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Abstract

Many psychological disorders, such as panic disorder, are episodic in nature, with unpredictable

onsets and similarly unpredictable durations. That the severe symptoms of these disorders come in

waves rather than remain at a level of stasis poses a daunting challenge for pharmacological

approaches that lack temporal precision. Here, a set of technologies and approaches for examining

and treating these conditions are developed, using techniques to monitor brain activity and shut

down specific brain sub-regions at times critical to the recall of emotional memory.
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Chapter 1

Dynamical anxiety disorders persist; drugs lack
specificity

The suddenness with which emotions can overcome us is astounding. Even in the absence of

proximal external causes, our affective states often wax and wane, most prominently in pathological

conditions: patients suffering from depression or anxiety may be suddenly struck by despair without

apparent provocation [1], [2]. The collective anxiety disorders, including panic disorder, post-

traumatic stress disorder (PTSD), and debilitating phobias, are extremely prevalent in our society,

affecting over 28% of us at one point or another [3]. Though the fields of pharmacology and cognitive

behavioral therapy have made considerable progress in helping people cope with these maladies,

there is still considerable dispute in the literature over the efficacy and widespread applicability of the

treatments they offer [4], [5]. Furthermore, drug treatments often come with debilitating side-effects

[6], [7]. This likely stems from the fact that the drugs modulate more than their intended targets: the

specific circuits that are the sources of pathology in the brain. For an example, selective serotonin

reuptake inhibitors (SSRIs) likely modulate activity across the entire serotonin system, a complex web

distributed throughout the brain [8] and in the gut [9] that plays a hand in a large amount of disparate

neural activity. Serotonin has many proposed functions: a Google Scholar search

(http://scholar.google.com) for "The role of serotonin" yields hundreds of results such as "The role of

serotonin in premenstrual syndrome", "The role of serotonin in eating disorders", etc, and serotonin

has been prominently implicated in depression [7] and irritable bowel syndrome [10].



Furthermore, because we largely lack knowledge of the principles of neural activity underlying the

disorders involving serotonin and other neuromodulators, and to a great extent we lack knowledge of

the precise method-of-action of the drugs, we don't have a strong grounding on which to improve

existing drugs to create more efficacious treatments.

1.1 - Genetic models of anxiety

Anxiety can be thought of as a state of anticipatory fear - a pervasive feeling that something bad is

happening or about to happen [11]. While pathological anxiety can be studied at a purely behavioral

or pharmacological level, such approaches have yielded unsatisfactory results [12] for many of the

millions of Americans suffering from it every day [13]. The application of genetic engineering to the

genome of the mouse in 1989 [14], work which garnered the investigators the Nobel Prize in Medicine

in 2007, opened up promising new avenues for the scientific exploration of anxiety. Soon after, mouse

models of anxiety were created using genetic manipulation to mimic characteristics of anxiety that are

thought to be evolutionarily conserved between mice and humans. The behavior of these mice was

often assayed with tests of Pavlovian fear conditioning, where an animal is trained to learn that a

neutral stimulus such as a tone (termed the conditioned stimulus or CS) predicts an aversive stimulus

such as a shock (known as the unconditioned stimulus or US). These fear-conditioning assays yielded

data thought to be qualitatively similar across the human and mouse species - where a tone

predictive of a foot shock led to a state of immobility in a rodent known as freezing' [15], a similar

paradigm led to significant responses in several autonomic indices of conditioning, including

increased electrodermal activity and heart rate in human subjects [16]. Humans and mice seemed to

Freezing is defined as a period of immobility in a rodent in which the only movement observed is related to
breathing. This expression will be used interchangeably with statements like "behavioral concomitants of fear
memory" in this thesis, as it is the gold standard indication of fear memory.



share a common disposition, making it apparent that insight could be gained from scientific

manipulation of the latter.

1.2 - Successes in genetic engineering

With the ability to manipulate the genome in mice, researchers were able to start probing the putative

mechanisms behind the anxiolytic (anti-anxiety) drugs that were offering relief to some patients.

Specifically, in one line of experiments, a receptor class for the neuromodulator serotonin was

genetically "knocked out" in a line of mice; the gene encoding for it was turned off. Researchers were

led to serotonin because of the success of the aforementioned selective serotonin reuptake inhibitors

(SSRIs) in treating some patients suffering from pathological depression or anxiety [17]. For this

particular series of studies, the serotonin receptor 5-HT1 A knockout mice exhibited many

characteristics thought to be related to anxiety - e.g. a combination of decreased exploratory

behavior and increased behavioral concomitants of fear when placed in open spaces - and

subsequent research suggested that dysfunction of the receptor in early development could

predispose one to anxiety disorders [18]. Additionally, a newly-invented "pharmacogenetic"

technique - a combination of pharmacological and genetic approaches - for inhibition of some

cells of a particular region in the hippocampus (HPC) was shown to reverse many pathological aspects

of the phenotype [19]. This represented enormous progress for the following reason. There is good

basis to suspect that, in the fully-developed human brain, a widely-projecting neuromodulator such as

serotonin may affect separate brain regions, or areas within brain regions, in different ways. Because

serotonin's proposed role in many seemingly disparate mental functions suggests that its global

modulation would lead to unintended local effects, demonstrating a benefit from its very spatially-

limited and precise modulation paves the way for more targeted therapies that are less likely to be
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accompanied by side effects. In a similar vein, the next chapter will introduce an approach that is

spatially and genetically precise, and additionally allows us to communicate with the brain on a

timescale closer to that of the neural activity that underpins dynamic-emotional behavior.



Chapter 2

Attacking emotional dynamics

Recent developments in the field of optogenetics - in which light-sensitive proteins (opsins) are

targeted to specific (genetic) classes of neurons, thereby making their neural activity susceptible to

modulation by pulses of light - allow for the spatially, genetically, and highly temporally-precise

control of neural circuits [20]. Whereas techniques such as the aforementioned pharmacogenetics

allow for spatial and genetic specificity, optogenetics allows for even finer spatial resolution [21], and

importantly makes possible neural circuit manipulation on the order of milliseconds [20] - the

timescale that is characteristic of neuronal firing.

Many groups are now rushing to apply these technologies to develop targeted treatments for a

number of neurological disorders, from Parkinson's Disease [22] to epilepsy [23] . Indeed optogenetic

research into the nature of emotional disorders, particularly traumatic memories, has become a hot

research topic, with the optical manipulation of emotionally salient memories being demonstrated in

rodents [24].

Exciting recent developments in the applications of electrophysiological recording techniques to

emotional circuitry have simultaneously shed light on some of the pathways critical in emotional

processes, suggesting the importance of the dynamical nature of the communication between and

among brain regions at various stages relating to the acquisition, retrieval, extinction, and re-

instatement of emotionally-salient memories [25], [26]. In one particular set of experiments,



synchronous rhythmic activity from two brain regions important in emotional processing was shown

to be concomitant with the expression of acute fear in a mouse model of anxiety [27].

Bearing in mind that recent electrophysiological results suggest the importance of dynamical brain

signaling in emotional processing, and that we now have a tool to probe these dynamics in a targeted

way at our disposal in optogenetics, let's take a closer look at some paradigms that would be ripe for

exploration.

2.1 - Fine-grained time dynamics in behavior and neurons

Figure 2.1 illustrates predictable temporal dynamics in the regime of milliseconds to seconds in mouse

behavior and mouse neural activity. Rather than focusing on the details of these graphs just yet, it's

important now only to note that both behavioral and neural activity of mice can serve as indicators, of

varying degrees of precision, that mice are anticipating a particular event to take place at a particular

time.
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Figure 2.1. lime dynamics in rodent models, as expressed in behavior and neuronal
activity.

(a) A mouse is trained over several days to expect a reward upon pressing a lever at a given
time after its presentation (in this case 30 seconds, marked by "Fl" for "fixed interval").
Robust learning of the time interval, i.e. anticipation of the correct time to respond, is
reflected in a peak rate of lever pressing centered around 30s after training [Balci et al,
2009]. (b) Large populations of neurons are recorded in the hippocampus during recall
testing one day after aversive trace conditioning in 6 mice. The mice were trained the previ-
ous day to expect a shock at the 22s timepoint in the graph, which is 20s after the offset of
a tone. A distinct peak in the pattern of activity of a population of neurons in the CA1 region
of the hippocampus is seen at the point of expected shock in red [Chen, Wang, and Tsien,
2009]. In blue, a behavioral concomitant of shock memory is also plotted, showing a signifi-
cant correlation to the plotted neural activity (r = 0.5851, p,0.05), but not displaying as
distinct of a peak.

.. . ...... .. .... .. ...... ... ..... .... .. . . .... .. .. ......... ... .. ..



In part (a) of Figure 2.1, mice are trained to anticipate a reward if they press a lever arm 30s after it has

been extracted; in part (b), mice are trained to expect a shock 20s after the offset of a tone. The lever-

pressing frequency of the mice peaks at 30s in the experiment of (a), and certain patterns of neural

activity associated with the memory of a shock become particularly active at 20s in that of (b).

Interestingly, drug treatments can alter the response curve of the former example [28], and it seems

likely that neural activity in the latter could be pharmacologically perturbed. Timing can definitely be

affected with drugs, almost certainly bringing unintended consequences as well. The constant,

pathological fear of an aversive event could similarly be soothed by completely numbing the brain,

but cognitive deficits would likely occur. Additionally, fear/anxiety can actually be quite useful when

they come about at the appropriate time (imagine how well you'd fare if you weren't scared of a lion

that's a few feet in front of you)! Because of the inherent lack of precision of pharmacological or

purely genetic methods, the principles underlying these neural and behavioral activities seem out of

reach. To better understand why that's the case, let's look more closely at the paradigm referenced in

part (b) of Figure 2.1, of "trace" conditioning.

2.2 - Aversive Trace conditioning: an intriguing model of anticipatory

anxiety

Trace conditioning has attracted considerable interest in recent years as a paradigm for anxiety and

hippocampus-dependent memory [29], [30]. For concreteness, observe the following protocol in

Figure 2.2, which was followed in a pilot study for this thesis, and which was adapted from [31].
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Figure 2.2. Trace conditioning paradigm. a) Subjects are trained and tested in different
contexts, to ensure they do not have access to external cues reminding them of the shock
during testing. b) A single training trial consists of a 16s tone, followed by an 18s "trace
period" (no stimulus), followed by a 2s foot shock, and ending with a pseudo-randomized
4-minute inter-trial interval (ITI) [3:30, 3:45,4:00,4:15, or 4:30]. The behavioral paradigm
proceeds as follows:

Day 0: Habituation. 20 minute baseline period in Context 1.

Day 1: Training. 20 minute baseline period, followed by 6 trace trials (see (b)), followed by a
3-minute pause before removal, all in Context 1.

Day 2: Testing. 5 minute baseline period, followed by 3 trials identical to the trials of day 1,
but without the footshock.

V3
1W I A A^



22

Mice essentially learn that they should expect a shock (US) soon after the offset of a previously-

innocuous sounding tone (CS) after some training. Mice can actually learn this quite well, as

evidenced by data from the pilot study shown in Figure 2.3.
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Figure 2.3. Trace condition-
ing pilot results on the test-
ing (retrieval) day.

a) Mobility during the 5
minute baseline period, 3
trace periods, and 2 inter-trial
intervals (iti), as measured by
the Noldus Ethovision 7.1
software package. b) Mobil-
ity pooled across 3 trace trials
and 2 iti's. Baseline mobility
is significantly different from
trace (p=3.2x1 01) and iti
mobility (p=.0032), even with
Bonferroni correction, as
measured by paired t-tests.
c) Pooled mobility during the
trace, normalized by baseline
mobility is significantly
different from iti mobility
(p=.Oll1).



Mice display bouts of immobility during the period of time after the tone when they have been

conditioned to anticipate a shock soon, while they are significantly more active during the other time

points in the experiment. Through lesion studies, we now know that certain parts of the brain are

necessary for the learning of this association. In particular, one region, the hippocampus (HPC), is

necessary for this type of conditioning to successfully take place, though it isn't necessary for the

general display of fearful behavior. For example, the HPC does not need to be intact for an animal to

learn to associate a neutral-sounding tone with a shock if the two stimuli overlap in time sufficiently

during the animal's training (such as in a popular paradigm known as delay conditioning) [32]. What

makes trace conditioning particularly interesting is that it requires the engagement of brain structures

that are important for attention and episodic memory, concepts that we might associate with

conscious awareness [31]. In the interest of not delving into nebulous concepts like consciousness, it

should suffice to say that because of the demands of the task and the brain structures consequently

recruited, trace conditioning seems to approximate the type of anticipatory fear that occurs when

we're actively expecting something bad to happen, as can be the case with anxiety bouts such as

panic attacks.



Chapter 3

Sci-fi & sci

Let's make a brief digression into the world of science fiction, to illustrate what we one day may be

able to do for a patient suffering from severe, unpredictable bouts of anxiety. Let's say that, given

what we know about the HPC's role in trace conditioning, we believe that reverberating neural activity

within the structure reflects anticipatory dread of an aversive event (if you're not convinced that this

hypothesis is worthy of a thought experiment, please flip to Chapter 4 for details and scientific

grounding). Perhaps it would be possible to design a device that would non-invasively send a brief

pulse to the HPC to act as a sort of "reset".

/) Figure 3.1. A hypothetical device to stop an
impending attack of acute anxiety.

a) Fezziwig feels a bout of severe anxiety
coming on, and then is overtaken with despair.
b) Fezziwig anticipates the bout, uses his
hippocampal pulser, and avoids despair.

Time

C Vj



This likely seems pretty silly. But great strides in the development of non-invasive neural technologies

are being made, allowing for more spatially focal stimulation and silencing than previously thought

possible [33]. So let's say that the only remaining piece of the puzzle to enable a "hippocampal pulser"

device would be a demonstration that silencing activity in the HPC, even briefly, would be enough to

prevent the onset of an acute bout of anxiety. Such an experiment would have to be invasive, if we

really wanted to nail down the principles underlying the anxiety episode. Therefore it would be

entirely unethical to start exploration of the idea with human subjects. So let's go back to our anxiety

model of trace conditioning in mice. Recall the conditioning paradigm of Figure 2.2. Now imagine

that, during testing of trace conditioning, we briefly shut down the hippocampus while the animal is

anticipating a shock. Would the animal "snap out" of its anticipatory fear and go about its activities as

if nothing was wrong? Such an experiment would look like the following:
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Figure 3.2. Hippocampal silencing experiment.

(a) Animals in both the control and experimental groups are given identical
training. Animals in the control group (b) are tested as usual, while animals
in the experimental group (c) are given a hippocampal silencing pulse after
the offset of the tone. In (b) and (c), if the animals had a somewhat accurate
sense of timing, they would anticipate the shock at 18s after the offset of the
tone, and perhaps continue to anticipate it for some period of time into the
ITI.
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In order to do this experiment, we would need a system to selectively target and shut down the

hippocampus on demand, reversibly, and for a brief period of time. Happily, thanks largely to the

work of individuals in the Synthetic Neurobiology Group at MIT, we now have the requisite

technology at hand. A brief schematic of the technologies, which will be elaborated upon in the

following chapters, follows:



I . . :I 1 .1.

Figure 3.3. Tools from the
Synthetic Neurobiology Group
allowing for the probing of
dynamical neural activity.

a) Neurons in a specific brain
region are infected with a virus,
which carries a payload that makes
them susceptible to silencing with
light [adapted from Chow & Han et
al. 2010]. b) A fiber-coupled LED
array, designed by Jake Bernstein
and Ed Boyden allows for the
precise-light targeting of the
hippocampus in a mouse
[Bernstein, et al. 2010]. c) An
example of infected neurons being
silenced by a pulse of light
[adapted from Chow & Han et al.
2010].

Time (s)

While these technologies opened up the possibility of doing experiments like the aforementioned

trace conditioning paradigm (Figure 3.2), challenges abounded that would require some innovation

for their practical use. Specifically, later chapters will focus on the development of techniques for

coupling recording electrodes to the hippocampal LED array (Chapter 5), writing of software for

.......................... ...... ............... .. ................ ..

zoome



synchronous control, analysis, and read-out (Chapter 6), techniques for successful surgical

implantation (Chapter 7), techniques for widespread virus expression specific to the hippocampus

(Chapter 8), and a design for putting it all together (Chapter 9)2. Before that, however, it would be

useful to take a brief look at recent research into the HPC's role in trace conditioning, to further build

the case for investigating its time dynamics.

2 All of the work in the following chapters, as well as the previously-mentioned behavioral pilot study, was
performed by the author, unless explicitly stated otherwise.



Chapter 4

The hippocampus and trace conditioning

What evidence is there to suggest that disrupting the HPC during the trace period - in which the

animal is presumably anticipating an aversive event - would lead to a return to behavioral normalcy?

In the following discussion, when the word "trace" is used, it will refer to the hypothetical neural

activity that must be ongoing during that interval of anticipation. To see why there must be such

ongoing activity, notice that there is no external cue available to the animal during the time after the

offset of the tone to indicate that anything is going to happen (such as the occurrence of a shock), yet

the animal still reacts as if there is; therefore the trace signal must persist in the animal's brain. It

might be pointed out that the animal could possibly be reacting to its own bodily signals [34]- say

freezing that occurred during the tone presentation persists with some particular half-life, causing the

animal to continue to freeze. This however wouldn't account for how the animal was able to learn the

tone-shock relationship during training, and would also incorrectly predict that animals would show

no dependence of trace interval on behavioral concomitants of fear such as freezing. To continue

playing devil's advocate, let's also say that a signal must persist in the animal's brain during this

period; that's a given. However, it is possible that the signal consists of a process with a very long half-

life rather than reverberating neuronal firing. This however would be counter to much of what we

know about neural computation - which seems to rely to a large extent on temporal sequences of

spiking activity [35] - and would not be consistent with results such as those reported in Figure 2.1 b,

and what we'll soon see in Figure 4.1. By now I hope you are convinced that the "trace" is reflected in

ongoing neural activity. The neuronal underpinnings of the trace, i.e. where it's located and how it's

communicated, is the subject of the next topic.



4.1 - What is the HPC doing during the trace?

Because the HPC is necessary for trace conditioning and subsequent memory retrieval of the trace,

there are several possibilities regarding its actual role in the process. The following are three

possibilities:

1. "HPC as passageway of the trace"

The HPC is a necessary conduit for the trace, but plays no role in encoding

it. Another region or regions is generating the signal, and sending it

through the HPC

2. "HPC as generator of the trace"

The trace is encoded in reverberating activity within the HPC, or between

the HPC and another region or regions.

3. "HPC as helper of the trace":

The HPC is providing a supporting role for the trace. Another region or

regions is performing the computation, and the HPC is merely providing

some sort of sustenance to allow the region (s) to continue with its normal

functioning.

Possibility 3 however would be inconsistent with electrophysiological recordings of the HPC during

the trace in studies like those reported in Figure 2.1, so it will be ruled out. In case that argument isn't



satisfying, observe below results from a trace conditioning experiment in which rabbits were

conditioned to a 20s interval and tested the next day. A significant number of neurons in the CA1

region of the HPC displayed their peak firing rate at the interval +/- 2s of the end of the trace period

(when the shock was expected) [36]. This strongly indicates that activity in the HPC is "anticipating" an

event with a fixed time of occurrence.

a
20-Second Trace Retention

14

F' 12

U. 10

0. 2

Mi 2-Se;Trace

Pseudoconditioning

Figure 4.1. Maximal neural firing rate
locked to trace period (Adapted from McE-
chron et al. 2003). a) During trace recall, a
statistically-significant percentage of neurons
recorded in CA1 exhibited their maximal firing
rate at +/- 2s of the end of the trace period
(when shock would be expected). b) A control
group in which conditioning took place, but
tone and shock were not exhibited with a
consistent temporal relationship with respect
to each other.

LL-P
JrrL 20-Sc Trace

One-Second Bins

The trace experiment outlined in Figure 3.2 would distinguish between possibilities 1 and 2: if a brief

silencing pulse to the HPC leads to a return to behavioral normalcy, with no return of freezing

behavior several seconds after the pulse, possibility 2 is ruled out. Alternatively, if the HPC is merely a

b
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conduit for the trace, and if the trace is continually feeding though the HPC, shutting down the HPC

briefly should lead to only a momentary lapse in freezing.

Now assuming we're convinced that the trace either courses through the HPC or reverberates within

it, it would be interesting and scientifically useful to determine whether the entire structure takes part,

or only subsections.

4.2 - Factors in trace conditioning: hippocampal sub-region and

timing

The hippocampus is divided into many sub-regions, with different hypothesized roles. For the

purposes of this discussion, we will consider the HPC as consisting of two parts, a dorsal and ventral

region, and a special cell layer termed CA1 that runs across the entire dorsal/ventral length. The

dorsal/ventral distinction is motivated by considerations of connectivity and function. For an

example, the CA1 region of the ventral, but not dorsal, HPC projects directly to the amygdala, a brain

region critical for emotional memory [37] . The dorsal HPC is additionally required for spatial learning,

with rats able to learn to navigate a water maze even if 75% of the HPC is ablated, as long as the

remaining structure is within the dorsal region [38]. Additionally, a targeted knockout mouse3 study

suggests that long-term potentiation or depression4 in the CA1 region of the dorsal HPC is crucially

involved in the formation of spatial memory [39].

3 Remember from Chapter 1.2 that a "knockout mouse" is essentially a mouse who has had one of his genes
"turned off"
4 Long-term potentiation and depression result in increased and decreased synaptic strength, respectively.



Lateral 3.325 mm

Figure 4.2. Sagittal view of the hippocampus. The red horizontal line near the center roughly
separates the dorsal (top) from the ventral (bottom) hippocampus. The CA1 region is pointed out in
both the dorsal and ventral regions with red boxes (image from the Allen Reference Atlas [51]).

Though there are somewhat conflicting results in the literature over which sub-regions of the HPC are

necessary for trace training and subsequent recall, it now appears that some of these discrepancies

may be explained by a dependence of the length of the trace period on the regions recruited.

Chowdhury, et al, found that post-training lesions to the dorsal HPC resulted in trace recall deficits

only when the trace period was 20s, instead of shorter intervals tested of 1s or 3s [40]. Similarly,

Misane, et al, found that post-training lesions of the same region attenuated recall only in groups with

traces of at least 15s [41]. In a more recent study, rats trained with a 30s trace period showed a severe

deficit in recall when either their dorsal or ventral HPC was lesioned [42]. While the time-dependence

of the ventral HPC is unknown in this particular paradigm, it seems likely that it is necessary at short as

well as long trace periods. This stems from the fact that in a related but not identical trace paradigm,

.... .... ...... .
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in which eye-blink trace conditioning is employed in rabbits, the hippocampus is necessary for

learning of trace intervals as short as 500 milliseconds [43]. If the dorsal HPC is not necessary at this

time scale, but the HPC as a whole is, then the ventral HPC must be necessary by deduction'. These

results suggest that, while the whole HPC comes into play during long trace conditioning, there may

be some interesting time dynamics involved at the sub-region level.

At a higher level of spatial specificity, Rogers, et al. lesioned the dorsal or ventral CA1 cell layers in the

HPC, respectively, in a study using a trace interval of 12s. Here they found a significant reduction in

trace recall in rats with post-training lesions to the CA1 layer in the ventral, but not dorsal layer [44].

Additionally, they determined that the proposed deficit following ventral lesioning was not the result

of hyperactivity. Specifically, hyperactivity has been reported by some authors who employed blunt

lesioning of the entire ventral HPC [45], but Rogers et al. concluded that the fine-grained lesioning of

ventral (or dorsal) CA1 did not yield this. Normal baseline activity as well as normal levels of freezing

during acquisition (not retrieval-the authors ran several studies with either pre-training or post-

training lesioning) were presented as supporting evidence. Interestingly, the rats with post-training

ventral lesioning did not freeze any less than controls during the period of tone presentation; only

during the trace period did they exhibit significantly less freezing. This indicates that their deficit

reflects specifically the time period during which there is no external cue to remind them of the shock.

s That is unless compensatory mechanisms come into play and other brain regions pick up the slack. This is a
concern for lesion studies in which a large amount of time passes between the lesion surgery and testing, but will
likely not be an issue for the real-time silencing study proposed in this thesis due to the extremely short time
periods of neural perturbation inherent in our approach.



4.3 - The hippocampal LED-coupled fiber array

Clearly interesting time and spatial dynamics within the HPC abound during trace recall, but the

spatial and temporal specificity of hippocampal sub-region recruitment would be difficult to probe at

a fine level of detail with traditional technologies. However, they are ripe for exploration with the

technologies presented in Figure 3.3. The hippocampal array in Figure 3.3b has the power to

independently address various regions of the hippocampus at arbitrary time points. It was designed

to focus its maximum light intensity on the CA1 region, allowing for the replication of experiments

such as those of Rogers et al, assuming adequate virus expression to add light sensitivity (see Figure

3.3a), and equipped with the additional features of exquisite temporal and spatial control. The

process of endowing the hippocampal array with the ability to sense in addition to perturb neural

activity is the focus of the next chapter.



Chapter 5

Coupling recording electrodes to the array

With the advent of the hippocampal fiber-coupled LED array detailed Figure 3.3b, new avenues were

opened up for real-time hippocampal modulation. However, the addition of a capacity for

electrophysiological read-out was desired for a number of reasons6. Most prominently, if electrodes

could be coupled to the optical fibers in such a way as to give reliable measurement of spikes from

neighboring neurons in the modulated region, real-time validation of neural silencing could be

verified. Ideally the spikes from many neurons would be picked up by the electrode. But in choosing

a larger electrode to yield more neural signals, one sacrifices specificity of the neural signal - i.e.

though many spikes can be seen, it becomes difficult to verify whether a particular spike was

produced by a specific neuron. However, this wasn't a primary concern here for the following reason.

In validating neural silencing, being able to isolate particular neurons takes a back seat to the ability to

show that a larger population of (somewhat indistinguishable) neurons have decreased or ceased

their spiking activity. Therefore, in the trade-off between specificity and bulk information, the latter

wins out for this application. Ideally we wouldn't have to make such a trade-off, particularly as single-

unit recording (as recording isolated neurons is known) can yield extremely interesting information

about neural processing at a given time (refer back to Figure 4.1). However, designing a system to

record and isolate a vast number of densely-packed neurons in conjunction with LED-coupled fiber

array control would be quite formidable, and not absolutely necessary for addressing the scientific

questions at hand.

6 It should be noted that, in the Master's thesis introducing the hippocampal array [47], preliminary results
demonstrating the coupling of an electrode to an optical fiber that yielded neural recordings were presented.
However, similar recordings in freely-moving animals or in the dense 3D geometry of the optical fibers in the
full-scale array had not been demonstrated.



Methods

Printed circuit boards (here referred to as "electrode interface boards", or EIBs) were designed by Jake

Bernstein, obtained, and soldered to a Samtec connector (Samtec Inc). Polyimide-insulated 50 pm

diameter Tungsten wire was chosen for the electrodes (California Fine Wire), as its relatively large

diameter afforded the best shot at seeing a lot of neural activity. An electrode for analog reference,

made of the same material, was coupled to one of the optical fibers and cut to terminate in the corpus

callosum of the mouse. This reference location was chosen for its proximity to the HPC, and presumed

lack of detectable neural spiking activity within the region [46]. All other electrodes were coupled to

the optical fibers, one-per-fiber, and designed to terminate 250pm beyond the tip of the fibers. This

distance was chosen because the fibers were designed to terminate 250pm from their target, the

pyramidal layer of the CA1 region of the HPC. The design choice of the fiber length was made to

minimize tissue damage in the region of interest, and to be well-positioned to deliver light to the

entire-desired area. An electrical ground wire of silver-chloride was brazed to a screw to be inserted in

the mouse's skull during implantation, and pinned into the EIB, along with the other electrodes.

Assembly steps for the device are illustrated in the following diagram:



Figure 5.1. Prototyping
electrode coupling to the
hippocampal fiber array.

(a) A stripped-down hippo-
campal fiber array. (b) The
electrode interface board
(EIB), with expanded view of
pin holes and connector
inset. (c) Electrodes strung
through holes milled in the
ElB. (d) Fiber array is
threaded through ElB holes.
Electrodes are coupled to
optical fibers using
polyimide guide tubing. (e)
Prototype of a unilateral
electrode-coupled array,
ready for testing. Guide
tubing is lowered out of the
way, electrodes are affixed to
fibers with cyanoacrylate,
and electrodes are clipped to
length.

Results

An implanted array was able to pick up neural spiking and local field potential activity, as

demonstrated in Figure 5.2. Real-time validation of silencing using the devices is beyond the scope of

this thesis, and will depend on the level of virus expression in the brain (Chapter 8).
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Figure 5.2. Recording with the hippocampal array. a) A representative electrophysiological recording from one channel of an elec-
trode coupled to an optical fiber of the hippocampal array. b) A power spectrum of the recording. c) Spikes from a candidate single
neuron, overlaid on the average waveform of these spikes. Spike detection and clustering were performed using Rodrigo Quiroga's
wave-clus package [Quiroga, 2004]. As noted in the text, single-unit discrimination is not an immediate focus of the technology. The
putative single unit displayed here is provided for the purpose of illustration.



Chapter 6

Software / hardware for acquisition, analysis, and

control

While systems for electrophysiological recording certainly exist, and a system for simply controlling

LED arrays has been developed in the Synthetic Neurobiology Group at MIT (Bernstein, et al. 2010 - in

preparation), there was a desire to create a single platform for neural recording, LED control, video

and instrument control. This was motivated by the need for exquisite synchrony among the systems

to yield meaningful results, and the realization that the incorporation of a mixture of proprietary and

open-source systems would yield a system that likely wouldn't be easy to debug or particularly robust.

Additionally, real-time analysis and visualization, though not an absolute necessity for this particular

project, would surely prove useful for planned, future experiments.

Methods

The particular specifications for robust neural recording, notably a digitization rate of 30kHz, low

electrical noise levels, 14-to-1 6-bit data resolution, and the ability to easily integrate the system with

other components via software, led us to a series of digitizers produced by National Instruments. The

NI USB-6259 (Nidaq) was chosen, as it came equipped with these specifications, and supported the 16

channels of analog digitization that were desired for the project. The Nidaq clocked the camera, the

behavioral equipment, and data acquisition (for schematic of the whole set-up, see Figure 9.1), and

served as the primary input / output device for all of these except the camera (while the camera



acquisition was triggered by the Nidaq, video was pulled into the computer using a USB port and the

FlyCapture software by Point Grey). LabView, the graphical programming development environment

from National Instruments, proved to be appropriate for our purposes, though a number of other

programming languages were initially used for development.

Results

The software developed worked as a flexible platform for acquisition, real-time analysis - such as

filtering - and control. Below is a screenshot of the visualization interface.
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Figure 6.1. Acquisition and control software.

(a) Live visualization of neural signals. (b) Expanded view of a featured signal, with an
option to listen to the signal through digital audio. (c) High-pass filtered view of featured
signal, for easier spike visualization.
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Chapter 7

Surgical techniques

Implantation of the HPC array proved to be a formidable task, though ultimately a system was devised

to make it feasible. At the time of its introduction in [47], it had never been implanted in a mouse. The

dense packing of the fibers made drilling individual holes in the skull for each of them prohibitively

difficult (optical fibers for the array are spaced roughly 0.7mm apart).

Methods

Consequently a large, bilateral craniotomy technique was developed and employed (Figure 7.1), in

which the outline of the region of interest is traced and thinned down with a dental drill, the skull is

peeled off, and silicon elastomer (Kwik-Sil from World Precision Instruments) is applied on top of the

brain to prevent drying out and trauma.

Figure 7.1. Large craniotomy strategy.

Drilling a large, bilateral craniotomy (area
encompassed in dotted lines) made the
surgery feasible. The remaining posterior-
lateral targets were drilled individually and
used to guide the implantation of the array.
The lambda and bregma points on the skull,
fiduciary marks used during the surgery, are
labeled for reference.



Results and discussion

Implantation accuracy was assessed, and fibers were found to exhibit a tip-to-target accuracy of about

250pm on average (Bernstein, et al, 2010 in preparation). Given the large number of fibers (14) and

their diameter (200pm), a reasonable concern would be that the fibers ablate such a large volume of

brain upon implantation, that the mouse would not exhibit normal behavior and learning thereafter.

Below is a diagram of the fibers overlaid on a three-dimensional representation of a mouse brain, to

scale.

Figure 7.2. Optical fiber size, relative to one hemisphere of
a mouse brain. 200 micron diameter optical fibers are used.
The two most anterior fibers are used as fiducial markers during
the surgery, and do not enter the brain. 3D brain representa-
tion was taken from the Allen Brain Explorer [51].
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Though it can be seen that a non-trivial amount of brain will be displaced and likely ablated by the

fibers, such tissue damage shouldn't pose an insurmountable obstacle to the scientific question at

hand. Specifically, it has been shown that rats, close relatives of mice, with complete cortex ablation

dorsal to the hippocampus (the area that may be somewhat ablated by the fibers), are still able to

condition to the trace protocol robustly, and without deficit with respect to healthy controls [13].



Chapter 8

Virus expression

Light sensitivity of neurons to allow neural silencing was desired in the dorsal and ventral areas of the

CA1 region of the HPC, as suggested in Chapter 4.3.

Methods

Lentivirus carrying a payload of the light-activated proton pump termed Arch for silencing, together

with green fluorescent protein (GFP) for labeling, and with the Fck promoter for expression exclusively

in excitatory HPC neurons was chosen. The Fck promoter ensured viral expression in cells containing

a-CamKll [48], specifically the primary cells7 in the CA1 layer.

Arch has recently been discovered and shown to yield extremely robust neural silencing when pulsed

with light near the 550nm wavelength [49]. In order to express Arch throughout the entire dorsal /

ventral length of the HPC, a large injection technique (a "flood" injection) was employed near the

geometric middle of the hippocampus. Below are coronal diagrams demonstrating the large area that

the virus needed to cover.

Pyramidal neurons



Figure 8.1. The CA1 layer of the hippocampus extends throughout
much of the mouse brain. (a) Coronal slices showing the four layers that
the CA1 array targets (images from the Allen Reference Atlas [51]). (b)
Three-dimensional view of the CA1 region (in lime green), in the context of a
half-mouse brain [51].

Results and Discussion

Interestingly, the virus spread throughout the extent of the hippocampus, but little to no viral labeling

was observed outside of the structure. The hippocampus in this respect seems to be somewhat self-

contained, with surrounding white matter creating a barrier for liquid diffusion (though the precise

reason for this virus localization was not investigated). Below are pictures of one 7uL injection,

expressed in the mouse brain 10 days post-injection.

.. ............. .. ... ...... -



Figure 8.2. Viral expression of Fck-Arch-GFP across the entire length of the hippo-
campus.

Data shown is from a 7uL injection at the coordinates [-2.88, -3.25, -3.50], at 2.5x objec-
tive magnification for a-d. a) -1.7mm anterior/posterior relative to the bregma landmark.
b) -2.4mm. c) -3.1mm. d) -3.8mm. e) Fluorescence in pyramidal neurons in the CA1
region at coronal level -3.1mm, at 63x magnification. f) At 150x magnification. e) A
3-dimensional slice projection of the same layer at 63x.



Note that viral labeling was not restricted to the CA1 region. In particular, extremely dense labeling is

seen within the dentate gyrus of the hippocampal formation, where large numbers of a-CamKlI-

positive neurons are also located. In the proposed experimental design, light delivery will be

restricted to roughly 1 mm2 of the tip of each optical fiber (Bernstein et al, 2010, in preparation), so the

CA1 region should be preferentially silenced, despite the labeling in other substructures of the

hippocampal formation. It should be noted that there may be a desire to make absolutely sure that

only the CA1 region is manipulated, for reasons of scientific clarity. In this case, a genetically-modified

mouse created with the Cre-IoxP recombination system for exclusive viral targeting in CA1, as

developed by Tsien et al, [50] may be used.



Chapter 9

Putting it all together

With the components to perform optical neuromodulation in a trace experiment all in place, including

behavioral validation, neural recording, software/hardware, and virus expression, the goal of this

thesis is fulfilled. Below is a diagram of the components of the entire system, as they are set up to

allow for the first exquisitely targeted system of experiments to investigate the time dynamics of

emotion, to be further elaborated on in the final chapter.



a
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9.1. Hardware overview. (a) Outside the behavior box. (b) Inside the box. See
appendix for list of parts.



Chapter 10

Bring on the experiments

Hopefully it is now readily apparent that the experiment of Figure 3.2 is possible, given the

developments outlined in this thesis. While preparation for that experiment is underway, it would be

useful to think of the other experiments and controls that could be run with the system developed

here.

10.1 - Controls

First off, the control experiment from Figure 3.2 may not seem wholly satisfying. Comparing a mouse

with a large array on his head to an unequipped mouse hardly seems fair. After all, there is a small but

non-negligible chance that unintended effects of the array would alter the mouse's performance. For

an example, a trace conditioning experiment was performed in which light was flashed during the

trace period of the training day. The flashing of the light led to a deficit in conditioning, leading the

authors to believe that attention was disrupted, and leading them to hypothesize that attention is a

crucial element in trace conditioning [31]. Therefore, there's a possibility that the large arrays will

distract the mice (despite the fact that the mice will have had several weeks to acclimatize to them),

yielding less overall conditioning, and making interpretation of the experimental results difficult. So it

will be important for the control mice to be implanted with the array and either be a) injected with the

same virus, but not have light pulsed during the trace, or be b) injected with a neutral substance such

as saline, and have light pulsed during the trace, at the same time that its pulsed for the experimental

group.



Furthermore, if it is shown that a brief hippocampal silencing pulse causes an animal to "snap out" of

its state of fear, there may be a desire to demonstrate that this hippocampal perturbation would not

result in the same behavioral outcome in a task that isn't hippocampal-dependent. For an example, as

mentioned in 2.2, delay conditioning is a paradigm in which the tone and shock overlap in time.

Specifically, the tone begins; late into the tone (say 16s after the onset), a shock is delivered that co-

terminates with the tone. On the testing day, a silencing pulse could be administered shortly after the

offset of the tone (at the same relative time after the tone as it was for the trace experiment group). If

the animal "snaps out" of freezing, interpretation of the trace experiment results would be difficult.

For an example, silencing the HPC could lead to bizarre network effects that reduce the expression of

fear, regardless of its potential role in actually encoding the trace.

10.2 - Experiments

Experimentally, given the differences in anatomy and function of the dorsal and ventral sub-regions

highlighted in Chapter 4.2, these regions could be differentially silenced during the experiment. This

is made possible by the fact that the LED's in the hippocampal fiber array are individually addressable.

Another interesting avenue to explore would be the possible role of compensatory mechanisms

within the HPC. If the dorsal HPC is shut down during trace conditioning, does the ventral HPC pick up

some of the slack, as might be reflected in increased neural activity? Could this be an explanation for

why the dorsal HPC is only necessary at long trace intervals? Specifically, does compensatory activity

in the ventral HPC become "overloaded" when it needs to hold a trace for a sufficiently extended

period of time?
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The ability to address basic scientific questions such as those just mentioned will likely increase our

understanding of the time dynamics of the HPC and emotional memory. Additionally, it might just

pave the ground for future technologies such as the hypothetical "hippocampal silencer" of Figure 3.1.



Appendix

1 - Coordinates of the hippocampal array

Locations for fiber tip placement were derived from the Allen Mouse Brain Reference Atlas [51], and

are as follows, listed in the format of [Anterior/Posterior, Medial/Lateral, DorsalNentral]:

[-1.7, +/-0.6, 1.25]
[-1.7, +/-1.3, 1.0]
[-2.4, +/-1.5, 0.9]
[-2.4, +/-2.2, 1.1]
[-3.1, +/-4.1, 4.25]
[-3.1, +/-2.5, 1.2]
[-3.8, +/-3.85, 2.75]



Appendix

2 - A system for rapidly validating array coordinates

a _b

Figure A.2. System for rapidly evaluating fiber and dye placement.

(a) A simple shop scope is equipped with an inexpensive, USB eyepiece camera. (b) Software written in Processing with
OpenCV allows for easy image capture and contrast control. Additionally, a semi-transparent"ghost image" of the previ-
ous slice captured can be displayed by clicking on a checkbox, allowing for accurate alignment from slice to slice.

------------



Appendix

3 - Parts list

Company Catalog number

Amplifier Plexon PBX2/16wb-G50-.7Hz-8kHz
Amplifier power supply Plexon POW/PBX-110
Breakout board Plexon BNC/1 6-B
Camera Point Grey Firefly MV
Faraday-shielded box 80/20 Made from a number of parts
Headstage amplifier Plexon HST/1 6V-G20
LED control box Arduino + custom equipment Duemilanove + other
Nidaq National Instruments NI USB 6259
Shock floor Med Associates ENV-005A
Shock grid power supply Med Associates ENV-414S
Tone buzzer Digikey 102-1285-ND

Item
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