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Abstract 24 

The Sanger sequencing method produces relatively long DNA sequences of unmatched 25 

quality and has been considered for long time as the gold standard for sequencing DNA. 26 

Many improvements of the Sanger method that culminated with fluorescent dyes coupled 27 

with automated capillary electrophoresis enabled the sequencing of the first genomes. 28 

Nevertheless, using this technology to sequence whole genomes was costly, laborious and 29 

time consuming even for genomes that are relatively small in size. A major technological 30 

advance was the introduction of next-generation sequencing (NGS) pioneered by 454 Life 31 

Sciences in the early part of the 21th century. NGS allowed scientists to sequence thousands to 32 

millions of DNA molecules in a single machine run. Since then, new NGS technologies have 33 

emerged and existing NGS platforms have been improved, enabling the production of genome 34 

sequences at an unprecedented rate as well as broadening the spectrum of NGS applications. 35 

The current affordability of generating genomic information, especially with microbial 36 

samples, has resulted in a false sense of simplicity that belies the fact that many researchers 37 

still consider these technologies a black box. In this review, our objective is to identify and 38 

discuss four steps that we consider crucial to the success of any NGS-related project. These 39 

steps are: (1) the definition of the research objectives beyond sequencing and appropriate 40 

experimental planning, (2) library preparation, (3) sequencing and (4) data analysis. The goal 41 

of this review is to give an overview of the process, from sample to analysis, and discuss how 42 

to optimize your resources to achieve the most from your NGS-based research. Regardless of 43 

the evolution and improvement of the sequencing technologies, these four steps will remain 44 

relevant. 45 

	  46 
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1. From a few nucleotide sequences to sequencing on a massive scale 47 

Nucleic acid sequencing is now an integral part of modern science. We routinely use DNA 48 

sequencing in many fields in microbiology, including tracking infectious diseases (Gire et al., 49 

2014) and studying the diversity of the microbial communities like the human microbiota 50 

(Guttman et al., 2014). But when did the sequencing era begin? 51 

 52 

The first free-living organism to have its genome fully sequenced was the Gram-negative 53 

bacterium Haemophilus influenzae in 1995 by The Institute for Genomic Research (TIGR) 54 

(Fleischmann et al., 1995). The following year, a worldwide effort produced the first 55 

complete eukaryotic genome, the yeast Saccharomyces cerevisiae (Goffeau et al., 1996). 56 

Nevertheless, it is clear that the publication of the human genome at the beginning of the 21st 57 

century was the principal event in the rise of genomics and consequently marks the beginning 58 

of the sequencing era (Lander et al., 2001, Venter et al., 2001). It was now possible for 59 

scientists to study the hereditary molecule directly. However, there were many drawbacks to 60 

massive DNA sequencing. Among them were the expensive costs of reagents and significant 61 

human resources required to operate the sequencing platforms. This is still the case although 62 

on a different scale (see below). 63 

 64 

In 2005, a revolution took place with the release of pyrosequencing technology (Margulies et 65 

al., 2005) by 454 Life Sciences (now part of Roche). This high-throughput technology, 66 

considered “next-generation sequencing” (NGS), allowed the generation of thousands to 67 

millions of short sequencing reads in a single machine run. Since then, many other NGS 68 

technologies have emerged, including the sequencing by synthesis technology used by 69 

Solexa/Illumina sequencers since 2006 that currently occupies a vast part of the NGS market. 70 

The field of next-generation sequencing is very dynamic due to the constant improvements of 71 
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the instruments and the continued emergence of new technologies. It is therefore difficult to 72 

predict the future of the market in the coming years. The initial human genome project had a 73 

cost of around 3 billion dollars. Fourteen years later, using current NGS technologies, we 74 

have almost attained the landmark price of $1000 per human genome (Hayden, 2014), with 75 

smaller bacterial genomes costing even less. 76 

 77 

Since the cost of sequencing has become less prohibitive, many laboratories around the world 78 

are now able to conduct their own sequencing projects and even maintain their own 79 

sequencing apparatus. However, this new accessibility has led many non-specialists to use 80 

NGS without prior knowledge and consequently use the technology in a non-optimal way. 81 

This is particularly the case in the field of microbiology where the relatively smaller genome 82 

sizes of microbes can lead to the impression that sequencing these genomes is simple. The 83 

reality, even for microbial genomics and other derived fields, is that even smaller genomes 84 

require an adequate sequencing strategy. Without one, researchers are likely to be 85 

disappointed and frustrated at not being able to generate quality data due to bad planning, a 86 

lack of resources or unrealistic expectations. The goal of this review is to demystify the NGS 87 

process and provide guidelines on how to perform NGS efficiently. To get help on an 88 

individual basis or to find more information about specific NGS applications and tools, we 89 

recommend exploring two active NGS related resources: SEQanswers (Li et al., 2012) and 90 

BioStar (Parnell et al., 2011). 91 

 92 

2. The conceptual workflow 93 

A complete NGS related project involves a limited number of steps, of which some are crucial 94 

to the successful outcome of the project (Figure 1). The first and most important step is 95 

formulating a valid hypothesis that goes beyond sequencing and to develop an appropriate 96 



 5 

experimental approach. In other words, the question to resolve is what is expected from the 97 

sequence data, as this will subsequently determine how the library is prepared, influence the 98 

choice of the sequencer and drive data analysis, the step that takes the most time to complete. 99 

The first step (planning) is strictly conceptual while the second (library preparation) and third 100 

(sequencing) involve laboratory work and the fourth (data analysis) involves computing 101 

resources and the field of bioinformatics. Each step is discussed individually below. 102 

 103 

3. Step 1: Asking the right questions 104 

This step in the NGS workflow is the most crucial one in the process, but is often neglected 105 

because microbial whole genome sequencing has gone from impossible to economical in a 106 

relatively short period of time. The affordability of the technology should not drive research 107 

and the ultimate goal is certainly not filling public databases. To use funding wisely, we must 108 

first determine what scientific problem we want to resolve and then determine what dataset 109 

will be the most useful for answering that question. In Table 1, you will find applications of 110 

next-generation sequencing and their associated dataset types. 111 

 112 

Most NGS technologies currently available are based on the following principle: sequence a 113 

large number of DNA fragments (thousands to millions) in parallel in a single machine run. 114 

To achieve this, nucleic acids (total DNA, genomic DNA, RNA, etc.), after their extraction 115 

and purification, must be converted to machine sequenceable fragments in a process called 116 

library preparation (Figure 2). After sequencing, the considerable amount of sequence 117 

produced (from Mb to Gb of data) must be analyzed with bioinformatics procedures designed 118 

to pull out the desired information in various applications (discussed later in the text). The 119 

way libraries are prepared and the choice of the sequencing instrument and associated 120 

technology have a large impact on the possible downstream analyses (Table 1). In the 121 
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following sections, the most important elements of library preparation, sequencing and data 122 

analysis, are presented. 123 

 124 

4. Step 2: Choosing the sequencer and preparing libraries 125 

The beginning of the sequencing workflow requires the conversion of the nucleic acids into 126 

instrument compatible libraries. The choice of sequencing instrument should be made prior to 127 

generating libraries because specific, proprietary sequences must be added at the library 128 

preparation stage.  129 

 130 

4.1. Sequencer features 131 

Things to consider when choosing an instrument are: (1) how the reads are generated 132 

(fragment vs. paired-ends), (2) read length, (3) read number (sequencing depth) and (4) error 133 

rate. Table 2 shows features of sequencers from ThermoFisher and Illumina, the two 134 

dominant technologies currently available. We will not discuss 454 pyrosequencing 135 

technology (and the corresponding sequencers) because Roche will discontinue the 454-136 

sequencing platform in mid-2016. 137 

 138 

Fragment reads are produced by the sequencer when a single read is generated per library 139 

molecule while paired-end reads (or paired reads) are generated from opposing ends of the 140 

same library molecule (Figure 3). Some instruments enable the choice of generating either 141 

fragments or paired-end reads, while others produce only fragments. Therefore, the decision 142 

to generate fragments or paired-end reads will not only determine sequencer choice, but also 143 

how the libraries are produced. 144 

 145 
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Read length is an important feature to consider before choosing a next-generation sequencer 146 

because it is directly linked to the amount of information that is obtained from a single 147 

molecule. For example, much more powerful analyses are possible when the whole PCR 148 

insert is sequenced, in amplicon-based studies for example (see section 6.4). The average read 149 

length produced by a sequencing instrument in a given run will also directly impact the 150 

quality of de novo assembly (i.e. the assembly of a genome without a reference) generally 151 

through the use of longer K-mers for longer read lengths (See box 1). For example, when the 152 

genome contains repeated elements such as insertion sequences (ISs), duplicated genes and 153 

ribosomal RNA operons that are larger than the average read length, these regions will cause 154 

breaks in the assembly (Vincent et al., 2014, Vincent et al., 2015).  155 

 156 

The number of reads is important in determining coverage because during sequencing, 157 

different reads are generated from different library molecules and thus coverage is defined by 158 

the number of times a region, at the single base pair level, is covered by a read. The total 159 

number of reads is the most important parameter for quantitative applications like RNA-Seq 160 

(see section 6.7). The combination of read length and number of reads defines the throughput 161 

of an instrument in number of bases per run. If there are time sensitive issues, for example, for 162 

diagnostic applications, the throughput in numbers of bases per day of a particular sequencing 163 

platform must be taken into consideration. Theoretical coverage values of a particular 164 

instrument can be calculated by dividing throughput by genome size. The desired coverage 165 

will depend on the application. For example, for a de novo assembly, a coverage between 25 166 

and 100 X is considered optimal. This means that a researcher should have an approximation 167 

of genome(s) size(s) in order to estimate the amount of sequencing required for an appropriate 168 

coverage. Additionally, it is important to keep in mind that it is possible to sequence multiple 169 
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samples with NGS (multiplexing) to optimize the machine run and reagents. This is achieved 170 

by adding multiple identifiers (MIDs) or barcodes (BC) at the library preparation stage.  171 

 172 

As discussed below, NGS technologies are prone to sequencing errors, but these largely 173 

randomly occurring errors can be compensated by sequencing different molecules from the 174 

same region at multiple times (i.e. increased coverage). Consequently, increasing the 175 

coverage will also help to increase confidence in the validity of existing variations in 176 

sequence, for example with single-nucleotide polymorphism (SNP). However, too high 177 

coverage is also problematic because the absolute number of sequencing errors will increase 178 

with coverage (Ekblom and Wolf, 2014) and the accumulation of these errors will impact the 179 

quality of the genome assembly. 180 

 181 

The errors that occur during NGS can be classified as indels or base substitutions. Indels, or 182 

insertion/deletion errors, are defined as bases inserted (In) or absent (del) in the output 183 

sequence while base substitutions occur when one base is replaced by another base in the 184 

output sequence. Error rates can be estimated at the read level by comparing any given subset 185 

of reads to a reference sequence. Similarly, consensus error rates can be estimated by 186 

comparing the results of an assembly (consensus) to a reference sequence. Consensus error 187 

rates should be several magnitudes smaller than read error rates because coverage 188 

compensates for sequencing errors that occur randomly. However, some regions are more 189 

prone to sequencing errors, such as homopolymers and low complexity regions, and each 190 

sequencing technology has its own dominant error type. For an overview of sequencing errors 191 

and an error correction tool see (Marinier et al., 2015). 192 

 193 

 194 
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4.2. Library features 195 

After the sequencer has been selected, the next step is to convert your sample into sequencer-196 

ready libraries by adding the sequencer brand proprietary sequences to library fragments 197 

termini. We will not review this step extensively here (see (Head et al., 2014, van Dijk et al., 198 

2014). Nonetheless, Figure 4 summarizes the principle types of library preparations. The most 199 

frequent library preparation method begins with the random fragmentation of genomic 200 

segments into a target size range (thus the term “shotgun”), then the repair of the fragment 201 

ends and the addition of a single dATP (or deoxyadenosine triphosphate) adenine to the 3’-202 

end of both strands, followed by the ligation of instrument specific adaptors to each molecule 203 

to complete the process. Most protocols then recommend the PCR-amplification of adapter 204 

containing molecules to enrich molecules with adaptors on both ends. The mate-pair library is 205 

the procedure in which the ends of a large molecule (3 to 15 Kb) are brought together within a 206 

single small fragment by a circularization step, which is then subjected to the shotgun 207 

procedure described above. An enrichment of circularized adapter-containing molecules is 208 

performed prior to the final amplification of the sequence library. The final molecules that are 209 

sequenced contain the ends of large fragments (mate-pairs) interrupted by a circularization 210 

adapter. Because mate-pair information comes from the same library molecule that is 211 

sequenced, it is possible to use this information to link contigs during de novo assembly 212 

where the relative order and orientation of each contig can be predicted. This process, named 213 

“scaffolding”, is implemented in a vast majority of modern de novo assemblers and can be 214 

optimized for a specific data type (Vincent, et al., 2014). Another way to make instrument 215 

compatible fragments is to add the proprietary sequences to the 5’ –end of gene-specific 216 

primers and perform a PCR. This way, the resulting amplicons will subsequently contain the 217 

necessary adapters. 218 

 219 
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In most instances, library preparation is a relatively simple and robust process. Nevertheless, 220 

the following points should be taken into consideration. First, take care that the library insert 221 

size fits your instrument. Amplicon libraries will generally benefit from the sequencing of the 222 

entire molecules, but apart from this situation, there is little value in sequencing adapter 223 

sequences. Therefore matching insert size with instrument read length usually maximizes the 224 

instrument throughput. However, generating large insert libraries to be sequenced with short 225 

paired reads (Figure 3) can also improve scaffolding by jumping over small repeats or low 226 

complexity regions. On the other hand, since the quality of sequencing reads tends to decrease 227 

with length, overlapping forward and reverse reads is a way to increase overall sequence 228 

quality. 229 

 230 

As stated earlier, most library preparation methods recommend the amplification of adapter 231 

containing molecules through a PCR step to enrich the reaction with molecules that contain 232 

adapters on both ends, particularly in those reactions where the adapters were added by 233 

ligation. Our experience with several commercial kits has shown that between 4 and 12 % of 234 

the molecules generated during the production of shotgun libraries contain adapters on both 235 

ends. Thus the quantification of library molecules by spectrophotometric or fluorescence 236 

methods prior to amplification would results in a highly biased number towards non-237 

sequenceable molecules that contain no adapters or adapters on a single end. We therefore 238 

recommend the PCR amplification of libraries, however to avoid quantitative biases or the 239 

introduction of PCR errors, the number of cycles should be kept to a minimum (max 12 240 

cycles). Alternatively, quantitative PCR can be used to quantify library molecules containing 241 

adapters on both ends, although it should be noted that quantitative PCR is not a linear scale 242 

technology and that some NGS instruments are more sensitive than others to small variations 243 

in the loading of template. 244 
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 245 

There are multiple ways to fragment DNA. Mechanical fragmentation is the most widely used 246 

method to shear DNA because it results in reproducible library synthesis and better control of 247 

the insert size from sample to sample, particularly, if DNA samples come from a wide variety 248 

of organisms, multiple users and/or several different DNA preparation methodologies. 249 

Mechanical fragmentation remains the most expensive method because it requires special 250 

instrumentation and associated consumables. Alternatives to mechanical shearing are either 251 

enzymatic or tagmentation (Marine et al., 2011). Although these methods are far less 252 

expensive and do not require special instrumentation, they have been shown to generate more 253 

variable results and are likely more prone to biases. The tagmentation procedure, which relies 254 

on a mutated Tn5 transposase (cut-and-paste mechanism) (Picelli et al., 2014), is attractive 255 

because it is the most time and cost effective way to prepare libraries for resequencing 256 

applications in particular. 257 

 258 

An important factor that is often ignored is the molecule diversity of a library. This is 259 

important because if the same molecule is sequenced repeatedly, it has no biological or 260 

statistical value in the analyses and thus can lead to an erroneous interpretation of the results. 261 

The only way to measure molecule diversity prior to sequencing is by qPCR. It is important 262 

that the diversity of molecules in a library is determined before the final PCR step, because 263 

afterwards, most of the molecules present will be the result of the amplification. Nonetheless, 264 

for most applications in microbiology, library diversity will generally not be an issue because 265 

of the relatively small size of microbial genomes.  For example 1 ng of a 5 Mb bacterial 266 

genome represents 1.82 x 105 molecules, which translates to 1.82 x 109 fragments of 500 bp. 267 

Thus for normal shotgun applications in microbiology, molecule diversity will not be a 268 

limiting factor. 269 
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 270 

In contrast, the generation of large insert mate-pair libraries (15 Kb) is a very inefficient 271 

process and library diversity should be evaluated before money is spent on sequencing 272 

redundant molecules. The diversity in metagenomic surveys of rRNA genes (50K to 100K 273 

reads per sample) should not pose a problem because 10 ng of bacterial DNA contains 274 

approximately 300 000 bacterial genomes (avg. genomes size 3.5 Mb) where each genome 275 

has from 1 to 7 copies of the rRNA operon (Vetrovsky and Baldrian, 2013), resulting in a 276 

estimated total of 1 M distinct molecules. In contrast, the diversity of a library may become 277 

an issue in ultra deep sequencing projects (> 1M reads), particularly when the mass of the 278 

initial DNA template is low or when mixtures of DNA sources reduce the overall bacterial 279 

DNA content. 280 

 281 

Deep sequencing provides a powerful means of investigating the low variant fraction (< 1%) 282 

of a microbial population (McElroy et al., 2014, Pulido-Tamayo et al., 2015). To detect this 283 

fraction of the population, the sample must be sequenced to a sufficient depth (generally an 284 

average coverage of hundreds to thousands X (McElroy, et al., 2014)). For these projects to 285 

be statistically meaningful, an initial estimate of molecule diversity would be highly 286 

beneficial. 287 

 288 

5. Step 3: Sequencing 289 

Sequencing is the most straightforward step in the NGS process because all brands of 290 

sequencers are relatively easy to operate and include comprehensive manufacturer support 291 

services. The most critical part of this step is loading the proper amount of library molecules 292 

onto the instrument. This can be accomplished by accurate library quantification and by 293 

following appropriate quality control procedures.  294 
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 295 

Another question related to the sequencing step is where to find a DNA sequencer? There are 296 

two answers: (1) purchase a sequencer or (2) outsource the sequencing to a core lab. Buying a 297 

sequencer requires not only sufficient funding to purchase the apparatus (prices range from 298 

several tens of thousands to just over a million dollars), but also to support the often 299 

overlooked costs of the reagents and instrument maintenance. In truth, only a small number of 300 

large-scale microbial genomic projects produce enough samples (Table 3) to justify the 301 

purchase and maintenance of an in-house sequencer. Moreover, sequencer technologies are 302 

evolving at such an accelerated pace that the instruments of today will likely be obsolete in 303 

just a few years from now. For the majority of NGS-based projects, the most cost effective 304 

and efficient approach is to employ a core-NGS facility. The advantages of an NGS center 305 

include the fact that they often possess different instruments and must maximize instrument 306 

usage to offer competitive pricing. Additionally, many core labs provide expertise ranging 307 

from experimental design to data analysis, offer a range of payment options and often 308 

guarantee sequence yield and quality. Most core labs are also able to accept raw nucleic acids 309 

for complete processing (library + sequencing) as well as prepared libraries ready for direct 310 

sequencing. Even if the number of private and university sequencing core labs around the 311 

world keeps increasing, it is important to consider the delays that can be encountered when 312 

employing a core facility; for example most facilities that maximize instrument usage are 313 

generally able to offer the lowest prices, however they also have longer sample queues that 314 

can result in delays in sample processing (Figure 1). Delays on the scale of months have 315 

convinced some researchers, to operate their own sequencer(s) and thus to pay a significant 316 

premium for faster processing. 317 

 318 

 319 
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6. Step 4: applications and data analysis 320 

The analysis of NGS data is the last step before the final results and is considered second in 321 

importance after determining the objectives of the experiment. As indicated in Figure 1, this 322 

step is also the most time consuming. This is often the case because newcomers to NGS data 323 

analysis are unaware of the bioinformatic tools that are available and, more importantly, often 324 

lack the training to use them correctly. Indeed, many of these tools are only available on 325 

UNIX-like operating systems while having a command line interface. 326 

 327 

Thankfully some free NGS data analysis platforms, such as GALAXY (Goecks et al., 2010) 328 

and Unipro UGENE (Golosova et al., 2014), integrate a suite of bioinformatics tools into an 329 

easy-to-use framework. These programs are an excellent starting place for neophytes and non-330 

bioinformaticians, however, the users are limited to the tools included in the package, which 331 

are not necessarily optimized for the researchers analysis requirements 332 

 333 

The goal of the following section is to provide an overview of NGS data analysis, including 334 

the pretreatment of sequencing reads, assembly with and without a reference genome, how to 335 

glean information from metagenomic data, and a brief overview of tools for subsequent 336 

downstream analyses.  337 

 338 

6.1. The pretreatment of sequencing reads 339 

NGS platforms are able to generate thousands to millions of sequencing reads in a single 340 

machine run. However, the quality of the sequences is not uniform among the dataset. 341 

Consequently, it is necessary to evaluate the quality of the sequence reads by different 342 

bioinformatics procedures. Quality control (QC) has led to significant improvements in de 343 
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novo assemblies (Salzberg et al., 2012), amplicon sequencing (Bokulich et al., 2013) and 344 

transcriptome assemblies (Macmanes and Eisen, 2013). 345 

 346 

The reason that sequencing reads must be filtered (Zhou and Rokas, 2014) is to remove reads 347 

that will bias downstream analyses, such as sequence reads of low quality, adapter 348 

contaminants, as well as discordant and duplicate paired-end reads. The majority of NGS QC 349 

tools are only available for UNIX-based operating systems that lack a friendly user graphical 350 

interface. However, there are some exceptions such as the web-based tools GALAXY 351 

(Goecks, et al., 2010) and Prinseq (Schmieder and Edwards, 2011).  352 

 353 

For a more in depth discussion of the importance of QC in the analysis of NGS reads that 354 

includes topics such as performing quality assessment and describing workflows, see 355 

(Watson, 2014). 356 

 357 

6.2. De novo assembly 358 

De novo assembly is the process in which sequence reads are assembled without a reference 359 

sequence. De novo assembly is challenging and computationally demanding and thus the 360 

development of de novo assembly tools has been a top priority in the field of bioinformatics. 361 

This goal is exemplified in the Assemblathon program, a contest in which each assembler is 362 

evaluated based on its performance in the assembly of known datasets (Bradnam et al., 2013). 363 

 364 

There are three main algorithm classes for de novo assemblers: Greedy, Overlap-layout-365 

consensus (OLC) and De Bruijn graph (Nagarajan and Pop, 2013). Even with recent advances 366 

that have reduced memory requirements (Conway and Bromage, 2011, Simpson and Durbin, 367 

2012) as well as the development of highly parallelizable algorithms (Boisvert et al., 2010, 368 
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Liu et al., 2013, Liu et al., 2011), de novo assembly is a non-deterministic polynomial-time 369 

hard (NP-hard) mathematical challenge, (Pop, 2009), meaning that the assembly cannot be 370 

solved in polynomial time (Medvedev et al., 2007). 371 

 372 

The variety of de novo assemblers presently available raises the question of which one 373 

produces the best assembly. Unfortunately, the answer is that no tool will produce the best 374 

assembly for all datasets. In fact, given that all tools have their restrictions, strengths and 375 

weaknesses, de novo assembly should be considered an iterative process in which the 376 

assembly parameters are optimized with consecutive runs and different assemblers are 377 

employed to cross-validate the final assembly (Ekblom and Wolf, 2014). Towards this end, an 378 

integrative de novo assembly workflow tool, named RAMPART, has been recently developed 379 

that allows the user to test different parameters on various free tools (Mapleson et al., 2015).  380 

 381 

To illustrate the variability between de novo assemblers, we assembled Illumina reads from 382 

Aeromonas salmonicida subsp. salmonicida 01-B526 with three assemblers, A5 (Coil et al., 383 

2015), Ray (Boisvert, et al., 2010) and SPAdes (Bankevich et al., 2012) (Table 4). The de 384 

novo assembly of the reads with Ray produced the fewest number of contigs, while SPAdes 385 

produced 167% more contigs than Ray and A5 fell in between the two. The largest contig was 386 

almost identical for Ray and SPAdes while A5 assembled a largest contig that was smaller 387 

than the two other assemblers. However, the N50 value, which is the length for which all 388 

contigs of that length or longer covers at least half an assembly, is essentially the same for all 389 

assemblers. Finally, when we compared the three assemblies with the reference chromosome 390 

of A. salmonicida subsp. salmonicida A449 (Reith et al., 2008), we found that the Ray 391 

assembly had the lowest amount of coverage (genome fraction) relative to the other 392 

assemblers in our example. The above comparison underlines the importance of performing 393 



 17 

multiple assemblies with several different de novo assemblers. It is clear that relying on only 394 

one assembler without testing others is risky and could lead to an incorrect interpretation of 395 

the data. 396 

 397 

Many genomes contain large-repeated-elements that increase the complexity of the assembly 398 

process and results in assemblies with a high number of contigs. For example, the Gram-399 

negative bacterium A. salmonicida subsp. salmonicida is known to contain many large 400 

insertion-sequences (ISs) that are responsible for a majority of the breaks in an assembly 401 

(Vincent, et al., 2014, Vincent, et al., 2015). At present there are two primary strategies to 402 

sequence genomes with a high IS content: (1) using mate-pair information to build genomic 403 

scaffolds and (2) using long-read sequencing technology. 404 

 405 

As previously stated in the section “library features”, a genomic scaffold is a series of contigs 406 

whose relative position and orientation are predicted. The information required for the 407 

scaffolding process is contained in mate-pair sequence reads where the most important 408 

parameter is the number of positive mate-pair reads that confirm a particular junction. This 409 

can be problematic because the gaps between contigs are sometimes rough estimates and 410 

therefore contain stretches of undetermined bases or “Ns”.  411 

 412 

The second approach is to use long-read (> 7-kb) sequencing technology. At present, these 413 

“third-generation” sequencing platforms are most commonly used to finish genome sequences 414 

and thus avoiding the time consuming process of amplifying gap regions followed by Sanger 415 

sequencing. A discussion of third-generation sequencing is beyond the scope of this review. 416 

See (Miyamoto et al., 2014) and (Koren and Phillippy, 2015) for more information. 417 

 418 
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 419 

6.3. Assembly using a reference 420 

Another method to produce an assembly is by using a reference genome to “guide” the 421 

assembler. Relative to de novo assembly, producing an assembly using a reference genome is 422 

a simpler process. There are two principle methods of assembly with a reference genome: (1) 423 

produce in silico scaffolds by mapping the contigs from a de novo assembly onto a reference 424 

genome, and (2) guide the contig assembly process by mapping the individual reads onto the 425 

reference genome (Ekblom and Wolf, 2014). However, a major drawback of using a guided-426 

assembly is that a reference sequence must be available. Although the number of genomes 427 

sequenced is growing rapidly, approximately 90% of the genome sequences deposited in 428 

GenBank remain incomplete (Land et al., 2015). Moreover, approximately half of the 429 

sequenced genomes in the database are related to the phylum Proteobacteria (Land, et al., 430 

2015), which suggests that most microbial taxa are likely underrepresented and thus lack a 431 

reference sequence. Finally, it has been repeatedly demonstrated that published sequences can 432 

contains errors that will result in discrepancies during the mapping stage of assembly. 433 

Consequently, it is important to choose a reference sequence from a phylogenetically related 434 

organism that is well studied and curated when possible.  435 

 436 

6.4. Amplicon based studies 437 

The most common amplicon based studies of microbial communities focus on universal 438 

taxonomic markers such as 16S SSU rRNA (for bacteria), 18S SSU rRNA (for 439 

microeukaryotes and unicellular eukaryotes) or internal transcribed spacers (ITS - for fungal 440 

communities) to survey both microbial diversity and community structure (i.e., quantify the 441 

relative abundance of each taxon in a particular assemblage). Amplicon libraries are 442 

particularly useful in the context of comparative investigations and correlations between 443 
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community structure and metadata (i.e. for measuring community response to contrasted 444 

biological, chemical or physical parameters) can provide insight into community dynamics 445 

and adaptation (i.e. taxa replacement). Even though these studies are based on one or a few 446 

molecular markers, it is possible to infer functional repertories from these data based on the 447 

availability of reference genome databases (Langille et al., 2013). This is especially the case 448 

for 16S libraries, as this bacterial taxonomic marker is the most extensively annotated.  449 

 450 

Different genomic loci provide differential power to resolve taxa due to differences in their 451 

genetic diversity distribution. Consequently, estimates of diversity will vary according to the 452 

particular molecular marker selected. For any given genomic locus, resolution power is 453 

proportional to the sequence length and level of polymorphism. Early studies based on 1.5 kb- 454 

long 16S SSU rRNA sequences produced with Sanger-sequencing enabled the identification 455 

of many individual genera and species. For most current NGS methods, amplicons lengths are 456 

more restricted, where long-length and short-length reads vary between 450 and 700 and 50 457 

and 200 bp, respectively. Even with these relatively short read lengths, current NGS 458 

applications for microbial identification still focus on the 16S rRNA gene. This gene consists 459 

of conserved sequences interspersed with nine variable sequences, called variable regions 460 

(Ashelford et al., 2005). The lengths of these variable regions range from approximately 50 to 461 

100 bases. Thus, depending on the read length, one or several variable regions can be 462 

targeted. More importantly, the conservation of the flanking regions targeted by the primers 463 

commonly used in these types of studies is critical to a comprehensive characterization of 464 

bacterial diversity (Hartmann et al., 2010). Because of specific mismatches between primer 465 

and target, some bacterial classes may be erroneously over-represented due to higher 466 

sequence identity in the primer binding region. Therefore, the 16S variable regions that are 467 

targeted should be selected based on factors such as the class of bacteria under investigation 468 
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and the required level of taxonomic resolution (order, family, genus, species, etc.) 469 

(Engelbrektson et al., 2010). For instance, the 16S V1 and V2 regions are highly variable, but 470 

their flanking regions are less conserved than those of the other variable regions. Thus while 471 

the use of the V1 and V2 region results in a higher level of taxonomic resolution, the estimate 472 

of both diversity and evenness are relatively more biased due to primer mismatches 473 

(Klindworth et al., 2013). In contrast, the V3 and V4 regions are less variable but their 474 

respective flanking regions are more conserved than the V1 and V2 regions. Thus in 475 

comparison, although the level of taxonomic resolution is less, the estimate of sample 476 

diversity and evenness are also less biased. Finally, it has been shown that the target 477 

molecular marker can be transferred between both closely and distantly related taxa. For 478 

example Acinas et al. (2004) demonstrated that 16S rRNA loci can be transferred between 479 

bacterial genotypes (Acinas et al., 2004), leading to individual 16S polymorphism and 480 

ultimately an overestimation of community diversity. 481 

 482 

Strain typing has now reached the next-generation level (Boers et al., 2012) with the 483 

development of high throughput multi-locus-sequence-typing (MLST) based on next-484 

generation sequencing. In this case, instead of targeting a conserved gene to survey the 485 

diversity of microbial communities, multiple amplicons for genes of interest are produced for 486 

individual strains, where each strain is uniquely barcoded. In MLST, the locus targets are 487 

endless and this approach is now being developed with third generation sequencing platforms 488 

(Chen et al., 2015).  489 

 490 

ThermoFisher has pushed MLST to higher grounds by coupling its IonTorrent line of NGS 491 

products (PGM, Ion Proton and S5) with its Ampliseq Technology. Existing panels contain 492 

hundreds to hundreds of thousands of amplicons designed originally to target human genes. 493 



 21 

Thermofisher is now offering Ampliseq panels for Mycobacterium tuberculosis and Ebola 494 

virus typing and it can be expected that more and more typing panels will emerge in the next 495 

few years. 496 

 497 

6.5. Metagenomic surveys 498 

The metagenome provides insight into the overall functional repertoire of a microbial 499 

community, including information on the metabolic capabilities of the community and the 500 

potential functional interactions among its members (Chistoserdovai, 2010). Metagenomics is 501 

a non-targeted approach that results in the description and quantification of the copy number 502 

and allelic variants of genes that could potentially be expressed by the microbial community 503 

of interest. Various sequencing platforms can be employed for metagenomics: platforms 504 

generating long read lengths facilitate the assembly and annotation processes, but fail to 505 

accurately quantify copy number and allelic variants of genes because they produce a 506 

relatively low read count. Conversely, platforms designed to produce high read counts of 507 

shorter read length allow the accurate quantification of copy number and allelic variants of 508 

various genes, but the process of assembly and annotation becomes particularly challenging 509 

(Prakash and Taylor, 2012), especially if the ultimate goal is to assemble and recover single 510 

genome. These data have proven to be best suited for comparative analysis of functional 511 

repertoires in contrasting environmental conditions.  Additionally, metagenomic data can also 512 

provide invaluable reference sequences for assembling and mapping metatranscriptomic reads 513 

(Ye and Tang, 2015). Metagenomics is a particularly effective approach to characterize 514 

taxonomic profiles. Taxonomic annotation is based on hundreds of unique clade-specific 515 

marker genes identified from reference genomes, and thus the broad sequence data generated 516 

with metagenomics allows very accurate and unambiguous taxonomic assignments (ex. 517 

MetaPhlAn (Segata et al., 2012)). 518 
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6.5.1. Read annotation and assembly procedure 519 

Metagenomic sequences (i.e., reads) are classified into discrete clusters commonly referred to 520 

as bins. Binning attempts to assign every metagenomic sequence to a taxonomic group (e.g., 521 

OTU, genus, family). As with amplicon analysis, binning accuracy improves with sequence 522 

length (Charuvaka and Rangwala, 2011, McHardy et al., 2007). There are currently three 523 

types of binning algorithms. These are either based on supervised learning procedures (i.e. the 524 

similarity of metagenomic sequences to annotated sequences from a database) or based on 525 

unsupervised learning procedures, which bin’s reads in a given dataset based on their mutual 526 

composition (Strous et al., 2012) or similarity (Huson et al., 2011, Kislyuk et al., 2009, 527 

Krause et al., 2008, Mande et al., 2012). Similarity based binning tools provide higher 528 

annotation accuracy and resolution compared to compositional binning tools. However, 529 

similarity based binning tools require greater computational resources because they align 530 

every single read to an immense number of annotated sequences. Conversely, compositional 531 

and diversity binning tools require relatively fewer computational resources because they use 532 

metagenome sequence characteristics (e.g., tetranucleotide patterns, codon usage, and GC 533 

content) to cluster or classify sequences into taxonomic groups (Dick et al., 2009, Saeed et al., 534 

2012, Teeling et al., 2004). Also, this approach is useful for clustering contigs into groups that 535 

can be subsequently assembled into nearly complete genomes of uncharacterized organisms. 536 

Therefore, a straightforward strategy is to combine strengths of both supervised and 537 

unsupervised learning procedures: using an unsupervised method to cluster the data, and then 538 

assigning taxonomic groups to the bins by querying sequence databases. Such strategy speeds 539 

up the analysis by annotating sequence clusters instead of single sequences. 540 

 541 

The assembly of individual genomes from a metagenomic library can be accomplished 542 

directly through de novo assembly or by using a reference genome (Hugerth et al., 2015, Luo 543 
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et al., 2012, Mehrshad et al., 2016). The assembly of whole genomes from a metagenome is 544 

only possible if the coverage of the genomes in the sample is sufficient. However, the 545 

efficiency of the assembly can be confounded by non-uniform coverage of the sample library, 546 

resulting either from gene abundance variation between taxa (evenness), and/or compositional 547 

bias of sequencing technologies. Therefore, whole genome assembly tends to be limited to the 548 

most abundant taxa in the community, and thus, very high coverage (above 20 terabases per 549 

metagenome) is required to assemble rare taxa (Luo, et al., 2012). 550 

 551 

6.5.2. Normalization of metagenomic data 552 

Characterizing the functional capacity of a microbial community necessitates building a list of 553 

gene functions and formulating an accurate estimate of the relative abundance of every gene, 554 

resulting in the identification of the proportion of genomes harboring a trait of interest (e.g., 555 

antibiotic or heavy metal resistance, nitrogen or carbon fixation). As contigs are treated as 556 

single sequences in most downstream analyses, the quantitative information for each taxon 557 

based on the number of unassembled reads assigned to particular taxa is lost. Therefore, 558 

assessing the relative abundance of contigs assigned to every single taxon in a metagenome is 559 

a crucial step in accurately characterizing the functional properties of a given microbial 560 

community. Basically, the number of reads mapped to each annotated gene is used as a proxy 561 

for its abundance in the sample (Luo et al., 2013). However, the resulting read counts are 562 

highly dependent on the sequencing approach (i.e. sequencing instrument), because the 563 

coverage biases across samples can vary significantly depending on the sequencing platform 564 

employed. Normalization of the sequence data is thus unavoidable in comparative 565 

metagenomics (Angly et al., 2009, Frank and Sorensen, 2011). Several approaches are 566 

commonly used. The compositional normalization approach is the most intuitive (Qin et al., 567 

2010); it calculates relative abundance for every gene by dividing the abundance value 568 
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associated with each gene by the sum of abundance values for all genes identified in the 569 

metagenomic sample. The main issue of this “within sample” normalization method is that 570 

relative abundance for each gene is heavily dependent on the abundance of the total number 571 

of genes determined from the same metagenome, a factor that can lead to differential scaling 572 

across metagenomic samples (Manor and Borenstein, 2015). 573 

 574 

Estimation of average genome sizes (AGS) is another normalization approach. The purpose of 575 

calculating AGS is to normalize the relative abundance of every gene in a given metagenome 576 

(Frank and Sorensen, 2011). AGS values can be biased because the probability of sampling a 577 

gene from a community varies with the size of the AGS for that community, i.e. the larger the 578 

AGS value, the higher the probability of sampling a given gene. Therefore differences in AGS 579 

between samples can lead to the spurious quantification of a given gene between 580 

metagenomes, i.e. genes present at an equal copy number per cell may appear variable across 581 

samples, while genes varying in copy number per cell may appear stable (Nayfach and 582 

Pollard, 2015). 583 

 584 

To circumvent this normalization issue, another approach is based on read subsampling 585 

(Carcer et al., 2011). This normalization strategy aims to subsample n times (e.g. 10) an equal 586 

number of reads without replacement (e.g. 1 million of reads) from each metagenomic 587 

sample, in order to assess the data distribution uniformity of the iterated subsampling 588 

procedure, and thus control for subsampling bias that may occur between biological samples. 589 

Then, to investigate the biological meaning of differential abundances of genus/phylum across 590 

biological samples, the computed average of each diversity index will be compared between 591 

metagenome samples. 592 
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As the uniformity in terms of taxonomic diversity of subsampled reads was observed in 593 

several studies using simulated metagenomes (Garcia-Etxebarria et al., 2014, Mavromatis et 594 

al., 2007, Mende et al., 2012, Pignatelli and Moya, 2011), the normalization by read 595 

subsampling is definitely a promising approach.  596 

 597 

6.6. Metatranscriptomic studies 598 

The metatranscriptome, including both messenger and non-coding RNAs (rRNA, siRNA, 599 

etc.), provides information about the functional activity of a microbial community at a given 600 

time. As with other phenotypic traits, the characteristics of the metatranscriptome result from 601 

the interaction between the functional repertoire of the community (metagenotype) and biotic 602 

and abiotic environmental factors. Metatranscriptomic profiling is a powerful approach 603 

because it can provide insight into the regulatory networks and gene expression of a microbial 604 

community at the time of sampling. 605 

 606 

One factor that must be addressed in the construction of a metatransciptome is the purification 607 

of mRNA from other RNA species present in the sample. Targeting bacterial mRNA is 608 

challenging because, unlike eukaryotic mRNA, bacterial transcripts are not polyadenylated 609 

and thus the classic oligo-dT-based method of mRNA capture cannot be employed. 610 

Furthermore, as the majority of RNA in a cell is composed of ribosomal and transfer RNAs (> 611 

95%), metatranscriptomics typically requires a rRNA depletion step to enrich the mRNA 612 

fraction. Ribosomal RNA depletion techniques are based on rRNA specific probes (attached 613 

to biotin-streptavidin beads or columns) that capture rRNA molecules while mRNA and 614 

sRNA molecules are eluted. Until recently, the performance of these techniques was poor, 615 

particularly with complex bacterial communities such as the microbiota. Indeed, up to 60% of 616 

the resulting sequence data from some samples after depletion comprised rRNA reads. The 617 
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efficiency of subtractive hybridization can be improved for complex bacterial communities by 618 

using customized, sample-specific rRNA probes (Stewart, 2013). After rRNA depletion, 619 

enough mRNA must be recovered so that reamplification, which will restore the 620 

overdominance of rRNAs in the sample, is avoided. Finally, another strategy is to skip the 621 

rRNA removal step entirely and allocate more resources to a deeper sequencing effort. The 622 

rRNA sequences can then be removed in silico (Urich et al., 2008).   623 

 624 

Another challenging step is to prevent extensive RNA degradation during metatranscriptome 625 

processing because mRNA stability can differ between microbial species and genes (Stewart, 626 

2013). Therefore, it is crucial to snap-freeze samples in liquid nitrogen or, if liquid nitrogen is 627 

unavailable, use a RNA preservation solution immediately after sampling. For example, when 628 

harvesting microbial community RNA from aquatic environments, water samples must be 629 

filtered immediately (10 min according to (Stewart, 2013, Tsementzi et al., 2014)) after 630 

collection and frozen directly in liquid nitrogen in the field. In general, 1–3 L of 631 

environmental sample will yield a minimum of 200 ng of total RNA (Stewart, 2013). 632 

Importantly, it is recommended that additional samples are collected for DNA analysis in 633 

order to perform downstream normalization of transcript abundance relative to gene or taxon 634 

abundance (i.e. RNA:DNA expression ratios) (Stewart et al., 2012).  635 

 636 

6.6.1. Transcripts abundance estimation  637 

Transcript abundance of a given gene depends both on the number of gene copies (i.e., 638 

relative abundance of the taxon encoding the gene in the microbial community) and the 639 

expression level of the individual gene. In other words, a given level of transcript abundance 640 

may either result from a low expression of a gene belonging to several dominant taxa, or from 641 

a high expression of a gene belonging to rare taxa. To accurately quantify the relative 642 
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abundance of a taxon specific transcript in a cDNA dataset, it is therefore crucial to map 643 

transcript sequences to the assembled genes of the corresponding metagenome.  644 

A truly accurate quantification of the expression level of a given gene in order to detect real 645 

(i.e., biological) differential expression across samples must involve a normalization step. 646 

Indeed, using total read counts to estimate transcript abundance will result in a spurious 647 

estimate of expression level differences. Normalization consists of computing a relative 648 

expression ratio (Anders and Huber, 2010), defined as the transcript abundance divided by the 649 

abundance of its corresponding genomic sequence (i.e., cDNA/DNA). 650 

 651 

6.6.2 Statistical methods to detect differentially expressed genes  652 

The statistical power to detect differentially expressed genes depends essentially on the 653 

number of technical and more importantly biological replicates (true replicates) in an 654 

experiment. If a large number of replicates is available, issues related to data distribution can 655 

be avoided by using non-parametric methods such as rank-based or permutation tests. For 656 

experiments with a smaller numbers of replicates per condition, using distribution families, 657 

such as normal, Poisson and negative binomial distributions is a straightforward option 658 

(Oberg et al., 2012). Specifically, a Fisher's exact test, or a likelihood ratio test (Bullard et al., 659 

2010, Marioni et al., 2008) are the most appropriate means of testing for genetic differential 660 

expression. However, the former should be interpreted with caution, as it is sensitive to the 661 

over-dispersion of data, and can underestimate the effect of biological variability for highly 662 

expressed genes (Anders and Huber, 2010). Therefore, the negative binomial distribution, by 663 

allowing larger variance, is better suited to cope with the strong variability for highly 664 

expressed genes (Oberg, et al., 2012, Tsementzi, et al., 2014). Subsequently, Bonferroni or 665 

FDR post-hoc corrections are necessary to resolve any false positive incidences. 666 

 667 
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6.7 RNA-Seq 668 

There are many annotation tools currently available such as Prokka (Seemann, 2014) or even 669 

RAST (available as a web-server) (Aziz et al., 2012) that will accurately predict protein-670 

coding genes and RNAs from a genome sequence. However, it is necessary to go beyond 671 

simple presence or absence of these features to gain deeper insight into the function of a 672 

particular organism. A powerful tool to examine the relationship between a genome and an 673 

organism’s biological function is transciptomics. It is the study of the transcriptome, which is 674 

defined as “the complete set of transcripts in a cell, and their quantity, for a specific 675 

developmental stage or physiological condition” (Wang et al., 2009). 676 

 677 

The first high-throughput technology applied to study the transcriptome was the microarray. 678 

In this assay, RNAs are extracted, reverse-transcribed into cDNA, coupled with a fluorescent 679 

dye and hybridized onto a chip (Miller and Tang, 2009). However, as discussed elsewhere 680 

(Wang, et al., 2009), even though this technology is medium-throughput and affordable, it has 681 

majors limitations including: (1) it requires special instrumentation for hybridization and 682 

scanning, (2) the dynamic range of fluorescence scanners are unable to cover the full range of 683 

gene expression because some signals will saturate while others are too close to background 684 

to be detected, (3) it is technically challenging to perform and (4) the microarray requires that 685 

the sequence targets are already known and it is thus not suitable for de novo discovery.  686 

 687 

A method using NGS technologies, RNA-seq, has allowed researchers to overcome the 688 

limitations of the microarrays. Preparation for RNA-seq requires that the RNA is extracted 689 

and purified from a sample, and then sheared and converted into cDNA. The pool of cDNA is 690 

subsequently directly sequenced by NGS. Gene transcription levels are determined by 691 

mapping the cDNA reads to a reference sequence. More information on RNA-seq, including 692 
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an interesting list of tools for each step, can be found in (Creecy and Conway, 2015, Oshlack 693 

et al., 2010). For a discussion of the challenges associated with transcriptomics using NGS 694 

technologies see (Capobianco, 2014). 695 

 696 

6.8. Single cell sequencing 697 

We have already discussed the process of sequencing a single organism and a community of 698 

organisms (metagenomics). It should not be overlooked, however, that the usual process of 699 

sequencing the genome of a single organism can also be considered a community sequencing 700 

project. That is to say that the multiple genomes extracted from a culture of a particular 701 

microbe are not identical, as is often assumed, but a community of subtypes of the same 702 

strain. Therefore the final genome sequence is in fact a consensus of every sub-strain genome 703 

sequenced from the extracted sample. The drawback of this approach is that the heterogeneity 704 

that exists among substrain genomes is lost (Barrick and Lenski, 2009, Lang et al., 2011).  705 

 706 

The recent emergence of single-cell sequencing methods, nominated for method of the year in 707 

2013 by Nature Methods (2014), grant us the ability to characterize genomic heterogeneity on 708 

a cell to cell basis. Additionally, single-cell sequencing has been used to examine bacterial 709 

pathogens and host cells directly from clinical samples without cultivation. Single-cell 710 

sequencing has also been used to explore “microbial dark matter”, the large fraction of 711 

microbes in nature that cannot be cultured (Rinke et al., 2013). Since a single-cell does not 712 

contain enough DNA to prepare a sequencing library, a whole-genome amplification step is 713 

necessary before sequencing can take place. There are two main methods presently employed 714 

to amplify DNA in preparation for sequencing: Multiple Displacement Amplification (MDA) 715 

and Multiple Annealing and Looping-Based Amplification Cycles (MALBAC). A 716 

comparison of these methods can be found in (Chen et al., 2014). 717 
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 718 

6.9. Other applications 719 

A comprehensive overview of all the NGS applications currently being used in microbiology 720 

is not feasible in one review. Although not discussed here, NGS is being used in a wide range 721 

of other applications, including tRNA sequencing (Zheng et al., 2015), epigenomic profiling 722 

(Chen et al., 2014, Lee et al., 2014), ribosome profiling (Ingolia, 2014), as well as in the 723 

detection of structural variations (SVs) (Chen et al., 2009) (Fan et al., 2014). Finally, the 724 

chromatin immunoprecipitation sequencing (ChIP-seq) procedure is a method designed to 725 

generate information on the location of genomic protein-DNA interactions by using NGS. 726 

Please see (Landt et al., 2012) for a detailed review of this method, including the guidelines 727 

produced by the ENCODE project. An in depth review of ChIP-seq and related methods 728 

(histone modification ChIP-seq, DNase-seq and FAIRE-seq) can be found in (Furey, 2012). 729 

 730 

7. Conclusion 731 

It is certain that sequencing technologies will continue to evolve, resulting in platforms that 732 

are more powerful and cheaper to use. Nonetheless, researchers interested in sequencing-733 

based studies must make informed choices on the sequencing platform that can best aid them 734 

to achieve their research objectives. The four steps (and corresponding discussion) identified 735 

in this review (planning, library preparation, sequencing and data analysis) provide a 736 

framework that is relevant now and will remain relevant in the future, even as sequencing 737 

technology continues to advance. For the growing number of newcomers to the sequencing 738 

field, it is important to clearly define the objectives of your project and seek information from 739 

NGS experts such as experienced colleagues and core facility application specialists. 740 

Ultimately, this is the best way to save time and money and the most efficient way to achieve 741 

the desired results. 	  742 
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 1013 

Table 1. Most common applications of next-generation sequencing 1014 
Application Library	type Relative	importance	

of	the	sequencer	
featuresa 

Recommended	
instrument 

Genomic diversity and 
phylogeny 

Shotgun	 Consensus	accuracy	*** 
Throughput	** 
Read	length	** 

All 

Structural analysis of 
genome 

Shotgun		+	mate	pairs 
 

Consensus	accuracy	
**** 
Read	length	*** 

MiSeq 

Gene expression Reverse	transcription	+	
shotgun 

Throughput	****** 
Read	accuracy	* 

HiSeq,	Ion	Proton 

Population diversity	
studies	-	Species	
composition 

Amplicons 
 

Read	accuracy	**** 
Read	length	*** 

MiSeq,	Ion	PGM 

Population diversity 
studies - Gene function 
composition 

Shotgun Read	length	*** 
Read	accuracy	** 
Throughput	** 

MiSeq	for	assembly 
HiSeq,	Ion	Proton	for	
quantification 

Multi-locus sequence 
typing 

Amplicons Consensus	accuracy	
**** 
Read	length	*** 

All 

a: Indicated by the number of asterisk on a total of seven. 1015 
	  1016 
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Table 2. The most common sequencer of next-generation sequencing (September 2015) 1017 
Apparatus Throughput	

range	(Gb)	a 
Read	length	
range	(bp) 

Strength Weakness 

Sanger 
Sequencing 
ABI3730 
96	capillary	
system 

0.0003 Up	to	1	kb Sequence	quality	and	
length 

Cost	and	throughput 

ThermoFisher 
Ion PGM 0.08-2 Up	to	400 Read	length	and	

speed 
Long	homopolymers 

Ion Proton 10-15 Up	to	200 Throughput	and	
speed 

Long	homopolymers 

Ion S5 or S5XL 0.6	–	15 Up	to	400 Read	length,	
throughput	and	
speed 

Long	homopolymers 

Illumina 
MiSeq 0.3-15 1x50	to	2x300 Read	length Run	length 
NextSeq 10-120 1x75	to	2x150 Throughput	 Run	length 
HiSeq (2500) 10-800 1x50	to	2x125	 Read	accuracy	and	

throughput 
High	initial	
investment,	run	
length 

HiSeq X Ten 900-1800 1x50	to	2x150 Read	accuracy	and	
throughput 

Enormous	initial	
investment,	run	
length 

a: the throughput ranges are determined by available kits and run modes on a per run basis. 1018 
 1019 
	  1020 
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Table 3. Examples of optimal number of samples per instrumenta  1021 

Application Instrument Throughput How Number	of	
samples	in	a	
year 

Bacterial 
genome 
sequencing 
50X coverage 

Illumina	MiSeq Paired-end	2	x	300	
nt,	20	M	reads	per	
run,	output	12	Gb 

48	samples	per	run,	
2	runs	per	week,	50	
weeks	a	year 

4800	samples 

Illumina	HiSeq	
2000 

Paired-end	2	x	125	
nt,	150	M	reads	per	
lane,	16	lanes	per	
run,		output	600	Gb 

150	samples	per	
lane,	16	lanes	per	
instrument,	25	runs	
per	year 

60	000	
samples 

Ion	PGM,	318	
chip 

Single	read	>	300	nt	
avg,	4	M	reads	per	
run,	output		1,2	Gb 

5	samples	per	run,	2	
runs	per	day,	4	days	
a	week,	50	weeks	a	
year 

2000	samples 

Bacterial 
RNA 
Sequencing 
10M	reads	
per	sample 

Illumina	HiSeq	
2000 

Single	read	100	nt,	
150	M	reads	per	
lane,	16	lanes	per	
run,	output	300	Gb 

15	samples	per	lane,	
16	lanes	per	
instrument,	35	runs	
per	year 

8400	samples 

Ion	Proton,	PI	
chip	or	Ion	
S5	540	chip 

Single	read,	>100	nt	
avg,	60M	reads	per	
run,	output	 

6	samples	per	chip,	2	
runs	per	day, 
4	days	a	week,	50	
weeks	a	year 

2400	samples 

Amplicon	
analysis	 
>	25K	reads	
per	sample 
 

Illumina	MiSeq Paired-end	2	x	300	
nt,	15	M	reads	per	
run,	output	9	Gb 

384	samples	per	run,	
2	runs	per	week,	50	
weeks	a	year 

38	400	
samples 

Ion	PGM,	318	
chip 

Single	read	>	300	nt	
avg,	4	M	reads	per	
run,	output		1,2	Gb 

96	samples	per	run,	
2	runs	per	day,	4	
days	a	week,	50	
weeks	a	year 

38	400	
samples 

a: Based on instrument available on August 2015.	  1022 
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Table 4. Features of de novo assemblies produced by different assemblers for the A. 1023 
salmonicida subsp. salmonicida strain 01-B526. 1024 
 	 Assemblers	  

Features A5 Raya SPAdesb 
# contigs (≥500 bp) 140 95 159 

Largest contig (bp) 274	318 376	027 375	980 

N50	(bp)	 115	661	 108	909	 108	386	

Genome fraction (%) 97.622 88.100 97.190 

a: The kmer length (117) used for Ray was found with KmerGenie version 1.6663 (Chikhi and Medvedev, 1025 
2014). 1026 
b: The kmer lengths used with SPAdes were 21, 33, 55, 77, 99 and 127 as recommended in the manual for 1027 
sequencing reads produced by a MiSeq apparatus. The coverage cutoff was turned ON and the threshold was 1028 
auto-detected. 1029 
	  1030 
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Box 1031 

 1032 
BOX1. K-mers and read length 1033 
 1034 
Most data analysis packages use K-mers, which are defined as all the possible substrings of K 1035 
length found in a string. For example, the sequence GGATCTGATAC contains 4 K-mers of 8 1036 
nucleotides 1037 
 1038 
               Sequence: GGATCTGATAC 1039 
   K-mers of K-length=8: GGATCTGA 1040 
                          GATCTGAT 1041 
                           ATCTGATA 1042 
                            TCTGATAC 1043 
 1044 
The number of K-mers shared between two sequences defines how similar they are to each 1045 
other.  1046 

Longer read length enables both the use of longer K-mers and a higher number of K-mers 1047 
between related sequences to increase precision. 1048 
 1049 
	  1050 
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Figures 1051 

 1052 

Figure 1. Conceptual workflow of a complete NGS based project with the relative 1053 

importance and time spent for each step. 1054 
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 1056 

Figure 2. General overview of the NGS procedure. 1057 
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 1059 

Figure 3. Fragment versus paired-end reads. Library molecules are illustrated with the 1060 

technology specific adapters shown with white rectangles. Inserts are represented in grey 1061 

(large libraries) or black (small libraries) while sequencing reads are represented by arrows. 1062 
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 1064 

Figure 4. Overview of library preparation for NGS. Three kinds of libraries can be 1065 

produced. The one on the left is produced by performing a PCR on purified genomic DNA. 1066 

The primers used include in their 5’ region additional sequences (white rectangles) required 1067 

by the sequencing technology to perform NGS. These additional sequences vary from one 1068 

technology to another. These sequences can also include barcodes to allow multiplex 1069 

sequencing of many libraries in one machine run (barcodes are not shown on the figure). The 1070 

shotgun library illustrated in the middle involves many steps to generate DNA fragments 1071 

surrounded on each side by adapters required by the sequencing technology. Finally, the 1072 

mate-pair libraries offer the possibility of including sequences that are physically linked 1073 

together but at a certain distance in the same DNA fragment. This is possible by doing an 1074 

initial fragmentation step followed by the addition of a set of circularization adapters (grey 1075 

rectangles). These adapters allow circularization of the DNA fragments. These circular 1076 

molecules are then re-fragmented as described previously.  1077 
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