that is released from skeletal muscle in large quantities following exercise (307-

308). Consequently, it has been suggested that muscle derived IL-6 might underlie 
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the beneficial effects of skeletal muscle contraction on glucose and lipid 

metabolism (309-312). In line with this hypothesis, administration of IL-6 has been 

reported to improve muscle glucose uptake and fatty acid turnover by stimulating 

AMPK activity (313-316). Furthermore, IL-6 has also been reported to play an 

important role in the insulin mediated regulation of hepatic gluconeogenesis via 

STAT-3 mediated suppression of the transcription of the gluconeogenic enzymes 

PEPCK and G6Pase (317-318). Moreover, adipose derived IL-6 was also recently 

shown to mediate the insulin sensitizing actions of adiponectin in liver (319). 

Importantly, the source of adipose IL-6 in this study was found to be the myeloid 

component thus these findings argue against a distinct role for immune cell derived 

versus muscle derived IL-6. Instead, these data suggest a model wherein IL-6 acts 

as an endogenous break on inflammation and an important mediator in the tissue 

cross talk regulating whole body energy metabolism. However further research is 

warranted to understand why IL-6 appears to act as a mediator of insulin 

resistance in some circumstances and a beneficial metabolic signal in others. 

4 - Omega-3 fatty acids 
Omega-3 (w-3) fatty acids represent a class of polyunsaturated fatty acids (PUFA) 

that are characterized by the presence of a carbon-carbon double bond at the third 

carbon from the methyl end of the fatty acyl chain (320). They are considered 

essential fatty acids because they may not be synthesized de novo by vertebrates. 

However, endogenous elongase and desaturase enzymes can be employed to 

produce long chain u)-3 PUFA such as the 20 carbon eicosapentaenoic acid (EPA; 

20:5, n-3) and 22 carbon docosahexaenoic acid (DHA; 22:6, n-3) from the 18 

carbon parent co-3 fatty acid a-linolenic acid (ALA; 18:3, n-3) (320). Linseed and 

canola oil are known to be good dietary sources of ALA (18:3, n-3) whereas marine 

oils are considered to be the best source of long chain co-3 PUFA (321). It is 

noteworthy that most of the actions ascribed to u>-3 PUFA appear to be mediated 

by the long chain members, EPA and DHA. 

When considering the bioactivities of u>-3 PUFA it is important to acknowledge the 

u)-6 class of fatty acids. Indeed, aside from the lack of a carbon-carbon bond at the 
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w-3 position, which results in the first double bond being present at the sixth 

carbon from the terminal end of the fatty acyl chain, u)-6 PUFA are structurally 

identical to their u>3 counterparts and thus may be metabolized by the same 

enzymes (320). However, despite this close structural similarity, these two classes 

of essential PUFA display distinct and often competing physiological functions. The 

major u)-6 PUFA include the parent 18 carbon linoleic acid (LA; 18:2, n-6) and the 

20 carbon arachidonic acid (AA; 20:4, n-6). In the diet, LA can be found in most 

vegetable oils such as corn, safflower and sunflower oil (321). The structures of the 

major w-3 and co-6 PUFA are shown in Table 2. 

Table 2. Nomenclature and structures of the major u>-3 and u>-6 PUFA 

Common name Systematic name 

Linoleic acid 9Z, 12Z-

LA (18:2, n-6) octadecadienoic 

acid 

Chemical Structure 

OH 

Arachidonic acid 5Z,8Z, 11Z, 14Z-

AA (20:4, n-6) eicosatetraenoic 

acid 

a-linolenic acid 9Z, 12Z, 15Z-

ALA (18:3, n-3) octadecatrienoic 

acid 

Eicosapentaenoi c 5Z, QZ, 11Z, 14Z, 17Z-

acid eicosapentaenoic 

EPA (20:5, n-3) acid 

Docosahexaenoic 4Z, 7Z, 10Z, 13Z, 16Z, 

acid 19Z-

DHA (22:6, n-3) docosahexaenoic 

acid 
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Historically speaking, it is believed that the human diet contained a relatively 

balanced ratio of co-6 and co-3 PUFA up until the industrial and agricultural 

advancements of the 20th century (322). During this era, the widespread 

implementation of grain feeding for livestock and the development of a mechanized 

process that allowed the mass production of vegetable oil led to the rapid 

development of disequilibrium in the dietary supply of u>-6 and co-3 fatty acids. 

These changes were so severe that in this relatively short period of time, the 

average dietary co-6: co-3 ratio vaulted from around 1:1 to -25:1. 

Dyerberg and Bang (323-324) were first to make the connection between this shift 

in PUFA consumption and poor human health in the late seventies when they 

performed an epidemiological study comparing the incidence of cardiovascular 

disease (CVD) related death in Caucasian Danes with that occurring in the 

Greenland Eskimos. Here they showed that the Greenland Eskimos, a population 

that has maintained a relatively balanced intake of co-6 and co-3 fatty acids over 

time, displayed markedly reduced incidence of CVD related death compared to the 

Danes. Following on from this study, numerous other pathologies have been linked 

to an elevated co-6: co-3 ratio. These include but are not limited to: cancer (325), 

Crohns disease (326), rheumatoid arthritis (327), and systemic lupus 

erythrematosus (328). 

In light of these wide ranging associations with human pathologies, much effort has 

been exerted towards elucidating the mechanisms of action of co-3 fatty acids in 

vivo. Thus far co-3 fatty acids have been proposed to improve membrane fluidity, 

impede the formation of co-6 derived bioactive lipids, activate endogenous nuclear 

and membrane bound receptors and serve as substrates for a novel genus of 

bioactive lipids termed resolution mediators. Each of these proposed mechanisms 

of co-3 fatty acid action will be discussed in the following sections. 

4.1 Membrane fluidity 
One of the original mechanisms proposed to underlie the beneficial actions of co-3 

fatty acids was an increase in membrane fluidity. In brief, it was postulated that 

long chain co-3 PUFA would simply replace shorter less unsaturated fatty acids in 
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the lipid bilayer and thereby automatically improve membrane fluidity leading to 

altered cellular function by virtue of effects on membrane bound signaling proteins 

and ion channels. In line with this hypothesis, co-3 PUFA were found to integrate 

membrane phospholipids at the Sn-2 position replacing the less unsaturated LA 

(18:2, n-6) and AA (20:4, n-6) (329-331). However, membrane modeling studies 

have shown that increasing the unsaturation of a fatty acid component of 

membrane phospholipids beyond 3 double bonds leads to no additional 

improvement in actual membrane fluidity (332-333). This means effective gains in 

membrane fluidity achieved by administration of the co-3 fatty acids EPA or DHA 

which have 5 and 6 double bonds respectively would be no greater than that 

achieved with the parent co-3, ALA, which contains 3 double bonds or the co-6 fatty 

acid, AA, which contains 4 double bonds and may also be integrated at the Sn-2 

position of membrane phospholipids. Thus this simplistic model most likely does 

not explain the beneficial effects co-3 versus co-6 PUFA. 

In contrast, the longest most unsaturated co-3 PUFA, DHA, does appear to alter 

membrane dynamics in a specific manner, albeit via a more complex mechanism 

than first envisaged. Indeed, the structure of DHA has been found to be sterically 

incompatible with cholesterol (334). Accordingly, DHA but not EPA administration 

has been reported to modify both membrane cholesterol content and localization in 

the lipid bilayer (335-337). Moreover, DHA administration is found to promote the 

lateral segregation and alter the composition of cholesterol rich microdomains 

known as lipid rafts which serve as membrane platforms for multiple signaling 

events (335; 337). Such DHA-dependent actions have been associated with 

altered protein rearrangement and co-localization in these important membrane 

compartments leading to altered downstream events (335; 337-340). Although it is 

difficult to prove that the DHA dependent modification of membrane raft signaling 

events such as protein-protein interactions are the direct result of changes in the 

lipid microenvironment rather than downstream effects of altered lipid mediator 

signaling, the impact of DHA on membrane lipid raft dynamics should be 

considered when discussing the mechanisms of action of co-3 PUFA. 
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4.2 u)-3 PUFA and the formation of OJ-6 derived bioactive lipids 
The earliest studies aimed at discerning the mechanisms underlying the cardio­

protective effects of co-3 PUFA initially revealed that the long chain co-3 PUFA, 

EPA and DHA, competitively inhibit the formation of AA derived pro-inflammatory 

and pro-thrombotic eicosanoids that are synthesized in the 5-lipoxygenase (5-LOX) 

and cyclooxygenase (COX) pathways. Collectively, these studies showed that EPA 

competes with AA in the 5-LOX and COX pathways to generate less active or 

entirely inactive pentaene leukotrienes and triene prostanoids; while, DHA acts as 

a potent inhibitor of AA oxygenation in the COX pathway (341-346). These studies 

led to a general consensus that co-3 PUFA exert most of their beneficial effects by 

blanketing the potent actions of their co-6 counterparts (347). This mechanism of 

action is of particular interest for obesity and insulin resistance since 5-LOX 

activating protein and the AA derived product of the 5-lipoxygenase pathway LTB4 

were recently shown to promote obesity-related adipose tissue inflammation and 

lipolysis (136-137). 

In addition to leukotrienes and prostanoids, the co-6 PUFA AA is also metabolized 

to form other biologically important lipid mediators termed endocannabinoids (348). 

Indeed, the two most studied members of this family, anandamide/A/-

arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are AA 

metabolites. Importantly, endocannabinoid signaling plays an important role in the 

regulation of food intake (349) and elevated endocannabinoid tone seems to 

contribute to the peripheral metabolic derangements taking place in obesity (350). 

Although there are relatively few studies on the impact of co-3 PUFA on the 

generation of co-6 derived endocannabinoids in the literature, it appears that the 

formation of these AA derivatives may also be sensitive to dietary co-3 content 

(351-353). Notably, a diet rich in DHA was shown to reduce concentrations of 2-AG 

in the brain (351) and the inclusion offish or krill oil in a high fat diet reduced levels 

of both AEA and 2-AG in adipose tissue, skeletal muscle, liver, kidney and heart 

(352-353). These studies suggest that co-3 PUFA might exert part of their beneficial 

effects by limiting the formation of endocannabinoids; however, the mechanism 

underlying this dietary regulation remains unknown. 
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4.3 (JJ-3 PUFA as ligands 
Aside from their established role in eicosanoid formation and potential capacity to 

regulate the endocannabinoid system, long chain co-3 PUFA have also been 

proposed to act as ligands for endogenous receptors, co-3 PUFA were first 

identified as natural ligands for the PPAR nuclear receptor family in studies using 

reporter assays which showed that a wide array of fatty acids could activate these 

important nuclear receptors (354-355). These findings have been supported by x-

ray crystallography and computational studies which suggest that the structures of 

long chain co-3 PUFA possess affinity for the ligand binding domains of PPARs 

(356-357). Accordingly, multiple studies have since linked PPAR activation to the 

physiological outcomes of co-3 PUFA administration in vivo. Indeed, the insulin 

sensitizing and lipid lowering actions of co-3 PUFA were seen to be lost in mice 

lacking PPARa in liver (358). Furthermore, fish oil administration was found to raise 

circulating adiponectin in a dose and time dependent manner and this effect was 

inhibited by treatment with a chemical inhibitor of PPARy, bisphenol-A-diglycidyl, 

but remained in PPARa null mice (359). These data suggest that activation of 

diverse PPARs also likely contributes to the beneficial actions of co-3 PUFA. 

In addition to their role as endogenous ligands for the PPAR nuclear receptor 

family long chain co-3 PUFA have also been found to activate the G-protein 

coupled receptor (GPCR) GPR120. GPR120 was first identified as a receptor for 

long chain co-3 PUFA by Hirasawa and colleagues (360), when they showed that 

long chain co-3 PUFA in the gut promote release of the incretin hormone, glucagon 

like peptide-1 (GLP-1 ), by activating this orphan receptor. More recently, the work 

of Oh and colleagues (361) revealed that DHA and EPA exert their anti­

inflammatory and insulin sensitizing effects by activating GPR120 in adipose tissue 

macrophages and adipocytes. Interestingly, GPR120 appears to compete with 

TLR's for intracellular signaling components namely TAB1, and thereby inhibits 

downstream inflammatory signaling. Importantly, the anti-inflammatory and insulin 

sensitizing effects of EPA and DHA were lost in GPR120 null mice. Future studies 

are warranted to determine whether co-3 PUFA signaling via GPR120 is also 
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responsible for the anti-inflammatory effects of co-3 PUFA in other tissues and in 

conditions where TLR signaling is less important. 

4.4 (0-3 derived resolution mediators 
Although it was originally thought that inflammation subsided when the production 

of pro-inflammatory lipid mediators waned, more recently, it has become apparent 

that lipid oxygenation pathways may also produce anti-inflammatory lipids that 

actively promote the return to homeostasis during inflammation (362). The work of 

Levy et al (363) elegantly described the existence of a so called 'resolution circuit' 

wherein first phase pro-inflammatory lipids, namely leukotrienes, signaled discrete 

changes in enzyme expression and activity that lead to the production of anti­

inflammatory lipids derived from the same long chain co-6 PUFA substrate. The 

latter product known as lipoxin A4 (LXA4) would then act to switch off the 

inflammatory response. Further screening of inflammatory exudates during the 

resolution phase of immune responses revealed that multiple families of novel lipid 

derived resolution mediators exist. Interestingly most were derived from long chain 

co-3 PUFA (362; 364-365). The identification of these novel co-3 derivatives and 

their biosynthetic pathways has greatly expanded our understanding of long chain 

co-3 PUFA action. The major classes of co-3 derived resolution mediators identified 

to date are the resolvins, protectins and maresins. The biosynthesis and 

mechanisms of action of these mediators will be described in the following 

sections. 

4.4.1 iu-3 resolution mediator synthesis 
Resolvin (Rv) which stands for 'resolution phase interaction products' is the term 

given to the first identified class of co-3 derived resolution mediators. Rv's may be 

classified as either E-series derived from enzymatic oxidation of EPA (20:5 n-3) 

(Figure 7) or D-series derived from DHA (22:6 n-3) (Figure 8). The synthesis of E-

series resolvins is a three step process (366). EPA is first converted to the hydroxy 

intermediate 18R-HEPE by COX-2 or cytochrome P450. It is important to note here 

that the enzymatic formation of hydroxy intermediates such as 18R-HEPE actually 

involves the initial formation of hydroperoxy (Hp) intermediaries (not depicted in 
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Figure 7) that are rapidly reduced via epoxidation and hydrolysis to the final 

hydroxy product. In this case, the 18R-HEPE is then transformed to a 5S,6R-epoxy 

intermediate by 5-LOX activity. Finally the 5S,6R-epoxy-18R-HEPE is converted to 

either RvE1 by LTArhydrolase or reduced to form RvE2. 

EPA 20:5 n-3 

M20:4rv6 -> Prostanoids + Thromboxanes 

-> EETs + HETE'S 

w 18R-HEPE 

-> Leukotrienes 

N * 5S,6R,epoxy-18R-HEPE 

LTA4-Hydrolase 

A 
Reduction 

A 

RvEl(5S,12R,18R-trihydroxy-6Z,8E,10E,14Z,16E-EPA) RvE2(5S,18R-dih¥droxy-6E,8Z,llZ,14Z,16E-EPA) 

Figure 7. The E-Series Resolvins 

D-series Rv's (RvD1, RvD2, RvD3 and RvD4) are also produced via sequential 

oxidation (367). However in this case the enzymes involved are 12/15-LOX and 5-

LOX (Figure 8). Firstly, 12/15-LOX converts DHA to the hydroxy intermediate 17S-

HDoHE, via the formation and reduction of 17S-HpDoHE (not depicted in Figure 8), 

a common step in the synthesis of all RvD's. Next 5-LOX inserts a hydroperoxy 

group at the 7 position of 17S-HDoHE (Figure 8). The 7S-Hp,17S-HDoHE is then 

converted to RvD1 and its epimer RvD2 via epoxy intermediates. 5-LOX 

interactions with 17S-HDoHE may also lead to the formation of an alternative 

hydroperoxy intermediate, 4S-Hp,17S-HDoHE, which results in the subsequent 

formation of RvD3 and epimeric RvD4 (Figure 8). 
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T 

DHA22:6n-3 

-> 12-HETE+15-HETE+Lipoxins 

17S-HDoHE 

5-LOX 5-LOX ••> Leukotrienes 

7S-Hp,17S-HDoHE 

Epoxidation/Hydrolysis 

"7 
1 ^ 

4S-Hp,17S-HDoHE 

S 
Epoxidation/Hydrolysis 

RvDl(7S,8,17S-trihydroxy-Z,9E,llE,13Z,15E,19Z-DHA) 

OH ÔH 

RvD2(7S,16,17S-trihydroxy-4Z,8E,10Z,12E,14E,19Z-DHA) 

OK ON 

RvD3(4S,10,17S-trihydroxy-5E,7E,9E,12E,14E,19Z-DHA) 

OH ÔH 

RvD4(4S,5,17S-trihydroxy-6E,8E,10E,13E,15Z,19Z-DHA) 

Figure 8. The D-Series Resolvins 

Although the precise regulation is not completely understood, the proclivity of LOX 

enzymes to produce multiple regiospecific isomers from the same substrate, as is 

the case for 17S-HDoHE, is believed to reside in the fact that the LOX enzymatic 

pocket can accept fatty acid substrates in both the conventional (methyl end first) 

and inverse orientations (carboxy terminal first). Frameshift realignments are also 

thought to underlie the potential of a given fatty acid substrate to be transformed 

into multiple regiospecific isomers by the same enzyme (368-369). 

Protectin D1 (PD1) is somewhat similar to the D-series Rv's in that it is derived 

from DHA and produced as a result of 12/15-LOX activity. However, the initial 

product in the PD1 biosynthetic route is the hydroperoxy intermediate of DHA, 17S-

HpDoHE (370), which in this case is not reduced to 17S-HDoHE (Figure 9). 
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Instead, for PD1 synthesis, 17S-HpDoHE is first converted to a 16,17 epoxide and 

then to PD1. A natural 10S isomer of PD1 can also be produced via a double LOX 

reaction (370). This mediator holds similar or even greater activity to PD1 but, it is 

produced in much smaller quantities in vivo and is referred to as 10S.17S-

DiHDoHE or PDX in the literature (371). 

DHA 22:6n-3 

AA20:4 n-6 — 12/15-LOX -3» 12-HETE + 15-HETE + Lipoxins 

PDI (10R,17S-dthYdroxy-4,7Z,ll E,l 3 E,l 5Z,19Z-D HA) 10S,17S-DiHDoHE (10S,17S-dihydroxy-4Z,7Z,UE,13Z,15E,19Z-DHA) 

Figure 9. The Protectins 

Finally, Maresins (MaR's) are the most recently identified family of co-3 derived 

resolution mediators. This new family is of interest since it appears to be 

specifically produced by macrophages. The biosynthesis of MaR's is similar to PD1 

in that it begins with the formation of a hydroperoxy-intermediate of DHA (Figure 

10). In this case macrophage 12/15-LOX via 12-LOX rather than 15-LOX activity is 

thought to convert DHA to 14S-HpDoHE which is then converted to a 13,14-

epoxide-containing intermediate that is enzymatically hydrolyzed to form MaR1 

(372). 
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AA20:4 n-6  12/15-LOX 

T 
_L 

DHA 22:6n-3 

> 12-HETE + 15-HETE + Upoxins 

14S-HpDoHE 

E p o x i d a t i o n 

i 
13,14-epoxy-DoHE 

Hydro lys is 

MaRL(7S,14S-dihydroxy-4Z,8E,10E,12E,16Z,19Z-DHA) 

Figure 10. The Maresins 

It is important to note that each of the enzymes involved in co-3 derived resolution 

mediator synthesis are also responsible for the production of pro-inflammatory lipid 

mediators (Figures 7-10). A good example of this is 12/15-LOX which plays a role 

in RvD, PD1 and MaR1 formation but is also responsible for producing the 

inflammatory mediators, 12-HETE and 15-HETE, from AA. In accordance with this 

dual role in inflammation, the function of 12/15-LOX remains controversial in the 

context of atherosclerosis (373). Indeed, there is in vivo evidence for both a 

positive and a negative role of 12/15-LOX for this disease state (373). This likely 

explains discrepant reports in the literature showing that 12/15-LOX deficient mice 

on LDLr (374) or ApoE (375) knockout backgrounds are protected from 

atherosclerosis to the same extent as ApoE knockout mice overexpressing 12/15-

LOX in macrophages (376). Although substrate availability has been proposed to 

be an important modulator of enzyme product formation underlying these 

phenotypes, the precise regulation of LOX substrate preference under different 

physiological conditions and in different tissues/cell types remains poorly 

understood. The inherent complexity of the regulation of these lipid biosynthetic 
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pathways thus argues against using conventional molecular genetic approaches 

such as enzyme overexpression or disruption for delineating the function and 

mechanism of action of co-3 derived resolution mediators. Alternative more relevant 

approaches include increasing co-3 availability, direct administration of individual 

resolution mediators, and interference with identified receptors and intermediates 

in the signal transduction pathways. 

4.4.2 Mechanisms of action of tu-3 resolution mediators 
In fitting with their role directing the catabasis of inflammation, resolvins, protectins 

and maresins have been shown to signal a reduction in leukocyte recruitment and 

blunt pro-inflammatory cytokine production as well as pro-inflammatory cytokine 

and lipid mediator signaling (372; 377-379). co-3 resolution mediators have also 

been reported to promote the nonphlogistic clearance of apoptotic neutrophils and 

stimulate the clearance of chemokines in the inflammatory milieu by upregulating 

the expression of their receptors on apoptotic cells (378; 380). More recently, 

resolvins were also found to exert analgesic effects by inhibiting the activation of 

the transient receptor potential vanilloid type-1 (TRPV1 ) in sensory neurons (364). 

Accordingly, these novel compounds have proved to be effective for the prevention 

and treatment of a wide array of inflammatory disorders including experimentally 

induced colitis (381), asthma (382), periodontitis (383), and they also appear to 

underlie co-3 mediated protection from pathological retinal angiogenesis (384). 

RvE1 appears to exert its effects by acting as an agonist for the GPCR ChemR23 

and an antagonist for the LTB4 receptor BLTi (379); whereas, RvD1 appears to act 

via the LXA4 GPCR ALX and the orphan GPCR GPR32 (385). Although, it is likely 

that each resolution mediator activates its own discrete receptor mediated 

signaling pathways, cell surface receptors for the other co-3 resolution mediators 

remain to be identified. Future identification of receptors for each of these 

mediators will greatly facilitate advancements in this field. 
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4.4.3 CJJ-3 resolution mediators in obesity 
Presently, there is very little known about the role of these important lipid mediators 

in metabolic tissues and their potential to mitigate obesity-linked inflammation and 

insulin resistance. Outside of the data presented in the following sections of this 

thesis only 3 other reports have been published in this area. Gonzaliz-Periz et al 

(386) first showed that treating genetically obese ob/ob mice with DHA raises the 

production of the DHA derived resolution mediators, PD1 and RvD1, in adipose 

tissue. RvE1 was not detected in this study; however, the authors revealed that the 

administration of RvE1 for 1 week improves hepatic steatosis in ob/ob mice by 

reducing both lipid storage and macrophage accumulation in liver. Although they 

did not study glucose metabolism directly the authors also suggested that RvE1 

might improve insulin sensitivity since adipose mRNA expression of adiponectin, 

PPARy, IRS-1 and GLUT-4 was increased. These data suggest that RvE1 likely 

has therapeutic potential for obesity related metabolic disorders; however, the 

mechanistic relevance of these findings with reference to the beneficial actions of 

co-3 PUFA is somewhat questionable since RvE1 has yet to be detected in 

adipose, liver, or skeletal muscle. 

In contrast, Hellman et al (387) administered the docosanoid mediator RvD1 to 

genetically obese db/db mice for 16 days. RvD1 treatment resulted in a modest 

improvement in glucose tolerance that was associated with improved insulin 

signaling to Akt in adipose but not liver or skeletal muscle. The improved insulin 

action in adipose tissue was associated with reduced macrophage accumulation 

and elevated expression of adiponectin. Interestingly, the authors showed that the 

RvD1 receptor ALX was expressed in both the stromal vascular fraction of adipose 

tissue as well as in isolated adipocytes. These data suggest that RvD1 likely 

underlies part of the beneficial actions of co-3 PUFA in adipose tissue. However, 

further studies are required to profile the effects of RvD1 on inflammatory cytokine 

production and signaling in obesity since this was not examined in this study. 

Additional experiments wherein DHA is administered to high fat fed mice lacking 

the RvD1 receptor ALX would also add important insight on the role of RvD1 in the 

beneficial actions of co-3 PUFA. 
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Finally, a very recent work by Flachs et al. (388) suggests that combining calorie 

restriction with administration of co-3 PUFA synergistically raises the synthesis of 

Protectin D1 in adipose tissue. However, this finding is likely an artifact resulting 

from the calorie restriction mediated reduction in neutral lipid content in this tissue. 

Indeed, all lipids measured, including DHA and AA, were detected at higher levels 

in the caloric restriction group. This work therefore highlights the difficulties 

associated with studying lipid mediators in lipid laden tissues. However it is 

noteworthy that in accordance with our work (389) and that of Gonzalez-Periz et al 

(386) the authors of this study were also unable to detect RvE1 in adipose tissue or 

liver despite using a diet that contained EPA. These data suggest that RvE1 is 

likely not produced or is very rapidly metabolized in metabolic tissues. In contrast, 

PD1 was easily detected; however, thus far the effects of this lipid mediator on 

inflammation or glucose metabolism in metabolic tissues have not been directly 

examined. Further work on this mediator is certainly warranted. 

4.5 w-3 PUFA and T2DM 
Not surprisingly, imbalanced dietary intake of co-6 and co-3 PUFA has also been 

linked to T2DM (390-392). Incorporation of co-3 PUFA into the diet has been 

associated with improved insulin sensitivity (393-394), reduced macrophage 

accumulation in adipose tissue (361; 395-396), lower circulating triglycerides and 

cholesterol (397), adipose remodeling (398) and increased activity of brown fat 

(399-400). However, at this point the molecular underpinnings of these effects 

remain incompletely understood. The major reason for the lack of advancement on 

this front is that dietary supplementation of co-3 PUFA in rodent diets often 

prevents weight gain, most likely attributable to a reduction in palatability of the 

supplemented diet (401-402). Importantly, the primary report of the anti-diabetic 

action of co-3 PUFA in high fat fed rodents, published in Science, made no mention 

of body weight gain or visceral fat mass in the rats that were protected from 

obesity-linked insulin resistance (393). Thus it is not clear whether it is the lack of 

weight gain or the direct actions of co-3 PUFA themselves that offer protection from 

obesity-linked insulin resistance and T2DM. As mentioned in the previous section, 

co-3 PUFA might also influence feeding behavior through their impact on the 
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endocannabinoid system, but this remains to be tested. Therefore, innovative 

models that overcome the requirement for dietary manipulation are needed to help 

clarify whether or not co-3 PUFA act directly to prevent obesity-linked inflammation 

and insulin resistance and which mechanisms are involved. 

4.6 Solution: The fat-1 transgenic mouse 
The fat-1 transgenic mouse has been genetically engineered to express the fat-1 

co-3 fatty acid desaturase from C. elegans (403). This enzyme, not found in 

mammals, efficiently converts endogenous co-6 to co-3 PUFA such that in fat-1 

transgenic mice fed a diet rich in co-6 and deficient in co-3 PUFA the tissue co-6: co-

3 ratio is approximately 1:1 compared to 50:1 in wild type animals. The fat-1 

transgenic mouse therefore represents the ideal model to study the effects of co-3 

PUFA in an environment that is not confronted by dietary issues. 

5 - Objectives of the Thesis 
The major objective of the thesis was to determine whether fat-1 transgenic mice 

were protected from obesity-linked insulin resistance and to elucidate the 

mechanisms contributing to this protection with a particular emphasis on the role 

and mechanisms of action of novel co-3 derived resolution mediators. 



CHAPTER I 

Transgenic Restoration of Long-Chain w-3 Fatty 

Acids in Insulin Target Tissues Improves Resolution Capacity 

and Alleviates Obesity-Linked Inflammation and Insulin 

Resistance in High-Fat-Fed Mice 
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RESUME 
OBJECTIFS : Des médiateurs lipidiques dérivés des acides gras polyinsaturés 

(AGPI) co-3 jouent un rôle majeur dans la résolution de l'inflammation. Nous avons 

cherché à déterminer si une déficience en AGPI co-3 induite par une diète riche en 

gras pouvait compromettre la capacité des souris obèses à résoudre 

l'inflammation, contribuant ainsi au développement de l'inflammation et de 

l'insulino-résistance reliée à l'obésité. 

PLAN DE RECHERCHE ET MÉTHODES: Nous avons utilisé l'expression 

transgénique de la fat-1 co-3 désaturase provenant de C. elegans pour restaurer de 

façon endogène les AGPI co-3 dans des souris nourries avec une diète riche en 

gras. Après 8 semaines sur une diète soit faible ou riche en gras, des souris 

sauvages et transgéniques ont été soumises à des tests de tolérance au glucose 

et à l'insuline. De plus, un essai de résolution a été effectué et les tissus 

métaboliquement actifs ont été récoltés pour des analyses biochimiques. 

RÉSULTATS: Nous avons démontré que le rétablissement des acides gras 

oméga-3 dans les souris obèses nourries avec une diète riche en gras, pouvait 

augmenter la synthèse des dérivés bioactifs des acides gras oméga-3, notamment 

les protectines, dans le tissu adipeux et le muscle squelettique. Ceci est associé à 

une meilleure capacité à résoudre une réponse inflammatoire aigùe et à une 

diminution de l'inflammation dans le tissu adipeux. De plus, les souris fat-1 obèses 

ont démontré une meilleure sensibilité à l'insuline et une plus grande tolérance au 

glucose. Tout cela avec un gain de poids et accretion de graisse équivalent à 

leurs homologues sauvages. 

CONCLUSIONS: Nous concluons que la biosynthèse inefficace des médiateurs de 

résolution dérivés des AGPI co-3 dans le muscle et le tissu adipeux contribue à 

l'entretien de l'inflammation chronique dans l'obésité et que ces nouveaux lipides 

offrent un potentiel intéressant pour le traitement de la résistance à l'insuline et du 

diabète. 
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ABSTRACT 
Objectives- The catabasis of inflammation is an active process directed by co-3 

derived pro-resolving lipid mediators. We aimed to determine whether high fat (HF) 

diet-induced co-3 deficiency compromises the resolution capacity of obese mice 

and thereby contributes to obesity-linked inflammation and insulin resistance (IR). 

Research design and methods- We employed transgenic expression of the fat-1 

co-3 fatty acid (FA) desaturase from C. elegans to endogenously restore co-3 FAs in 

HF-fed mice. After 8 weeks on HF or chow diets, wild type (WT) and fat-1 

transgenic mice were subjected to insulin and glucose tolerance tests and a 

resolution assay was performed. Metabolic tissues were then harvested for 

biochemical analyses. 

Results- We report that the co-3 docosanoid resolution mediator protectin D1 is 

lacking in muscle and adipose tissue of HF-fed WT mice. Accordingly, HF-fed WT 

mice have an impaired capacity to resolve an acute inflammatory response and 

display elevated adipose macrophage accrual and chemokine/cytokine expression. 

This is associated with IR and higher activation of iNOS and JNK in muscle and 

liver. These defects are reversed in HF-fed fat-1 mice, in which the biosynthesis of 

this important co-3 docosanoid resolution mediator is improved. Importantly 

transgenic restoration of co-3 FAs prevented obesity-linked inflammation and IR in 

HF-fed mice without altering food intake, weight gain or adiposity. 

Conclusions-We conclude that inefficient biosynthesis of co-3 resolution mediators 

in muscle and adipose tissue contributes to the maintenance of chronic 

inflammation in obesity and that these novel lipids offer exciting potential for the 

treatment of IR and diabetes. 
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INTRODUCTION 
Obesity is linked to chronic inflammation that plays a key role in the pathogenesis 

of insulin resistance (IR), leading the way to type 2 diabetes and cardiovascular 

disease (1,2). Efforts to understand this process have focused on identifying the 

many factors that may initiate and promote inflammation. We took an alternate 

approach with the view that pathological inflammation in obesity likely represents 

an impaired endogenous capacity to "switch off or more precisely counter-regulate 

the natural immune response to adipose tissue expansion and lipid excess. 

The newly identified genus of co-3 derived lipid mediators termed resolvins and 

protectins have been shown to play an important role in the endogenous regulation 

of inflammation (3,4). Interestingly, dietary long chain (LC) co-3 polyunsaturated 

fatty acid (PUFA) insufficiency has been linked to the incidence of chronic 

metabolic disorders, including type 2 diabetes and cardiovascular disease (5-7). It 

is thus conceivable that inefficient biosynthesis of co-3 resolution mediators due to 

low substrate availability might inherently contribute to the development of obesity-

linked inflammation. 

Gonzâlez-Périz and colleagues recently showed that acute administration of co-3 

derived Resolvin E1 (RvE1) prevents hepatic steatosis in genetically obese mice 

(8). However, the other main resolution mediator Protectin D1 (PD1) remains to be 

investigated, and it is unknown whether HF-feeding per se actually restricts 

resolution mediator biosynthesis and whether this might alter the endogenous 

resolution capacity of obese mice. Furthermore, it is critical to determine whether 

co-3 lipid mediators regulate key obesity-related inflammatory reactions such as 

macrophage accrual in adipose tissue or activation of inflammatory signaling 

molecules such as JNK and iNOS that play a role in the etiology of IR (1,2). 

Unfortunately studying the effects of dietary co-3 content in the context of high fat 

feeding has proven to be rather complicated since incorporation of co-3 fatty acids 

(FAs) in rodent diets often prevents weight gain (9). As a result it is not clear 

whether it is the lack of weight gain or the co-3 FAs themselves that offer the 
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protection from insulin resistance and T2DM and what mechanism underlies this 

protection. Therefore, innovative models that overcome the requirement for dietary 

manipulation are needed to help clarify whether or not co-3 FAs act directly to 

prevent obesity-linked insulin resistance and which mechanisms are involved. 

The fat-1 transgenic mouse has been genetically engineered to ubiquitously 

express the fat-1 co-3 FA desaturase from C. elegans (10). This enzyme, not found 

in mammals, efficiently converts endogenous co-6 to co-3 FAs such that in fat-1 

mice fed a diet extremely rich in co-6 and deficient in co-3 the tissue co-6:co-3 ratio is 

-1:1 compared to -50:1 in wild type (WT) animals. The fat-1 transgenic mouse 

therefore represents the ideal model to study the effects of co:3 FAs in an 

environment that is not confronted by dietary issues. 

Herein we show that HF-feeding WT mice results in diminished co-3 docosanoid 

resolution mediator synthesis in muscle and adipose tissue and impaired 

resolution. Transgenic restoration of co-3 FAs in HF-fed fat-1 mice improved 

resolution capacity and prevented the development of obesity-linked inflammation 

and IR. These data uncover a new role for pro-resolving lipid mediators in the 

counter regulation of obesity-linked inflammation and its associated metabolic 

complications. 

METHODS 
Animal Studies 

Hemizygous fat-1 (+/-) mice (10) were bred with WT littermates at the Laval 

University hospital research centre. 6 week-old male mice were fed standard 

laboratory chow (diet-2018, Harlan Teklad) or HF diets (diet-9302, 55%Kcal from 

fat, Harlan Teklad) for 8 weeks. ITT's/GTT's were performed in week 7 in 6h fasted 

mice as previously described (11), and mice were sacrificed in week 8. At sacrifice 

a cohort of mice were used for the air-pouch resolution assay. Remaining mice 

were injected via tail vein with either insulin (3.8U/kg) or saline 5min prior to being 

euthanized. Tissues were rapidly excised and snap frozen in liquid nitrogen. 

Sections of liver and epididymal adipose were placed in 4% paraformaldehyde. 
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Animal procedures were approved and carried out in accordance with the Laval 

University and Canadian Councils for Animal Care. 

Lipidomics 

Fatty acid composition of phospholipid fractions was analyzed by GC as per (12). 

Briefly, lipids were extracted along with internal standards (C:15, Avanti Polar 

Lipids, Alabaster, AL, USA) in a chloroform-methanol (C-M) mixture (2: 1, by 

volume). Extracted lipids were then weighed and dissolved in a chloroform-

methanol mixture (3: 1, by volume). Polar lipids (phospholipids, i.e. 

phosphatidylcholine, phosphatidyethanolamine, phosphatidylinositol, 

phosphatidylserine and sphingomyelin) were separated by thin-layer 

chromatography (TLC; Silica Gel H, 250 pm, Analtech Inc, Newark, DE, USA) 

using an isopropyl-ether-acetic acid mixture (96: 4, by volume). Fractions were 

then recovered in individual glass tubes and direct transesterification was 

performed by adding acetyl chloride. Fatty acid methyl esters of phospholipids 

were analysed by gas chromatography using Hewlett-Packard 5890, series II 

(Hewlett-Packard, Toronto, Canada) equipped with a fused silica column (DB23; 

30 m, 0.25 mm internal diameter, 0.25 pm film, Agilent Technologies, Mississauga, 

Canada), helium as carrier gas, a split ratio of 1: 72, a flow of 0.72 ml min-1, and a 

coupled flame ionization detector (FID). The fatty acid methyl esters were identified 

by comparison with retention times of a Supelco 37 component FAME mix 

(Supelco Inc., Bellefonte, PA, USA) and by using one internal standard (C:15, 

Avanti Polar Lipids, Alabaster, AL, USA). 

For LC-MS/MS, lipid mediators were extracted in the presence of deuterated 

internal standard (1ng LTB4-6,7,14,15; Biomol) by solid phase extraction using 

Sep-Pak C18 cartridges (Waters). A triple quadrupole linear ion trap mass 

spectrometer (4000Q-TRAP; Applied Biosystems) equipped with an Acquity UPLC 

BEH C18 column (1.7pm, 1.0x150mm; Waters) was used. MS/MS analyses were 

conducted in negative ion mode, and eicosanoids/docosanoids identified by 

multiple reaction monitoring using transitions for 17-HDoHE (343>245m/z), 18-

HEPE (317>215m/z), protectin D1 (PD1) (359>153m/z) and RvE1 (349>195m/z). 
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Calibration curves (1-1000pg) and LC retention times for each compound were 

established with synthetic standards. 

In vivo resolution assay 

The air pouch resolution assay was performed as described by Levy et al (13). 

Dorsal air pouches were raised and maintained 6 and 3 days prior to the assay via 

subcutaneous injection of sterile air (5 and 3 ml respectively). On the day of the 

experiment, 10ng of recombinant murine TNFa (R&D Systems Inc.) in 100pl sterile 

PBS was injected into the pouch. At 0, 4 and 6.5 hours post injection mice were 

sacrificed and pouches washed 2 times with 1ml of sterile PBS to collect infiltrating 

polymorphonuclear leukocytes (PMN). PMN were then enumerated. Sterile PBS 

was used as a control for TNFa and did not stimulate PMN infiltration into the 

pouch (data not shown). 

Histology 

Adipose and liver sections were embedded, mounted and H&E staining of liver was 

performed by the University Laval microscopy facility. Immunohistochemistry 

detection of F4/80+ cells was performed as previously described (14). 

Western blotting 

Immunoblotting was performed in gastrocnemius muscle and liver as previously 

described (15). 50ug of protein was loaded onto a 7.5% acrylamide gel, subjected 

to SDS-PAGE then transferred onto nitrocellulose membranes. Membranes were 

then blocked and probed with the appropriate antibodies. Antibodies for p-AKT 

ser473, p-JNK thr183/tyr185, and Total JNK were obtained from Cell Signaling 

Technology (MA, USA). Antibodies for total AKT and iNOS were from Santa Cruz 

Biotechnology (CA, USA) and BD Transduction Laboratories™ (Canada) 

respectively. 
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Analytical methods 

Plasma insulin levels were assessed by RIA (Linco, Ml, USA). Chemokines and 

cytokines were quantified in 25pl of adipose tissue lysates (50ug of protein in PBS 

containing 1% NP-40) using a MILLIPLEX™ MAP kit (Millipore). 

Statistical Analysis 

LC-MS/MS data were analyzed using students T-test, Air-pouch, ITT and GTT data 

were analyzed using two-way ANOVA. For all other data one-way ANOVA was 

used. Bonferonni was the post-hoc test. Results were considered significant when 

PO.05. 

RESULTS 
HF-feeding reduces u>-3 availability for resolution mediator synthesis 

We first examined the effect of HF-feeding on co-3 bioavailability in metabolic 

tissues. The HF diet mimicked western diets in terms of co-3 content with an co-6:co-

3 ratio of -18-1. After eight weeks, HF-fed wild-type (WT) mice displayed an 

elevated long chain (LC) co-6:co-3 ratio in skeletal muscle, liver and adipose tissue 

membranes compared to their chow-fed counterparts (Fig. 1A). Importantly, 

transgenic expression of the fat-1 co-3 FA desaturase that converts endogenous co-

6 to co-3 FAs restored the membrane LC co-6:co-3 ratio of HF-fed fat-1 mice to 

levels comparable to chow-fed mice (Fig. 1A). 

Using LC-MS/MS to detect co-3 lipid oxygenation products, we found evidence of 

both docosanoid and eicosanoid biosynthetic activity in metabolic tissues of HF-fed 

mice. 17-HDoHE and 18-HEPE, hydroxy-metabolites of docosahexaenoic and 

eicosanpentaenoic acid and biosynthetic markers of PD1 and RvE1 respectively, 

were readily detected in muscle, liver and adipose tissue (Fig. 1B-C). Interestingly, 

the docosanoid biosynthetic route appeared to have greater flux in these tissues, 

since 17-HDoHE was present in significantly higher concentrations than 18-HEPE, 

and PD1 was readily detected in all tissues while RvE1 was under the detection 

limit. Compared to HF-fed WT mice, HF-fed fat-1 mice displayed increased flux 
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through the docosanoid biosynthetic route in muscle and adipose tissues, but not 

in liver (Fig. 1D). Indeed, 17-HDoHE was increased by approximately 215% in 

muscle and 138% in adipose tissue while PD1 was increased by approximately 

176% in muscle and 201% in adipose tissue of fat-1 mice compared to WT mice 

(PO.05). These data suggest that fat-1 mice display increased co-3 bioavailability 

for pro-resolution mediator synthesis in these two key metabolic tissues. 

HF-feeding impairs resolution 

We hypothesized that the HF diet-induced deficit in co-3 resolution mediator 

synthesis would impact endogenous counter-regulation of inflammation in WT 

mice. To test this we subjected mice to a dorsal air-pouch TNFa challenge, an 

established model of self resolving inflammation (13). The injection of 10ng of 

TNFa into the air-pouch stimulated an influx of polymorphonuclear leukocytes 

(PMN) that peaked at 4h and resolved completely 6.5h post challenge. In contrast 

to their chow-fed counterparts, HF-fed WT mice only resolved -65% of infiltrating 

PMN by this time (Fig 2A-B). Restoration of co-3 in HF-fed fat-1 mice was sufficient 

to completely recover the deficit in resolution capacity (PO.001). This is the first 

evidence that HF-diet induced co-3 deficiency can impede the normal resolution of 

inflammation. 

Transgenic restoration of co-3 prevents adipose inflammation 

To determine what role the HF diet-induced deficit in co-3 docosanoid mediators 

plays in obesity-linked inflammation we examined macrophage accrual in adipose 

tissue. Since PD1 directs tissue phagocyte flux in inflammatory exudates (16) we 

hypothesized that transgenic restoration of this co-3 resolution pathway would be 

sufficient to limit adipose macrophage accumulation in HF-fed mice. Immuno­

histochemical staining for F4/80+ cells, revealed that HF-fed WT mice have 

abundant accumulation of macrophages in adipose tissue compared to their chow-

fed counterparts (Fig. 2C-D). Furthermore, many of the F4/80+ cells in HF-fed WT 

fat clearly formed inflammatory crown like structures (CLS) around adipocytes (Fig. 

2C-E), a hallmark of obesity-linked inflammation (14). In line with the improved 
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resolution capacity macrophage accrual and CLS formation were entirely 

prevented in adipose tissue of HF-fed transgenic mice. 

To further characterize the impact of co-3 resolution mediators on obesity-linked 

inflammation we also examined adipose chemokine and cytokine expression. We 

detected elevated concentrations of the pro-inflammatory chemokines CCL2/MCP-

1 and CCL5/RANTES alongside the cytokines, IL-1B, IL-2 and IL-6 in HF-fed WT 

mice (Fig. 2F-J). Importantly, these key inflammatory factors were not significantly 

raised by HF-feeding in adipose of fat-1 mice. 

Transgenic restoration of co-3 protects against obesity-linked IR and glucose 

intolerance 

We next characterized whole-body insulin sensitivity to determine whether 

transgenic restoration of co-3 also prevents the development of obesity-linked IR. 

Insulin sensitivity was markedly reduced in HF-fed WT mice, as illustrated by 

elevated fasting insulin levels and diminished glucose excursion during the insulin 

tolerance test (ITT) (Fig. 3A-D). Conversely, fat-1 mice were protected from HF 

diet-induced IR as both fasting insulin values and ITT curves were similar to that 

observed for chow-fed mice. 

Fat-1 mice were also partially protected from HF diet-induced glucose intolerance 

(Fig. 3E-F). The area under the glucose tolerance curves of HF-fed WT mice was 

increased compared to their chow-fed counterparts (Fig. 3F) however this 

parameter was not significantly different between HF-fed fat-1 mice and their chow-

fed controls. Importantly, the improved metabolic phénotype of HF-fed fat-1 mice 

was not related to changes in food intake (data not shown), body weight gain (Fig. 

3G) or adiposity (Fig. 3H). We also found no changes in hepatic lipid accretion as 

determined by liver weight (Fig. 31) and histological examination of liver sections 

which showed similar accumulation of fat vesicles in both HF-fed WT and fat-1 

mice (Fig. 3J). Fasting plasma FFAs were not significantly influenced by 8 weeks 

of high fat feeding or transgenic restoration of co-3 in our study (data not shown). 

Although not statistically significant, circulating adiponectin tended to be reduced 
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by -30% in HF-fed WT mice compared to their chow fed counterparts 

(2150±638ng/ml vs 3345±768ng/ml respectively), this was not the case in HF-fed 

fat-1 mice which displayed circulating levels of adiponectin that were comparable 

to chow-fed mice (3420±565ng/ml). 

To understand the mechanism underlying the improved metabolic phénotype of 

HF-fed fat-1 mice, we examined insulin signaling to Akt in muscle and liver. As 

expected, insulin stimulation induced robust phosphorylation of Akt on ser473 in 

muscle and liver of chow-fed WT mice but this response was impaired in their HF-

fed counterparts (Fig. 4A-B). Remarkably, this defect was normalized in both 

muscle and liver of HF-fed fat-1 mice and despite clear accumulation of ectopic 

lipid in the latter tissue. 

We next examined whether the improved insulin action in metabolic tissues of HF-

fed fat-1 mice resulted from decreased inflammatory signaling. As expected, HF-

feeding WT mice led to robust phosphorylation of JNK on thr183/tyr185 in both 

muscle and liver; however, this was not the case for HF-fed fat-1 mice in either 

tissue (Fig. 4C-D). HF-feeding also resulted in significant iNOS induction in muscle 

of WT mice but not in HF-fed fat-1 mice (Fig. 4E). These data suggest that 

prevention of HF diet-induced co-3 deficiency and the maintenance of resolution 

capacity protects from the development of obesity-linked IR not only by limiting 

inflammation in the expanding adipose tissue but also by inhibiting two key 

inflammatory mediators of IR, JNK (17) and iNOS (11), in muscle and liver. 

DISCUSSION 
In the present study we took advantage of fat-1 mice to investigate the role of 

endogenous co-3 derived resolution mediators in key metabolic tissues in obesity. 

We found that the biosynthetic flux of the co-3 docosanoid resolution pathway in 

muscle and adipose tissue is dependent on LC co-3 PUFA bioavailability and that 

the pro-resolving lipid mediator, PD1 is lacking in normal mice chronically fed a 

typical western diet (co-6:co-3 ratio -18-1). HF-fed obese mice exhibited an 

impaired capacity to resolve an acute inflammatory response to TNF-a and showed 

abundant macrophage infiltration in adipose tissue that was linked to heightened 
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chemokine and cytokine expression, a hallmark of obesity-linked inflammation 

(18,19). Remarkably, restoration of PD1 via fat-1 transgenesis improved global 

resolution capacity and prevented adipose macrophage accrual in HF-fed fat-1 

mice. Accordingly, the expression levels of 5 key pro-inflammatory chemokines / 

cytokines were not found to be significantly elevated in adipose tissue of HF-fed 

fat-1 mice compared their chow-fed controls. To the best of our knowledge this is 

the first demonstration that endogenous biosynthesis of co-3 derived resolution 

mediators is associated with obesity-linked inflammation in metabolic tissues. 

This is also the first report on the regulation of inflammation and insulin sensitivity 

in an animal model of obesity in which co-3 status has been enhanced without 

confounding effects of dietary manipulation. Indeed, previous studies have 

documented that the anti-inflammatory and metabolic effects of dietary co-3 

supplementation were associated with concomitant reductions in either food intake, 

body weight gain, adiposity or liver fat accretion (9, 20, 21). However, we report 

herein that transgenic-based elevation of LC co-3 PUFAs protects from obesity-

linked IR without altering food intake, weight gain, or lipid deposition in adipose 

tissue or liver. We propose instead that endogenous LC co-3 PUFAs exert their 

protective effect through the actions of their lipid oxygenation products which 

resolve inflammation and limit macrophage accrual in the expanding adipose tissue 

of obese mice. 

The lack of effect of fat-1 expression on hepatic lipid accretion seems at odds with 

the recent report that dietary supplementation of LC co-3 PUFAs reversed hepatic 

steatosis in genetically obese ob/ob mice possibly through the action of the EPA 

derived eicosanoid RvE1 (8). However, this may be due in part to the different 

animal models used (i.e. diet induced vs genetic-based obesity), and the fact that 

we readily detected the docosanoid PD1 but not the eicosanoid RvE1 in the liver of 

our HF-fed fat-1 mice. Although we saw no effect of fat-1 transgenesis on 

resolution mediator synthesis in liver, our data suggests that transgenic restoration 

of co-3 FA's dissociates insulin resistance from hepatic lipid deposition and this is 

likely due to inhibition of inflammatory signaling, as revealed by prevention of JNK 
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activation in liver of HF-fed F1 mice. This anti-inflammatory effect in liver may be 

the result of reduced inflammatory crosstalk from adipose tissue with fewer 

recruited macrophages or may represent the local actions of another class of 

bioactive co-3 metabolite such as the newly discovered maresins (22) or EFOX (23) 

which should be the focus of future investigations. 

Our data showing protection from obesity-linked insulin resistance in HF-fed fat-1 

mice in which the levels of LC co-3 PUFAs have been restored are in line with 

epidemiological studies in humans which showed that native populations 

traditionally consuming high levels of LC co-3 PUFAs display a lower prevalence of 

type 2 diabetes (24, 25). Interestingly, data from another clinical study suggests 

that the positive influence of LC co-3 PUFA supplementation on insulin sensitivity is 

greater in obese populations that display an inflammatory phénotype (26). These 

data lend support to our findings which indicate that the anti-inflammatory actions 

of co-3 derived resolution mediators in metabolic tissues are key to the positive 

impact of LC co-3 PUFAs on insulin sensitivity. It will be interesting in future studies 

to examine whether direct administration of purified co-3 derived resolution 

mediators is sufficient to prevent the development of insulin resistance in obese 

animals and which mediators carry the greatest anti-diabetic potential. 

Although our work represents the first study into the effect of endogenously 

enhancing tissue co-3 content on insulin sensitivity in the context of obesity, it is 

noteworthy that another group has recently developed an adipose specific fat-1 

transgenic line (AP-3 mice) to expressly study the influence of adipose co-3 content 

on weight gain, insulin sensitivity and glucose tolerance in lean mice (27). It was 

found that 3-mo old male, but not female, AP-3 transgenic mice fed a high 

carbohydrate diet weigh slightly less than their WT littermates, although this could 

not be explained by changes in adiposity. Interestingly, while male AP-3 mice were 

more glucose tolerant than WT controls, female AP-3 mice exhibited glucose 

intolerance as compared to their WT littermates. Insulin sensitivity was not affected 

in either gender. These findings differ from those of our study in which we found 

that fat-1 transgenesis had no impact on weight gain or glucose tolerance in lean 
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chow-fed animals. It is of interest that homozygous expression of the fat-1 

transgene in our mice does not influence viability (10) while homozygous 

expression in the AP-3 mice was found to be lethal (27). 

In conclusion, we propose that endogenous LC co-3 PUFAs exert their protective 

effects through their lipid oxygenation products which reduce macrophage accrual 

and inflammation in the expanding adipose tissue of obese mice. Our data further 

suggest that restoring LC co-3 PUFAs also prevents obesity-linked IR by blunting 

lipid-induced JNK and iNOS activation in muscle and liver. Collectively our findings 

unravel a novel mechanism by which endogenous co-3 FAs prevent the 

development of obesity-linked inflammation and IR. This work supports the use of 

LC co-3 PUFAs for the prevention of insulin resistance and glucose intolerance in 

obese individuals. 
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FIGURE LEGENDS 
Figure 1. HF-feeding reduces co-3 availability for resolution mediator 

synthesis 

(A) 8 weeks of high fat (HF) feeding raised but fat-1 (F1) transgenesis restored the 

LC co-6:co-3 ratio in membrane phospholipids of muscle, liver and epididymal 

adipose tissue. C, standard laboratory chow; AA, Arachidonic Acid (20:4 co-6); 

EPA, Eicosapentaenoic Acid (20:5 co-3); DPA, Docosapentaenoic Acid (22:5 co-3); 

DHA, Docosahexaenoic Acid (22:6 co-3); Data are mean ± SEM (n=3). ** PO.01 

vs WTC; *** PO.001 vs WTC;f PO.05 vs WTHF; f t PO.01 vs WTHF (B) 

Comparison of co-3 docosanoid and eicosanoid biosynthetic pathways by LC-

MS/MS in muscle, liver and epididymal adipose tissue of HF-fed mice revealed that 

the docosanoid biosynthetic pathway has greater flux in metabolic tissues. Above 

left schematic diagram of docosanoid biosynthetic pathway showing the 

biosynthetic marker 17-HDoHE and PD1 (protectin D1; 10R,17S-dihydroxy-

docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid (28)) as well as the immediate 

PD1 precursor 17HpDoHE. At right the eicosanoid pathway showing 18-HEPE and 

RvE1 (Resolvin E1; 5S,12R,18R-trihydroxy-6Z,8E,10E,14Z,16E-EPA (29)). ND not 

detected. Data are mean ± SEM (n=9-14). * PO.05, **PO.01, ***PO.001 vs 17-

HDoHE. (C) Representative LC-MS/MS spectra for 17-HDoHE, PD1 and 18-HEPE, 

retention times were 22.6, 18.2, and 20.6 minutes respectively (D) Comparison of 

co-3 docosanoid and eicosanoid biosynthetic pathway activity by LC-MS/MS in 

muscle, liver and epididymal adipose tissue of HF-fed WT and fat-1 (F1) mice 

reveals increased levels of docosanoid resolution mediator synthesis in muscle 

and adipose tissue of fat-1 mice compared to WT mice. Data are mean ± SEM 

(n=6-10). * PO.05 vs WTHF. 

Figure 2. Transgenic restoration of co-3 resolution mediators re-establishes 

resolution capacity and prevents adipose inflammation in HF-fed mice 

(A) Clearance of inflammatory PMN infiltrates in dorsal air-pouches of HF-fed mice 

is impaired during the resolution phase of the in vivo resolution assay (n=5-6) (B) 

Percent infiltrate clearance 6.5h after TNFa injection was reduced by -35% in 
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obese HF-fed WT mice, HF-fed /af-1 (F1) transgenic mice displayed normal 

infiltrate clearance(n=5-6) (C) Representative image of F4/80 

immunohistochemistry in epididymal adipose tissue show mass accumulation of 

macrophage in HF-fed WT mice that is prevented in HF-fed transgenic mice . M0, 

macrophage; CLS, crown like structure (D) Percent F4/80+ cells in epididymal 

adipose tissue (n=4-6) (E) Macrophages present in adipose HF-fed WT mice 

formed multiple CLS, the formation of these inflammatory macrophage aggregates 

was greatly reduced in HF-fed fat-1 (F1) mice (Number of CLS per 100 adipocytes) 

(F-J) Chemokine and cytokine expression in epididymal adipose tissue was 

elevated by HF compared to chow-feeding in WT mice but these factors were not 

significantly raised by HF-feeding in fat-1 (F1) mice (n=5-10). All data are mean 

±SEM, * PO.05, **PO.01, ***PO.001 vs WTC; f PO.05, f t PO.01, f t fPO.001 

vs WTHF. 

Figure 3. Transgenic restoration of LC co-3 PUFA protects against obesity-

linked IR and glucose intolerance 

(A) HF diet-induced elevation of fasting plasma insulin was prevented by 

transgenic restoration of co-3 derived resolution mediators (n=4-9) (B) Glycémie 

excursion from 1.5U/kg i.p. ITT was normalized in HF-fed faf-1 (F1) mice (n=8-12) 

(C) Glycémie excursion expressed as percent basal glycemia (D) Percent basal 

glycemia at T=15 min after insulin injection (E) Glycémie excursion from 1g/kg i.p. 

GTT expressed as percent basal glycemia (n=7-11) and (F) Area under the curve 

from GTT show that HF-fed fat-1 (F1) mice are partially protected from glucose 

intolerance. (G) HF-fed fat-1 (F1) mice develop similar obesity to WT mice. 

Weight gain (n=16-20) (H) Epididymal fat pad weight (n=9-14). (I) Liver weight 

(n=9-14) (J) Representative H&E stained liver sections showing similar 

accumulation of fat vesicles in both WTHF and F1HF mice. All data are mean 

±SEM, ND not detected, * PO.05, **P<0.01, ***PO.001 vs respective chow-fed 

control; | PO.05 vs WTHF 
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Figure 4. co-3 resolution mediators improve insulin signaling by blunting JNK 

and iNOS in muscle and liver 

Transgenic restoration of co-3 resolution mediators improves insulin signaling to Akt 

in muscle and liver and blunts activation of JNK and iNOS in these tissues. (A-E) 

Immunoblots for pAKTser473, total AKT, pJNKthr183/tyr185, and total JNK in 

gastrocnemius muscle and liver,, and iNOS in muscle (n=5-9). Quantification of 

densitometry analyses are shown below the representative gels. Lanes were run 

on the same gel but were non contiguous. All data are mean ±SEM, ND not 

detected, * PO.05, **PO.01, ***PO.001 vs respective chow-fed control; f PO.05 

vs WTHF 
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CHAPTER II 

The docosanoid resolution mediator, Protectin DX, employs the 

prototypic myokine, lnterleukin-6, to regulate systemic glucose 

metabolism in vivo. 
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Résumé 
Une baisse dans la biosynthèse des docosanoïdes dérivés des acides gras 

insaturés (AGPI) co-3 dans les tissus métaboliques est associée au 

développement de l'inflammation et de l'insulino-résistance dans des souris 

obèses. Ici, nous avons analysé les effets métaboliques et anti-inflammatoires du 

docosanoïde, Protectine DX (PDX), dans des macrophages in vitro ainsi que dans 

les souris in vivo. En plus des activités anti-inflammatoires anticipées, nous avons 

pu observer que le PDX possède une activité antidiabétique. De façon inattendue, 

l'administration de PDX a stimulé une forte augmentation des concentrations 

circulantes d'IL-6. Cela était associé avec des niveaux élevés d'IL-6 dans le 

muscle squelettique mais pas dans le foie. Les niveaux élevés d'IL-6 étaient 

associés à une augmentation de l'activité d'AMPK et à une phosphorylation de 

l'ACC au muscle ainsi qu'à une meilleure inhibition de l'expression des enzymes 

de la gluconéogenèse dans le foie. Fait important, l'effet de la PDX sur le 

métabolisme du glucose était complètement absent chez les souris déficientes en 

IL-6. Ces données présentent PDX comme un nouveau régulateur du métabolisme 

du glucose, qui emploie l'IL-6 afin d'exercer ses effets bénéfiques. 
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Summary 
Reduced biosynthesis of omega-3 derived docosanoids in metabolic tissues is 

associated with inflammation and insulin resistance in high fat-fed mice. Here we 

studied the novel docosanoid resolution mediator, Protectin DX (PDX). 

Administration of PDX blunted lipid-induced inflammatory responses in palmitate 

treated macrophages as well as lipid-infused mice and prevented lipid-induced 

hepatic and peripheral insulin resistance in vivo. Unexpectedly, PDX administration 

stimulated a robust increase in circulating IL-6. This was associated with elevated 

skeletal muscle but not liver IL-6, and activation of muscle AMPK, ACC and hepatic 

STAT-3 as well as inhibition of PGC1a, PEPCK, and G6Pase expression in liver. 

PDX also enhanced glucose metabolism in saline-infused mice. Importantly, the 

effect of PDX on glucose metabolism in both saline and lipid-infused animals was 

completely abrogated in IL-6 knockout mice. These data present PDX as a novel 

regulator of glucose homeostasis that employs IL-6 crosstalk to exert its effects on 

glucose metabolism and insulin action in skeletal muscle and liver. 
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Introduction 
It is now widely accepted that inflammation is a key component of the etiology of 

obesity-linked insulin resistance leading the way to type 2 diabetes mellitus (T2DM) 

(Wellen and Hotamisligil, 2005; White and Marette, 2008). Novel anti-inflammatory 

compounds are therefore of great interest to the field. The enzymatic oxidation of 

omega-3 (co-3) polyunsaturated fatty acids (PUFA) yields multiple families of 

bioactive lipids, which include the resolvins, protectins and maresins (Norling and 

Serhan, 2010). These novel lipid mediators possess potent anti-inflammatory 

activity owing to their role in the active termination of endogenous inflammation; 

however, their therapeutic potential for the treatment of metabolic disorders such 

as insulin resistance remains to be fully explored. 

Using fat-1 transgenic mice that are characterized by elevated tissue co-3 content 

(Kang et al., 2004), we recently demonstrated that greater endogenous 

biosynthesis of protectins in adipose tissue and skeletal muscle of high fat fed 

obese mice is associated with an improved global resolution capacity, reduced 

inflammation and protection from insulin resistance (White et al., 2010). These data 

suggest that protectins might carry important potential for alleviating insulin 

resistance and T2DM. 

Protectin D1 (PD1), identified as 10R,17S-dihydroxy-docosa-4Z,7Z,11E, 

13E,15Z,19Z-hexaenoic acid, is the most studied member of the protectin family 

(Serhan et al., 2006). PD1 is derived from 12/15-lipoxygenase mediated 

oxygenation of docosahexaenoic acid (DHA; 22:6 n-3) followed by epoxidation and 

reduction of the 17S-hydroperoxy DHA intermediate (Serhan et al., 2006). A 

natural stereoisomer of PD1, 10S,17S-dihydroxy-docosa-4Z,7Z,11E,13Z,15E,19Z-

hexaenoic acid, first described as compound I (Serhan et al., 2006) and recently 

designated Protectin DX (PDX) (Chen et al., 2009) is also present in vivo. PDX is 

produced via sequential lipoxygenation of DHA and differs from PD1 with respect 

to the double bond geometry of carbons 13 and 15 as well as the position of the C-

10 hydroxyl (Chen et al., 2009; Serhan et al., 2006). PDX is found alongside PD1 

in murine inflammatory exudates and may also be produced by human neutrophils 
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exposed to DHA, albeit to a lesser extent than PD1 (Serhan et al., 2006). To the 

best of our knowledge the influence of protectins on insulin sensitivity and glucose 

metabolism has not yet been examined. 

Herein we provide first evidence of the therapeutic potential of PDX for lipid-

induced inflammation and insulin resistance. Importantly, we also reveal an 

unanticipated mechanism of action whereby PDX enhances both hepatic and 

peripheral glucose metabolism in vivo by increasing the prototypic myokine IL-6. 

Results 

PDX reduces lipid-induced inflammation in macrophages 

We had previously reported that increased protectin biosynthesis was associated 

with reduced macrophage infiltration and inflammation in adipose tissue of high fat 

fed mice (White et al., 2010). We therefore decided to first investigate whether 

protectins could directly affect macrophage function in a model that is relevant to 

obesity-related inflammation. We thus tested the ability of PDX to block palmitate-

induced inflammation in J77A4.1 macrophages in vitro. Macrophage exposure to 

palmitate (400pM) for 16h induced secretion of the inflammatory chemokines 

CCL2/MCP-1 and CCL5/RANTES (Figure 1, A and B) as well as the cytokines 

TNFa, IL-2, IL-6 and IL-10 (Figure 1, C-F). Inducible nitric oxide synthase (iNOS) 

activity, measured by nitrite production in the medium, and protein expression as 

well as c-Jun N-terminal Kinase (JNK) activation, as measured by phosphorylation 

on threonine183/tyrosine185, were also stimulated by palmitate exposure (Figure 

1, G-l). Importantly, co-administration of nanomolar doses (10 and 100 nM) of PDX 

significantly reduced each of these inflammatory responses (Figure 1, A-l). 

Since it is unknown whether other novel omega-3 derived resolution mediators also 

posses the potential to limit lipid-induced macrophage activation we decided to test 

the effectiveness of the resolvins, RvE1 (Figure S1, A-G) and RvD1 (Figure S2, A-

G), to block palmitate-induced chemokine, cytokine and iNOS activity in parallel 

experiments. Interestingly, each mediator displayed distinctive profiles of action. 

Indeed, RvE1 potently inhibited secretion of the cytokines TNFa, IL-2, IL-6 and IL-
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10 while exerting more modest effects on CCL2/MCP1 and iNOS activity but had 

no significant effect on the chemokine CCL5/RANTES. In contrast, RvD1 

effectively blunted TNFa, IL-2, and iNOS but had no significant effect on either 

CCL2/MCP-1, CCL5/RANTES, or IL-6. 

PDX prevents lipid-induced insulin resistance in mice 

To test whether the anti-inflammatory activity of PDX in vitro translates into 

protection against lipid-induced inflammation and insulin resistance in vivo we next 

employed a 6h lipid infusion paired to a 4mU/kg hyperinsulinemic-euglycemic (HIE) 

clamp to induce systemic insulin resistance in lean 14 week old C57BL/6J mice 

and determined whole-body insulin sensitivity as well as hepatic and peripheral 

insulin action (see design in Figure S3). This technique was recently established in 

our laboratory as an acute model of systemic insulin resistance that is 

characterized by impaired insulin action in both skeletal muscle and liver 

(Charbonneau and Marette, 2010). 

PDX treated lipid-infused mice were administered PDX (1pg i.v.) immediately prior 

to and 2.5h into the 6h lipid infusion. As expected, plasma free fatty acids (FFA's) 

were raised by more than 10 fold in both the lipid and lipid+PDX groups compared 

to saline-infused controls (Table 1). Interestingly, although pre-infusion glycemia 

was not different among groups (Table 1), administration of PDX lead to a 

significant lowering of pre-clamp glycemia compared to both the saline and lipid 

treated animals (Figure 2A, PO.01), suggesting that PDX might directly modulate 

glucose metabolism. Furthermore, whereas lipid infusion caused a rise in pre-

clamp insulinemia in the lipid group (PO.05) this was not the case for the 

lipid+PDX treated mice (Table 1). In accordance with these data, the glucose 

infusion rate (GIR) required to maintain euglycemia during the clamp, a measure of 

whole body insulin sensitivity, was reduced by -70% in lipid-infused mice 

compared to saline-infused controls; however, this insulin desensitizing effect was 

completely blocked by PDX administration (PO.001; Figure 2, B and C). 

The clamp studies revealed that the protective action of PDX results from improved 

insulin sensitivity in both muscle and liver since insulin action on peripheral glucose 
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uptake (Figure 2D) and suppression of hepatic glucose production (Figure 2E) 

were both significantly improved by PDX administration. It is noteworthy that PDX 

administration only partially restored peripheral insulin sensitivity but actually 

improved hepatic insulin action significantly beyond that of saline-infused mice 

(PO.05). In line with the improved insulin sensitivity in these tissues, we found that 

Akt phosphorylation was reduced in both liver and skeletal muscle of lipid-infused 

mice (Figure 2, F and I) but maintained with PDX treatment. 

PDX suppresses activation of established mediators of insulin resistance 

We hypothesized that PDX likely exerts its protective action on lipid-induced insulin 

resistance by inhibiting the activation of established inflammatory mediators of 

insulin resistance, such as iNOS and JNK (Hirosumi et al., 2002; Perreault and 

Marette, 2001). Compared to saline, lipid infusion led to a robust induction of iNOS 

protein expression in both liver (PO.001) and muscle (PO.05) and this was 

significantly repressed in each of these important metabolic tissues by PDX 

administration (Figure 2, G and J). JNK activation, as determined by 

phosphorylation on Thr183/Tyr185, was also induced by lipid infusion in liver but 

not in muscle (data not shown) and this too was abrogated by PDX administration 

(PO.05; Figure 2H). These data support our findings in macrophages exposed to 

palmitate, and suggest that PDX prevents lipid-induced insulin resistance at least 

in part by preventing the activation of inflammatory mediators of insulin resistance. 

PDX inhibits lipid-induced inflammation in vivo 

Since PDX effectively reduced the activation of two well established inflammatory 

mediators of insulin resistance we were interested to determine whether this was 

due to upstream inhibition of lipid-induced chemokine and cytokine secretion. We 

thus examined a panel of inflammatory chemokines and cytokines in circulation 

(Figure 3). In line with our observations in palmitate treated macrophages, lipid 

infusion in vivo led to robust induction of the pro-inflammatory chemokines 

CCL2/MCP-1 and CCL5/RANTES and this was significantly suppressed by PDX 

administration (Figure 3, A and B). Remarkably, this was also the case for the pro­

inflammatory Th1 cytokines, TNFa, IFNy, IL-1B, and IL-2 as well as the Th-17 
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cytokine, IL-17 (Figure 3, C-G). However, unexpectedly, in contrast to its effect on 

all other chemokines and cytokines, PDX actually promoted an ~7 fold increase in 

IL-6 beyond that induced by lipid infusion alone (PO.001; Figure 3H). These 

findings provide strong evidence that PDX is a potent inhibitor of lipid-induced 

inflammation; however, the observation that PDX robustly induces circulating IL-6 

suggests that the mechanism of action of PDX is likely more complex than first 

anticipated. 

PDX promotes IL-6 expression in skeletal muscle 

The role of IL-6 in insulin resistance and glucose metabolism is the subject of fierce 

debate in the literature (Mooney, 2007; Pedersen and Febbraio, 2007). While IL-6 

is frequently associated with the pathogenesis of obesity-related inflammation and 

metabolic disorders (Bastard et al., 2002) there are multiple reports which suggest 

that IL-6 may actually promote glucose and lipid metabolism (Carey et al., 2006; 

Petersen et al., 2005) and blunt inflammation (Wunderlich et al., 2010). 

Furthermore, IL-6 was identified as the prototypic 'myokine' (muscle derived 

cytokine) and has been proposed as a beneficial 'exercise factor' that regulates 

systemic metabolism during and post-exercise by mediating crosstalk with liver and 

adipose tissue (Febbraio and Pedersen, 2005). In light of these data, we felt it was 

important to first establish the potential site of IL-6 release in our study. We 

therefore examined IL-6 protein expression in both skeletal muscle and liver. Here 

we observed that the expression profile of IL-6 protein in skeletal muscle was very 

similar to that in plasma but this was not the case for liver where no significant 

differences were observed (Figure 4, A and B). Since PDX was seen to inhibit IL-6 

release from palmitate treated macrophages in the eariier in vitro studies (Figure 

1E) these data suggest that PDX likely raises circulating IL-6 by promoting its 

release from skeletal myocytes rather than myeloid cells within skeletal muscle 

tissue. 

A very recent report demonstrated that an IL-6-dependent pathway underlies the 

insulin sensitizing actions of adiponectin in liver (Awazawa et al., 2011). We 

therefore felt it was important to also determine whether PDX influenced circulating 
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adiponectin levels in our study. However, here we found that adiponectin likely 

does not account for the PDX mediated rise in circulating and skeletal muscle IL-6 

since both lipid-infused groups displayed similar significantly lower levels of total 

adiponectin in plasma (PO.05; Figure 4C). 

PDX activates AMPK in skeletal muscle 

IL-6 is thought to increase glucose metabolism in skeletal muscle by activating 

AMP-activated protein kinase (AMPK) (Carey et al., 2006; Kelly et al., 2009; Kelly 

et al., 2004). We therefore examined the effect of PDX administration on skeletal 

muscle AMPK and its downstream target Acetyl-CoA carboxylase (ACC). We 

observed that PDX administration promotes a robust phosphorylation of AMPK on 

Thr172 compared to both saline and lipid-infused groups (PO.05; Figure 4D) and 

this was associated with significantly greater phosphorylation of ACC on ser79 

(PO.05 vs saline, PO.01 vs lipid; Figure 4E). These data suggest that muscle 

derived IL-6 possibly contributes to the improved skeletal muscle glucose 

metabolism in PDX treated mice by stimulating AMPK in an autocrine manner. 

PDX promotes activation of STAT-3 in liver 

In addition to its autocrine action in skeletal muscle, muscle derived IL-6 is believed 

to regulate hepatic glucose production in an endocrine manner via STAT-3 

mediated transcriptional suppression of PGC1a, PEPCK and G6Pase (Inoue et al., 

2006; Inoue et al., 2004). Accordingly, we found that PDX administration induced 

phosphorylation of hepatic STAT-3 on ser727 (PO.05; Figure 4F) and this was 

associated with greater transcriptional suppression of mRNAs encoding for the 

transcription factor PGC1a (PO.05; Figure 4G), as well the important 

gluconeogenic enzyme, PEPCK (PO.01; Figure 4H), compared to saline-infused 

mice. This effect of PDX likely explains the greater suppression of hepatic glucose 

production observed with PDX treatment during the HIE clamp (Figure 2D). There 

was also a tendency for reduced expression of the gluconeogenic enzyme G6Pase 

in PDX treated animals but this did not reach significance (PO.08; Figure 41). 

Importantly, in accordance with the findings of the HIE clamp, mice infused with 
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lipid alone displayed significantly elevated expression of PGC1a (PO.01; Figure 

4G) and PEPCK (PO.05; Figure 4H) compared to the saline-infused controls. 

IL-6 is required for the beneficial effects of PDX on glucose metabolism 

To test our hypothesis that IL-6 underlies the beneficial effects of PDX on glucose 

metabolism we performed a second set of lipid infusion HIE-clamp studies in 10 

week old IL-6 null (KO) mice alongside wild type (WT) C57BL/6J control mice. An 

additional saline-infused group treated with PDX was added to the study to 

determine whether PDX might also improve glucose metabolism in insulin sensitive 

mice. In order to ensure that we could detect any potential differences between the 

insulin sensitive saline-infused animals these experiments were performed as 

2.5mU/kg rather than 4mU/kg HIE clamps. The physiological parameters for this 

lipid-infusion HIE clamp study are shown in Table 2. 

In accordance with the findings of the original clamp study (Figure 2A), here we 

observed that PDX administration induced a significant fall in pre-clamp glycemia 

in WT mice. Importantly, this reduction was present in both saline-infused and lipid-

infused WT mice compared to their vehicle treated counterparts (PO.05; Figure 5, 

A and F) but was completely absent in the PDX treated KO mice. These data 

suggest that the glucose lowering actions of PDX are IL-6 dependent. PDX 

treatment also significantly enhanced the GIR required to maintain euglycemia in 

saline-infused WT mice (PO.05) but this was not the case in KO animals (Figure 

5, B and C). The clamp data revealed that the improved insulin sensitivity 

witnessed in WT PDX treated saline-infused mice was the result of superior 

hepatic insulin action since peripheral insulin action was not different among 

groups but PDX treatment significantly improved the suppression of hepatic 

glucose production (PO.05; Figure 5, D and E). Interestingly, hepatic insulin action 

was significantly reduced in saline-infused KO mice compared to their WT 

counterparts (PO.05) suggesting that IL-6 is required for full insulin mediated 

suppression of hepatic glucose production in insulin sensitive animals. 

As demonstrated for the original clamp study in Figure 2, vehicle treated lipid-

infused mice required less glucose than saline-infused mice to maintain 
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euglycemia during the HIE clamp and PDX administration significantly increased 

the GIR in WT mice (PO.05; Figure 5, G and H). Importantly, the beneficial effect 

of PDX administration on GIR in lipid-infused animals was completely lost in KO 

mice (Figure 5, G and H). These studies revealed that in contrast to the saline-

infused mice, PDX improves both peripheral (PO.05) and hepatic (PO.001) 

insulin action in lipid-infused mice (Figure 5, I and J). Interestingly, the beneficial 

effect of PDX on peripheral insulin action in lipid-infused mice was completely 

absent in KO mice whereas the effect on hepatic insulin action was only partially 

lost. These data suggest that whereas IL-6 accounts for the entire beneficial effects 

of PDX in normal unchallenged animals, other anti-inflammatory mechanisms 

triggered by PDX also likely contribute to its beneficial effects in an inflammatory 

setting such as during lipid challenge. 

AMPK activation by IL-6 is not required for PDX action on muscle glucose 

metabolism 

Since our initial study revealed that the PDX mediated rise in skeletal muscle IL-6 

was associated with greater activation of AMPK we felt it was important to 

determine whether this effect of PDX was IL-6 dependent. In line with our original 

study (Figure 4, A and D), here we found that administration of PDX causes a 

robust increase in skeletal muscle IL-6 in both saline and lipid infused WT mice 

(PO.01, Figure 6, A and G) that is associated with a parallel rise in 

phosphorylation of AMPK on Thr172 (PO.05, Figure 6, B and H). As expected 

PDX failed to raise IL-6 in skeletal muscle of saline and lipid infused KO mice 

(Figure 6, A and G); however, this was not associated with reduced levels of AMPK 

phosphorylation compared to WT PDX treated mice (Figure 6, B and H). To the 

contrary, we found that genetic deletion of IL-6 leads to equally elevated levels of 

AMPK phosphorylation in saline infused mice compared to their vehicle treated WT 

counterparts regardless of the treatment received (PO.05, Figure 6B). More 

importantly, we observed that the stimulatory effect of PDX on AMPK 

phosphorylation is completely maintained in lipid infused animals, which in contrast 

to their saline infused counterparts, display similar basal levels of AMPK 
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phosphorylation to vehicle treated WT mice (PO.05, Figure 6H). Together these 

data suggest that IL-6 is not required for PDX mediated activation of AMPK. 

PDX regulates the STAT-3-gluconeogenesis axis in an IL-6 dependent 

manner 

We next evaluated the role of IL-6 in PDX mediated activation of hepatic STAT-3 

and the transcriptional suppression of hepatic gluconeogenesis. In support of our 

previous findings (Figure 4F), here we observed that PDX promotes robust 

phosphorylation of hepatic STAT-3 on ser727 in both saline and lipid infused WT 

mice (PO.01, Figure 6, C and I). Importantly, in contrast to AMPK, this effect of 

PDX was found to be completely absent in KO mice. The activation of STAT-3 by 

PDX was not associated with further suppression of PGC1a in insulin sensitive 

saline infused mice (Figure 6D). However, PDX administration in saline infused WT 

mice clearly had an additive effect on the transcriptional repression of PEPCK 

downstream of PGC1a (PO.01, Figure 6E). In line with STAT-3, this effect of PDX 

was found to be completely absent in saline infused KO mice which displayed 

significantly elevated levels of PEPCK expression compared to vehicle treated WT 

mice (PO.05). PDX administration also tended to improve the suppression of 

G6Pase in saline infused WT mice (PO.0614) but this was not the case for their 

KO counterparts where G6Pase expression was also increased compared to 

vehicle treated WT mice (PO.01, Figure 6F). These data suggest that IL-6-STAT-3 

mediated suppression of PEPCK and G6Pase likely accounts for the glucose 

lowering (Figure 5 A) and insulin sensitizing (Figure 5, B-E) actions of PDX in 

saline infused mice. Furthermore, the elevated expression of these enzymes in KO 

mice likely explains the slight impairment in hepatic insulin action detected during 

the clamp (Figure 5E). 

In contrast to the insulin sensitive saline infused mice, PDX administration 

significantly improved the suppression of PGC1a (PO.01) alongside PEPCK 

(PO.05) and G6Pase (pO.001) in lipid infused WT mice (Figure 6J-L). 

Importantly, these effects of PDX were entirely absent in lipid infused KO mice. As 

observed for saline infused mice, systemic absence of IL-6 lead to an increase in 
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PEPCK expression compared to vehicle treated WT mice (PO.01, Figure 6K); 

however, this was not the case for G6Pase whose expression was significantly 

reduced compared to vehicle treated WT mice (PO.01, Figure 6L). This inverse 

regulation of G6Pase mRNA expression in lipid infused KO mice likely represents a 

compensatory mechanism to restrain hepatic glucose output in conditions of insulin 

resistance. Together these data support our working hypothesis that the IL-6-

STAT-3 pathway underlies the insulin sensitizing and glucoregulatory actions of 

PDX in liver through transcriptional repression of PGC1a, PEPCK and G6Pase. 

Discussion 
In the present study we have identified the docosanoid resolution mediator, PDX, 

as a novel glucoregulatory agent with exciting potential for combating insulin 

resistance and T2DM owing to a combination of potent anti-inflammatory, glucose 

lowering and insulin sensitizing actions. Surprisingly this anti-inflammatory 

mediator appears to stimulate glucose metabolism in vivo by promoting the release 

of the prototypic myokine IL-6. To the best of our knowledge this is the first report 

of an agent other than contraction/exercise that directly promotes skeletal muscle 

IL-6 expression. 

In line with the currently described mechanisms of action of IL-6 in the literature, 

our findings support a model wherein PDX-dependent IL-6 release promotes the 

suppression of hepatic glucose production in an endocrine fashion via STAT-3 

mediated transcriptional repression of PGC1a, PEPCK, and G6Pase (Inoue et al., 

2006; Inoue et al., 2004). We also found that PDX stimulates AMPK in skeletal 

muscle however this action does not appear to require muscle IL-6 release. 

Since the favorable effect of PDX on skeletal muscle glucose metabolism was 

entirely absent in IL-6 null mice it is presently unclear what contribution AMPK 

makes to the beneficial actions of PDX reported herein. Interestingly, we found that 

PDX did not further improve peripheral glucose disposal in saline-infused mice 

whereas there was a substantial improvement in their lipid challenged 

counterparts. These data suggest that PDX induced IL-6 likely improves muscle 

glucose metabolism by protecting against the lipid insult rather than by directly 
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promoting glucose uptake in this tissue. In contrast, PDX administration clearly 

potentiated insulin mediated suppression of hepatic glucose production in both lipid 

and saline infused mice suggesting that PDX induced IL-6 directly modulates 

glucose production in liver. Our studies in IL-6 null mice support this notion and 

point toward a mechanism previously described by Inoue et al (Inoue et al., 2004) 

whereby STAT-3 restricts PEPCK and G6Pase expression independently of insulin 

mediated suppression of PGC1a. Importantly, in lipid challenged mice it appears 

that PDX improves the insulin mediated suppression of PGC1a while also 

activating STAT-3 mediated suppression of PEPCK and G6Pase. 

To the best of our knowledge this is the first report where IL-6 KO mice were 

studied using the HIE clamp in conditions of lipid excess. Our findings are in 

complete disagreement with a role for IL-6 in the development of lipid-induced 

insulin resistance since we found that lack of IL-6 does not prevent insulin 

resistance in lipid-infused mice. To the contrary, we found that insulin sensitive 

saline-infused IL-6 KO mice display a slight defect in hepatic insulin action that is 

associated with altered regulation of hepatic PEPCK and G6Pase but not PGC1a. 

However, this slight effect on hepatic insulin action did not cause a significant 

change of whole body glucose metabolism. Our data thus join a growing body of 

work (Awazawa et al., 2011; Carey et al., 2006; Pedersen and Febbraio, 2007; 

Wunderlich et al., 2010) that argues for a positive role of IL-6 in the regulation of 

glucose metabolism. 

Interestingly, in addition to potentiating insulin action, PDX administration also 

induced a characteristic lowering of basal glycemia that was IL-6 dependent and 

preceded insulin administration in both saline and lipid-infused mice. This suggests 

that PDX and IL-6 might also represent promising therapeutic targets as insulin 

independent glucose lowering agents. This finding is in agreement with work 

showing that exposure of mouse soleus to IL-6 and soluble IL-6 receptor increases 

glucose transport ex vivo (Gray et al., 2009) and also a recent study which showed 

that the hypoglycemic response to endotoxemia is absent in IL-6 KO mice 

(Tweedell et al., 2011). Importantly, our data suggest that this glucose lowering 
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effect of PDX is dependent on IL-6 mediated activation of the hepatic STAT-3 

pathway which independently suppresses the expression of PEPCK and G6Pase 

(Inoue etal., 2004). 

In addition to providing the first evidence of the insulin sensitizing and 

glucoregulatory actions of PDX this is also the first report demonstrating the 

powerful ability of PDX to suppress lipid-induced inflammation. Importantly, we 

observed that PDX inhibits lipid-induced secretion of pro-inflammatory chemokines 

and cytokines as well as activation of two well established inflammatory mediators 

of insulin resistance, iNOS and JNK, in macrophages in culture as well as skeletal 

muscle and liver in vivo. This is the first report in any setting documenting that PDX 

can inhibit iNOS and JNK. Although it was beyond the scope of this study it will be 

interesting to determine in future studies whether PDX interferes with toll like 

receptor activation or whether another mechanism is involved in its anti­

inflammatory activity in the setting of lipid excess. It is plausible that activation of 

AMPK might underlie part of the anti-inflammatory activity of PDX (Centeno-Baez 

etal., 2011; Pilon etal., 2004). 

In conclusion, we have identified the docosanoid resolution mediator, PDX, as a 

novel agent that carries potent therapeutic potential for lipid-induced inflammation 

and insulin resistance. What is more we have unraveled an unanticipated 

mechanism of action whereby PDX enhances both hepatic and peripheral glucose 

metabolism in vivo by increasing the prototypic myokine IL-6. These data add to 

the growing body of evidence supporting a beneficial role for IL-6 in glucose 

metabolism and also suggest that protectins likely underlie part of the beneficial 

actions of omega-3 fatty acids for obesity-related inflammation and insulin 

resistance. 
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Experimental Procedures 

Macrophages 

J774A.1 murine macrophages were maintained in DMEM (10% FBS) until 80% 

confluence. A 2mM palmitate solution or methanol vehicle in alpha-MEM (12% 

BSA) was added to fresh DMEM (10% FBS) to give a final concentration of 400pM 

palmitate. Concomitantly, PDX, RvE1, RvD1 (10 or 100nM, Cayman chemical), or 

vehicle was added to the media. After 16 hours, the media was collected and cells 

were lysed and scraped in 200pl of ice cold lysis buffer (50mM HEPES pH7.5, 

150mM NaCl, 1mM EGTA, 20mM b-glycerophosphate, 1%NP40, 10mM NaF, 2mM 

Na3V04, 1x protease inhibitor cocktail (Sigma)). 

Paired lipid-infusion HIE clamp studies 

14-week old male C57BL/6J mice from Jackson Labs were used for the first paired 

lipid infusion-HIE clamp study. These mice were placed on a standard laboratory 

chow diet with free access to food and water and kept in a 12h light 12h dark cycle 

at the Laval University hospital research centre animal facility. Mice were randomly 

assigned to saline, lipid or lipid + PDX groups. Five days prior to the experiment, 

mice were anesthetized and PE-10 catheters (Harvard Apparatus, QC, Canada) 

were inserted into the left common carotid artery and the right jugular vein for blood 

sampling and infusions respectively. Mice were fasted for 5h leading up to the 

protocol. Immediately prior to the start of the lipid infusion, PDX (1pg) or an equal 

volume of vehicle was administered via the jugular catheter to each group. Mice 

were then infused for 6h with saline (5ml.kg"1.h"1) or lipid (20% intralipid emulsion 

(Baxter, ON, Canada) 5ml.kg"1.h"1 with 20IU.ml"1 heparin (LEO pharma, ON, 

Canada)). 2.5h into the infusion PDX (1pg) or vehicle was again administered to 

the appropriate groups and the HIE clamp was initiated as previously described 

(Charbonneau and Marette, 2010; Xu et al., 2009). The HIE clamp protocol 

consisted of a 90min tracer equilibration period followed by a 120min experimental 

period. Pre-clamp glycemia was taken immediately prior to the tracer equilibration 

period. A 5-pCi bolus of [3"3H]glucose was given at the start of the tracer 

equilibration period followed by a 0.05-pCi/min infusion for 90min. Blood samples 
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were drawn for the assessment of glycemia, insulin and glucose turnover levels. 

Following the 90min tracer equilibration period the HIE clamp began with a primed-

continuous infusion of human insulin (16mU/kg bolus followed by 4 mU.kg"1.min"1, 

Humulin R; Eli Lilly, Indianapolis, IN). The [3"3H] glucose infusion was increased to 

0.2pCi/min for the remainder of the experiment. Euglycemia (6.0-7.OmM) was 

maintained during clamps by infusing 20% dextrose as necessary. Blood samples 

were taken continuously to determine glucose specific activity as well as insulin 

concentrations. Mice received saline-washed erythrocytes from donor mice 

throughout the experimental period (5-6pl.min"1) to prevent a fall of >5% 

hematocrit. HGP and Rd were determined using Mari's non-steady-state equations 

for a two-compartmental model (Mari, 1992). 

For the second paired lipid infusion HIE clamp study, 10 week old male B6.129S2-
Hgtmkopf/j (||__6 K Q ) a n d c o n t r o | C 5 7 B L / 6 j (WT) m i c e f r o m Jackson Labs were used. 

Mice from each genetic background were randomly assigned to saline-vehicle, 

saline-PDX, lipid-vehicle and lipid-PDX groups. The lipid-infusion clamp study was 

performed as described above, except the clamp was performed with a 2.5mU.kg" 
1.min"1 insulin infusion as per (Mulvihill et al., 2011). All animal procedures were 

approved and carried out in accordance with directions of the Laval University and 

Canadian Councils for Animal Care. 

Western blotting 

Snap frozen gastrocnemius muscle and liver from mice were pulverized in liquid 

nitrogen then lysed overnight at 4°C in the lysis buffer described for the 

macrophage experiments. Immunoblotting of macrophage, liver and muscle lysates 

was then performed as previously described (White et al., 2010). Briefly, 50pg of 

protein was loaded onto a 7.5% acrylamide gel, subjected to SDS-PAGE then 

transferred onto nitrocellulose membranes. Membranes were then blocked and 

probed with the appropriate antibodies. Antibodies for p-Akt ser473, p-JNK 

thr183/tyr185, JNK, p-AMPK thr172, AMPK, p-ACC ser79, ACC, p-STAT-3 ser727 

and STAT-3 were obtained from Cell Signaling Technology (MA, USA). Antibodies 
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for total Akt and iNOS were from Santa Cruz Biotechnology (CA, USA) and BD 

Transduction Laboratories™ (Canada) respectively. 

Real-time RT-PCR 

RNA was extracted from homogenized liver tissue using an RNeasy® fibrous 

tissue mini kit from QIAGEN. RNA was then reverse transcribed to cDNA using the 

high-capacity cDNA reverse transcription kit from applied biosystems. Real-time 

RT-PCR for Ppargd, Pck1, G6Pc, and GAPDH was then performed using 

Taqman assay on demand probes and primers from Applied Biosystems in a 

CFX96 real-time system from BIO-RAD. The relative expression of genes of 

interest was then determined by normalization to the housekeeping gene GAPDH 

using the comparative CT method for relative gene expression (Schmittgen and 

Livak, 2008). 

Analytical methods 

Chemokines and cytokines were quantified in macrophage media, or mouse 

plasma using the MILLIPLEX™ MAP mouse cytokine/chemokine kit (Millipore 

Corporation, MA, USA). Nitrite accumulation in media was determined by Greiss 

assay as previously described (Pilon et al., 2004). Plasma insulin levels were 

assessed by RIA (Linco, Ml, USA). FFA were measured using an enzymatic 

colorimetric assay (Wako Chemicals, VA, USA). Skeletal muscle and liver IL-6 

were quantified using the mouse IL-6 ELISA kit from R&D systems. Total plasma 

adiponectin was determined using the ELISA from ALPCO. 

Statistical Analysis 

A one-way ANOVA was used for all data. Bonferonni was the post-hoc test 

employed. Results were considered significant when PO.05. 
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Figure Legends 

Figure 1. PDX blunts lipid induced inflammation in macrophages 

J774A.1 macrophages were exposed to palmitate (400pM) or vehicle for 16h in the 

presence or absence of 10 or 100nM of PDX. (A-F) PDX administration reduced 

macrophage chemokine and cytokine secretion in media (G) PDX also blunted 

nitrite accumulation in macrophage media (H-l) Immunoblots for iNOS, 

pJNKthr183/tyr185 and total JNK in macrophage lysates show that PDX blocks 

lipid-induced activation of these intracellular inflammatory mediators. Quantification 

of densitometry analyses are shown below the representative gels. All data are 

mean ±SEM. * PO.05, ** PO.01, *** PO.001 vs vehicle; f PO.05, m PO.001 vs 

palmitate. See also Figures S2 and S3 for effects of RvE1 and RvD1. 

Figure 2. PDX prevents lipid-induced insulin resistance in mice 

Pre-clamp glycemia is shown in panel A. (B) Glycemia and glucose infusion rate 

(GIR) during the HIE clamp. (C) Mean GIR for last 60min of HIE clamp is reduced 

by lipid-infusion but restored by PDX administration (D) Peripheral insulin action 

expressed as fold increase in Rd during the clamp is improved in PDX treated mice 

(E) PDX markedly improved hepatic insulin action expressed as percent 

suppression of hepatic glucose production (HGP) during the clamp (F-J) 

Immunoblots for pAKTser473, total AKT, iNOS, pJNKthr183/tyr185, and total JNK 

in gastrocnemius muscle and liver show that PDX maintains insulin signal 

transduction to Akt by blunting activation of JNK and iNOS. Quantification of 

densitometry analyses are shown below the representative gels. Lanes were run 

on the same gel but were non contiguous. All data are mean ±SEM, ND not 
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detected, * PO.05, **PO.01, ***PO.001 vs Saline; T PO.05, n PO.01, 

^^PO.OOI vs Lipid. See also Figure S3 for study design. 

Figure 3. PDX inhibits lipid-induced inflammation in mice 

PDX administration prevented lipid-induced elevations in plasma chemokines (A-B) 

as well as Th1 (C-F) and Th17 (G) cytokines during the paired lipid infusion HIE 

clamp. PDX also provoked an increase in IL-6 (H). All data are mean ±SEM, ND 

not detected, * PO.05, ***PO.001 vs Saline; f PO.05, m PO.001 vs Lipid. 

Figure 4. PDX stimulates skeletal muscle IL-6 expression 

(A-B) Skeletal muscle and liver IL-6 protein expression. (C) Total plasma 

adiponectin. (D-E) Immunoblots for pAMPK thr172, total AMPK, pACC ser79, and 

total ACC in skeletal muscle. (F) Immunoblots for pSTAT-3 ser727 and total STAT-

3 in liver. Quantification of densitometry analyses for immunoblots are shown 

below the representative gels. In each case lanes were run on the same gel but 

were non contiguous. (G-l) Relative mRNA expression for Ppargd, Pck1 and 

G6Pc. All genes were normalized to GAPDH using the delta delta CT method. All 

data are mean ±SEM, * PO.05, **PO.01 vs Saline; f PO.05 , t t PO.01 vs Lipid. 

Figure 5. IL-6 is required for the insulin sensitizing actions of PDX 

Pre-clamp glycemia for PDX and vehicle (VEH) treated saline-infused animals are 

shown in panel A. (B) Glycemia and GIR during the HIE-clamp. (C) Mean GIR for 

last 60min of HIE clamp is improved by PDX administration in C57BL/6J (WT) but 

not IL-6 null (KO) mice. (D-E) Peripheral and hepatic insulin action in saline-infused 
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animals during the HIE clamp. (F) Pre-clamp glycemia for PDX and VEH treated 

lipid-infused animals. (G) Glycemia and GIR during the HIE-clamp. (H) Mean GIR 

for last 60min of HIE clamp is improved by PDX in WT but not KO mice. (I-J) 

Peripheral and hepatic insulin action in lipid-infused animals during the HIE clamp. 

All data are mean ±SEM, * PO.05, ***PO.001 vs WT VEH; T PO.05, n PO.01 vs 

WT PDX; § PO.05 vs KO VEH. 

Figure 6. Role of IL-6 in PDX mediated activation of AMPK and STAT-3 

Panel A shows IL-6 protein expression in skeletal muscle of PDX and vehicle 

(VEH) treated saline-infused animals. (B-C) Immunoblots for pAMPK thrl 72/ total 

AMPK in muscle and pSTAT-3 ser727/ total STAT-3 in liver. (D-F) Relative mRNA 

expression for Ppargd, Pck1 and G6Pc. (G) IL-6 protein expression in skeletal 

muscle of PDX and vehicle (VEH) treated lipid-infused animals. (H-l) Immunoblots 

for pAMPK thr172/ total AMPK in muscle and pSTAT-3 ser727/ total STAT-3 in 

liver. (J-L) Relative mRNA expression for Ppargd, Pck1 and G6Pc. For all 

immunoblots quantification of densitometry analyses are shown below the 

representative gels. In each case lanes were run on the same gel but were non 

contiguous. For all real time RT-PCR data genes of interest were normalized to 

GAPDH using the delta delta CT method. All data are mean ±SEM, * PO.05, 

**P<0.01, ***P<0.001 vs WT VEH; § PO.05 vs KO VEH. 
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Saline Lipid Lipid ♦ PDX 
FFA's (mEq.L

1
) 

Pre-infusion 0.204±0.001 0.206±0.004 0.226±0.018 
Post-clamp 0.186±0.003 2.365±0.098 *** 2.793±0.371*** 

Glycemia (mmol.L
1
) 

Pre-infusion 8.4±0.13 8.2±0.15 8.6±0.13 
Clamp (final 60min) 6.5±0.08 6.4±0.08 6.5±0.08 

Insulin (pmol.mL
T
) 

Pre-clamp 21.9±3.0 36.5±4.5 * 23.1 ±4.2 
Post-clamp 105.9±9.3 106.5111.5 103.7±9.4 
Data are mean ± SEM, * P<0.05 vs Saline, *** PO.001 vs Saline 
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Table 2 
Saline L ip id 

W T V E H W T P D X KO VEH KO PDX W T V E H W T P D X KO VEH KO PDX 

FFA's (mEq.L*) 

Pre-infusion 0.2310.016 0.2410.025 0.2410.019 0.2110016 0.2210.022 0.2510 019 0.2210.008 0.2510.023 

Post-damp 0.1010.02 0.1010.04 0.1010.03 0.1110.03 1.0310.18» 1.1210.20" 104lO.11» 1.0010.20» 

Glycemia (mmol.L'1) 

Pre-infusion 9.410.11 8.410.96 10.3i0.92 10.810.72 9 210.66 8.610 80 9.110.71 10.110.48 

Clamp (final 60min) 6.210.19 6.210.09 6.7210.22 6.6210.10 6.510.11 6.410.10 6.710.12 6.510.17 

Insul in (pmol.mL'1) 

Pre-clamp 26.116.1 19.818.3 26.416.7 26.014.2 25.116.4 16.914.0 22.516,6 20.214.9 

Post-clamp 150.4141 149.2119 148.3114 150.9147 152.1123 150.6120 153.7134 149.3129 

Data are mean ± SEM. §§ PO.01 vs saline control counterpart. 

http://104lO.11�
http://10.3i0.92
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Supplemental Figure Legends 

Figure S1- RvE1 reduces fatty acid-induced inflammation in macrophages 

J774A.1 macrophages were exposed to palmitate (400uM) or vehicle for 16h in the 

presence or absence of 10nM or 100nM of RvE1. (A-E) Chemokines and 

Cytokines detected in macrophage media (F) Nitrite detected in macrophage 

media. All data are mean ± SEM. * P<0.05, *** PO.001 vs vehicle; * P<0.05, m 

P<0.001 vs palmitate. 

Figure S2 RvD1 reduces fatty acid-induced inflammation in macrophages 

J774A.1 macrophages were exposed to palmitate (400uM) or vehicle for 16h in the 

presence or absence of 10nM or 100nM of RvD1. (A-E) Chemokines and 

Cytokines detected in macrophage media (F) Nitrite detected in macrophage 

media. All data are mean ± SEM. * P<0.05, *** PO.001 vs vehicle; f PO.05 vs 

palmitate. 

Figure S3- Paired lipid infusion HIE clamp study design 

5h fasted mice were infused with lipid or saline for 6h. Prior to the initiation of the 

infusion a blood sample was taken for the determination of pre-infusion glycemia 

and FFAs. At t=150 minutes the stabilization period of the HIE clamp procedure 

was begun by steady infusion of 3"3H glucose and erythrocytes. Immediately, prior 

to the commencement of the stabilization period a blood sample was taken for the 

determination of pre-clamp glycemia and insulinemia. The HIE clamp was begun at 

t=240 with infusion of insulin and glucose. Groups were administered 1ug of PDX 

or equal volumes of vehicle immediately prior to the infusion and at t=150. Clamp 

glycemia represents the mean of the measures taken during the last 60minutes of 

the procedure. Post-clamp insulin was determined from the blood sample taken at 

sacrifice. 
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BLOOD SAMPLE LEGEND 
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CHAPTER III 

Transgenic restoration of u>-3 PUFA alters the gene expression 
profile and morphology of adipose tissue in 

obese high fat fed mice. 
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Résumé 
Contexte: L'administration diététique des acides gras polyinsaturés (AGPI) w-3 est 

souvent associée à des changements dans la morphologie et/ou fonction du tissu 

adipeux chez la souris obèse. Cependant, il est difficile de savoir si ces 

observations sont une conséquence indirecte d'une réduction du gain de poids ou 

si cela résulte d'actions directes des AGPI u)-3. Nous avons donc étudié des souris 

transgéniques fat-1 qui convertissent des AGPI u)-6 endogènes en AGPI to-3. Ces 

souris présentent un gain de poids et une accretion de la graisse identiques à leurs 

homologues sauvages. 

Méthodologie I Principaux résultats: Nous avons effectué des analyses par 

biopuces Affymetrix dans le tissu adipeux viscéral des souris fat-1 et leurs 

homologues sauvages nourries d'une diète riche en gras. Par la suite, nous avons 

effectué une analyse de voies avec le programme GenMAPP/MAPPFinder 2,0. 

Ceci a fait ressortir l'adipogenèse, la biosynthèse du cholestérol, la signalisation de 

l'insuline, la synthèse/ régulation des prostaglandines et des petits ligands RCPGs 

comme des domaines clés où les gènes différemment exprimés ont été clairement 

identifiés. En conformité avec le profil d'expression pro-adipogénique, l'analyse 

histologique a révélé une diminution de la grosseur des adipocytes, reflétée par un 

décalage vers la gauche dans la distribution de la taille des adipocytes chez les 

animaux transgéniques. Par ailleurs, une analyse par PCR quantificatif a confirmé 

que l'ARNm de PPARy a été régulé à la hausse chez la souris fat-1. La 

restauration transgénique des AGPI u>-3 a également amélioré l'expression des 

récepteurs endocannabinoïdes et diminué l'expression de l'enzyme FAAH, 

responsable du catabolisme des endocannabinoïdes. 

Conclusions / Signification: Ces données révèlent que des AGPI co-3 

coordonnent des programmes d'expression génique d'une manière indépendante 

de la réduction de la prise de poids ou de l'accumulation de graisse et met en 

évidence une influence importante des AGPI co-3 sur l'adipogenèse et sur les voies 

des endocannabinoïdes dans le tissu adipeux. 
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Abstract 
Background: Dietary administration of co-3 polyunsaturated fatty acids (PUFA) is 

often associated with altered adipose tissue (AT) morphology/function in obese 

mice. However, it is unclear whether these observations are an indirect 

consequence of reduced weight gain or result from direct actions of co-3 PUFA. 

Here we studied the AT of fat-1 transgenic mice that convert endogenous co-6 to 

co-3 PUFA. These mice display equivalent weight gain and fat accretion to their 

wild-type (WT) counterparts. 

Methodology/Principal Findings: We performed Affymetrix microarray in 

epididymal AT of high fat-fed fat-1 mice and their WT counterparts. 

GenMAPP/MAPPFinder 2.0 pathway analysis highlighted adipogenesis, 

cholesterol biosynthesis, insulin signaling, prostaglandin synthesis/regulation and 

small ligand GPCRs as key areas where differentially expressed genes were 

significantly overrepresented. In accordance with the pro-adipogenic expression 

profile, histological analysis revealed a left shift in adipocyte size distribution in 

transgenic animals. Furthermore, real-time RT-PCR confirmed that mRNA for 

PPARy was upregulated in fat-1 mice. Transgenic restoration of co-3 PUFA also 

enhanced endocannabinoid receptor expression while downregulating expression 

of the endocannabinoid catabolic enzyme Faah. 

Conclusions/Significance: These data reveal that co-3 PUFA coordinately 

regulate AT gene expression programs in a manner that is independent of 

restriction of weight gain or fat accrual and highlight an important influence of co-3 

PUFA on adipogenesis and endocannabinoid pathways in AT. 
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Introduction 
Adipose tissue plays an important role in the maintenance of metabolic 

homeostasis due to its dual role as a repository for surplus nutrients and a 

prominent endocrine tissue. It is well appreciated that obesity-related alterations in 

adipose tissue function particularly in the visceral depots has dramatic 

consequences for systemic glucose and lipid metabolism [1]. For instance, the 

onset of inflammation in visceral adipose tissue is thought to be fundamental to the 

development of obesity-related metabolic complications [2]. Interestingly, adipocyte 

size in visceral adipose tissue is positively correlated with insulin resistance [3,4], 

glucose intolerance [5], inflammation [6] and circulating triglycerides and 

cholesterol [7,8] suggesting that proper adipose function is intimately linked to cell 

size. 

Administration of marine oils containing the co-3 polyunsaturated fatty acids (co-3 

PUFA) eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA 

22:6 n-3) has been reported to improve both glucose [9,10,11] and lipid 

metabolism [12,13,14,15] in obesity. Interestingly, these beneficial effects of co-3 

PUFA have been associated with reduced adipose inflammation [16,17,18,19], 

increased expression and secretion of the insulin sensitizing adipokine adiponectin 

[20,21,22], raised adipose mitochondrial activity [23], and inhibition of high fat diet-

induced remodeling of adipose tissue [24]. Furthermore, co-3 PUFA have been 

identified as potential endogenous ligands for the peroxisome proliferator activated 

receptor (PPAR) family of nuclear receptors that play a vital role in adipocyte 

differentiation and lipid metabolism [20,25,26,27]. Together these reports appear to 

suggest that direct actions of co-3 PUFA in adipose tissue are likely responsible for 

at least part of the beneficial effects of these essential fatty acids. 

However the interpretation of many of the aforementioned studies is complicated 

by the fact that a common effect of co-3 PUFA supplementation in rodent diets is 

reduced weight gain and fat accretion [28,29]. Although this is likely attributable to 

altered palatability of the experimental diet there is growing reference in the 

literature to the anti-obesity effects of co-3 PUFA [30,31,32,33]. Thus it is not clear 
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whether the reported actions of co-3 PUFA in adipose tissue arise as a secondary 

result of reduced weight gain and limited adipose expansion or are indeed direct 

actions of co-3 PUFA. 

To alleviate this issue we have employed the fat-1 transgenic mouse which has 

been genetically engineered to ubiquitously express the fat-1 co-3 fatty acid 

desaturase from C. elegans. This enzyme, not found in mammals, efficiently 

converts endogenous co-6 to co-3 PUFA such that in fat-1 transgenic mice fed a 

diet rich in co-6 and deficient in co-3 PUFA the tissue co-6: co-3 ratio is 

approximately 1:1 compared to 50:1 in wild type animals [34]. Importantly, we 

recently demonstrated that when exposed to a high fat diet, fat-1 transgenic mice 

are protected from obesity-linked insulin resistance, glucose intolerance and 

adipose inflammation despite equivalent weight gain and visceral adiposity as their 

wild type counterparts [19]. The fat-1 transgenic mouse therefore represents the 

ideal model to study the effects of co-3 PUFA in adipose tissue in an environment 

that is not confronted by dietary issues. 

To expand upon our original findings and better characterize the actions of co-3 

PUFA specifically in adipose tissue herein we performed affymetrix microarray 

followed by GenMAPP/MAPPFinder 2.0 pathway analysis in epididymal adipose 

tissue from high fat fed fat-1 transgenic mice and their wild type counterparts. We 

also examined adipose morphology and corroborated key findings from the 

microarray using real time RT-PCR. 

Results 

Body composition of mice used for microarray study 

For the our microarray study, 6 week old fat-1 transgenic mice and their wild type 

littermates were fed a high fat (HF) diet for 8 weeks with 55% of Kcal from fat as 

reported in our previous study [19]. Importantly, once again we found that fat-1 

transgenic mice exposed to a HF diet (F1HF) display equivalent body mass, 

epididymal fat accretion and liver weight as their HF-fed wild-type counterparts 

(WTHF; Figure 1A-C). 
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Effect of co-3 PUFA on adipose tissue gene expression profile 

To identify genes regulated by co-3 PUFA in adipose tissue, RNA extracted from 

epididymal adipose tissue of high fat fed fat-1 transgenic mice and their wild type 

counterparts was hybridized onto an affymetrix mouse 430 2.0 GeneChip®. This 

high density oligonucleotide array contains 45 000 probes for the analysis of gene 

expression levels from over 34 000 well characterized mouse genes. After 

normalization of the dataset using the robust multi-array average (RMA) algorithm 

[35], an EB Wright and Simon analysis [36] was used to determine the fold change 

between the two groups and to generate P values. Gene probesets where the fold 

change was > 1.5 and the P value was < 0.05 were considered significantly 

different. 4435 probesets met these criteria. Of these, 2185 probesets were found 

to be upregulated and 2250 were found to be downregulated (see Figure 2). 

In light of the vast number of differentially expressed genes detected in the 

microarray we elected to perform pathway analysis using the 

GenMAPP/MAPPFinder 2.0 software package to provide statistically oriented focus 

to our study [37]. The combination of GenMAPP with MAPPFinder analysis allows 

for the identification of established biological pathways where differentially 

expressed genes are significantly overrepresented. The input parameters used to 

identify differentially expressed genes were maintained as fold change > 1.5 and P 

value < 0.05. Significantly represented pathways were identified by a Z-score > 2 

and a Westfall-Young adjusted P-value < 0.05. Using these criteria adipogenesis, 

cholesterol biosynthesis, insulin signaling, prostaglandin synthesis/regulation and 

small ligand GPCRs were highlighted as key pathways where differentially 

expressed genes were significantly overrepresented (Table 1 ). 

All genes from the adipogenesis pathway found to be differentially regulated by co-

3 PUFA are listed in Table 2. Notably, the important transcriptional regulator of 

adipocyte differentiation, PPARy (1.6394 fold) as well as its heterodimer partner 

RXRy (1.6307 fold) were found to be upregulated in fat-1 transgenic mice. In 

contrast, GATA3 an inhibitor of pre-adipocyte transition to fully differentiated 

adipocyte [38] was robustly downregulated (-2.647 fold). In line with other reports 
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[20,21,22], we also found that the adipocyte secretory product adiponectin was 

upregulated (2.2154 fold) by transgenic restoration of co-3 PUFA. These data 

suggest that oo-3 PUFA promote adipogenesis in epididymal adipose tissue. 

Transgenic restoration of co-3 PUFA was also found to affect the expression of 

53.3% of genes in the cholesterol biosynthesis pathway (Table 3). Importantly, the 

gene encoding HMG Co-A Reductase (Hmgcr), the rate limiting enzyme in the 

cholesterol biosynthesis pathway, was found to be downregulated (-1.881 fold). 

The reduced expression of this rate limiting enzyme was accompanied by an 

apparent compensatory increase in the expression of six downstream enzymes, 

including mevalonate kinase (1.5642 fold) which is found immediately downstream 

of Hmgcr in the cholesterol biosynthesis pathway. Additional manual data mining 

for other differentially expressed genes related to cholesterol metabolism also 

revealed a robust reduction in the expression of endothelial lipase (Lipg), with two 

out of three probesets for this gene displaying greater than 10 fold reduction in 

expression (probesets 1450188_s_at and 1421262_at displayed fold changes of -

10.13006 and -13.40117 respectively PO.0001 in both cases). These data 

suggest that co-3 PUFA potentially exert some of their well appreciated beneficial 

effects on circulating cholesterol via direct actions in adipose tissue. 

In line with our previous report of improved insulin sensitivity in high fat fed fat-1 

mice [19], differentially expressed genes were also found to be significantly 

overrepresented in the insulin signaling pathway (Table 4). Most importantly, the 

negative modulators of insulin receptor activation, Enppl (Ectonucleotide 

pyrophosphatase phosphodiesterase 1) [39] and Ptprf (Protein tyrosine 

phosphatase, receptor type, F otherwise known as LAR) [40], were robustly 

downregulated in fat-1 transgenic mice (-23.17 and -2.467 fold respectively) while 

the expression of insulin receptor substrate 3 (Irs3) was upregulated (1.8748 fold). 

These changes were associated with increased expression of glycogen synthase 2 

(2.4313 fold) and the immediate early response gene, Fos (1.74 fold). There was 

also some regulation of genes involved in vesicular trafficking and the Igf1 
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receptor/MAP kinase-axis of the insulin signaling pathway. All differentially 

expressed genes are listed in Table 4. 

In accordance with the widely appreciated influence of co-3 PUFA on eicosanoid 

formation, the prostaglandin synthesis/regulation pathway was also highlighted as 

an important area modulated by co-3 PUFA in adipose tissue (Table 5). Of note, the 

expression of the prostaglandin synthases, Ptgsl (-1.885 fold) and Ptgds (-24.47 

fold), was robustly downregulated in fat-1 mice while the expression of three 

prostaglandin receptors, Ptger2 (2.024 fold), Ptgfr (2.17 fold) and Ptgir (1.516 fold) 

was found to be increased. The expression of thromboxane synthase, Tbxasl 

(1.8084 fold), was also found to be increased in transgenic mice. These data 

suggest that the regulation of prostanoid synthesis and signaling by co-3 PUFA 

likely involves a genomic component that accompanies the well described 

[41,42,43] competitive inhibition of arachidonic acid (20:4 n-6) metabolism in this 

pathway. 

Lastly, the small ligand class of GPCRs was found to be significantly 

overrepresented in our microarray study (Table 6). In addition to the regulation of 

the prostanoid receptors described above, transgenic restoration of co-3 PUFA also 

resulted in increased expression of the shingosine-1 phosphate receptors, Edg1 

(1.7463) and Edg3 (1.5424) as well as the endocannabinoid receptors Cnr1 

(1.6074 fold change) and Cnr2 (1.7284 fold change). Manual data mining for other 

genes related to endocannabinoid signaling revealed that the expression of both 

probesets for the endocannabinoid catabolic enzyme, fatty acid amide hydrolase 

(Faah), was significantly reduced in fat-1 mice (probesets 1421969_a_at and 

1434091_at displayed fold changes of -2.5588 and -1.8228 respectively, PO.001 

in both cases). The elevated expression of endocannabinoid receptors 

accompanied by reduced expression of Faah is suggestive of reduced 

endocannabinoid tone in adipose tissue of fat-1 mice. 
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Transgenic restoration of co-3 PUFA alters the adipocyte size profile 

Since the pathway analysis highlighted adipogenesis as a key area regulated by 

transgenic restoration of co-3 PUFA, we felt it was pertinent to determine whether 

this gene expression profile had any impact on adipocyte size. We thus quantified 

cell size in hematoxylin and eosin stained sections of epididymal adipose tissue 

taken from wild type and fat-1 transgenic mice in our initial study [19]. Figures 3A 

and 3B show representative histological sections and adipocyte size distribution 

profiles for high fat fed fat-1 transgenic mice and their wild type counterparts. 

Importantly, despite equivalent fat mass the adipocyte size distribution profile of 

fat-1 transgenic mice displayed a prominent left shift that was characterized by 

significantly more mid-sized adipocytes (500-2499uM2; PO.001) and less large 

(2500-4999uM2; PO.01) and very large adipocytes (5000-9999uM2; PO.05). 

Furthermore, real time RT-PCR for PPARy corroborated the findings of the 

microarray and revealed a significant increase in the expression of this key 

adipogenic transcription factor in the epididymal adipose tissue of fat-1 mice 

(Figure 3C). 

co-3 PUFA influence the endocannabinoid pathway in adipose tissue 

Another striking finding of the microarray study was that co-3 PUFA influence the 

expression of multiple components of the endocannabinoid pathway. Since there is 

very little information in the literature regarding the influence of co-3 PUFA on 

endocannabinoid signaling/metabolism in adipose tissue we felt it was important to 

validate these findings. We therefore performed real time RT-PCR in epididymal 

adipose tissue of high fat fed fat-1 mice and their wild type counterparts for Cnr1, 

Cnr2 and Faah. In line with the findings of the microarray study, we found that 

transgenic restoration of co-3 PUFA significantly increased the expression of 

endocannabinoid receptor Cnr1 (Figure 4A; PO.05) while reducing the expression 

of the catabolic enzyme Faah (Figure 4C; PO.05). However, although co-3 PUFA 

also appeared to increase expression of Cnr2 this effect did not reach significance 

(Figure 4B; P=0.109). These data confirm the findings of the microarray study. 
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Discussion 
In this study we examined the influence of co-3 PUFA on adipose tissue gene 

expression and morphology in obese high fat fed fat-1 transgenic mice and their 

wild type counterparts. By employing transgenic expression of the fat-1 co-3 fatty 

acid desaturase as a means to elevate co-3 PUFA in vivo we were able to 

effectively study the role of co-3 PUFA in adipose tissue in an environment that is 

not confounded by dietary issues and in which weight gain and adiposity develop 

normally on a high fat diet (Figure 1 and [19]). Herein, we clearly demonstrate that 

co-3 PUFA coordinately regulate adipose tissue gene expression programs in a 

manner that is independent of restriction of weight gain or fat accrual. Pathway 

analysis of microarray data highlighted adipogenesis, cholesterol biosynthesis, 

insulin signaling, prostaglandin synthesis/regulation, and small ligand GPCRs as 

five key areas regulated by co-3 PUFA in adipose tissue. Importantly, we were also 

able to independently validate some key gene expression changes using real time 

RT-PCR and show that the pro-adipogenic gene expression profile was 

accompanied by significant changes in adipocyte size distribution. 

Our microarray data suggests that the left shift in the adipocyte size distribution 

profile of fat-1 mice is the result of an altered gene expression pattern 

characterized by robust reduction of the inhibitor of pre-adipocyte transition, 

GATA3 [38], combined with increased expression of pro-adipogenic transcription 

factors such as PPARy. It is plausible that this pattern of gene expression would 

promote hyperplasia over hypertrophy in the expanding adipose tissue and thereby 

account for the greater number of midsized and lesser number of large adipocytes 

in adipose tissue of the same mass. Indeed, synthetic PPARy agonists such as the 

Thiazolidinediones are well known to stimulate adipocyte hyperplasia 

[44,45,46,47]. Importantly, our findings support those of others showing increased 

expression of PPARy following exposure to the long chain co-3 PUFA, DHA and 

EPA [22,48]. Since excessive adipocyte hypertrophy is thought to underlie the 

pathological changes that take place in adipose tissue through mechanisms such 

as endoplasmic reticulum stress [49], hypoxia [50,51,52] and necrosis-like cell 
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death [53,54] this important adipogenic influence of co-3 PUFA is likely responsible 

for many of the protective properties of these essential fatty acids in obesity. 

We also employed real time RT-PCR to validate microarray data concerning 

genetic regulation of the endocannabinoid pathway by co-3 PUFA in fat-1 mice. It is 

noteworthy that the two most studied members of the endocannabinoid family, 2-

arachidonylglycerol (2-AG) and anandamide/A/-arachidonoylethanolamine (AEA), 

are metabolites of the co-6 PUFA, arachidonic acid (20:4; n-6) [55]. Since co-3 

PUFA are known to interfere with the formation of co-6 derived metabolites 

[41,42,56,57], our observation of elevated expression of endocannabinoid 

receptors in association with reduced expression of the catabolic enzyme, Faah, 

likely represents reduced endocannabinoid presence in adipose tissue of fat-1 

mice. This is in line with the work of Batetta et al [58] and Piscitelli et al [59] which 

shows that administration of krill oil containing the long chain co-3 PUFA, EPA and 

DHA, lowers levels of AEA and 2-AG, in visceral adipose tissue of obese zucker 

rats and high fat fed mice respectively. To the best of our knowledge this is the first 

report of the effect of co-3 PUFA on the expression of endocannabinoid receptors 

and catabolic enzymes in adipose tissue. Since, elevated endocannabinoid tone 

has been found to contribute to the peripheral metabolic derangements taking 

place in obesity [60] this effect of co-3 PUFA warrants further investigation. 

Another interesting outcome of our microarray study was the impact of transgenic 

restoration of co-3 PUFA on enzymes related to cholesterol biosynthesis in adipose 

tissue. The pathway analysis revealed that co-3 PUFA lower the expression of the 

rate limiting enzyme of the cholesterol biosynthesis pathway, HMG Co-A 

reductase, in adipose tissue resulting in a corresponding increase in the 

expression of six downstream enzymes. Although we are the first to report this 

effect of co-3 PUFA in adipose tissue our findings are in line with studies showing 

that administration of either EPA or DHA reduces the expression of HMG Co-A 

reductase in liver [30]. Interestingly, a recent study on the effects of the HMG Co-A 

reductase inhibitor, Pitavastatin, in adipose tissue revealed that inhibition of this 

enzyme alters the adipocyte size distribution profile significantly decreasing the 
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frequency of large adipocytes without altering fat pad mass [61]. Given that this 

observation is very similar to our finding with transgenic restoration of co-3 PUFA 

(Figure 3), these data suggest that the co-3 dependent inhibition of HMG Co-A 

reductase expression likely contributes to the altered adipose morphology 

observed in fat-1 mice. 

In addition to the effect on HMG Co-A reductase we also found that transgenic 

restoration of co-3 PUFA robustly inhibits the expression of endothelial lipase in 

adipose tissue. Elevated expression of endothelial lipase is thought to be 

responsible for reduced levels of circulating high density lipoprotein (HDL) 

cholesterol in obesity [62,63]. Therefore it is likely that this effect of co-3 PUFA in 

adipose tissue accounts for at least part of the increase in HDL cholesterol often 

associated with fish oil administration [9,13]. It is noteworthy that the HMG Co-A 

reductase inhibitor Pitavastatin has also been reported to inhibit the expression of 

endothelial lipase [64]. Thus the activities of co-3 PUFA in adipose tissue appear to 

resemble those of the Statin class of lipid lowering drugs. 

Since we had previously reported that high fat fed fat-1 transgenic mice display 

improved insulin sensitivity [19] it was not surprising to see that the insulin 

signaling pathway was also highlighted in our pathway analysis. Importantly, the 

robust reduction of the expression of two well known inhibitors of insulin signal 

transduction adds further mechanistic insight into the manner by which co-3 PUFA 

likely improve insulin sensitivity in adipose tissue. Enppl is increased in adipose 

tissue of insulin resistant humans [65] and is known to interact with the insulin 

receptor and interfere with autophosphorylation of the beta subunit [39,66]. 

Similarly, Ptprf is increased in adipose tissue of obese humans [40] and is found to 

directly dephosphorylate the insulin receptor by virtue of its intrinsic phosphatase 

activity [67]. Interestingly, both Enppl [68] and Ptprf [69] were recently reported to 

be robustly downregulated during the early phase of adipogenesis while 

overexpression of either was found to prevent adipocyte differentiation and 

maturation. Hence, beyond insulin sensitization the enhanced suppression of these 

enzymes likely also contributes to the pro-adipogenic phénotype present in fat-1 
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mice. Future studies are required to determine whether co-3 PUFA directly regulate 

the expression of Enppl and Ptprf through interaction with transcription factors or 

whether the regulation of these enzymes occurs secondary to the improved 

adipogenic profile or previously reported anti-inflammatory actions of co-3 PUFA in 

adipose tissue [19]. 

Finally, in light of our earlier work [19] which showed increased activity of co-3 

resolution mediator biosynthetic pathways in adipose tissue of fat-1 mice we felt it 

was important to determine whether these bioactive co-3 metabolites could 

contribute to the adipogenic profile revealed herein. We therefore exposed 3T3-L1 

adipocytes to effective anti-inflammatory doses (100nM) of Resolvin E1 (RvE1), 

Resolvin D1 (RvD1) or Protectin DX (PDX) throughout their differentiation. 

However, in contrast to the PPARy agonist Rosiglitazone, we found that 

administration of RvE1, RvD1 or PDX has no impact on lipid accrual in 

differentiating 3T3-L1 adipocytes (data not shown). These data suggest that 

resolvins and protectins likely do not posses any direct adipogenic activity. 

Nevertheless, these findings do not rule out the possibility that co-3 derived 

resolution mediators could contribute indirectly to the improved adipogenic profile 

in high fat fed fat-1 mice. Indeed, we have previously demonstrated that the 

inducible form of nitric oxide synthase (iNOS), a mediator of adipose inflammation, 

negatively regulates PPARy activity and adipogenesis in a nitric oxide dependent 

manner [70]. Thus these anti-inflammatory mediators might act indirectly to sustain 

rather than promote adipogenesis in obesity by counteracting an endogenous 

inflammatory brake that normally restricts this process. Alternatively, other novel co-

3 derived resolution mediators that were not tested in this study, such as the newly 

described Maresins [71], or combined actions of multiple resolution mediators 

might be responsible for the adipogenic profile observed in fat-1 mice. Thus 

additional studies are warranted to examine these different possibilities. 

In conclusion, the microarray-pathway analysis approach employed in fat-1 

transgenic mice in this study led to the identification of five focal points of co-3 

PUFA action in adipose tissue. These data should serve as starting points for 
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future studies on the mechanism of action of co-3 PUFA in fat. Interestingly, genes 

affected in the cholesterol and insulin signaling pathways were also found to have 

secondary roles in the regulation of adipogenesis. These data provide a likely 

explanation for the altered adipocyte size distribution apparent in fat-1 mice and 

imply that the genomic influence of co-3 PUFA in adipose tissue is highly 

coordinated towards this outcome. Importantly, the influence of co-3 PUFA on 

adipose tissue morphology and gene expression programs identified herein 

occurred independently of any restriction of weight gain or fat accrual. 

Materials and Methods 

Animals 

Mice used in the microarray study (n=3 per group) were from a different cohort of 

mice than those described in [19]; however, tissues used to validate the findings of 

the microarray study by real time RT-PCR and histological analyses were from the 

mice described in [19]. The dietary treatment used for both cohorts of mice was 

identical. Briefly, six-week-old male hemizygous fat-1(+/-) mice and their wild type 

littermates bred at the Laval University hospital research center were fed high fat 

diets (diet-9302, 55% Kcal from fat, Harlan Teklad) and sacrificed after 8 weeks. At 

sacrifice epididymal adipose tissues excised for the microarray study were rapidly 

homogenized in QIAZOL (QIAGEN) and snap frozen in liquid nitrogen. Histology 

was performed in sections of epididymal adipose that were placed in 4% 

paraformaldehyde at sacrifice whereas the samples used for the real time RT-PCR 

came from tissues that were rapidly excised and snap-frozen in liquid nitrogen. 

Animal procedures were approved and carried out in accordance with the Laval 

University and Canadian Councils for Animal Care. 

RNA extraction, quantitative real time RT-PCR and microarray hybridization 

RNA was extracted for real time RT-PCR and microarray studies using the RNeasy 

lipid tissue mini kit (QIAGEN) by following the manufacturer's instructions. For real 

time RT-PCR, RNA was then reverse transcribed to cDNA using the high-capacity 

cDNA reverse transcription kit from Applied Biosystems. Real-time PCR for Pparg, 
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Cnr1, Cnr2, Faah and GAPDH was then performed using Taqman assay on 

demand probes and primers from Applied Biosystems in a CFX96 real-time system 

from BIO-RAD. The relative expression of genes of interest was then determined 

by normalization to the housekeeping gene GAPDH using the comparative CT 

method for relative gene expression [72]. 

For microarray studies the RNA quality testing, quantification and hybridization to 

the Mouse 430 2.0 Affymetrix gene chip was performed at the McGill University 

and Génome Québec Innovation Center in Montréal, Québec. 

Microarray data analysis 

Array images were preprocessed into CEL files at the McGill University and 

Génome Québec Innovation Center in Montréal, Québec. Microarray data was 

then normalized using the FlexArray 1.6.1 software package. After normalization of 

the dataset using the robust multi-array average (RMA) algorithm [35] an EB 

Wright and Simon analysis [36] was applied to the data to determine the fold 

change between the two groups and to generate P values. This dataset was then 

imported into GenMAPP/MAPPFinder 2.0 for subsequent pathway analysis. The 

input parameters used to identify differentially expressed genes were a fold change 

> 1.5 and a P value < 0.05. Significantly represented pathways were identified by a 

Z-score > 2 and a Westfall-Young adjusted P-value < 0.05. 

Adipose histology 

Adipose tissue sections were embedded and mounted and hematoxylin eosin 

staining was performed at the University Laval microscopy facility. Images were 

acquired using a BX60 microscope (Olympus, NY) and an RT slider 2.3.0 camera 

(Diagnostic Instrument, Sterling Heights, Ml). Adipocyte area analysis was 

performed using Image J software from NIH. 

Statistical Analysis 

Adipocyte size distribution data was analyzed by two-way ANOVA with Bonferroni 

as the post-hoc test used. Real time RT-PCR data were analyzed using Students t-

test. Data were considered statistically significant when PO.05. 
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Figure Legends 

Figure 1. Body composition of mice used in the microarray study 

Body weight, epididymal fat pad mass and liver weight for the high fat fed WT 

(WTHF) and fat-1 (F1HF) mice used in the microarray study are shown in panels 

A-C respectively. Body and tissue weights were measured at sacrifice after 8 

weights of high fat feeding. Data are mean ±SEM. 

Figure 2. Volcano plot of differentially regulated genes 

An EB Wright and Simon analysis was applied to the microarray comparison 

between the adipose tissue taken from high fat fed fat-1 mice and their wild type 

counterparts (n=3 mice per group). The negative Iog10-transformed p-values are 

plotted against the log2 fold change. Dark dots represent the 4335 differentially 

expressed probesets that show fold changes > 1.5 fold and P values O.05. Lighter 

dots represent all other probesets. 

Figure 3. Transgenic restoration of u-3 PUFA alters adipocyte size 

distribution 

Representative images of adipose tissue sections from high fat fed wild type 

(WTHF) mice and their fat-1 (F1HF) counterparts are shown for two different 

magnifications in panel A. Adipocyte size distribution profiles are displayed in 

Panel B (n=7 mice per group). Panel C shows relative mRNA expression for 

PPARy normalized to GAPDH using the delta delta CT method. All data are mean 

±SEM, * PO.05, **PO.01, ***P<0.001. 

Figure 4. to-3 PUFA influence the endocannabinoid pathway in adipose 

tissue 

Panels A-C show relative mRNA expression for CnR1, CnR2 and Faah in adipose 

tissue of high fat fed wild type (WTHF) mice and their fat-1 (F1HF) counterparts. 

Genes were normalized to GAPDH using the delta delta CT method. All data are 

mean ±SEM, * PO.05. 
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Table 1. MAPPs where differentially expressed genes were significantly 

overrepresented. 

MAPP name Number changed/ 

number measured 

Number measured/ 

number on MAPP 

Z-score Adjusted 

P-value 

Adipogenesis 33/130 130/132 4.386 0.017 

Cholesterol biosynthesis 8/15 15/15 4.715 0.007 

Insulin signaling 37/157 157/159 4.142 0.023 

Prostaglandin synthesis regulation 11/30 30/31 3.936 0.046 

Small ligand GPCRs 8/18 18/19 4.034 0.033 





Table 2. Differentially expressed genes in the adipogenesis pathway 
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Gene function Gene Fold change 

Inhibitor of pre-adipocyte to adipocyte transition Gata3 -2.647 

Transcription factors/Modulators PPARy 1.6394 

RXRy 1.6307 

Nr1h3 1.6713 

Cebp/B 1.54 

Adipocyte secretory products Adpn 2.2154 

Pbefl 1.5896 

Spockl -2.459 

Growth factors/Hormones Igf1 1.7646 

Insulin action genes Irs3 1.8748 

Possible lipodystrophy genes Lpinl 1.5265 

Miscellaneous Serpinel 2.1043 

Twist 1 1.8054 

Statl 1.9198 

Stat5b 1.8384 

Socs3 1.5875 

Trib3 1.7895 

Egr2 -4.46 
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Table 3. Differentially expressed genes in the cholesterol biosynthesis 

pathway 

Gene function Gene Fold change 

Convert HMG-CoAto Mevalonate Hmgcr -1.881 

Convert Mevalonate to Mevalonate-5-P Mvk 1.5642 

Convert Mevalonate-5-P to Mevalonate-5-PP Pmvk 1.693 

Convert Mevalonate-5-PP to Delta-lsopentenyl Mvd 1.5113 

Convert Squalene-2,3-Epoxide to Lanosterol Lss 2.0161 

Convert Lanosterol to Lathosterol Cyp51 1.5849 

Convert Lathosterol to 7-dehydro Cholesterol Sc5d 1.8018 
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Table 4. Differentially expressed genes in the insulin signaling pathway 

Gene Function Gene Fold change 

Modulators of insulin action Enppl -23.17 

Ptprf -2.467 

Socs3 1.5875 

Trib3 1.7895 

Insulin receptor substrate Irs3 1.8748 

PDK/Akt Signaling Sgk 1.5452 

Immediate early gene Fos 1.74 

Metabolic regulation Gys2 2.4313 

Vesicular trafficking Flotl 1.5016 

MGM345171 2.4266 

Ehd1 1.8525 

Rapgefl 1.6815 

Cap1 -2.41 

Cblc -1.757 

Receptor Igflr -3.257 

Ras-MAPK Signaling Rrad 2.0601 

MEK/MAP Kinases Mapk13 -3.426 

Map3k1 -1.581 

Map3k8 1.5339 

Map4k1 1.7873 
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Table 5. Differentially expressed genes involved in prostaglandin 

synthesis/regulation 

Gene Function Gene Fold change 

Prostaglandin receptor Ptger2 2.024 

Ptgfr 2.17 

Ptgir 1.516 

Prostaglandin synthases Ptgsl -1.885 

Ptgds -24.47 

Tbxasl 1.8084 





Table 6. Differentially expressed small ligand GPCRs 
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Gene Function Gene Fold change 

Cannabinoid receptors Cnr1 1.6074 

Cnr2 1.7284 

Prostanoid receptors Ptger2 2.024 

Ptgfr 2.17 

Ptgir 1.516 

S1P receptors Edg1 1.7463 

Edg3 1.5424 
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Conclusion 

Studying the metabolic effects and mechanisms of action of co-3 PUFA in the 

context of high fat feeding has proven to be a major challenge for the field due to 

the fact that incorporation of co-3 PUFA into rodent diets often prevents weight gain 

(401; 404-407). Herein we overcame this challenge by employing the fat-1 

transgenic mouse which possesses the unique ability to generate co-3 PUFA from 

endogenous co-6 PUFA by virtue of its ubiquitously expressed transgene encoding 

the fat-1 co-3 desaturase from C. elegans (403). Since this innovative model 

permits the elevation of co-3 PUFA compared to wild type littermates without 

necessitating dietary intervention, we were able to study the influence of co-3 PUFA 

in an environment that is not confronted by the same dietary issues that have 

overshadowed many previously published studies in this area. Importantly, we 

were able to show that transgenic based elevation of co-3 PUFA does not restrict 

high fat diet induced weight gain or fat accretion. 

This is an important outcome since it establishes the fat-1 transgenic mouse as a 

model in which the influence of co-3 PUFA can be studied in the context of high fat 

feeding without altered weight gain. However this finding does not necessarily 

negate the growing reference in the literature to the anti-obesity effects of dietary 

co-3 PUFA. Indeed, such an effect may be reliant on neuronal or hormonal signals 

activated by co-3 PUFA in the digestive tract (408-410) which are not present in this 

transgenic model. Nevertheless, the findings presented in Chapter I and Chapter III 

reveal that the effects of co-3 PUFA on insulin sensitivity, glucose tolerance, 

resolution mediator biosynthesis, inflammation, adipose gene expression and 

adipocyte cell size distribution are not dependent upon an anti-obesity effect. 

A major perceived limitation of this transgenic model is that co-3 PUFA are 

generated at the expense of their co-6 counterparts. However, this is also true for 

many dietary studies in which the fat source of co-3 PUFA in the diet replaces a 

portion of the co-6 PUFA (325; 339; 358-359; 393; 400; 404; 407; 411-412). In any 

case one should consider the effects reported for raising co-3 PUFA to also be 
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representative of a reciprocal reduction in co-6 PUFA. Thus it is probably more 

appropriate to discuss results in the context of the co-6: co-3 PUFA ratio rather than 

an increase or decrease in these individual classes of essential fatty acids. 

An interesting characteristic of the fat-1 model is its flexibility. Whereas exposure 

of fat-1 mice to diets containing very high levels of co-6 PUFA and very low levels 

of co-3 PUFA will lead to a massive shift in the co-6: co-3 ratio compared to wild type 

counterparts (403) exposure to a diet containing balanced levels of these essential 

fatty acids will result in very little difference between the two groups of mice as 

reported for standard chow fed mice in Chapter I. This means the fat-1 phénotype 

can be amplified or diminished depending on the diet chosen by the experimenter. 

For the studies described in Chapters I and ///, the co-6: co-3 ratio of the high fat diet 

was rather modest (-18:1), and these essential PUFA made up only a small 

percentage of total fat intake (-14%) in contrast to saturated (-28%), 

monounsaturated (-30%) and trans fats (-28%) which were much more abundant. 

Future studies should exploit the flexibility of this transgenic model to examine the 

effect that more extreme modifications in the experimental diet would have on the 

fat-1 phénotype. For example, a diet in which the major fat source was safflower oil 

(very rich in co-6 PUFA) would not only increase the difference observed between 

fat-1 mice and their wild type counterparts in terms of the co-6: co-3 ratio it would 

also increase the absolute amount of co-3 produced by the fat-1 desaturase due to 

the presence of higher levels of substrate for this enzyme. Such modifications in 

the experimental diet might facilitate the identification of less abundant co-3 derived 

lipid mediators such as RvE1 and might also change the degree to which co-3 

PUFA improve the metabolic state of high fat fed mice. It is also possible that the 

anti-obesity effect of co-3 PUFA will become apparent under more extreme 

circumstances. Thus further studies are warranted to fully characterize fat-1 

transgenic mice in the context of high fat feeding. 

In Chapters I and /// we effectively demonstrated the therapeutic potential of co-3 

PUFA for obesity-related insulin resistance and glucose intolerance in fat -1 mice 

and revealed that these beneficial properties were associated with improved 



197 

resolution mediator synthesis, reduced inflammation (Chapter I) and an altered 

adipose gene expression and cell size distribution profile (Chapter III). Ensuing 

studies should be directed towards understanding the contribution that different 

cells and tissues make to the beneficial systemic effects of co-3 PUFA. Whereas it 

was seemingly impossible to evaluate the importance of cell/tissue specific actions 

of co-3 PUFA in vivo using dietary manipulations to raise co-3 PUFA, the fat-1 

transgene is a tool that could be applied to clarify this area. Indeed, tissue and cell 

specific expression of this enzyme resulting from combining the transgene with a 

tissue specific promoter sequence (413) could provide a means to evaluate the 

influence of specific elevations in co-3 PUFA content in just about any tissue or cell 

type. 

In addition to the possibility of generating new cell/tissue specific lines of fat-1 

transgenic mice, chimeric mice in which bone marrow from fat-1 mice is 

transplanted into previously irradiated wild type mice and vice versa (414) would 

provide an alternative option that would allow for the study of the role of co-3 PUFA 

in the hematopoietic compartment vs. parenchymal cells without the requirement 

for the generation of a new mouse line. These experiments alone would provide 

very new and important insight into the role that the hematopoietic compartment 

plays in resolution mediator synthesis and the anti-inflammatory effects of co-3 

PUFA. Although we demonstrated that co-3 derived resolution mediators can be 

biosynthesized in adipose, liver and skeletal muscle it is not yet known whether 

these mediators are produced by adipocytes, hépatocytes and myocytes or solely 

by the hematopoietic compartment in these tissues. It would therefore be 

enlightening to study whether fat-1 transgenesis specifically in the hematopoietic or 

parenchymal cells would be sufficient to maintain the anti-inflammatory and 

metabolic effects of co-3 PUFA observed in Chapter I. Furthermore, these studies 

could also provide important insight into the role of the hematopoietic compartment 

in the actions of co-3 PUFA on the adipose gene expression and cell size 

distribution profiles described in Chapter III. 
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The most valuable finding to come from the study of the fat-1 mice was the 

identification of greater biosynthesis of co-3 derived resolution mediators, namely 

protectins, in adipose, liver and skeletal muscle of high fat fed transgenic mice 

since this finding led directly to the study of the therapeutic potential of PDX for 

lipid-induced insulin resistance presented in Chapter II. This study revealed that in 

addition to a predicted potent anti-inflammatory activity characterized by inhibition 

of pro-inflammatory cytokine secretion and JNK and iNOS activation, PDX also 

carries unanticipated therapeutic potential for metabolic disorders due to IL-6 

dependent insulin sensitizing and glucoregulatory properties. These findings 

present PDX as a unique candidate for the treatment of obesity-related metabolic 

disorders due to its dual anti-inflammatory and glucoregulatory activity and thereby 

open the door to an exciting new area of research that carries great potential for a 

therapeutic outcome. 

While the work presented in Chapter II clearly established that PDX exerts its novel 

glucoregulatory and insulin sensitizing actions in an IL-6 dependent manner an 

abundance of questions remain regarding the precise mechanism of action of PDX. 

Firstly, in light of the similar plasma and skeletal muscle IL-6 profiles it appears that 

PDX exerts its metabolic effects by stimulating skeletal muscle IL-6 release. 

However, it is unclear how PDX promotes IL-6 expression and release in skeletal 

muscle and whether IL-6 is released from the myocytes or the hematopoietic cells 

present in this tissue. With regard to this latter point, the studies presented in 

Figure 1 of Chapter II in which macrophages were treated with palmitate in the 

presence or absence of PDX provide anecdotal evidence to suggest that the IL-6 

raising effect of PDX is likely muscle cell derived since PDX actually repressed IL-6 

secretion in macrophages. To substantiate this finding, in vitro studies are 

presently ongoing to demonstrate that cultured muscle cells are capable of 

expressing and/or secreting IL-6 in response to PDX exposure. The establishment 

of this in vitro model will also facilitate the future study of the molecular 

mechanisms by which PDX promotes IL-6 expression and release. 

Complementary, in vivo studies employing IL-6 null chimeric mice in which IL-6 is 

present only in the hematopoietic cells and vice versa could also be used for this 
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objective. Should the effect of PDX on muscle IL-6 release be maintained in wild 

type mice lacking IL-6 in the hematopoietic compartment this would support the 

anecdotal evidence contained in Figure 1 of Chapter II. 

Another major point of interrogation concerns the identity of the PDX receptor. 

Despite the absence of any information on this front, it is likely that PDX employs at 

least one G-protein coupled receptor (GPCR) to exert its beneficial effects given 

that this is the case for RvE1 (377; 379), RvD1 (385) and many other lipid 

mediators such as the prostanoids (415), leukotrienes (416), lipoxins (417) and 

endocannabinoids (418). Considering the enormous quantity of GPCRs that have 

been identified in the human and mouse genome (419) the elucidation of the PDX 

receptor/s appears to be a daunting task that may be the biological equivalent of 

finding a needle in a haystack. However commercial GPCR reporter libraries 

presently exist which permit high throughput screening of ligand-GPCR 

interactions. These libraries could originally be employed to identify candidate 

GPCRs for PDX. Alternatively, one could employ gene chips to examine the effect 

of PDX administration on the skeletal muscle GPCR mRNA expression pattern. 

Those GPCRs whose expression was modified by PDX administration would 

represent potential targets of PDX. The binding specificity of PDX to the candidate 

GPCRs identified by these methods could then be evaluated using radiolabeled 

PDX in the presence or absence of other bioactive lipids with similar structures e.g. 

RvD1. Once a small list of candidate receptors has been developed for which PDX 

binding is found to be specific, molecular tools such as siRNA and adenoviral 

constructs could be employed to knock down and overexpress the candidate 

receptors respectively. Final validation could then be performed by producing 

knockout mice and studying the effect of PDX in the absence of the candidate 

receptor in vivo. The possibility that PDX exerts its action via a receptor mediated 

mechanism provides an interesting avenue for the therapeutic extrapolation of our 

findings since highly specific synthetic agonists could potentially be developed to 

promote skeletal muscle IL-6 release. Thus in light of the potential therapeutic 

applications and the fact that identification of the receptor/s would greatly facilitate 
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the study of the fine regulation of PDX signaling, forthcoming studies should 

definitely be focused towards this objective. 

Beyond the identification of the receptor/s for PDX, additional studies are also 

warranted to delineate the major proximal components of the PDX signaling 

pathway that lead to IL-6 release and also its anti-inflammatory activity. Given that 

exercise induced muscle contraction is also known to promote IL-6 release (307-

308), findings from this field should be considered when planning experiments to 

examine the molecular pathway employed by PDX. On this note, calcium 

ionophores have been shown to promote skeletal muscle IL-6 expression and 

release suggesting that the pathway to IL-6 secretion in muscle may require a 

calcium signal (420). Although it is purely speculation, this mechanism of action 

would fit well with PDX signaling through a Gq/Gn coupled GPCR, since activation 

of the Gq/Gn pathway is known to promote calcium release from the endoplasmic 

reticulum in a phospholipase C (PLC)/inositol 1,4,5-triphosphate (IP3) dependent 

manner (421-422). Thus experiments employing co-administration of PDX with cell 

permeable calcium chelating agents and examining PLC activity and intracellular 

calcium mobilization should be performed to evaluate this possibility. Since the 

effect of exercise on resolution mediator synthesis in skeletal muscle has not yet 

been studied it would also be interesting to determine whether protectin synthesis 

is stimulated by skeletal muscle contraction during exercise and whether this might 

actually account for the contraction induced IL-6 release. 

In contrast to the proximal components of the PDX pathway which remain largely 

unknown, in Chapter II we were able to identify hepatic STAT-3 and skeletal 

muscle AMPK as two distal components that likely contribute to the beneficial 

metabolic effects of PDX. Interestingly, whereas the stimulatory effect of PDX on 

hepatic STAT-3 was entirely lost in IL-6 null mice this was not the case for muscle 

AMPK. This finding suggests that PDX might directly activate AMPK in muscle and 

that this signal might have a role to play in IL-6 release. Direct activation of AMPK 

by PDX would also provide a mechanism to explain the inhibitory effect observed 

for PDX on iNOS expression and JNK activity (88). Future studies should therefore 
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be performed in our colony of muscle specific AMPK-KD mice that express a 

kinase dead mutant of the a2-AMPK (423) to more clearly delineate the role of this 

kinase in the metabolic and anti-inflammatory effects of PDX. 

In addition to our findings concerning STAT-3 and AMPK we also identified two 

important inflammatory signaling mediators that are regulated by PDX. We found 

that PDX administration inhibited both iNOS and JNK activity in cultured 

macrophages as well as muscle and liver of lipid infused mice. Importantly, this 

was also the case in the liver and muscle of high fat fed fat-1 transgenic mice 

which displayed higher endogenous production of protectins in these tissues. 

Future studies are now warranted to determine at which nodes PDX intersects with 

these inflammatory pathways. Since obesity-related inflammation involves dynamic 

interactions between multiple cellular players some studies should be directed 

towards defining the influence of PDX administration on neutrophil (92; 169), 

macrophage (90-91; 160; 353), T-cell (93; 95-97), B-cell (174), eosinophil (172), 

and mast cell (173) activity in the expanding adipose tissue. The influence of PDX 

administration on primary changes believed to promote inflammation in obesity 

such as adipocyte cell death (156), endoplasmic reticulum stress (180), TLR 

activation (187; 189; 191-192; 200) and hypoxia (176-178) should also be 

evaluated. These studies will provide important mechanistic insight into the anti­

inflammatory actions of PDX for the obesity setting. It will be interesting to see 

whether PDX acts by simply interfering with the activation of inflammatory cells, 

pathways, and processes or if PDX also promotes the activation, expansion and/or 

recruitment of native cellular regulators of adipose inflammation such as the 

eosinophils (172), M2 macrophages (160) and T-regulatory T-cells (96-97). The 

study of the molecular mechanisms underlying the anti-inflammatory actions of 

PDX could lead to the identification of novel counter regulatory pathways with 

interesting potential for future drug development. 

Aside from the aforementioned questions concerning the mechanism of action of 

PDX there are also many options that remain to be evaluated regarding the 

therapeutic application of our findings. For the experiments described in Chapter II 
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we employed an acute mode of PDX administration in an acute model of insulin 

resistance. Under these circumstances the administration of PDX was extremely 

effective as a means of preventing insulin resistance and inflammation in lipid-

infused mice. Importantly, PDX also displayed hypoglycemic activity within the first 

2.5 hours of treatment and substantially improved insulin sensitivity in saline-

infused mice. The challenge ahead is to develop a therapeutic approach that will 

effectively restore insulin sensitivity and glucose control in the obesity setting. 

Thus far we have trialed an insulin resistance reversal protocol in which mice that 

had been rendered obese and insulin resistant by 8 weeks of high fat feeding were 

treated with PDX or vehicle daily for two weeks (1 pg per day I.P.). Unfortunately, in 

these preliminary experiments we found that two weeks of PDX administration was 

not sufficient to see any beneficial effect on glucose tolerance or insulin sensitivity 

in high fat fed animals (Figure 1D-F). However, in contrast to their high fat fed 

counterparts, daily PDX administration significantly improved each of these 

parameters in chow fed mice (Figure 1G-I). It is noteworthy that the improved 

glucose tolerance in these mice was not associated with a stimulatory effect on 

circulating insulin, to the contrary, PDX treatment appeared to reduce the 

requirement for insulin during the GTT (Figure 1H). These preliminary findings 

from chow fed mice support our original findings in saline infused animals and 

suggest that the glucoregulatory actions of PDX are insulin independent. 

Furthermore, in accordance with the work of Holmes et al (424) our data argue 

against the possibility that repeated stimulation of skeletal muscle IL-6 release 

could lead to a negative outcome in terms of glucose regulation and insulin 

sensitivity. 
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Figure 1. Effects of 2-weeks of PDX treatment on glucose tolerance and 
insulin sensitivity in high fat fed mice and their chow fed counterparts. 
Panels A, B, and C. weight gain, epididymal fat pad and liver weights for C57BL6/J mice treated 
with PDX or vehicle (VEH) for two weeks after being fed either standard chow or high fat (HF) diets 
for 8 weeks. Data are meantSEM, *** P<0.001 vs chow fed counterparts. Panels D and E. glucose 
and insulin excursions for HF-fed mice during the 1g/kg glucose tolerance test. Panel F. glucose 
excursions for HF-fed mice during the 1.5U/kg insulin tolerance test. Panels G and H. glucose and 
insulin excursions for chow-fed mice during the 1g/kg glucose tolerance test. Panel I. Glucose 
excursion for chow-fed mice during the 1.5U/kg insulin tolerance test. Data are mean±SEM. 
*P<0.05 vs VEH treated counterparts. 
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There are multiple plausible explanations for the lack of beneficial effect of PDX 

treatment in high fat fed mice in this study. Most likely is that the quantity, 

frequency and/or duration of PDX administration was insufficient for this chronic 

disease model. Alternatively, it is also plausible that the mode of administration 

may have been inappropriate for this mediator in obese animals since the greater 

amount of fat in the peritoneal cavity (Figure 1C) may have reduced or slowed PDX 

absorption into the circulation following intraperitoneal injections. This possibility is 

supported in part by the finding that PDX had clear effects in lean chow fed mice 

but not their obese high fat fed counterparts. 

In light of these questions concerning the mode of administration, future studies 

should be designed to evaluate the efficiency of different treatment modes (e.g. 

oral, intravenous, intraperitoneal) at raising PDX in circulation of obese mice. 

Furthermore, since the pharmacokinetics of this mediator have not yet been 

studied it would be valuable to evaluate the half life of PDX in vivo and to study its 

break down products. Such information would be useful for determining the 

required frequency of administration and might also lead to the identification of new 

bioactive metabolites. Since high fat feeding is known to provoke an acute 

inflammatory response in adipose tissue during the post-prandial period (170; 425) 

a treatment modality that raises PDX specifically at feeding times might be most 

appropriate. Application of nanotechnology to encapsulate PDX into microspheres 

(426-427) that could then be included in the food source and absorbed in the Gl 

tract would be an excellent development for the timely administration of this 

mediator. 

An alternative to the direct administration approach is the use of pharmaco-

nutritional combination strategies to boost endogenous resolution mediator 

production. This strategy is possible because the non steroidal anti-inflammatory 

drug (NSAID) aspirin (ASA) has been found to trigger the synthesis of novel 

epimeric forms of co-3 and co-6 derived resolution mediators (428). This occurs 

because ASA mediated acetylation of COX-2 does not simply inhibit COX activity 

as once thought but rather alters its regioselectivity for lipid substrates allowing it to 
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act like a LOX and convert EPA (20:5 n-3), DHA (22:6 n-3), and AA (20:4 n-6) into 

epimeric forms of the first intermediates of their respective pathways (428) (Figure 

2). Thus far ASA triggered (AT) formation of E-series Resolvins (366), D-series 

Resolvins (429-430) and Protectins (430) as well as co-6 derived Lipoxins (431-

432) has been described. Although much less studied, it is interesting to note here 

that the thiazolidinedione (TZD) pioglitazone, an insulin sensitizing agent, and the 

statin atorvastatin, a commonly used cholesterol lowering agent, can also promote 

epimeric resolution mediator synthesis (433). These agents appear to act by 

altering COX-2 activity in a manner similar to ASA and also by stimulating protein 

kinase A (PKA) mediated phosphorylation of 5-LOX, the other key enzyme in these 

pathways (434). The phosphorylation of 5-LOX promotes its association with COX-

2 enhancing the formation of sequential oxidation products (434). Importantly, the 

so-called AT-resolution mediators appear to have equivalent or greater activity 

than their ASA independent epimers (366; 430-431); and they may also be more 

resistant to enzymatic degradation (429). These findings suggest that combination 

therapy in which co-3 PUFA are administered in partner with ASA, statins or TZDs 

may be a novel and effective strategy of promoting resolution mediator synthesis in 

metabolic tissues. These data also suggest that resolution mediators likely 

contribute to the beneficial effects of ASA, statins and TZDs. It is noteworthy that if 

successful, this therapeutic approach carries the potential to be rapidly translated 

into clinical trials since fish oil, ASA, statins and TZDs are all commonly employed 

by obese insulin resistant individuals. 
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Figure 2. Aspirin Triggered (AT) resolution mediator synthesis 

In addition to being easily transferable to the clinical setting the combined 

pharmaco-nutrition intervention approach described above also has the benefit of 

promoting the formation of other resolution mediators such as RvE1. Importantly, 

recent studies suggest that RvE1 is also a promising target for the prevention of 

insulin resistance and T2DM. Although RvE1 has yet to be detected in metabolic 

tissues, Gonzalez-Periz et al (386) showed that administration of RvE1 for 1 week 

can improve hepatic steatosis in genetically obese ob/ob mice by reducing both 

lipid storage and macrophage accumulation in liver. These data are in line with our 

findings in Supplementary Figure 1 of Chapter II showing that RvE1 blunts lipid-

induced macrophage activation in vitro. Although they did not study glucose 

metabolism in these mice the authors also suggested that RvE1 might improve 

insulin sensitivity in ob/ob mice since adipose mRNA expression of adiponectin, 

PPARy, IRS-1 and GLUT4 was also increased. 

Beyond this work in obese mice, studies in other disease models on the 

mechanism of action of RvE1 provide important insight into the promising 
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therapeutic potential of RvE1 for insulin resistance and T2DM. Indeed, RvE1 has 

been identified as an endogenous agonist of the GPCR ChemR23 (379) that was 

recently shown to play an important role in adipogenesis through interactions with 

its peptide ligand Chemerin (435-436). These data suggest that RvE1 by virtue of 

its receptor may be an important regulator of adipose biology. Importantly, 

ChemR23 is also known to be expressed in liver and pancreas suggesting that 

RvE1 might also regulate glucose homeostasis through actions in these tissues 

(377). Interestingly, RvE1 was recently found to exert analgesic effects by inhibiting 

the activation of transient receptor potential vanilloid type-1 (TRPV1) in sensory 

neurons via a ChemR23 dependent mechanism (437). This is of interest for 

metabolism because ablation of TRPV1 activity via capsaicin treatment was 

recently shown to improve glucose tolerance (438). Moreover TRPV1 activity has 

been reported to promote pancreatic inflammation and type 1 diabetes (438). As a 

whole these data highlight the exciting potential of another co-3 derived resolution 

mediator for the treatment of insulin resistance and T2DM through novel 

mechanisms that remain to be unraveled. Subsequent studies should therefore be 

directed towards evaluating the therapeutic potential of RvE1 and other novel 

classes of co-3 derived resolution mediators such as RvD1 and the maresins (372) 

in addition to PDX. 

In conclusion, we effectively employed a novel experimental model, the fat-1 

transgenic mouse, to improve the current understanding of the metabolic actions of 

co-3 PUFA in the obesity setting. Our findings show that transgenic manipulation of 

the co-6: co-3 ratio in order to raise co-3 PUFA prevents obesity-linked inflammation, 

insulin resistance and glucose intolerance in a manner that is independent of 

restriction of weight gain or fat accrual. Furthermore, we revealed that these 

beneficial effects are associated with improved resolution mediator synthesis in 

metabolic tissues and altered gene expression and adipocyte size distribution 

profiles in visceral adipose tissue. Importantly, closer study of co-3 derived 

resolution mediators led to the identification of PDX as an exciting new therapeutic 

candidate for obesity-related metabolic disorders due to its dual glucoregulatory 

and anti-inflammatory activities. Collectively, the findings described in this thesis 
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provide a strong foundation for the future investigation of the mechanisms of action 

of co-3 PUFA and the development of their bioactive derivatives as therapeutic 

candidates for obesity-related pathologies. 
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