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Abstract

The nation of Singapore is seeking new ways to adapt to its rapid growth. With the
help of researchers and staff at the Singapore-MIT Alliance for Research and Technol-

ogy (SMART), numerous data collection and analysis efforts are underway. One such
effort involves the harbor where operations and oceanographic data collection mis-
sions are being completed using various sensors and autonomous systems. Utilizing
Autonomous Surface Crafts (ASCs) to collect data is one such method and provides
a level of robustness unachievable by humans. To improve these operations we seek
to address the issue of efficiency in an environment containing surface waves, strong
winds, and multiple current shears. In this thesis we present two new heading control
algorithms for ASCs under the influence of currents. The first, Cross-Track Error
Minimization, ensures that the vehicle follows a straight-line trajectory between two
waypoints under the effects of surface waves and currents. The second controller,
Time-Optimal, uses Zermelo's problem and function minimization to find the time-
optimal trajectory between two waypoints using a known current field. We further
define near-time-optimal paths covering a set of waypoints by defining an asymmetric
Traveling Salesman Problem (TSP) where the graph nodes are the waypoints and the
edges are the corresponding travel times between the waypoints. Tour construction
and local search heuristics are then utilized to build near time-optimal paths. These
new paths show a potential time savings of 89% leading to overall mission efficiency.

Thesis Supervisor: Franz S. Hover
Title: Doherty Assistant Professor in Ocean Utilization
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Chapter 1

Introduction

As the center of Southeast Asia, Singapore is an evolving nation. It hosts one of

the busiest ports in the world [24] and is currently seeking new ways to grow and

develop. With the help of the Singapore-MIT Alliance for Research and Technology's

(SMART) Center for Environmental Sensing and Monitoring (CENSAM) [18], Sin-

gapore aims to utilize its resources in order to enhance its growth. Acquiring data

from the marine environment will greatly support urban planning, forecasting, and

environmental risk assessment efforts [19].

Autonomous surface craft (ASC) missions are currently underway to obtain infor-

mation pertaining to seafloor topography, water composition, and surface activity. In

the future, CENSAM hopes to utilize a fleet of autonomous systems with the advanced

capabilities required for monitoring port operations, evaluating harbor security, and

participating in oceanographic surveys. To ensure that these operations are success-

ful and energy-efficient, researchers must take a number of steps. One such step is

done by minimizing current effects. Current effects are cumbersome; they can force

vehicles away from their desired trajectories and tend to increase mission time. This

thesis presents multiple ways to minimize current effects leading to improved mission

performance in Singapore harbor. Chapter 2 defines a cross-track error minimization

control law which eliminates surface effects and allows the vehicle to follow a straight

line. Chapters 3-4 present a procedure for formulating local and global time-optimal

paths within known current fields.



Figure 1-1: Map of Singapore
The nation of Singapore is situated in the Singapore Straits between Europe and

Asia. Its location has enabled it to be one of the busiest ports in the world making
is surrounding marina an important resource.

1.1 Motivation: Monitoring the Singapore Marine

Environment

Singapore's future requires that its marine environment be monitored and evaluated

continuously. Port operations must remain consistent and potential security threats

must be assessed. Environmental changes must be recorded and analyzed for potential

risks. Together, these efforts will maintain a safe and valuable harbor.

1.1.1 Port Operations and Harbor Security

Singapore's location is ideal for large port operations, being situated along a major

trade route between Europe and Asia. According to the Maritime and Port Au-

thority of Singapore, 472,300 tonnes of cargo went through its port in 2009, making

it the busiest in the world for total shipping tonnage [40]. Scheduling, technology,

and security issues create a complex system which must be optimized. Coordina-



tion of container transfers and minimization of ship turnaround times are required

for effective port operation. Currently, Singapore port personnel use the Computer

Integrated Terminal Operations System (CITOS) to proceed with operations plan-

ning [24], but improvements supplied by real-time data transfer and utilization of

autonomous systems will assist with future growth.

Harbor security is another issue emerging in Singapore. The maritime industry

in Singapore contributes about seven percent to its Gross Domestic Product [40] and

security threats could severely hamper its contribution [1]. Pirating and weapon

threats lead to productivity slowdowns alongside fear. Autonomous systems provide

the flexibility and safety necessary to conduct thorough searches of ship exteriors

minimizing the time required by port personnel.

Figure 1-2: Photograph of Singapore Harbor
Singapore's port is the busiest in the world for total shipping tonnage [40]. Its

operation must be consistent and free of security threats.

1.1.2 Oceanographic Surveys

As Singapore develops, effort is being placed on data collection in the marine envi-

ronment. Oceanographic surveys provide information on water composition (salinity,

turbidity, etc.), seafloor topography, and surface activity. As the country searches

-- u-No, -_ _ _ __ - - .ab-amm- ___ - __ - - . - - __ - __ .1



for ways to accommodate its growth through land reclamation and urban sustain-

ability efforts, environmental changes must be monitored and evaluated. Complex

autonomous systems will simplify the process by providing real-time data collection

and transfer.
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Figure 1-3: Water Composition Data
Water composition data collected on January 15, 2010 in Selat Pauh using an

autonomous underwater vehicle (AUV). Oceanographic data acquisition is very
important for Singapore's development. It assists in identifying environmental

changes and exploring seafloor topography.

1.1.3 Sea Trial Operations

Currently, sea trials are utilized to test theories developed at CENSAM in a real

ocean environment. To date, the research staff and students have participated in

four, one month-long trials since its founding in 2008. Two main harbor regions

around Singapore have been used: the Selat Pauh area, in the south, and the Pulau

Ubin area, located in the channel which divides Singapore from Malaysia.



Figure 1-4: Selat Pauh Area of Singapore
Two main areas were utilized for sea trials: Selat Pauh and Pulau Ubin. Selat

Pauh, pictured above, is located south of the Singapore mainland. Pulau Ubin is
located in the north between Singapore and Malaysia.

The equipment for these trials is quite extensive and allows the team to capture

a wealth of data. The current work utilizes a number of sensor platforms, both

autonomous and human-operated. Our autonomous systems consist of autonomous

surface crafts (ASCs) and autonomous underwater vehicles (AUVs). Navigation is

performed using a Global Positioning System (GPS), a Doppler Velocity Log (DVL),

and an Inertial Measurement Unit (IMU) with a compass. Communication is achieved

using a wireless modem and remote control. The human-operated sensor platforms

include numerous ships and a quadrotor. In the past CENSAM has utilized personal

fishing vessels, speed boats, and barges.

Each platform can be equipped with various sensors for data acquisition. A blazed

array 900kHz imaging sonar and a micro-bathymetry blazed array are utilized to

obtain information pertaining to the seafloor and subsea structures. Two different

lasers are used to obtain surrounding surface data: a 2-D SICK scanning laser and a

3-D Velodyne laser range finder.

...................



(a) Autonomous Surface Craft (ASC) (b) Autonomous Underwater Ve-
hicle (AUV)

Figure 1-5: Photographs of Autonomous Vehicles Used in Singapore Harbor
Autonomous ocean vehicles are utilized during CENSAM's sea trial missions. These

systems can be equipped with various sensors including scanning lasers and
blazed-array sonars.

(a) SICK 2-D Scanning laser (b) Velodyne 3-D Laser Range Finder

Figure 1-6: Photographs of Range Sensors
Lasers are utilized to obtain the surrounding surface data. Applications for the

collected data include mapping and obstacle avoidance.

Autonomous Surface Craft (ASC) Operation

The theory presented in this paper pertains to path optimization in the horizontal

plane for ASCs, thus further discussion will be provided about their operation.
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Figure 1-7: ASC Orientation.
The ASC's equations of motion are defined using the current location in x and y

and the heading of the vehicle, 0.

The ASCs utilized by CENSAM and built by Robot Marine Systems [57] in their

simplest form consist of a kayak hull containing an onboard computer and a rotating

thruster. The onboard computer permits autonomous operation through wireless

communication. The ASCs are also equipped with a Global Positioning System (GPS)

and an Inertial Measurement Unit (IMU) for positioning feedback. Commands sent

to the rotating thruster are provided as a thrust percentage and a heading angle.

The software used to control the kayaks is MOOS-IVP (Mission Oriented Operat-

ing Suite Interval Programming) [56]. It is comprised of a number of C++ modules

which allows the user to operate the kayak using pre-defined or user-written con-

trol sequences or behaviors. Pre-defined control behaviors provided by the MOOS-

IVP authors utilizing the GPS and IMU feedback information include the following:

Waypoint-to- Waypoint, Station-Keeping, ASC Follow Behavior, etc. Station-Keeping

ensures that the ASC remains at a set GPS location. ASC Follow Behavior utilizes

..............................................



wireless communication to locate another ASC and maintain its position at a set an-

gle relative to the other ASC. Waypoint-to- Waypoint behavior pertains to the work

of this paper and will be discussed in Section 2.1.

1.2 Relevant Prior Work in Current Minimization

and Path Planning

1.2.1 Cross-Track Error Minimization

One of the most useful ASC control laws for oceanographic surveys in Singapore

harbor is the Cross-Track Error Minimization controller. Traditional marine sys-

tems control, such as Waypoint-to- Waypoint, drives the vehicle from one point to

the next without any constraints on its trajectory. In situations where strong cur-

rents are present the trajectory may not be ideal for the given mission due to time

or location constraints. Oceanographic surveys can require that the vehicle follow a

defined straight-line path in situations which call for complete sensor coverage such

as mapping.

Cross-track error minimization falls within the realm of track-keeping or trajectory

tracking. For underactuated vehicles traveling in a horizontal plane, track-keeping

forces the vehicle to follow a defined reference path by controlling its heading assum-

ing a constant forward velocity. For most instances of underactuated systems, the

tracking problem is challenging due to the fact that the systems are not fully feedback

linearizable and exhibit nonholonomic constraints.

Trajectory tracking control consists of controlling the heading of the vehicle, 0,

so as to minimize the cross-track error in its simplest form [20], [21]. The cross-track

error, e, between a desired trajectory and a vehicle is defined as the following,

e = -(x - d) sinO + (y -y)cos (1.1)

where x and y are the coordinates of the vehicle and Xd and Yd define the desired



trajectory. Proportional-Integral-Derivative (PID) control can be used to regulate the

error to zero [43]. Other techniques utilize optimal control through linear quadratic

Gaussian (LQG) and Hoc methods [21].

Aguiar and Hespanha [2] present a nonlinear tracking controller for two or three-

dimensional spaces derived using integrator backstepping. Their iterative Lyapunov-

based technique achieves global stability and exponential convergence of the position

tracking error, ||p - Pd1, to an arbitrarily small neighborhood of the origin. This is a

strong contribution to the field because it does not limit the trajectory type and can

instead be a bounded curve parameterized by time.

Do, et al. have contributed many works to the subject of tracking [13], [14], [15],

[16]. Their latest work focuses on including the ship's unknown nonlinear damping

terms by way of a known compact set allowing for both low- and high-speed ap-

plications. The use of the ships dynamic structure, a smooth approximation of the

damping terms, and backstepping present a globally robust adaptive controller.

Repoulias and Papadopoulos [48], [491 provide theory which delves into trajectory

design. In the derivation the reference trajectory is designed to be feasible based

on the vehicle dynamics. It encompasses the desired inertial position and the corre-

sponding velocities. Error dynamics and reference orientations are used in conjunction

with design methods such as partial state-feedback linearization, backstepping, and

nonlinear damping to force the tracking error the neighborhood of zero.

Although many trajectory tracking methods utilize backstepping and optimal con-

trollers such as LQG [29], this work focuses on using Proportional-Integral (PI) con-

trol to minimize the cross-track error. Our efforts center around ASC capabilities

and applications in Singapore harbor. The ASC software limits the inputs to desired

waypoints rather than desired trajectories. With this limitation we focus on designing

a controller capable of tracking straight-line trajectories between waypoints. Curved

paths, though out of the scope of this work, are achievable through path discretiza-

tion. The Cross- Track Error Minimization controller developed for these applications

in Singapore will be further discussed in Chapter 2.



1.2.2 Time-Optimal Path Planning

Although the Waypoint-to- Waypoint and Cross- Track Error Minimization controllers

are useful in many instances, optimizing mission time is always desirable. Using the

current energy supply, the ASCs operating in Singapore at full thrust level are only

able to operate for an average of four hours. To maximize the usage capability we

derive a Time-Optimal control. This control law finds the trajectory which minimizes

the time required to move between waypoints under known current fields.

One of the most common solutions involving optimal paths in currents, known as

Zermelo's problem, comes from Arthur Bryson and Yu-Chi Ho [9]. First, it is assumed

that the current is known and time-invariant. Secondly, the ship's velocity relative

to the water is assumed to be constant. From these assumptions a control law can

be derived from the system's Hamiltonian using time minimization. As presented,

Zermelo's problem remains a boundary value problem with the correct trajectory

dependent on choice of initial heading. Since [9] is a key contribution to the work

presented in this thesis further discussion will be presented in Section 3.1.

Jardin extends the idea of Zermelo's problem to situations where a parameter

change occurs for aircrafts such as perturbations in wind shear [30]. By supple-

menting the model with additional states, the solver accounts for these parameter

perturbations and applies Neighboring Optimal Control (NOC) feedback gains to de-

termine the state augmented trajectory. The NOC method is able to handle both

time-varying perturbations and well as bias perturbations and its trajectories are

shown to be nearly identical to optimal.

Research by Soulignac, Taillibert, and Rueher utilizes symbolic wavefront expan-

sion to determine the departure time along with the planar time-optimal path in a

given time window [52], [53]. Unlike many time-optimal trajectory solvers, this work

has the capability of accounting for both spatially and time-varying currents. Current

forecasts are discretized by space and time into cells. Each cell is given a cost which

is a function of the departure time. Paths are built using the hill-climbing algorithm

where each iteration chooses the neighboring cell with minimized cost. The optimal



path is found through minimization over all departure times.

Garau, et al. present path planning using the A* search method and delve into

the benefits of planning for certain current fields [23]. A* is a best-first search method

which uses a heuristic to determine the next step to take [42]. Though many heuristics

may be chosen, Garau, et. al. present a simple choice where the heuristic is defined as

the time required to reach the goal destination in a virtual current field with constant

velocity. The magnitude of the velocity is equal to maximum velocity found in the

actual current field. The direction of the velocity is towards the goal destination.

This heuristic is successful for a range of current intensities and does not depend on

eddy size. It is also noted that path planning is beneficial only in cases where the

velocity of the vehicle is comparable to the current speeds.

Several researchers propose using a genetic algorithm (GA) for minimum energy

cost path planning [55], [28], [3], [4]. Using a GA for path-planning permits both

advanced planning and planning in real-time because of its ability to handle spatial

and time variability in the environment. Alvarez et al. [4] proposed approach uses

GAs in conjunction with dynamic programming on reduced-dimension subspaces. As

an initialization, the authors present a population of N individuals which correspond

a possible solution paths, generated as random walks. Next, the costs required to

complete the possible solutions paths are computed. These costs are found by adding

up the energy required to propel the vehicle through the given current field, E Wi.

The energy cost at each segment of the tour is given by the following:

We f= vi (x, y, z) | dxdydz (1.2)
C

where p is a constant that is depends on the vehicle dimensions and water properties,

c is the nominal speed of the vehicle, and vi(x, y, z) is the velocity of the vehicle along

a segment Xi_ 1 to Xi. Unfeasible nodes are penalized with extra energy costs. After

energy summation, N/2 nodes with the lowest energy cost are chosen. From here

crossover operations are performed to create path offspring and a small percentage of

the paths are mutated ensuring proper convergence. The process is repeated until a



stop criteria has been met. To ensure the discovery of an optimal solution the GA is

run several times using different initial conditions. A random immigrants mechanism

is also utilized to diversify the population.

Ptres et al. [45], [44] utilize Fast Marching (FM), a breadth-first search approach,

to address underwater environmental issues with path planning such as currents,

vehicle kinematics, and real-time constraints. Using trial configurations, FM chooses

the one with the lowest distance function estimate, the heuristic, while simultaneously

updating the neighbors of the trial configuration. The authors combine FM with A*

search to achieve both accuracy and efficiency to create FM*.

A paper written by Kim and Ura [34] utilizes the theory developed by Bryson and

Ho [9] to find the minimum-time planar trajectory between two locations in undersea

environments among current disturbances. Using the control law developed by [9],
Kim and Ura focus their efforts on solving a two-point boundary value problem by

finding the initial vehicle heading necessary to proceed to another location in the

minimum amount of time. By integrating the vehicle's equations of motion forward

till a reference time, tref, the point of smallest deviation from the destination along the

trajectory is obtained. Minimization of this process over all initial headings obtains

the optimal solution. The work of Kim and Ura will be further discussed in Section

3.2.

1.2.3 Networks and the Traveling Salesman Problem (TSP)

In order to develop a global time-optimal path among a set of waypoints, we propose

utilizing local time-optimal solvers to build a graph, or network, for tour minimization.

Graphs are comprised of two finite sets: nodes, N = {ni, n2 , in3 , --., nfk}, and edges,

E {ei, e2 , e3 , ..., em} [10]. Edges define relationships between nodes meaning if ei

connects ni to n 4 then ei = nin4 . Graphs may also be directed. In directed graphs

edges become arcs defining the directional relationship between nodes [10]. If arc ai

connects ni to n 2 in the specified direction then ai = (n 1 , n 2 ). Both edges and arcs

contain costs associated with their traversal.

Tours are essentially paths taken which visit all the desired nodes in a network.



In our case, the nodes are waypoints and we aim to minimize the cost of that tour.

Formulating the problem as a combinatorial optimization traveling salesman problem

(TSP) provides us with the ability to minimize the cost using a number of techniques.

The traditional goal of the TSP is to find the route a salesperson must take to visit

a set of cities and return to the starting location so that the total distance traveled

is minimized [25]. In this traditional sense the graph contains the cities as nodes and

the distances between cities as edges. The distances are said to be same whether you

travel from city A to city B or from city B to city A thus creating a symmetric cost

matrix.

TSPs are NP-hard and computation time for exact solutions grows exponentially

as you acquire more and more nodes [41]. At the cost of accuracy we can acquire

speed using a number of heuristic techniques. To proceed using any tour improvement

methods we must first utilize classical tour construction techniques. One such tech-

nique is the Nearest-Neighbor method of order 0(n 2) [41]. Nearest-Neighbor chooses

a random node then proceeds to add the next closest (with respect to cost) unvisited

node and adds it to the tour. This process continues until all nodes are a part of

the tour. We chose to implement Nearest-Neighbor in our work due to the fact that

nearly all construction heuristics lead to similar results when used to initiate a local

search [25]. However, a number of other construction heuristics exist. The Greedy Al-

gorithm constructs a tour by ordering the node-to-node edges based on their weights.

Nearest Insertion starts with an edge and inserts the next non-tour node with the

minimum cost into the current tour until all nodes have been added [31]. Farthest

Insertion operates in a similar manner to that of Nearest Insertion except those nodes

with a maximum weight are added. In 1976, Christofides presented a new construc-

tion method which utilizes minimum spanning trees and minimum length matching

[11].

Tour improvement heuristics are utilized to acquire near-optimal solutions to the

TSP using tours provided through tour construction. These heuristics generate tours

at a local optimum. Edge swapping is the basis of many of these with the simplest

being 2-Opt. 2-Opt, first presented by Croes [12], iteratively swaps edges and reeval-



uates the change in tour cost to determine if a better tour has been found. Variants

on this extend the idea to 3-Opt and k-Opt [38]. These edge exchanging techniques

will be further discussed in Chapter 4.

The Lin-Kernighan heuristic [39], another tour improvement algorithm, is known

for its impressive capabilities [31]. This algorithm utilizes k-Opt but does not fix the

value of k. Instead it attempts to find the best choice of k by representing each k

move as a sequence of 2-Opt exchanges. During a single iteration, a series of 2-Opt

moves are run until a stopping requirement is met [26]. The best sequence is then

utilized as the k-Opt move. Limited backtracking is used to save computation effort

resulting in a local optimal solution. Implementation research has been conducted in

this area as well [27].

Of course many exact solvers exist for the TSP but computational requirements

are unrealistic for applications in Singapore harbor. The best solver was developed

and presented by Applegate et al. under the name of Concorde [5], [6]. The pro-

gram utilizes branch-and-cut-and-price methods which initially relaxes constraints.

Throughout the computation these constraints reemerge dynamically. In 2009, Ap-

plegate et al. was able to compute the optimal solution for a TSP containing 85900

nodes using Concorde, the largest of its kind [7].

The related research presented in the previous paragraphs focused on symmetric

TSPs which are represented using undirected graphs. In very rare situations do

the networks for this work become symmetric. Our goal is to obtain near-time-

optimal paths for ASCs in ocean currents. Because of this we use time, instead of the

traditional distance, to construct a directed graph. The graph is directed due to the

fact that the time to travel from waypoint A to waypoint B is not necessarily equal to

the time to travel from B to A. The travel time is dependent on the current field and

the ASC thrust level. This directed graph then becomes an asymmetric TSP. Figure

1-8 describes the problem at hand where TAB # TBA due to these current effects.

One approach to dealing with asymmetric TSPs is to use matrix transformation

[32]. This method utilizes ghost nodes as place holders within the cost matrix forming

a new, symmetric cost matrix. The transformation effectively doubles the size of the
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Figure 1-8: Asymmetric TSP Graph
Asymmetric TSPs emerge during our research due to the fact that ocean currents

greatly influence the time required by an ASC to move from waypoint A to
waypoint B and vice versa. These currents lead to a directed network and a

corresponding asymmetric TSP.

problem and 2-Opt exchanges usually fail to improve tours making it unrealistic for

our purposes [47].

Tour improvement methods for asymmetric TSPs also exist. Traditional 3-Opt

utilizes edge exchanges but chooses the one orientation which does not reverse the

tour [25]. A variant of the Lin-Kernighan algorithm has also been devised. This

heuristic, known as the Kanellakis-Papadimitriou algorithm, utilizes a variable-depth

local search [33] to acquire new tours during a single iteration. The k exchange is

limited to odd k > 3 to ensure that the tour is not reversed. A gain for each new

tour is evaluated to confirm that it is better than its predecessor.

One method suitable for both symmetric and asymmetric TSPs was developed

by Stitzle and Hoos [54]. They present the MAX-MIN Ant System which builds a

tour using pheromone trails -rj associated with each arc of a TSP. Starting with an

initial node, consecutive nodes are added probabilistically according to a probability

distribution proportional to Equation (1.3),

...... . ......... . ................. - ____ . ..............



pi r ~ rj - ef if j not yet visited, else 0,

where 9l5 = 1/dij and dij is the cost associated with the the arc connecting node i with

node j. Each ant constructs a tour using a and /3 as the probability distribution bias

parameters and trail intensities are computed and updated based on the the result of

the best ant. The trail strengths are limited between maximum and minimum values

and in situations of stagnation intensities undergo a proportional update. The Ant

System is combined with local search techniques to obtain near-optimal solutions.

Genetic local search algorithms are also used to solve symmetric and asymmetric

TSPs [22]. Local search techniques find local optimal solutions. The GAs then search

the local optima to find the global optimum efficiently. When applied to asymmetric

algorithms local search is completed using a fast-3-Opt algorithm [8] whereas Lin-

Kernighan is applied for symmetric cases.

Since the contribution of our work focuses on presenting the novel idea of solving

for a near-time-optimal solution by modeling the problem as a TSP we do not focus

our efforts on improving current TSP solvers. As this is the case the research presented

utilizes one construction method and three modified local search methods. These

methods will be further discussed and analyzed in Chapter 4.

1.3 Problem Statement: Minimization of Ocean

Current Effects

The objective of this work is to improve current research operations in Singapore

harbor. One way to achieve this is to minimize ocean current effects. By constructing

a Cross- Track Error Minimization control law, the ASC is able to follow a straight-

line trajectory. This control law counteracts the external forces consisting of ocean

surface waves and currents. Another improvement introduced in Singapore is ASC

path-planning for known currents. Using local time-optimal paths found using Time-

Optimal control, we are able to build a network defining the paths between mission

(1.3)



waypoints. An optimal global tour of the network is then found using TSP techniques.

Figure 1-9 presents the structure of this thesis. Chapter 2 will discuss the method-

ology for developing and tuning the Cross- Track Error Minimization controller as well

as present and discuss its improvements over the traditional Waypoint-to- Waypoint

controller. Chapter 3 will present the theory behind Bryson and Ho's local time-

optimal path work [9] and show how this boundary-value problem can be solved for

two waypoints. Chapter 4 will continue the work of Bryson and Ho by using local

time-optimal paths to construct and define TSP networks. TSP tour construction

and local search techniques will be presented and analyzed. Throughout the thesis,

experimental and simulation data will be presented and discussed.



ASC:Low-Level Control

TSP Formulation

TSP Minimized Tour

Figure 1-9: Thesis Structure
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Chapter 2

Low-Level Autonomous Surface

Craft Control

As mentioned previously, ASC operations in Singapore harbor are used for the pur-

pose of data collection and harbor exploration. Current control laws are capable of

conducting basic waypoint surveys and following behavior. By adding the Cross-

Track Error Minimization control law, ASCs are able to follow straight-line trajec-

tories with minimal error which greatly benefits missions involving the mapping and

oceanography communities.

2.1 Waypoint-to- Waypoint Control

Currently, a few basic control laws constructed using MOOS-IVP [56] are present on

the ASCs. One such low-level control law is Waypoint-to- Waypoint control. Earlier

sea trial operations used this control law exclusively because research was focused on

visiting specified waypoints for data collection.

2.1.1 Waypoint-to- Waypoint Heading Control Algorithm

The Waypoint-to-Waypoint controller is simply constructed. The basic algorithm is

presented in Algorithm 2.1. This control law requires that two locations must be



known: the current position of the ASC and the destination waypoint. Line 1 in

Algorithm 2.1 demonstrates the simplicity of the controller. Essentially the ASC

is asked to proceed in the direction of destination waypoint, destwpx and destwpy.

The underlying ASC controller prevents the ASC from overshooting and saturates

the heading inputs.

Algorithm 2.1 Waypoint-to-Waypoint Heading Control
headcmd = wp2wp (x, y, destwpx, destwpy) where x and y are the current coordinates
of the ASC and destwpx and destwpy are the coordinates of the destination waypoint

1: headcmd = atan2(destwpy - y, destwpx - x)
2: return headcmd

2.1.2 Waypoint-to- Waypoint Heading Control Simulation

The main use of Waypoint-to- Waypoint control is to visit waypoints in a manner that

does not take trajectories or currents into consideration. Figure 2-1 demonstrates

this fact by depicting five cases of directionally-varying currents. In each case, the

magnitude of the current is the same at Vcur, = V where V is the constant velocity of

the ASC over water equatable to thrust. Here we can see that the ASCs have straight-

line trajectories using Waypoint-to- Waypoint control when the current is aligned with

the waypoints themselves (Figures 2-1(a) and 2-1(e)). Otherwise a strong deviation

from the line is observed (Figures 2-1(b), 2-1(c), and 2-1(d)). The time necessary to

proceed from one waypoint to the other is also dependent on the current direction as

shown in the figures.

Although Waypoint-to- Waypoint heading control is useful for a number of data

collection missions, it does not encompass all. For certain missions such as structure

surveys, ASCs must be able to follow a specified trajectory with minimal error. This

is not possible through Waypoint-to- Waypoint control unless the currents are aligned

with the direction of motion, a highly unlikely scenario. Because of this, a new

control law must be developed to enhance the capabilities of the ASC. Cross- Track

Error Minimization control presented in Section 2.2 presents this new controller and
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Figure 2-1: Waypoint-to- Waypoint control for Directionally-Varying Currents
The direction of the current field can vary the response of the

Waypoint-to- Waypoint control. Here we have five cases in which the magnitude of
the current remains constant (Vcurr = V) but the direction changes. As is shown,
an opposing current increases the time required to move from one waypoint to the
other. Direct routes are only achievable when the current direction is aligned with

the waypoints themselves.

demonstrates its straight-line trajectory capabilities.
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2.2 Cross- Track Error Minimization Control

The goal of Cross- Track Error Minimization heading control is to ensure that the ASC

follows a specified straight-line trajectory. Straight-line trajectories are necessary for

certain oceanographic surveys and subsea exploration. Straight-line trajectories can

also be used to discretized parabolic paths making the Cross-Track Error Minimiza-

tion controller robust and adaptable to many research missions.

(a) Waypoint-to- Waypoint (b) Cross- Track Error Minimization

Figure 2-2: Low-Level Control for Oceanographic Surveys
Choice of low-level control is dependent on the mission. If the goal is to follow
several straight-line trajectories throughout a specified area Cross-Track Error

Minimization control is ideal.

2.2.1 Cross- Track Error Minimization Control Algorithm

The method utilized to implement the Cross-Track Error Minimization control is

presented in Algorithm 2.2. The controller is PI (proportional-integral) where the

proportional and integral terms are related to the distance from the line the ASC is

attempting to follow between waypoints. Their gains, K, and Ki respectively, are

-11 __ 11 - - - - - - " , , ffi. - - 11 11 - - - ---- .. __ - - - I __ - - - - .......... .. ....



tuned to the specific vehicle as shown in Line 1.
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Figure 2-3: Cross- Track Error Minimization Heading Control Angles
Cross- Track Error Minimization control (Algorithm 2.2) utilizes three main angles:

Oini=*dest (wayang), 0 pos>dest (ang2way), and 6ini4,0o (ascang). PI control is used to
relate the dist variable to the desired heading.

To begin, the algorithm finds the relative angles between all important positions in

the plane: Oini-dest, the angle from the initial waypoint to the destination waypoint,
0 pos-dest, the angle from the current position of the ASC to the destination waypoint,
and Oini-pos, the angle from the initial waypoint to the current ASC position. Within

the algorithm, these variables are set to be wayang, ang2way, and ascang respectively

and are presented in Lines 4-6. Figure 2-3 further clarifies these important angles.

Using wayang we must then find the equation for the straight-line which connects the

initial and destination waypoints, our reference path, and the corresponding closest

point along that line to our current position, closestx and closesty. This is completed

in Lines 7-15. Using these points, we can compute the ASC's distance from the line,
dist (Line 16), the basis for our PI control. The proportional control contribution

(Lines 17-24) is based on the relative angle between ascang and wayang to ensure

wPI

I I



Algorithm 2.2 Cross- Track Error Minimization Heading Control
[headcmd, intsumout] = cxtrack (x, y, iniw px, inixpy, destwpx, destwpy, intsum)
where x and y are the current coordinates of the ASC, iiwpx and iniiwpy are
the coordinates of the initial waypoint, destwpx and destwpy are the coordi-
nates of the destination waypoint, and intsum is the sum of the integral error

1: Kp AND Ki ARE THE PROPORTIONAL AND INTEGRAL GAINS RESPECTIVELY

AND ARE TUNED TO THE VEHICLE IN USE THROUGH EXPERIMENTAL TESTING.

2: wayxdif = destwpx - iniwpx
3: wayydif = destwpy - iniwpy
4: wayang = atan2(wayydif, wayxdif) {INITIAL TO DESTINATION WAYPOINT AN-

GLE}

5: ang2way = atan2(destwpy - y, destwpx - x) {POSITION TO DESTINATION WAY-
POINT ANGLE}

6: ascang = atan2(y - iniwpy, x - iniwpx) {INITIAL WAYPOINT TO POSITION AN-

GLE}

7: if abs(wayydif) < 0 then
8: closestx = iniwpx
9: closesty = y

10: else

11: m = wayydif /wayxdif
12: b = iniwpy - m * iniwpx
13: closestx = (my + x - mb)/(m 2 + 1)
14: closesty = (m 2y + mx + b)/(m 2 + 1)
15: end if
16: dist = sqrt[(closestx - x) 2 + (closesty - y) 2] {DISTANCE FROM THE LINE}
17: sinrelang = sin(ascang - wayang) {PROPORTIONAL CONTROL CONTRIBUTION}
18: possin = 1
19: if sinrelang < 0 then
20: possin = 0
21: end if
22: if possin == 1 then
23: dist = -dist
24: end if
25: intsum = intsum + dist {INTEGRAL CONTROL CONTRIBUTION}
26: sumlimit = .25/sumin
27: if intsum > sumlimit then
28: intsum = sumlimit
29: end if
30: if intsum < -sumlimit then
31: intsum = -sumlimit
32: end if
33: headcmd = ang2way + Kpdist + Kiintsum
34: intsumout = intsum
35: return headcmd, intsumout



that the heading of the ASC turns in the appropriate direction. The integral control

contribution (Lines 25-32) integrates the distance and limits its contribution using

sumlimit. The new heading command, headcmd = ang2way + Kpdist + Kiintsum

(Line 33), and the integrated sum, intsumout, are returned.

2.2.2 Cross- Track Error Minimization Control Simulation

As a comparison to Waypoint-to- Waypoint control (Figure 2-1), we chose to demon-

strate how the Cross-Track Error Minimization controller works in similar cases as

shown in Figure 2-4. As the current changes direction, the Cross-Track Error Min-

imization controller adjusts the heading of the ASC so as to be able to follow the

straight-line path connecting the two waypoints. A straight-line path no longer de-

pends on the direction of the current, but instead on a properly tuned controller.

2.2.3 Cross- Track Error Minimization Control Experimen-

tation

In order to successfully utilize the Cross- Track Error Minimization controller for

research operations in Singapore harbor it must first be tuned to the vehicle in use.

In January 2010 we had the opportunity complete the tuning in Singapore harbor

on one of the four ASCs. Over the course of one week both the K, and Ki values

were adjusted and tested to reveal the ideal gains. Experimentation consisted of

running the ASC at 100% thrust resulting in an average vehicle speed over water of

1.7 m/sec. Presented in Figure 2-5 are three sets of gains which were tested. The

left-hand column displays the trajectories of the ASC whereas the right-hand column

shows the distance, or dist, value over the course of the test. The goal is to minimize

the distance over time. Based on the runs completed, the best gains for this specific

ASC resulted in K, = 0.04 rad/m and Ki = 0.001 rad/(m-sec).

The tuning of the vehicle in use is of great importance. With every additional

sensor or weight the dynamics of the vehicle change. Future extensions of this work

may look to create an adaptable tuner for each vehicle. This will help to minimize
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Here we have five cases in which the magnitude of the current remains constant
(Vcrr = 2V), but the direction changes similarly to Figure 2-1. Cross-Track Error

Minimization control forces the ASC to follow a straight-line trajectory between the
two waypoints.
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Figure 2-5: Cross- Track Error Minimization Controller Tuning in Singapore Harbor
The gains, Kp and Ki, are very important to the success of the controller and must
be tuned to the vehicle in use. Shown here are three of many tuning runs completed
in Singapore Harbor on January 15, 2010. Based on experimental results, K, = 0.04

rad/m and Ki = 0.001 were found to be the best gains for the ASC used.
rad/(m-sec).

......... ...... .............. .... .................. . .. . ..........



42



Chapter 3

Time-Optimal Local Path and

Control

Chapter 2 presented two heading control algorithms. The first, Waypoint-to- Waypoint

control, centered on surveying specific waypoints and did not consider the trajectory

between waypoints. The second, Cross- Track Error Minimization control, empha-

sized the trajectories between the waypoints by forcing the ASC to follow a straight-

line between the two. Neither of these previously mentioned control laws account for

the time required to proceed between the two waypoints.

Efficiency is of great importance to research operations in Singapore harbor. ASCs

run on a limited battery supply resulting in 4 hours of operation for 100% thrust and

because of this, surveying an entire harbor with such little efficiency must be ad-

dressed. A simple way of improving mission performance is to implement a controller

which minimizes the time required to move between waypoints, or Time-Optimal

control. Using the work of Bryson and Ho [9] we are able to search for and define

the time-minimal path using known current fields, effectively reducing the energy

required by the ASC during operation.



3.1 Zermelo's Problem

The work of Bryson and Ho [9] introduces us to Zermelo's problem, the idea that

a minimum-time path can be found for an ocean vehicle using the Hamiltonian and

time minimization. The theory requires two assumptions. First, the magnitude and

the direction of the current must be time-invariant and known functions of position,

u(x, y) and v(x, y). The variables u and v indicate the velocity components of the

current in the x- and y- directions. Secondly, the magnitude of the ship's velocity

relative to the water, V, is constant. Using these two assumptions, two of the three

equations of motion can be defined as the following:

i=V cos 0 + U(x, y) (3.1)

y = VsinO + v(x, y) (3.2)

where 0 is the heading angle and x and y define the position of the ocean vehicle.

Through computation and minimization of the Hamiltonian, H = A(V cos 0 + a) +

Ay(V sin 0 + v) + 1, over time the final equation of motion is found [9]:

Dv (Du Dv
0=sin2 0 +sin0cos 0 a - -cos 2 0 (3.3)

Ox (O D y yB Oy

Equations (3.1)-(3.3) can be solved simultaneously to obtain the minimum-time

path where Equation (3.3) is the specific control law. However, in order to obtain the

correct path between two waypoints we must determine the correct initial heading,

00, for the vehicle making Zermelo's solution a boundary-value problem.

3.2 Solving Zermelo's Boundary-Value Problem

As mentioned previously, Zermelo's time-optimal control law presented in Equation

(3.3) is a boundary-value problem. In order to use it effectively we must determine

the correct initial heading, 0. Figure 3-2 displays the importance of utilizing the

correct initial heading. If it is not chosen properly, the vehicle will not proceed to the
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Figure 3-1: ASC Orientation with Current
The solution to Zermelo's problem requires knowledge of the ASC's position, x and

y, and heading 6 as well as the current's velocity components in the x- and y-
directions

destination waypoint.

To solve Zermelo's boundary-value problem we use function minimization. We

know that the vehicle must pass through the destination waypoint and that it must

be time-optimal. Thus, we must find the correct initial heading which gets the vehicle

to the destination waypoint with the smallest deviation in the least amount of time.

Similarly to Kim and Ura [34], we start by using reference navigation to determine

an upper bound on the time. The reference navigation can be either Waypoint-to-

Waypoint, Cross- Track Error Minimization, or any other non-time-optimal controller

which ensures arrival at the destination waypoint. Using this reference we can com-

pute tref, the time required to travel from the initial waypoint to the final waypoint

using the reference navigation. Because the reference navigation is non-time-optimal

we know the following:

..... ..........
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Figure 3-2: Zermelo's Solution for Multiple Initial Headings
Solving Zermelo's boundary-value problem determines the path the Time-Optimal

control will result in. In this example six initial headings were provided to the
controller at WP1 for a given current field. The magnitude of the current is a

function of the vehicle's velocity over the water V. The black trajectories depict the
vehicle's controller response with an incorrect 0. The red trajectory depicts the

correct solution to the boundary-value problem, driving the vehicle to the
destination waypoint, WP2, successfully.

0 < t* < tref, (3.4)

where t* is the time to travel between the two waypoints using Time-Optimal control

and the correct 60. This upper bound, tref, allows us to utilize the minimum principle

to ensure that any 00 which arrives at the destination in a total time less than tref

could be a near-optimal trial trajectory [34].



Using the reference time, we must find the initial headings which drive the vehicle

to the destination waypoint. The approach we take is the following: For each initial

heading, simulate the vehicle's Time-Optimal control trajectory t = 0 to tref. Then,

compute the minimum achievable distance to the destination waypoint over the entire

trajectory. If the minimum achievable distance is close to zero, this indicates that the

vehicle successfully arrives at the destination waypoint during the time interval. The

process is summarized within function fiindmindist, shown in Algorithm 3.1. Figure

3-3 depicts the output of function findmindist for the initial headings presented in

Figure 3-2. Using function minimization to minimize findmindist outputs over all

initial headings, we can determine the correct Time-Optimal control initial heading,

0*, and the corresponding trajectory time, t*.

Algorithm 3.1 findmindist Minimized Function
mindist = findmindist (tref,00, iniwpx, iniwpy, destwpx, destwpy) where tref is the
time required to travel between the waypoints using a non-time-optimal controller, 00
is the initial heading of the ASC, iniwpx and iniwpy are the coordinates of the initial
waypoint, and destwpx and destwpy are the coordinates of the destination waypoint

1: Set the initial position to iniwpx and iniwpy.
2: while t < ttot do
3: Integrate the time-optimal equations of motion, Equations (3.1)-(3.3), forward.
4: Compute the distance to destwpx and destwpy.
5: end while
6: return The minimum distance to destwpx and destwpy, mindist.

3.3 Time- Optimal Control Analysis

In order to successfully implement Time-Optimal control in a Singapore harbor mis-

sion we must analyze its impact and computation costs.

3.3.1 Low-Level Controller Comparison

As mentioned previously, we developed this controller to enhance what Waypoint-

to- Waypoint and Cross- Track Error Minimization control do not: efficiency. For
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Figure 3-3: finidminidist Outputs for the Example Posed in Figure 3-2
The function findmindist is utilized to determine which initial headings pass

through the destination waypoint by computing the minimum achievable distance to
that waypoint during t =0 to tref. The output of finidmindist is then minimized

over all possible initial headings to determine the correct Time- Optimal control
initial heading, O3, and the corresponding trajectory time, t*. Using the example

posed in Figure 3-2, we show the output of finidmindist. The red star indicates the
correct Time- Optimal control initial heading.

situations which do not put a constraint on the path taken from one waypoint to the

next, implementing Time-Optimal control will allow us to save time and energy.

In order to compare time savings for each of the controllers, we must define a

metric:

Relative Time Savings =t'ef x 100%, (3.5)
tref

where tref is the total trajectory time of the non-time-optimal controller and t* is the

trajectory time of the Time-Optimal controller.

.. ....... .



Time-Optimal Control Simulation

In a similar simulation to those performed in Chapter 2 for the other low-level con-

trollers (Waypoint-to-Waypoint - Section 2.1.2, Cross-Track Error Minimization -

Section 2.2.2), Figure 3-4 presents results of Time-Optimal control for an ASC. Sim-

ilarly to Cross- Track Error Minimization control (Figure 2-4), Time-Optimal control

follows a straight-line trajectory for each of the five current directions. The main dif-

ference between the two controllers is the initial heading, O*, where the Time-Optimal

trajectory traversal is faster. The Relative Time Savings using Time-Optimal control

is shown in Table 3.1. Time-Optimal control shows a significant improvement over

that of Waypoint-to- Waypoint control during instances of cross-currents. Although

less significant, the savings over Cross- Track Error Minimization will prove to be

important for longer missions and more spatially-varying current fields.

Table 3.1: Relative Time Savings for Low-Level Controller Simulations
Based on Equation (3.5) we can compute the relative time savings for Time-Optimal

control compared to those of Waypoint-to-Waypoint and Cross-Track Error
Minimization control for the simulation results presented in Sections 2.1.2, 2.2.2,

and 3.3.1.
Relative Time Savings [%]

Ocurr Waypoint-to- Waypoint Cross- Track Error Minimization
2700 2.06 2.21

3150 9.96 2.41
00 26.9 3.04

450 23.5 2.80

900 2.26 2.26

1 km Simulation Comparison

To re-emphasize the impact of Time-Optimal control, we chose to simulate the three

low-level controllers over a 1 km dist using current forecasts provided by the Tropical

Marine Science Institute in Singapore [58] for June 12, 2010. We assume a constant

ASC velocity, V = 1.5 m/sec. We also assume that the current does not change over

time. The resulting trajectories and travel times are shown in Figure 3-5. Using the
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Figure 3-4: Time-Optimal Heading Control for Directionally-Varying Currents
Here we have five cases in which the magnitude of the current remains constant
(Veurr = V) similarly to those presented for Waypoint-to- Waypoint control and
Cross-Track Error Minimization control in Sections 2.1.2 and 2.2.2 respectively.

Although the trajectory appears similar to those of the Cross-Track Error
Minimization control the initial headings allow it save mission time.

time savings metric provided in Equation (3.5) we find that Time-Optimal control

saved 18.37% time over Waypoint-to- Waypoint control. Additionally, we find that

Time-Optimal control saved 7.73% time over Cross- Track Error Minimization control.

In addition to these savings, it is important to note that the time-minimal trajectory

does not follow that of the Cross- Track Error Minimization as it did in Section 3.3.1.

Instead it follows a route which manipulates both the magnitude and direction of the
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current to permit time savings.
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Figure 3-5: 1 km Low-Level Controller Simulation
Here we present a simulated run using the three low-level controllers in the same

current field. The colorbar represents the magnitude of the current and V is the

velocity of the vehicle relative to the current. As is expected, the time required by

the Time-Optimal control to complete the trajectory is less than those of
Waypoint-to- Waypoint and Cross- Track Error Minimization control.

3.3.2 Time-Optimal Control Computation

There are a few items which must be noted when discussing the Time-Optimal con-

troller and its computation.

Case 1: mindist >> 0

Arrival at the destination waypoint using Time-Optimal control is greatly de-

pendent on the operating current field and the vehicle's velocity relative to

............ . .. ........ . ..........



the current. Because of this, there are cases where the function minimization

of findmindist returns a mindist which does not indicate convergence, i.e.

mindist > 0. In situations such as these, steps must be taken to determine

whether the current field is inoperable due to the current magnitude or if it is

due to the vehicle settings such as thrust level.

Case 2: Function Minimization - The Importance of the Initial Guess

For our function minimization we utilize Matlab's fminsearch which requires

an initial heading guess. Because this function is a local minimizer, the possibil-

ity of incorrect returns such as presented in Case 1 exists. In hopes of bypassing

local minima, which occur regularly in spatially-varying fields, we perform func-

tion minimization using eight regularly-spaced initial guesses throughout the 0

to 2-r range. Using these returns, we choose the minimum of all eight mindist

returns and proceed with our regular analysis.

Case 3: Function Minimization Returns Multiple 0*

Due to the fact that current fields tend to be highly dynamic, two or more rela-

tively global minima may be found for mindist through function minimization.

In situations such as these it is important to explore the t* associated with the

minima. The correct initial heading should be the one corresponding to the

minimum V.

Case 4: Computation Time

Computation time for Time-Optimal control planning is highly dependent on

the magnitude and direction of the given current field, the speed of the vehicle

relative to the current field, and the distance between waypoints. The contribu-

tions are due to the fact that during findmindist we must simulate the vehicle's

motion which is dependent on these factors. Additionally, computation time is

also dependent on the current data form. In all operating harbor environments,

current forecasts are discretized in space requiring interpolation during the ve-

hicle's traversal. The interpolation will add to the total computation time.



Case 5: Incorrect Current Field

The Time-Optimal control's motion is dependent on the current field. Incorrect

data, unless statistically similar in direction and magnitude to the experimental

environment, will result in vehicle missteps in the forms of incorrect 0* compu-

tation and trajectory.
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Chapter 4

Time-Optimal Global Path

Planning and Control

The previous chapter presented Time-Optimal heading control which utilizes work

from Bryson and Ho [9] to find the time-minimal path between two waypoints. This

controller implemented in Singapore will decrease the energy required to complete

missions where the trajectory is not constrained. Extending this theory to multiple

waypoints is also quite useful. Several missions require visiting a number of waypoints,

in an unordered fashion, to collect oceanographic or surface data. We propose that

by ordering the waypoints in a manner which effectively decreases the time required

to complete the entire tour, both energy and time will be saved.

Ordering waypoints is no easy feat when given a large number of waypoints and a

spatially-varying current. To tackle the problem at hand, we chose to utilize network

optimization methods. Network optimization is a large field ranging from power

system research to scheduling [351. The extensive field of research presents us with a

number of system analyzers and solvers to obtain a time-optimal global path between

all waypoints.



4.1 The Traveling Salesman Problem (TSP)

4.1.1 Basic Graph Concepts

Network graphs are a fundamental combinatorial structure [35]. Undirected graphs

are comprised of two finite sets Gu = (N, E): nodes, N = {ni, n2, n3, ... , nk}, and

edges, E {ei, e2, e3 ,... , em} [10]. Edges define relationships between nodes mean-

ing if ei connects ni to n2 then ei = nin2. Graphs may also be directed. In

directed graphs, GD = (N, A), there exists a set of nodes, N, and a set of arcs,

A = {ai, a 2, a3 ,... , a,}. Arcs are ordered and define the direction of the relationship

between nodes [10]. When indicating that n3 is at the head of an arc a2 and the tail

is at ni, we write a 2 = (ni, n3). Figure 4-1(a) shows an example of an undirected

graph where

N = {ni, n2, n 3 , n4 }

and

E {ei, e2, e3, e4, e5 , e 6 1

= nin2, nin3, nin4, n2ns, n2n4, nan4}-

Figure 4-1(b) presents an example of a directed graph where

N = {ni,n2, n 3 , n 4 }

and

A = {ai, a2, a3, a4, a5, a6}

= {(ni, n 2 ), (ni, n 3 ), (ni, n 4 ), (n 2 , n 3 ), (n 2 , n 4 ), (n 4 , n 3 )}.

Using a network or graph we can then define a cost matrix, C. The cost matrix

stores the edge weights and nodal relationships in matrix form [10]. Given a graph

containing m nodes we will obtain an m x m matrix C. Each matrix entry ci holds

the weight associated with its traversal defined by
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Figure 4-1: Undirected vs. Directed Graphs
Undirected graphs have edges which do not indicate direction. The arcs of directed

graphs indicate the directional relationship between nodes.

(4.1)

where c(.) is the cost function. The cost matrix associated with the undirected graph

featured in Figure 4-1(a) is the following:

Cu =

0 C12

C12 0

C13 C14

c23 c24

C13  C23  0 c34

C14 C24 C34 0

In the case of undirected graphs, the cost matrix is symmetric meaning cij = ci as

indicated in Cu. Whereas the cost matrix associated with the directed graph featured

in Figure 4-1(b) is the following:

cij = c (ni , nj) ,



0 C12 C13 C14

CD 00 0 C23 C24

00 00 0 0

00 00 C43  0

With directed graphs, the cost matrix may not be symmetric meaning cij -f cji. It is

also important to note that when relationships do not exist between nodes, cij = oo

indicating that traversal is impossible.

4.1.2 The Traveling Salesman Problem (TSP)

In the traditional sense the TSP sets out to find the shortest route, in terms of

distance, for a traveling salesperson both starting and ending at a home city which

ensures that each of his or her prescribed cities have been visited. Using a graph,

the cities are nodes and the distances between cities are the edges. Traditionally the

distances are Euclidean leading to an undirected graph and a symmetric cost matrix.

4.1.3 TSP Formulation for Global Time-Optimal Path Plan-

ning in Currents

The aim of global time-optimal path planning in currents is to find the shortest

ASC path between all mission waypoints, both starting and ending at the same

waypoint. Since we are operating in spatially-varying currents and mission efficiency

is important, our aim is not to minimize Euclidean distance. Instead, we aim to

minimize the time required to complete the tour.

Given an unordered set of m waypoints and no trajectory constraints we can

define a network. The network is composed of the m waypoints as nodes, N =

{ni,n2, . . , nm}, and m 2 -m arcs, A = {(ni, n 2 ), (n 2 , ni), ... , (nm-1, nm), (nm, nm-1)}.

Due to the fact that the arcs of the graph are defined in time, each nodal pair, ni and

n, has two directed arcs in reversed directions, i.e. ai = (ni, n1 ) and a2 = (nj, ni).

The weight corresponding to each arc is now a function of time,



t* (ni, n{), if the path is possible

if the path is not possible

where t*(ni, nj) is the time to travel between waypoint i, ni, and waypoint j, nj using

Time-Optimal control and the correct O*. The cost matrix, C, is instead defined to

be a time-optimal cost matrix, CT..

0

t*

C t*

t*1

As shown, the time-optimal network

trix, CT*, is asymmetric. Only when

symmetric.

t*2 t* .. t*M

0 ti 3 ... t*m

t 3*2 0 ... t 3 m

t* 2 t*2 3  ... 0

graph is directed and the associated cost ma-

the current is effectively zero will CT. become

Since the global time-optimal network has been defined, the next step is to utilize

TSP heuristic methods to solve for a time-optimal global path. This will be presented

in Section 4.2

A TSP Formulation Example

Given the four waypoints and the time-invariant current forecast shown in Figure 4-2,

we must build the network and corresponding cost matrices.

If we were attempting to minimize the total tour based on Euclidean distance we

would form the undirected graph featured in Figure 4-3. The corresponding symmet-

ric distance cost matrix would be the following:

Cdst =

0

283

304

112

283

0

269

180

304

269

0

224

112

180

224

0

(4.2)
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Figure 4-2: TSP Formulation Example - Waypoints and Current Forecast
Four waypoints must be visited during a mission and their locations are indicated
here. The colorbar signifies the magnitude of the current as each point in space in

units of m/sec.

where the cij values are in units of meters.

However, since our goal is to minimize the total tour based on time we first

determine the t* for each waypoint pair using Time-Optimal control. We assume

that our vehicle's velocity relative to water is constant, V = 1.5 m/sec. The resulting

directed graph is shown in Figure 4-4 and the corresponding asymmetric time-optimal

cost matrix is the following:

0 2.3 1.1 5.1

7.5 0 8.4 5.2
CT.=

3.8 1.8 0 2.2

2.3 1.3 4.8 0
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Figure 4-3: TSP Formulation Example - Euclidean Distance Graph
When minimizing a tour over Euclidean distances we first obtain an undirected

graph and a corresponding symmetric cost matrix, Cdist

where the cij values are in units of minutes.

4.2 TSP Heuristic Methods

For real-time operation, we do not need to implement exact solvers. Instead, we

rely on heuristic methods to provide us with a near-optimal solution showing sig-

nificant improvement over otherwise implemented missions. Construction heuristics

are utilized to produce a good starting tour. Local search, in contrast, is utilized to

iteratively improve an already existing tour through sub-tour exchanges.

4.2.1 Tour Construction

As previously mentioned in Section 1.2.3, several tour construction heuristics exist.

It has been shown that the initial tour does not greatly impact the final solution

produced by local search [36], [25]. Due to this fact, we chose to implement only one

....................................... . ... ...... ...... . . .. .. .. ................ ..........

WP1 WP2
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Figure 4-4: TSP Formulation Example - Time-Optimal Graph
When minimizing the total time required to visit all the waypoints we first obtain a
directed graph and a corresponding asymmetric cost matrix, CT.. This result is due

to the spatially-varying magnitude and direction of the current field.

type of tour construction: Nearest-Neighbor.

Our procedure, shown in Algorithm 4.1, is based off that of Nilsson [41]. The

Nearest-Neighbor method bases its construction off of the costs associated with each

arc. After randomly choosing the first arc, the algorithm proceeds to choose the next

'closest' node based on the weight of the arc between them.

Algorithm 4.1 Nearest Neighbor Tour Construction
1: Select a random graph arc and add the corresponding nodes to the current tour.
2: while there exists nodes not in the current tour do
3: Choose the nearest node and add it to the tour.
4: end while
5: return The nearest neighbor tour.

Nearest-Neighbor tour construction is of order 0(m 2 ) where m is the number of

nodes in the graph.

............... ....... .... - - A- d b __ 11 11 -



4.2.2 Local Search

Local search is utilized to improve the tour iteratively by recomputing the cost of the

tour after each step to determine if there was an improvement. By removing k edges

from a tour and reconnecting them in a new fashion, this altered tour is created.

Flood and Croes introduced 2-Opt and 3-Opt, which chooses 2 and 3 edges to remove

respectively [17], [12]. Lin and Kernighan introduced the more general form as k-Opt

where k edges are removed and rearranged [39].

The traditional k-Opt process removes k edges from a tour, exchanges them in a

manner which does not reverse the tour, and then recomputes the difference in costs

between the initial tour edges and the rearranged tour edges. An example of this for

2-Opt is the following: Given an initial tour encompassing all nodes,

1, 2 ,. .. , no, ni, n2, .. . , nk, nk+1,..., m

we would like to exchange edge noni with edge nknk+1 to see if there is an improve-

ment. The resulting tour containing an inversion would look like the following:

1, 2 , ... , no, nk, nk1, ... , n2, ni, nk+1,... , m

[12]. The corresponding cost evaluation for 2-Opt would be the following,

AMtra(noni, nknk+1) =c, 1 -+ Ck,k+1 - CO,k - Ci,k+1 (4.3)

where cij is the cost of the edge associated with moving from node ni to node nj [12].

if AMtrad > 0, then this inversion is accepted as an improved tour.

Traditional 3-Opt

Traditional 3-Opt utilizes three arc exchanges to create a new tour in a traditional

fashion. What is meant here by 'traditional' is that when exchanging 3 arcs, we must

ensure that the tour is not reversed, meaning cij z cji, limiting our possible exchange

to only one orientation. Figure 4-5 H shows an example of this orientation. Because



Figure 4-5: Local Search Operations
Local search such as Extended 2-Opt, Extended 3-Opt, and Traditional 3-Opt are
utilized to improve an already existing tour. In the above schematic, an existing

tour in A is to be improved. Red arrows indicate a tour reversal thus requiring that
the entire tour cost be recomputed. B-H demonstrate the seven possible

interchanges performed by Extended 3-Opt. Subsets of these are done in cases of
Extended 2-Opt shown in B-D. The only interchange performed by Traditional

3-Opt is shown in H where no tour reversal occurs.

we are not reversing the tour in any way, we can continue with the traditional cost

evaluation presented in Equation (4.3) with an extension for three edges. The method

utilized for Traditional 3-Opt is shown in Algorithm 4.2. Three edges are iteratively

removed and exchanged until no more improvements can be found. Due to the fact

the three edges must be exchanged to acquire results, m > 6 where m is the number

of nodes in the graph.

Reversing a tour requires more computation time but produces improved final

results because more exchange possibilities are evaluated. The computation time

comes from the fact that instead of utilizing the difference in edge costs, we must

look at the difference in total tour costs due to the fact that our cost matrix is

............... :- . 11.1 .1 1 L" .....................



Algorithm 4.2 Traditional 3-Opt Local Search
1: Compute the cost of the current tour.
2: while 3-Opt moves which do not reverse the current tour can improve the cost

of the current tour do
3: Choose 3 arcs of the current tour and compute their total cost.
4: Remove the 3 arcs of the current tour and reconnect them so that the tour is

not reversed.
5: Compute the total cost of the new edges.
6: if the total cost of the new edges is less than the total cost of the current edges

then
7: Set the current tour equal to the new tour.
8: end if
9: end while

10: return The Traditional 3-Opt tour.

asymmetric and cij -/ cji. For a given tour,

1, 2, . .. , no, ni, n2 , ..., nk, nk+1, . ,M

this total tour cost, Tc, is equal to

m-1

TC cm, 1 + Ci,i+1. (4.4)
i=1

The resulting cost evaluation between the initial tour i and the exchanged tour j is

AM(touri, tourj) = Tc, - Tc,. (4.5)

where T 2 is the total tour cost of tour i described by Equation (4.4). Again, if

AM > 0 then the new exchanged tour is an improvement over the initial tour.

We will see this non-traditional cost evaluation applied using Extended 2-Opt and

Extended 3-Opt in the following sections.

Extended 2-Opt

Extended 2-Opt is an extension of the previously mentioned 2-Opt where two edges

are removed and exchanged to create a new tour. Due to the fact that the cost



matrices described in Section 4.1.3 are asymmetric, meaning cij $ cji, we cannot

utilize traditional opt-exchange cost evaluation presented in Equation (4.3). Instead

we must evaluate the change in cost of the entire tour as described by Equation (4.5).

The resulting method, Extended 2-Opt, is described in Algorithm 4.3. The two edge

exchange process is continued iteratively until no new improved tour can be found.

Figure 4-5 B-D show an examples of possible Extended 2-Opt exchanges for the given

tour in A.

Algorithm 4.3 Extended 2-Opt Local Search
1: Compute the cost of the current tour.
2: while 2-Opt moves can improve the cost of the current tour do
3: Remove 2 arcs of the current tour and reconnect them in the most improved

manner.
4: Compute the cost of the new tour.
5: if the cost of the new tour is less than the cost of the current tour then
6: Set the current tour equal to the new tour.
7: end if
8: end while
9: return The Extended 2-Opt tour.

Extended 3-Opt

Extended 2-Opt exchanges present good results as will be shown in Section 4.5.1, but

limits the number of tour configurations explored. To attempt improvement in opti-

mality, we broaden Extended 2-Opt to Extended 3-Opt utilizing the non-traditional

cost evaluation presented by Equation (4.5) due to the fact that Extended 3-Opt

can reverse the tour. As shown in Figure 4-5 B-H, Extended 3-Opt has seven tour

exchanges for improvement, three of which are Extended 2-Opt. At each iteration,

Extended 3-Opt evaluates all seven of these tour costs and chooses the best to test

against the non-exchanged tour. Although computation time is much larger we see an

improvement in the cost of the total tour. Algorithm 4.4 describes the implementa-

tion method for Extended 3-Opt. Also, due to the fact that we must exchange three

arcs to get results, m > 6 where m is the number of nodes in the graph.



Algorithm 4.4 Extended 3-Opt Local Search
1: Compute the cost of the current tour.
2: while 3-opt moves can improve the cost of the current tour do
3: Remove 3 arcs of the current tour and reconnect them all possible configura-

tions.
4: Compute the cost of each reconfigured tour and choose the most improved tour

to be the new tour.
5: if the cost of the new tour is less than the cost of the current tour then
6: Set the current tour equal to the new tour.
7: end if
8: end while
9: return The Extended 3-Opt tour.

4.3 Time-Optimal Global Path Simulation

To emphasize the impact using Time-Optimal control in the field we now present a

simulation encompassing this control law and the TSP heuristic methods mentioned

previously. Using a given current field forecast and six waypoint locations in a 475 m

x 450 m area we begin by obtaining our cost matrices. The first, obtained using the

Eulerian distances between the waypoints is

0 282.8 158.1 111.8 161.5 292.6

282.8 0 158.1 180.2 264.7 125.0

158.1 158.1 0 111.8 232.5 230.4
Cdist =

111.8 180.2 111.8 0 120.8 182.0

161.5 264.7 232.5 120.8 0 203.0

292.6 125.0 230.4 182.0 203.0 0

where the values are in meters. The second matrix, the time-optimal cost matrix, is

created under the assumption V = 1.5 m/sec where V is the velocity of the vehicle

relative to water. To build the time-optimal cost matrix, CT., we use Time-Optimal

control for the technique described in Section 4.1.3. Using Waypoint-to- Waypoint



control for our reference navigation time, tref, we obtain

0 159 109 59 77 146

oX 0 00 189 188 59

118 66 0 57 117 95
CT.=

103 112 118 0 57 84

164 233 249 131 0 136

oo 159 oc o 175 0

where the values are in seconds. The oc emerges in the time-optimal cost matrix when

travel between those two waypoints is impossible due to relatively strong currents

and insufficient thrust levels. To make our jobs easier, we form a utility matrix,

80, which stores the correct Time-Optimal control initial heading 0* associated with

each waypoint-to-waypoint path. This matrix will not be presented here to maintain

simplicity.

4.3.1 Tour Construction

In order to obtain our near-time-optimal global tours we must start through tour

construction. Using arc (WP5, WP6) as our randomly chosen starting arc for our

Nearest-Neighbor tour, we continue by applying Algorithm 4.1 to build a tour. The

process uses the cost matrix, CT*, to find the next 'closest' waypoint in time by

comparing t* values.

Initiation

NN tour = {WP5, WP6}

Iteration 1

NN tour = {WP5, WP6, WP(min{t*, t*2 , t*3 , t*})}

= {W P5, WP6, WP2}



Iteration 2

NN tour = {WP5, WP6, WP2, WP(min{t*1 , t*3 , 4)}

= {W P5, WP6, WP2, WP4}

Final Iteration

NN tour = {WP5, WP6, WP2, WP4, WP1, WP3}

Proceeding to simulate this path using Time-Optimal control and the associated

correct initial headings from 95, we can compute the total travel time for the final

Nearest-Neighbor tour, TNN = 13.6 min. The tour is depicted in Figure 4-6.

East-West

Figure 4-6: TSP Heuristics Simulation - NN Tour
Randomly choosing arc (WP5, WP6) for the Nearest-Neighbor initialization leads

to the tour depicted above. The total time to complete the tour was 13.6 min using
the given current field and a constant vehicle velocity of V = 1.5 m/sec.
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4.3.2 Local Search

Using the Nearest-Neighbor tour obtained in Section 4.3.1 we can proceed to improve

the tour using local search. Because we are using so few waypoints we will only

present Extended 2-Opt in detail using Algorithm 4.3.

Initiation

Set the current tour equal to the Nearest-Neighbor tour solution.

tourcurr = {WP5, WP6, WP2, WP4, WP1, WP3}

Compute the cost of the current tour.

Ttour = 13.6 min

Iteration 1

Attempt to exchange arc (WP5, WP6) with arc (WP2, WP4).

tournew ={WP5, WP2, WP6, WP4, WP1, WP3}

Compute the new tour cost.

Tour_ =o

Check the cost evaluation between the current tour and the new tour.

AM = -oo < 0 =- Do not accept this new tour.

tourcurr {WP5, WP6, WP2, WP4, WP1, WP3}

Iteration 2

Attempt to exchange arc (WP5, WP6) with arc (WP4, WP1).

tournew = {W P5, WP4, WP2, WP6, WP1, WP3}



Compute the new tour cost.

Ttourcurr =0

Check the cost evaluation between the current tour and the new tour.

AM = -oo < 0 = Do not accept this new tour.

tourcurr = {WP5, WP6, WP2, WP4, WP1, WP3}

Iteration 10

Attempt to exchange arc (WP4, WP1) with arc (WP3, WP5).

tournew {WP4, WP3, WP1, WP5, WP6, WP2}

Compute the new tour cost.

Tour_ = 13.3

Check the cost evaluation between the current tour and the new tour.

AM = 13.6 - 13.3 > 0 - Accept this new tour.

tourcurr = {WP4, WP3, WF 1, WP5, WP6, WP2}

Final Iteration

Extended 2-Opt tour = {WP1, WP4, WP3, WP2, WP6, WP5}

Simulating this path using Time-Optimal control and the associated correct initial

headings from E8, we can compute the total travel time for the final Extended 2-Opt

tour, TExt.2-Opt = 10.7 min. The Extended 2-Opt tour is shown in Figure 4-7.
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Figure 4-7: TSP Heuristics Simulation - Extended 2-Opt Tour
Extended 2-Opt Local search using the Nearest-Neighbor initial tour resulted in the
tour depicted above. The total time needed to complete the tour was 10.7 min for

the given current field and the constant vehicle velocity, V = 1.5 m/sec.

4.3.3 Generating a Reference Tour

To show the benefit of utilizing TSP heuristics to find a near-time-optimal tour we

must provide a baseline tour. The reference tour we choose to utilize is composed

using Nearest-Neighbor in conjunction with the cost matrix Cdist. Using this process

to create a reference tour generalizes what researchers would do if current forecasts

were not available. Using (WP5, WP2) as our randomly selected initiation arc we

find the Nearest-Neighbor reference tour by choosing the next closest waypoint in

terms of Euclidean distance. The resulting reference tour is

NNdist tour = {WP5, WP2, WP4, WP1, WP3, WP6}

..... ... ....... . .. . ...... .... .. ........ . .. . ............ . .... . .... ............



and the total travel time for this tour is TNNa,, = 15.1 min. The resulting tour is

shown in Figure 4-8.

East-West

Figure 4-8: TSP Heuristics Simulation - NNdi8t Tour
Randomly choosing arc (WP5, WP2) for the Euclidean distance Nearest-Neighbor
initialization leads to the tour depicted above. The total time required to complete

the tour was 15.1 min using the given current field and vehicle velocity, V = 1.5
m/sec.

4.3.4 Simulation Analysis

We are aware that solving for the global time-optimal path problem must utilize

heuristics. When we are presented with a set of waypoints we have a very small

probability of choosing the optimal order using Nearest-Neighbor based on Euclidean

distance. Given m waypoints, there exists m! permutations of their order. Thus we

have a probability,
1

P=
m!
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of choosing the correct optimal tour. In this simulation instance, that probability is

2. It is evident that as m increases, the probability decreases. With such small

probabilities it becomes clear why utilizing heuristics assists in the discovery of an

optimal tour.

Within our simulation, the Extended 2-Opt tour outperformed both the Nearest-

Neighbor based on CT. and the Nearest-Neighbor based on Cdist as is shown using

Tour Relative Time Savings. The time savings from tour-to-tour is computed in the

following manner:

TN T- T
Tour Relative Time Savings = TNNdiS, tsp X 100%. (4.6)

TNNaist

where Tp is the tour time required by the given TSP method. These results are

shown in Table 4.1. In this instance, the final Extended 2-Opt tour was able to save

29.1% time over that of the reference tour, NNdist tour. Of course NNdist was gener-

ated using a randomly chosen edge. Due to this waypoint configuration and current

forecast, it is possible that the reference tour would have generated the optimal tour,

however as previously mentioned, the odds are unlikely. Instead, using heuristics al-

lows us to reach that near-time-optimal tour. As an example, if our Nearest-Neighbor

construction tour had turned out to be the following,

NNdiSt tour = {WP6, WP2, WP5, WP4, WP1, WP3}

our Extended 2-Opt local search would have still concluded with the same near-time-

optimal result.

In Section 4.5 we will further discuss the implication of TSP heuristics and the

computation time involved in the solutions gathered.

4.4 Heuristic Methods Experimentation

Implementation of theory in real oceanographic environments speaks well to the

strengths of research. In January 2010, we set out to prove that the ordering of



Table 4.1: Tour Relative Time Savings for TSP Heuristics Example
Using Equation (4.6) we can evaluate the tour relative time savings for our NNdist,

NN, and Extended 2-Opt tours.

Tour Relative Time Savings [%]
NNdist NN Extended 2-Opt

NNdist 0 10 29
NN 0 21

Extended 2-Opt 0

mission waypoints has a significant impact on the total time and energy required by

the mission by creating path plans.

Test Setup

From January 11-15, 2010 a group of CENSAM researchers and support staff [18]

set out to the Selat Pauh area of Singapore to perform multiple oceanographic tests

and data sampling. Using a test area of 900 m x 500 m, six waypoints were chosen

randomly. A single ASC was used for all of the tests. It was equipped with GPS, an

IMU, and wireless communication.

Prior to arrival the two cost matrices were computed: CdiSt, a symmetric Eu-

clidean distance cost matrix obtained using the waypoint GPS locations, and CT,

the asymmetric time cost matrix. CT, though not optimal, was computed using

Waypoint-to-Waypoint control predicted paths from a current forecast provided by

TMSI for the proposed mission time. The velocity of the ASC, V, was assumed to be

constant at 2 m/sec. Also, it was assumed that the current predictions were accurate

and that the current field would not drastically change during mission operation.

In order to evaluate the benefit of utilizing TSP heuristics a reference tour was

generated. The reference tour utilized Nearest-Neighbor and the cost matrix Cdist to

obtain a tour encompassing all six waypoints. The proposed reference tour demon-

strates what researchers would choose to do if current forecasts were not readily

available.

Using CT a Nearest-Neighbor tour was generated. A final tour was constructed



using Extended 2-Opt.

January 13, 2010

Cdist and CT were computed using current forecasts from TMSI [58] in the Selat Pauh

area for 3 p.m. Using methods previously described, NNdist path was found:

NNdist tour = {WP4, WP6, WP5, WP3, WP2, WP1}.

Using a thrust percentage of 100% and a departure time of 2:50 p.m., the mission

was run using Waypoint-to-Waypoint control. The total time required to complete

the tour was TNNd,,, = 9.14 min. The mean velocity of the vehicle over water, V,

during this period was 1.61 m/sec.

The tour generated by CT using Nearest-Neighbor tour construction and then

Extended 2-Opt local search was:

Extended 2-Opt tour = {WP4, WP6, WP2, WP1, WP3, WP5}.

Using a thrust percentage of 100 % and a departure time of 3:02 p.m., the mission

was run using Waypoint-to-Waypoint control. The total time required to complete

the Extended 2-Opt tour was Tixt.2-Opt= 7.15 min. The mean velocity of the vehicle

over water, V, during this period was 1.77 m/sec.

The time savings between tours, computed using Equation (4.6), was found to be

21.8% as shown below.

9.14 - 7.15
Tour Relative Time Savings = 914

9.14
100% ~ 22%

The trajectories of these two tours are shown in Figure 4-9.
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Figure 4-9: January 13, 2010 TSP Heuristic Experiment
Two tours were executed and analyzed. The first was found using Nearest-Neighbor
tour construction based on the Euclidean distances between waypoints. The second
utilized Nearest-Neighbor and then Extended 2-Opt to maximize time savings. In

this experiment a relative time savings of about 22% was found.

January 15, 2010

Cdist and CT were computed using current forecasts from TMSI [58] in the Selat Pauh

area for 1:55 p.m. Using methods described in Section 4.4, NNdist path was found:

NNdist tour = {WP2, WP4, WP1, WP6, WP5, WP3}.

Using a thrust percentage of 100% and a departure time of 1:53 p.m., the mission

was run using Waypoint-to- Waypoint control. The total time required to complete

the tour was TNNd,, = 8.12 min. The mean velocity of the vehicle over water, V,

during this period was 1.73 m/sec.

The tour generated by CT using Nearest-Neighbor tour construction and then

........... .................... . ... .... ....... ... ........ .............. ..... ........ .... ............ . . ...... . ....



Extended 2-Opt local search was:

Extended 2-Opt tour = {WP4, WP6, WP2, WP1, WP3, WP5}.

Using a thrust percentage of 100 % and a departure time of 2:08 p.m., the mission

was run using Waypoint-to-Waypoint control. The total time required to complete

the Extended 2-Opt tour was TExt.2-Opt= 7.39 min. The mean velocity of the vehicle

over water, V, during this period was 1.70 m/sec.

The time savings between tours, computed using Equation (4.6), was found to be

8.99% as shown below.

8.12 - 7.39
Tour Relative Time Savings = x 100% ~ 9%

8.12

The trajectories of these two tours are shown in Figure 4-10.

Test Analysis

While we cannot confirm the accuracy of the current forecasts provided to us by TMSI

[58], we can draw a solid conclusion that the order the waypoints are visited makes

a difference in the amount of time it takes to complete a tour. In both experiments,

the Extended 2-Opt tour have time savings over that of the Nearest-Neighbor from

Euclidean distance. The experiment which took place on January 13, 2010 showed

more savings due to the relatively small current magnitude and spacial variability.

Also, the vehicle's velocity was 0.16 m/sec faster during its Extended 2-Opt tour than

its Nearest-Neighbor tour which may in part be due to the waypoint ordering. The

January 15, 2010 experiment showed less savings but more current variability and

similar vehicle velocity.

Although we used six waypoints for these experiments we suspect that the in-

clusion of more waypoints will lead to further improved tours due to the increased

number of tour configurations. We also would like to note that we did not use Time-

Optimal control for these experiments. Implementation of this control law in addition
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Figure 4-10: January 15, 2010 TSP Heuristic Experiment
Two tours were executed and analyzed. The first was found using Nearest-Neighbor

tour construction based on the Euclidean distances between waypoints. The second

utilized Nearest-Neighbor and then Extended 2-Opt to maximize time savings. In

this experiment a relative time savings of about 9% was found.

to utilizing TSP heuristic techniques will lead to near-time-optimal global paths.

4.5 Time-Optimal Global Path Planning and Con-

trol Analysis

4.5.1 Time Savings Contribution

The impact of utilizing a TSP formulation to find a minimal time tour is really shown

through numerous waypoint sets in a number of current fields. Within this section

we hope to convince the reader that significant savings is achievable through this

....... .. . ....... .. ....



methodology.

Time Savings Simulation Setup

In this simulation we utilized thirteen sets of twenty waypoints to take note of the

trend in savings for each of the three local search methods. The waypoints were

randomly placed in a 350 m x 350 m area with an average waypoint-to-waypoint

distance, pdist, of 165 m. The velocity of the vehicle relative to water was set to be

a constant, VASC = 1.5 m/sec. For each set of waypoints we simulated a number of

spatially-varying currents defined in the following manner:

u(x, y) = Vcurr cos (27wy (4.7)

v(x, y) = 0 (4.8)

where u(x, y) and v(x, y) are the current velocities in the x- and y- directions, Vcurr

is the amplitude of the current velocity, and A is the wavelength of the current field.

Figure 4-11 displays these values pictorially. The Vcurr test values ranged from 0

to VASO m/sec and the A test values ranged from 5 pdist to 6 0Adist m. For each

combination of waypoint set, Vur, and A, we used Time-Optimal control to build our

time-optimal cost matrix, CT., using Waypoint-to- Waypoint control as our reference

control. Using these time-optimal control matrices we proceeded to construct twenty

initial tours using Nearest-Neighbor tour construction for a randomly chosen arc.

For each of these initial tours we used all three local search techniques mentioned

previously to minimize the tour.

In order to determine time savings we once again used a reference tour for each of

the thirteen sets of waypoints. Using the Euclidean distance between waypoints we

found a symmetric cost matrix Cdist. To make our results fair we then proceeded to

compute every possible Nearest-Neighbor solution based on Euclidean distance and

its respective total trajectory time for the given set of waypoints and current field.

Thus for each waypoint set we obtain two reference times for later analysis,
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Figure 4-11: Time Savings Simulation Current Variables
This figure describes the varying current profile used during the time savings

simulation and shown in Equations (4.7) and (4.8). Vurr refers to the amplitude of
the current in the x-direction. A is the wavelength of that current.

tref,mean(WP, Vcurr, A) mean(TNNdam (WP, Vcurr, A))

tref,max(WP, Vcurr, A) max(TNN%,,S(WP, Vcurr, A))

(4.9)

(4.10)

where WP is the given set of waypoints and TNNS is the total tour time for all of

the possible Nearest-Neighbor tours based on Euclidean distance. tref,mean computes

the mean time and tref,max computes the maximum possible time.

In order to compute the time savings capabilities of the local search techniques

we used the following computations:

. .. ..... ...



SVtref,mean(WP, Vr, A) - T1s(WP, Vcurr, A, NN tour)1tis,mean(Vcurr, A) = mean [te a(P e ma(WVur )jxl100%
tref,mean(WP, Vner, A)

(4.11)

~mA) max [trefmax(WP, Vcrr, A) - TVs(WP, Vurr, A, NN tour)1 X 100%
tref,max(WP, Vnur, A)

(4.12)

where is refers to the local search method utilized and Ts(WP, Vcurr, A, NN tour) is

the total tour times for all twenty Nearest-Neighbor initiated local search results

for the given waypoint set, WP, current amplitudes, Vcurr, and wavelengths, A.

tis,mean(Vcurr, A) refers to the Relative Mean Tour Savings over all 13 (waypoint sets)

x 20 (Nearest-Neighbor initial tours) instances of that Vcurr and A. tis,max(Vcurr, A)

refers to the Relative Maximum Tour Savings over those same instances.

It must be noted that for the evaluations presented above, we ignored all instances

where the tours resulted in impossible trajectories. Also, the figures presented have

all been non-dimensionalized using A/pdiSt and Vurr/VASC as the x- and y- axes

respectively.

Simulation Results & Analysis

The following figures depicts the results of the analysis utilizing a log scale for clarity.

Relative Mean Tour Savings and Relative Maximum Tour Savings for Traditional

3-Opt are shown in Figures 4-12 and 4-13. For Extended 2-Opt, these results are

displayed in Figures 4-14 and 4-15. The Extended 3-Opt results are presented in

Figures 4-16 and 4-17. The savings values were computed using Equations (4.11) and

(4.12).

Based on these simulations, it is fair to state that at least 14% savings is possible

using local search methods with Extended 3-Opt achieving the largest improvement.

Using minimum Relative Mean Tour Savings as a lower bound, Extended 3-Opt

presents the best opportunity for improvement. In these simulations the minimum

time savings was 22% at A = 35 and Vcurr = 0.13 using the Extended 3-Opt local
sdest VASo

search method. Extended 2-Opt and Traditional 3-Opt have minmas of 20% and



Table 4.2: Local Search Simulation Savings Statistics

Simulation Statistics
Mean[%](V.../VAsc,A/Mdist) Max[%](V.Cr/VASC, A/Aist)

Traditional Min 14 (0.4, 25) 40 (0.53, 35)
3-Opt Max 77 (1, 25) 88 (1, 15)

Extended Min 20 (0, 35) 42 (0.53, 55)
2-Opt Max 70 (1, 25) 86 (1, 15)

Extended Min 22 (0.13, 35) 42 (0.53, 55)
3-Opt Max 78 (1, 25) 89 (1, 15)
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Figure 4-12: Traditional 3-Opt Relative Mean Tour Savings
The minimum savings of 14% was found at A = 25 and V = 0.4. The

Adist VASC

maximum savings of 77% was noted at A = 25 and Vcurr 1.
IAdist VASC

14%.

Extended 2-Opt local search also achieved impressive savings, yet did not achieve

the maximums like Extended 3-Opt and Traditional 3-Opt. This fact can be at-

tributed to the limited number of configurations presented by a two arc exchange

relative to the other three arc exchanges. Traditional 3-Opt presents the greatest

fluctuation between savings with a minimum mean savings of 14% and a maximum

mean savings of 77% over the various current fields. Because Traditional 3-Opt eval-
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Figure 4-13: Traditional 3-Opt Relative Max Tour Savings
The minimum savings of 40% was found at A = 35 and vc. = 0.53. The

Idist VASC

maximum savings of 88% was noted at A= 15 and Vcurr = 1.
Adist VASC

uates those tours which do not reverse the initial tour, the probability of savings is

limited.

In each local search instance it is evident that with a decrease in current wave-

length, A, and an increase in the current amplitude, Vur, potential savings increases.

With such changes, the current becomes more and more influential on the path of

the ASC. In some instances, the current was inoperable as is evidenced when Vr

= 1 m/sec and A = 65, 55, and 45 m. Thus, TSP network heuristics can be use to

pinpoint both successful and unsuccessful missions.

In addition to savings, it it also important to understand the computation time

involved for each of the search methods. Section 4.5.2 will discuss this matter.

4.5.2 TSP Computation

Although maximum time savings is desirable, the computation time involved may be

excessive. Because of this we must analyze the three local search heuristic methods
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Figure 4-14: Extended 2-Opt Relative Mean Tour Savings
The minimum savings of 20% was found at A = 35 and v =urr - 0. The maximum

/
1
dist VASC

savings of 70% was noted at A = 25 and Vcurr -
IAdist VASC

in detail.

TSP Local Search Computation vs. Time

Using the simulation presented in Section 4.5.1, we chose to take one current profile

and analyze the computation time involved in all instances. The profile we chose

encompassed the following non-dimensionalized values: A = 25 and Vur = 0.47.
A.dist VASC

All instances are presented in Figure 4-18.

It is clear from Figure 4-18 that Extended 3-Opt requires the most amount of

computation time alongside the maximum amount of savings. Its variability with

computation time and savings is minimal compared to those of Traditional 3-Opt

and Extended 2-Opt. However, its computation time is about ten times greater that

that of both Traditional 3-Opt and Extended 2-Opt. As more waypoints are added

to the set, this computation time could become significant.

Figure 4-18 also tells us that Extended 2-Opt requires more time than that of

.. ................ ... : ........... . ....... .... ................... - ......... .
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Figure 4-15: Extended 2-Opt Relative Max Tour Savings
The minimum savings of 42% was found at " = 55 and veu" = 0.53. The

Adist VASC

maximum savings of 86% was noted at A= 15 and Vcurr = 1.
Adist VASC

Traditional 3-Opt. With Traditional 3-Opt we observe significant savings variability

ranging from 0% to 30% savings. This trait can be observed in the overall simulation

plot, Figure 4-12. Extended 2-Opt, in contrast, displays variability in both the savings

and computation time directions.

To further assist our analysis we chose to construct a plot demonstrating the

convergence rates for Traditional 3-Opt and Extended 2-Opt local search methods.

Using four starting tours and the previously mentioned current field, we have plotted

the current best tour time against the iteration number. This is shown in Figure

4-19. It is clear that Extended 2-Opt has a faster convergence rate to its local min-

ima than that of Traditional 3-Opt. Evidenced by Figure 4-18, the time required to

compute one Traditional 3-Opt iteration is less than that of Extended 2-Opt. How-

ever, Extended 2-Opt arrives at its local minima using less iterations and the savings

observed is frequently greater than that of Traditional 3-Opt. Figure 4-18 coupled

with Figure 4-19 inform us that Traditional 3-Opt is not an ideal methodology due

86
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Figure 4-16: Extended 3-Opt Relative Mean Tour Savings
The minimum savings of 22% was found at A = 35 and Vcur= 0.13. The

Idst VASC

maximum savings of 78% was noted at A = 25 and V = 1.
Adist VASC

to its savings variability and unimpressive performance compared to both Extended

2-Opt and Extended 3-Opt. Instead, it is a trade-off between computation time and

savings guarantees. Extended 2-Opt exhibits savings variability alongside minimal

computation time. Extended 3-Opt, in contrast, guarantees greater savings with ten

times as much computation time in this instance.

TSP Local Search Worst Case Iteration Analysis

It is important for us to note the worst case iteration scenario for each of the lo-

cal search techniques. Starting with Extended 2-Opt and a tour consisting of m

nodes, a single iteration chooses the first arc. The algorithm then iterates through

all other subsequent arcs in the current tour to find an improvement. This leads to

a worst case iteration of (m - 3) exchanges with the first arc and tour cost compu-

tations. Comparatively, during a single iteration in Traditional 3-Opt, a worst case

iteration results in (m - 4)(m - 5) exchanges. As an example, Table 4.3 presents
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Figure 4-17: Extended 3-Opt Relative Max Tour Savings
The minimum savings of 42% was found at A = 55 and vcurr = 0.53. The

pdist VASC
maximum savings of 89% was noted at A = 15 and V 1.

Adist VASC

all the possible arc combinations given the first arc is (1,2) and the initial tour

T = {1, 2, 3,4, 5, 6, 7, 8,9, 10} for Traditional 3-Opt. In this example, a maximum

of (m - 4)(m - 5) = (10 - 4)(10 - 5) = 30 exchanges and cost computations occur

in a single iteration. Extending Traditional 3-Opt to Extended 3-Opt, we find that a

maximum of 7(m - 4) (m - 5) exchanges are computed due to the fact that it checks

those tours that are reversed.

Using the derivations presented above, for each new tour analyzed we find the

maximum number of iterations in increasing order to be the following: Extended

2-Opt - m(m - 3), Traditional 3-Opt - m(m - 4)(m - 5), and Extended 3-Opt -

7m(m - 4)(m - 5). These results are summarized in Table 4.4.

4.5.3 Time-Optimal Global Path Analysis Summary

By defining the time-optimal global path problem as a TSP we are able to obtain

near-optimal tours for a set of waypoints. In each instance we build a cost matrix
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Figure 4-18: Computation Time vs. Savings
Using A = 25 and =cjr 0.47 we have plotted all instances relating computation
time to savings. The range of savings for Traditional 3-Opt is much larger than that

of Extended 2-Opt or Extended 3-Opt. Also, it is evident that Extended 3-Opt
requires more time than Extended 2-Opt but has a greater opportunity for

increased savings.

then use the Nearest-Neighbor algorithm to construct an initial tour. TSP heuristic

methods are used to obtain improved tours. The heuristic methods range in their

abilities as shown in previous sections. Traditional 3-Opt does not achieve the level

of savings as that of Extended 2-Opt and Extended 3-Opt as expected due to the

limited number of configurations. The savings standard deviation is also quite large

in comparison. This leads to the variable behavior shown in Figure 4-12. However,

increased savings leads to increased computation time as evidenced by the Extended

2-Opt and Extended 3-Opt results. Though each achieve similar savings, Extended 2-

Opt requires less time with noted variability. The Extended 3-Opt method presents

the most improved tours and the least amount of variability thus making it ideal,

however computation time is increased.

Choosing between the various heuristic methods then becomes a trade-off. Due
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Figure 4-19: Best Tour vs. Iteration Number
Using a set current profile, we explore the convergence rates between Traditional
3-Opt and Extended 2-Opt. Upon observation, it is evident that Extended 2-Opt

reaches its local minima in less iterations than that of Traditional 3-Opt. Also, the
level of savings achieved by Traditional 3-Opt is frequently less than that of

Extended 2-Opt making Extended 2-Opt a better local search heuristic choice.

to its variability, Traditional 3-Opt is not considered. It is suggested that when max-

imum savings is desired with a sacrifice of computation time, Extended 3-Opt should

be the chosen heuristic. If computation time is of great importance with the potential

for savings loss, Extended 2-Opt is suggested. In most real-time applications, such

as mission planning in Singapore harbor, minimized computation time is desirable

making Extended 2-Opt the chosen heuristic.



Table 4.3: Traditional 3-Opt Possible Arc Exchanges
When given an initial tour T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, there exist 30 possible
exchanges to be evaluated for every given initial arc and are presented below.

1st Arc 2nd Arc Possible 3rd Arc
(1,2) (3,4) (5,6) (6,7) (7,8) (8,9) (9,10)
(1,2) (4,5) (6,7) (7,8) (8,9) (9,10)
(1,2) (5,6) (7,8) (8,9) (9,10) (3,4)

(1,2) (6,7) (8,9) (9,10) (3,4) (4,5)
(1,2) (7,8) (9,10) (3,4) (4,5) (5,6)

(1,2) (8,9) (3,4) (4,5) (5,6) (6,7)

(1,2) (9,10) (3,4) (4,5) (5,6) (6,7) (7,8)

Table 4.4: TSP Local Search - Maximum Iteration Number
Each local search procedure utilizes tour updating to obtain the resulting

near-optimal solution. Upon every tour update there is a worst-case scenario where
every arc combination must be analyzed. These values are presented below with the

fastest being Extended 2-Opt and the slowest Extended 3-Opt.
Maximum Number of Iterations Possible

Extended 2-Opt Traditional 3-Opt Extended 3-Opt
m(m - 3) m(m - 4)(m - 5) 7m(m - 4)(m - 5)
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Chapter 5

Conclusions and Future Work

We present several methods for minimizing current effects on ASC operations in

Singapore harbor for the purpose of benefiting oceanographic data collection and ex-

ploration. As an improvement over the presently used Waypoint-to- Waypoint control,

Cross- Track Error Minimization control forces an ASC to follow a straight-line path

under the influence of currents. This low-level controller is powerful for missions with

constrained trajectories. An additional low-level controller, Time-Optimal, was de-

veloped to maximize operation efficiency by obtaining the time-optimal path between

waypoints. Using Time-Optimal control we were able to produce near-time-optimal

paths through TSP formulation and heuristics leading to overall mission efficiency

due to time and energy savings.

5.1 Summary

Chapter 2 presented a new Cross-Track Error Minimization controller. Using this

new controller we are able force the ASC to follow a straight-line trajectory connect-

ing two waypoints. It is an improvement over Waypoint-to- Waypoint control where

the trajectory is not constrained. The controller uses PI control where the distance

from the desired trajectory is used to update the ASC heading. The capabilities pro-

vided by Cross- Track Error Minimization control add another dimension to research

operations in Singapore harbor. Utilizing this new controller researchers are able to



conduct experiments requiring specified trajectories such as subsea surveys.

A third low-level controller for ASCs was described and analyzed in Chapter 3.

Here we designed a controller for the purposes of minimizing the energy and time

required for the ASC to move from one waypoint to the next. Using Zermelo's problem

described by Bryson and Ho [9] we obtain an boundary-value problem for the path

under the assumptions that the current is time-invariant and that the vehicle moves

at a constant velocity relative to water. Through function minimization we solve

the boundary-value problem for a given current field to obtain the optimal initial

heading, O*, and the corresponding minimized travel time, t*. The resulting Time-

Optimal control law enables us to minimize the time it takes to move from one point

to the next without trajectory constraints.

A methodology for forming near-time-optimal global paths is presented in Chapter

4. Here we use results obtained in Chapter 3 to formulate the problem as a TSP.

The TSP is then solved using Nearest-Neighbor tour construction and local search

heuristics. The first heuristic, Traditional 3-Opt, rearranges the time-optimal graph

arcs so that tours are not reversed. Due to its savings variability Traditional 3-Opt is

not the best heuristic choice when compared to Extended 2-Opt and Extended 3-Opt.

Extended 3-Opt iteratively rearranges three arcs to create new tours. This heuristic

produces the best savings results but at the cost of computation time. Extended

2-Opt uses two arc exchanges to create new tours. Computation time is the cheapest

but it does not produce the maximum savings. Since ASCs operate in real-time

harbor environments, computation time must be minimized. Thus, Extended 2-Opt

is the most practical choice for these applications.

5.2 Future Work

The final goal of this work is to create control mechanisms which are operational in

Singapore harbor for the use of scientists and research staff. In order to achieve this

goal a few ideas must be explored and improvements must be made.

One main assumption pertaining to this work deals with the assumption that



the currents are time-invariant. Only during small periods of time can we assume

that the current is time-invariant. As the missions grow to involve more waypoints

and the mean distance between the waypoints increases, the time-invariant current

assumption becomes invalid. We hope to extend this work to those cases of time-

varying currents and utilize similar methods such as Extended 2-Opt and Extended

3-Opt to explore the additional time dimension.

A second assumption assumes that the currents are known leading to incorrect

trajectories when current forecasts are inaccurate. To utilize the work presented in

this thesis we must ensure that the forecasts are sufficiently accurate. In situations

where it is not accurate we must find a method to continue the tour in a time-minimal

manner. This process could involve switching the controller to a non-time-optimal

one or using heuristic techniques to explore the space in real-time.

Another improvement to this work involves computation time. First, construc-

tion of the time-optimal cost matrix, CT* is a computationally hefty task. Each cost

in the matrix must be filled using times obtained through Time-Optimal control.

Time-Optimal control relies on function minimization to compute the optimal initial

heading from one waypoint to the next. During this process it simulates the vehicle's

movement till tref and computes the distance to the next waypoint over time. Effec-

tively reducing tref would lead to faster computation times for the optimal time from

waypoint i to waypoint j, t*. As mentioned within Chapter 3, tref can be obtained

from any non-time-optimal control law. In our research we utilized the Waypoint-to-

Waypoint control to determine tref due to the fact that it is not vehicle dependent.

However, if the vehicle gains are correctly tuned and known, Cross- Track Error Min-

imization can be used in place of Waypoint-to- Waypoint control. This process would

effectively lead to a smaller tef and faster computations times for each t* instance.

Other options for computation time minimization must be explored. In several

instances presented, the Time-Optimal control path between two waypoints was com-

parable to that of Cross- Track Error Minimization control. This observation can go

a long way when dealing with computation time factors. Specifically if we are able to

derive a correlation between a current field, vehicle velocity over water, Time- Optimal



control paths, and Cross- Track Error Minimization control paths which better under-

stands the convergence of the two paths we will save computation time on a number of

fronts. As an example, building the time-optimal cost matrix, CT., would be reduced

under convergence because function minimization would no longer be necessary.

With regards to TSP formulation and local search, computation time could also

be saved. Instead of computing t* values initially, we can compute then as they are

needed. For instance, instead of utilizing Nearest-Neighbor to construct a tour using

C we can instead construct a tour using the distance cost matrix, Cdist. From here

we can compute arc weights as they are needed during local search exchanges.

Although several assumptions and computation time minimization require further

investigation, we understand that this work contributes to the development of the field

and the continuous study in Singapore harbor. Through two new control laws, Cross-

Track Error Minimization and Time-Optimal, and time-optimal ASC path planning

we are able to provide flexibility to research missions and able to maximize efficiency,

a contribution of great importance as operations continue to expand.
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