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Résumé 

Cette thèse est organisé en deux parties. Dans la première partie nous nous adressons à 
un problème vieux dans la théorie de jauge - le calcul du spectre et des fonctions d'onde. 
La stratégie que nous proposons est de construire une base d'états stochastiques de liens de 
Bargmann, construite à partir d'une distribution physique de densité de probabilité. Par la 
suite, nous calculons les amplitudes de transition entre ces états par une approche analytique, 
en utilisant des intégrales de chemin standards ainsi que la théorie des groupes. Également, 
nous calculons numériquement matrices symétrique et hermitienne des amplitudes de transi­
tion, via une méthode Monte Carlo avec échantillonnage pondéré. De chaque matrice, nous 
trouvons les valeurs propres et les vecteurs propres. En appliquant cette méthode â la théorie 
de jauge U(l) en deux dimensions spatiales, nous essayons d'extraire et de présenter le spec­
tre et les fonctions d'onde de cette théorie pour des grilles de petite taille. En outre, nous es­
sayons de faire quelques ajustement dynamique des fenêtres de spectres d'énergie et les fonc­
tions d'onde. Ces fenêtres sont outiles de vérifier visuellement la validité de l'hamiltonien 
Monte Carlo, et de calculer observables physiques. 

Dans la deuxième partie nous étudions le comportement chaotique de deux systèmes de 
billard classiques, par la théorie des matrices aléatoires. Nous considérons un gaz périodique 
de Lorentz à deux dimensions dans des régimes de horizon fini et horizon infini. Nous 
construisons quelques matrices de longueurs de trajectoires de un particule mobile dans ce 
système, et réalisons des études des spectres de ces matrices par l'analyse numérique. Par 
le calcul numérique des distributions d'espacement de niveaux et rigidité spectral, nous con­
statons la statistique des espacements de niveaux suggère un comportement universel. Nous 
étudions également un tel comportement pour un système optique chaotique. En tant que 
quasi-système de potentiel, ses fluctuations dans l'espacement de ses niveaux suivent aussi un 
comportement GOE, ce qui est une signature d'universalité. Dans cette partie nous étudions 
également les propriétés de diffusion du gaz de Lorentz, par la longueur des trajectoires. En 
calculant la variance de ce quantité, nous montrons que dans le cas d'horizons finis, la vari­
ance de longueurs est linéaire par rapport au nombre de collisions de la particule dans le 
billard. Cette linéarité permet de définir un coefficient de diffusion pour le gaz de Lorentz, et 
dans un schéma général, elle est compatible avec les résultats obtenus par d'autres méthodes. 



Abstract 

This thesis is organized into two parts. In the first part, we address an old problem in lattice 
gauge theory - the computation of spectrum and wave functions. The strategy which we 
propose is to construct a stochastic basis of Bargmann link states, drawn from a physical 
probability density distribution. At the next step, we calculate transition amplitudes between 
those states via an analytical approach, using standard path integrals as well as the group 
theoretical methods. We also numerically compute symmetric and Hermitian matrices of 
transition amplitudes, via the method of Monte Carlo with importance sampling. From each 
matrix, we find an effective Hamiltonian, as well as its eigenvalues and eigenvectors. By 
applying this method to U(l) lattice gauge theory in two spatial dimensions, we attempt to 
extract and present the spectrum and the wave functions of this theory for some small size 
lattices. In addition, we try to establish some scaling windows of energy spectra and wave 
functions. Such windows are a test of the validity of the Monte Carlo Hamiltonian, and the 
strategy to compute physical observables. 

In the second part, we study the chaotic behavior of two classical billiard systems, using 
random matrix theory. We consider a two-dimensional periodic Lorentz gas in the finite-
horizon and infinite-horizon regimes. By constructing some symmetric matrices from the 
lengths of trajectories of a moving-particle in this system, we perform a numerical analysis 
of the spectra of those matrices. Through computing the level spacing distributions and the 
spectral rigidities, we find that the level spacing statistics of the length matrices shows a 
universal behavior. We also investigate such a behavior for a chaotic optical system. As a 
quasi-potential system, its level spacing fluctuations also follow GOE-behavior, which is a 
signature of universality. In this part, we also study the diffusion properties of the Lorentz 
gas using the length of the particle's trajectory. By computing the variance of this quantity 
in terms of billiard ball rebound numbers, we show that the length variance behaves linearly 
in the case of finite-horizon. This linearity establishes a diffusion coefficient for the Lorentz 
gas. In a general scheme, the results are compatible with the other methods. 
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Preface 

Part I Lattice gauge theory (LGT), invented by Wilson in 1974 [1], is the most powerful 
non-perturbative method for the study of gauge theories. In particular, it plays a fundamental 
role in our understanding of non-perturbative phenomena in QCD, such as the quark confine­
ment1 [2, 3]. 

There are two principle methods in LGT, namely the Lagrangian (Euclidean ) approach 
formulated by Wilson and the Hamiltonian formalism introduced by Kogut and Susskind [4]. 
In the Lagrangian method, the dynamics of a lattice system is identified in terms of the action 
of the system in question. After the discretization of continuum space-time, the primary 
step is to do a Wick rotation from Minkowski to the Euclidean space (i.e., / —> —it) [5]. 
Then, all calculations are performed by means of the Euclidean metric. The Lagrangian 
technique is presently preferred by the lattice community and, indeed, most progresses in 
LGT have been achieved through this method. This approach allows one to simulate LGT 
as a statistical system using well known Monte Carlo techniques. To apply the methods of 
statistical mechanics, the field action is identified as the energy of a lattice configuration, and 
the vacuum functional integral becomes the partition function. 

The Hamiltonian version of LGT, on the other hand, describes the matter and the gauge 
degrees of freedom on the spatial part of a (3+l)-dimensional lattice. In this alternative 
picture of LGT, only space is discretized but time is treated as a continuous variable. Here 
the theory is considered as a quantum system with many degrees of freedom. An appealing 
aspect of this approach is that it reduces LGT to a many-body problem. Therefore, a host of 
analytic techniques from nuclear and condensed matter physics as well as many-body theory, 
are applicable in this area of LGT. 

Since the invention of LGT, it has been customary to compute the Euclidean 2-point 
correlation functions (and also the n-point correlation functions). It is the expectation value 

'The quark confinement asserts that the quarks are confined in hadrons through a quark-antiquarkpotential, 
which linearly increases with the separation of qq pair. 
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of two field operators between the vacuum states \Q, t = ±00), that is 

<a> = +H¥(xrF(y) |Q,/ = -oo>. (1) 

In fact, it should be noted that the ground state wave function il is not generally known in 
LGT. The ground state wave function enters in the above amplitude through the Feynman-
Kac limit2, via projection from an arbitrary state S onto the vacuum state. This occurs in the 
limit of large Euclidean times. On the other words, 

fSXp[-<Ht/h]\E) ~ limexp[-£0>/ft]|r2><ft||H> . (2) 

A physically interesting problem is the construction of the ground state wave function. The 
first point is that we need more information in addition to the vacuum-to-vacuum transition 
amplitude. This means that more states are required to be considered here. Let us start out 
by more general transition amplitudes between initial and final states, taken from a suitable 
chosen set of states |TV), v = 1,2,..., N, that is 

(Xv, t = T\ T„, / = O) = <TV| expt-TiT/fi] 1^). (3) 

Here, the states |TV) stand for the time-independent Bargmann link states, i.e., a configuration 
of link variables U, assigned to any link ij on the whole "spatial" part of a lattice. As a 
reminder, in the case of massive particles coupled via oscillators, a Bargmann state denotes 
the ensemble of displacements of the particles from their resting positions. Hence Bargmann 
states are the analogue of position states in quantum mechanics. 

At the second step, it is absolutely crucial to choose the "physical" states |TV). In quantum 
mechanics it is a convention to use basis states obeying mathematical properties, such as 
being orthogonal functions and forming a complete basis. Examples are Fourier's functions, 
Hermite functions, and so on. These functions have no relation to the particular physical 
system, e.g. a hydrogen atom. This is a luxury which one can afford when solving a system 
with a few degrees of freedom. However, in many-body physics and quantum field theory 
(with an infinite number of degrees of freedom) one should better choose a basis suited to the 
particular physical system. 

It is an old tradition in many-body nuclear physics, condensed matter and elementary par­
ticle physics that one computes wave functions and energy eigenvalues from matrix elements 
of a Hamilton operator in a suitable basis. This approach has been successful in special 
cases, e.g., when perturbation theory is applicable (nuclear shell model, Kondo effect [7]), 
or in situations where a few degrees of freedom describe the physics (Schwinger model in 

2In general, the time evolution of a quantum system is given by the behavior of exp -211 , when T 
is the imaginary time). In the Feynman-Kac limit, one has: exp [-

where £ 0 and i//0 are the ground state energy and wave function [5, 6] 
(T is the imaginary time). In the Feynman-Kac limit, one has: exp [-1IT/n] —> lim l^o) exp [-E0T/h] (ip0\, 

T—HX 
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(l + l)-dimensions [8], renormalization group Hamiltonian for critical phenomena [7]). How­
ever, this method has not led to general remarkable successes. The problem is due to the 
choice of basis states. This can be understood by the example of the diagonalization of a real 
symmetric matrix of large but finite rank, which is ill-conditioned (large difference in order 
of magnitude between the largest and the smallest eigenvalues). Any set of orthogonal basis 
states yields a few leading order eigenvalues. However, only basis states close to the eigen 
basis resolve the eigenvalues beyond the leading order. 

Considering this lesson in many-body physics and field theory, it is not surprising that 
perturbatively constructed basis states (e.g. Fock states) in general are not sufficient (i.e. those 
states do not reflect the physically important degrees of freedom). Besides this difficulty, 
there is another important question: does any controllable cut-off exist? In the Hamiltonian 
formulation of field theory, the standard way is to construct a Fock space, parameterized 
by some high momentum and occupation number cut-offs [9]. However, increasing these 
parameters causes an exponential growth in the density of states, then the system cannot be 
controlled. Accordingly, these cut-offs are not reliable. Therefore, the question is: what kind 
of cut-off is physically meaningful? 

We suggest a solution to such problems through a combination of two strategies: (i) Use of 
stochastic techniques to sample states from a huge variety of possibilities, (ii) Employ physics 
to guide the sampling. These two principles lead one to do the Monte Carlo with importance 
sampling, which has been used for most computations of path integrals via generation of 
equilibrium path configurations, with successful results in LGT. The so-called stochastic basis 
states (or reduced basis states), discussed in chapter 3, will be related to those equilibrium 
path configurations. By computation of transition amplitudes between the stochastic basis 
states, we obtain the spectrum and the wave functions of an effective Hamiltonian - the so 
called Monte Carlo Hamiltonian (MCH) - valid in a low energy (low-temperature) window. 

The idea of the MCH has been suggested by Kroger et al. in 1999 [10]. It has been 
demonstrated in a number of examples in quantum mechanics and scalar field theory. For the 
1-D harmonic oscillator, energy spectrum, wave functions and thermodynamical functions 
have been found to be in agreement with the exact results [10, 11]. Similar results have been 
obtained for uncoupled as well as coupled harmonic oscillators in 2-D and 3-D [12, 13]. This 
has been extended to a variety of other potentials in 1-D such as V oc x2 + x4, V oc |JC| /2, and 
V oc 8(x)x, as well as the 1/r Coulomb potential with a singularity at the origin [14, 15, 16]. 
In addition, the MCH has also been applied to the Yukawa potential V - -Vo exp(-or)/r, to 
search for a critical value of ac where no bound states exist [17]. Furthermore, this technique 
has been also applied to the (1 + 1)-D Klein-Gordon model in field theory, for the computation 
of the spectrum and thermodynamical functions [18, 19, 20, 21]. 
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The first step towards the MCH in LGT has been made in Ref. [22] by computing tran­
sition amplitudes for only one link state in U(l) LGT. In the first part of this thesis, we 
construct the MCH in U(l) LGT for two-dimensional lattices, and compute the energy spec­
trum of ground state, a number of excited states and the corresponding wave functions. We 
also compute the thermodynamical functions, such as the average energy and the specific 
heat. We generally proceed by the following steps: 

Chapter 1 is a brief review of the formulation of the Hamiltonian LGT. It discusses two 
common procedures for obtaining the Kogut-Susskind (KS) Hamiltonian, which is needed 
for the calculation of transition amplitudes in lattice systems. The procedures in question 
are (i) the canonical method where one performs a Legendre transformation on the lattice 
Lagrangian to obtain the lattice Hamiltonian. (ii) The transfer matrix method, in which one 
constructs a partition function in terms of a transfer matrix operator [23] as well as the Wilson 
action [1], for extracting the discretized version of the Hamiltonian on the lattice. 

In Chapter 2, we calculate the transition amplitudes under evolution of the KS Hamilto­
nian for the U(l) gauge group, in (2+l)-dimensions. For this calculation, we use some group 
theoretical methods, as well as the path integral technique. We obtain a general formula 
which is employed for the construction of physical stochastic basis states, and the Monte 
Carlo simulations needed for extracting the spectra and wave functions of the theory. 

Chapter 3 deals with stochastic basis states, and presents two methods of constructing 
such basis states, which are required for the numerical computation of transition amplitudes. 
The methods are based on the analytic formulae obtained in Chapter 2, as well as the path 
integral approach. 

In Chapter 4 we illustrate the technique of MCH by constructing an effective Hamiltonian 
using the stochastic basis states and transition amplitudes. We compute the energy spectrum 
and wave functions for the kinetic part of the KS Hamiltonian, for some lattice sizes in two 
spatial dimensions. Such spectrum enables us to obtain thermodynamical functions. We will 
present two of those functions. We also obtain the spectrum of the full Hamiltonian for two 
small lattices. 

There are also two appendices related to this part of the thesis. Appendix A contains some 
informations about the Peter-Weyl theorem, which is used in Chapter 2, in order to compute 
transition amplitudes. Appendix B discusses the algorithms which we have employed for our 
lattice numerical simulations. It contains some basic material about the Monte Carlo and the 
molecular dynamics methods. It also describes the checkerboard and the linear precondition­
ing methods, used for updating lattice configurations. 
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Part II The physics of billiards historically was born in the beginning of 1900's by Lord 
Kelvin [25]. It was considered in order to demonstrate the ergodic properties of the ideal 
gas, by studying the motion of a point-particle inside a triangular planar area with rigid 
walls. Since then, classical billiard systems have attracted wide attentions in mathematics 
and physics to explain irregular (chaotic) features in dynamical systems. 

In general, billiard systems describe a point mass moving in a planar closed area Q. e 
R2, with reflecting motion at a smooth boundary T ~ dQ. In the absence of friction or 
any external force, particles in the billiard region move freely in between collisons with the 
boundary. According to this, the dynamics of such a conservative system is characterized 
by the geometry of the billiard boundary. For example, a billiard with circular shaped wall 
represents an integrable system, where particles have stable periodic orbits [26]. In contrast, 
the Sinai and the Bunimovich stadium billiards [27, 28, 29] (see Fig.[l]) are examples of 
fully chaotic systems. The presence of external fields also creates another class of billiards, 

Figure 1 : Left: Bunimovich stadium billiard. Right: Sinai billiard 

namely dissipative systems. An external force influences the motion of the billiard ball and 
may create classical trajectories with curved sections in the billiard zone Q.. This also occurs 
when Q has non-Euclidean geometry, i.e. non-zero curvature [30, 31, 32]. In such cases, the 
classical billiard dynamics not only depends on the shape of the outer boundary r , but also 
on the dynamics of the motion in Q. These types of billiards are known as "curved-trajectory 
billiards" [33]. Several theoretical and experimental studies have been carried out on these 
systems. For example, gravitational billiards [34, 35, 36, 37, 38, 39] and magnetic billiards 
[40, 41, 42, 43] are frequently studied curved-trajectory systems, related to atom optics and 
condensed matter physics. 

There are also numerous experimental and theoretical works on the subject of billiards 
in quantum chaos [25, 44, 45, 46, 47]. As a remarkable application of chaotic billiards, we 
can refer to quantum dots (also known as nanocrystals) in physics of semiconductors. The 
shape of these nanostructures is usually represented by the Bunimovich stadium billiards, 
containing excitation pairs (electrons and holes) [25]. Miao et al. [48] have recently found 
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that graphene ( a one-atom thick plane of carbon atoms arranged in hexagonal rings) can act 
as a billiard table in atomic scale. In such a microscopic table, electric charges act as quantum 
billiard balls and reflect by graphene's boundaries. Such electronic materials can be used to 
develop new kinds of transistors, based on quantum physics. 

Furthermore, ultra cold atoms within some spatial patterns of billiard geometries have 
been studied by Milner et al. [49] and Friedman et al. [50]. They present some experimental 
results of integrable and chaotic motion of ultracold rubidium atoms restricted in a billiard-
shaped optical dipole potential, generated by laser beams. Via atomic trajectories inside a 
number of optical billiard sytems (elliptical, circle and tilted-stadium), they probe the effects 
of gravity, velocity spread, scattering and wall softness. They also show that this optical 
billiard is useful to study classical and quantum chaos, as well as their relation with atomic 
collisions, external fields, temporal charges, quantum statistics, and noise. 

The Sinai billiard has also been a model system to explore the spectral properties of 
chaotic quantum systems. Here we refer to the Sinai billiard-shaped microwave cavities, 
which have been widely investigated by Sridhar et al. [51, 61], Stockmann et al. [56, 53, 54, 
55] and Dembrowski et al. [57, 58, 59, 60]. For instance, through microwave quantum chaos 
experiments, Sridhar et al. [61] have shown that a 2D Sinai microwave cavity reveals universal 
properties in spectral and eigenfunction statistics. In addition, they have studied a 2D planar 
system of « disks by microwave experiments, indicating that the quantum resonances of this 
system correspond to quantum and classical resonances of dynamical Ruelle zeta-functions. 
Here, let us mention that a two-dimensional «-disk system is, actually, a 2D Lorentz gas, 
regarding «-Sinai billiards as unit cells of the system (in particular, it is a hyperbolic system 
with no ergodic properties). 

Quantum systems with fully chaotic classical analog have been shown in experiments 
and computer simulations to possess universal properties [62, 46, 47]. This means that the 
statistical fluctuation properties of spectra become independent of the particular quantum 
system, and exhibit a universal behavior [63]. In quantum chaos, the universality of level 
spacing fluctuations has been observed in a number of systems in nuclear and atomic physics. 
Examples are the heavy nuclei resonances [63, 64, 65], the non-relativistic hydrogen atom in 
a uniform magnetic field [66, 67, 68], the diamagnetic helium atom [69], and so forth. 

Now the question is: do the classical fully chaotic systems also exhibit spectral proper­
ties, in agreement with random matrix theory (RMT) predictions of universality of spectral 
statistics? 

This question was addressed by Argaman et al. [70], who found a universal behavior 
in two-point correlation functions of actions of classical periodic orbits (in classical chaotic 
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systems). However, they left this question open if these action correlation functions can be 
explained on a completely classical level. In order to answer that, Laprise et al. [71, 72] 
recently have observed universality in level spacing fluctuations of fully chaotic classical 
systems, using RMT. In particular, this has been shown by computer simulations for the 
Bunimovich stadium [29, 71] and cardioid billiards [71, 73, 74]. 

In the second part of this thesis, we attempt to answer this question for the two-dimensional 
Lorentz gas. By constructing matrices of length of trajectories in a classical framework, we 
analyze the spectral fluctuations of such matrices, to study the universal behavior of this 
chaotic system. This will be done using techniques form RMT. 

Another interesting problem is the transport properties of this system. An example for 
studying this topic is the diffusion coefficient of the Lorentz gas. In order to investigate this 
property, we propose to use the lengths of trajectories for evaluating the diffusion constant of 
the Lorentz gas in the finite-horizon regime. 

Remaining chapters of this part are organized as follows: 

Chapter 5 covers some details about RMT as well as its application in quantum chaos. 
Here we also talk about level spacing analysis, which we need for our numerical simulations 
in the Lorentz gas and the optical billiard. 

In chapter 6 we study the level spacing statistics of two systems in order to see if univer­
sality exists in their spectral fluctuations. First we consider the 2D Lorentz gas in the finite 
and the infinite-horizon regimes. Second, we study a quasi-potential system which we name 
it as an optical billiard. To this end, we employ the length matrices of trajectories, generated 
by a moving-particle within billiard areas. 

Chapter 7 treats the diffusion properties of the Lorentz gas. We present some results of 
the diffusion coefficient of this system, computed via the lengths of trajectories. We show 
that the length variances confirm a normal diffusion for a bounded Lorentz gas. 

Remarks and discussions for both parts of the thesis are presented in chapter 8. 

There is also a short appendix related to this part of the thesis. Appendix C involves the 
algorithm of tracing the random-walk motion of billiard balls, inside billiard zones. It shows 
the general procedure of constructing the trajectories of point-particle in the interior of the 
billiard domains. 
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Chapter 1 

Hamiltonian Lattice Gauge Theory 

Nowadays, the standard approach in LGT is the Lagrangian formulation, in which most nu­
merical calculations have been performed via Monte Carlo techniques. Nevertheless, there 
are some areas of research where progress in the Lagrangian method has been quite slow. 
Some examples are the calculations of excited states, the computation of hadron wave func­
tions and the determination of the QCD phase diagram of high temperature and finite density, 
and so on. These problematic situations suggest that alternative methods should be regarded. 

A feasible alternative approach is the Hamiltonian LGT [4], which may have a number 
of advantages. It has been suggested that the Hamiltonian LGT could handle finite density 
QCD, because there is no complex action problem [75]. Other areas in which Hamiltonian 
LGT may be preferred over the Lagrangian method are: calculation of excited sites, time 
dependent quantities and wave functions. A preferable aspect of the Hamiltonian approach 
is that it reduces LGT to a many-body problem. Thus a host of analytic techniques from 
nuclear and condensed matter many-body theory is applicable. In spite of these advantages, 
however, the Hamiltonian formulation has not been discussed in the literature as extensively 
as the Lagrangian formulation, and it is still open to more studies. 

In this chapter, we review two procedures of constructing the lattice Hamiltonian. One 
is based on Legendre transformations via the lattice Lagrangian, and the other is based on 
transfer matrices, which are obtained using the Wilson action. The result of these methods is 
the KS Hamiltonian, which is the starting point of our calculations in the next chapters. But, 
first let us start with some fundamental concepts in LGT. 
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1.1 Lattice action and Lagrangian 

In the continuum limit, the gluonic Yang-Mills Lagrangian is given by 

JZYM = ~ \ f F^(x)Fa^(x) d3x = f j ? d3x , (1.1) 

where Fpv is the field tensor. In general, for a non-Abelian gauge theory (e.g. QCD) one has 

F°v(x) = d„A"v(x) - dvA;(x) + g rPyA%x)Al(x) , (1.2) 

where g is the bare coupling constant, A^ is the four-vector potential and the symbols faPy 

are the structure constants of the gauge group. Also, the Yang-Mills action is given by 

SyM=^JF;v(x)Fa
MV(x)dAx = ~ j j ^ ^ F ^ x ) ] ^ , (1.3) 

with 
Fuv(x) = -igFlv(x)Aa , (1.4) 

where Aa 's are the gauge group Hermitian generators (e.g. a = 1,2,..., 8 for the group SU(3)). 

Before discretizing the action and Lagrangian, one considers the Wilson line 

€(C) = P exp \ig f Al(x)Aadx" 
Jc 

(1.5) 

along the path C, and the Wilson loop 

W(C) = Tr[£(C)] = Tr \ P exp igj)Al(x)Aa dx" (1.6) 

for a closed path C, which is a gauge invariant quantity [2, 5, 23]. 

On a lattice, the shortest Wilson line is given by 

UJx) = exp [-a A,(x)] = exp [tag Aa(x) Aa], (1.7) 

where U^x) is the link variable on the lattice, with the direction onp and origin at x. The link 
variable is, in fact, a matrix in the gauge group G, and it transports color(charge) information 
between lattice points. The elementary (planar) Wilson loop on the lattice, as a local gauge 
invariant object, is a square defined by multiplication of four neighboring links in the plane 
(p-v): 

Ua = U,(x)Uv(x + a M x + av)Ul(x) (1.8) 
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X+Oy U ^ X + Oy) 

v ♦ Uv(x) ^Uy(x+a^) 

M X UJx) x + a, 
^ 

Figure 1.1 : An elementary plaquette variable, containing four links and four sites in the plane 
p ­ v . 

This quantity is called a plaquette variable1 (see Fig.fl.l]). For pure gauge theory, the gauge 
invariant lattice action is defined in terms of plaquette variables by [5] 

-?? 1 ­ ^Tr(£ / D + Ul) 2 N y 
g 2 Z_j 1 ­ ­J­Re TrUa 

N 
(1.9) 

where N refers to the dimension of the gauge group SU(N). Likewise, one must consider the 
fermionic part of the action [2]. Here let us recall that, making the substitution 

a x /iv fiv 

(1.10) 

with some algebraic calculations, gives the Eq.(1.3) of the continuum limit (a —» 0). 

The lattice Lagrangian and its density (for a symmetric hypercubic lattice) are respectively 
given by 

I N ^ r , i 
(l.ii) ag2 ^H 

and 

rfg2^ 

1 " 2 N T r ( U n + ^ 

1 " ^ T ^ ^ o + 0j) (1.12) 

1.2 Hamiltonian formulation 

To obtain the lattice Hamiltonian theory, one can use the standard method of Legendre trans­

formation [76, 77] or the transfer matrix method [23, 78]. 

'The Wilson loops along the temporal (thermal) direction of a lattice are named Polyakov loops, which are 
applied to probe the quark­antiquark potential (i.e., the quark confinement phenomenon). 
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1.2.1 The method of Legendre transformation 

To construct the Hamiltonian on the lattice, one works in a temporal gauge (like A0 = 1), 
which means to fix all time­like links to identity. To this end, one separates temporal and 
spatial plaquettes and sets the temporal links to unity. Thus the Lagrangian density is charac­

terized by 

IM* 

where the constant term in the Eq.( 1.12) has been ignored. Notice that U^ denotes the link 
variable connecting the lattice sites p and v. 

On the other hand, one has 

Tr [f/;v(x, / + a,) U^v(x, /)] + H.c. = 

­Tr{[Cjy(x, t + a,) ­ £/*v(x, /)] [ u ^ x , t + at) ­ U^x , /)]} + const. 

Therefore, the first term of Eq.(l. 13) is replaced by 

(1.14) 

g2«* !?2> 
H V 

U'(x, t + a , ) ­ U'(x, t) 

a, 

Ufnjx,t + a , ) ­ U^v(x,t) 
a, 

(1.15) 

1 

Taking a, —> 0, one obtains 

£ = 5 Z T^Av) + ­^ Z 1 W° + T r C / ° l 
which is a conventional quantum mechanical picture of LGT in terms of Lagrangian. 

(1.16) 

Now, using the Legendre transformation 

the lattice Hamiltonian is deduced as 

_•* d£ ­ d£ 
U

i v ^ r r - + U^—r-
­ L , 

8 f i v * " S Q j 

(1.17) 

(1.18) 

The theory is not quantized yet. To quantize it in the temporal gauge, one enforces the 
canonical commutation relations 

[Ê»v(x) , Û,v(y)} = AaÛ,v(y)ô,vôly 

[Ê°v(x), ÊJ,(y)] = l é ^ O O M t y ■ (1.19) 



Chapter 1. Hamiltonian Lattice Gauge Theory 13 

Here the operators E"(x) denote color­electric fields with the color index a, outgoing from 
the lattice point x in the direction p —> v. They represent the variables conjugated to the link 
variables U^x) . One can see that E£v(x) acts as a differential operation on the link variable 
U^x) , with respect to the parameters of the SU(N) rotation. 

Since E" generates the local gauge rotation as a symmetry of X, one can write 

= ' S [M°!**u*') ­ H c ] ■ 
(1.20) 

One can compute the quadratic Casimir2 operator E£VE£V using the operators E£v. The result 
is 

K& = ^ ( ^ A v ) • (1.21) 
Consequently the KS Hamiltonian is given by 

*> \ ' î?a /,„\Ê,ar / „ \ 

</JV>,X 

^ = 2a­ Z Ê^v(x)Ê^v(x) ­ — Z [Trt/D + Tr£/£] , (1.22) 

which defines the dynamics of the Hamiltonian LGT for the gauge group G. The first part 
is the electric (kinetic) Hamiltonian, and the second (i.g., the potential part) is called the 
magnetic Hamiltonian. It is related to the magnetic field as follows: 

Ua = U„(x)Uv(x + a,)Ul(x + av)Ul(x) 

oc exp ikoA^x) exp ik^Av(x + a^) exp ­ikoA^x + av) exp [­ik0Av(x)] 

\ I w (L23) 

= exp ikoiA^x) + Av(x + a,,) ­ Au(x + ap) ­ Av(x) I 

= exp /'&oV x = exp [ik0B] , 

where B is the magnetic field of a plaquette (see Fig.[1.2] and Ref. [79]). Therefore one finds 

TTUa + TrUl = 2 Re TrUa <x cos(k0B). (1.24) 

Consequently, one has 
<HKS = fte,ec + ,Hmag (1.25) 

2An operator which commutes with all elements of a Lie group is said to be a Casimir Operator of that 
group. 
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x + Oy A^(x + Oy) 

B 
­Ay(x)<> ® D ^ A y ( x + a M ) 

A u {x) x + a, 

with 

and 

Figure 1.2: Magnetic field of an elementary plaquette [79]. 

^ = £■ Z Ê;v(x)Ê»v(x) 
* //v.x 

g2as £­*l J 

(1.26) 

(1.27) 

as the electric and magnetic Hamiltonians, respectively. 

1.2.2 Transfer matrix method 

Another approach to construct the lattice Hamiltonian is the idea of transfer matrix [2, 5, 23, 
78]. The basis of this idea is similar to that in the ordinary quantum mechanics, for linking 
the Hamiltonian and the Lagrangian pictures of quantum mechanics. In other words, it relates 
the Feynmann path integral formulation to the conventional operator formalism. 

Working on a lattice with an Euclidean descretized time, and considering the pure gauge 
Wilson action, the partition function of the system is given by 

/ 
Z = [dU] e ■Sw (1.28) 

The local nature of the Wilson action allows one to write the partition function 7L in a fixed 
temporal gauge (i.e. all time­like links are unity due to A0 = 0) as 

= Tr(fN) = f Y \ [ T [ W + a,)U(t)} [~] dU) (1.29) 

Here t is the transfer matrix of the theory. It is a self­adjoint bounded operator in a Hilbert 
space Jf . Also, N is the number of time slices along a time axis with periodic boundary 
conditions. Before going further, we define the Hilbert space Jtf. 
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The Hilbert space of the Kogut-Susskind Hamiltonian 

The Hilbert space of this theory is given by all square integrable functions i//(U) = if/({ U^x)}), 
with respect to a unique normalized measure on the gauge group G, such that 

f[dlf\ \HU)\2 < oo, [dU] = d U ^ x ) . (1.30) 
</JV>.X 

The measure dU^x) is the gauge invariant Haar measure over the gauge group. Notice that 
the physical Hilbert space of the theory is composed of the gauge invariant square integrable 
functions. 

A state |i/r) in this space is specified by a wave function ip(U) depending on a configuration 
U - {U^x)). Choosing the basis states \U) results 

/ ' 
^ [dU] \U)(U\ = l , (1.31) 

and 
(U\V) = W ô(Ullv(x),U'MV(x)) . (1.32) 

</JV>,X 

Therefore, the state |î > is represented by 

tyr) = f[dU] \U) if,(U), with HU) « (U\ «A) . (1-33) 

and the inner product defining square integrability is 

( M ) = f[dU]<f>*(U)#(U). (1.34) 

The physical states have to be gauge invariant under the local rotation of gauge group G. This 
condition is satisfied by the Gauss' law constraint of the theory at each lattice site, that is 

C(*) = Z Ê"v(x) ' C,v(x)m = 0. (1.35) 
<lxv>,x 

It means that the net electric flux at any site is zero (notice that there is no charge on the 
lattice sites in the case of the pure gauge theory). 

Now we go back to the computation of the transfer matrix. The transfer matrix is gauge 
invariant under the restricted class of gauge transformations, and it is strictly positive with 
eigenvalues larger than zero. It operates on the wave function \\p) of the Hilbert space 34? as 

Mt + o,)) = t \ W ) ) . (1.36) 
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This means that the system has been evolved from one time slice to the rest. The positivity 
of J guarantees the existence of the Hamiltonian 

"Hoc-- log t 
a, 

Therefore one finds [23], 

Z = TT(TN) = Tr(e"w a ' )N = Tr(e-'HT) = f[dU] e 

where T is the Euclidean time. 

Sir 

(1.37) 

(1.38) 

The transfer matrix operator in terms of its matrix elements (in the introduced Hilbert 
space J^) is characterized by 

tu . ,u = (U'\ t \U) = (U'\e-'Ha>\U) . (1.39) 

It operates on the infinitesimal time-step a, and fulfills the Eq.(1.38). Fixing the temporal 
gauge to identity and considering the asymmetric form of the Wilson action [23] 

2as r i _ 2a, ^ = - ^ Z R e T r f / - - - ^ Z R e T r C / - ' 
g at *-* g as *-* 

(1.40) 

one obtains [23] 

Tw.u = exp 
2a ^ Y R e T r f e t r ) x exp i p - Y Re g 2 a , ^ \ " » > V g 2 a s ^ Trf/n (1.41) 

where £/„, = U^'x, t) and U' = £/„v(.x, t + a,) 

In the ordinary quantum mechanics, one can write the operator f in terms of the canoni-
cally conjugate variables position x and momentum p. In the present Hilbert space Jf?, one 
can define the matrix valued operators L^ and the unitary operators R^v(if) on the analogy of 
x and p, respectively. In accordance with this, one writes [23] 

UuV\U) = LUC/) , 

RJ&)\U) = W) , (1.42) 

where if is an element of the gauge group G. The operator R^ i f ) translates the basis state \U) 
(likewise the behavior of the canonical momentum operator on position state |x), in quantum 
mechanics), and it satisfies the group representation property 

RJWRJ&') = R,v(ifif') (1.43) 
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Therefore, one can write the transfer matrix f as 

2a, 
-{!!(/• difR^if) exp 

<flV> g2a, 
ReTr^ ) } x e x p ë ­ Z R e T r ^ (1.44) 

In order to evaluate the group integral in the above equation, one can parameterize the group 
elements i§ and the operator R ,̂(if) in terms of the group generators (see Eq.(1.4)). It reads 
as 

if = exp [iu)aAa] , 
(1.45) 

/ ^ ) = exp[/fcAÊ«v], 
where of and Aa are group parameters and group generators, respectively, and Ê°v denotes 
the canonical momentum operator (here the color­electric field operator). In the Hamiltonian 
formulation of LGT, time is a continuous parameter. This means that one has to take the tem­

poral lattice spacing to zero, while the spatial lattice spacing is fixed. In this limit, the group 
integrals in Eq.(l .44) are dominated by group elements near the unity, which occurs when to 
becomes small in Eq.(1.45). Considering this point and replacing Eq.(1.45) in Eq.(1.44), one 
obtains a Gaussian integral [2]. Evaluating that integral yields 

f oc exp(­*Ha,) , (1.46) 

where 
g2 V F 2 ■ 2 

' </iV> 

represents the KS Hamiltonian on a lattice. 

^ = lr£Ê­ + ^ X [ R e T r [ / D ] ' (L47) 

1.3 Application of Hamiltonian methods in LGT 

Several techniques have been employed in the Hamiltonian approach of LGT, in order to 
solve lattice QCD. Examples are /­expansion method [80,81,82,83], Green's function Monte 
Carlo method [75, 84], strong coupling expansion [85, 86], coupled cluster method [87, 88, 
89, 90, 91], variational techniques [92, 93, 94] and black box method [106]. 

In the Hamiltonian approach, these methods allow to investigate lattice QCD in different 
coupling regimes, for example the ground state expectation value of the plaquette operators, 
as well as the string tension in the lattice QCD. Lattice thermodynamics for the gauge groups 
SU(2) and SU(3) is also another example by the Hamiltonian methods. They yield an estima­

tion for the ground state energy as well as lower excited levels (i.e. the glueball masses 0++, 
1+", etc.) in lattice QCD. 
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Transition Amplitudes in U(l) Lattice 
Gauge Theory 

In this chapter we develop a formulation for transition amplitudes in (2+ l)-dimensional U(l) 
LGT. Using some group theoretical methods as well as the standard path integral, we con­
struct the gauge invariant amplitudes of transition under the electric part of KS Hamiltonian. 
From such a gauge invariance procedure, we drive a formula for the electric transition ampli­
tude, which can be used in Chapter 3 for generating the stochastic basis states. Moreover, it 
will be employed in Chapter 4 for the computation of spectrum and wave functions of U(l)2+1 

LGT. 

2.1 U(1)2+1LGT 

The original formulation of LGT by Wilson was based on U(l) gauge thory [1]. It has been 
shown that the pure U(l) LGT in (3 +1) dimensions, contains two different phases [95,96,97, 
98]. In the weak coupling limit, the linear confinement is absent and the interaction between 
charges is Coulomb type. In the strong coupling regime, the lattice system is in a confining 
phase, and the gauge bosons (photons) do not escape away. These two phases are separated 
by a first order phase transition [99]. 

On the other hand, the compact U(l)2+i LGT is asymptotically free and does not un­
dergo any phase transition, when passing from the strong coupling to the weak coupling 
regime [100, 101, 102, 103]. The message of this property is that, U(l) LGT in (2 + 1) 
dimensions always (i.e., for all couplings) remains in a confining phase. Consequently, 3-
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dimensional U(l) lattice theory is similar to 4-dimensional SU(N) lattice gauge theories (such 
as lattice QCD). 

In addition, using the Villain approximation [104] of the Wilson action, it has been shown 
that U( 1)2+1 LGT is a renormalizable theory. The continuum limit of this theory is taken by 
varying the coupling constant g, as the lattice spacing tends to zero (a —> 0), in such a way 
that some physical quantity is held at a fixed value. If one holds the photon mass gap fixed 
(finite nonzero) as a -» 0, then the continuum limit exists as g —» 0. However, it does not lead 
to the familiar Maxwell electrodynamics, but to a theory of massive glueballs. The ordinary 
free electrodynamics is restored by preserving the unrenormalized electric charge e2 = g2/a 
in a fixed vlue, as a -» 0 [100, 101, 102, 105]. 

Because of the above-mentioned properties, U(l)2+i LGT plays the role of a toy model, 
in order to study the complicated theories, such as lattice QCD (i.e. SU(3) gauge theory). 

2.2 Transition amplitudes in Hamiltonian LGT 

The transition amplitude between two physical lattice states (see Fig.[2.1]) under evolution 
of the KS Hamiltonian is characterized by the matrix element 

(U ' , t=T\ U,t = 0) s (U'\Qxri[-fHT/h\\U) . (2.1) 

Here, T is the Euclidean time, and the states \U) and \U') stand for the Bargmann link states, 

|£/> = |L/12,£/23,...>, (2-2) 

which assigns a link variable U v̂ to each link {pv} on lattice. In order to compute the above 

Figure 2.1: A schematic aspect of temporal transition of a lattice configuration 
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amplitude, we represent it as 

«nmwmw - ^ M ^ m m x ^ M - ^ r m \ w , (2.3) 
where *Kelec is the kinetic (electric) part of the KS Hamiltonian (see Chapter 1). 

The first term of Eq.(2.3) can be computed numerically, which is discussed in Chapter 4. 
The second part is the transition amplitude under evolution of the electric part of the Hamil­
tonian. This term can be calculated analytically, which is the main discussion of this chapter. 

2.3 Transition amplitude under evolution of the electric part 
of the Kogut-Susskind Hamiltonian 

Let us consider the matrix element 

< U | exp [-<Helec Tin] | U) (2.4) 

as transition amplitude between Bargmann link states \U) and \U'). This propagator as a 
function of the group elements U' and U, depends only on the combination of i§ = U'~XU. 
To show this, let us take a group element 

if = exp[/o>flT°] \ (2.5) 

where T" are the generators of the gauge group and of are the group parameters. A time-
dependent gauge transformation on a link \pv\ is given by [78] 

R,v(if) = exp[/V^v] = exp[/6> • E„J , (2.6) 

where Ea
v̂ is the infinitesimal generator of gauge transformations on the link {pv}. The unitary 

operators Rf,v(if) transform the link states according to [23] 

R,v(if)\U) = \U') , f/;v = ^ I V . (2.7) 

Now we choose the group element if such that 

R,J&)\U) = \N) , & = I T 1 , (2.8) 

or equivalently 
\U) = R-Uif)\N) , (2.9) Itv 

where Af denotes the neutral group element. Notice that R v̂ operates solely on the link {pv} 
and does not change other links. 
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Since J?Piec oc E2 is a Casimir operator, thus 

[R„v(if),Heiec] = 0. (2.10) 

Consequently, we can rewrite the transition amplitude as 

<(/'|exp[-,Hdec77ft]|£/> 

= <t/'| exp [-<Helec 77ft] \R;K&)N) 
(2.11) 

= (R;l(if)U'\ exp [-f t^T/h] \N) 

= (fT1 U'\ exp [-Ti^T/ft] \N) , 

which means that the transition amplitude is a function of the group element <S - U~XU'. 
Due to the Hermiticity of *Helec, the amplitude must also be some function of if = U'~lU, 
and therefore, a symmetric function in if and if~]. This result holds in the Abelian case as 
well as in the non-Abelian case [107]. 

2.3.1 Transition amplitude for the gauge group U(l) 

In order to express the transition amplitude, we consider the temporal transition of a single 
link state in the Abelian U(l) LGT. For this purpose, we use the close correspondence be­
tween quantum mechanics and lattice gauge theory. The kinetic part of the KS Hamiltonian, 
i.e. the squared electric field, is identified by 

^,ec = ^ X Ê i - \ (2'12> 
where E^ denotes the operator of the electric field between spatial neighboring lattice sites p 
and v. This operator has discrete eigenvalues, 

E,». l^v/ - ^l'î/iv/ , A^ - 0, ±1, ±2,.... (2.13) 



Chapter 2. Transition Amplitudes in U(l) Lattice Gauge Theory 22 

Therefore, the transition amplitude of a single link state can be expanded in terms of the 
electric eigen states 

K\< ­'HcUxr/n K) = Z W ^ ^ ^ ^ W ^ ) 
Aje 

= Z(^U)<^exp 
AJt 

ghT 
Y E 2 

2a, ^ f j v 

<(IV> 

U')(/l'|LV> 
(2.14) 

■n 
, I V :0.±1,±2... V A U S I 

Due to the locality of the Bargmann link states, as well as the structure of the kinetic part 
of the KS Hamiltonian, this amplitude is factorized in separate amplitudes for each link. In 
order to evaluate such individual link amplitudes, one needs to compute the scalar product 
\Ufiv\ A/iv), which defines the transition from the link basis to the electric field basis. 

2.3.2 Scalar product (U\A) 

By analogy with quantum mechanics, this scalar product is determined only by the algebraic 
commutator relation between the link operators Û and E, and also the normalization of the 
link and electric field states. Here we would like to follow a procedure similar to the calcu­

lation of (p\ x) from the commutator [P,X] = ­/ft, in quantum mechanics. First, let us recall 
the properties of a link basis state as follows [23]: 

Û\U) = U\U) 

(U'\ U) = Ô(U' ­ U) 

1 = fdU\U)(U\ , 

(2.15) 

where j d U denotes a group integral, and ô(U' ­ U) is the ô function over group elements. 
Similarly, an electric field basis obeys 

E\A) = A\A) 

Z woi = i. 
(2.16) 

­V=o,±i,... 
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The algebraic commutator relation of Û and Ê is characterized by 

[Ê,Ù] = - Û . 

To compute the inner product (U\ A), we can write 

(A\[Ê,Û]\U) = (A\-Û\U) = -U(A\U) . 

On the other hand, expanding the commutator yields [22]: 

(A\ [Ê, Û] \U) = ^L7< |̂ C7> -<^|ÔÊ|t/> 

= AU(A\ U) - fdX(A\Û\X)(X\Ê\U) 

= AU(A\U) + Ç dx \ t JX ( A \ X ) ^ Ô ( X - U ) 

= AU (MU) ~ ^{UX(A\X)} 
x=u 

= AU(A\ U) U(A\U) + U2—(A\U) 
oU 

where the following property of the delta function has been applied: 

L m T y ô i y - yo)dy = - -
y=yo 

Now, combining Eqs.(2.18) and (2.19) we obtain 

U—(A\U) = A(A\U) . 
ou 

This equation simply suggests that 

<*| LO = CA(U)A, 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

where CA is a constant. This parameter is determined from the normalization condition of the 
electric field states, which reads 

ô r j = (A'\A) = fdU(A'\U)(U\A) 

da Cf* JdU(U)A'-A = C\C\ J g exp[ia(A' - A)} (2.23) 

- CÀCA ôx'j , 
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da 
where dU - — is the group integral Haar measure, and a stands for a link angle. We have 

2n 
also considered the parametrization of a link variable in the group U(l) as U = exp(/a), and 
the following orthogonality relation: 

f d Ç j * e " * = 2nô„s. 

From Eq.(2.23) one concludes that CA = I, therefore 

(A\ U) = (U)À . 

(2.24) 

(2.25) 

Now, denoting IP = exp(z'a') and U = exp(/or), we obtain the transition amplitude for a single 
link as 

<£/'|exp[-'Helec77ft]|£/> 

(2.26) Z W À> exP 
^=0,±1,±2,... 

f n T J 
2as 

tt\ U') 

Z exp 
-*=0,±1,±2,... 

[ g'nT 
2as 

A2 exp \iA(a - a)] . 

Notice that for the sake of simplicity we have dropped the index {pv} from the link states. 
Now, by considering the physical part and replacing the index A by n, one obtains 

<f/'|exp[-'Helec7,/ft]|L/> 

E exp 
n=0,±l,±2,. 

g
2hT 
2a. 

g
2hT 

cos [n(a' - a)] 
(2.27) 

2a, = 2 Z exP 
n=0,±l,±2,... 

which is a symmetric polynomial in U~x U' and U'~x U 

\(U-xuy + (U"{U)n] , 

2.3.3 Scalar product (U\A) via Peter-Weyl theorem 

An alternative method to compute the scalar product (A\ U) is via using the Peter-Weyl theo­
rem [108], which establishes orthogonality and completeness relations (see Appendix A for 
more details). 

The basis functions \A) of the electric field operator form an orthogonal and complete set 
in the Hilbert space of the theory [23, 108]. This is also the case for the basis of link states 
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\U), such that 
fdU\U)(U\ = \ , (U'\ U) = Ô(U - U), (2.28) 

Z {U'\ A) (A\ U) = o\ir - U) , (2.29) 
^=0,±l,±2,... 

fdU(A'\U)(U\A) = 6vj, (2.30) 

Z U>UI=1 , (A'\A) = ôÀ , j . (2.31) 
^=0,±l,±2,... 

On the other hand, according to the Peter-Weyl theorem, the orthogonality and completeness 
relations for SO(2) group are given by [108] 

- ^ f d<t>Ul(<p)U„(<p) = àmn , m , « e ( 0 , i l ± 2} (2.32) 
2n Jo 

and 
Z U„(<f>)Ul(<p') = ô(<t>-</>'). (2.33) 

n=0,±l,±2,... 

The functions 
Um(4>) = e-""* (2.34) 

characterize the irreducible representations' of the group SO(2), and m is an eigenvalue of 
the infinitesimal generator J (See the theorem 6.4 in Ref. [108]). Now if we consider 

U(<p) = è* , U\(f>) = é** = (A\ U) , (2.35) 

then Eq.(2.29) is identical to Eq.(2.33), and Eq.(2.30) is the same as Eq.(2.32). This means 
that the scalar product (A\ U) can be identified by the irreducible representation of the quan­
tum number A of the group SO(2). 

2.4 Gauge invariance of the amplitude 

2.4.1 Physical states 

Physical observables in gauge theory have to be independent of the choice of gauge, i.e. they 
must be gauge invariant under local gauge transformations. This also holds for the wave 

'An irreducible representation of a group is a group representation with the lowest possible dimension (Ap­
pendix A) 
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functions of physical particles. Let |Q) denote the vacuum state of some gauge theory, being 
a gauge invariant physical state. It means that under a local gauge transformation R^if ) , and 
for any link {pv} and any group element iff, this state behaves as 

I", t) -» |/?„V(W ') = \ ^ » • (2-36) 

Note that the operator R^ i f ) is defined by its transformation of the state constructed by the 
link variable U^, 

\if Umn) if pv = mn 
R ^ ) U m n ) = (2.37) 

\Umn) if pv + mn. 

2.4.2 Gauge invariance of the transition amplitude between physical 
states 

Here we would like to study the gauge invariance of the transition amplitude. For this purpose 
let us consider the vacuum-to-vacuum transition amplitude in LGT, that is 

(Q,t=T\Cl, t = 0) . (2.38) 

As a consequence of the gauge invariance of the ground state, this amplitude is also invariant 
under local gauge transformations 

{R,v(if') n,t = T\ Rmn(^) a / = o) = (n,t = T\n,t = o ) , (2.39) 
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for all links {pv} and {mn}, as well as all group elements if and if'. Expanding the vacuum-
vacuum amplitude in terms of the lattice link states yields: 

(j^')ar|j^($f)n,o) 

= (dU 'dU(R^ ' ) n| U', T) ((/', T\ U, 0) (U, 0| RU&) "> 

= fdu'du (n\ u\2,..., if'-x t/;v,..., T ) ( U , T\ U O> (ui2,..., if~x um„,..., o| n) 

= f[du\2...d(if'-xu,
IJY)...][dul2...d(if-xumn)...](n\ u\2, ...,if'~xu; , T) 

x(u\2,..., if'if'~x L/;v,..., T\ Uu...ifif~x umn..., o) (un , - , v x umn,..., o| n) 

= f[du\2...d(%v)...][du[2...d(wmn)...] 

x (n\ U\2, ..., L/;V, ..., T)(U\2 , ...,if'U'^,..., T\ ul2...ifumn..., o)(u]2,..., umn,..., 01 n>. 
(2-40) 

On the other hand, due to the gauge invariance of the amplitude, this expression is equivalent 
to 

<a7in,o> 

= /dU'dU(Q.\ U', T) (U, T\ U, 0) (U, 0| Q) 

= f[dU'i2...dU'^...][dUi2...dUmn...] 

x (n| u\2,..., t/;v,..., T) (U\2, ..., L/;V, ..., T\ u]2...umn..., o){un,..., umn,..., 01 n>. 
(2-41) 

Comparing the last two equations we conclude 

(JJ\2,...,<S'U'I1V,...,T\ u2...ifumn...,o) = (L/;2,...,f/;v,...,r| ul2...umn...,o), (2.42) 

which supports all links {pv, mn} and all group elements CS', if '. This confirms that the ampli­
tude 

( U ' ^ . - M ; ,T\Ul2...Umn...,0) (2.43) 

is gauge invariant. 
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2.4.3 Gauge invariance of transition amplitudes expressed by path inte­
gral 

Although the previous calculation is no rigorous proof, the result is correct if we express 
the amplitude by the path integral. It is remarkable that this is true, although the link states 
\U, t = 0} and \U', t = T) are not gauge invariant states. 

Let us express the above amplitude in terms of the path integral 

U'.t= T 
(2-44) 

u.t=o 
(U'n,...,T\Un,...,Q) = f[dU]exp(-S[U]/h) 

This amplitude is gauge invariant under local gauge transformation because of two proper­
ties; first, the Haar measure of the group integral dU is gauge invariant, and second, the 
Wilson action S[U] is gauge invariant. According to this, the whole path integral must be 
invariant under gauge transformations. 

Since the link states are not gauge invariant, so this means that the path integral carries out 
some projection onto the gauge invariant part. This addresses the Elitzur's theorem[109, 110]. 
According to this theorem, gauge variant operators have been vanishing expectation values. 
In other words, the vacuum expectation value of some operator Ô follows 

(Q, T\ Ô | a 0) = (Q, T\ âmv |D, 0) , (2.45) 

which means that only the projection of the operator onto its gauge invariant part survives, 
and the non-invariant part is projected to zero. 

Gauge invariance of the transition amplitude of a 4-link (plaquette) state 

Here, in some details, we examine the gauge invariance of Eq.(2.44), for the Abelian U(l) 
gauge theory. Let us consider a 22 x 2 lattice in (2 + 1)-D (see Fig.[2.2]). It contains two time 
slices at tm = 0 and fc = T = a,, where a, is temporal lattice spacing. The Bargmann link 
states for such a lattice are characterized by 

Initial state (t = 0): \Uin) = \U?2, U™, U£, U\n4) 
(2-46) 

Final state (t = T): |C/fi> = \U*2, l £ , L^3, U^4) . 

Now, the transition amplitude can be written in the following form: 
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Figure 2.2: Schema of links in the lattice 22 x 2 in (2 + 1) dimensions. 

<t/fi,7i<yin,o> 

/

<JU=T p 

[dU]exp(-S[U]/H) = [dU]5dU26dU31dU„] 
uin,i=o J 

x exp{ - ^ ( [l - R e ^ U ^ U ™ ^ ) } + [l - Re(U\n2U26UlU,s)] 

+ [l -/?e(L4n3L/37C^7L/26)] + [l -Re(Lrf4U4^nU37)] 

[l -Re(UZUl5U%5U4S)] + [l -RetUlU^U^Ul)])} -

(2.47) 

+ 

Note that the link variables with the indices "in" or "fi" correspond to the spatial links, while 
the rest correspond to the temporal links. 

On the other hand, let us now consider the initial and final states after a local gauge 
transformation. A single link variable transforms according to 

U , I V "T \ J e9iiU,/vt. (2.48) 

Consequently, For the transformation of a Bargmann link state we have 

\Ul2,U23,U43,U]4) -* K2,Lf3,Lf3,(7f4) = \ i f x U n ^ 2 \ ^ 2 U 2 ^ x , % U ^ x , ^ U u ^ x ) . 
(2.49) 

Thus, the initial and final Bargmann states after local gauge transformation are represented 
by 

\Ura)-*\Ul) = \%U^ 2
X ,%U 2 ^- X ,%U^- X ,%U u i f - X ) 

(2.50) 
|tff>-»|tf) = \&5Us6if-x,if6U61if-x,%Uvif-x,if5U5fiifs

x) . 
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Hereby, for the transition amplitude between the gauge transformed Bargmann link states, 
we write 

(Uf,T\U*,0) = f[dU}exp(-S[U]/h) ^ = J[dUl5dU26dU,7dU4,] 
in 

xexp{ - ^ ( [ l -Re (%Ù^ 2
x %U\ n ^ x % Ù ^ 4

X %Ù4\<é;x)\ 

+ [l-Re(iflUi?2if2-x U2f>%Ul5if;x U5X)) + [\-Re(y2U?&x U„9jU*& 1 U62)] 

+ [l -Re(if3U?4if4-x U4, y%U\fS? Un)] + [l -Re(%U4\^-x Ul5 if,U\%%x UM)] 

+ [l - Re(if5U 5̂6if-x ÇftUiPî1 % ^ , % ' &Vts*ClJ\ )} • 
(2.51) 

Remark that the first term in the exponent corresponds to the initial space-like plaquette, 
while the last term stands for the final space-like plaquette. The four middle terms represent 
the time-like plaquettes. Now, by introducing a variable transformation for all temporal links 
a s _ _ 

U26 = if2
x U26if6 « U\\ = if2U26if~x 

Ù37 = %~xu37if7 « uf7 = ifiU37if-x 

L/48 = if4~xU4s% «=» tff8 = if,Û40^x 

É7,5 = if^Usifs <=* Lf5 = ifiUl5if-x , 

(2.52) 

we obtain 

(L£,r|L£,0) = 

j[d(iflUi5^-x)d(%U26if-x)d(if3U37if7-x)d(^4U40s-x)] 

x exp{ - ^ ( [ l -Re(U?2lJ%U%U%j\ + [l - Re(U?2V26Ul}5U5i)] ( 2 ' 5 3 ) 

+ [\-Re(U™U37U«6Û62)] + [] - R e ^ Û n U l Û n ) ] 

+ [l -Re(U%Û„U%ÛM)} + [l'ReilJl6Vt7Û\Ul5)])}. 
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Using the invariance property of the group measure 

d^Uysif-1) = dUl5 

j (2.54) 
d(if4U4$if,x) = dU4* 

we find an expression identical to that given by Eq.(2.47), which proves the gauge invariance 
of the transition amplitude. 

2.4.4 Gauge invariance of the transition amplitude expressed as time 
evolution under Hamiltonian 

In this part, let us investigate the gauge transformation properties of transition amplitude 
expressed by the time evolution under Hamiltonian, that is 

0r"|exp(-?f7yft)rF> , (2.55) 

where 7Y is the KS Hamiltonian (a gauge invariant operator). How the amplitude (2.55) 
transforms under local gauge transformations depends on the wave functions *P and VP'. If 
they are physical states (e.g. the vacuum state), then the propagator 

(Yptiys\exp(-<HT/h)\%hys) (2.56) 

is gauge invariant. But on the contrary, if the states ¥ and *r" are not gauge invariant states, 
then the amplitude is not gauge invariant. In particular, this is the case for the Bargmann link 
states, i.e. the transition amplitude 

(U'\exp(-'HT/h)\U) (2.57) 

is not a gauge invariant object. 

How can one create a gauge invariant transition amplitude? 

We discuss this in analogy with quantum mechanics and rotational symmetry. Consider the 
matrix elements 

<<P|̂ I<I>>, (2.58) 

where û is assumed to be rotationally an invariant operator (it commutes with all generators 
Lj of the rotation group, like Ù - î 2 ) . On the other hand, let |0) and |<I>'> be rotationally 
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non­invariant states. Then the whole matrix element is non­invariant under rotations. Fur­

thermore, the spherical harmonics Ytm(Q, d>) are rotationally non­invariant, except for Yoo(0, <(>)■ 
This means that one has to make a projection onto the state YQO(6, <p), such as 

|fc>­HO>inv = |y<x)><>ool<l>> • (2.59) 

The same thing can be expressed using the rotation group SO(3), elements if e SO(3), as 
well as a representation R of the rotation group in Hilbert space defined by if —» RffS). It 
reads as 

(ifx\ <D> = (x\ ïV(if)®) . (2.60) 

Then one can construct a rotationally invariant state by integrating over the rotation group as 

(x] <D) ­> (x] <P)inv = 0>inv(f) = Z fdif<S>(ifx) = Z fdif(ifx] O) = Z f dif (x] R\if)<&) . 
(2­61) 

Since we look for a projection in such a way that no rotationally invariant state changes, the 
factor Z is related to the group volume as 

Z = — = —(for rotations in 3­D space) . (2.62) 
' group ^7t 

One can easily check that such construction yields a rotationally invariant state: 

(if'x] <Dinv> = Z Ç dif{ifif'x\ d>> = Z f d ( W ) < ^ ' i l <D) = Z fdif" (if"x] O) = (x] <P> , 
(2.63) 

where the invariance of the group measure has been used. 

The above method can also be employed for the construction of a gauge invariant state of 
Bargmann link states. To this end, we make a gauge invariant state of a link state by 

M ­» l^vv) = Z2 Jdif.dify \%U^~X) . (2.64) 

(the prefactor Z is again related to the group measure of the gauge group: Z = — ). 
'group 

Likewise, a state composed of several links becomes invariant by 

\U) = \UI 2 ,UZI , . . . ,UN­V*) —> 

(2.65) 
|L^nv) = Z N J dfSx...(MN \%UX 2 y 2

x , . . . ,%­X U N ­X , N i f N
x ) . 

Now let us go back to the problem of how to obtain a gauge invariant transition amplitude 
between link states, under evolution of the Hamiltonian (as given by Eq.(2.57)). 
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According to the above discussion, we have: 

(U>\exp[­m/h]\U) —* 

*N 

(2.66) 

{U'J[exp[­<HTIh]\Um) = ZN fdif; . . .dif^ZN fdifx...dif» 

x (if;U'l2if±­x,..., %_x U'N_XN%~X | exp [­<HT/h] \ifx Ux2if2
x,..., <SN_X U N . X ^ ) 

ZN Çdy x . . .d t f N (u \ 2 , . . . ,U ' N _ X N \exp[­Wlh}\^ 

The last equation follows the fact that the mapping from a Bargmann state to the gauge invari­

ant state is led by a projection operator. Any projection P commutes with the Hamiltonian, 
and also it satisfies: P2 = P. 

2.4.5 Comparison of the path integral with the evolution under Hamil­

tonian 

We have shown the gauge invariance of the amplitude between link states expressed in terms 
of the path integral 

■ / ' (US,T\ Um,0) = [dU]exp(­S[U]/h) 
U*J=T 

(2.67) 
l/in,f=0 

and the gauge invariance of transition amplitude, expressed in terms of evolution under the 
Hamiltonian between gauge invariant projected Bargmann states 

(u™v\exp[­nT/h]\U™) . (2.68) 

Now the question is: do both expression give the same results? The response to this question 
is "yes", meaning that 

Uf,,t=T 
(2.69) 

u,„,t=o 

Kroger et al. [ I l l ] through a high precision numerical simulation for the Abelian U(l) LGT, 
indicated that both amplitudes are in agreement. However, it should be pointed out that in 
LGT, it is customary to identify the measure [dU] in Eq.(2.69) with the Haar measure of the 
gauge group. In fact, this is not quite correct, as there is some normalization factor missing. 
Such normalization factor, however, is canceled out when computing ratios of path integrals 
by means of the Monte Carlo method with importance sampling. Nevertheless, if the path 
integral stands alone, such normalization factor needs to be taken into account. In the case of 
U(l) LGT, such normalization factor has been computed in Ref. [111]. 

(UT\exp[­'HT}\U™) = f[dU]ex.p(­S[U\/h) 
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2.5 Gauge projection of the Bargmann link states via group 
integral 

In this section, we would like to see how a scalar product of Bargmann link states transforms 
under gauge projection. To this aim, we work on a few examples for the transition times zero 
and T. 

2.5.1 Gauge projection of the amplitude for transition time 7 = 0 

(a) Single plaquette: 

Let us consider a 2D spatial lattice containing only one plaquette (see Fig.[2.3]). In this case, 

U34 
4
f — ■ « »3 

u41 

* >-

U23 

U]2 

Figure 2.3: Spatial lattice in 2 dimensions including one plaquette, 

the Bargmann link state is given by 

\U) = \UX2,U2,,UM,U4X) . (2.70) 

Now we parameterize link variables as Uuv = exp[/o'/iV] and a group element at node p as 
^ = expfz/3 ]̂. Hence, for the gauge projection of this Bargmann state, we have 

\Um) ­ f ­El \ P* Ufatt+ft­ft) gftra+fe­ft̂ gftaM+ft­ft) e/(û­4i+A­̂ i)\ (2.71) 
Jo 2n "'"Jo 2/r ' ' 
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Therefore, the scalar product between gauge­projected Bargmann link states of this system is 
obtained as 

x(e'a'12 e'a23 efaM e*"̂ ! e'("'i2+ î­A) .̂an+fo­Pz) (̂au+fiz­fit) gifoi+ft­PiA 

= f ^ ­ f ? t x 2 j r ô V u ­ («12 + A ­ &)] x 2*«5 [a23 ­ («23 + /J2 ­ yS3)] „ 

x 2^ r5 [a34 ­ (ff34 + fii ­ PA)] X 2n 6 [a'4i ­ (a4X + fi4 ­ Bx )] 

= 2n 6[(a\2 + a'23 + or34 + a'4l) ­ (aX2 + a2i + a i4 + a4X)] 

= 2nè(a'P ­ aP) = Ô(U'P ­ UP) = (U'P\ UP) , 

where the parameter 
a P = «12 + «23 + «34 + «41 

denotes the plaquette angle variable, which corresponds to the plaquette 

UP = UX2U23UUU4X . 

(2.73) 

(2-74) 

(b) Four plaquettes: 

Another example is a 2D spatial lattice, including four plaquettes (Fig.[2.4]). The Bargmann 

J
45 

Ihs 
4< 

u>< 
Vu 

1 Ul2 2 U23 3 

Figure 2.4: Spatial 2D lattice including four plaquettes. 

link states of this system are presented by 

\U) = \UX2, U23, U45, U56, U n , U&9, UX4, U25, £/36, U47, U5S, U69) , 

\uf) = If/' u' ir u' u' u' u' u u' u' ir u' \ 
\ u > | u 1 2 ' U 2 3 ' ^ 4 5 ' U 5 6 ' U 7 8 ' L y 8 9 ' ^ 1 4 ' U 2 5 ' U 3 6 ' ^ 4 7 ' U 5 8 ' ^ 6 9 / ■ 

(2.75) 



(2.76) 
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Again via a gauge projection one finds 

(u[Juim) 

= ô(UP ] -UP l )xô(U'P 2 -Up 2 ) 

xô (U P i -U P i )xô (U P 4 -U P <) 

= (U'Pi,U'P2,U'Pi,irP4\Upt,Ur2,UpJ,Ur4) . 

(c) N plaquettes: 

From the above results, one can obtain a general consequence for a 2D lattice of the size 
Nx x Ny or a 3D lattice of the size Nx x Ny x Nz. It is given by 

(U[m\Umv) = ( U P I , . . . , U P N \ U P ] , . . . , U P „ ) = } ~]ô[u'Pk-UPk] . (2.77) 
k=\ 

As a conclusion we find that after gauge projection, the scalar product of Bargmann link 
states (which is identical to the transition amplitude for T = 0), is equal to the scalar product 
of Bargmann plaquette states (over all possible plaquettes). 

2.5.2 Gauge projection of transition amplitude for the finite transition 
time T 

Now we would like to see how the transition amplitude between Bargmann link states under 
Hamiltonian evolution, becomes gauge invariant under the operation of the group integral in 
U(l) LGT (See Eq.(2.66) again). 

(i) Single plaquette: 

First we consider a 4-link state (plaquette) presented in Fig.[2.2]. In order to obtain the 
transition amplitude of a single plaquette, we return to the amplitude of transition for one 
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link state, given by Eq.(2.27), and similarly we find: 

(U\2, U'2V U'4V U[4\ exp [-<HeXecT/h] \UX2, U23, U43, UX4) 

g2hT 

(pv=12.23,43,14) n„v=0,±l,±2,... 
( Z exp -is-'i'cos M< - M ) 

(2.78) 

î2« 
According to Eq.(2.66), we carry out the group integral f aW„ = — I af/L at the lattice 

J 2TT JO 

sites {p - 1,2,3,4} to enforce the gauge invariance property on the amplitude. To this end, 
we write 

(t/[nv|exp[-'Helecr/ft]|C/ inv) = / J L ) ^ d p x . . . ^ dp. 

n ( z xexp g 2 " ? 2 

-ST*1 [ M V - (û> + j8„ - #,))] j • 
(2.79) 

|^v=12,23,43,14) n„v=0,±l,±2,.. 

Here we remark that, there is an infinite sum over n^v corresponding to different irreducible 

representations. Due to the exponential factor exp l a > , such summation rapidly does 
converge. Depending on the transition time T, by starting from n^ = 0 only a few terms will 
be sufficient to obtain a reliable precision. Nevertheless, such values of n v̂ will create a huge 
number of terms, which turn out to be closed loop diagrams. 

Now, we expand the product in Eq.(2.79) and obtain 

(U'mv\exp[-<HeXecT/h]\Uim) = ( i - j JT dpx . . . £ dp 

x Z 
ni2=0,±l ,±2, . 

exp l ^ n 2 1 

x X 
«23=0.±1.±2,. 

exp \-^Tn2 1 

x Z 
n43=0,±l,±2,. 

exp i 2a, "43J 

* z 
« M - 0 . ± 1 . ± 2 . . 

exp f-̂ 2 1 
O " 1 4 
2a.ç 

cos[r t i2 (or ;2 -ar i2 -yS, +/?2)] 

COS [«23(0-23 - a 2 3 - j 8 2 + / ? 3 ) ] 

COS [«43(û'43 - «43 ~ P A + P i ) ] 

cos [/ii4(a,4 - ax4 - /? , + /?4)] 

Using the orthogonality of trigonometric functions 

1 C2n 

— I OyS cos [n(fi + 0)] cos [m(/? + tp)} = cos [«0 + m<p] ôm+n 0 
2/r Jo 

(2.80) 

(2.81) 
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and integrating over/?t and/J3, we have: 

(U[nv\ exp [­<HeXecT/h] \Uim) = { £ j f dp2 J " dp4 
.2 r 2 * 

x YJ
 exP 

n=0,±l,±2,... 

X Y J
 eXP 

m=0,±l,±2,... 

g2*T 
2as 

g2hT 
2a, 

2n2 cos(« [a\2 ­ a12 ­ (a\4 ­ ax4)+fi2 ­ p 4 ] j 

2m2 cosf m [a'2J ­ a23 ­ (a43 ­ a43) ~ p 2 + /34] j 

(2.82) 

Finally, the integrating over/?2 and/?4 yields 

(U'Jexp[­<HeXecT/h]\Uim) 

g2HT 
Z exp 

n=0,±l,±2,... 

Z exp 
n=0,±l,±2,... 

2at 
4n2 cosf« [a\2 ­ ax2 ­ (a\4 ­ ax4) + a'23 ­ a23 ­ (ar43 ­ «43)] j 

j n T 
2a, 

4n cosln [a\2 + a'23 ­ a43 — a\4 — aX2 — a23 + «43 + «14] j 

(2.83) 
From the relation L^v = U~l one can conclude that a^v = ­aVfl. Now by considering this 
property and using Kronecker d­function, we can represent Eq.(2.83) in the following form: 

(uim\exp[­Wx<*T/h\\Umv) = Z Z Z Z 

x on|2„23 on23nj4 on34i„4J 0n41 „12 exp 

n|2=0,±l , . . . rt23=0.±l,... n4i=0.±l, . . . /734=0,±1,... 

g2nT i 

2a, 
■(n\2 + nl

23 + n\x + n \ 4 ) (2.84) 

X COsf«,2 [«',2 ­ «12] + «23 [a'23 ~ a23] + «34 W34 ~ 034] + «41 W4X ~ «41 ] j • 

The message of ô­functions for plaquette vertices is that the number of incoming links is the 

n­»4=i ­ . 4 ­1 

n4 1=iy 

•34 = 

* — > ■ 

M n 2 3 = i <=> 

ni2=i * 

Figure 2.5: The Gauss' law for one plaquette. The number of incoming links is equal to the 
number of outgoing links at each lattice node. 
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same as the number of outgoing links (see Fig.[2.5]). Actually, this is the lattice form of the 
Gauss' law, V .E = 0 , in each vertex, and in the absence of charges (fermions) on the lattice 
sites. In fact, the Gauss' law on the lattice denotes the gauge invariance of lattice states. 
We enforced this property by performing group integral at all vertices, confirming that it is 
equivalent to the standard method of constructing gauge invariant states. 

Now from Eq.(2.83) and considering the plaquette angle aP, defined by Eq.(2.73), the 
temporal transition amplitude of one plaquette is determined by 

<^v|exp[­'He,ecr/ft]|[/inv) = YJ exP 
n=0,±l,±2,... 

frTtJi 
2a, 

■An1 cos[nAaP] , (2.85) 

where AaP = a'p ­ aP. Here 4«2 corresponds to the contribution of n elementary loops 
(plaquettes) on top of each other (n2 characterizes the eigenvalue of the electric field E2). 

­ ­ m ­ f t ­ ­ m ­ ­r* 
* ^ 1 
n m 

n12 2 n ^ 

Figure 2.6: Scheme of the Gauss' law in a 2D lattice including two plaquettes. 

(ii) Two plaquettes: 

Now, as another example we calculate the electric transition amplitude for a lattice of two 
plaquettes (as shown in Fig.[2.6]). In this case, a Bargmann link state is defined by 

\U) = \UX2, U23, U45, U56, UX4, U25 , U u ) (2.86) 
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The gauge projected transition amplitude is given by 

( t /^ | exp [--Kelecr/^] |L/inv> = ( i ) J dpi ... j dp6 

* z 
ni2=0,±l,±2,. 

exp - ^ n 2 1 2a/12J 

x Z 
n]4=0,±l.±2,. 

exp 
J n T 1 
[ 2as"14J 

* z 
n45=0,±l,±2.. 

exp [ g 2 ^ 2 1 
[" 2a, H 

* z 
«23=0,±1,±2.. 

exp I 2a/23J 

x Z 
n36=0.±l,±2,. 

exp l - ^ n 2 1 [ 2a/36] 

x Z 
n56=0,±l,±2.. 

exp \-^Tn2 1 [ 2a/56J 

x Z 
n25=0,±l,±2,. 

exp I 2a/25J 
vhere Ao-,7 = a'tj - a j • 

-n\2 cos [nx2(AaX2 - P \ + ft)] (term 1) 

cos [«i4(A«i4 ~ P \ + PA)] (term 2) 

cos [«45(Ao'45 - p 4 + ft)] (term 3) 

COS [«23(A«23 ~ P 2 + # 0 ] ( t e r m 4 ) 

cos [«36(Aa36 - ft + ft)] (term 5) 

cos [«56(Aa56 - p 5 + B6)] (term 6) 

cos [«25(A«25 - Pi + ft)] (term 7) , 

(2.87) 

Considering two first terms, integrating over dpx, and using Eq.(2.81) during this proce­
dure, one finds 

~ i ^ y y 
ni2=0.±l,±2, . . . «i4=0,±l ,±2, . . . 

*%4+*) 2a, 

cos [nX2(AaX2 - px + p2))cos[nX4(AaX4 - p\ +p4)] 

= Z Z exp 
«I2=0,± l ,±2 . . . ni4=0,±l ,±2, . . . 

X /̂I|2+ni4.0 = 2_l e X P 
ni=0,±l,±2,... 

-̂ f(»W.) cos [/i12(Aar12 + ft) + /î,4(Aa14 + ft)] 

& T . J L 
2a, -2ni COS [«(-A«i2 + A«i4 - f t + f t ) ] , 

(2.88) 
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where due to the factor r5„12+„14,o we have defined nx2 = ­«14 = n . 

The parameter ft is shared between the above result and the third term in Eq.(2.87). 
Hence, by multiplying the "term 3 " by the last result of Eq.(2.88), and integrating over a f t 
we find 

& I * z z 
^ " J » - n J.1 ^ ? „ r i j . r 

exp 
n=0.±l,±2... n45=0,±l.±2,... 

g2hT 
2a, 

(2n2 + n2
45) 

cos [n ( ­Aa x 2 + AaX4 ­ f t + f t ) ] cos [«4 5(Aa4 5 ­ f t + f t ) ] 

= Z Z exp 
n=0,±l,±2,... n45=0,±l,±2,. 

^V^,) 
2a, 

(2.89) 

cos [n(­Aa­12 + Aar,4 ­ f t + f t ) + «4 5(A«4 5 ­ f t + f t ) ] x f5„+„45>0 

= YJ
 6XP 

n=0,±l,±2,... 

g ^ „ _ 2 
2a, ­3nz cos [n ( ­Aa x 2 + AaX4 + Aa4 5 ­ f t + f t ) ] • 

In this step, the integration over the first three terms of Eq.(2.87) is summarized as 

A = Y exP 
n=0,±l,±2,... 2a, 

■3n
À cos [«(­Aar12 + A«i4 + Aa4 5 ­ f t + f t ) ] (2.90) 

Again, considering the forth, the fifth and the sixth terms in Eq.(2.87), and performing a 
similar approach (as done for the first three terms), we obtain 

B= Y exP 
m=0,±l,±2,... 2a, 

COS [OT(­A« 2 3 + A«36 ­ Aor56 ­ f t +f t ) ] . (2.91) 

Now, we multiply Eqs.(2.90,2.91) by the seventh term in Eq.(2.87), and integrate over aft 
and oft as follows: 

<* mn r g i n T 1 r*Z7t r*Z7l 

( ­ f dp2 dp5 Y
 exp 

2 n Jo Jo . . . iJEr* , n.mji=0,±\,±2. 
2a, 

­(2>n2 + 3m2 + k2) 

(2.92) 

cos [n(i// ­ ft + ft)] cos [m(£ ­ ft + ft)] cos [k(œ ­ ft + ft)] , 

where, 

i/j = ­A«i2 + A«i4 + A«45 , £ = ­A«23 + Aa3e ­ Aase , OJ = ­Aa25 , k = n2$ . (2.93) 

In order to do the remaining integrations, we use the following orthogonality relation of 
trigonometric functions 

1 
~2n 

J d p cos [n(P + if/)} cos [m(P + £)] cos [k(J3 + OJ)] = cos [m// + mÇ + kco] (5m+„+*,o . 
Jo 

(2.94) 
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Therefore, the result for the transition amplitude is: 

<t/^v|exp[-'He,ecr/ft]|L/inv) 

g2hT Z exp 
njnji=0,±\,±2,... 2a, 

- O 2 + 3m2 + k2) cos [mj/ + m£ + koj] ôm+n+kfi (2-95) 

exp ~ ^ ( 3 n 2 + 3m2+ (n + m)2) 
2a, 

cos [n(ifr -o>) + m(Ç - a>)] 

Replacing the definition of angles in Eq.(2.93), and considering the plaquette angles 

«/>, = «12 + «25 - «45 - «14 , «P 2 = «23 + «36 ~ «56 ~ «25 (2-96) 

we find 

<^|exp[-7Ye,ecr/ft]|[/ inv> 

z exp 
n,m=0,±\,±2,... 

g2nT 
2a, 

(3n2 + 3m2 + (n + m)2) cos [nAaPl - mAap2] 
(2.97) 

And as the final result for the transition amplitude of two adjacent plaquette with a common 
link, we have 

<C/;v|exp[--?/e,ecr/ft]|[/inv> 

Z exP 
n,m=0,±\,±2,... 

~ ^ - ( 3 n 2 + 3m2 + (n - m)2) 
2a, 

cos {nAaP] + mAaPl] . 
(2.98) 

From the above calculations, one can see that, the group integrals at each lattice vertex gener­
ates a Kronecker Ô-function, so that the number of incoming links is equivalent to the number 
of outgoing links at each site. This is again a manifestation of gauge invariance, expressed in 
terms of the Gauss' law in lattice. 
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(iii) Four plaquettes: 

Likewise the above calculations, for a lattice including four plaquettes (as shown in Fig.[2.7]) 
one obtains 

(^hxp[­<He,ecr/ft]it/inv) = Z Z Z Z 
n]=0,±l,... n2=0,±l,...n3=0,±l,... n4=0,±i.... 

T [2n] + 2n\ + 2n2 + 2«2 + («, ­ «2)
2 + (». ­ ntf + («2 ­ n4)

2 + («3 ­ «4)
2] ] exp 

2a, 

xcos [«1 Aa?, + n2Aap2 + n3Aap3 + «4Aarp4] . 
(2.99) 
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Figure 2.7: Scheme of the Gauss' law in a 2D lattice including four plaquettes. 

(iv) N plaquettes: 

For the general case, we conjecture the gauge projected transition amplitude for a 2D spatial 
lattice of the size Nx x Ny (i.e. including N = NxNy plaquettes) to be of the following form: 

(U'Jcxp[~^XecT/h}\Uim) = Y ­ Z 
ni=0.±l,±2,... nA'=0,±l.±2,... 

exp 
g2HT 

(2.100) 

Ê2 
2 graph x cos[« • Aa P ] , 

where ff.AaP = nxAaP] + ... + nNAaPfl. Moreover, the factor È2 . denotes the eigenvalue 
of the electric field operator of the graph, constructed from plaquettes filling the lattice, each 
with counter­clockwise orientation. 
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2.5.3 Gauge projection of transition amplitude from group theory point 
of view 

Now let us interpret the gauge projection of the transition amplitude from the group theory 
point of view. According to the Peter­Weyl theorem [108], a matrix element of an operator 
function /(C) is expressed by 

m AC) 0') = Y M f(cv)xM(^1^'), (2.101) 

where if and if' are group elements, C is the quadratic Casimir operator with the eigenval­

ues Cv in the irreducible representation {v}, and^ 'O^) denotes the group character. In other 
words, this theorem says that it does not matter if if and if' denote link variables or plaque­

tte variables. Thus the analytic result obtained previously for transition amplitude between 
Bargmann link states, must also hold for Bargmann plaquette states. Here we summarize the 
above conclusions in the following expressions: 

Transition amplitude for a single link Bargmann state 

(C/'|exp[­,Kelecr/ft]|L0 = Y exp 

n=0,±l,±2„. 

g
2hT ) 

2a, 
cos [n(ff ­ 9)] . (2.102) 

Transition amplitude for a single plaquette Bargmann state 

g
2hT 

<t/;|exp[­7^elecr/ft]|f/F) = Y exP 
np=0,±l,±2,... 2a, 

­4/IÎ cos[nP(e'P­9p)] . (2.103) 

• Transition amplitude for multi­link Bargmann state 

(U'n, U'2V ...| exp [­?/elec77ft] \UX2, U23,...) 

= n z exp[ ­ 2a~n2A c°s M ^ V ­ M ■ 
<^v>/i/JV=0,±l,±2... 5 

• Transition amplitude for Bargmann link states of non­adjacent plaquettes 

(U'P], U'Pi, ...| exp\­meXecTlh] \UP„ UP2,...) 

(2.104) 

tVplaq 

= n z exp 
P np=Q,±l,±2,­.. 

ghT_ 
2a, 

Ani 
(2.105) 

cos [nP(G'p ­ 0p)] 
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2.6 Construction of the physical transition amplitude un­
der evolution of the full Hamiltonian 

In the previous section, we discussed the issue of gauge invariance of transition amplitudes. 
Now we are prepared to come back to the proper definition and method of computation of 
amplitudes. The goal is the construction of the MCH (Chapter 4 ). In order to do so, the first 
step is to compute the transition amplitudes between "physical" states. By physical states 
we mean states chosen from a basis which is suitable to describe wave functions of physical 
particles. The minimal requirement of such a basis is its gauge invariance. For the technical 
reason, to make practical computations simple we choose the basis of link variables. Thus we 
consider the transition amplitude between the gauge invariant projection of link states, like 

(U' im,T\umv,0) . (2.106) 

U',t=T 
(2.107) 

U,t=0 

According to the Eq.(2.69), this gauge invariant amplitude can be expressed in terms of path 
integral 

(U'im,T\e-'HT/n\Uinv,0) = J[dU]exp(-S[U]/h) 

The standard method to compute such a quantity is the Monte Carlo technique. Using the 
standard Monte Carlo turns out to be impractical, because the integrand varies over many 
orders of magnitude. The solution is using the Monte Carlo with importance sampling [112]. 

2.6.1 Transition amplitude in terms of a ratio of path integrals 

The Monte Carlo method with importance sampling is employed in the standard LGT, as the 
main algorithm to compute the expectation value of an observable expressed by the ratio of 
two path integrals [2, 5]. 

In order to express the amplitude as a ratio of two path integrals, a possible trick is splitting 
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the action into a kinetic (electric) part and a potential (magnetic) part, such that 

S[U] = \ - Y [1 - Re Trf/D] + \ — y [1 - Re TrU0] = SeXec[U] + S™ ë [U] , 

SeXec[U] = 1 ^ V [1 - Re Trf/D] , 
g 2 a l

z - J 

1 a, S™ë[U] = —-L y [1 - Re TrUa] . 
S 2 a , * - i g 

(2.108) 
Here, S[U] is the Wilson action in U(l) LGT for an anisotropic lattice [23,24]. Consequently, 
the transition amplitude can be written as 

(U' i m ,T\Um v ,0) = / 
[dU] exp(-Smag[/7]/ft) exp(-Selec[t/]/ft) 

U'.l=T 

U,t=0 

I [dU] exp(-Selec[t/]/ft) 
U',t=T 

U,t=0 (2.109) 

"I x [dU] exp(-Se lec[U]/h) 
U',1=T 

U,l=0 

We proved that the path integral is equivalent to the transition amplitude under evolution of 
Hamiltonian, provided that one considers the transition between gauge invariant projected 
states. Therefore, we have 

(U'm v ,T\Um v ,0) = / ' 
[dt/] exp(-Smag[£/]/ft) exp(-Se lec[U]/h) 

u',i=r 

u.t=o 

I [dU] exp(-Selec[£/]/ft) 
U'.t=T 

U,t=0 
(2.110) 

x (U[m, T\ exp [-«Helec77ft] \Uim, 0) , 

where for the group U(l), this is given by [23] 

^ÉZ^ifeZi'-i*™.], 
* <fiv> ° 4 a s 

"* = fr Z K> ' 
5 <fJV> 

<Hmag = -=— V [1 - Re TrUa] 
g as *—* 

(2.1H) 
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For using the full action as distribution function in the ratio of path integrals, we rewrite the 
ratio factor as follows: 

/ ' 
[dt/] exp(-Smag[<7]/ft) exp(-Selec[L/]/ft) 

V',t=T 

U.t=0 

f[dU] exp(-Selec[t/]/ft) 

J[dU]exp(-S[U]/n) 

u'.t=r 

U,t=0 

U'J=T 

Uj=0 

f[dU] exp(-S[U\/h) exp(+Smag[U]/h) 

Combining Eqs.(2.100,2.110, 2.112) we obtain 

j[dU]exp(-S[U]/h) 

U',t=T 

U,t=0 

(UL>T\V™,O) U,t=0 

I \U',l=T 
[dU] exp(-S[U]/h) exp(+Smae[U]/h)\ 

\u,t=o 

x Z ••• Z exp 
ni=0,±l.±2,... njv=0,±l,±2,... 

2a, 

(2.112) 

(2.113) 

^raphl X COs[îî.Âap] 

In the case of the gauge group U(l), this represents the central expression which yields all 
physical information about U(l) LGT. 

In Chapter 4 we will discuss aspects of the numerical simulation of this ratio, as well as 
the kinetic (electric) transition amplitude. 



Chapter 3 

Stochastic Basis 

In this chapter, we define the physical stochastic (reduced) basis states, and demonstrate 
the strategies of construction of such a set of basis states in U(l) LGT. We also introduce the 
concept of square integrable box states in order to generate normalized stochastic basis states. 
This kind of basis states will be used to construct finite-size matrices of transition amplitudes, 
as well as a finite-dimensional effective Hamiltonian (Chapter 4). 

3.1 Preliminaries 

The standard strategy for the evaluation of path integrals in the Euclidean lattice calculations 
is the Monte Carlo method with importance sampling. This means that the success of lattice 
calculations crucially depends on the efficiency of this technique. 

In general, one can compute a path integral represented by a sum over some configurations 
x„ such that [112] 

< < > > = / Ô(x)dx*—Yô(xd, (3.1) 
" c > 

where Ô is an observable, and Nc is the number of Monte Carlo configurations. Evidently, 
when Nc is large, Monte Carlo evaluations can be inconvenient. Furthermore, the process of 
constructing the configurations (basis states) x, becomes tedious and inefficient. This particu­
larly occurs when one intends to apply this method to systems with many degrees of freedom, 
e.g. in condensed matter physics, elementary particle physics, lattice field theory and other 
many-body problems. In such situations, a relevant solution to keep the computational costs 
at a minimum is to choose a small set of basis states, constructed via stochastic mechanisms, 
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to reduce the degrees of freedom. Since a finite size basis can catch only some degrees of 
freedom, one should find the most important basis with the least damaging loss of accuracy, 
in comparison to a large set of basis states (see Fig. [3.1] as a schematic example.). This small 
set of basis is identified as a reduced basis [113] or the so-called stochastic basis [20]. In this 
case, indeed, we truncate the Hilbert space of theory by decreasing its dimension (which is 
quite large in the case of deterministic (regular) basis states). 

In fact, choosing a finite basis means to decide from what window we want to look at 
the Hamiltonian. This choice of a suitable basis is crucial for physics. The idea that we 
suggest here is to construct an effective Hamiltonian, which describes physics in a finite 
window (e.g. a window of low energy). This is similar to the Kadanoff-Wilson's idea of the 
renormalization group, which suggests to construct a Hamiltonian, describing physics at the 
critical point [7, 114]. 

JC 

Figure 3.1: Regular basis (left panel) versus the stochastic basis (right panel) constructed 
from a distribution function. The regular basis are distributed equidistantly, while the stochas­
tic basis nodes are distributed in a random scheme. 

3.2 Principles underlying stochastic basis 

We look for a small set of basis states, which should capture the important degrees of freedom 
of a many-body lattice gauge field Hamiltonian, in some window (a low-energy window or a 
low-temperature window). That basis should be constructed based on two principles: First the 
principle of randomness, and second the principle of guidance by the physical action. There­
fore, there is a close relation between "stochastic basis" and "equilibrium configurations" 
(corresponding to thermodynamical equilibrium configurations from a Boltzmann distribu­
tion). Such configurations can be generated via the method of Monte Carlo with importance 
sampling. 
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The "equilibrium field configurations" in lattice Lagrangian are closely related to the 
stochastic basis in lattice Hamiltonian. In other words, taking equilibrium configurations at 
a fixed time slice, yields Bargmann states, which represent physically important degrees of 
freedom. Hence, via the Monte Carlo with importance sampling (involving a weight factor 
with the action), we generate a subspace of Hilbert space with a relatively small dimension. It 
is sufficient to capture most of the physics in some finite temperature window. Therefore, we 
can construct a reduced set of basis states (Fig.[3.1]), such that the energies of the effective 
Hamiltonian follows a Boltzmann distribution. 

In fact, the equilibrium configurations constructed by the Monte Carlo process belong to a 
Markov chain, whose elements are correlated with each other [2, 112]. In lattice calculations 
(generally in the Monte Carlo evaluations of observables), the lattice configurations should 
be independent of each other, thus we choose a sequence of A^,oc auto-correlated Markovian 
configurations [C®, i = 1,2, ...Nf™) through the primary Marcov chain, and take it as a set of 
stochastic basis states. 

3.3 Stochastic basis states in U(l) LGT 

In general, one can consider the stochastic basis as analogues of configurations drawn from 
importance sampling (like Metropolis algorithm [115]). Although a configuration is similar 
to a trajectory in time, and a basis state is a wave function independent of time, however, 
we can generate a set of basis states, which resemble "representative configurations" using 
random walks and guidance from the action. For the sake of simplicity, let us consider a 
single link in U(l) LGT as well as its time evolution. In this case, we have a set of link 
angles {ax, a2,..., a ^ } as basis states, and the transition amplitude between two link states 
characterized by 

Mij(T) = (a,|exp[-'H7']|a7) . (3.2) 

We should mention that in the regular (deterministic) case, the basis states are distributed 
with the identical distance Aa = ai+x - or,-, as shown in Fig.[3.1]. To calculate the transition 
amplitude (see Eq.(3.2)), we have to use normalizable states, which can be constructed by so-
called "box states" (Fig.[3.2]). These localized states are denoted by |n,> , i = 1,2, ...,A^t0C, 
such that: 

|n,> = - ^ l«>n,(«), (3.3) 

where 

TUa) = { C ° n S t - * ° ' ° £ [ a i ~ *? '* ' + ^ ] (3.4) 
I 0 elsewhere . 
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The square integrable box states are normalized to unity, hence 

n,(«) 
2TT 

Aor, 

i / : 

Using these box states, the transition amplitude is given by, 

Mtj(T) = <n, |exp[-?YT]|n,) 

J r doi Ç da. 
-Tr1 — L n * ( a ) x ® ( a i , a j ; T ) x n j ( a ) 

Aa, 2TT J A O . 2n 

Aor, Aar, 
«Hi U j — - — - ^ ® ( a h a j ; T ) 

Aor, 
2n 

2n 2n 

1/2 

x ©(a,-, ay, T) x 
Aa; 
2n 

1/2 

where 

&(aj,aj,T) = Y e xP 
n=0,±l.±2,... 2a, 

x cos [nAa] . 

Now one can define 
P a o(a; T) oc &(a ,a 0 ;T) , 

in which P a o(a, T) is a probability density with the following properties: 

' P a o(a; T) > 0 for all a , 

r + " da 

Now let us consider the expectation value of a function F(a) , defined by 

(F) = £"^F(a)P(a). 

(F) can be approximated by 
Nb A 

(F)^YT iF{a i )p (a i ) 
i = i 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

provided that a,'s are sampled from the distribution P ( a ) . 

On the other hand, this function can be also estimated by the Monte Carlo method, which 
reads 

<F)*-YF(ai) Nb 
(3.12) 

/=! 
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Comparing Eq.(3.11) and Eq.(3.12), one concludes that 

1 2TT 
Aat - — 

The function P(a,) falls off rapidly for large values of or,-, hence Aor, grows when a, becomes 
large. 

The construction of stochastic basis starts out from considering square integrable box 
functions. Using Eq.(3.13) we can rewrite the box function n,-(a) as 

n,(«) = y ^ - = yJNT* p(<*0 • (3.14) 

As one observes, when or, is large, n, becomes small and vice versa (as stated in Fig.[3.2]). 

0.8 

S 0.6 
C 
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-30 -20 -10 0 
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Figure 3.2: Box functions related to the stochastic link angle states. 

By box states, the transition amplitude is represented as 

M,j(T) = <n , | exp[ -W] |n , ) 

J r da t C da: 
-z - -T - L n*(a )x&(a h a J ;T )xn j ( a ) 

aa, 2n JAa. 2n 

Ao-, Aa,-
n, r \ j—!- -±®(a h a j ;T ) 

Aa, 
2n 

2n 2n 

1/2 

x 0(a,-, a/, T) x 
Aa, l ' /2 

2n 

(3.15) 

Then, the transition matrix elements are given by 

0(ûr„ a/, T) 
MJT) = 

NT*[P«QnT)P«(*fiT)] 
1/2 ' (3.16) 



Chapter 3. Stochastic Basis 53 

where Pao(«, T) is the probability density function for one link, given by 

Pao(a, T)= Y exp 
n=0.±l,±2... 

il. 
2a, ->r cos(na) (3.17) 

Table 3.1: Kinetic energy spectrum of one plaquette using regular basis for g 
P = 0.25 . 

1.0 and 

n D„ irefT rexact abs. error 
0 1.00000000 0.0000000 0.0 0.0 
1 0.60653083 1.9999989 2.0 l.lx 10"6 
2 0.60653054 2.0000008 2.0 8.0x 10"7 
3 0.13533532 7.9999988 8.0 1.2x 10-7 
4 0.13533524 8.0000012 8.0 1.2x 10-7 
5 0.01110900 17.9999999 18.0 l.Ox 10~7 
6 0.01110899 18.0000013 18.0 1.3x 10"6 
7 0.00033546 31.9999995 32.0 5.0x 10'7 
8 0.00035462 32.0000024 32.0 2.4x 10-6 
9 3.7267X 10"6 49.9999876 50.0 1.2x 10"5 
10 3.7266X 10"6 49.9999961 50.0 3.9x 10~6 
11 1.5231X 10"8 71.9997633 72.0 2.4x 10"4 
12 1.5231X 10"8 71.9997789 72.0 2.2x 10"4 
13 2.2914X 10 "" 97.9971144 98.0 2.9x 10-3 
14 2.2913X 10"11 97.9973409 98.0 2.7x 10"3 
15 1.2908X 10"14 127.9235530 128.0 7.6x 10"2 
16 1.2877X 10-14 127.9332884 128.0 6.7x 10-2 
17 7.3480X 10"18 157.8084005 162.0 4.192 
18 4.3322X 10"18 159.9218144 162.0 2.078 
19 2.2565X 10"18 162.5307945 200.0 37.47 
20 1.8696X 10"18 163.2828884 200.0 36.72 

The situation is the same for a lattice with an arbitrary size in (2+1 )-D, but the mathe­
matical form of distributions ©(£/,, Uj, T) and P(U, T) are different. Let us consider again the 
transition amplitude of a lattice for the compact U(l) gauge group, where the link variables 
are parameterized by U(a) = e'a, - n < a < n. In fact, this amplitude is a solution of the 
Schrôdinger equation in imaginary time (equivalent to the diffusion equation), hence it takes 
a probability interpretation. Therefore, by analogy with one link we can express the high 
dimensional probability density function ©(£/,, Uj, T) as 

0(L/„ Uj, T) = (Uj\ exp [ -W/f t ] \Ut ) (3.18) 



Chapter 3. Stochastic Basis 54 

where U,(t = 0) and Uj(t = T) are lattice configurations. The function 0 satisfies the follow­

ing properties: 

f 0 < eiUhUj;T) < 1 , for all Uj and (7,, 

I [dU\ @(Uh UJ; T ) = l , for all £/,­ and *K = <Hki» . 
■ J-7T 

(3.19) 

Again we can define the probability density function Pu0(U T) = ©((/, U0, T) with the 
same properties in Eq.(3.19). Tabs.[3.3,3.3] show the energy spectrum of the effective Hamil­

tonian of a plaquette state, calculated via regular basis and stochastic basis (in chapter 4 we 
will discuss the computation of the energy spectrum). The exact energy is computed by 

rexact _ 6 r­2 
2 graph" (3.20) 

Comparing two situations with the exact results, the relative errors indicate that the idea of 
using the stochastic basis becomes a reasonable choice for U(l) LGT. 

3.4 Stochastic basis via path integrals 

For a lattice, the analytical form of the transition amplitude contains a number of summations 
multiplied by each other (see Eq.(2.100)). Likewise, the normalized distribution function is 
given by 

P(U{ax,a2,...aN};T)= Y ­ Z exp 
«i=0,±l. n;v=0,±l,.. 2ac 

' graph 

(3.21) 

x cos(«)Ao'i + /?2A«2 + ... + nNAaN) , 

where E2
 h is defined in Eqs.(2.99,2.100). In order to draw samples from this distribution, 

one has to compute a large series of multiple summations. This is an inefficient way even 
using a parallel computation procedure, because the summations are highly correlated with 
each other. 

As an alternative method, one can use the path integral in imaginary time as a high­

speed technique [116]. In Chapter 2, we saw that Hamiltonian formulation of transition 
amplitude can be expressed as a path integral (see Eq.(2.107)). Therefore we can represent 
the probability density function P(U{ax, or2, ...aN}; T) into a form of a path integral as 

lfi,t=T 

P(U{ax,a2,...aN};T) ï [dU]exp(~S[U]/h) 
Um.!=0 

(3.22) 
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Table 3.2: Kinetic energy spectrum of one plaquette using the stochastic basis. Same param­
eters as in Tab.[3.3]. 

n D„ reff rexact abs. error 
0 1.031120938 -0.122586 0.0 0.122586 
1 0.624158460 1.885404 2.0 0.114596 
2 0.579030717 2.185599 2.0 0.185599 
3 0.141150582 7.831712 8.0 0.168288 
4 0.130277856 8.152343 8.0 0.152343 
5 0.012367944 17.570589 18.0 0.429411 
6 0.011901633 17.724319 18.0 0.275681 
7 0.000383709 31.462503 32.0 0.537497 
8 0.000356056 31.761693 32.0 0.238307 
9 0.000004310 49.417849 50.0 0.582151 
10 0.000003912 49.805686 50.0 0.194314 
11 1.7499X 10"8 71.444358 72.0 0.555642 
12 1.5997X 10"8 71.803512 72.0 0.196488 
13 2.6359x 10-" 97.436782 98.0 0.563218 
14 2.3551X 10-" 97.887341 98.0 0.112659 
15 1.5887X 10~14 127.093168 128.0 0.906832 
16 1.1706X 10-14 128.314560 128.0 0.314560 
17 2.2392X 10-15 134.930608 162.0 27.06939 
18 1.7909X lu"15 135.824172 162.0 26.17583 
19 1.5494X 10-15 136.403750 200.0 63.59625 

Again one finds that it is a positive function, because there is a positive measure [dll] and 
a positive weight factor exp -5'elec/ft in the right hand side of the above equation. This 
enables us to find the stochastic basis states from some constructed path integrals between 
fixed points (Um,t = 0) and (U^J - T). Fig.[3.3] schematically shows the sampling of 
points Uj from the distribution P(U, T) via the path integral approach, by intersecting zig-zag 

T 
paths at / = —. In such a way one obtains a set of nodes Ux,..., UN, where each Ut stands for a 
lattice configuration. This yields a stochastic basis of (non-normalizable) states \UX ),..., \UN). 
In order to eventually compute normalized wave functions of the Hamiltonian, we need a 
basis of Hilbert states. We introduce a stochastic basis of square integrable (Hilbert) states 
via box functions, similar to Eq.(3.14) for one link. But, here we consider all lattice links in 
the probability density function P, i.e. 

U,(U{a,))= yJNf* P(U{a,}) , / = 1,2,..., ;V, link (3.23) 
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Consequently, a matrix element Mjj is expressed by 

®(Ui{a,},Uj{al\;T) 
Mij(T) = 

N^oc\P(Ui{al}-T)P(Uj{al);T)\ 
1/2 , /=1,2,...,AT, link (3-24) 

Figure 3.3: Construction of stochastic basis by path integral method. U\, U2,... are typical 
stochastic configurations. 

In Chapter 4 we will use this idea to generate the stochastic basis states, for the purpose 
of extracting the lattice spectra and wave functions in the pure U(l)2+i LGT. 



Chapter 4 

Energy Spectrum of U(l)2+i LGT 

In spite of the facts that LGT has been successful in describing many phenomena in gauge 
theory (particularly QCD), and potentially powerful enough to predict new events, however, 
it mostly succeeds in measurements of only ground-state expectation values of observables. 
As it was mentioned before, one usually computes vacuum-state quantities in the limit of 
large times, when the excited states collapse to ground state. However, in some situation 
ground states themselves cannot be easily obtained without considering excited states, when 
performing measurements through vacuum states (e.g., considering light pion masses and 
tiny lattice spacings are examples of such situations [106]). In other words, by estimation of 
excited states one can generally obtain higher precisions in numerical computations. 

Because of technical limitations, the conventional Hamiltonian methods mentioned in 
Chapter 1, falls into serious problems when computing excited state energies and wave func­
tions. On the other hand, there is a lot of interesting physics beyond the ground state. For 
instance, we can refer to scattering cross sections and decay amplitudes in hadronic systems, 
hadron wave functions and hadron structure functions, finite density and finite temperature in 
baryonic matter, etc., where excited states play an important role. 

In this chapter, we discuss the MCH method in order to address such difficulties, and 
we attempt to use it for computing the spectrum of U(l)2+) LGT, in the Hamiltonian frame­
work [116,117]. Via this technique, we construct an effective low-energy Hamiltonian, based 
on the Monte Carlo method. By employing this effective Hamiltonian we calculate the tran­
sition amplitudes under the evolution of the electric KS Hamiltonian. From matrices of those 
transition amplitudes, we obtain ground and excited energy levels and wave functions. From 
such a spectra, we can also compute thermodynamical functions. As examples, the average 
energy and specific heat will be shown at the end of this chapter. 
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4.1 The MCH method in U(l) LGT 

4.1.1 The effective Hamiltonian 

Generally, in the Hamiltonian formulation of many body quantum systems, e.g. lattice sys­
tems in field theory, the dimension of Hilbert space is infinite. Therefore, it is a problem to 
solve the stationary Schrôdinger equation 

fH\En) = En\En) , (4.1) 

to compute the spectrum and the wavefunctions of the theory. To avoid the difficulty of 
working with an infinite dimensional Hilbert space, as an alternative solution one can make 
some approximations amounting to a truncation. 

Here we would like to replace the original Hamiltonian by a new one with a finite di­
mension. It contains the most important degrees of freedom of system, and results in a 
Hilbert space of a finite dimension. This is similar to the renormalization group approach, by 
Kadanoff and Wilson [7, 114, 118], who constructed an effective renormalized Hamiltonian 
with a lower number of degrees of freedom, to compute critical phenomena. Distant from the 
critical point, such Hamiltonian has no physical meaning. It rises the question: how can we 
construct such a Hamiltonian in LGT? 

In order to compute physical observables in the standard Lagrangian formulation of LGT, 
one has to evaluate high-dimensional path integrals. In practice, this is possible provided that 
one considers a small number of configurations of path integrals. Similarly, we propose to 
generate a limited Hilbert space in the Hamiltonian formulation of LGT. To this end, we em­
ploy the Monte Carlo technique with importance sampling. We aim to compute the transition 
amplitudes which correspond to a finite transiton time T (see Chapter 2). This is similar to the 
procedure of constructing a lattice KS Hamiltonian, using transfer matrix method (Chapter 
1 ), where the transition time is small (a, —» 0). Here we want to find a matrix of all possi­
ble finite temperature (time) transition amplitudes for a limited set of basis states. From this 
matrix, we construct an effective Hamiltonian which takes a restricted number of degrees of 
freedom. 

Let us express a transition amplitude in imaginary time via the Hamiltonian, 
00 

(V, 71 U 0) = (U'\e-'HTIh \U) = Y m En) exp [~EnT/h] (E„\ U) . (4.2) 
n=l 

Here we use the eigen representation of the Hamiltonian 7Y. Now we want to approximate 
the Hamiltonian TY by an effective Hamiltonian *Keff, which has fewer degrees of freedom 
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(e.g. with Â  eigenstates). Therefore, 
AT 

(U'\ e ­ w / n \U) « (U'\ e­'HCf,T/n \U) = Y <C/'' £*> e x P [~ E f T / n ] <**l U> ■ (4 3> 
<t=i 

The idea of the MCH method is that the effective Hamiltonian 7Yeff can be found from the 
action by means of the Monte Carlo technique, such that transition amplitudes become a 
finite sum over N eigenstates. In this case, N is in the order of magnitude of the number of 
equilibrium configurations in the Monte Carlo procedure. 

We should note that the MCH is not an operator of the canonical form like an ordinary 
Hamiltonian. Below we show that the *Heff is defined in terms of some matrix elements in 
a subspace of the Hilbert space Jif. This Hamiltonian describes physics in a low­energy 
window, including a number of low­lying states. In particular, it allows us to compute the 
thermodynamical observables in a low­temperature window. However, the Hamiltonians *H 
and 7­/eff might describe a different physics in high energy regimes. The concept of MCH has 
been proven to be successful in numerous applications in quantum mechanics, as well as the 
Klein­Gordon model as a free scalar field theory [21]. 

4.1.2 Construction of the effective Hamiltonian 

We start from a complete set of orthonormal Hilbert states \UX),..., \UN), and consider the 
matrix elements corresponding to the transition amplitude (in imaginary time) between an 
initial state \Uj, OL and final state \Uif T). For a given N, it is 

MU(T) = (U„ T\ Uj,0) H <£/,|exp[­OT/ft] \Uj)t i , j e 1,2, ...,7V. (4.4) 

Notice that the link states \U,) and \Uj) are gauge invariant. Therefore, we can construct a 
matrix AI = [MJJ]NXN, which is a positive and Hermitian matrix, because the Hamiltonian 
7Y is Hermitian. The diagonalization of M(T) by a unitary transformation yields a unitary 
matrix U as well as a real diagonal matrix D, such that 

M(T) = V ' D(T) V . (4.5) 

On the other hand, the projection of *H onto the subspace SN, generated by the first Â  states 
of the basis | £/,■), and use of the eigen representation of such Hamiltonian, gives: 

N 

M,j(T) = Y (Ui\ E f ) ^ P [ ­FfT/h] (Ef\ U,) . (4.6) 
*=i 

We write 
V]k = (U,\ E f ) , Dk(T) = exp [­EfT/n] , (4.7) 
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where \Ef) are the eigenstates of D, and E f are the eigenvalues of ln(D). This procedure 
yields the spectrum of energies, 

E f = ­ j \ n D k ( T ) , k = \ , 2 , . . . , N . (4.8) 

The corresponding k­th eigenvector can be identified by the k­th column of the matrix *uL. 
The wave function of the k­th eigenstate, expressed in terms of the basis |(/,), is known by 
the equation (4.7). Therefore, the effective Hamiltonian is constructed as follows: 

N 

<Heff = Y \ E f ) Eetl {Ef\ . (4.9) 
A = l 

Once the spectrum and wave functions are available, all physical information can be retrieved. 
Since the theory described by 7Y, is now approximated by a theory described by a finite matrix 
7­feff, the physics ofH and 7Yeff might be quite different at high energy. Therefore, we expect 
that using 7­feff we can only reproduce the low energy physics of the system. It means that the 
MCH takes a window of validity, meaning that there is no physics beyond such a window. In 
the rest of this chapter, we will show that such a window can be observed in the lattice energy 
spectrum. 

4.2 Matrix of transition amplitudes 

We need to compute the matrix M(T) of transition amplitudes to extract the spectrum of the 
effective Hamiltonian. In order to compute the elements (U'\exp[­'HT} \U) of this matrix, 
we express them as 

«T­PMOVW ­ m ^ ^ r i m M U ' ^ ­ ^ m ] w ■ <4'0) 

The second factor on the right side is a transition amplitude under the kinetic (electric) part of 
the Hamiltonian, and we have analytically computed it in Chapter 2. Here we try to compute 
the first term of Eq.(4.10), which is the ratio of transition amplitudes under evolution of the 
full Hamiltonian and its kinetic part. To this purpose, we write it as a ratio of path integrals: 

<R= — 

ï 
f[dU]exp(­S[U]/h) u'.t=r 

U,l=0 

u',i=r 
[dU] exp( ­ SeXec[U]/h) 

(4.11) 

U,l=0 

This representation enables us to compute the ratio of amplitudes via the Monte Carlo tech­

nique. 
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Monte Carlo with importance sampling 

By convention, one can numerically evaluate the transition amplitude of an observable Ô, 

J[dx]Ô[x]exp(-S[x]) 
(4.12) (ô) = 

X I J[dx]exp(-SLr]) 

by Monte Carlo method with importance sampling. Therefore, one writes 

( Ô ) = A 7 Z Ô ^ ' <4'13) 
J V c c 

where C stands for a path configuration drawn from the distribution P[x] = . 
To generate the equilibrium configurations, we use the Metropolis algorithm [115]. Our 
numerical simulations have been briefly discussed in Appendix B. 

Now, by considering the exponential of the full action, exp( -S[U]/h), as the distribution 
function for the Monte Carlo calculations, we represent the ratio of transition amplitudes as 

n = / ' 
[dU]Qxp(-S[U]/h) 

w,t=r 

c/,/=o 
U'.l=T 

U,l=0 
f[dU] exp( + S™ë[U]/h) exp( - S[U]/h) 

where the following relation has been considered for the Wilson action: 

S[U] = Sekc[U]+Sma*[U]. 

Using Eq.(4.12), and considering 

exp(-S[U]/h) exp(-S[U]/h) 

(4.14) 

P(U) = 

/ ' 
[dU]exp(-S[U]/h) 

U',l=T 

U.i=0 

(4.15) 

(4.16) 

as a density function normalized to unity, we have 

1 
K = 

i 

K 
Y^xp(+ S™*[Uc]/h) 
c=l 

v <exp( + 5™B[C/c]/fi)>wl/, 
(4.17) 

The factor Nc denotes the number of lattice configurations, constructed through the Monte 
Carlo process. Consequently, we can write a matrix element Mtj(T) (see Eq.(4.4)) as: 

MijiT) = <£/,|exp[-?/77ft] \Uj) = %j x <L/,|exp[-7Yelecr/ft] \Uj) , (4.18) 
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and using Eq.(4.17) we have 

^ ■ <exp( + U^/*)W <419) 

In fact, the term 
[<exp( + Sm^[Uc]/h))UiJJj]~l (4.20) 

plays the role of a correction factor for the transition amplitude of the electric part of the 
Hamiltonian. Our calculation of Mjj(T) will be completed by computation of the electric 
transition amplitude (the second factor in Eq.(4.18)). 

Now, combining Eqs.(4.19,3.24) yields: 

M ( T ) = 1 x G(UAai}, Uj{a,}; T) / = j ^ 
<exp( + S™\Uc\lh))ViXJ. ^toc [p(u.{aiyf j ) P(Uj{a,}; T) \ ' 2 

(4.21) 
Notice that A^toc is the number of stochastic basis states, while Nc indicates the number 
of lattice Monte Carlo configurations (for computing the ratio of path integrals in the full 
amplitude). In the case of U(l) LGT in two spatial dimensions, we have 

MU(T) = M"aë(T) x Mr]ec(T) 

gnT K 

u, 
Y ^ M + smas[uc]/h) 

7 X Y \ { Z e X p [ ­ ^ ­ ^ r a P h ] x C O s [ « A ^ ] l . 
' m = \ nm=0,±l,... s 

(4.22) 
Here 

AaP = éj> ­ ctp° (4.23) 

is the difference between plaquette angles for two lattice states |[/,) and £//)• Note that âp is 
not a real vector, but it represents all NP plaquette angles on a 2D lattice. 

Finally, one constructs the transition matrix 

M(T) = [MiADhxN, Uj = 1,2, ...,N (4.24) 

corresponding to a finite long time T (i.e. T » a,). This matrix enables us to reconstruct the 
spectrum of the KS Hamiltonian in a finite low energy (temperature) domain. 
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4.3 Behavior of the matrix of electric transition amplitudes 

Here we want to check the validity of the numerical computations of the electric Hamiltonian. 
<T-IT 

We know that M(T) oc exp( ), therefore, one can simply write 
ft 

M(2T) = M(T) x M(T). 

This also holds for Melec(T), that is 

n = 
MeXec(2T) 

Me]ec(T) x Melec(T) 
= 1 

(4.25) 

(4.26) 

Fig.[4.1] (left panel) shows a numerical test of this property of the electric transition matrix 
for a 4 x 4 lattice. 
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Figure 4.1 : Left panel: behavior of the transition matrix elements for the electric Hamiltonian 
of the 4 x 4 lattice. The distribution around r/ = 1 confirms that Aflec(27/) s MeXec(T) x 
A1elec(r). Right panel: behavior of the ratio of transition matrix elements (path integrals) for 
strong and weak coupling regimes. The lattice size is 4 x 4 at/3 = 1.5. By increasing the 
coupling constant (e.g., g ­ 3.0 and g = 6.0 in the figure), the elements of the ratio matrix 
tend to 1.0. In the weak coupling regime (e.g., g = 0.3), the elements become zero . 

4.4 The ratio of path integrals in the strong and weak cou­

pling regimes 

Let us express the ratio of path integrals as: 

{U'\e­'HTIh\U) 
ft = 

(U'\e­w^Tln\U) ' 
(4.27) 
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where 
Hi = «Helec + ?Ta g = # - Y t* + - 4 - y [ReTr Un] . (4.28) 

The magnetic part of the Hamiltonian becomes small for large coupling constants. Therefore, 
one expects that the ratio matrix elements tend to unity: 

(TJ ' \ p - ' H T l n If A 
lim 'H = 7Yelec => lim K = - — a j l ' ' -> 1 . (4.29) 

For small couplings, the situation is different. In this regime, the electric Hamiltonian be­
comes small, while the magnetic Hamiltonian goes to large values. Hence the ratio of matrix 
elements goes to zero: 

(U'\e-'HTin\U) h m M ^ o o => lim <R = x ' , — — -> 0 . (4.30) 
g-o «^co (U ' \e - ' H c i K r / " \U) 

Fig. [4.1] (right panel) graphically shows these behaviors for a 3 x 3 spatial lattice, in a weak 
coupling regime (g = 0.3), as well as two artificial strong coupling regimes (g = 3.0 and 6.0). 

4.5 Spectrum and wave functions of the lattice Hamiltonian 

4.5.1 Spectrum of the electric Hamiltonian 

Here we present some results of the MCH simulations. As an example, Fig.[4.2] shows the 
eigenvalues of the electric part of the KS Hamiltonian for an 8 x 8 lattice, when the inverse 
temperature (Euclidian time) is/? = 4.2. 

It is clear that the ground state energy is always zero, because there is no gauge nor matter 
field in the vacuum state of lattice. In the top of this single level, one observes several excited 
levels. Those states are regulated with respect to the energy of all possible configurations, 
made by elementary Wilson loops (plaquettes). Fig.[4.3] shows the possible configurations 
occurring in the first, the second and the third excited levels. The first excited level is the 
energy of one plaquette of the lattice and the second level is the energy of two neighboring 
plaquettes with similar orientations. The third level originates (i) from two distinct plaquettes 
with clockwise or counter-clockwise directions, and (ii) from three adjacent plaquettes and 
(iii) from square Wilson loops, constructed by four neighboring plaquettes with the same 
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Figure 4.2: Electric Hamiltonian: Two schemes of the energy spectrum of the 8x8 lattice for 
p = 4.2. Left panel: Energy spectrum En(j3) in terms of the number of eigenvalues n [116, 
117]. The ground level as well as three excited levels are shown. Notice that the horizontal 
length of each level represents the degree of degeneracy. Right panel: The results shown in 
the left panel are compared to the results of the exact Hamiltonian (we have made an average 
between degenerate states in each level of the MCH simulations, along with errorbars) [116]. 

orientations. The energies are given by 

rexcit. (g2h/2as)4n2 = 2g2h/as, 

rexcit • = (g?hl2as)6n2 = 3g2h/as 
n=\ 

(4.31) 

£ « * = (g?hl2as)%rt 4g2h/as 
B=l 

For instance, for g = 1.5, h = 1.0 and as = 1.0, the first energy level is E\ 
9.0 (see Fig.[4.2]). 

excit.  = 4.5, the 
second is Ef"1- = 6.75, and the third one is Ee

2
cA-

Recall that in Eq.(4.31) we have considered n — 1, but larger values of n also exist, 
however, they are manifested at higher levels in the spectrum. For example, if we take n = 2 
for one plaquette, it gives E - \6g2h/(2as), which is the energy of 1th excited level. Likewise, 
the opposite orientations for side by side plaquettes are not forbidden, but they also give 
energies corresponding to higher levels. For instance, the energy of two plaquettes with a 
common link for g = 1.5, % - 1.0 and as = 1.0 equals to E = 11.25, which is the energy of 
the forth excited level. 

Another point which we should mention here, is the degeneracy of excited energies (as 
presented in Fig.[4.2]). Actually, this property is related to the number of single and multi-
plaquette configurations (see Fig.[4.3]). For example, if a lattice contains only four plaque­
ttes, for the first level we have four single plaquettes with two different orientations for each 
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one (clock and counter-clockwise). Accordingly, this system involves a number of 4 x 2 = 8 
levels with the same energy. This means that the rank of degeneracy depends on the size of 
lattice. Hence, large lattices include very dense spectra. The message is that in the case of 
large lattices we are faced with a limitation in the number of excited levels. One can bypass 
such a problem by considering large matrices of transition amplitudes, but on the other hand, 
this requires very powerful computational resources, as well as long CPU-times. 

i 
i 

(a) (b) 

& 

(b) 

& 

( c - l ) 

1 1 

i ( c - l \ 
( C - 2 ) 

Figure 4.3: The lattice configurations related to the first, the second and the third excited level 
of the spectrum. The graph (a) is related to the first excited level, the graph (b) generates the 
second level, and the graphs (c-l),(c-2),(c-3) represent the third excited level. 

4.5.2 Scaling window 

By collecting energy levels related to various temperatures [116, 117], we can also study the 
behavior of energy in terms of temperature. This yields a scaling window, which is also called 
energy or temperature window. Fig.[4.4] presents such a window for the electric Hamiltonian 
of a spatial lattice sizes 3 x 3 and 8 x 8 . It is obvious that the energy levels in scaling 
windows are valid in some special intervals of the Euclidian time/?. This is not the case in the 
thermodynamical limit (Volume —> oo) as well as the continuum limit (lattice spacings —> 0), 
where one observes a perfect window. In fact, it is impossible to obtain a smooth energy 
window, independent of temperature. The reason is that the volume of lattices are finite and 
the lattice spacings are not zero. Moreover, there is also the influence of statistical errors 
related to the Monte Carlo calculations, as well as the limited number of stochastic basis 
states. 

As it can be seen from the energy window, the number of excited levels depends on the 
temperature (or P). For sufficiently large temperatures (when p —> 0) the system exhibits 
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Figure 4.4: Electric Hamiltonian: Scaling window of the energy spectrum for two lattices. 
Left: 3 x 3 Lattice, g = 1.0, £ = 20, as = 1.0, Nbasis = 200. Right: 8 x 8 Lattice, g = 1.5, £ = 
5, Oj = 1.0, A'basis = 1000 . Notice that the energy levels are degenerated (not shown), and for 
both figures the number of excited levels increases when p —* 0 [116]. 

more levels of energy, while in the case of p —» oo (small temperatures) the spectrum of the 
system reduces to the first level, and therefore, one practically observes only the ground state 
energy. This can be seen from the scaling window of the lattice in question (see Fig.[4.4], for 
example). In order to explain this in more detail, let us consider only one link state for the 
sake of simplicity. In this case, the distribution function of link angles 

g2T P(a,T)= Y exp 
»=0,±1.±2,. 2a, cos[na] (4.32) 

takes a Gaussian form (see Fig.[4.5].). It is clear that for larger values of T, the width of 

Figure 4.5: Distribution function P(a, T) for one link versus link angle a for T = 
0.3, 1.0, 3.0. 

distribution P(a, T) grows, and vice versa. At the same time, one can proceed to the energy 
space, through a Fourier transformation P(a) —> P(E) (E is the kinetic energy). One observes 
that, when T —> oo, the probability density function P(a, T) is a uniform distribution. This 
means that the corresponding distribution P(E) becomes a Dirac's delta function 0(E). Con­
sequently, when T —» oo, the distribution P(E) projects onto the ground state E = 0. This is 
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similar to the behavior of the Boltzmann distribution, given by 

(4.33) p(E) = —exp ET 

Therefore, the distribution function P(a, T) is capable of providing the effective Hamiltonian 
<Heff, to describe the low-energy physics of the system. The above discussion holds for one 
link on the lattice, but it can be generalized to a lattice system of any size. 

As another application, the scaling window also is useful, when computing the lattice 
thermodynamical functions (discussed at the end of this chapter). 

4.5.3 Spectrum of the full Hamiltonian 

In order to find the spectrum of the full Hamiltonian, we need to compute the average value 
of the magnetic part of the Wilson action (the denominator of Eq.(4.19)). For this purpose, 
we evaluate it by the Monte Carlo method with importance sampling, by analogy with the 
standard Lagrangian LGT. In this case, while constructing Monte Carlo configurations (path 
integrals), we should fix initial and final points of paths on [/, and Uj (see again Fig.[3.3] in 
Chapter 3). The configurations £/, and Uj are, indeed, the same lattice configurations (basis 
states), stochastically drawn from the kinetic transition amplitudes (Chapter 3). 

We employ the even-odd preconditioning (checkerboard) method to construct lattice Monte 
Carlo configurations. This technique has been demonstrated in some detail in Appendix B. 
As examples, the results of the total Hamiltonian for the small lattice sizes 3 x 3 and 4 x 4 
are presented in Figs.[4.11,4.12]. One can observe the vacuum energy level, as well as a few 
excited states. Also, expansion coefficients of the corresponding wave functions are shown 
in those figures (right panels). The range of the full energy and vector windows are much 
smaller than the corresponding electric scaling windows. For example, for the 4 x 4 lattice 
we observe just one level, which is ground state energy. Here we explain some possible 
reasons for such behavior: 

(i) One of the principal reasons is the statistical errors, originated from Monte Carlo 
calculations of the magnetic action Smag(U). Below, we will discuss how the numerical errors 
may influence the spectrum of the full Hamiltonian. As an example, we have considered the 
kinetic scaling window of a single plaquette( see Fig.[4.6]). Applying only one percent of 
some artificial statistical errors, enormously decreases the number of excited levels and the 
extent of the original window. To reduce such errors in real computations, we need to increase 
the number of Monte Carlo configurations Nc in Eq.(4.22), which practically is limited by 
computational cost. 
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(ii) The other important role is played by the electric transition amplitudes. To mea­

sure the electric transition amplitudes, one has to perform an exact computation of multiple 
summations in Eq.(4.22) (which are related to the number of plaquettes in the lattice). In 
practice, such a term is not exactly computable, particularly for large lattices including many 

palquettes. The many­fold summations If V [...] I in Eq.(4.22) are not independent 
m=\ n„=0,±l.±2 

of each other, thus even parallel calculations would not be helpful for this purpose. Hence, 
we attempt to evaluate it via some approximations, applicable to relatively large values of p. 
This also decreases the chance of finding more energy levels, because the excited levels of 
the spectrum are concentrated in a zone with small values of p. 

The technique which we use to compute such AVfold sums (with NP as the number of 
plaquettes in the lattice), is to truncate them in such a way that those terms with most contri­

butions in summations are maintained. In practice, this procedure is similar to an expansion 
of lattice in terms of various loop configurations (e.g. the Wilson loops) within a 2D spatial 
lattice (See Fig.[4.3] again). To illustrate this point further, let us consider a lattice including 
only four plaquettes (Fig.[2.7]). As discussed in Section 4.5.1, in the expansion of a multiple 
sum such as 

s= Z ­ Z exp 
«i=0,±l,±2 rt4=0,±l,±2 

­2­^Emvh(nx,n2,n3,n4) cos(n ■ Aa), (4.34) 

in terms of loop configurations (shown in Fig.[4.3]), one obtains that the first term is unity, 
representing the ground level energy (it is obtained when n„ i = 1,..., 4 are zero). The second 
term is related to single plaquettes with two different orientations. It gives the first excited 
state. The third term, indicating second excited state, is obtained by considering two adjacent 
plaquettes with the same orientations, and so forth. Therefore, one obtains 

S « 1 + 2 exp 
4g2hT 

2a, Y cos(^) 

+ 2 exp 
6g2hT 

2a, 
^cos(or6 l + a h ) + 

+ 2 exp 

+ 2 exp 

+ 2 exp 

2as 

Sg*hT 
2as 

.*ëOL 
2a, 

2]cos(aC| +aC2 + aCi)+ 
c 

Y cos(aC[ + aC2 + aCi + aC4)+ 
c 

^ c o s ^ c , ­aC 2) +.. . , 

(4.35) 
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where aa, a6l and a^ are plaquette angles defined from Fig.[4.3]. One has to consider all such 
graphs on the lattice. Use of this truncation process facilitates the computation of the electric 
transition amplitudes for large lattices, but on the other hand, it works for relatively large 
values of/3 = T, i.e. in the limit where higher terms in Eq.(4.35) are negligible. The message 
is that it decreases the number of excited levels in the case of electric and full Hamiltonians. 
Such situation is observed in Fig.[4.12], where only the ground energy level has been retained 
in the case of full Hamiltonian and the excited levels are not included in the energy window. 

(iii) Increasing the number of stochastic basis states can also improve the results for elec­
tric and full Hamiltonians, but it increases the dimension of the matrix of transition ampli­
tudes. For such matrices one has to consume enormous CPU times, for the numerical compu­
tations (note that each element of that matrix requires individual Monte Carlo computations). 
On the other hand, this is out of scope of using stochastic basis states, which were considered 
to reduce the size of those matrices as much as possible. 

One may also think about to evaluate such summations as a product of continuous in­
tegrals in intervals [-oo, +oo] in the regime of weak couplings and low imaginary times (g 
and T in the exponential term of the electric transition amplitudes). Then for the evaluation 
of such integrals (namely Gaussian integrals), one should apply again numerical techniques 
such as Monte Carlo methods. Apart of that, there would be a multiplication of some matri­
ces constructed from link indices, which makes it difficult to construct Gaussian integrands. 
However, we worked with this trick, but the results were not convincing. The reason was the 
complicated mathematical form of integrand, also limitations in constructing reliable distri­
bution functions from integrand, as well as statistical ways of sampling of integer numbers 
(e.g. importance sampling) from such density functions. 

4.5.4 Statistical errors in the simulation of the matrix M(T) 

In this section let us investigate how the statistical errors destroy the energy spectra of the 
MCH. It is obvious that in numerical simulations by Monte Carlo, one always encounters 
the statistical errors. According to this evidence, in our simulations for computing the ratio 
of path integrals by the method of Monte Carlo, we also observe some numerical errors. In 
order to visualize these errors in the energy spectrum, let us introduce the errors AMtj(T) 
when computing the matrix elements Mjj(T). Therefore, we write [119] 

M sm(T) = M(T)±AM(T), (4.36) 
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where AM(T) is an error matrix of the matrix Ms\m(T), obtained from numerical Monte 
Carlo simulations. Previously, we saw that 

M(T) oc exp — — 
h 

Thus, by considering 1H as the Hamiltonian of the theory, and also TY6" as the perturbation 
term related to numerical errors, we obtain 

Msim(T) oc exp 
(<H + <Hen)T <HT 

e x p ( - — ) 
T 

1 - - { H e n 

n 
(4.37) 

where a Taylor expansion has been applied in the last part. Then from Eq.(4.36) one obtains 

AM(T) oc exp 

Consequently, 

CH + n-Pn)T 

7/e 

- exp 
<HT 

h 

h AM(T) 

T "HT 
(4.38) 

(4.39) 
T M(T) 

Now, according to the perturbation theory, the first order correction to the «-th eigenvalue of 
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Figure 4.6: Left panel: spectrum of an asymmetric lattice including only one spatial plaquette 
with 6 = 0 (no artificial error). Right panel: spectrum with artificial error e = 0.01. For both 
figures g = 1.0, as = 1.0, Ç = 20 and A b̂asis = 200 [116]. 

a wave function is given by [119] 

AEn = (Yn\<Herr\V„) = h(Va\AM(T)\Vn) 
T exp(-EnT/h) ' 

" Z J F . . -F / " ' (4.40) 

It means that from statistical errors of the matrix elements, arising from Monte Carlo sim­
ulations, one can estimate the errors in the eigenvalues E„ of the effective Hamiltonian. A 
similar procedure can be used for the evaluation of numerical errors of eigen functions. 
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To demonstrate this, we induce some artificial errors by multiplying an error factor e on 
the electric transition matrix MeXec(T), such that 

AM(T) = e MeXec(T). (4.41) 

As an example, Fig.[4.6] compares two situations with an error factor e = 0.01 (right panel) 
and without artificial errors, e = 0.0 (left panel). One can observe that not only a number of 
levels are missing, but also the width of the remaining levels has remarkably been decreased, 
by applying only 1% error (i.e. AA1 = 0.01 Aflec). The lesson here is that the spectrum of the 
matrix M is quite sensitive to the statistical errors in Monte Carlo simulations, particulary 
here where we perform a logarithmic evaluation in Eq.(4.8). Consequently, one should con­
sider this point in the energy spectrum, especially for the full Hamiltonian discussed above. 

4.5.5 Lattice wave functions 

The stochastic Hamiltonian <Heff also enables us to obtain information on the wave functions 
of the theory. As Eqs.(4.5,4.7) show, the eigenvectors can be determined by means of the 
unitary transformation of the propagator matrix M(T). The k-th eigenstate \Ef\ can be 
identified in terms of the k-th column of the unitary matrix 1/+. Recalling from linear algebra, 
and given the Hermitian operator *Keff, the wave function |*F*) related to the k-th level of the 
spectrum is characterized by 

\x¥k(P)) = Y C i ? ( P ) m 
/ = i 

= Cf(P)\Ux) + C f G8)|t/2> + ... + C%(0)\UNb) , (4.42) 

where C\ '(0) = 1l]k denotes the k-th column of the unitary matrix IP', Nb is the number 
of stochastic basis states in our numerical simulations, and \U,) refers to the Bargmann link 
states. 

Figs.[4.7, 4.8, 4.9] show the orthonormal cofactors (expansion coefficients) CĴ OS) for 
the lattice sizes 2 x 2 as well as 8 x 8. The kinetic part of the KS Hamiltonian in U(l) 
LGT in (2 + l)-dimension has been considered here. One can observe the scaling behavior 
in these results, where the width of scaling windows of expansion coefficients C]k)(fî) varies 
for different levels. Moreover, the degenerated into excited energies correspond to different 
wave functions, which are presented in the respective figures. The same situation also holds 
for some other lattice sizes, such as 32, 42, 52, 62,... (results not shown here). 

In general, it is too complicated to figure out the scaling behavior of the lattice wave 
functions, because it contains many cofactors and eigenvectors. However, just as an example, 
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Fig.[4.10] exhibits the coefficients {CĴ fjS) , k = 1,2} for the vacuum state, as well as the first 
excited state of the 6 x 6 lattice for/? = 2.5. 

0 5 p 10 15 0 5 p 10 15 

Figure 4.7: Electric Hamiltonian: scaling window for spectrum (left panel) and the expansion 
coefficients (right panel) of the eigen vectors [C] (fi) I k - 1,..., 6}. Lattice size 2 x 2, g = 1.0, 
as = 1.0, £ = 20.0, M,asis = 500 [116]. 
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Figure 4.8: Electric Hamiltonian: scaling window for the expansion coefficients of the eigen 
vectors {^(p) \ k = 1,...,6}. Lattice size 2 x 2, g = 1.0, a, = 1.0, £ = 20.0, Nbasis = 
500 [116]. 

4.6 Lattice thermodynamics from the effective Hamiltonian 

The energy spectrum of the effective Hamiltonian enables us to compute thermodynamic 
observables at the thermodynamical equilibrium. By analogy to the statistical mechanics, 
one can compute the partition function Zetf(P), free energy Fett(P), internal energy Ueff(p), 
entropy SetJ(J3), specific heat Ceff(J3) and pressure 7)eff(jS) of the lattice system. For example, 

JV 

Zeff(P) = Tr[exp(­/Weff)] = Y^p[­PEf] ­
rt=1 

1 
WW = ­ d ­ ^ M = ^ Y E ? « P [ ­ / » ? ] ■ 

dp 

C « ( p ) ­ k B P
2 d U ^ 

Zeï ï(P) 
n=\ 

OP 

dt 

n=\ 

(4.43) 

where /? = T/h, ks is the Boltzmann constant and T denotes the Euclidian time, while T is 
the temperature. Fig.[4.13] shows Uefi(j3) and Ceff(P), which are obtained from the spectrum 
of the effective electric Hamiltonian of the 6 x 6 lattice [116]. 

One can also find thermodynamical functions in the Lagrangian formulation of LGT. This 
requires individual numerical computations for each value of/L For example, see the Ref.[20] 
for the thermodynamic observables of the free scalar field theory (the Klein­Gordon model). 
Another point is that the results obtained from the MCH generally exhibit fewer fluctuations 
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Figure 4.9: Electric Hamiltonian: scaling window for the expansion coefficients of the eigen 
vectors {Cf{0) \ k = \ , ...,320}. Lattice size 8 x 8, g = 1.5, as = 1.0, £ = 5.0, A ^ = 1000. 
Top left panel: the ground state, bottom left: the first excited level, top right: the second 
excited level, bottom right: the third excited level. Note that the excited levels are degenerated 
and only some of their cofactors have been presented here [116]. 

than the results of the standard Lagrangian approach, in a low temperature regime [20, 19]. 
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Figure 4.10: Expansion coefficient of wave functions of the electric Hamiltonian. The first 
two cofactors {{Cf{0) \ k = 1,2}) are presented for/3 = 2.5, A b̂asis = 600, £ = 5.0, a, = 1.0, 
lattice size 6 x 6 . Only 100 coefficients are presented, and the first one, ÔX)(p), is multiplied 
by the factor 10 for the sake of clarity. 

Figure 4.11: Spectrum of the 3 x 3 lattice (7Vbasis = 200, £ = 20.0, a, = 1.0, g = 1.0). Left 
panel: spectrum of the full Hamiltonian for the 3 x 3 lattice, Right panel: scaling window of 
wave functions' cofactors for the 3 x 3 lattice; [C\'(p) \ k = 1,..., 5} (five levels have been 
considered). 

Figure 4.12: Full Hamiltonian: spectrum of the 4 x 4 lattice. Left panel: energy spectrum. 
Right panel: scaling window of wave functions' cofactors ({C\'(p) | k = 1,..., 6}). Scaling is 
observed for one level [116]. 
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Figure 4.13: Thermodynamical functions. Internal energy UetJ(J3) and specific heat Ceff(/?) of 
the kinetic Hamiltonian. Lattice size 6 x 6 , Nbas\s - 600, £ = 5.0, as = l.0,kB = 1 [116]. 
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Chapter 5 

Random Matrix Theory and Level 
Spacing Analysis 

This chapter deals with some general aspects of random matrix theory (RMT) in quantum 
chaos, and also some related numerical techniques, such as the level spacing analysis. This 
is the primary step towards characterizing the global behavior of classical chaotic systems in 
terms of RMT, which will be discussed in Chapter 6 for two billiard systems. 

5.1 Random matrix theory and chaos 

In classical dynamics, the behavior of chaotic systems is usually studied in terms of Lyapunov 
exponents, Poincaré sections and Kolmogorov-Sinai entropy. For instance, the positive Lya­
punov exponent A determines the sensitivity of "mixing" trajectories to initial conditions, in 
the phase space of a system. It is given by [120] 

A = lim — In MO 
LA„„(0) 

(5.1) 

where Aph(i) = |q(/) - p(/)| denotes the distance between the two phase points (note that q 
and p are the canonical coordinates and momenta in a 2N-dimensional phase space). In other 
words, it is helpful to characterize the mean exponential rate of divergence of two initially 
close orbits in the phase space. A simple example is a rectangular billiard table with a convex 
boundary. Billiard balls starting from neighboring points follow diverging paths. Here the 
absolute value of time, |/|, means that the instability is reversible in Hamiltonian systems, and 
hence does not depend on the direction of time. 
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The situation in quantum chaos appears to be different. Let us recall that quantum chaos 
is just the quantum manifestation of chaos in classical mechanics, where one describes a 
classical chaotic system within the framework of quantum mechanics. In quantum systems, 
phase space does not exist. Instead, vectors in Hilbert space are used to describe the chaoticity 
of a system. But, according to the linearity of the Schrôdinger equation, the distance between 
any two vectors in Hilbert space of the system does not change. Hence, any sensitivity to 
initial conditions is absent in quantum systems. 

Another remarkable problem is the difficulty of working with the Schrôdinger equation 
for many body systems, because the exact Hamiltonian is not known. Notice that in real 
cases, e.g. nuclear experiments, the system has many degrees of freedom and behaves as a 
many-body problem. Moreover, the dimension of Hilbert space of such systems is infinite. 
This does not allow one to find an exact solution of the Schrôdinger equation, even if the 
Hamiltonian of the system is known. 

However, in spite of these facts, there is a brilliant solution proposed by Wigner and 
Dyson [62], while studying the spectrum of complex nuclei. It is called random matrix theory 
(RMT). This theory is based on the statistical properties of the governing Hamiltonian of 
many body systems, along with its specific symmetries. Wigner et al. [122] evidently found 
a close similarity between the behavior of nuclear levels on one side, and the eigenvalues 
of random matrices on the other side. They applied a large ensemble of Hermitian matrices 
in order to statistically describe the heavy nuclei resonances, in terms of the eigenvalues of 
those random matrices. This idea enabled them to avoid the Schrôdinger equation, as well 
as working with a self-adjoint Hamilton's operator in an infinite-dimensional Hilbert space. 
Since then, RMT has been successfully used to study the behavior of complex, disordered 
and chaotic systems in many-body physics, mathematics, engineering and other subjects. 

5.1.1 RMT 

In general, the underlying Hamiltonian of a physical system can be represented as a Hermi­
tian matrix, possessing general symmetries such as invariance under time-reversal, rotational 
invariance, etc.. Therefore, in addition to the Hermiticity (being a critical requirement), the 
distribution of random matrix elements must also satisfy the same symmetries, for reproduc­
ing the statistical properties of Hamiltonian. Depending on the symmetry properties gov­
erning the quantum system, RMT proposes three types of invariant Gaussian ensembles of 
random matrices [62, 122, 130]. But, why the ensembles of Gaussian form? To answer this 
question, let us take P(M) to be the probability distribution for an ensemble of Hermitian 
matrices M, and let T be a symmetry transformation on the Hilbert space of the system. 
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The probability density P(M) is invariant under a symmetric transformation M ' = TMT ', 
provided that [62, 131] 

P(M) dM = P(M') d M , (5.2) 

where dM and dM' are some invariant measures. This equality holds only if P(M) is a 
Gaussian function. For systems with time-reversal symmetry and even spin, the appropri­
ate canonical ensemble to describe the statistical fluctuations of a system, is the Gaussian 
Orthogonal Ensemble (GOE). If a system is not invariant under time reversal, its statistics 
are identified by the Gaussian Unitary Ensemble (GUE). Contrary to GOE, where matri­
ces are real and symmetric, here the random Hermitian matrices are complex with different 
statistical properties than GOE [130]. Another ensemble is called the Gaussian Symplec-
tic Ensemble (GSE), which applies to systems with time-reversal symmetry and half-integer 
spin. In this case, the Hermitian matrices are quaternionic with two-fold degeneracy in all 
eigenvalues [62]. 

From linear algebra one knows that a Hermitian matrix can be expressed in terms of its 
eigenvalues and eigenstates. Therefore, having the spectrum of a random matrix at hand, 
instead of using the distribution of matrix elements, one can use the distribution of eigenval­
ues in order to study the statistics of a quantum system. Accordingly, one can transform the 
probability density of matrix elements to a probability density of adjacent levels, through a 
mapping procedure as [62] 

P(M) dM -* P(A, VF) J(A, ¥ ) d^ d*F . (5.3) 

Here A, ¥ are spectrum and eigenvectors of the Hermitian matrix M, and J(A, T) is the 
Jacobian of this transformation. In the literature, people usually apply the spacing distribution 
of eigenvalues of random matrices, which is known as Wigner's surmise [62]. According to 
the Wigner's suggestion, the probability distribution of the nearest-neighbor spacing (NNS) 
is given by [121] 

PB(s) = C rB(s) exp I rB(x)dx (5.4) 

where rB(s) is a conditional probability, which is called the level-repulsion function [122]. If, 
for example, rB(x) is independent of x, then the result of Eq.(5.4) is a Poisson distribution 
given by 

P(s) = exp[-s], s > 0 . (5.5) 

A general form of PB(s), in the case of existing n levels in an interval [s, s + ds], is obtained 
in Ref. [121] as the following form: 

[T(2f + l)f"+1 r 

PB(n,s) 
( n + \ ) 

2s°" 
r-(?n+lyn+2 exp 

/ i ï f + l) \2 

H « + i ) r ( 2 ^ i ) / 

where 
a„ = n + 

(n+\)(n + 2) 

(5.6) 

(5.7) 
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In this relation, p determines the form of the distribution function. For/? = 1, the distribution 
function takes a GOE behavior, but for P = 2, and 4 it follows GUE and GSE canonical 
ensembles, respectively. The zero-th order of PB(n, s) yields the so-called Wigner distribution 
(or nearest-neighbor level spacing distribution): 

Pfs(n = 0 , s ) = > 

— exp [-ns2/4] , P = \ (GOE) 

32s2 

—T- exp [-4s2/7r] , 
7TZ L J 

P = 2 (GUE) 

,6.3 eXP[ 6 A s 2 lA • P = 4 (GSE). 

(5.8) 

Note that, most systems in quantum chaos show GOE fluctuations along with a universal 
behavior, which will be discussed in the following sections. 

RMT in quantum chaos 

Nowadays, it has been widely accepted that random matrices can also describe the dynamical 
behavior of fully chaotic quantum systems. An important attempt of using RMT in chaos 
was through a brilliant work by Bohigas et al. [64]. They hypothesized that the statisti­
cal properties of eigenvalues for a time-reversal invariant quantum system can be described 
by RMT, provided that the classical counterpart of the system is chaotic. They observed 
different statistical properties between eigenvalues of chaotic systems and those in regular 
(integrable) systems. They showed that spectra of chaotic quantum systems are equivalent to 
that restricted by RMT, and correspond to a probability density function of Wigner-type (or 
Rayleigh distribution), while the spectral properties of integrable systems statistically obey a 
Poissonian (exponential) distribution: 

Pwgner(s) = "r- e xP f —7r̂ 2/4J , s > 0 (Chaotic systems) 
(5.9) 

Tpoisso,,̂ ) = exp [-s] , s > 0 (Integrable systems). 

Progress towards a proof has been made by Berry [124, 125], Sieber et al. [126], Mûller 
et al. [127] and Keating et al. [128]. Examples showing such behaviors are chaotic billiard 
systems, such as the well-known Bunimovich stadium billiard, Lorentz gas (Chapter 6) , etc., 
as well as regular billiards with square, elliptical and triangle shapes. Here let us recall that 
chaoticity or regularity of a system depends on symmetries of the Hamiltonian of the system 
in question. For example, if the number of symmetries is identical to the number of degrees 
of freedom, then the system is integrable, but if the system has lower symmetries, it becomes 
chaotic in the classical regime. 
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From Eq.(5.9) one observes that, the main difference between Wigner and Poisson level 
spacing distributions occur in the limit of 5 = 0, where Pwigner(s = 0) = 0, but Ppoissonfa = 
0) £ 0. The fact behind this behavior of level statistics in physics originates from the so-called 
level-repulsion, and level-crossing in chaotic and regular cases, respectively. In the case of 
chaotic quantum systems, P(s -* 0) = 0 means that the degeneracies are missing in such a 
way that the adjacent energy levels repel each other, and the energy manifolds with different 
quantum numbers do not have any intersection. However, in the integrable case, degeneracies 
exist and one typically observes a level crossing in energy manifolds. This confirms that small 
values of s are forbidden so that P(s —> 0) = 1 [25]. Precisely speaking, this behavior comes 
from the nature of the underlying Hamiltonian of a system. For Hamiltonians with many 
symmetries, when the spacing s goes to zero, the distribution P(s) tends to a maximum. But 
in the case of a few (or no) symmetries, P(s —» 0) approaches a minimum (for example, see 
the left panel of Fig.[6.7] in Chapter 6, and compare the Poisson-type and the Wigner-type 
(GOE) curves for s = 0). 

Now a key question arises here: is it possible to apply RMT for describing the dynamical 
behavior of classical chaotic systems? If it is so, then what quantities can play the same role 
as the Hamiltonian of a quantum system? We leave answering this question to Chapter 6, 
when discussing the chaotic properties of the classical Lorentz gas and an optical billiard 
system. 

5.2 Level spacing analysis 

Now let us consider a quantum system with the spectrum e, (i = 1,2, ...A7) and the level 
spacing s, = ei+x - et. In general, the spectrum distribution N(e) of a Hermitian matrix 
fluctuates with its eigenvalues (e.g. see the staircase function N(e) in Fig.[5.1]). One can 
define a mean level distribution N(e). Consequently, the primordial level density N(e) can be 
splitted into an average part, as well as a fluctuating part: 

N(e) = N(e) + N ^ ( e ) - (5.10) 

The average level distribution is given by 

N(e)= fde'p(e'), (5.11) 
Jo 

where p(e) is the mean level spacing density function. 

In fact, N(e) is the dominant system dependent part, and Afluc(e) exhibits the universal 
part of level spacing distribution. The reason for performing such separation is that the in­
teresting part of the level spacing distribution is the universal fluctuating part, which takes a 
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small contribution of the distribution. In a fully chaotic system, one expects that this part is 
independent of the particular system, and exhibits universal fluctuations [63]. 

The main goal here is to study the sub-dominant fluctuating part of the spectrum by RMT. 
For this purpose, first one needs a constant mean level spacing s of eigenvalues. The tech­
nique that people use in quantum chaos is to renormalize the eigenvalues, in such a way that 
their average separation density p(e) becomes unity. After this so-called unfolding procedure, 
the leading smooth part N(e) gets a unit spacing on statistical average. The unfolded levels 
are characterized by [129] 

i d ] = M*, ) ) . /=1,2, . .JV, (5.12) 

where a», are dimensionless levels with the separation s, = a>i+x - ojh and with the density 
p(a>) = 1. For the unfolding process we have used a Gaussian broadening method, where the 
average level density function p(e) is given by [129] 

PG(e) = 
1 

y/2n (T 
2^ exp 

(e~ek)2 

2o-2 (5.13) 

From the unfolded spectrum, we compute the NNS distribution P(s) (see Eqs.(5.8, 5.9)). It 

a spec t rum a + £ 

Figure 5.1: Schema of level density N(œ) and corresponding average density N(co). 

denotes the histogram of finding a separation s between neighboring levels. This can indicate 
whether a system is chaotic or regular. 

The level spacing distribution P(s) contains no information about the correlation between 
consecutive eigenvalues. The quantity which measures the seperability between two adjacent 
spacings is the two-point correlation coefficient C, which is defined by [62, 63] 

C = £ ( A - 1 ) ( S , + 1 - ! ) / £ ( * , - I ) 2 , (5.14) 
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where s, = u>i+\ - ojj stands for the spacing of the regularized levels o>,. For an integrable 
system (Poissonian spectrum) C is zero, and for a chaotic one (GOE-type spectrum) C = 
-0.27 [63]. 

When the rescaled sequence of levels is available (i.e. {a», | i = 1,2, ...,N}), then one 
can also evaluate the least square deviation of the spectral step function N(io), from the best 
straight line (au) + b) fitting it in an interval [a, a + £] of the length €. It is called the Dyson-
Mehta rigidity, given by [63, 122] 

1 P"+e 

A3(/;<*) = - MinaJb I [N(OJ) - a w - bf dco . (5.15) 

By replacing the functional form ofN(a>) in Eq.(5.15), one obtains a formula as [123] 

, s n 2 1 3n 2> +^ Yù' 
i=i J t i=i 

(5.16) 
3_ 

;=1 J C V , = 1 

with ojj = a>i - (a + | ) , which means one takes the center of the interval as origin. Note that 
other measures of the spectral rigidity, i.e. A] and A2, have been also introduced by Dyson 
and Mehta [62], but A3 has proven to be more useful in RMT. 

In Chapter 6, we will use the above information in order to study the chaotic behavior of 
the two-dimensional triangular Lorentz gas, as well as a classical optical billiard. In partic­
ular, we will apply the above-mentioned parameters (i.e., P(S), C and A3) to study the level 
spacing fluctuations of those systems. 



Chapter 6 

Level Spacing Statistics of the 2D Lorentz 
Gas 

In this chapter, we develop the method of level spacing analysis for the 2D Lorentz gas, 
in the finite and the infinite-horizon regimes. We will also apply it to a pseudo-potential 
system, which is an optical billiard. The goal is to show that universal behavior also exists 
in such systems of classical chaos. We show that the fluctuation statistics of an action matrix 
of the Lorentz gas displays a universal property, in agreement with RMT. Such a matrix is 
constructed by some bouncing trajectories in the billiard zone. This is a signature of a strongly 
chaotic classical system. Moreover, the distribution of length matrix elements approaches 
a Gaussian (in the limit of infinitely many collisions), which points to the existence of an 
underlying central limit theorem. 

6.1 The 2D Lorentz gas 

The Lorentz gas is a model equivalent to a Sinai billiard system, where the billiard ball moves 
in an open system of equal-size rigid disks, located on a 2D regular grid. In particular, one 
considers a triangular lattice, such as Figs.[6.1,6.2]. Such regular lattice of disks is invariant 
under a discrete group of spatial translations, characterized by the positions of the disk's 
centers [147]. Therefore, the system can be identified with a unit cell with periodic boundary 
conditions. Billiards with other geometries can be generally characterized by geometry of 
the cells (e.g. triangle, square, hexagon, etc.). In this system of rigid circular disks, a large 
number of point-particles (billiard balls) alternate between free motion and collisions with the 
scatterers (Fig.[6.1 ]), exposing irregular and random walk behavior. In general, the geometry 
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Figure 6.1 : The 2D Lorentz gas along with a trajectory of the point-particle. 

of the 2D Lorentz gas can be divided into the following types: 

(a) The finite-horizon: Free paths between collisions are bounded in a trapping domain and 
cannot travel long distances, because the scatterers block every direction of motion. Thus the 
horizon of the point particle is finite, also the diffusion coefficient of the system is positive 
and finite [28]. 

(b) The infinite-horizon: The point-particle may move indefinitely with no reflection from 
disks, because there are wide corridors, which enable them to escape to infinity without 
collision to hard scatterers. This is possible if the point-particle moves in one of the six 
directions 6 - 0 , n/3,2n/3, n, 4n/3,5n/3. In this regime the diffusion coefficient in the lattice 
is infinite [28]. Note that the Sinai billiard belongs to this class [27, 28]. 

(c) The localized: The density of the system is higher than in the case of the finite regime. 
The diameter of obstacles is larger than the distance between centers of disks. In this case, 
the motion of the point-particle is captured in closed areas composed of three adjacent disks, 
and the diffusion coefficient of the system is zero (because the point-particle is not able to 
move beyond its trapping zone). 

In summary, the (inverse) density of a system for different regimes is characterized by [ 120] 

cr > crcr i,iC infinite-horizon regime 
2 < cr < O'oHic finite-horizon regime 
cr = 2 localized regime , 

(6.1) 

where cr = L/R, with R being the radius of disks and L being the distance between the centers 
4 

of two adjacent disks, and o-critic = —= = 2.3094. 
V3 
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6.1.1 The Lorentz gas and the central limit theorem 

First, as a reminder, let us recall the central limit theorem. Let {£i, Ç2,..., ÇN} be a sequence of 
independent and identically distributed random variables with the finite mean (£). Moreover, 
this sequence has the sum SN = £i + Ç2 + ... + ÇN, as well as the finite variance cr2 .̂ For the 
simplicity one can also define a useful variable as 

ft-&Z^B. (6.2, 

It has been proven that the distribution function of ZN tends to a standard normal distribution 
in the limit when N —» oo; That is, 

P ( Z N < z) —> J —^= exp 
VSJr 

z2 

J z . (6.3) 

This behavior is commonly known as the central limit theorem (CLT) [132, 133, 136], which 
plays a crucial role in describing stochastic phenomena in physics and other areas of science. 
For instance, it does converge to the Brownian motion, and in particular, it is an evidence of 
a finite diffusion coefficient (the variance o-N is proportional to the diffusion constant) [137]. 

In the case of billiard systems, such as the Lorentz gas with the finite-horizon, the point 
particle makes a random walk between rigid disks (see Fig.[6.1]). In fact, such a system 
is classically deterministic system, and each segment of trajectory between two subsequent 
bounces depends on, and is completely determined by the preceeding segment of trajectory. 
However, if one computes the correlator between the segment n and the segment n + k, such 
correlation tends to zero, when k becomes large. Thus, two segments of the same trajectory, 
which are sufficiently distant in terms of travel time or number of intermediate bounces, will 
statistically become independent. Therefore, such trajectory segments (A„) are a series of 
random numbers. Because the sum of discrete stochastic numbers still is a random number, 
hence the whole trajectory length (A = £ A„) would be a random number. Therefore, it can 
be rigorously shown that the distribution of a sufficiently large ensemble of trajectory lengths 
becomes a Gaussian distribution, in the limit of many collisions. In other words, 

PG(A) = - ^ = e x p 
V2 no~\ 2 

(A-<A))2 

2o-2 (6.4) 

where A = {Ai, A2,..., A„} behaves as a set of random independent variables, and cr2 is the 
variance of the distribution. According to the above statement, such a distribution obeys the 
CLT1. This is, indeed, an evidence of chaoticity for the classical Lorentz gas, which has been 
widely studied theoretically and experimentally [120]. 

'In our simulations, this would be convinced when the initial points of trajectories are randomly distributed 
on the billiard boundary (see the following sections). 
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It should be mentioned that for the Lorentz gas, the CLT was proven only for the finite-
horizon model [138, 139]. In the case of the infinite-horizon, the CLT has not been proven 
yet. Furthermore, in this case the standard diffusion coefficient is infinite and there is no 
convergence to the normal Brownian motion [140]. 

Let us also remark that Bâlint and Gouëzel [141] have shown that the CLT holds for the 
Bunimovich stadium billiard, as well. They proved that the limit distribution (N —» oo) is a 
Gaussian, but the scaling factor is not given by the standard expression VW, but rather by 
^N log N. This is consistent with the numerical results of this billiard by Laprise et al. [71], 
which has been done by studying the statistical behavior of lengths of trajectories. 

6.2 Level spacing statistics of the action matrix 

Now let us come back to the question posed in Chapter 5: is it possible to apply RMT for 
describing the dynamical behavior of classical chaotic systems? 

In fact, due to the universality of level spacing statistics in quantum chaos, the statistical 
properties of the energy levels of a quantum system are not related to the details of the dynam­
ical properties of the system. Instead they depend only on the symmetries of the Hamiltonian. 
Such property did, actually, originate from the Wignerian type of level spacing distribution. 
This is the so-called Bohigas-conjecture, which was postulated by Bohigas et al. [64], based 
on computational evidence from the quantum Sinai billiard. But in the case of classical sys­
tems, Hamiltonian yields a continuous energy spectrum, and therefore, is unsuitable to play 
a role such as a Hamiltonian matrix in a quantum system. Thus, one asks what parameter can 
be used in the case of classical chaos, to play an analogous role as the Hamilton matrix in 
quantum chaos? 

The answer is hidden in the term "symmetry" and the quantity, which contains the same 
symmetries as the Hamiltonian in the classical regime, is the action. Because the level spacing 
in quantum chaos is universal, therefore it is reasonable to expect that we will be able to 
define a level spacing from a finite dimensional matrix, whose elements are given by the 
action. Such level spacing should have the same properties as the energy level spacing in 
quantum chaos. Hence, we may consider the action of a system and do the same analysis in a 
quantum model, in order to study the chaotic dynamics of a classical system. This means that 
instead of a matrix representation of the Hamiltonian, one may construct a Hermitian matrix 
of the action, and apply RMT spectral analysis to the spectrum of such a matrix. 

According to this, we propose a so-called action matrix whose elements are the values of 
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the action, evaluated by the Euler-Lagrange equation. In fact, the solutions of this equation 
are some trajectories, specified by some initial and final boundary points which, we assume, 
are taken from a finite set of nodes. Thus, with each pair of boundary points, say Qm and Q ,̂ 
we associate a trajectory Q*™* taking the length A and the action S, given by 

'ft 

% (6-5) 
A[CTJ]= ds\ 

% 
S[Qtra>]= f*dtJ?(Q(t),Q(t),t) 

Jo,„ 0=0* 

Considering a finite set of discrete points {QX,Q2,..., QN), we find a classical trajectory Q^a}, 
connecting each pair of Q, and Qj (See the left panel of Fig.[6.4] as an example). These 
trajectories are generated by a point-particle, which moves between Q, and Qj in a zig-zag 
pattern. For each trajectory we can evaluate its length and action2 

S i j = S[Q-f] , NU = A[Q^} . (6.6) 

Notice that the velocity of the point-particle is considered to be unity, thus we eliminate it 
from the above quantities. Sjj and A/y constitute the elements of the action and the length 
matrices S = [Sjj]NxN and A = [A,-j]NxN, which are real and symmetric. Therefore, the 
matrices S and A have discrete spectra with real eigenvalues. This is in a close analogy with 
the energy spectrum of the Hamiltonian, which is the tool for level spacing statistics in a 
chaotic quantum system. 

6.3 Level spacing fluctuations of the Lorentz gas 

Now let us consider a 2D Lorentz gas of a single point particle, moving in an array of identical 
hard disks. Fig.[6.2] shows an elementary triangular cell of such a lattice, as well as the 
trapping region £2 for the single particle. The dynamical behavior of the system depends on 

2 In fact, the reason for using trajectories originates from the Alekseev-Brudno theorem [142]. This theory 
indicates that in the algorithmic theory of dynamical systems, the information I ( T ) concerning a segment of a 
trajectory with temporal length T, is defined by [143] 

lim ^ $ - = KSE , 
IrHO |T | 

where KSE denotes the Kolmogorov-Sinai entropy, which is positive when the Lyapunov exponent A is also 
positive. This means that prediction of a new segment of a chaotic trajectory requires some extra information 
proportional to the length of the segment, and does not depend on the previous length of the trajectory. In such 
situation, the information I ( T ) takes a random behavior and cannot be drawn from the observation of the history 
of the motion. However, in the case of sufficiently short time intervals, one can predict the behavior of a system, 
even a chaotic one. 
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the density of the gas, given by cr~x. We are interested in studying the chaotic behavior of the 
system in both the finite-horizon and the infinite-horizon regimes. 

To this end, we choose a sequence of initial and final nodes {xx, x2,..., xN}, regularly dis­
tributed on the border r = dQ of the moving region (see Fig. [6.3]). We ignore any random 
positioning of the boundary points to ensure that the chaotic behavior of the system has a 
dynamical origin. In addition, due to the symmetry of the system, we take the boundary 
nodes on the one-sixth of the border and on the convex part. The classical trajectory of the 

JÊËk 

« ^ 

Figure 6.2: Schematic representation of the Lorentz gas in a triangular symmetry. 

point-particle between two boundary nodes xt and Xj is constructed through the elastic colli­
sions on the edge of the trapping domain (see Fig.[6.4], left panel). The trajectory segments 
between successive collisions to the hard disk scatterers are straight lines. The exact number 
of rebounds in our numerical calculations, however, is the number of collisions only on rigid 
disks, thus we do not count the collisions on the straight lines connecting the centers of disks. 
By constructing all possible trajectories between boundary points, corresponding to a specific 
number of collisions, we construct a time-reversal symmetric matrix A, whose elements are 
the geometrical lengths {A;y | i , j =1,2,.. . , A7}. From this matrix we perform the level spacing 
analysis on the length spectrum. Note that, when the point-particle moves with a constant 
velocity, and therefore a constant kinetic energy, then the Lagrangian is proportional to the 
length of the trajectory. This means that the action matrix is equivalent to the length matrix 
through the equation3 

[SijhxN = yJmE/2 [Au]NxN . (6.7) 

According to this, we can compute the spectrum of the length matrix A in behalf of the action 
matrix S. As discussed in Section 6.1.1, the distribution P(A) of length matrix elements for 
a sufficiently large number of rebounds tends to a Gaussian probability distribution, provided 

Notice that from S = J %?(q(t), q(t), t) dt, we have 

s = Y 2 m ^ ' « = X 2m v"À" ~ ^mE^2 Y A " = y l m E l 1 A 
«= 1 n=\ n= I 

where the velocity of the particle is constant (E = \/2 m\r = 1 /2 wv2). 
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Figure 6.3: Regular distribution of nodes xx,...xN on the boundary of the trapping area. 

that the system is chaotic. Such behavior of the point particle has been also proven by the 
CLT [138, 141]. In this limit, the length matrix A itself becomes a GOE matrix [46] (after a 
suitable normalization). To check this and see how the matrix elements behave, we computed 
the motion of the moving-particle in the trapping area, for a sufficiently large number of 
rebounds, namely Nreb = 3000 [144]. The distribution of trajectory segments for a finite-
horizon regime with the density cr = 2.25 is presented in Fig.[6.4] (right panel). The Gaussian 
form of this distribution says that the CLT holds for this system in the limit of n —> oo. This 
is sufficient to guarantee that the level fluctuations P(s) and spectral rigidity A3(C), obtained 
from the matrix A, also show GOE behavior [62]. 

2 5 

Figure 6.4: Left panel: A sample trajectory of the point-particle between two boundary nodes 
in the trapping zone. The number of rebounds from disks is Nreb = 10. Right panel: Dis­
tribution P(A) of the length matrix elements for the finite-horizon model with cr = 2.25 and 
AU = 3000 [144]. 
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6.4 Estimation of numerical errors 

To estimate the numerical errors, we construct a trajectory £ from a given initial point x0 to 
an arbitrary point x" on the boundary of the capturing region (Fig.[6.2]). We do this for a 
specific number of rebounds, AU. Thereafter, we perform a time-reversal procedure, such 
that the point particle starts its motion from x", and following the same number of rebounds, 
it arrives at some x̂ ,. Then, a measure of errors is given by Ax == |x^ - x0|. Fig.[6.5] explains 
the behavior of relative error versus the number of rebounds, for the finite-horizon regime of 
the Lorentz gas. One can observe that relative errors follow an exponential law 

(err) ~ exp[axNTeb +a 2 ] , (6.8) 

for the number of rebounds AU < 40, where ax = 0.397 and a2 = -16. The linear part of this 
graph denotes a maximum error (100%) for AU > 40. We consider AU ~ 20, that allows us 
to retain at least 8 digits of precision for the measurement of the level spacing analysis. 

The exponential behavior of errors is related to the positive Lyapounov exponent of the 
system, which determines the chaoticity of the system. Comparing this scheme of errors 
for the Lorentz gas with that for a circular stadium billiard (as a regular system) shown in 
Fig.[6.6], one finds this exponential behavior of errors as another fingerprint of chaos. More­
over, the estimation of numerical errors ensures that the chaoticity of the system originates 
from the dynamics of the system, and not from the numerical noise. 

^-log(<err>) 
—Fit: log(<eiT>) = 0.397N - 1 6 

20 40 N 60 80 
reb 

Figure 6.5: Lorentz gas: relative errors as a function of number of rebounds for the finite-
horizon case (cr = L/R = 2.25) [144]. 
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Figure 6.6: Logarithm of relative error as a function of number of rebounds for a circular 
stadium billiard. The log((err)) is not a linear function of AU, i.e., the behavior of errors 
(err) is not exponential for this integrable system [144]. 

6.5 The finite versus the infinite-horizon regime 

In the case of the finite-horizon regime we choose cr = 2.25, and we consider a sequence 
of N = 40 boundary nodes, as well as AU = 15 collisions with the hard disks of the sys­
tem. Fig.[6.7] (left panel) displays the NNS fluctuations P(s), constructed from the unfolded 
spectrum of the length matrix A. As one observes, the distribution P(s) takes a Wignerian 
form which is consistent with the prediction of RMT for fully chaotic systems, that is GOE 
behavior [64]. 

Another statistical quantity which we have computed, is the spectral rigidity A3(£) of the 
length matrix A (shown in Fig.[6.7], right panel). The result confirms again the GOE behavior 
of the system [144]. 

The value C = -0.27 of the correlation coefficient4 between nearest neighbor level spac­
ings, is another characteristic of the GOE statistics in chaos [63, 146]. For the Lorentz gas, 
we obtained this value, used as the input for the unfolding procedure. In the infinite-horizon 
regime, the density of the gas, cr > 4/ V3, allows the point-particle to travel long distances 
without collision to hard disk repellers. We consider a transition from the finite-horizon with 
the density cr = 2.25 to the infinite-horizon regime with cr = 2.5. The results of P(s) and 
A3(£) for cr - 2.5 are presented in Fig.[6.8]. One can observe that the NNS fluctuations of 
the system basically do not change, meaning that the universality of chaotic properties holds 
during this transition. Such a behavior of the Lorentz gas has been demonstrated through 

4From a physical point of view, the negative correlation between spacings indicates the rigidity of the GOE 
spectrum. That is, when a small spacing is observed, the adjacent spacing tends to be higher [145]. 
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Figure 6.7: Lorentz gas: level spacing distribution P(s) for the finite­horizon model (cr = 
2.25) (left panel). Number of boundary points N = 40 and number of rebounds AU = 15. 
The Wignerian shape of P(s) is a characteristic of chaos in the system. Right: spectral rigidity 
A3(f) for the finite­horizon model [144]. 

the computation of the average Lyapunov exponent for a triangular symmetry [147]. Fur­

thermore, the length P(A) is shown in Fig.[6.9], indicating some deviations from a Gaussian. 
These deviations come from the long free paths of the moving­particle, which are due to the 
existence of wide channels between hard disks in the open regime. Although there is no any 
theoretical proof of the CLT for this model of the Lorentz gas, nevertheless, the approxi­

mate similarity between P(A) and the Gaussian function may be a hint to the validity of limit 
theorem for the Lorentz gas with the infinite­horizon. However, this subject requires more 
extensive theoretical and numerical investigations. 
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Figure 6.8: Lorentz gas: the infinite­horizon regime for cr = 2.5. Left panel: Level spacing 
distribution P(s) of the length spectrum. Right panel: Dyson­Mehta rigidity A3({) of the 
length matrix. Number of rebounds Nreb = 15 and number of boundary nodes N = 40 [144]. 
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Figure 6.9: Lorentz gas: the infinite-horizon regime for cr = 2.5. Distribution of length 
matrix elements P(A). number of boundary nodes N = 40 for AU = 3000 [144]. 

6.6 Statistical fluctuations of potential systems 

In this part, we would like to address the question if a universal behavior in classical chaos 
will also persist in the presence of a potential in chaotic systems. As a first step in this direc­
tion, here we consider a classical model of an optical billiard, consisting of some zones with 
different optical properties (refraction indices). At the interface of such zones, Descartes-
Snell's law enforces a change of direction and velocity of the beam of light. Thus this optical 
system is similar (but not equivalent) to a potential system where, however, the change of ve­
locity and direction follows Newton's laws. Technically, we construct spectra from a matrix 
of time-of-travel, corresponding to a set of trajectories. As a result we find that this chaotic 
optical billiard shows also universal behavior [148]. 

6.6.1 Optical stadium billiard 

Let us consider a 2D optical stadium billiard [148]. The shape of its outer boundary is the 
same as the Bunimovich stadium [29], which is a fully chaotic classical billiard model. Its 
interior region consists of several concentric areas, arranged like tracks in a track and field 
stadium (see Fig.[6.10], left). The outer stadium boundary is a reflecting wall and behaves 
like a potential barrier. Each track corresponds to a zone of some refraction index r/. The 
refraction index increases by increments from the center to the outer boundary of the stadium. 
The left panel of Fig.[6.11] shows a typical trajectory between two boundary points. The 
refraction index is given by a step function, with an envelope given by n(r) = nc + (r/rmax)2. 
Here rjc denotes the refraction index of the central area, and rmax stands for the distance of the 
outer boundary to the center of the stadium. Fig. [6.10] (right panel) shows the distribution of 
r/ across a section of the billiard, including N r = 5 zones with nc - 2 and rmax = 10 for the 
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azimuthal angle <p = 0. 

It should be noted from the experimental point of view that, a real optical billiard obeys 
the laws of quantum mechanics (wave optics). This means that light is emitted from a point 
source as a spherical wave. Heisenberg's uncertainty principle holds with respect to position 
and momentum. Wave optics is the valid description in the regime A ~ R, where A is the 
wave length and R is the spatial extension of the system. On the other hand, ray optics 
(geometrical optics) is valid in the regime A «; R. Ray optics also describes the propagation 
via the wave vector of wave fronts. Such light ray satisfies the Fermat's principle, during the 
transition between two different refraction zones. Here we assume that we are in the regime 
of geometrical optics, and we treat the propagation of light in terms of ray optics. Thus our 
model can be viewed as a classical billiard model, where, however, optical laws determine the 
transition between different optical zones. Then a beam of light propagates along an optical 
path, where the length and time-of-travel are given by 

A = fde=Y*i, 

T = ^dCX- = ^ d ^ c = - c Y ^ i - (6-9) 

Here, c and nvac = 1 denotes the speed of light and refraction index in the vacuum, respec­
tively. In addition, r/, and l, stand for refraction index and geometric path length, respectively, 
in zone i (note that a trajectory may visit a given zone several times). According to Fermat's 
principle, light rays propagate along optical paths of minimal travel time. An important con­
sequence of this principle is Snell-Descartes' law 

£ ^ = * = l L , (6.10) 
sinQ2 nx v2 

which means that the direction and the velocity of the light ray change at the boundary be­
tween different optical media. Therefore, this kind of billiard resembles a potential system, 
where the magnitude and the direction of velocity also change as a function of the local po­
tential. To construct the matrix of time-of-travel, likewise we did for the Lorentz gas, here we 
also take a set of equidistantly located boundary points x,, i = 1, . . . , AUmd, located on a quar­
ter of the outer billiard boundary (see Fig.[6.10] left). The classical trajectory of the light ray 
between the boundary points x, and xj is constructed by taking into account Snell-Descartes' 
law at the boundary between zones of different refraction indices and the law of reflection 
at the outer boundary. We classify trajectories by the number of rebounds AU- For a given 
pair of boundary points x,,xy and number of rebounds AU, we construct the trajectory by 
choosing an initial angle a with respect to the normal of the boundary at the starting point. 
This will yield an arrival point, say x/. Then we make a search in the initial angle a, until 
\xf - Xj\ < ô where ô is an acceptable error tolerance. This gives an acceptable trajectory. In 
fact, for a given pair of boundary points x,, Xj and given number of rebounds AU, there are 
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Figure 6.10: Optical billiard: 2D optical stadium billiard composing N r = 5 zones of different 
refraction indices n (left panel). Right panel: the refraction index (solid line) as a function of 
radius for azimuthal angle <p = 0 [148]. 

many trajectories, and its number increases nonlinearly when Nreb is increased. We find those 
trajectories by making a sweep in the initial angle a (by increments of Aa = n/4 x 10~4), 
and we have constructed a set of AU/ = 30 trajectories for each pair of boundary points. For 
each pair x;, xj and a corresponding trajectory A/y, we compute the time-of-travel accord­
ing to Eq.(6.9), yielding a matrix element 7y] of the time-of-travel matrix T. Due to the 
time-reversal symmetry, the matrix T is symmetric, and all matrix elements are positive. 
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Figure 6.11 : Optical billiard: 2D optical stadium billiard with typical trajectory between 
points Xjn and Xfi located on the outer boundary (left panel). Distribution of matrix elements 
P(T,j) from time-of-travel matrix T. The number of rebounds is AU = 8 (right panel) [148]. 
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6.6.2 Level spacing analysis and numerical results 

Here by analogy to the calculations for the Lorentz gas, we compute the spectrum of the 
matrix 7", carry out the spectral unfolding, and construct the level spacing distribution P(s) 
as well as the spectral rigidity A3 [148]. We choose AU = 8 with a relative error around 
10"10 for our numerical simulations. 

In the classical Bunimovich stadium billiard, chaotic behavior becomes more apparent, 
when increasing the number of rebounds at the outer boundary. Qualitatively, the same be­
havior is expected to occur in the optical billiard considered here. We consider AU™! = 65 
boundary points located on a quarter of the stadium boundary (see Fig.[6.10] left). Fig.[6.11] 
(right) shows the distribution P(Ttj) of matrix elements of T. The shape of the curve is a de­
formed Gaussian. If the time-of-travel between two subsequent collisions would be a random 
number, and if two subsequent time-of-travel data were statistically independent [71, 141], 
then the CLT would predict a Gaussian shape for P(Tjj). Such condition, of course, does not 
hold here. The deviation of P(Tij) in shape from a Gaussian can be interpreted as a qualitative 
measure of how much (in temporal length) the sections of trajectories differ in behavior from 
a random walk. 

From the unfolded spectrum of the time-of-travel matrix T (with AUind = 65), we com­
pute the spectral level spacing distribution P(s) and the spectral rigidity A3 (see Fig.[6.12]). 
One observes that P(s) follows a Wignerian distribution, and the spectral rigidity A3 shows a 
GOE-type behavior, both consistent with RMT. We obtain a correlation coefficient C = -0.27 
which is another signature for the Wignerian type of the level spacing distribution. These re­
sults suggest that this optical stadium billiard model is fully chaotic and its level spacing 
fluctuations follow universal behavior. It should be noted that these distributions represent 
a statistical average from data of AUj = 30 independent sets of time-of-travel matrices T. 
Such number of levels gives sufficiently reliable statistics (it should be recalled that Bohi-
gas et al.[64] considered nuclear spectra from about 30 different nuclei in their conjecture of 
universality). 

6.7 Synopsis 

In this chapter we showed that the chaotic behavior of the 2D Lorentz gas can be described 
by RMT, which is also the case for a chaotic optical billiard. By tracing the random-walk 
motion of a point-particle, separately in both systems, we computed matrices of the lengths 
of trajectories of the particle. By statistical analysis of the spectra of those matrices, we found 
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Figure 6.12: Optical billiard: Nearest-neighbor level spacing distribution P(s) for AUind = 65 
boundary nodes and AU = 8 rebounds (left panel). Correlation coefficient C = -0.27 ± 10"10 

is in agreement with GOE behavior. Spectral rigidity A3(L) (right panel) [148]. 

that the spectral properties of these systems exhibit a GOE-behavior, i.e. they are universal. 
Furthermore, they (particularly the bounded model of the Lorentz gas) follow a random-walk 
motion which confirms the CLT. 



Chapter 7 

Diffusive Properties of the Lorentz Gas 

In this chapter, we discuss the diffusion of the Lorentz gas. It is a transport property in dy­
namical systems, which has attracted a remarkable interest in various domains of microscopic 
and macroscopic physics. 

The diffusion properties of the Lorentz gas have been studied in several approaches in the 
literature. For example, Gaspard and Nicolas [149] obtained the dependency of the diffusion 
coefficient on the escape rate of the point-particle from a limited region of hard disks. The 
escape rate was computed in terms of the Kolmogorov-Sinai entropy and the positive Lya-
punov exponents. Through these two dynamical parameters, they determined a fractal set of 
trajectories of the particle (called "repellers"), trapped in a restricted region. The results for 
non-equilibrium statistical mechanics presented in Ref. [149], showing the relation between 
the diffusion, the dynamical randomness and the sensitivity to initial conditions. 

Also, Machta and Zwanzig [151] investigated the self-diffusion process of a point-particle 
in a Lorentz gas with triangular symmetry. Their method was based on the idea that the exact 
motion of the particle can be treated as a random walk between triangular trapping regions 
(see Fig.[6.2]). They hypothesized that in high densities, where the test-particle bears a large 
number of collisions in trapping cells, the sequence of traps visited by the particle is a Markov 
chain. By the assumption of ergodicity of the periodic Lorentz gas in high densities [138, 
150], they computed the average time spent in cells and, by this parameter, they estimated 
the diffusion coefficient of the system in terms of the width of channels between neighboring 
disks [151]. Their numerical simulations and analytical results were in a good agreement. 

In addition to the above methods, Borgonovi et al. [152] explored the diffusion in clas­
sical chaotic billiards via angular momentum. They studied the diffusive process in angular 
momentum for the Bunimovich stadium, by calculating this quantity of an ensemble of 104 
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moving particles, with random locations on the boundary of the stadium. In order to evaluate 
the diffusion constant D, they computed the variance of angular momentum AL2 of particles 
as a function of the number of collisions NcoX . Their results show that AL2 increases diffu­
sively with NœX, compatible with AL2 = T> NcoX . They suggest that the diffusion in terms of 
angular momentum may be interesting for some optical resonators [152]. 

On the other hand, perhaps the most common scheme for the diffusion coefficient is given 
by Einstein formula [153], which is based on the context of the Brownian motion. It shows 
a linear increase of the variance of the particle's positions, indicating that the asymptotic 
behavior of the particle trajectories follows the CLT, and is a signature of a random walk 
(Brownian motion). Later, Green and Kubo [153] found that the Einstein equation can also 
be represented by the particle's velocity auto-correlation function. In what follows, we refer 
to the Einstein-Green-Kubo equation for closed and open regimes of the Lorentz gas. 

7.1 Behavior of the diffusion coefficient in the finite and the 
infinite-horizon regimes 

To show how the diffusive process behaves in closed and open systems, we take a brief 
look on the most general formulation of transport coefficients of the Lorentz gas (e.g. the 
Diffusion constant). It is the Einstein-Green-Kubo formulation [154, 155], which is basically 
a temporal correlation function method. In that approach, which relates the diffusion constant 
to the diffusion equation, one obtains 

( |Ar(/) |2)~2d£>/, (7.1) 

where t is the time, d is the space dimension, T> denotes the diffusion coefficient, and UAr(0l / = 
(|r(/) - r(0)|2\ indicates the mean square displacement of particles. 

In fact, Eq.(7.1) is a result of the Fokker-Planck equation together with the diffusion 
equation for the Brownian particles in fluids [137]. Here let us illustrate this in some detail. 

The Fokker-Planck equation (as a special case of the Chapmann-Kormogorov equation [137]) 
in one dimension is given by 

^ d T = ' d h A { x ) P { x ' t) + \ &B(x)P(x' ° ' (72) 

where P(x, t) is a probability density function in the range y e (-oo, +oo), and x stands for 
the position of particles. The coefficients A(x) and B(x) > 0 can be any real differentiable 
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function. For the Markov processes, these two coefficients are characterized by 

(Ax) „, , ((A*)2) 
^ W - ^ . J W - i ^ . (7.3) 

In the case of the Brownian motion, the Brownian particle makes random walks and these 
random jumps may have any length, but the probability for large jumps falls off rapidly. 
Furthermore, the probability is symmetrical and independent of the starting point [137]. Ac­
cordingly, 

(Ax), ((A*)2/\ 
A = - — - = 0 , B = = const.. (7.4) 

At At 
Hence, the Fokker-Planck equation for the random walk transition is: 

dP(x, t) _ Bd2P(x,t) 
dt ~ 2 dx2 ' 

which has the same functional form as the diffusion equation for the Brownian particles in 
fluids, i.e. 

dP(x,t) ^d2P(x,t) 

—dr^v-dx*-- (76) 

comparing the last two equations one concludes that 

(7.5) 

((A*)2) 
2A/ 

which is known as the Einstein relation for diffusion constant (in one dimension). 

D = ^ K T - <"> 

7.1.1 The Green-Kubo formula 

In general, the displacement of particles can be represented by [133, 155] 

r(/) - r(0) = f \(t ')dt'. (7.8) 
Jo 

Therefore from Eq.(7.1) one has: 

W) - 2?d J J <vC).v(/")> dt'dt" = 

i J (v(O).v(r)) dr - ^ J (v(O).v(r)) r d r , (7.9) 

where an integration by parts has been performed in the second part. In the limit of / —» oo, 
one evaluates the diffusion coefficient as 

1 C (|r(0-r(0)|2) 
£> = lim - <v(0).v(r)>ûfT = lim -̂  — . (7.10) 

t->°° d J o '-*«> 2 / d 
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which is called the Einstein­Green­Kubo formula. 

In a discrete dynamics, one can replace the continuous­time / by the number n of collisions 
to the system's scatterers. Hence the discrete form of the above formula is given by 

( | r„­ r 0 | 2 ) i j » 
D = lim x ' = — ( W I 2 ) + ­ lim V (Ar0.Ar,) , (7.11) 

n­»oo 2 n d 2 d x ' d »­»°° *—* 
i=\ 

where the relation 
n­\ n­\ 

r„ ­ r0 = Y ^ M ~ r , ) = YiA r ' (7 '12) 

i=0 (=0 

has been utilized [155]. Note that Ar0 is the displacement of the particle before its first 
collision. 

7.1.2 Some general aspects 

Bunimovich and Sinai [138] found that in the finite­horizon regime, the statistical behavior 
of trajectories is such that the displacement r(/) ­ r(0) follows the CLT. This means that the 
distribution 

r IKO ~ r(0)| . 
?fin = I'm (7.13) 

t-HX, y j t 

is a Gaussian, and 

m = l i m mzm (7,4) 
resembles a Brownian motion. The discrete version of the distribution Qf\n becomes 

,. I»*„ — ro l 
f̂in = hm =— • (7.15) 

On the other hand, the situation for the case of the infinite­horizon is different. In this regime, 
according to numerical evidence [156], the velocity auto­correlation function is characterized 
by [155] 

< v ( 0 ) , v ( 0 > ~ ^ p . (7.16) 

Consequently, 
( | r(0­r(0) |2) 

D = lim — ~ const, log t . (7.17) 
»­*<*> 2t d 

This shows that in the limit of / ­♦ oo, the diffusion coefficient goes to infinity, which reflects 
a so­called "super­diffusive" behavior of trajectories r(/). The direct conclusion of Eq.(7.17) 
is that the diffusion coefficient in the infinite­horizon regime becomes a finite value, provided 
that one normalizes this equation through dividing it by a factor log /. Bleher [155] based 
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on the numerical results by Friedman et al. [156], proved that for a periodic system with the 
infinite horizon, the distribution 

,. |r(/) - r(0)| 0irf=umJ-4==^ (7.18) 
'^°° y/t log / 

exists, and it is a Gaussian distribution. This logarithmic normalization yields a so-called 
super-diffusion coefficient T> as following 

5=1 
2d 

hm ) , (7-19) 
V« In n 

which is a discrete formalism in terms of the number n of bounces. 

7.2 Diffusion coefficient via the length of trajectory 

Here we discuss the diffusion coefficient in terms of the trajectory's length, within a trapping 
zone between three disks. In Chapter 6 we saw that in the finite-horizon regime, the distribu­
tion P(A) of length of trajectories follows the CLT, which is also the case for random walk 
and Brownian motion [133]. Following such a random walk, the length of a trajectory after 
AU rebounds is simply given by 

A'reb 

A = £ , ! „ , (7.20) 
n=\ 

where An denotes the free path length between successive collisions. In fact, the so-called 
steps lengths A„ are random numbers from a probability distribution function P(A) [133]. In 
this context, the CLT defines a normal diffusion constant @, given by [133, 134] 

n < A2 > - < A >2 

9 = , (7.21) 
Z T 

where < A > and < A2 > are the first two moments of P(A) ' , and r is the travel time along 
the average step length (A) (notice that A = (A„), and T = (r„)). Due to the elastic collisions 
with scatterers, the value of the point-particle's velocity u is constant, which is defined by 

(An) A 
u = = - . (7.22) 

T„ T 

This velocity is usually assumed to be unity [120]. 

'The moments of A are determined from P(A), through[133]: 

dX À" P(A) 
co 
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Now let us consider the variance of the total length A. Then one can write [135] 

A'rcb Wrcb #reb AVtb 

< A2 > - < A >2= Y Y [ { À M ~{Àm) {À"}] = Z Z c " " " (7-23) 
m=\ n=\ m=\ n=\ 

where Cmn stands for the correlation function of the lengths Am and A„ . By assuming that A„'s 
are uncorrelated, one has [135] 

C m n = [< A2 > - < A > 2 ] 6m„ . (7.24) 

and therefore 
< A 2 > - < A > 2 = A U [ < A 2 > - < A > 2 ] . (7.25) 

Then, by the use of Eq.(7.21) this leads to 

< A2 > - < A >2= 2^AU T . (7.26) 

As a consequence, the diffusion constant is characterized by the variance of trajectory's length 

»-*g2. ' <7.27) 
where T is the total travel-time (i.e., T - AU r). Since the total time T is proportional to 
both < A > and AU, therefore, we can define an effective diffusion constant as2 

AU 
or equivalently 

(A) 

7.2.1 Diffusion in the finite-horizon and localized regimes 

For the practical evaluation of the diffusion parameter @A, we construct an ensemble of tra­
jectories, starting from a sequence of boundary nodes, chosen as random points, as well as a 
given number of collisions at the boundary of moving zone. Here, we take a set of rebound 
numbers AU = {10,20,..., 70}, and we separately compute the average variance of the length 
of trajectories (Var(A)). We consider a range of values for cr in the finite-horizon regim, i.e. 
cr= (2.01, 2.05, 2.10, 2.15, 2.20, 2.25, 2.30}. 

From the results, we observe that in the case of the finite-horizon, Var(A) behaves as 
a linear function of the number of rebounds AU (See the left part of Fig.[7.1]). A similar 

2 We eliminate the constant parameters such as the velocity u of the point-particle, the mean free time r and 
the pre-factor 2, because we look for the general behavior of the diffusion parameter. 
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Figure 7.1: The finite­horizon regime. Left panel: Variance Var(A) versus the number of 
rebounds for a variety of cr values. The linear behavior is consistent with the global behavior 
of the diffusion coefficient of the closed Lorentz gas. Right panel: Diffusion coefficient in the 
finite regime (for cr = 2.20) in terms of the number of collisions, indicating small fluctuations 
around a constant value [72, 144]. 

behavior shows up when we plot Var(A) versus the average length (A) (not shown here). This 
linearity suggests a finite value to the tangent of this curve, which is proportional to QiA. This 
is consistent with the results of the Einstein­Green­Kubo, as well as Machta­Zwanzig [151] 
formulae, and also the results of Borgonovi et al. [152]. In addition, it shows that the diffusion 
coefficient $>A does not depend on AU (or (A)) in the finite­horizon regime. Fig.[7.1] (right 
panel) confirms this for @A, showing small fluctuations around a constant value. 

In the localized (dense packing) regime, on the other hand, essentially there is no dif­

fusion. The reason is that the moving­particle is unable to travel beyond the trapping zone 
(Fig.[7.2]). Hence the diffusion coefficient is nearly zero, as shown in Fig.[7.3]. 

Figure 7.2: The moving zone between adjacent disks in the case of the localized regime of 
the 2D Lorentz gas. The point particle is trapped in this zone. 
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Figure 7.3: Diffusion in the localized regime. The diffusion coefficient DA is near zero, 
indicating that no diffusion occurs in this case of the Lorentz gas [144]. 

7.2.2 The infinite­horizon and diffusion 

In the case of the infinite­horizon, the situation of the length variance Var(A) is different. As 
Fig.[7.4] (left panel) shows, for densities distant from the finite horizon regime (e.g. cr = 
2.70, 2.90 in this figure), the behavior of Var(A) is governed by large noise. It rapidly 
diverges to large values, in a fluctuating fashion. Therefore, one cannot extract a diffusion 
parameter @A from such a behavior. The reason is that, in this regime the point­particle can 
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Figure 7.4: The infinite­horizon regime. Left: Variance of trajectory's length with respect to 
the number of rebounds. Right: Length of trajectories for cr ­ 2.9 and AU = 70. In a number 
of «A = 5000 trajectories (a set of 50 boundary points with 100 number of trajectories for 
each initial point) there are a few large spikes (e.g. two values of A > 600 while (A) ~ 135), 
which create large fluctuations in Var(A) [144]. 

travel large distances (in comparison to to the finite­horizon case) in some corridors, without 
colliding with hard disks. In our simulation, such a behavior of the particle is manifested 
by the numerous collisions with the straight parts of the boundary. For instance, Fig.[7.5] 
shows a trajectory in the case of cr = 3.0. In this example, the number of bounces with 
disks scatterers (curved sections) is fixed to be AU = 8 . Nevertheless, the point­particle 
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also collides 22 times with the straight walls. As consequence, such behavior generates 

-1 -0.5 0 0.5 1 

Figure 7.5: The infinite-horizon regime: a sample trajectory of the moving-particle for cr = 
3.0 and AU = 8 (collisions with disks), between the initial and final points xi and x2. The 
high number of collisions with the straight parts (in comparison to the finite-horizon case), is 
the reason of large spikes in Var(A), shown in Fig.[7.4]. 

some large spikes in A (see Fig.[7.4], right panel), which is the source of fluctuations in the 
length variance. In order to minimize such (physical) noises and study the global behavior of 
Var(A), one needs to consider large ensembles of the length of trajectories. Such ensembles, 
however, must contain a huge number of members (i.e., A's), for computing their variance 
through a statistical averaging approach. 

As discussed in Section 7.1.2, when going from the finite to the infinite horizon regime, 
it has been conjectured that the Lorentz gas undergoes a change in behavior [155, 156, 157, 
158]. In particular, the normal diffusion has been predicted to switch to the anomalous diffu­
sion, where the variance of position (versus the number of rebounds) scales with a logarithmic 
normalization factor (see Eqs.(7.17,7.19) ). It would be interesting to verify this hypothesis 
for the triangular periodic Lorentz gas, using the length of trajectories. Let us mention that 
such a behavior of the diffusion constant has been also theoretically predicted for the Buni­
movich stadium billiard via mathematical approaches [132]. It has been numerically shown 
by studying the variance of the length of trajectories [72]. However, at the present time we 
are working on this hypothesis for the Lorentz gas, to verify if any logarithmic behavior of 
the length variance Var(A) exists or not. 



Chapter 8 

Remarks and Discussion 

Part I In the first part, we studied the U(l)2+i lattice gauge theory (LGT) by character­
izing the spectrum of that model via the Monte Carlo Hamiltonian (MCH). In general, the 
construction of a Hamiltonian in LGT raises the following points: 

(a) Although there exists the Kogut-Susskind lattice Hamiltonian, the problem is how to 
compute physical observables, such as energy spectra, etc. We suggest here the approach of 
constructing an effective Hamiltonian. This is meant to be a Hamiltonian which describes 
physics in a finite window (e.g. a window of low energy). This has some analogy to the 
idea of the Wilson-Kadanoff renormalization group, where a renormalized Hamiltonian is 
constructed, which is valid for some critical point. 

(b) In conventional Hamiltonian methods familiar in nuclear physics, condensed matter, 
particle physics and generally in many-body physics, it is customary to consider a given 
Hamiltonian 'H and compute matrix elements OP,] 'H [¥,- \ from such a Hamiltonian. In con­
trast, here we consider a function of the Hamiltonian, i.e. exp [-'HT/ft]. This has the follow­
ing advantages: First, 'H is mathematically a more singular object than exp[-7Y]. This can be 
seen in the simple quantum mechanical example of the electric Hamiltonian 7Yelec. The ma­
trix element (y| *H \x) is a derivative of a 5-function, while the matrix element (y| exp[-7-f] \x) 
is a smooth, differentiable and rapidly falling-off function. This means that the non-linear 
exponential function smoothes out the singularities of an operator. Second, matrix elements 
of the exponential function exp [-'HT/ft] can be evaluated by using the path integral. Third, 
in comparison to fH, the operator function exp [—'HT/ft] contains a parameter T, which is 
redundant for the physical spectrum, i.e., one should obtain the same spectrum of fH, using 
any value of T. However, in numerical simulations this is not quite so. The results do depend 
on the value of T. They depend also on physical parameters, such as coupling, lattice size 
and lattice spacing and so on. They as well depend on approximation parameters, such as 
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the number of equilibrium configurations used in the path integral, the size of the stochastic 
basis, etc. Last but not least, they depend on the internal precision of computers. Here we 
can rum the dependence on T into an advantage: the T-dependence of the energy spectrum 
(or better of a number of low lying energy eigenvalues) can serve as a measure of error of the 
calculation. In the best case, the energy eigenvalues become T independent. This happens 
in the so-called scaling windows. In the worst case, they are strongly T-dependent, meaning 
that these results are unphysical. 

(c) Stochastic basis. In our opinion, the construction of a suitable basis is the most im­
portant step in order to compute physics from a Hamiltonian. Such a basis is built on two 
principles: first a random selection of basis states and second, a physical principle to guide 
the search. The so-called stochastic basis is built in close analogy to the equilibrium path 
configurations computed via the method of Monte Carlo with importance sampling, in order 
to solve Lagrangian LGT. 

(d) In contrast to the Lagrangian LGT, where gauge symmetry is manifestly conserved 
in the path integral via the group measure as well as the Wilson action, in the Hamilton 
formulation, the gauge invariance of states and amplitudes has to be imposed via Gauss' 
law. Technically, much work is required to construct such a gauge invariant states. One 
expands the link Bargmann states into irreducible representations, using the Peter-Weyl the­
orem. Gauge invariant states are then constructed by doing the group integral of local gauge 
transformations at each vertex. As a result one enforces Gauss' law at each vertex. Here, we 
have shown how this can be done in the case of U(l) gauge theory. This can be generalized to 
non-Abelian gauge symmetry. For example, Burgio et al. [107] have shown how to construct 
a gauge invariant Hilbert space for the gauge group SU(2). 

(e) By working on some small size lattices, we have shown that the MCH with stochastic 
basis works well in U(l)2+1 LGT. We have verified that the MCH is able to provide the 
spectrum and the corresponding wave functions in some finite energy window, which is a 
hard problem in the Lagrangian lattice approach. Moreover, physical observables such as 
thermodynamical functions can be easily computed from energy windows of the MCH, while 
it is difficult via traditional Lagrangian formulation. In addition to the previous applications 
of this method in quantum mechanics and scalar field theory, we claim that U(l) LGT is 
another signature of advantages of this technique. 

(f) We believe that the physical observables on larger lattices can also be measured in 
the MCH approach. This requires using powerful parallel algorithms for the computation 
of the electric transition amplitudes, and reducing statistical errors of the Monte Carlo with 
importance sampling (in the evaluation of ratios of path integrals), by use of adequate com­
putational resources. 
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Part II In the second part, we studied the chaotic behavior of the classical 2D Lorentz gas 
via random matrix theory. We develop the level spacing statistics by constructing a length 
matrix of some trajectories of a point-particle, confined in a lattice of fixed rigid disks with 
a triangular symmetry. Via this matrix, which is symmetric and Hermitian, we compute 
the NNS distribution P(s), the spectral rigidity A3(£), as well as the spacing auto-correlation 
function of the system. The numerical experiments with 2D Lorentz gas in the case of the 
finite horizon, led us to the following observations: 

(i) For a given pair of boundary points, the numerical errors take an exponential behavior 
as a function of the number of rebounds of the moving-particle with hard scatterers. Such 
behavior is not found in the integrable systems. Therefore, it can be considered as a signature 
of chaos in chaotic systems. 

(ii) The distribution P(s) of nearest neighbor level spacing (NNS) fluctuations, obtained 
from eigenvalues of the length matrix A, indicates a Wignerian distribution. This is consistent 
with the GOE behavior predicted by the random matrix theory. 

(iii) The spectral rigidity A3(P) and the correlation function C, also obtained from the 
spectrum of length matrix A, are in agreement with GOE statistics, as well. 

(iv) In comparison to the functions P(s) and A3(f), where unfolding has eliminated much 
physical information about the system, more information is maintained in the distribution 
P(A) of length matrix elements. For example, it was found to tend to a Gaussian, in the 
limit AU -* °° (ie. for macroscopic times), which is also the case for the random walk 
model (Brownian motion). Such behavior is predicted by rigorous mathematical results on 
the central limit theorems (CLT), in the case of the periodic Lorentz gas [138, 139], and in 
the case of the stadium billiard [141]. Furthermore, there is numerical evidence for such 
behavior from the modeling of the cardioid billiard [72]. From the modeling point of view, 
answering such a question is computationally quite expensive, because increasing the number 
of rebounds requires to increase the internal arithmetic precision (i.e. the scale of arithmetic 
resolution). If one would find that P(A) ultimately becomes a Gaussian, then it would mean 
that presumably more classically chaotic systems show the CLT behavior than those few 
where rigorous proofs exist. 

(v) In the case of the infinite-horizon, the NNS distribution P(s) and the Dyson-Mehta 
rigidity A3({) obey the GOE-statistics, denoting the chaoticity of the system. But, the length 
distribution P(A) exhibits some deviations from a Gaussian form, which arises from long free 
paths of the moving-particle. Such difference with the Gaussian function indicates that P(A) 
does not follow the standard CLT. However, its resemblance to the normal distribution says 
that possibly there is a limit theorem in this regime of the Lorentz gas. 
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(vi) We have also studied a 2D billiard, composed by optical media located in a Buni­
movich stadium. Such a model is similar to a chaotic potential system. We have computed 
the time-of-travel matrix and its spectrum and performed a statistical fluctuation analysis. 
Likewise the Lorentz gas, for this system we found that the nearest-neighbor spacing distri­
bution, spectral rigidity and the correlation coefficient are consistent with the GOE-statistics, 
consistent with random matrix theory. In addition, the histogram P(Tjj) of the travel-time 
matrix elements is close to a Gaussian. 

(vii) The above conclusions for P(A), P(s), A3(H), as well as the auto-correlation function 
C, results out a universal behavior of the two classical systems in question (i.e. the Lorentz 
gas and the optical billiard). All the work establishing universality in classical chaos via 
correlation functions of periodic orbits, is based on classical periodic orbits (for example, 
see Ref. [70]). However, in our study of classical chaotic billiards, universality can be also 
observed based on non-periodic bouncing trajectories. 

If one considers classically chaotic billiards in the regime of universality, where P(A) 
asymptotically approach a Gaussian and A becomes a random matrix from a GOE, then one 
can compute physical observables. For example, we studied the diffusion coefficient of the 
Lorentz gas using the trajectory length of the point-particle. We computed the variance of 
length AA2 of trajectories, and achieved the following observations: 

(a) In the finite-horizon (bounded) regime, we found that there is a linear relation between 
the variance of length, and the number of collisions of the particle with rigid scatterers. Due 
to this property, we can define a normal diffusion in the case of the finite-horizon model. It 
is compatible with the global behavior of the customary diffusion coefficient obtained from 
other formulations, such as Green-Kubo [120, 155] and Machta-Zwanzig [151] formulas. 

(b) In the localized regime, the variance of the trajectory length is roughly zero. This 
means that in this case essentially there is no diffusion. This confirms that the particle is 
caught in the trapping zone and is unable to leave this area. 

(c) For the infinite-horizon, due to numerical fluctuations originated from long free mo­
tions, the variance displays an irregular feature with respect to the number of bounces. As 
discussed in chapter 7, theoretically the standard diffusion constant in this regime goes to 
infinity, but based on theoretical predictions it should be a finite value (anomalous diffusion) 
after a logarithmic correction. In Ref. [72], we have numerically justified that the Buni­
movich stadium billiard displays such a behavior. However, for the Lorentz gas, there is 
no conclusive numerical evidence in literature related to this subject, and also our present 
computational tools have not yet allowed us to make a definitive statement on a logarithmic 
behavior. Nevertheless, this may be a subject of further research. 



Appendix A 

Peter-Weyl Theorem 

Invariant subspaces: Suppose R is a representation of a gauge group G on a vector space 
rV, and "Vs is a subspace of *V. The subspace *V5 is invariant with respect to R(g) if and only 
if R(g)'Vs c T^ for all g e G. For any i?, the vector space 'V itself and the subspace {0}, are 
trivially invariant [159]. 

Irreducible representations: If an invariant subspace rVs contains just trivial invariant 
subspaces, then it is a minimal or proper subspace. In such case, the corresponding represen­
tation R(g) on *V is called "irreducible" [108, 159]. In other words, it is a representation with 
the lowest possible dimension. Every representation can be characterized as a direct sum of 
irreducible representations. This means that there is at least one trivial invariant subspace 
"V5. For example, one can refer to any representation of G on a non-zero one-dimensional 
complex vector space, in which there is no place for any subspace between {0} and *V. 

As another example, let us consider the rotation group SO(2), which is characterized by 
the rotational operator U((p) on a finite-dimensional vector space rV. For an infinitesimal 
angle (p, the rotation operator is given by 

U(<f>) = e"*7 . (A.l) 

where J is the angular momentum operator. Now, for any integer vector \m) in a trivial 
invariant subspace of SO(2) and considering J \m) = m \m) one writes 

U(4>)\m) = e-im*\m) , (A.2) 

where m is an integer number. 
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According to the theorem 6.4 in Ref. [108], the single valued irreducible representations 
of SO(2) are given by J = m, where m is any integer. These representations are identified by 

V(</>) = e-*"* . (A.3) 

For instance, when m = 0, then U(4>) = 1 which is the identity representation. In the case of 
m = ±1, one has U(<p) = e*'0 which covers once the unit circle in the clockwise for m = +1 
(and the opposite direction for m = -1) for the rotation over group space (0 : 0 —> 2/r). 

Peter-Weyl theorem: If G is a compact Lie group, then the matrix elements of finite di­
mensional irreducible representations of G form a complete set of orthogonal vectors in the 
space L2(G)X, i.e. they construct a Hilbert basis for L2(G) [159]. 

Notice that 
[dif] \<b(if)\2 < +co , <g e G, (A.4) I' IG 

and the inner product is 

I <0| *P) = [dif] <S>(if) V(if) , O, ¥ € L2(G) , (A.5) 

where [dif] is the normalized invariant group measure. A complete proof of this theorem can 
be found in Ref. [159]. Here we bring a few examples of this theorem. 

The irreducible representation matrices iy(if)2 of the groups SU(2), SO(2) and SO(3) 
form a complete basis in the space of square integrable functions. 

In the case of SU(2) the orthonormality condition 

(2y + 1) J[dif] D)mm
n Di'(if)»m, = ô* tf bZ (A.6) 

holds for the irreducible representation matrices TV (if) [108]. Beside this orthonormal prop­
erty, the rotation matrices TV (if)'" construct a complete basis in the space of square integrable 
functions <!>(if) defined on the group manifold: 

<*>(if) = Y < l > " ™ i y i ^ - (A-7) 

j m n 

lL2(G) denotes on the infinite dimensional Hilbert space of square integrable functions G> defined on the 
group manifold. 

2In the case of finite-dimensional representaton, by choosing a set of basis vectors |e,-) on the vector 
space "V the operators R(&) are realized a s « x « matrices D^f^f) in the ^-representation, where U(^) |e,} = 
h ) £" (# ) / , Êf € G, i , j= \ , . . . , n . The orthonormality condition of these matrices is — Y ^(^) k

iD v (^) i
l = 

S^ô'jô'i, where nc is the order of group and n,, is the dimension of the ^-representation. 
" cV 
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According to Eq.(A.6) one obtains 

V} m = (27 + 1 ) J [dif] D)(<â)"m ®(if). (A.8) 

Combining this equation with Eq.(A.7) yields 

Y (27 + 1 ) £ W D](ifym = ô(if-if'). (A.9) 
j m n 

As a special case, if one considers the parametrization of SU(2) in terms of the Euler angles, 
then 

ô(if - if') = 1 on2 ô(a - a') <5(cos/? - cosy?') 6(y - y ) . (A. 10) 

The rotation operators U"(<p) of the compact group SO(2) also fulfills the orthonormality and 
completeness relations (Theorem 6.6 in Ref. [108]) 

- f 
2* Jo 

2n 

d(f> U'n(<f>) £/"(<£) = 6™ (orthogonality) 

(A. 11) 
Y ^ ( 0 ) Ut(<f>') = 6(<t> ~ </>') (completeness). 

n 

The situation is similar to the gauge group U(l), because it is locally isomorphic 3 to the 
group U(l). Notice that when U"((p) = e~m '̂, the above theorem is equivalent to the Fourier 
transform of periodic functions. 

In the case of the group SO(3) one can also obtain the completeness relation of spherical 
harmonics Y\ m over the space of square integrable functions defined on the unit sphere as 

Y YUd, </>) Yl(9', </>') = <5(cos0 - cosfT') 6(<p - </>') . (A. 12) 
l m 

The orthonormality relation also holds for the spherical harmonics: 

/ 
^(cos) d<f> Yl(9, <f>) YVm,(e, </>) = ôir ômm. . (A. 13) 

Peter-Weyl theorem for group SU(N) : In general, this is also true for gauge group SU(N). 
The irreducible representations in the notation of Young diagrams are identified by a partition 
and are denoted by 

{v} = {v,;...;VJV_I},wherev, > ••-> vv_i . (A.14) 
3Two groups G and G' are said to be isomorphic if there exists a one-to-one correspondence between their 

elements, which preserves the law of group multiplication. In other words, if ^ e G , ^ ' e C and ̂ 1^2 = ^ e 
G, then g ^ = g/y e G' and vice versa [108]. 
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The numbers {v} are integer, and it is convenient to define the number 

N - l 

n = Y V i - <A15> 
1=1 

Elements of the group manifold can be conveniently parameterized by 

N 2 - l 

if = exp Y f^/2 
I (A.16) 

where f x , . . . , f^-i denote the group generators in the fundamental representation. A group 
element if in the irreducible representation, characterized by index {v}, is given by a matrix 

D[v
b

](if), (A.17) 

where a, b are the matrix indices running from 1 to the dimension |v| of the irreducible repre­
sentation. 

In order to compute the transition amplitude of the electric Hamiltonian, one can use the 
following corollary of the Peter-Weyl theorem. Let C denote the quadratic Casimir operator, 

N 2 - l 

C = Y ^ - (A-18) 
7=1 

Let Cv denote the eigenvalue of C in irreducible representation {v}. Then as a corollary of the 
Peter-Weyl theorem, one can express a matrix element of an operator function f(C) by 

(if\f(C)\if') = 

Y Y J VM^ , ( ^ 1 ) / (CV)VM^ , ( ^ ) = 
(v) a,b=\ 

Y \v\f(Cv)Tr[DM(if-xif')] = 
V 

Y \y\RCv)x{v\^-^')- (A.19) 
V 

The sum over {v} runs over all partitions {v} = {vx;... ; v^!} with vi > • • • > v ;^ and 

X[v](if) = Tr[D[v\if)] (A.20) 

denotes the group character. The Eq.(A.19) can be used to compute the transition amplitude 
under evolution of a Hamiltonian in the SU(N) gauge theory. 



Appendix B 

Numerical Algorithms of LGT 

In general, the algorithms used in lattice gauge theory (LGT) simulations are classified into 
two main categories; deterministic and stochastic [160]. Both algorithms are suitable for 
problems in general forms and do not depend on structures and details of systems under 
consideration. In the case of stochastic algorithms, the usual strategy is to apply the Monte 
Carlo technique, while in deterministic methods people often employ the microcanonical al­
gorithm [160, 161, 162]. In the microcanonical algorithm (which is also called the molecular 
dynamics method), the temperature changes during the updating of a system, but its total 
energy remains constant. On the other side, the energy of the system varies in the Monte 
Carlo algorithm, while its temperature is fixed. The Monte Carlo algorithms stochastically 
move through configuration space, while the microcanonical algorithm moves deterministi-
cally. Even to have more efficiency, one can combine both methods together in such a way 
that via the Monte Carlo procedure system tends to an equilibrium state at a special temper­
ature, thereafter one tries to employ microcanonical algorithm to evolve system, in order to 
measure physical observables [160, 163]. Below, we briefly demonstrate both methods. 

B.0.3 The Monte Carlo algorithm 

The main hypothesis of the Lagrangian LGT generally is that the physical observables can be 
evaluated via 

< Ô > = 1 f[d<t>]Ô[(l>]e-SM, 
(B.l) 

Z=f[d<f>]e-SM , S[4>]=PoV[4>], 
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where p 0 in the action S [</>] is the bare coupling constant of gauge theory, Z is the partition 
function of field theory, and [tp] denotes gauge and fermionic fields. This is, indeed, equiva­

lent to the formulation of a canonical ensemble in classical statistical mechanics. The stan­

dard way to determine the expectation value in Eq.(B. 1 ), is to use the Monte Carlo method. 

During the Monte Carlo process in the LGT simulations, the values of all lattice links 
are updated through a random procedure, until they produce physical and meaningful field 
configurations. In fact, this process constructs a set of configurations <f> through a Morkov 
chain. In this case when a system arrives in a statistical equilibrium state, then the probability 
of finding each configuration in the Markov chain is proportional to the Boltzmann weight 
factor 

PB(<f>)= exp [­5(0)] , (B.2) 

where S(<p) is the action of the LGT. 

In order that the system attains the statistical equilibrium, the probability of changing a 
configuration <p into a new </>' is equivalent to the probability of converting <p' back to (/>. This 
is called the "detailed balance" [2], which should be the case in each step of the Monte Carlo 
procedure. It is mathematically characterized by 

P(4>) T(<p ­* </>') = P(d>') T(4>' ­ ♦ </>). (B.3) 

The factor T(<p —* (/>') specifies the transition probability from <p to <f>', which is defined by 

TifP ­* <f>') = ™ ( l , ^ } == m/n{l,exp[­AS]}. (B.4) 

Therefore, in order to update the system from a configuration <p into another configuration 0', 
first one computes the change in action as 

A S = S ( ( / > ' ) ­ S (4>). (B.5) 

Then, if AS < 0, the change is accepted and <p is replaced by </>'. Otherwise, if AS > 
0, the new configuration is accepted with the probability exp[­A5]. One can do this by 
generating a psudo­random number r in the interval (0,1] with a uniform distribution. Now, 
if exp[­A5] > r, then <p' is accepted as a new configuration, otherwise it is rejected and 
the old configuration </> is conserved. Finally, one obtains a set of equilibrium configurations 
allowing one to measure the partition function and expectation values of observables. This 
procedure of constructing a sequence of system configurations is known as the Metropolis 
algorithm [115], which we use it in the Monte Carlo method with importance sampling to 
evaluate ratios of path integrals. 
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B.0.4 The microcanonical algorithm 

One can formulate the Euclidean LGT in terms of microcanonical ensemble approach in sta­
tistical mechanics [162]. For this purpose, one can involve the canonical momentum variables 
n in the Eq.(B. 1) without impressing the expectation value of the observable Ô[(f>] as a func­
tion of <f>. In fact, by adding these degrees of freedom, the configuration space is enlarged 
without changing the physics of the problem in question. Therefore, one can write [162] 

< Ô > = 1 f[d<p] f[dU] Ôm e - ^ v w + K [ n x ) , 

= f[d<p] f[dYl] e-A(™+*m]) ^ 
(B.6) 

where A [̂n] (i.e. the kinetic energy), is a functional of the canonical momentum n, and V[4>] 
plays the role of potential energy. This is still a canonical formulation of LGT. 

On the other hand, in a microcanonical ensemble, the total energy of the system in 
Eq.(B.6) is conserved. Thus, by considering the Hamiltonian H(cp, TV) = V[<f>] + K[TY], the 
dynamics of such a closed system is governed by Hamilton's equations. 

^ dV . 3K m „ 

The solution of this equation is a trajectory in the 2N-dimensional phase space {<p, \~Y}. Along 
that trajectory, one can compute the expectation value of any observable Ô(cp, U), given 
by [162] 

1 f ' 
< 6 > > = l i m - dt'0[(f>(t'),Tl(t')], (B.8) 

'^°° t Jo 
where t —» co stands for the thermodynamic limit. 

In the case of U(l) LGT, Callaway et al. [162] computed the average kinetic energy (K) 
as well as the average action (S) = /30 (V) from the microcanonical approach. For example, 
for the kinetic energy they obtained 

(K) = ^ , (B.9) 

where AUep denotes on the number of linearly independent variables among the AUk gauge 
field variables. Due to the local gauge symmetry in the theory, AUep is lower than Nym̂  [162, 
163]. In the case of a large ^/-dimensional lattice, when the number of link variables goes 
to infinity (i.e. the thermodynamic limit), then the number of independent variables is given 
by [162,163] 

1 AW=(^- l )AC l l e , (B.10) Ni indep d 
where A ^ states the number of lattice sites in each direction. 
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B.0.5 Updating a lattice configuration 

The microcanonical technique is mostly used for the fermion-gauge-scalar models where a 
huge CPU time is required for constructing lattice configurations, especially due to the pres­
ence of fermions on lattice sites. However, in our simulations we only consider a pure gauge 
theory, hence, a Metropolis algorithm is efficient enough for our numerical computations. 

Now, having Metropolis algorithm at hand, we want to construct an ensemble of equi­
librium gauge field configurations. All lattice links require identical numerical calculations. 
But, the problem is that to hold the detailed balance procedure in the Metropolis process, 
in the case of LGT, one cannot update the adjacent interacting gauge links at the same time 
because of their mutual interactions. However, in the latticized gauge action one can simul­
taneously update at least a half of link variables in each direction and preserve the detailed 
balance. We illustrate this point in two schemes in the following sections. 

Here we talk on U(l) LGT, which is the discretized version of quantum electrodynamics. 
As discussed in Chapter 1, in the compact model of U(l) LGT, the electric field on a link 
is represented by an angle 6, which is an element of U(l) gauge group. Each link settles 
along one of the directions in the Cartesian reference frame, and connects adjacent lattice 
sites. We have used the standard form of the Wilson action, which consists of 1 x 1 Wilson 
loops (plaquettes). One can also use the improved forms of the Wilson action, containing 
larger Wilson loops, in order to economize numerical simulations. This is usually interesting 
in the lattice QCD simulations in (3+l)-dimension, particularly for working on large lattice 
sizes. However, this topic is out of scope of our work on U(l)2+i lattice gauge group, and we 
employ the standard Wilson action [1] for a pure gauge theory. 

15.0.6 The even-odd and the linear preconditionings 

In this section, we illustrate two algorithms, which enable us to work with lattices in the 
Cartesian coordinates. They are efficient methods such that allow us to enormously minimize 
the number of serial calculations needed to perform a Monte Carlo[163, 164] or molecular 
dynamics updatingfl 19] over all the links of the lattice. 
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Checkerboard pattern 

Here we talk on the even­odd preconditioning [119] method of lattice in (2+l)­D, which is 
also called the checkerboard masking [164]. Consider the link connecting two lattice sites 
n and n + ap, where p generally is one of the Cartesian unit vectors Jc, y, t, and a points 
on the lattice spacing. In the case of (3+l)­dimension the direction z also joins to these 
components. As one observes from Fig.[B.l], each plaquette makes a staple containing three 
links in the plane p ­ v and attached to the considered link U^ri) = er9^. Actually in each 
plane p ­ v, there are two staples around the link in question. This means that in (2+1) 
Cartesian dimensions, each link is associated with at most four staples. Fig.[B. 1] shows such 
a situation for the temporal link U,(n) touching with four staples. However, if one talk just 
about spatial staples, their maximum numbers are two. For example, let us take a look on 
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Figure B.l: Four staples around the link variable UM(n) out going from the site n [164]. Note 
that here p = t. 

all the links in the plane p ­ v, with the orientation p. For a moment let us concentrate only 
on those links which can be updated at the same time without altering the other links. For 
instance, the link variables in the p direction, which can be simultaneously updated, are labled 
by Ufj(n), Ufj(n + ap), U^n + 2ap) and so forth. It is clear from Fig.[B.2] (left panel) that 
one can imagine a checkerboard, organized by those links. Furthermore, one can observe 
that each updating link does not take place in the staples around the other updating links. 
Consequently, a half of the links along the p axis in the plane/; ­ v can be updated at the same 
time [164]. This is the case for every Cartesian orientation. 

Linear pattern 

Another possibility to renew the lattice links is to use a linear architecture [164] which is 
equivalent to the previous one. As Fig.[B.2] (right panel) shows, all links are divided into two 
colors in a linear fashion in this scheme. By analogy to the checkerboard preconditioning, 
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M M 

Figure B.2: Left panel: The checkerboard architecture of lattice links. In each direction, the 
links around plaquettes of the same color are updated simultaneously without effecting the 
other links. Right panel: The linear scheme of link variables in the plane p - v . The links with 
the same color in each line can be updated at the same time during a Monte Carlo procedure, 
without interfering with the other links in this plane. 

here also all the links with the same color in a given orientation, e.g. p, can be updated 
simultaneously in a linear pattern. The reason of such equal renewing is that each updating 
link U^(n) does not have any contribution in the staples involving the other links along the 
considered line. Therefore, likewise in the checkerboard model, the links U^(n), U^(n + 
ap), U^(n + 2ap),... are updated at the same time by applying a Metropolis approach for 
each link. In other words, instead of considering the whole lattice plaquettes in the Wilson 
action (needed for the Monte Carlo procedure) here one works with elementary plaquettes 
connected to each link. Furthermore, we use them as the Wilson action in the Metropolis 
criterion in order to update that link. Since the links are divided into two colors, hence 
the above procedure must be done in two steps; one for each color. This is true for both 
checkerboard and linear methods. These techniques are the conventional methods in LGT 
simulations with the standard, as well as improved actions, and also they can be used for both 
serial and parallel programming in LGT simulations [164]. 
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Billiard Mapping 

According to Ref. [165], let us consider an arbitrary 2D planar billiard system including a 
point particle, which moves freely inside billiard domain £1. (see Fig.[C.l]). Starting from 
an initial position, the point particle successively collides with the boundary of system and 
constructs a zig-zag trajectory within the billiard zone. In our simulations, the main task is to 
construct such trajectories and compute the length of those zig-zag paths. 

For the sake of simplicity one can work in a polar reference frame. Hence, the perimeter of 
billiard is described by the function T(6), and the location of particle on the billiard boundary 
is characterized by the polar angle 0 and the radial distance r(0) (see Fig.[C.l]). Having a 
given position of particle (say A(r„ <?,)) at hand, one can find its next location on the boundary, 
e.g. the next collision point B(ri+i,Bi+\). To this end, let us parameterize the trajectory part 
AB in terms of the polar coordinates. Regarding Fig.[C. 1], this segment is given by 

where yS, determines the tangent of the trajectory AB. Now the point is that the subsequent 
destination B of the moving particle is, in fact, the intersection of the linep(0) and the bound­
ary T(6), given by 

p(6) - Y(6) i= >iff)Sm(f'~eà - T(ff) = 0 . (C.2) 
sinOS, - 6) 

In practice, and to ignore any indefinite result, one considers 

X(6) = r(6) sin(/3, - 9,) - T(9) sm(p, - 6), (C.3) 

as the utility to find the solutions of Eq.(C2). In the case of billiard boundaries described by 
differenciable functions T(8), a commonly applied method to find the zeros of such functions 
are the Newton-Raphson technique [166]. 
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ft î(Oi) 

Figure C. 1 : General scheme of dynamical billiard. The line passing the collision points A 
and B is described by p(6), and the radial distances OA and OB are parameterized by r(6). 

No matter what numerical technique we use, the solution of Eq.(C3) obviously is the 
angle 9i+x related to the contact point B. Now, the next step is to determine the angle ai+x, 
which identifies the angle between the normal vector to the boundary at A and the trajectory 
segment connecting A and B. From Fig.[C.l] one can conclude that the angle p at the points 
A and B is given by 

Pi = 9j + (y,- + or,) , 

Pi = Oi+i +(T/+i - a i + x ) , 
where 

ai 6 [0, n ] , Pi e [0, 2TT] , and y(9) = tan-1 

In consequence, the angle ai+x is extracted from Eq.(C4) as 

T(G) 
dene) 

a M = (0,+i - G/) + (ai+x - a t) - y(6»,). 

(C4) 

(C.5) 

(C6) 

Through this procedure, when the initial position P0(G0,ao) of the billiard ball is available, 
one can determine its subsequent bouncing points on the boundary, and hereby characterize 
the whole zig-zag trajectory within the billiard area. 
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