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Résumé

Cette thèse présente une forme nouvelle de vérification de systèmes probabilistes en

utilisant des algorithmes d’apprentissage par renforcement. Le développement de très

grands et très complexes systèmes logiciels est souvent l’aboutissement d’un travail

d’équipe. L’objectif est de satisfaire le client en lui livrant le produit spécifié, sans

erreurs et à temps. Des erreurs humaines sont toujours faites lors du développement

de tels systèmes, mais elles sont d’autant plus faciles à corriger si elles sont détectées

tôt dans le processus de production. Pour ce faire, on a recours à des méthodes de

vérification et de validation. Dans cette thèse, nous avons réussi à adapter des tech-

niques d’apprentissage supervisé pour solutionner des problèmes de vérification de logi-

ciels. Cette approche nouvelle peut-être utilisée, même si le modle complet n’est pas

disponible, ce qui est une nouveauté en théorie de la vérification probabiliste. Dans cette

thèse, nous ne nous intéressons pas seulement à vérifier si, oui ou non, un système se

comporte exactement comme ses spécifications, mais aussi, à trouver, dans la négative,

à quel point il s’en écarte.



Abstract

This thesis presents a novel form of system verification through reinforcement learning

algorithms. Large and complex software systems are often developed as a team effort.

The aim of the development is to satisfy the customer by delivering the right product,

with the right quality, and in time. Errors made by developers will always occur when

a system is developed, but their effect can be reduced by removing them as early as

possible. Software verification and validation are activities that are conducted to im-

prove product quality. In this thesis we will adapt the techniques used in reinforcement

learning to Software verification to verify if implemented system meets its specifica-

tions. This new approach can be used even if the complete model of the system is not

available, which is new in probabilistic verification. This thesis main aim is not only

to answer the question whether the system behaves according to its specifications but

also to find the degree of divergence between the system and its specifications.
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Chapter 1

Introduction

Software is now used in various products, from small hearing aids to large super tankers.

The hardware used for the software products becomes smaller and cheaper with an

increased performance each year. The software products and systems have at the same

time become more complex and include more functionality. The users of the software

products expect the systems to function without problems even though the systems

become more complex.

There is always a risk, however, that a software does not behave as expected.

The system can return the wrong value, break down, or perform something else that

the user does not expect. If it is a safety critical system then wrong behavior can

be devastating. For personal computers, the wrong behavior might lead to that the

program has to be restarted. The wrong behavior is often caused by human errors

during software development.

The task of developing fault-free software systems is not easy. As the number of

lines of code increase and the number of interaction possibilities with the user, the

environment, or other systems increase, humans have difficulties of over-looking and

foreseeing all possible outcomes of the program execution.

The human errors can occur in several ways. For example, the designer of the system

might have misunderstood the way the system is expected to be used by the customers,

or the programmers might have misunderstood the designers of the system. A logical

fault could also have been implemented by mistake of a programmer.

These kinds of mistakes will always occur but their effects can be reduced before

the system is delivered to the customers with, for example, efficient verification and
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validation activities.

Motivated by the importance of fault-free software, we introduce in this thesis new

kind of evaluation metric, based more precisely on trace equivalence divergence, to verify

the conformance between the implemented system and its pre-established specifications.

To do so we adopt the techniques of reinforcement learning.

The introduction of this thesis is structured according to the following. The next

section presents research context and focus. Section 2 gives structure of the thesis.

1.1 Research Context and Focus

System verification refers to the activity of evaluating the system against specification of

the system, i. e. answering the question: Is the system right? System validation refers

to the activity of evaluating the system with respect to the customer’s expectations, i.

e answering the question: Is it the right system? Verification can thus be described as

evaluating whether the system behaves according to the specifications, while validation

can be described as evaluating whether the system behaves according to the user’s

expectations.

In this thesis we consider only one activity i.e., System verification to check if imple-

mented system meets its specifications. There are many notions available to verify the

equivalence between two processes in order to check if an implemented system confirms

its specifications. For example we have trace, failure, ready, simulation and bisimulation

equivalences. In this thesis we are interested in probabilistic trace equivalence notion.

If two processes (one process being the implemented system and another being the

specification) are trace equivalent we say that the system behaves according to the

specifications. One possible approach of interest to us from which this problem can be

tackled is through the use of techniques from artificial intelligence (AI), particularly

reinforcement learning (RL). Reinforcement Learning has two key advantages: the po-

tential of learning how to verify a larger system in a short time and the ability to

do so with or without a model of the system. Reinforcement learning concerns the

problem of a learning agent interacting with its environment to achieve a goal (Sut-

ton [19]). Instead of being given explicit examples of desired behavior, the learning

agent must discover by guided trial and error how to behave to get the most reward (or

reinforcement signal). Reinforcement learning has become popular as an approach to

artificial intelligence because of its algorithms and mathematical foundations (Sutton
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and Barto[18], Bertsekas and Tsitsiklis[1]) and also because of a series of successful

applications (Tesauro[23]; Crites and Barto[4]; Zhang and Dietterich [26]). In addition,

the basic advantage of RL compared to other learning approaches is that it requires no

information about the environment except for the reinforcement signal ( Narendra and

Thathachar [13]). Reinforcement learning theory will be discussed in detail in chapter

3.

The model used in verification theory to represent the process is called Labelled

Markov Process (LMP). This model is an oriented graph where the vertices repre-

sent the states of the process and the outgoing edges are associated with possible

actions. The choice of a specific edge given an action is determined by a stochastic

probability distribution. RL is generally used to solve the so-called Markov decision

processes(MDPs). In other words, the problem of finding the difference between any

two LMPs RL methods must therefore be translated into a problem of finding the op-

timal policy on some particular MDP. MDPs are very similar to LMPs.However with

LMPs,the goal is to find all the possible ways to get the system into a dead lock and for

MDPs the goal is usually to find an assignment of labels to states such that the total

(discounted) reward obtained is maximized. In other words, although MDPs can be

viewed roughly as LMPs with rewards, the goal in solving them is very different: in the

first one, we want to find a way of behaving, or policy, which yields a maximal amount

of reward, and in the second one, we are interested in questions regarding which states

are reachable, which states will be revisited etc.

Blute, Desharnais, Edalat and Panangaden [2] introduced the notion of bisimula-

tion for Labelled Markov Processes by extending the Larsen and Skou’s [11] notion of

bisimulation for probabilistic transition systems. This current notion of bisimulation

distance is based on knowing the models of the two LMPs. Intuitively the smaller the

distance between the two processes the more alike their behavior; in particular, they

showed that states are at zero distance just in case they are bisimilar. On the other

hand the RL approach that we develop in this thesis is particularly effective even when

a model of the system is not available, but interaction with the system is permitted.

This is exactly the situation here as we do not have any knowledge of the process that

represents the system implementation but we are only able to interact with it. Once

we construct the MDP from the two LMPs(One representing the implemented system

and another representing the specifications), whose divergence needs to be verified, we

apply the RL algorithms on this newly obtained MDP to find a policy, whose value

determines the degree of divergence between the two initial LMPs.
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1.2 Structure of the thesis

This section provides the structure of this thesis.

Chapter 2 reviews the theory of probabilistic verification. Here we recall the defin-

itions of both probabilistic and non-probabilistic labelled transition systems. We also

present the definition of Labelled Markov Process which is a particular type of proba-

bilistic labelled transition system. We give the intuition behind trace and bisimulation

equivalence by providing their formal definitions and modal logic. Finally, we give the

metric semantics for trace and bisimulation equivalence. Since the results presented

in this thesis depend on the definitions and the theory of trace equivalence we highly

encourage the reader to read this chapter with much attention.

Chapter 3 describes the notations of reinforcement learning and discusses the cen-

tral issues of reinforcement learning, including the trading off between exploration and

exploitation in solving Markov decision processes. Different reinforcement learning tech-

niques will be explained for example dynamic programming, monte carlo, and temporal

difference methods. In this thesis we have chosen temporal difference algorithm, more

precisely, Q-learning algorithm in the process of implementing our model.

Chapter 4 presents our model for checking trace equivalence between labelled Markov

processes using reinforcement learning algorithms. Two approaches for MDP construc-

tion have been proposed. The first approach that we developed gives some information

about trace equivalence but did not characterize it. Counter examples are provided in

the chapter. However, with collaboration from Josée Desharnais, my director François

Laviolette and Sami Zhioua we developed a second approach that gives rise to the notion

of divergence that we were looking for. In this chapter we give the MDP construction

that leads to this notion and also give empirical results related to it.

Chapter 5 concludes this thesis with a summary of the main contributions, and

suggestions for future work.



Chapter 2

Probabilistic Verification

Formulating suitable models for the formal description, specification and analysis of

concurrent systems is an important topic of study in theoretical computer science. A

concurrent system is one where programs communicate among themselves by some

well-defined mechanism and also continuously interact with the environment. Some

systems can be designed in such a way that they are guaranteed to behave correctly

under all circumstances, like total breakdown of the system or its physical environment.

For example, one can design integrated circuits or write computer programs in such a

way that they will perform exactly as intended, if the power supply is present and the

computer is not physically damaged.

On the other hand, for many types of systems this guarantee of correctness cannot

be achieved either because it is impractically expensive, or because the system includes

intrinsically unreliable components. Examples of these systems include telecommuni-

cation systems and computer networks, distributed systems built over these networks,

and complex software-controlled physical systems such as industrial plants, electrical

power stations and transportation systems.

When a system cannot be guaranteed to exhibit the desired behavior under all

circumstances, it becomes important to characterize the likelihood of undesirable be-

haviors. For these systems, the concept of unconditional correctness is substituted by

bounds on the probability that certain behaviors occur. Using probabilities will also of-

fer a method of telling how good or bad certain systems are: if the probabilities of errors

occurring are very low, the system can be deemed useful, whereas if the probabilities

of errors are very high, then clearly the system will have no practical applications.

A general model of above mentioned systems is given by so called labelled transi-
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tion systems (LTSs for short), which capture the notion of states and their changes by

performing transitions-which are labelled by actions. We begin this chapter by intro-

ducing the basic notions studied in this thesis. We define labelled transition systems

together with the notion of a process, based on which probabilistic transition systems

(exact definition to follow) called Labelled Markov Processes(LMPs) were developed.

The results presented in this thesis depend on the definitions and the theory of trace

equivalence and bisimulation. So the reader is highly encouraged to read this chapter

with much attention. We recall the definitions of labelled transition systems and prob-

abilistic labelled transition systems in section 1 and 2 respectively. In section 3, we

present the definition of labelled Markov process along with some examples. In section

4, we give the intuition behind trace and bisimulation equivalence. We then give the

formal definition of trace equivalence and bisimulation. In section 5, we give modal

logic for both trace equivalence and bisimulation. Finally, we give the metric semantics

for trace and bisimulation equivalence.

2.1 Non-probabilistic Labelled Transition Systems

A process is the behavior of a system. The system can be a machine, an elementary

particle, a communication protocol, a chess player. Perhaps the most abstract process

behavior can be described as follows: a process p performs an action from several

possible actions and becomes a process p
′
. Processes are considered as agents that can

execute actions in order to communicate with their environment. These actions can be

observed by an external observer and determine the visible behavior of the process.

This simple idea is formally captured by the notion of labelled transition systems(LTS

for short)[16]. A LTS is a rooted directed graph where each edge is labelled with an

action. Each vertex of the graph is a distinct state of the process, and each edge rep-

resents a transition between states, with transition labels determining the interaction

between the process and its environment(or with other processes)

Formally, a labelled transition system consists of a set of states(processes), a set of

labels(actions), and a transition relation −→ describing a change of a process state: if

a process p can perform an action a and become a process p
′
, we write p

a
→ p

′
.

Definition 1. A labelled transition system T is a tuple (S, i,A,−→) where

• S is a finite or countable set of states(or processes),

• i ∈ S is an initial state,
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• A is a set of labels (or actions),

• −→⊆ S ×A× S is a transition relation,

Example 1. Let us start with the classical example of a tea/coffee vending machine.

The very simplified behavior of the process which determines the interaction of the

machine with a customer can be described as follows. From the initial state representing

the situation ”waiting for a request” (let us call the state p), two actions are enabled.

Either the tea button or the coffee button is pressed (the corresponding action tea or

coffee is executed) and the state of the control process of the machine changes accordingly

to p1 or p2. Formally, this can be described by the transitions

p
tea
−→ p1 and p

coffee
−→ p2

Now the customer is asked to insert the corresponding amount of money, let us say

one dollar for a cup of tea and two dollars for a cup of coffee. This is reflected in the

control state of the vending machine with corresponding changes. It can be modelled by

the transitions

p1
1$
−→ p3 and p2

2$
−→ p3

Finally, the drink is collected and the machine returns to its initial state p, ready to

accept another customer. This corresponds to the transition

p3
collect
−→ p

We shall often use a graphical representation of labelled transition systems. The follow-

ing picture represents the tea/coffee machine described above.

p
tea coffee

p1

1$

p2

2$

p3

collect

Figure 2.1: graphical representation of tea/coffee machine

From now on, the notion of a process will be equivalent to a rooted labelled transition

system: the labelled transition system describes the process behavior and the root (a

selected node of the transition system) represents the initial state of the process.

One of the first questions to be answered is which transition systems should be con-

sidered equivalent? Should we consider the two processes of figure 2.2 equivalent? The
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notion of process equivalence is an important question in the theory of concurrency. The

equivalence notion between two processes is used to compare the intended specification

of the system to its actual implementation and equivalence between them is verified. In

other words, we describe both specification and implementation as labelled transition

systems, and then we verify if the two derived processes are equivalent. The problem

of equivalence between processes is complicated by the presence of non-determinism.

For better understanding of non-determinism, consider the two processes of figure 2.2 .

The process s0 is deterministic, whereas the process t0 is non-deterministic. The reason

being that, from the state t0 there exists two different transitions on executing the same

action. Starting from state t0, system can make the transition either to t1 or to t2.

s0

a

s1

b
c

s2 s3

t0
a

a

t1

b

t2

c

t3 t4

Figure 2.2: Non-deterministic process

2.2 Bisimulation: a game characterization

In general a process has many different possible behaviors, and we do not know in

advance which traces will be generated by a particular execution. However we can

determine in advance the set of all possible traces of a process P. The traces of a

process are the possible sequences of actions that the process can perform. This set is

written as traces(P). The trace equivalence is denoted by =T .

Definition 2. (Trace equivalence)P =T Q, if and only if traces(P) = traces(Q). Two

processes are trace equivalent if they have the same observable behavior, as measured by

traces.

Bisimulation equivalence has many equivalent definitions, here we will give one in

terms of games [22] because it is elegant and easy to understand, and therefore provides

an intuitive understanding of the notion. A bisimulation game on a pair of processes p

and q is a two-player game between an ’attacker’ and a ’defender’. The game is played

in rounds. In each round the players change the current processes p and q according

to the following rule.
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• The attacker chooses either p or q and performs an action a from the selected

process.

• The defender has to perform the same action a from the other process.

The players reach a new pair of processes p
′
and q

′
and the game continues with another

round from the current processes p
′
and q

′
.

A play is a maximal sequence of pairs of states formed by the players according to

the rule described above, and starting from the initial processes p and q. The defender

is the winner in every infinite play. A finite play is lost by the player who is stuck. Note

that the attacker gets stuck in current processes p
′
and q

′
if and only if no actions are

enabled from these two processes. If both players get struck in the same round,then

the defender is the winner.

The following standard fact highlights the connection between the winning strategies

in bisimulation games and bisimulation equivalence: processes p or q are bisimilar iff

the defender has a winning strategy(and non bisimilar iff the attacker has a winning

strategy).

Example 2. In this example we shall demonstrate that trace equivalence is not the

same as bisimulation equivalence. Let us consider the following processes s0 and t0.

s0

a

s1

b
c

s2 s3

t0
a

a
a

t1

b

t2
b

c

t3

c

t4 t5

Figure 2.3: Non-bisimilar processes

Both processes can only perform the traces ab and ac, and hence are trace (linear

time)equivalent. We will define a winning strategy for the attacker in order to show

that s0 and t0 are not bisimilar. In the first round attacker chooses the action a in the

process t0 by taking the left-most transition. The defender has only one possible answer

from s0 thus reaching a process s1. In the second round the attacker switches the process

and plays from s1 under the action c. the defender does not have the action c enabled

in the other process and hence he loses.

Park and Milner [14][12] proposed the notion of bisimilarity for LTSs. This notion

asserts that two processes are bisimilar iff any action by either can be matched with

the same action by the other, and the resulting processes are also bisimilar.
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Definition 3. (Bisimulation equivalence)Let (P, i,A,−→) and (Q, i,A,−→) be two

labelled transition systems. A relation R ⊆ P × Q is a bisimulation if (p, q) ∈ R

implies that for all a ∈ A,

• if p
a
→ p

′
then ∃q

′
∈ Q such that q

a
→ q

′
and (p

′
, q

′
) ∈ R; and

• if q
a
→ q

′
, then ∃p

′
∈ P such that p

a
→ p

′
and (p

′
, q

′
) ∈ R.

Two states p, q are bisimilar if there exists a bisimulation R such that (p, q) ∈ R. Two

LTSs are bisimilar if their initial states are bisimilar.

2.2.1 Logical Characterization of Bisimulation

There exists a nice correspondence between bisimilarity and a well-known modal logic

of Hennessey and Milner [10]. Two processes are bisimilar if and only if they satisfy

the same formulas of the logic introduced below. It is sufficient to find a formula that

distinguishes two processes in order to prove that they are not bisimilar. Hennessy-

Milner logic formula has the following syntax:

Φ := ⊤ | ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | 〈a〉Φ | [a] Φ,

The interpretation is as follows. ⊤ is the constant true formula and is satisfied

by every state. Negation, disjunction and conjunction are defined in the obvious way.

Formula 〈a〉Φ is satisfied by a state if this state can become a state that satisfies φ by

carrying out a-transition. Formula [a]Φ is satisfied by a state if every state it evolves

to after performing a-transition satisfies formula Φ.

2.3 Probabilistic Labelled Transition Systems

In this section we present probabilistic analogs of labelled transition systems introduced

by Larsen and Skou [11]. The natural extension of transition systems to probabilistic

case is probabilistic transition systems (PLTS for short), also known as Markov chains

or discrete-time Markov process. Probabilistic transition systems can be regarded as

a specialization of non probabilistic transition systems where probabilities are used to
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resolve non-determinism. In non-probabilistic transition systems, the possible steps

from states to successor state are described by a transition relation −→⊆ S × A × S

(where A stands for the underlying set of actions)i.e., state changes are associated with

action labels. Intuitively s
a
→ t asserts that, in state s , it is possible to perform action a

and to reach state t afterwards. the probability of choosing one particular transition is

unspecified. In contrast, probabilistic transition systems quantify the probability of each

transition by means of transition probability function P , where P (s, a, t) determines the

probability of performing action a from state s and to reach t in doing so.

Definition 4. A probabilistic transition system is a tuple (S,A,P), where

• S is a set of states (or processes)

• A is a set of actions (or labels)

• P ∈ S ×A× S −→[0, 1] a transition probability function satisfying:
∑

s′∈S P (s, a, s
′
) = 0 or 1. ∀a ∈ A ∀s ∈ S.

We will represent probabilistic labelled transition systems as transition graphs whose

edges are labelled with an action and a probability. We will label the edge of the graph

as a[p], where a is an action and p is the probability. We will just write a and drop the

probability when p = 1.

There are two different models for probabilistic transition systems introduced by van

Glabbeek et al. [25], namely reactive and generative. In the reactive model, the model

selected for consideration in this thesis, the environment is allowed to offer processes

one action at a time and if a process can perform this action a probabilistic choice is

made between the transitions associated with this action. The result is that, for any

action a process can perform, the total probability of the process performing transitions

associated with this action is required to be 1. Moreover, we can consider this model

as having both external and internal probabilistic choice: an external (deterministic)

choice made by the environment as to which action, a process is allowed to perform,

and an internal probabilistic choice as to which transition associated with this action

the process subsequently performs. On the other hand, the generative model allows

the environment to offer more than one action and processes then make probabilistic

choices between transitions associated with these actions. Hence this model represents

a type of external probabilistic choice and allows no further form of choice.

To illustrate the difference between these models consider the following example
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(where + denotes probabilistic choice):

1

4
a.E1 +

3

4
a.F1 +

2

3
b.E2 +

1

3
b.F2 and

1

8
a.E +

1

2
b.F +

3

8
c.G.

First, if we consider the behavior of the reactive process on the left, we note that if

the environment offers the action a then the process will perform an a transition and

behave as E1 with probability 1
4

and F1 with probability 3
4
. Similarly, if the process

is offered a b, it will perform a b transition and then behave as E2 with probability 2
3

and F2 with probability 1
3
. Now the generative process on the right (recall that in the

generative model the environment is allowed to offer more than one action at a time),

when offered the actions a, b and c, it will choose the a transition with probability 1
8
, the

b transition with probability 1
2

and the c transition with probability 3
8
. If, however, the

environment offers the actions a and b, then the process will perform the a transition

with probability 1
5

and the b transition with probability 4
5
. Note that these values are

reached by normalizing the probabilities over the possible choices allowed, that is, over
1
8
+ 1

2
. Similar calculations can be made for other actions being performed; in particular,

if one of the a, b and c is offered, the process will choose the associated transition with

probability 1.

2.3.1 Equivalences of Probabilistic Processes

In this subsection we discuss equivalences over probabilistic processes. We will restrict

our attention to models containing internal probabilistic choice(for example, any model

of reactive probabilistic processes), as this is the model considered in this thesis.

Definition 5. Let S = (S,A,P) and T = (T,A,P) be two probabilistic transition

systems. Then S is said to be trace equivalent to T if they accept any given trace with

the same probability.

Probabilistic bisimulation is an extension of bisimulation, described in Subsection

1.1.2, to allow for probabilities. Formally we can define a probabilistic bisimulation ≡p

over the set of processes of a probabilistic transition system, S say , as follows:

Definition 6. Let S = (S,A,P) be a probabilistic transition system. Then a proba-

bilistic bisimulation ≡p is an equivalence on S such that, whenever s ≡p t, the following

holds:

∑

s′∈A

P (s, a, s
′
) =

∑

s′∈A

P (t, a, s
′
) ∀a ∈ A, ∀A ∈ S/≡p.
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S/≡p denotes the set of equivalence classes of S under ≡p. Then two probabilistic

processes s and t are said to be probabilistic bisimilar in the case that (s,t) is contained

in some probabilistic bisimulation.

As mentioned earlier every edge of a PLTS is labelled with an action and a prob-

ability. We must observe here that probabilities are not just another label and both

must not be matched. Intuitively, we say that two states are bisimilar if by adding up

the transition probabilities to all the states in an equivalence class of bisimilar states

results in the same probability. For example, consider the following picture.

F

a[1]

F1

b[0.5]

b[0.5]

F2 F3

E
a[0.5] a[0.5]

E1

b[1]

E2

b[1]

E3 E4

Figure 2.4: Probabilistic bisimilar processes

If one tried to match the label with the probabilities, then F and E are not bisimilar

because F can jump to F1 with probability 1 whereas E can not jump to any state with

probability 1. However, we expect that states F and E are bisimilar because both can

jump with probability one to respectively the state F1 and the states E1, E2, which are

again all bisimilar because all of them make a transition with probability 1 to states

F2, F3 and E3, E4 which are also bisimilar.

2.4 Labelled Markov Processes

Labelled Markov processes (LMPs for short) provide a simple operational model of

reactive probabilistic systems. They were first introduced by Blute, Desharnais, Edalat

and Panangaden[2] and Desharnais [5]. An LMP can be viewed as a probabilistic

transition systems(see Section 2.3), except that its state can be infinite(even continuous)

and that the transition functions can be sub-probability transition function (i.e., might

not sum to 1). A Markov process is a transition system with the property that the

transition probabilities depend only on the current state and not on the past history

of the process. Transitions are labelled with a set of actions to describe the processes

interaction with its environment. In an LMP, they are governed by a probabilistic law.
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Unlike in traditional Markov processes, where the probability distributions always

sum up to 1, the sum of the probability distributions in LMPs can be less than 1.

If a particular action can not be performed from a state then a transition with this

action will have probability 0. This kind of no transitions would be represented with

a transition back to itself in case of concurrency theory. However, while modeling the

systems interactions with its environment it is important to distinguish between a state

that can make a given transition and one that cannot. The sum of the probability

distribution at any state must be between 0 and 1.

As mentioned earlier, since the state space of LMPs can be continuous we can not

just specify transitions by giving, for each label, a probability for going from one state

to another because in many interesting systems all such transition probabilities would

be zero. Instead we must give the probability of going from a state s to a set of states A.

Thus to deal with continuous state spaces, probability distributions are replaced with

probability measures. In brief, a labelled Markov process consists of a measurable space

(S, Σ) of states, a family Act of actions, and, for each a ∈ Act, a transition probability

function µ−,a that given a state s ∈ S, yields the probability µs,a(A) that the next state

of the process will be in the measurable set A ∈ Σ after performing action a.

Definition 7. A Labelled Markov process is a triple (S, Σ, µ) consisting of a set S of

states, a Σ-field Σ on S, and a transition probability function µ : S × Act× Σ→ [0, 1]

such that

• for all s ∈ S and a ∈ Act, the function µs,a(·) : Σ → [0, 1] is a subprobability

measure, and

• for all a ∈ Act and A ∈
∑

, the function µ−,a(A) : S → [0, 1] is a measurable.

The function µ−,a describes processes reaction to the action a selected by the en-

vironment. This represents a reactive model of probabilistic processes. Note that we

consider subprobability measures, i. e. positive measures with total sum no greater than

1, to allow for the possibility that the process may refuse an action. The probability of

refusal of an action a given the process is in state s is 1− µs,a(S)

2.4.1 Bisimulation for Labelled Markov Processes

Blute et al.[2] introduced the notion of bisimulation for labelled Markov processes by

extending the Larsen and Skou’s [11] notion of bisimulation for probabilistic transition
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systems. Desharnais et al.[6] have adapted this notion to the continuous case by taking

measurability into account. They rather demand that equivalent states have equal

probability of making transitions to any measurable set of equivalence classes of states.

Instead of considering sets of equivalence classes the notion of R − closed sets were

considered. Let R be a relation on set S. A set A ⊆ S is R− closed if x ∈ A and xRy

implies y ∈ A.

Definition 8. (Bisimulation relation) Let S = (X, Σ, µ) and S
′
= (X

′
, Σ

′
, µ

′
) be two

labelled Markov processes, then a bisimulation relation is an equivalence relation R on

X ∪X
′
such that for x ∈ X and x

′
∈ X

′
, with xRx

′
, for every R-closed set A ⊆ X ∪X

′

such that A ∩X ∈
∑

and A ∩X
′
∈

∑′
we have

µx,a(A ∩X) = µ
′

x
′
,a
(A ∩X

′
)

for every a ∈ Act. Two states are bisimilar if they are related by a bisimulation relation.

2.4.2 Modal Logic for Bisimulation

Desharnais et al.[6] extend the logical characterization of probabilistic bisimilarity to

labelled Markov processes. The modal logic proposed by Larsen and Skou contained

a weak form of negation and relied on minimal deviation assumption. The work of

Desharnais et al. is definitely an improvement over that of Larsen and Skou because

their logic does not contain any negation.They have proposed five modal logics to

characterize bisimulation for labelled Markov processes. We assume that there is a fixed

set of ”labels” or ”actions”. The letters a or b are used to represent actions. Among

the five modal logics, L is the simplest and has the following formulas as syntax:

⊤|φ1 ∧ φ2| 〈a〉q φ

where a is an action from the fixed set of actions A and q is a rational number.

The fact that a state s satisfies a formula φ is represented as s |= φ. The formula ⊤ is

satisfied by every process. The definition of conjunction is obvious. We say a state s

satisfies the formula 〈a〉q φ if and only if there exists A ∈ Σ such that for all s
′
∈ A, we

have s
′
|= φ and µa,s(A) > q. In other words, being in state s the system can make an

a-transition to a next state, that satisfies φ, with probability greater than q.
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The four additional logics that are syntactical extensions of L are defined below:

L∨ := L | φ1 ∨ φ2

L∆ := L |∆a

L¬ := L | ¬φ

LV := L¬ |
∧

i∈N

φi

Given a labelled Markov process (S, Σ, µ) we interpret the above formulas as follows:

s |= φ1 ∨ φ2 means that s |= φ1 or s |= φ2;

s |= ∆a means that µa,s(S) = 0;

s |= ¬φ means that s 6|= φ;

s |=
∧

i∈N

φi means that s |= φi for all i ∈ N.

Two processes are said to be bisimilar if they satisfy the same formulas of that logic.

Desharnais [5], proved that logic L characterizes bisimulation and therefore that nega-

tion and infinite branching are not needed for the logic to characterize bisimulation

between two LMPs.

2.4.3 Metrics for Labelled Markov Processes

In this section we recall the definition of a metric for approximate bisimilarity due to

Desharnais et al.[7] As we have seen in earlier sections the notion of bismulation is

used to check the equivalences between the processes. One drawback of this notion

is that a small difference in probabilities may result in non-bisimilar processes. To

overcome this, metric was introduced which refined the view of processes.This metric

will assign a number to every pair of processes, giving so an indication of how far they

are from each other.If the metric distance is 0, then the two processes will turn out to

be bisimilar, and conversely. Processes that are very “close”to being bisimilar will get

smaller distance than processes that are “far”from being bisimilar. The number itself

will not be of great importance, as is usually the case with metrics. It is the relative

distance that will be of importance.
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2.4.4 Testing Labelled Markov Processes

Van Breugel et al.[9] have characterized bisimilarity on a LMP as a testing equiva-

lence. They have extended the Larsen and Skou’s [11] result that probabilistic bisimi-

larity coincides with testing equivalence to the more general setting of labelled Markov

processes. The idea is to specify an interaction between experimenter and a process; the

way a process responds to the various kinds of tests determines a simple and intuitive

behavioral semantics.

The main idea is that a process is a black box whose only interface to its environment

consists of buttons (corresponding to actions). The most basic kind of test is to try and

press one of the buttons: either the button will go down and the process will make an

invisible state change (corresponding to a labelled transition), or the button will not

go down (corresponding to the absence of a labelled transition). The set T of tests for

bisimulation is given by the following syntax:

t := ω|a.t|(t1, ..., tn)

where a ∈ Act. The test ω does nothing but successfully terminate, while a.t

specifies the test: press the a-button and in case of success proceed with t and in the

case of bisimulation t can be in the form of b ∧ c i.e., from a state there may be two

possible actions possible. (t1, . . . , tn) specifies the test: make n copies of (the current

state of) the process and perform the test ti on the ith copy for i = 1, . . . , n. Finally,

test a(b∧ c) specifies that in case of success with the a-button try pressing the buttons

b and c. With each test t we associate a set Ot of possible observations as follows

Oω =
{
ω
√}

Oa.t =
{
a×}
∪

{
a
√
.e|e ∈ Ot

}
O(t1,...,tn) = Ot1 × . . .×Otn

The only observation of the test ω is successful termination: ω
√
. Upon performing

a.t one possibility, denoted by a×, is that the a-button fails to go down (and so the

test terminates unsuccessfully). Otherwise, the a-button goes down and we proceed to

observe e by running t in the next state; this is denoted by a
√
.e.

For a given test t, each state s of a labelled Markov process 〈S, Σ, µ〉 induces a

probability distribution Pt,s on Ot. The definition of Pt,s is by structural induction on

t as follows.



Chapter 2. Probabilistic Verification 18

Pω,s(ω
√
) = 1

Pa.t,s(a
×) = 1− µs,a(X)

Pa.t,s(a
√
.e) =

∫

(Pt, (e))dµs,a

P(t1...tn), s (e1, ..., en) = Pt1,s(e1)× . . .× Ptn,s(en)

The following theorem proposed by Worrell et. al. shows how bisimilarity may be

characterized using the testing framework outlined above.For each test t there is a distin-

guished observation,denoted t
√
, representing complete success: no action is refused.For

instance, if t = a.(b, c) then the completely successful observation is a
√
(b

√
, c

√
) .

Theorem 1. (Probabilistic Bisimulation ) Let 〈S, Σ, µ〉 be a labelled Markov process.

Then x, y ∈ S are bisimilar iff Pt,x(t
√
) = Pt,y(t

√
) for all tests t.

The idea is that for any test t and E ⊆ Ot, the probability of observing E can be

expressed in terms of the probabilities of making completely successful observations on

all the different subsets of t using the principle of inclusion-exclusion. For example, if

t = a.(b, c); then the probability of observing a
√
(b

√
, c×) in state x is equal to Pt1,x(t

√
1 )−

Pt,x(t
√
) where t1 = a.b.

We can do the same in the case of trace-equivalence. A trace is a sequence of possible

actions. Test syntax for trace equivalence is same as bisimulation except that the traces

can only be linear. For example we can accept the traces which are in the form of aba

or abcba but not a(b, a). To each trace a probability distribution on observation is

associated. For example, in process F of figure 2.4, the observations related to trace ab

have the distribution pa×=0, pa
√

b×=0 and pa
√

b
√=1. Based on this setting, we have the

straightforward result [11]:

Theorem 2. (Probabilistic trace-equivalence) Two processes are trace-equivalent iff they

yield the same probability distribution on observations from every trace.

The fact that tests in trace-equivalence setting are “traces ”(not the case for bisim-

ulation) can therefore be compatible with the necessity of sample of execution related

to the RL-methods.
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Reinforcement Learning

The purpose of this chapter is to set out the background to the notations of reinforce-

ment learning systems. It therefore discusses the central issues of reinforcement learn-

ing, including trading off exploration and exploitation, Markov decision processes, and

reinforcement learning techniques. In section 3.1 we start by introducing reinforcement

learning and the description of the basic reinforcement-learning framework. Section

3.2 explains the trade-off between exploration and exploitation. Section 3.3 introduces

Markov Decision Processes. Section 3.4 presents dynamic programming. Section 3.5

presents Monte carlo methods. Section 3.6 considers classic model-free algorithm for

reinforcement learning from delayed reward: Q-learning.

3.1 Introduction

Reinforcement learning (RL) [18] is a framework for computational learning agents that

use experience from their interaction with an environment to improve performance over

time. Reinforcement learning systems have been studied since the early days of cyber-

netics and work in statistics, psychology, neuroscience, and computer science. RL has a

solid theoretical foundation for its approaches, based on the theory of Markov Decision

Processes(MDPs). Most RL methods rely on the computation of value functions(exact

definition to follow), which evaluate the long-term performance of the agent.

There is no explicit teacher to guide a learning agent, instead the agent must learn

behavior through trial-and-error interactions with an unknown environment. A Re-

inforcement Learning agent senses a world, takes actions in it, and receives numeric
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rewards(pay offs) and punishments from some reward function based on the conse-

quences of the actions it takes. Positive payoffs are rewards and negative payoffs are

punishments. The agent must learn to choose actions so as to maximize a long term

sum or average of the future payoffs it will receive. Reinforcement learning theory

comprises a formal framework for describing an agent interacting with its environment,

which will be described in the following sub section.

3.1.1 Reinforcement-Learning Framework

In the standard reinforcement-learning framework, an agent is connected to its envi-

ronment via action, as depicted in Figure 3.1

Figure 3.1: The agent-environment interaction in reinforcement learning taken from the
book [18]

The agent and environment interact over a potentially infinite sequence of discrete

time steps t=1, 2, 3, . . . , though the time units do not need to correspond to fixed

interval of real time. Time steps can be determined by events happening within the

system, such as the environment’s change of state or the moment when a new action

has to be taken by the agent. At each time step t, the reinforcement learning agent

receives some representation of the environment’s current state, st ∈ S, where S is the

set of possible states, the agent then chooses an action, at ∈ A (st), where A (st) is

the set of actions that can be executed in state st. The action changes the state of

the environment, and the value of this state transition is communicated to the agent

through a scalar reward signal, r. Thus the agent receives a reward, rt+1, a real number,

and finds itself facing a new state, st+1 ∈ S. The numerical reward signal that the

environment provides is the primary means for the agent to evaluate its performance.

In other words its a scalar value which represents the degree to which a state or action

is desirable. Reward functions can be used to specify a wide range of planning goals

(e.g. by penalizing every non-goal state, an agent can be guided towards learning the

fastest route to the final state). It is the means by which the designer of an RL system
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can tell the agent what it is supposed to achieve, but not how. The reward function

must necessarily be unalterable by the agent. This constitutes a major difference from

supervised learning systems where examples of the desired response are provided by a

teacher. The RL agent should choose actions that tend to increase the long-run sum

of values of the reward signal. It can learn to do this over time by systematic trial and

error, guided by a variety of algorithms that are the subject of later sections of this

chapter.

The agent’s job is to find a policy, the rule the agent uses to select actions, it is

a function, often denoted π, that for each state assigns a probability to each possible

action: for all s ∈ S and all a ∈ A (s), π (s, a) is the probability that the agent executes a

when in state s. We expect, in general, that the environment will be non-deterministic;

that is, that taking the same action in the same state on two different occasions may

result in different next states and/or different rewards. While interacting with its

environment, a reinforcement learning agent adjusts its policy based on its accumulating

experience to improve the amount of reward it receives over time. More specifically, it

tries to maximize the reward it receives after each time step.

One can distinguish two main types of the RL tasks: episodic and continuing tasks.

In the case of episodic tasks, the interaction with the environment is naturally divided

into independent episodes. ”Independent” means here that the performance in each

episode depends only on the actions taken during that episode. In this thesis we will

only work with episodic tasks. Here there is a terminal state, where an episode ends.

The system then can be reinitialized to some starting conditions and a new episode

begins. Thus at the end of an episode the learning agent is guaranteed that there will

be no further delayed effects of its previous actions. Continuing tasks or infinite horizon

problems, on the other hand, consist of just one infinite sequence of state changes ,

actions and rewards.

In general, a return represents a cumulative function of the reward sequence. For

an episodic task, for example, it is the sum of all rewards received from the beginning

of an episode until its end: R(s0) =
∑T

k=0 rk+1 , where T is the terminal state where

episode ends and s0 is the starting state. In the case of continuing tasks, there are

many problems where one would value rewards obtained in the near future more than

those received later. In this case future rewards are discounted by a factor γ and the

return is defined as: ∞∑

k=1

γk−1rt+k (3.1)

where γ ∈ [0, 1) is the discount factor and t is the time step. Thus it is not immediate

reward that is to be maximized, but the agent must take into account the delayed conse-
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quences of its actions. Rewards or punishments do not necessarily have to immediately

follow the actions that have caused them, they may be received several steps later. This

is referred to as learning with Delayed reinforcement([21], [24]). The discount factor

γ adjusts the relative importance of the long-term consequences of actions versus the

short term ones; for 0 < γ < 1 reinforcement values distant in time are weighted less

than those received soon. It corresponds to the common sense idea that punishments

are less deterrent and rewards are less attractive if they are received in remote future.

Different γ’s may yield different optimal policies. In particular, if γ = 0, the agent is

only concerned with maximizing immediate rewards: its objective would be to learn

how to act at each time step t so as to maximize only rt+1. But in general, acting to

maximize immediate reward can reduce access to future rewards so that a longer-term

return may actually be reduced. As γ approaches one, the agent takes future rewards

into account more strongly: the agent becomes more far-sighted.

3.2 Exploration-Exploitation dilemma

The exploration-exploitation dilemma, which is an important problem frequently en-

countered in reinforcement learning, is defined as follows. When an agent is faced with

a state of the environment, it has to choose between two options: (i) exploration and

(ii) exploitation. The agent can choose to (i) explore its environment and try new

actions in search for better ones to be adopted in the future , or (ii) exploit already

tested actions and adopt them. When opting to explore new actions, the agent is con-

sidering its long term performance whereas when opting to exploit tested actions, the

agent is guaranteeing its short term performance. In order to highlight the problems of

exploration, we treat a very simple case in this section.

The simplest possible reinforcement learning problem is known as n-armed bandit

problem. The agent is in a room with a collection of k gambling machines(each called

a ”one-armed bandit” in colloquial English). The agent is permitted a fixed number

of pulls, h. Any arm may be pulled on each turn. The machines do not require a

deposit to play; the only cost is in wasting a pull playing a suboptimal machine. When

arm i is pulled, machine i pays off a numerical reward, 1 or 0, according to some

underlying probability parameter pi, where payoffs are independent events and the

pi’s are unknown. What should the agents strategy be? This problem illustrates the

fundamental tradeoff between exploration and exploitation. The agent might believe

that a particular arm has a fairly high payoff probability; should it choose that arm all

the time, or should it choose another one that it has less information about, but seems

to be worse? Of course, answers to these questions depend on the estimated life span of
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the agent. The shorter its life span, the more inclined is the agent to improve its short

term performances; subsequently, the more inclined is the agent to limit exploration.

Formally, the agent has to resolve two subproblems. The first subproblem consists

of choosing an exploration method. The exploration can be either directed or undi-

rected. The exploration is directed when the choice is based on the acquired knowledge

whereas it is undirected when the choice is random. The second subproblem consists

of identifying a method that switches the agents mode between exploration and ex-

ploitation according to the state of the agent and the state of its environment. The two

subproblems are important since they influence the learning speed, the performance

and the actions of an agent. This influence is more critical when the agents environ-

ment is dynamic -which is the case of many reinforcement learning systems. Balancing

exploration with the exploitation of current knowledge is a subtle problem that has

been extensively studied. In principle it is possible to optimally balance exploration

and exploitation by solving an MDP, which will be introduced in the section 3.3, whose

states summarize the agent’s entire history of observations and actions.

Several simple heuristic exploration methods are usually used in applications of

reinforcement learning. In the simplest explore/exploit strategy is where, the agent

selects ǫ − greedy actions. This means that with probability 1 − ǫ, the agent exploits

its current knowledge by selecting a greedy action, that is, an action that is optimal

given its current value estimates, and with probability ǫ, it selects an action at random,

uniformly independently of its current value estimates. It is very easy to implement

and enable the system to learn continually. Although ǫ− greedy action selection is an

effective means of balancing exploration and exploitation in reinforcement learning its

drawback is that when it explores it chooses equally among all actions. This means

that it is likely to choose the worst-appearing action as it is to choose the next-to-best

action. However, in stationary problems (i. e. problem in which its parameters do not

change in time) the continual exploration may lead to suboptimal results, even if the

optimal solution has already been learned.

The most obvious solution is the soft max action selection method. It chooses action

a from possible actions at time t with probability.

eQt(a)/τ

∑n
b=1 eQt(b)/τ

(3.2)

where τ is a positive parameter called the temperature. and Qt(a) is the value of the

state-action pair. Parameter τ controls the amount of exploration (the probability of
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executing actions other than the one with the highest Q-value). Q is the value of the

state-action pair (exact definition to follow). If τ is high, or if Q-values are all the same,

then a random action will be picked. If τ is low and Q-values are different, it will tend

to pick the action with the highest Q-value. In the limit τ → 0, the softmax selection

becomes the ǫ − greedy action selection. One problem of the softmax action selection

mechanism is to determine the value of τ , which depends on the task.

3.3 Markov Decision Processes

A great part of the work done on reinforcement learning, in particular that on con-

vergence proofs, assumes that the interaction between the agent and the environment

can be modeled as a discrete-time finite Markov decision process(MDP)(state and ac-

tions spaces are finite). In the general case of the reinforcement learning problem, the

agent’s action determine not only its immediate reward, but also (at least probabilis-

tically) the next state of the environment. Such environments can be thought of as

networks of bandit problems, but the agent must take into account the next state as

well as the immediate reward when it decides which actions to take. The model of

long-run optimality the agent is using determines exactly how it should take the value

of the future into account. The agent must learn from delayed reinforcement: it may

take a long sequence of actions, receiving insignificant reinforcement, then finally arrive

at a state with high reinforcement. The agent must be able to learn which of its actions

are desirable based on reward that can take place far in future. Problems with delayed

reinforcement are well modeled as Markov decision processes.

3.3.1 Basic Definitions

Markov Decision Processes(MDPs) are a standard, general formalism for modeling sto-

chastic, sequential decision problems [17]. A Markov decision process consists of a tuple

< S,A, P,R >. We describe these in detail below.

• S is a set of states. Each state must satisfy the Markov property : which means

that environment’s state at any time step t > 0 provides the same information

about what will happen next as would the entire history of the process up to step

t. Unless stated otherwise, we assume that states are finite set, and the agent is

able to determine the state it is in.
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• A is a set of actions available to the agent. We will assume that this set is finite,

and that all actions are available to the agent at each state.

• P a
ss

′ = Pr
{
st+1 = s

′
|st = s, at = a

}
is a state transition function that defines the

probability of transitioning to state s
′
at time t + 1 after action a is taken when

agent is in state s at time t. Because of the Markov property, the probability of

a transition to state s
′
only depends on the prior state and action taken.

• Ra
ss

′ is a reward function that determines the probability of receiving reward after

choosing action a in state s and going to the next state s
′
.

We will use the symbols st, at, and rt to denote the state, action and actual reward

at time step t.

3.3.2 Markov Property

From the above definitions it follows that both state transitions and rewards in an MDP

depend solely on the current state and current action. It is important to emphasize that

there is no dependence on previous state, action, and reinforcements. This is referred

to as the Markov property, and is crucial for all reinforcement learning algorithms we

are going to consider.

Formally the Markov Property holds if,

Pr
{

st+1 = s
′
|st, at

}

= Pr
{

st+1 = s
′
|st, at, st−1, at−1, ...s0, a0

}

(3.3)

holds. That is to say that the probability distribution over states entered at t + 1 is

conditionally independent of the events prior to (st, at) - the next state and immediate

reward depend only on the current state and action. In reinforcement learning , we also

assume the same with the reward function,

Pr {rt+1 = r|st, at} = Pr {rt+1 = r|st, at, rt, st−1, at−1, rt−1...s0, a0, r1} (3.4)

The Markov property is a simplifying assumption which makes it possible to reason

about optimality and proofs in a more straightforward way. For more detailed account

of MDPs refer to Puterman’s book [17]. In the following sections , the terms process

and environment will be used interchangeably under the assumption that the agent’s

environment can be exactly modeled as a discrete finite Markov process.
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3.3.3 Policies and value Functions

Conventionally, an agent starts off not knowing the state-transition probabilities or

reward distributions. The goal of the agent is to find a policy, that maximizes the

cumulative reward over time. A policy in an MDP is a function π : S → A that

with each state s ∈ S associates an action a ∈ A to be performed in that state. To

follow a policy π means to execute in each state s the action π(s). A policy may be

deterministic, which will always choose the same action in a state, or it may specify a

distribution over actions, In later case π will be of the form π(s, a) = Pr(s = st|a = at),

which denotes the probability that the agent takes action a when the environment is

in state s. Once we have established a policy, we can ask how much return this policy

generates from any given state in the process.

The goal of an RL algorithm is either to evaluate performance of a given pol-

icy(prediction problem) or to find an optimal policy(control problem). The most com-

monly studied reinforcement learning algorithms are based on estimating value func-

tions, which are scalar functions of states, or of state-action pairs, that tell how good

it is for the agent to be in a state, or to take an action in a state. The notion of ”how

good” is the return expected to accumulate over the future, which is well-defined if the

Markov property holds and the agent’s policy is specified.

If the agent uses policy π, then the state value function V π gives the value, V π(s),

of each s ∈ S, which is the return expected to accumulate over the time period after

visiting s , assuming that actions are chosen according to π. For the discounted infinite

horizon problem, the value of state s is

V π(s) = Eπ {Rt|st = s} = Eπ

{ ∞∑

k=0

γkrt+k+1|st = s

}

(3.5)

where Eπ is the expected value given that policy π is followed.

Similarly, the action value of taking action a in state s under policy π, denoted

Qπ(s, a), is the expected return starting from s, taking the action a, and thereafter

following policy π :

Qπ(s, a) = Eπ {Rt|st = s, at = a} = Eπ

{ ∞∑

k=0

γkrt+k+1|st = s, at = a

}

. (3.6)
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There is one fundamental property of value functions that makes them valuable for

solving RL tasks. The state-value function satisfies a recursive equation that, in the

discounted case, has the following form:

V π(s) = Eπ {Rt|st = s} =
∑

a

π (s, a)
∑

s
′

P a
s,s

′

[

Ra
s,s

′ + γV π
(

s
′
)]

(3.7)

where st+1 = s
′
. This is the Bellman equation and represents the relationship

between the value of a state and the value of its successors. This system of equations

has a unique solution , which is state-value function for policy π. A similar equation is

satisfied by the action-value function.

A policy π is considered to be better than or equal to another policy π
′

if its

expected return is greater than or equal to the one of π
′
. In other words π ≥ π

′
if

and only if V π (s) ≥ V π
′

(s), ∀s ∈ S. The optimal policy is the policy which is better

than or equal to all other policies [18]. which is denoted by π∗. The optimal state-value

function, V ∗(s), is the return expected after visiting state s assuming that actions are

chosen optimally, i.e., it is the largest expected return possible after visiting state s.

The optimal action value of taking action a in state s, denoted Q∗(s, a), is the largest

expected return starting from state s, taking the action a, and thereafter following

an optimal policy. The optimal state-value function satisfies the Bellman optimality

equation:

V ∗(s) = max
a∈A(s)

Qπ∗(s,a) = max
a∈A(s)

∑

s
′

P a
s,s

′

[

Ra
s,s

′ + γV ∗
(

s
′
)]

. (3.8)

Value functions are useful because of several properties of MDPs. If V ∗ is known,

optimal policies can be found by looking ahead only one time step. That is, if st

is the state at step t, then an optimal action is any a ∈ A(st)that maximizes the

expected value of rt+1 + γV ∗(st+1). Thus given V ∗ and an accurate model of the

immediate effects on the environment of all the actions, acting optimally does not

require deep lookahead because V ∗ summarizes the effects of future behavior. If Q∗

is known, then finding optimal actions is even easier. An optimal action at step t is

any action that maximizes Q∗(st, a). In this case, it is not necessary to look ahead

one step, so that no model is needed of the effect of actions on the environment. This

what makes reinforcement learning algorithms that use action-value functions a popular

choice in many applications. Any such one-step ahead maximizing action for a state

value function, or a maximizing action for an action-value function, is called a greedy

action with respect to that function.
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3.3.4 Practical Issues

In real tasks it may be sometimes difficult to comply with all the requirements imposed

by the definition of an MDP. The most common cases are that:

• the state space of a task is infinite.

• the Markov property is not preserved.

The first problem is usually dealt with by artificially transforming the state space to

a finite, discretized form, through quantizing appropriately continuous state variables.

Unfortunately, such a transformation usually results in violating the Markov property,

since new discretized states do not contain enough information.

As far as the Markov property is concerned , it is useful to distinguish two kinds of

its violation. A strong violation is when there exists no optimal policy for a task: the

state representation does not contain enough information to make optimal decisions. A

slight violation is when , despite the fact that the Markov property is not held true, for

a particular initial state of the task there exists an optimal, though it may be difficult or

impossible to identify it for the agent solving the task. At first it may not be clear how

it is possible. Basically, any violation of the Markov property means that, due to incom-

plete state information, the same state may have different consequences(i. e successor

state and reinforcement values)each time it is visited, though always the same action is

performed. In the case of a slight violation, when some arbitrary policy is followed, each

visit to a state may yield different consequences. Nevertheless, for some fixed initial

state or a set of initial states, and some fixed (e. g. optimal)policy , it is possible that

each visit to a state yields (probabilistically)exactly the same consequences, provided

that the same action is executed.

Before we consider algorithms for learning to behave in MDP environments, we will

explore methods for determining the optimal policy. which will be discussed in the

following sections.

In chapter 4 we will have to restrict ourself to tree-like Labelled Markov Processes

in order not to violate the Markov property.
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3.4 Dynamic Programming

Dynamic programming(DP) methods can be used to solve a Markov Decision Process,i.e.,

to find an optimal policy, if the full knowledge of the model is available. In particular,

all transition probabilities and reward expectations must be known. Rather than solv-

ing the Bellman equations directly, DP methods treat them as recursive update rules.

DP algorithms are bootstrapping they update the estimates of state values based on the

estimates of the values for the successor states.

There are two basic DP methods used for computing an optimal policy in an MDP:

policy iteration and value iteration. we will present a brief overview of these methods.

Policy Iteration

Starting from some arbitrary initial policy π0 , policy iteration forms a sequence of

policies π0, π1, ....πk, ......,where each πk+1 is an improvement over πk. To achieve this,

the value function V πk is computed for πk (the policy evaluation phase) and then πk+1

is taken to be greedy with respect to V πk (the policy improvement phase). Either πk+1

is an improvement over πk or they are both optimal policies.

Policy evaluation task is concerned with computing the state-value function V π for

an arbitrary policy π. The agent starts with some arbitrary initial approximation of

the state-value function, V π
0 and uses the Bellman equation for the state-value function

as a recursive update rule to improve the approximation:

Vk+1(s) = Eπ {rt+1 + γVk(st+1)|st = s} (3.9)

=
∑

a

π (s, a)
∑

s
′

P a
s,s

′

[

Ra
s,s

′ + γVk

(

s
′
)]

This is an iterative algorithm for policy evaluation, where an iteration consists of

the updates being made to all states. Clearly, Vk = V π is a fixed point for this update

rule because the Bellman equation for V π assures us of equality in this case. Policy

evaluation can be shown to converge in the limit to the correct V π under the same

conditions that guarantee the existence of V π.
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Estimating value functions is particularly useful for finding better policies. The

Policy improvement algorithm uses the action-value function to improve the current

policy. If Qπ(s, a) ≥ V π(s) for some a 6= π(s) , then it is better to select the action a at

the state s than to select π(s). The Policy improvement algorithm states that for any

pair of deterministic policies π and π
′
, such that ∀s ∈ S, Qπ(s, a) ≥ V π(s) , policy π

′

must be as good as or better than π. Policy improvement thus must give us a strictly

better policy except when the original policy is already optimal. In this manner we can

construct a new improved policy π
′
, which is greedy with respect to V π:

π
′
(s) = argmaxa∈A(s)Q

π (s, a) (3.10)

= argmaxa∈A(s)

∑

s
′

P a
s,s

′

[

Ra
s,s

′ + γVπ

(

s
′
)]

Policy evaluation and Policy improvement can be interleaved to construct a sequence

of successively improving policies. This algorithm is known as Policy iteration, which

finds an optimal policy by systematically improving an initial policy until no changes

are made. Once a policy π has been improved using V π to yield a better policy π
′
, we

can then compute V π
′

and improve it again to yield an even better π
′′
. We can thus

obtain a sequence of improving policies and value functions:

π0
E
→ V π0 I

→ π1
E
→ V π1 I

→ π2
E
→ ...

I
→ π∗ E

→ V ∗,

where
E
→ denotes a policy evaluation and

I
→ denotes a policy improvement. Policy

iteration converges to the optimal policy , because there is a finite number of policies in

a finite MDP and each new policy is better than the previous one. A complete policy

iteration algorithm is given in Figure 1:

Value Iteration

In the value iteration method an optimal policy is not computed directly. The optimal

value function is computed instead, and then a greedy policy with respect to that

function is an optimal policy. The algorithm is given below:

Contrary to policy iteration, value iteration does not converge in a finite number

of steps. It produces successive approximations of the optimal value function, more
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Algorithm 1 Policy iteration(using iterative policy evaluation) for V ∗

Initialization
V (s) and π (s) ∈ A (s) arbitrarily for all s ∈ S
Policy Evaluation
repeat

∆← 0
For each s ∈ S :
v ← V (s)

V (s)←
∑

s
′
P

π(s)

ss′

[

R
π(s)

ss′
+ γV

(
s
′)

]

∆← max (∆, |v − V (s) |)
until ∆ < θ(a small positive number)
Policy Improvement
policy − stable← true
For each s ∈ S :
b← π (s)

π (S)← argmaxa

∑

s
′
P

π(s)

ss
′

[

R
π(s)

ss
′ + γV

(
s
′)

]

if b 6= π(s), then
policy − stable← false

end if
if policy-stable, then

stop;
else

go to Policy Evaluation
end if

Algorithm 2 Value iteration

initialize V arbitrarily, e. g. , V (s) = 0, for all s ∈ S+

repeat
∆← 0
For each s ∈ S :
v ← V (s)
V (s)← maxa

∑

s
′
P a

ss
′

[
Ra

ss
′ + γV

(
s
′)]

∆← max (∆, |v − V (s) |)
until ∆ < θ(a small positive number)
Output a deterministic policy, π, such that
π(s) = argmaxa

∑

s
′
P a

ss
′

[
Ra

ss
′ + γV

(
s
′)]
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and more accurate. It is stopped when the change introduced by backups becomes

sufficiently small, i.e. less than some fixed θ.

Of both kinds of DP methods, value iteration is presently better understood and

more widely used. The fact that the practical implementation of policy iteration in-

volves a kind of value iteration phase may also play some role.

3.5 Monte Carlo Methods

DP methods can only be used when a model of the system(transition probabilities

and expected rewards)is available. Of course, an agent can learn a model and then

use it in DP methods. However, learning a value function directly from interaction

with the environment can be more efficient. Monte Carlo(MC) methods estimate value

functions directly based on the experience of the agent. By experience we mean sample

sequences of states, actions and rewards from an on-line or simulated interaction with

the environment. MC methods estimate the state or action values based on averaging

sample returns observed during the interaction of the agent with its environment. Since

samples of complete returns can be obtained only for finite tasks, MC methods are

defined for episodic tasks. For each state(or state-action pair)a sample return is the

sum of the rewards received starting from the occurrence of the state(or state-action

pair)and until the end of an episode. As more samples are observed, their average

convergence to the true expected value of the return under the policy used by the agent

for generating the sample sequences.

One can design a policy iteration algorithm, where the policy evaluation step es-

timates the value function using MC methods. There is one complication, however,

that did not arise in DP. If the agent adopts a deterministic policy π, then the ex-

perience generated by its interaction with the environment contains samples only for

actions suggested by policy π. The values for other actions will not be estimated and

there will be no information on which to base the policy improvement step. There-

fore maintaining sufficient exploration is key for the success of policy iteration using

MC methods. One solution is for the agent to adopt a stochastic policy with non-zero

probabilities of selecting all actions from all states: a soft stochastic policy, such that

π(s, a) > 0,∀s ∈ S,∀a ∈ A(s). There are different ways to implement this approach.

In the case of on-policy methods, the agent uses a soft stochastic policy when it

interacts with the environment to generate experience, and evaluates its performance

under this policy. Another approach is off-policy learning: the agent uses one policy to
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interact with the environment and generate experience(behavior policy), but estimates

the value function for a different policy(estimation policy). In particular, an agent

can try to learn the value of the optimal policy while following an arbitrary stochastic

policy.

Policy iteration with MC-based policy evaluation converges in the limit to the opti-

mal policy(both for the on-policy and off-policy learning) as long as every state-action

pair is visited infinitely often. But in practice we encounter the same problem as for

DP-methods-one can not wait forever until the policy evaluation step converges. When

stopping after some finite number of observations , we are dealing with an approximate

version of the algorithm.

3.6 Temporal Difference Learning

A combination of the ideas from DP and MC methods yields temporal difference(TD)

learning. Similarly to the MC method, this approach allows learning directly from

the on-line simulated experience without any prior knowledge of the system’s model.

The feature shared by TD and DP methods is that they both use bootstrapping for

estimating the value functions. The fact that the agent need not know the dynamics of

the environment is crucial in any non-trivial environment(since all models of the real

world are imperfect) and is the soul of ’learning from experience’. In TD methods,

learning takes place after every ’time step’(i.e. every action), which is beneficial as it

makes for efficient learning-the agent can revise its policy after every action and state

it experiences.

TD algorithms make updates of the estimated values based on each observed state

transition and on the immediate reward received from the environment on this tran-

sition. The most basic TD algorithm called tabular TD(0), estimates V π while the

agent is behaving according to π and is applicable when the state set is small enough

to store the state values in a lookup table with a separate entry for the value of each

state. Suppose the agent is in state s, executes action a, and then observes the resulting

reward r and the next state s
′
. TD(0) updates the current estimate of the value of state

s, V(s), using the following update:

V (s)← (1− α) V (0) + α
(

r + γV (s
′
)

(3.11)
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where α is positive step-size parameter. TD algorithms are based on the consistency

condition expressed by the bellman equations. This TD algorithm is designed to move

the term r+γV (s
′
)−V (s), called the TD error, toward zero for every state. An update

of this general form is often called a backup because the value of a state is moved toward

the current value of a successor state, plus any reward that is received on the transition.

TD(0) method bootstraps, but it uses sample updates instead of full updates as

in the case of DP. Only one successor state observed during the interaction with the

environment, is used to update V instead of using values of all the possible successors

and weighting them accordingly to their probabilities. For any fixed policy π, the one-

step TD algorithm converges in the limit to V π [20]. The one -step TD method can

be used for the policy evaluation step of the policy iteration algorithm. As with MC

methods, sufficient exploration in the generated experience must be ensured in order to

find the optimal policy. Again, one can use either on-policy or off-policy approaches to

ensure an adequate exploration.

A very popular representation of the off-policy approach is the Q-Learning Algo-

rithm, was proposed by Watkins in 1989. This approach has been used in this thesis to

conduct the experiments described in chapter 5. This algorithm directly estimates Q∗

without relying on the policy improvement property. It works as follows. Suppose the

agent is in state s, executes action a, and then observes the resulting reward r and the

next state s
′
. The Q-Learning algorithm updates the action value estimate Q(s, a), of

the pair (s, a) using the following backup:

Q(s, a)← Q(s, a) + α

[

r + γ max
a′

Q(s
′
, a

′
)−Q(s, a)

]

(3.12)

Where α is a positive step-size parameter. The Q-learning algorithm is shown in

procedural form here 3. If α decreases appropriately with time and each state-action

pair would be visited infinitely often in the limit, then this algorithm converges to

Q∗(s, a) for all s ∈ S and a ∈ A(s) with probability one. Unless it is known that

the environment is deterministic, the “infinitely often”requirement is necessary for this

kind of strong convergence of any method that is based , as this one is, on sampling

environment state transitions and rewards. Letting the agent sometimes select actions

randomly from a uniform distribution is one simple way to help the agent maintain

enough variety in its behavior in order to try to satisfy this condition. Otherwise, the

agent executes actions that are greedy with respect to its current estimates of Q∗. Q-

learning is known as an off-policy method, since any suitable policy (e. g. ǫ -greedy,

softmax)may be used for training purposes. Closely related to Q-Learning is the Sarsa
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Algorithm 3 Q-learning: An off-policy TD control algorithm.

initialize Q(s, a) arbitrarily
Repeat (for each episode):
initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from Q(e. g. , ǫ-greedy )
Take action a , observe r, s

′

Q(s, a)← Q(s, a) + α

[

r + γ max
a
′

Q(s
′
, a

′
)−Q(s, a)

]

s← s
′

Until s is terminal

algorithm. Suppose the agent is in state s, executes action a, observes reward r and

the next state s
′
, and then executes action a

′
. then the Sarsa update is

Q(s, a)← Q(s, a) + α
[

r + γQ(s
′
, a

′
)−Q(s, a)

]

(3.13)

which is the same as the Q-learning update 3.12 except that instead of taking the

maximum over the actions available in s
′
, it uses the action, a

′
, which was actually

executed . (this requirement of s, a, r, s
′
, a

′
is what accounts for the algorithm’s name.

)Notice that if actions are always greedy with respect to the current estimate of Q∗,

then Sarsa is the same as Q-learning. Despite this similarity, Sarsa and Q-learning have

somewhat different properties(see [18]). Q-learning converges to Q∗ independently of

the agent’s behavior(as long as the conditions for convergence are satisfied), whereas

Sarsa converges to an action-value function that is optimal given the agent’s mode of

exploration.

TD algorithms are closely related to dynamic programming algorithms, which also

use back up operations derived from Bellman equations. There are two main differences.

First, a dynamic programming backup computes the expected value of successor states

using the state-transition distribution of the MDP, whereas a TD backup uses a sample

from this distribution. (TD backups are sometimes called sample backups, in contrast

to the full backups of dynamic programming. )A second difference is that dynamic

programming uses multiple exhaustive ”sweeps” of the MDP’s state set, whereas TD

algorithms operate on states as they occur in actual or simulated experiences. These

differences make it possible to use TD algorithms on problems for which it is not feasible

to use dynamic programming.
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Trace Equivalence between LMPs

In this chapter we will present our model for checking trace equivalence between labelled

Markov processes using reinforcement learning algorithms. In the literature available

to the date, a lot of research has already been done on equivalence notions between

labelled Markov processes, but in this thesis we are going to analyse the problem of

divergence between the LMPs from a different perspective by combining which I consider

the two most interesting disciplines of computer science (i.e., system verification and

reinforcement learning).

Our main aim in this thesis is to answer the question: is the implemented system

behaves according to its specifications? To answer this question we consider two LMPs,

one representing the system specifications and another representing the implemented

system. Then with the help of reinforcement learning algorithms we verify if these two

labelled Markov processes(LMPs) are trace equivalent. More precisely , in this thesis

we consider probabilistic trace equivalence(details to follow). If the algorithm shows

that they are trace equivalent the answer to the above question is yes and vice versa.

We assume that we have the complete model of only one LMP i.e., the one represent-

ing system specifications(LMPSpec for short). The second LMP(LMPImpl) is available

in the form of a black box to which we feed actions as input and the output behavior

will be observed. This represents the typical scenario in physical system verification

against a set of specifications. Unlike in the non-probabilistic trace equivalence notion,

where it is sufficient that two systems accept the same set of traces, probabilistic trace

equivalence requires not only that both systems accept same set of traces but also with

the same probability. Using our model we not only verify if two LMPs are trace equiv-

alent but also find the degree of divergence between them, as it is very important in

the case of probabilistic systems where a slight difference in the probabilities may cause
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the two systems to be non-trace equivalent as we can see in the following example:

s0

a[1]

s1

b[ 1
2 ]

c[ 1
2 ]

s2

c[ 1
3 ]

s3

s4

s0

a[ 1
2 ] a[ 1

2 ]

s1

b[1]

s2

c[1]

s3

c[ 1
3
+ 1

100 ]

s4

s5

Figure 4.1: Trace equivalent but not probabilistic trace equivalent LMPs

The two LMPs in the above figure accept the same set of traces they are: {ǫ, a, ab, ac, abc}

which means that they are trace equivalent. Except for the trace abc, they both ac-

cept rest of the traces with equal probabilities. The trace abc is accepted in the first

LMP with probability 1
6

and in the second LMP with probability 1
3

+ 1
100

. Thus the

LMPs in Figure 4.1 are not probabilistic trace equivalent. This difference is caused by

a divergence in a single probability value i.e., probability value of action c which is 1
3

in the first LMP and 1
3

+ 1
100

in the second. This is the reason why we considered to

find the degree of divergence between the LMPs instead of simply checking if they are

trace equivalent. For simplicity sake, probabilistic trace equivalence will be called trace

equivalence for the reminder of this thesis.

Here we adopt the approach of testing. A test specifies an algorithm for an observer

who shall experiment on these two processes. A test is nothing but a series of actions. A

test is executed on both processes and then the resulting observations will be analyzed.

In [11], Larsen and skou have shown that:

≪To be trace equivalent two processes must have exactly same probability dis-

tribution on the observation set of any test. ≫

If an action runs successfully in the LMPSpec while fails in LMPImpl shows the

possible difference between them. Since our goal is to show the difference between the

two LMPs under consideration, we encourage such situations in our RL approach by

giving high positive reward. On the other hand, the presence of probabilities introduce

entropy in LMPSpec which makes the job more challenging. Entropy means the uncer-

tainty of an outcome, in other words the same process may accept an action in one run

while it refuses it in another. In our model we give negative reward to such situations.
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To recognize such entropy we consider a third process in addition to LMPSpec and

LMPImpl called LMPClone, which is simply a clone of LMPSpec, available in the form

of a black box just like LMPImpl.

Hence, the following three processes are available at our disposal:

• A complete model of the process representing system specifications, which we call

LMPSpec.

• A second process representing implemented system in the form of a black box,

which we call LMPImpl.

• A third process which is a clone of the LMPSpec, called by us LMPClone.

In our model we restrict ourselves to trees, i.e., we represent all the above three

processes in the form of trees.This has been stated briefly in the preceding chapter.

Without the tree-like representation we would loose the Markov property of the MDP

that will be constructed from LMPSpec,LMPImpl and LMPClone. However,there are

very simple unfolding theories that allow to represent any countable LMP as a countable

tree-like LMP. Since we are working with a discount factor γ < 1, RL methods can be

extended to the countable setting. As discussed earlier we have only the complete model

of LMPSpec but we have absolutely no prior knowledge about LMPImpl. As a matter

of fact , as seen in chapter 3, RL approach does not demand the model of the system

only the complete observation of its current state is needed in that case the RL agent

learns simply by interacting with the system by trial and error method.

States of the LMP will be represented as the nodes of the tree, interaction with its

environment will be represented as labels given to the edges of the tree, and transitions

will be the arrows directing from one node to the next according to the actions taken

by its environment. To make things more clear we shall consider the following figure, in

which a process is represented in the form of a tree. This process has four states as there

are four nodes in the tree. There are three actions possible which we represented with

letters a, b, c. The value next to the action in the Figure ?? represents the probability

with which an action is accepted from a state.

RL is generally used to solve the so-called Markov decision problems(MDPs). In

other words, the problem that we are attempting to solve with RL must be an MDP

or its variant. Before proceeding any further we will model our task of finding the

divergence between the LMPs as the value of the optimal policy of some particular

MDP, which is a essential element in RL approach.
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s0

a[ 1
2 ]

s1

b[1] c[1]

s2 s3

Figure 4.2: Tree representation of the LMP

This chapter is organized in the following manner, in section 4.1 we give two dif-

ferent approaches we had tried to solve our problem. Each approach gives rise to a

specific construction of a MDP when given LMPSpec, LMPImpl and LMPClone. The

first approach is the one that we had tried in this master research in the beginning ,

unfortunately we will show that this approach do not give rise to a notion of divergence

between LMPs. The second approach will give the desired notion of divergence. In

section 4.2 we explain the implementation of our model and finally in the last section

we provide the empirical results.

4.1 Different versions of MDPs

4.1.1 The first approach : MDP’s construction of type 1

The framework of the MDP has the following elements: set of states(S), set of ac-

tions(Act), state-transition probability distribution (Pra
ss

′ ), and the reward function(Ra
ss

′ ).

Suppose, let’s say we want to find the divergence between LMPImpl and LMPSpec

in Figure 4.3

s0

a[ 1
2 ]
s1

b[1] c[1]

s2 s3

s0
a[ 3

10 ] a[ 3
10 ]

s1
a[1] b[1]

s2

c[1]

s3 s4 s5

s0
a[ 3

10 ] a[ 3
10 ]

s1
a[1] b[1]

s2

c[1]

s3 s4 s5

Figure 4.3: LMPImpl, LMPSpec and LMPClone

Then the MDP’s construction of type 1 constructed from LMPSpec in Figure 4.3

can be represented as follows:
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s0

a,b,c

sdead
1 salive

1

c

salive
2

a,b

sdead
2

sdead
3 salive

3

a,b,c

salive
4

a,b,c

sdead
4 sdead

5 salive
5

a,b,c
dead

Figure 4.4: First approach: MDP construction of type 1

The four elements of MDP have been defined in the following manner:

• States(S): Except the root node every state of LMPSpec has been categorized

into alive and dead. There is also an additional state called dead.

• Actions(Act): LMPSpec actions.

• Transition probability distribution:

Pra
ssalive

1
= PrSpec(s, a, s1).P

Impl(a
√
|tr(s)).PClone(a

√
|tr(s)).

Pra
ssdead

1
= PrSpec(s, a, s1).(1− (P Impl(a

√
|tr(s)).PClone(a

√
|tr(s)))).

P ra
sdead = 1− PrSpec(s, a, S).

• Reward function:

Ra
ssalive

1
= 0

Ra
ssdead

1
=

Ra
s,S − Pra

sdead.R
a
sdead − Pra

s,salive

1
.Ra

ssalive

1

Pra
s,sdead

1

Ra
s,dead = P Impl(a

√
|tr(s)).PClone(a×|tr(s))− P Impl(a×|tr(s)).PClone(a

√
|tr(s))

Where
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• tr(s) is the unique sequence of actions connecting s0 to the state of LMPSpec

that corresponds to s in the LMPSpec. If s is the root node then this sequence

will be zero.∗

• PrSpec(s, a, s1) is the probability distribution of going from state s to the next

state s1 with action a in LMPSpec.

• P Impl(a
√
|tr(s)) means the probability of observing a success in LMPImpl when

asking for action a if the sequence of actions tr(s) has been successfully performed

in LMPImpl.

• P clone(a
√
|tr(s)) is similarly defined.

Everytime we reach either of the dead states the execution of the test terminates

and the reward is calculated according to Table 4.1:

LMPImpl LMPSpec LMPClone Reward
S S S 0
F S S +1
S F S 0
S S F -1
F F S -1
F S F 0
S F F +1
F F F 0

Table 4.1: Reward function look-up table

where S indicates that an action has been successful in a process and on the other

hand F indicates the failure. For example the first row(S S S) of the table indicates

that an action was successful in all the three LMPs and this is the only scenario which

allows us to move forward in a test. At the end of a test, closer the total reward is to

zero, more similar the LMPSpec and LMPImpl are.

Let’s have a look on how probability distributions of the MDP in Figure 4.4 can be

∗Recall that we assumed the LMPspec to be in tree-like representation
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calculated using the above given formulas

Pra
s0salive

1
= PrSpec(s0, a, s1).(P

Impl(a
√
|tr(s0)).P

Clone(a
√
|tr(s0))

=
3

10
×

5

10
×

6

10
= 0.09

When we are at the level different from the root level in the MDP we take the normalized

probability in the case of LMPImpl and LMPClone. We shall explain what we mean

by that by showing the calculation for probability distribution at the first level.

Pra
salive

1 salive

3
= PrSpec(s1, a, s3).(P

Impl(a
√
|tr(salive

1 )).PClone(a
√
|salive

1 ))

= 1× 0×
1

2
= 0

Here we need the observation probability of test aa from state s1 in case of LMPImpl

and LMPClone, which is shown in the table below:

a× a
√
a× a

√
a
√

Impl 0. 5 0. 5 0
Clone 0. 4 0. 3 0. 3

Remaining probability distributions can be calculated in the similar manner. Whose

values are given below.

Pra
s0sdead

1
= PrSpec(s0, a, s1).(1− P Impl(a

√
|tr(s0)).P

Clone(a
√
|tr(s0)))

= 0.3× (1− (0.5× 0.6))

= 0.21 = Pra
s0,sd

2

Pra
s0salive

2
= 0.09

Pra
salive

1 sdead

3
= 0.75

Pra
salive

1 salive

4
= Pra

salive

2 salive

5
= 0

Prb
salive

1 sdead

4
= Prc

salive

2 sdead

5
= 0.5

Pra
salive

1 sdead

4
= Pra

salive

2 sdead

5
= Prb

s0sdead

1
= Prc

s0sdead

1
= Prb

s0sdead

2
= Prc

s0sdead

2
= Prb

salive

1 sd

3
= 0

Prc
salive

1 sdead

3
= Prc

salive

1 sdead

4
= Prb

salive

2 sdead

5
= 0

Pra
s0dead = 1− PrSpec(s0, a, S) = 0.4
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Prb
s0dead = Prc

s0dead = 1

Pra
salive

1 dead
= Prb

salive

1 dead
= 0 Prc

salive

1 dead
= 1

Pra
salive

2 dead
= Prb

salive

2 dead
= 1 Prc

salive

2 dead
= 0

Pra
salive

3 dead
= Prb

salive

3 dead
= Prc

salive

3 dead
= 1

Pra
salive

4 dead
= Prb

salive

4 dead
= Prc

salive

4 dead
= 1

Pra
salive

5 dead
= Prb

salive

5 dead
= Prc

salive

5 dead
= 1

Reward function calulations are given below:

Ra
s0salive

1
= Rb

s0salive

1
= Rc

s0salive

1
= 0

Ra
s0salive

2
= Rb

s0salive

2
= Rc

s0salive

2
= 0

Ra
salive

1 salive

3
= Rb

salive

1 salive

3
= Rc

salive

1 salive

3
= 0

Ra
salive

1 salive

4
= Rb

salive

1 salive

4
= Rc

salive

1 salive

4
= 0

Ra
salive

2 salive

5
= Rb

salive

2 salive

5
= Rc

salive

2 salive

5
= 0

Ra
s0dead = P Impl(a

√
|tr(s0)).P

Clone(a×|tr(s0)− P Impl(a×|tr(s0).P
Clone(a

√
|tr(s0)

=
1

2
×

4

10
−

1

2
×

3

5
= −0.1

Rb
s0dead = Rc

s0dead = 0

Ra
salive

1 dead
= 0

Rb
salive

1 dead
= Rc

salive

1 dead
= 1

2

Ra
salive

2 dead
= −1

2

Rb
salive

2 dead
= Rc

salive

2 dead
= 1

2

Ra
salive

3 dead
= Rb

salive

3 dead
= Rc

salive

3 dead
= 0

Ra
salive

4 dead
= Rb

salive

4 dead
= Rc

salive

4 dead
= 0

Ra
salive

5 dead
= 0

Rb
salive

5 dead
= Rc

salive

5 dead
= 0
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Ra
s0sdead

1
=

Ra
s0S − Pra

s0,sa

1
.Ra

s0sa

1
− Pra

s0,sa

1
.Ra

s0dead

Pra
s0,sd

1

=
0.02− 0.09× 0− 0.4× (−0.1)

0.21
= 0.28

Rb
s0sdead

1
= Rc

s0sdead

1
= 0.04

Ra
s0sdead

2
= 0.28

Ra
salive

1 sdead

3
= 1

2
, Rb

salive

1 sdead

3
= −1

2
, Rc

salive

1 sdead

3
= 1

2

Ra
salive

1 sdead

4
= 1, Rb

salive

1 sdead

4
= 1

2
, Rc

salive

1 sdead

4
= 0

Ra
salive

2 sdead

5
= 0, Rb

salive

2 sdead

5
= 1

2
, Rc

salive

2 sdead

5
= −1

2

4.1.2 The first appraoch: MDP construction of type 2

MDP construction of type 1(first approach) defined in subsection 4.1.1 has double the

number of states when compared to the corresponding LMP and there are two different

dead states. Since doubling the states at first sight is not a good idea from the point of

view of computational efficiency, in the implementation that follows, we will not consider

that the states are doubled. Thus,we made a few modifications to our previous MDP

construction by keeping the same number of states as LMPspec plus one extra state,

the Dead state. Also from any state all the arrows directing to the different dead states

now will be leading to one big Dead state. Thus the modified MDP will look like the

one in Figure 4.5:

Below we define the four elements of the MDP: set of states, set of actions, state-

transition probability distribution and reward function.

• States: same as LMPSpec states + an additional state called Dead.

• Actions: same as LMPSpec actions.

• State-transition probability distribution:

P a
ss′

=

{

PrSpec(s, a, s
′
).P Impl(a

√
|tr(s)).P clone(a

√
|tr(s)) if s

′
6= Dead

1− (PrSpec(s, a
√
).P Impl(a

√
|tr(s)).P clone(a

√
|tr(s))) if s

′
= Dead
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s0

a[ 9
100 ] a[ 9

100 ]
a[ 41

50 ]

1
41

s1

a[1]

1
2

b[ 1
2 ]

−1

c[1]

1
2

b[ 1
2 ]

s2

a[1]

1
2

b[1]

1
2

c[ 1
2 ]

−1

c[ 1
2 ]

s4 s5

Dead

Figure 4.5: First approach: MDP construction of type 2

where

PrSpec(s, a
√
) =

∑

s∈LMPSpecstates

PrSpecs, a, s
′

• Reward function:

Ra
ss

′ =







0 if s
′
6= dead

Ra
sS

Pra
sdead

if s
′
= dead

where Ra
sS represents the reward from state s with action a to all possible next states

which can be represented in the following manner:

Ra
ss

′ = Pra
sDead, R

a
sDead +

∑

s
′∈{S\dead}

Pra
ss

′ . Ra
ss

′
︸︷︷︸

0
︸ ︷︷ ︸

0

= Pra
sDead, R

a
sDead

Ra
sS can be expressed in a different way as follows:

Ra
sS = PrSpec(s, a

√
) · r(s, a

√
) + PrSpec(s, a×) · r(s, a×)

where r(s, a
√
) and r(s, a×) have the following formulas:
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• r(s, a
√
) = P Impl(a×|tr(s)) · PClone(a

√
|tr(s))− P Impl(a

√
|tr(s)) · PClone(a×|tr(s))

• r(s, a×) = P Impl(a
√
|tr(s)) · PClone(a×|tr(s))− P Impl(a×|tr(s)) · PClone(a

√
|tr(s))

For the understanding of readers below we give the probability distribution and reward

function calculations in this new setting:

Pra
s0,s1

= PrSpec(s0, a, s
′
).P Impl(a

√
|tr(s0)).P

clone(a
√
|tr(s0)

= 0.3× 0.5× 0.6

= 0.09

Ra
s0S = FSS + SFF − (SSF + FFS)

=
1

2
.
3

5
.
3

5
+

1

2
.
2

5
.
2

5
−

(
1

2
.
3

5
.
2

5
+

1

2
.
2

5
.
3

5

)

=
9

50
+

2

25
−

(
3

25
+

3

25

)

=
1

50

Pra
s0Dead =

41

50

Ra
s0Dead =

Ra
s0S

Pra
s0Dead

=
1

50
.
50

41

=
1

41

Let’s recall that the value of the optimal policy determines the equivalence between

the LMPs. The positive value means that the LMPs are not trace equivalent and on

the other hand value zero or negative indicates that they are equivalent. There are

some counter examples which give contrary values and hence indicate the disadvantage
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of this new MDP setting. In the following counter example even though the two LMPs

are not trace equivalent the value of the optimal policy is negative.

Let three LMPs be as follows:

s0

a[ 3
4 ]

s1

s0

a[ 1
3 ] a[ 1

3 ]

s1 s2

s0

a[ 1
3 ] a[ 1

3 ]

s1 s2

Figure 4.6: counter example 1

Ra
s0S = FSS + SFF − (SSF + FFS)

=
1

4
.
2

3
.
2

3
+

3

4
.
1

3
.
1

3
−

(
3

4
.
2

3
.
1

3
+

1

4
.
1

3
.
2

3

)

=
1

9
+

1

12
−

(
1

6
+

1

18

)

= −
1

50
Pra

s0Dead = 1− (PrSpec(s0, a
√
).P Impl(a

√
|tr(s0)).P

clone(a
√
|tr(s0)

= 1− (
2

3
.
3

4
.
2

3
)

=
2

3

Ra
s0Dead =

Ra
s0S

Pra
s0Dead)

= −
1

50
.
3

2
= −0.03

The negative value of the optimal policy shows that we are not dealing with a divergence

notion here. However one may say that since the optimal policy is not zero this is an

indication to the fact that two LMPs are trace-equivalent. In the next counter example

we can see that all the policies have the value zero but the LMPs are not trace equivalent.
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s0

a[ 3
4 ]

s1

s0
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4 ] a[ 1

4 ]

s1 s2

s0

a[ 1
4 ] a[ 1

4 ]

s1 s2

Figure 4.7: counter example 2

Ra
s0S = FSS + SFF − (SSF + FFS)

=
1

4
.
1

2
.
1

2
+

3

4
.
1

2
.
1

2
−

(
3

4
.
1

2
.
1

2
+

1

4
.
1

2
.
1

2

)

=
1

16
+

3

16
−

(
3

16
+

1

16

)

= 0

Ra
s0Dead =

Ra
s0S

Pra
s0Dead)

= 0

4.1.3 Second approach

We want to stick with type 2 for obvious reasons but we have to find a way to give

more control to the agent that has to interact with the MDP. The idea we had is to

double the number of actions, replacing each action a by a
√

and a×. If the action a
√

is

chosen by the agent, the later will obtain reward if and only if the action is successfully

performed in the LMPSpec. Thus the agent has the possibility to reduce or augment

the probability to receive a non zero reward if he expects this reward to be negative or

positive.

Here is the MDP related to the second approach

• States: same as LMPSpec states + an additional state called Dead.

• Actions: each action(e.g. a ) of LMPSpec has two variants(a
√

and a×).

• State-transition probability distribution:

P a
ss

′ =

{

PrSpec(s, a, s
′
).P Impl(a

√
|tr(s)).P clone(a

√
|tr(s)) if s

′
6= Dead

1− (PrSpec(s, a
√
).P Impl(a

√
|tr(s)).P clone(a

√
)|tr(s)) if s

′
= Dead
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• Reward function:

Ra
ss′

=







0 if s
′
6= Dead

Ra
√

sS

Pra
√

sDead

if s
′
= Dead and a = a

√

Ra×

sDead

Pra×

sDead

if s
′
= Dead and a = a×

Ra
√

sS = PrSpec(s, a
√
) · r(s, a

√
)

Ra×

sS = PrSpec(s, a×) · r(s, a×)

where r(s, a
√
) and r(s, a×) have the following formulas:

r(s, a
√
) = P Impl(a×|tr(s)) · PClone(a

√
|tr(s))− P Impl(a

√
|tr(s)) · PClone(, a×|tr(s))

r(s, a×) = P Impl(a
√
|tr(s)) · PClone(a×|tr(s))− P Impl(a×|tr(s)) · PClone(a

√
|tr(s))

Reward assignment is done in a slightly different manner in the new setting, which

is shown below:

a
√

run a

succeeds fails

+1 FSS

−1 SSF

0 FSF

SSS

0

Continue stop

a×

run a

succeeds(a) fails(a)

0 FSS

0 SSF

0 FSF

SSS

+1 SFF

−1 FFS

0 SFS

0 FFF

Continue stop

The number of actions in this MDP structure is simply the Cartesian product of the

LMP actions and two variants of actions i. e. for example if the LMPSpec contains a
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total of three actions say a, b, cthen the number of actions in the MDP is the Cartesian

product of (a, b, c× success(s), failure(f)) thus we have six actions named (as, af, bs,

bf, cs, cf). We shall see later in this chapter that the fact of doubling the actions does

not affect the rate of convergence.

Probability distributions remain unchanged from the second version but the re-

ward calculations are done in a slightly different manner here. Let’s look at how

R(s0, a
√
.Dead) and R(s0, a

×.Dead) can be calculated.

Ra
√

sS = FSS − SSF

=
1

2
.
3

5
.
3

5
−

1

2
.
3

5
.
2

5

=
9

50
−

3

25

=
3

50

Ra
√

s0Dead =
Ra

√

s0S

Pra
√

s0Dead

=
3

50
.
50

41

=
3

41

Ra×

sS = SFF − FFS

=
1

2
.
2

5
.
2

5
−

1

2
.
2

5
.
3

5

=
2

25
−

3

25

= −
1

25

Ra×

s0Dead =
Ra×

s0Dead

Pra×

s0Dead

= −
1

25
.
50

41

= −
2

41

Other rewards can be calculated in a similar manner. The current setting of MDP looks
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like the the one in Figure 4.8:
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√
[ 9
100 ]

a×[ 9
100 ] a

√
[ 9
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a×[ 9
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3
41
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√

[1]

1
2b

√
[ 1
2 ]
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√
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s2

a
√

[1]

0
b
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[1]

0c
√
[ 1
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−1
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− 1
2

b×[1]

1
2

c×[ 1
2 ]

0

c×[ 1
2 ]

c
√
[ 1
2 ]

s4 s5

Dead

Figure 4.8: Second approach MDP construction

Now that we have the essential element(MDP) of our model we will now proceed to

the implementation part of it. In the following sections we will explain our choice of

RL algorithm used for implementation and reasons for restricting ourselves to the trace

equivalence.

4.1.4 Second approach gives rise to a divergence notion

As shown in [8] the value of the optimal policy of the second approach MDP construction

gives rise to a notion of trace equivalence divergence. That is, given any two LMPs

LMPSpec and LMPImpl, the value of the optimal policy of the related MDP is always

≥ 0, and = 0 if and only if they are trace-equivalent.
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4.2 Implementation of the model

Among all the reinforcement learning algorithms explained in chapter 3, we have chosen

the one called Q-learning. Like many RL algorithms, Q-learning algorithm does not

demand the complete prior knowledge of the model, which is exactly the case here as

we have no knowledge of the LMP representing implementation(i.e LMPImpl). Thus

as shown in preceding sections,we have full knowledge of the state set of the MDP but

no pior information on the transition probability distributions and of the reward signal

structure. For the reminder of this thesis we shall take the MDP in the subsection 4.1.3

into consideration. Q-learning algorithm for our model is given below:

Algorithm 4 Q-learning for our model.

initialize Q(s, a) arbitrarily
Repeat (for each episode)(e.g. , 10, 000):
initialize s (s: initial state)
Repeat (for each step of episode):

Choose an action a from s using policy derived from Q (e.g., soft max)
Take action a, observe immediate reward r, and next-state s

′

update α

update Q-value: Q(s, a)← Q(s, a) + α

[

r + γ max
a
′

Q(s
′
, a

′
)−Q(s, a)

]

update next-states
Until s is terminal

In the update rule of Q-learning Q(s, a)← Q(s, a)+α

[

r + γ max
a
′

Q(s
′
, a

′
)−Q(s, a)

]

,

Q(s
′
, a

′
) represents the value for the next state-action pair and r is the immediate re-

ward received for that transition. The discount factor γ , (a value between 0 and 1)

controls the extent to which learning is concerned with long-term vs. short-term con-

sequences of its actions (serves as an interest rate on learning). In our model the value

of the γ is constant at 0.8. the α is the learning rate, which sets a trade off between

exploration vs. exploitation. α is decreased slowly to ensure convergence. In our case

the value of α is decreased at the rate of 1
x

where x is the number of times a state-action

pair has been visited.

we have adopted the technique called “sampling ”. More precisely, during each

episode from every state there is a possibility of performing only one action. This

explains the reason why we restricted ourselves to trace equivalence.

The Q-learning algorithm works as follows: we execute Q-learning for, say 10,000
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episodes on our MDP. For each step of an episode an action is chosen from a policy

derived from an action selection method(eg: soft-max). Let us recall that we have three

LMPs named LMPImpl(representation of implementation), LMPSpec(representation of

specifications)and LMPClone(clone of LMPSpec) at our disposal. Action resulted from

action selection method will be executed in the MDP. Then we observe the immediate

reward and the next state of the MDP. If any one of the three LMPs reach the state

Dead the episode ends and then the whole procedure will be repeated until we finish

all the episodes. At the end of all the episodes Q-learning algorithm converges to an

optimal policy which will be evaluated to see if the specification behaves exactly like

the implementation. In other words if LMPSpec and LMPImpl are trace equivalent. If

they are trace equivalent the value of the policy will be zero otherwise it will be a value

strictly greater than zero.

Let’s consider one of the example on which we have done the experiments. This

example has simple and small LMPs as the most calculations like finding optimal policy

could be done manually which could then be easily verified against the one resulted from

the algorithm.

s0

a[ 1
2 ]
s1

b[1] c[1]

s2

c[1]

s3

c[1]

s4 s5

s0
a[ 3

10 ] a[ 3
10 ]

s1
a[1] b[1]

s2

c[1]

s3 s4
c[ 3

5 ] a[ 3
10 ]

s5

s6 s7

s0
a[ 3

10 ] a[ 3
10 ]

s1
a[1] b[1]

s2

c[1]

s3 s4
c[ 3

5 ] a[ 3
10 ]

s5

s6 s7

Figure 4.9: Example1 LMPs: LMPImpl, LMPSpec and LMPClone

For the above example the optimal Q-values are as shown in the following Q-value

matrix: For each state in a learned Q-table, there is an action or a set of actions that

has the highest Q-value, which constitutes the optimal policy. From the table 4.2 we

can deduce that there are two optimal policies that can differentiate the LMPs in figure

4.9. First one is Π∗= as as bf and the second one is Π∗= as cf bf because from the

state S1 both the actions as and cf have the same highest optimal values.

At the beginning we had chosen ǫ − greedy as action selection method which with

probability 1− ǫ, exploits its current knowledge by selecting a greedy action, and with

probability ǫ , selects an action at random. It is important to mention here that the

immediate reward when an action succeeds in both LMPSpec and LMPClone and fails

in LMPImpl will be +1 and on the other hand when it succeeds both in LMPImpl

and LMPSpec and fails in LMPClone will be -1 and in all the other situations will
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as af bs bf cs cf
S0 0. 132 0. 032 0. 0 0. 0 0. 0 0. 0
S1 0. 50 0. 0 -0. 32 0. 20 0. 0 0. 50
S2 0. 0 -0. 052 0. 0 0. 43 -0. 1 0. 70
S3 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0
S4 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0
S5 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0
S6 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0
S7 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0

dead 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0

Table 4.2: optimal Q-value table

be 0. Positive reward indicates the possible equivalence between the LMPs and the

negative reward indicates the contrary. Since from any state the sum of the transition

probabilities of any action may be less than 1, when an action results with a negative

reward ǫ − greedy will consider that particular action as a bad choice the next time

it visits that state. Hence it takes way long to get back to the normal situation and

consider equally all the actions.

4.3 Empirical results

First we have run the algorithm by keeping the ǫ value constant at 0.1 and then at

0.8 for 10000, 20000, 50000, and 100000 episodes respectively. For the resulted graphs

please refer the appendix. From these plots we can observe that even though the Q-

values have converged in a steady manner sometimes resulted with sub-optimal policies.

Though it has learned the optimal policy in the beginning, towards the end because

of the exploration in the ǫ-greedy method it will settle to a sub-optimal policy. Then

we decreased the ǫ from 0. 8 to 0. 1 and then from 0. 8 to 0. 01. To understand the

drawback of ǫ-greedy lets compare the results from 10000 and 20000 episodes when ǫ

value has been decreased from 0. 8 to 0. 01.

As you can see in the beginning though there is a much variation in the Q-values

towards the end the values have been stabilized. In the case of 10000 episodes ǫ-greedy

converged to the value Q(0, as)=0. 125 which is only a test that differentiates the LMPs

in fig 4.9 but it is not the optimal value. But in the second case it found the optimal

policy with optimal values Q(0, as)=0. 132.

Theoretically both the ǫ-greedy and softmax action selection methods are said
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E-greedy with 10000 episodes E1=0.8 and E10000=0.01
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Figure 4.10: ǫ-greedy with 10000 episodes and Q(0, as)=0. 125

E-greedy with 20000 episodes E1=0.8 and E20000=0.01
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Figure 4.11: ǫ-greedy with 20000 episodes and Q(0, as)=0. 132
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to converge to optimal qvalues, but for our model softmax converges faster than ǫ-

greedy. Soft-max works fine with our model, but the main challenge here is to tune

the temperature(τ) parameter. At the beginning the τ value was been kept constant at

0. 8 but the Q-values were not converging to the optimal values. Then we tried with

different τ values for example 0. 9, 0. 7 etc but finally found that when the τ value is

decreased from 0. 8 to 0. 01 is working fine with our model. Which can be seen from

the graphs in figure 4.12 and 4.13: Figure 4.12 shows the resulting graph from the

Softmax on non-trace equivalent LMPs

0

0.132

0.264

1 1001 2001 3001 4001 5001 6001 7001 8001 9001
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Q
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u

e

Q-values

Figure 4.12: Softmax on non-trace equivalent LMPs

Softmax on trace equivalent LMPs
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Figure 4.13: Softmax on trace equivalent LMPs

execution of Q-learning algorithm along with softmax on the LMPs of our first example
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which are non-trace equivalent. ( see figure 4.9). This is the result of one run execution

of 10000 episodes and we can see that Q-values converged to the optimal value which

is 0. 132 in this case. Figure 4.13 shows the resulting graph from the execution of

Q-learning algorithm along with softmax on the trace equivalent LMPs. We can see

that optimal Q-values converge to zero. which in turn proves the conformance between

the LMPs.

After those preliminary experiments, we tried to find out if there was a way to

improve the efficiency of our algorithm. The “traditional ”Q-learning algorithm will

be called Experiment1 and the new one experiment2. In experiment1 every time an

action as is chosen from a state s, only the Q-value of that state-action pair will be

updated i. e Q(as, s). On the other hand in experiment2 chosen action’s counterpart

will also be updated , in this case Q(af, s). By doing this double updation we hope

that experiment2 will be better than experiment1 from the point of view of convergence

rate. Because with experiment2 we have twice the information at each state every time

the Q-learning back propagates.

Now let’s compare the performance of the experiment1 and experiment2 by looking

at two sets of results :

• Experiment1 VS Experiment2 with non-trace equivalent LMPs.

• Experiment1 VS Experiment2 with trace equivalent LMPs

Softmax with experiment 1
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100000 episodes X100

Figure 4.14: Softmax with 10000, 20000, 50000 and 100000 episodes repeated for 100
times on non-trace equivalent LMPs
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Episode number Average Empirical Standard deviation

10000X100 0. 13212978 0. 00204975

20000X100 0. 13179057 0. 00506431

50000X100 0. 13301062 0. 00281912

100000X100 0. 13212978 0. 00204975

Softmax with experiment 2
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Figure 4.15: Softmax with 10000, 20000, 50000 and 100000 episodes repeated for 100
times on non-trace equivalent LMPs

Episode number Average Empirical Standard deviation

10000X100 0. 13207714 0. 0067708

20000X100 0. 13179057 0. 00509432

50000X100 0. 13301062 0. 00258727

100000X100 0. 13212978 0. 00231638

Softmax with experiment 1 
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Figure 4.16: Softmax with 10000, 20000, 50000 and 100000 episodes repeated for 100
times on trace equivalent LMPs
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Episode number Average Empirical Standard deviation

10000X100 0. 01108514 0. 00775528

20000X100 0. 01088717 0. 00693948

50000X100 0. 00972866 0. 00498668

100000X100 0. 006088 0. 00264953

Softmax with experiment 2 
onTrace equivalent LMPs
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Figure 4.17: Softmax with 10000, 20000, 50000 and 100000 episodes repeated for 100
times on trace equivalent LMPs

Episode number Average Empirical Standard deviation

10000X100 0. 01392334 0. 00575999

20000X100 0. 01148204 0. 00513899

50000X100 0. 01041614 0. 00426676

100000X100 0. 00665485 0. 00256428

The figure 4.14 compares the results of experiment1 for the episodes 10000, 20000,

50000, and 100000 repeated for 100 times each. Experiment1 was performed on LMPs

of the Figure 4.9 which are not trace equivalent and used softmax action selection

method. As we can see from the Average and Empirical standard deviation listed

below the Figure 4.14 experiment1 eventually converged to the optimal Q-values which

in this case is 0. 132, as we have mentioned earlier if the two LMPs are not trace

equivalent Q-learning gives a test whose value will be strictly greater than zero , by this

positive value we can deduce that the two LMPs are not trace equivalent and the test

which differentiates them is ”as as bf”. Similarly, Figure 4.15 compares the results of

same number of episodes but of the experiment2. We hoped the results of experiment2

would be better than the ones of experiment1, but surprisingly, this is not the case as

there is no significant difference between the average and empirical standard deviations

of experiment1 and experiment2. The same result was observed in the case of trace

equivalent LMPs which is depicted in Figures 4.16and 4.17.
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To understand why the experiment2 is not performing as we expected , we made

slight modifications to our previous example (figure 4.9) so that from the root node

choosing either of the actions as or af has the equal importance. So the new LMPs

now look as in the figure: 4.18
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Figure 4.18: Example2 LMPs: LMPImpl, LMPSpec and LMPClone

We observed the results of 10 runs for each experiment1 and experiment2. Please

refer the appendix for the results. The difference between the Example1(Figure 4.9) and

Example 2(Figure 4.18) is , in Example2 , there is a extra node with transition labelled

with action a and probability 1, and this node is the new root node and the remaining

LMP is exactly same as the example2. We repeated both the experiments on Example2

once by initializing the Q-values to 0, and the second time initializing the Q-values to

the correct values(lets recall that we know the optimal Q-values of the Example1 from

the table 4.2). Once again from the results of these experiments in appendix we can

observe that empirically Experiment 2 is not efficient than Experiment 2.

This has been a real surprise for us. However,we could think of the few reason why

experiment1 is still better than experiment2 and they are:

• Because of the bias of the Q-learning algorithm.

• Experiment1 may be good for exploration and experiment2 may be good for

exploitation.

The main reason is that in our final version of the MDP( Figure 4.8), from every

state (except the Dead state) there are two variants for every action are possible (for

example for an action a there are two variants of that action as and af ). Though

we consider two variants of actions from every state we obtain the reward only after

reaching the Dead state i. e after the episode ends and that means algorithm gives us a

signal that something has gone wrong in one of the LMPs. Thus as long as the episode
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continues it really does not matter if we choose the basic action a or its variants as

or af. So we can modify this MDP to the one follows, where there is an intermediate

state(represented as I ) between every state that eventually reaches to Dead state and

the Dead state. Once being in the intermediate state we choose either action with

success or failure and finally upon reaching the state Dead we receive the reward. Thus

the MDP in Figure 4.8 is equivalent to the one follows: By equivalent we mean that

the value of the optimal policy found in both the MDPs is same.
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Figure 4.19: Equivalent MDP to second approach

Table 4.3 demonstrates the similarity between experiment1 and experiment2. The

average and the empirical standard deviations of experiment1 and experiment2 for 100,

1000, 5000, 10000, 100000 episodes each repeated for 10000 times have been listed.

These experiments were conducted on LMPs of the figure 4.18 and softmax as the

action selection method. The pre calculated actual value for these LMPs is 0. 105.

The experiment1’s average increased as the number of episodes increased except for the

100000 episodes but it averaged to the value below the actual value. Experiment2’s

average also increased like in experiment1 but in the case of 5000 episodes it averaged

to the value above the actual value. The empirical standard deviation for both the
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experiments is almost same for the same number of episodes. Since we have observed

the results starting from 100 episodes up to 100000 episodes this table is an empirical

proof for the similarity between the the both experiments.

Episode number Experiment1 Experiment2
average Emp Std. deviation Average Emp Std. deviation

100 0. 05183493 0. 060297 0. 06503227 0. 06276288
1000 0. 05664378 0. 04946941 0. 07999226 0. 04437378
5000 0. 08502152 0. 03605331 0. 10165943 0. 0147544
10000 0. 0974141466 0. 0207266 0. 12258166 0. 01407892
100000 0. 06508017 0. 06340649 0. 06401023 0. 06251184

Table 4.3: Empirical proof showing the similarity between experiment1 and experiment2
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Conclusions and future work

In this chapter, we present a summary of contributions and suggestions for future works.

5.1 Contributions

In this thesis we proposed completely new approach to estimate how far two LMPs

are from being trace-equivalent. We introduced trace equivalence divergence notion.

The main contribution of this thesis is that this divergence can be computed via RL-

algorithms and therefore can still be tractable when dealing with very huge verification

problem, even with infinite ones.

We have also tried a way to double the number of updations per episode but there

was no significant improvement.

5.2 Future work

In this section, we provide suggestions for future work:

• we would want to modify the construction of MDP from which we calculated

divergence notion in order to speed up the calculation. In fact, there is a possibility

to modify MDP in such a way that in observation FFF we no longer have to

stop the episode. Since observation FFF does not indicate the possible similarity
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between the LMPs instead of stoping that episode we could reset the program to

the same state where this observation has resulted in order to continue until we

observe success unless the probability of observing failure in that particular state

is 1. In this way we could increase the rate of exploration.

• Finally it will be interesting to have similar notion of divergence but for other

type of equivalence mainly for bisimulation equivalence.

A paper has been submitted under the title “Trace Equivalence Characterization

through Reinforcement Learning ”to Canadian Artificial Intelligence Conference with

contribution from Josée Desharnais,François Laviolette and Sami Zhioua.
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Appendix A

Additional empirical results

E-greedy with 10000 episodes and E=0.1
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Figure A.1: ǫ-greedy with 10000 episodes and Q(0, as)=0. 132

E-greedy with 20000 episodes and E=0.1
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Figure A.2: ǫ-greedy with 20000 episodes and Q(0, as)=0. 140
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E-greedy with 50000 episodes and E=0.1
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Figure A.3: ǫ-greedy with 50000 episodes and Q(0, as)=0. 131

E-greedy with 100000 episodes and E=0.1
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Figure A.4: ǫ-greedy with 100000 episodes and Q(0, as)=0. 134

Softmax with 10000 episodes and Tau=0.8  
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Figure A.5: Softmax with 10000 episodes and Q(0, as)=0. 127, Mean=0. 13662416
and Empirical standard deviation=0. 0195586
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Softmax with 20000 episodes and Tau=0.8
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Figure A.6: Softmax with 20000 episodes and Q(0, as)=0. 114, Mean=0. 10683276
and Empirical standard deviation=0. 01988071

Softmax with 50000 episodes Tau=0.8
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Figure A.7: Softmax with 50000 episodes and Q(0, as)=0. 114, Mean=0. 1400751 and
Empirical standard deviation=0. 01493362

Experiment1 and Example2 
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Figure A.8: Q(0, as)=0. 10025316
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Experiment1 and Example2
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Figure A.9: Q(0, as)=0. 10866452

Experiment1 and Example2 
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Figure A.10: Q(0, as)=0. 10385296

Experiment1 and Example2
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Figure A.11: Q(0, as)=0. 09783903
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Experiment1 and Example2 
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Figure A.12: Q(0, as)=0. 10807495

Experiemnt 1 and Example2 
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Figure A.13: Q(0, as)=0. 10673604

Experiment1 and Example2  
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Figure A.14: Q(0, as)=0. 10414697
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Experiment1 and Example2 

0

0.05

0.1

0.15

0.2

0.25

0.3

1 901 1801 2701 3601 4501 5401 6301 7201 8101 9001 9901

Q-values

Figure A.15: Q(0, as)=0. 07871203

Experiment1 and Example2 
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Figure A.16: Q(0, as)=0. 08872893

Experiment1 and Example2
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Figure A.17: Q(0, as)=0. 10386524
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Experiment2 and Example2 Q(0,as)=0.0
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Figure A.18: Q(0, as)=0.10386524
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