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Abstract

This thesis presents the design and development of an optical cantilever deflection

sensor for a high speed Atomic Force Microscope (AFM). This optical sensing system

is able to track a small cantilever while the X-Y scanner moves in the X-Y plane at

1KHz over a large range of 50x50 microns.
To achieve these requirements, we evaluated a number of design concepts among

which the lever method and the fiber collimator method were selected.
Experiments were performed to characterize the performance of the integrated

AFM and to show that the cantilever tracking while the scanner is in operation was

accomplished. A triangular grating was imaged with the lever method optical sub-

assembly integrated with the scanner to demonstrate the effectiveness of the approach.
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Chapter 1

Introduction

This thesis presents a novel method of mechanically tracking the tip of a cantilever

mounted on a high-speed atomic force microscope (AFM). The cantilever is moving

with the AFM scanner at a high speed (i.e. 1kHz) while the cantilever (including the

cantilever tip) is oscillating at an amplitude that is to be captured by our proposed

optics system. As an introduction, this chapter discusses the basic operation of the

atomic force microscope (AFM) with emphasis on current optical Z-deflection sensing

methods for the AFM.

1.1 Atomic Force Microscope Basics

The entire AFM system consists of essentially the microscope, analog controller and

computer. Figure 1-1 illustrates these main components and their connections. The

user begins imaging using the computer and this computer sends commands to the

analog controller which in turn converts the imaging commands into analog driving

signals for the AFM scanner (i.e. X,Y,Z and tapping signals for the piezo actuators

in the microscope.) The microscope receives commands from the analog controller,

interacts with the sample and send cantilever deflection signals back to the analog

controller. This analog controller then sends all the data captured and processed



with analog electronics to the computer for further processing and display. Since this

thesis is on a new optical detection system the tracks the cantilever in an AFM, we

will focus on the microscope and how the optical system fit in as a sensor in the

controls of the AFM.

onlofMontor

Figure 1-1: Diagram of the key components of an AFM.[1]

The microscope in turn consists of the scanner, probe (also known as a cantilever)

and detector. The scanner receives analog commands from the analog controller and

actuate the scanner in the X, Y and Z axis. The probe interacts with the sample

and deflects due to contact or non-contact forces, depending on the operating mode

of the AFM. These contact or non-contact forces cause the cantilever to deflect and

this deflection is captured by the detector and a deflection signal is sent back to the



analog controller and finally to the computer to produce an image.

AFMs can operate in different modes. These are:

Contact mode

Tapping mode

Non-contact mode

Constant cantilever deflection with no tapping/dither piezo

Constant oscillation amplitude with a tapping piezo

Constant oscillation amplitude or frequency

Figure 1-2 shows the feedback to the controller electronics required for different

operating modes of the AFM.

Contact Mode: Constant Cantilever Deflection without tapping/dithering piezo
Mon-contact Mode: ConstantOscillation Amplitude or Frequency
Tapping Mode: Constant Oscillation Amplitude

Controller
Electronics

________________________e___ ___ I

Laser

Scanner
XtY

Detector
Electronics

Measures
RMS of -.
amplitude z
signal

Figure 1-2: Feedback of different modes.[1]



The focus of this thesis is on the optical system of the AFM. We will discuss the

details of the optics system in conventional AFMs in the next section.

1.2 Optical Z-Deflection Sensing Techniques

The detector part of the microscope consists of a solid state laser diode, focusing lens,

a mirror, a quadrant photodiode detector and top minus bottom amplifier circuit for

the photodiode detector. Figure 1-3 shows a diagram with the laser beam path from

the solid state laser diode to the quadrant photodetector. The solid state laser diode

can be adjusted in fine steps to move in the X and Y direction so that the laser spot

can be made to fall on the tip of the cantilever. Fine adjustment of the laser spot

is necessary whenever a new cantilever is mounted. This is further discussed in the

section 1.3. The focusing lens is used to focus the laser spot to a spot that has a

diameter smaller than the width of the back of the cantilever. Figure 1-4 illustrate

this requirement so that there is minimal stray laser beam that falls outside the back

of the cantilever reflected from the sample.

The laser beam that is reflected off the back of the cantilever, is redirected by a

tilted mirror to a quadrant photodiode detector. This detector output the intensity

of the top 2 quadrants, the bottom 2 quadrants and the difference in intensity of the

top 2 quadrants and the bottom 2 quadrants.

The cantilever is normally tilted at 110 from the horizontal plane as is shown in

figure 1-3.

To provide a spatial perspective of the placement of the components in the optical

system of an actual AFM head, figure 1-5 is shown below[1]. There is another set

of screws labeled as mirror adjustment screws. These screws are necessary to direct

the laser beam to fall at the center of the photodiode detector so that the output of

the difference between the top 2 quadrants and the bottom 2 quadrants is near zero



Topg active areas

Top - Bottom
Signal

Mirror
Top

Bottom
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Figure 1-3: Diagram of key components of optical Z-deflection sensing. [1]
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laser spot with a diameter smaller than the width of the tip of a

when the cantilever is stationary. The laser reflection window shown in figure 1-5 is

to help the AFM user center the laser spot onto the center region of the photodiode

detector.
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Figure 1-6: Optical path of a conventional AFM in 3D.[1]



The actual placement of the optical components in 3 dimensional is shown in

figure 1-6.

1.3 Fine Adjustment Of Laser Spot during Initial

Setup

This section is important as it presents the steps taken whenever an AFM is setup

for imaging and our optics design has to consider and accommodate a facility for

fine adjustment of laser spot location. Fine adjustment of the laser spot position

is necessary whenever the cantilever is changed. Cantilevers are changed when a

different tip is required for imaging different samples or when the cantilever tip is

broken. This section explains in detail the steps to accurately align the laser spot

onto the cantilever tip.

Figure 1-7 shows the 6 steps that is necessary to align the laser stop. Assuming

the laser spot is off the back of the cantilever further up in the X direction. The first

step is to use the X axis laser aiming screw (fine pitch) shown in figure 1-5 to move

the laser spot toward the back of the cantilever. Continue in the same direction so

that the laser spot exceeds the back of the cantilever as shown in step 2. This can

be observed when the intensity of the laser spot that get reflected from the back of

the cantilever is significantly reduced (as the sum signal of the quadrant photodiode

detector decreases significantly).

As shown in step 3, move the laser spot back to the cantilever while observing the

sum output signal of the quadrant photodiode detector. Steps 4-6 is to ensure that

the laser spot is at the back of the cantilever. This is accomplished by using the Y

axis laser aiming screw (fine pitch) shown in figure 1-6 so that the laser spot exceeds

the pointed end of the cantilever and moving the laser spot back slowly to the desired



location(i.e. right at the pointed end of the cantilever).

C- -0-

Cantilever Tip Laser Spot

Figure 1-7: 6 steps to align laser spot onto cantilever tip.

1.4 Role of Optics System and Quadrant Photodi-

ode Detector in AFM Controls

Figure 1-8 shows the complete feedback control of the AFM system. We use a

tapping mode AFM as an example. A constant deflection or oscillation amplitude

is set as a reference to the control system of the AFM. As the cantilever oscillates

or continues tapping, the tip of the cantilever and the surface that is to be imaged

interacts and the interaction causes the cantilever to deflect. This cantilever deflection

is captured by the photodiode detector and a top minus bottom signal is sent to the

analog controller and then to the computer.

The deflection signal from the quadrant photodiode detector is compared to the

set reference oscillation amplitude and an error signal is generated. This error is

compensated by the computer and analog controller to maintain a constant oscillation

amplitude of the cantilever. The different heights thus recorded (i.e. by maintaining



a constant oscillation of the cantilever tip) is matched to the X and Y coordinates

where the height is taken and an image can be generated.

Calibration
Sample

Surface
Estimate

Figure 1-8: Feedback control of the AFM.[2]

1.5 Optical Systems for High Speed Large Range

AFM

There are numerous patents and papers published that involves the development of

optical system for high speed or large range AFM. We will discuss 2 designs that

that have the most complete design and most stringent specifications. The next 2

paragraphs will describe these patents on optical systems for high speed and large

range AFM respectively.

Veeco Instruments Inc. has a patent that describes a design for an optical system

for a high speed AFM [4]. The patent claims that the optical system is able to sense



the deflection of the cantilever when the scanner is in operation at 1000 lines/second.

However, the range of their AFM design is only 20 microns.

This patent uses an objective lens with adjustment mechanisms built into the

optical subassembly. The optical path is similar to our objective lens method and

this method is described in chapter 3.

Another patent by Hung and Fu [5] presents an optical system for a large range

AFM. This design is not able to sense cantilever deflection when the scanner is in

operation at high speed but will be able to sense the deflection of the cantilever at

large ranges (i.e. 100 microns).

This design uses a central prism that directs a laser beam from the laser diode to

the back of the cantilever. The laser beam also passes throught an objective lens and

the reflected laser beam travels back to the objective lens as described in chapter 3.

Due to the weight of the setup, the optical subassembly is not able to track the back

of the cantilever when the scanner is operating at high speed.

There is also another patent by IBM that uses a fiber optic cable to guide the

laser beam into the central stage of the X-Y scanner [6]. The use of fiber optic cable

as a laser source is similar to our fiber collimator design described in chapter 8.

1.6 Thesis Outline

The rest of this document will be organized as follows. Chapter 2 will discuss the

problem statement. The critical challenges of tracking a cantilever are elaborated.

Chapter 3 will discuss about the use of an objective lens to focus the laser beam onto

the back of the cantilever. Chapter 4 will discuss the lever method for tracking the

cantilever. Chapter 5 will present the kinematics of the lever method and the errors

that it will introduce. Chapter 6 will discuss the dynamics of the lever method.

Chapter 7 will present design and fabrication of the mechanical assembly for the



lever method. Chapter 8 will present the fiber collimator method design. Chapter

9 contains the design and fabrication of the quadrant diode photodetector circuit.

Chapter 10 is the results of the lever method. Chapter 11 is the conclusion.
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Chapter 2

Cantilever Tracking Problem and

Different Designs

2.1 Introduction

This chapter will present the challenges that are faced when tracking the cantilever

tip that is moving in the X and Y direction at 1kHz. In addition, our scanner range

is large (i.e. 50x50 microns) and we are using small cantilevers. Furthermore, we also

need to incorporate an adjustment mechanism to the optics subassembly so that we

can focus the laser spot onto the back of the cantilever whenever a new cantilever

is mounted. Other methods for tackling the aforementioned challenges are suggested

and their tradeoffs summarized.

2.2 Challenges of High Speed AFM Cantilever Track-

ing

There are several challenges to overcome when tracking the cantilever that is moving

at 1kHz in both the X and Y direction, such as keeping the laser spot on the back



of the cantilever while the cantilever is moving (i.e. with a small cantilever with a

width of only 10 microns) and incorporating facility for initial adjustment when a

new cantilever is mounted (described in detail in section 1.3) and the error that is

generated as the cantilever scans the image when the optical system is tracking the

cantilever. In addition, due to the small size of the cantilever, we need to make sure

that the size of the laser spot is smaller than the width of the cantilever (for the small

cantilever, the width is about 10 microns). This section will describe various ideas

proposed and provide a summary of their trade-offs.

The fundamental requirements of this design are:

" Mechanism to allow optics to follow the movement of the scanner (i.e. tracking

the cantilever when the cantilever is imaging at high speed and large range)

" Optics to focus the laser spot of a diameter smaller than 10 micron onto a 10

micron cantilever width due to the use of small cantilever

* Facility to incorporate fine adjustment mechanism to position the laser spot

onto the tip when a new cantilever is mounted.

To understand the difficulty in tracking the cantilever at high speed (i.e. 1KHz)

while imaging, we will describe the scanner design we adopted. The range of the

scanner (i.e. largest sample it can image) is 50 microns in both the X and Y direc-

tion. Figure 2-1 and 2-2 shows the parallel scanner design we adopted (for detailed

description, please refer to [3]).

Our high speed AFM scanner scans in both the X and Y direction at 1kHz. The

range of the scanner is also larger than conventional AFM. It can be seen clearly from

figure 2-3 that the cantilever moves together with the scanner during imaging while

the grating or sample remains stationary. This is known as a probe scan AFM which

is a requirement because the sample that we are scanning is large and heavy.



Figure 2-1: Parallel scanner design.

Figure 2-2: Photo of scanner with piezos mounted.

There are several challenges when tracking a cantilever mounted on a parallel

scanner that is imaging at 1kHz. The optics need to be able to track the cantilever



at high speed and still maintain a large range. As a result, the optical subassembly

must not affect the dynamics of the X-Y scanner when the scanner is in operation.

The laser spot size must also be smaller than 10 microns so that the laser will remain

on the back of the cantilever when the scanner is in operation. Finally, the design

will also need to allow the AFM user to adjust the optical subassembly so that the

laser spot will fall on the back of the cantilever when a new cantilever is mounted.

These challenges makes the design of the optics system difficult and various design

proposals that we explored are presented in section section 2.3.

Cantilever or probe

Grating

Z

X

Raster scan of grating

Figure 2-3: Depiction of raster scanning of a grating using our proposed parallel
scanner.



2.3 Alternative Design Proposals for High Speed

AFM Cantilever Tracking

This section will describe the various alternative designs we considered and list out

their advantages and disadvantages. A summary of these different alternatives is

tabulated in table 2.1.

One proposal was to use a 2-axis galvanometer scanning mirror to direct the laser

beam onto the cantilever. Since the scanner is moving at 1KHz in both the X and Y

direction, the bandwidth of a suitable galvanometer mirror should be approximately

5 times (i.e. 5 kHz). The schematic is shown in figure 2-4.

One advantage of this method is that the galvanometer has a range of at least

50 microns. The optical subassembly is also totally detached from the X-Y scanner,

which means that the weight of the optical subassembly has no effect on the X-Y

scanner.

There are various difficulties in this concept. The main difficulty is that the

fastest galvanometer scanning mirrors that is commercially available is only about

1KHz bandwidth at small angles. The resolution of the galvanometer will also be in

the range of microns instead of nanometers due to the resolution of the galvanometer

mirror. It will also be difficult to align and assemble the galvanometer with the back

of the cantilever. Tracking errors from the galvanometer actuators will increase error

sensitivity' and this setup will be expensive. Of course, one can look into the design

of a high speed and large range galvanometer.

'Error sensitivity is how sensitive the system is to errors



Galvanometer
with rotating mirror

Objective Lens

Figure 2-4: Galvanometer method for tracking cantilever.
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The second proposal was to use a small fiber collimator for the laser source and

an image preserving fiber bundle for directing the reflected laser beam from the back

of the cantilever to the quadrant photodetector diode that is mounted away from the

scanner.

This method has the advantage of a light optical subassembly that is attached

to the central stage of the X-Y scanner. Since the optical subassembly is light and

attached to the central stage of the X-Y scanner, it is likely to be able to reach a high

bandwidth of 1KHz and a large range of 50 microns. Alignment and assembly will

also be easy as the design has to accommodate only the fiber bundle and the laser

fiber collimator.

This method is not favorable because spatial information will be lost in the low

resolution fiber bundle, coupling efficiency to the fiber bundle will be low and both

the tiny fiber collimator and the fiber bundle are expensive.

Quadrant
Photodiode

Laser Diode
Source

12 x 12
Fiber Bundle Tiny Fiber Collimator

Objective Lens

Figure 2-5: Fiber bundle method for tracking cantilever.



The third alternative is to use penta prisms and flexures that are able to rotate

the entire optics subassembly about the center of the penta prism.

The advantage of this method is that the laser diode module and quadrant pho-

todiode detector can be mounted outside the optical subassembly that is attached

to the X-Y scanner. This reduces the weight of the optical subassembly and a light

optical subassembly means that the design is likely to reach a bandwidth of 1KHz

and a large range of 50 microns.

However, we anticipate that there will be difficulties in locating the exact center

of the penta prism and difficulty in assembly. As'a result, this method is not adopted.

Penta Prisms

Quadrant Laser Diode
Photodiode

Objective Lens

Figure 2-6: Penta prism method for tracking cantilever.



The fourth alternative is to make use of a mechanical connection between the

optical subassembly and the X-Y scanner. The laser comes from the laser diode

on the right of figure 2-7. The laser beam then gets focused onto the back of the

cantilever and the reflected laser beam travels to the photodiode detector. Using 2

flexures, we pivot the optics subassembly about the center of the top flexure to gain

mechanical advantage, thereby, reducing effective mass.

The advantage of this method is that the reduction in the effective mass of the

optical subassembly on the central stage of the X-Y scanner is reduced significantly.

As a result, we expect the bandwidth of this method to be above 1KHz and the range

to be above 50 microns.

This method, however, will introduce an error as the optical subassembly tilts.

There may also be mechanical coupling of resonance of the optical subassembly to

the X-Y scanner.

SMirro Fl xure0* Mirro Flexure

i 0
LsrDoe Laser Diode

90* Mirror Holder (Aluminum) 90" Mirror Holder (Aluminum)

Extension Tube (Stainless Steel) Extension Tube (Stainless Steel)

-~~~ Letiene

Assembly FlexureFexr
Tilt

Cantilever Movement Cantilever Movement

Figure 2-7: Lever method for tracking cantilever.



The fifth proposal is shown in figure 2-8. Figure 2-8 shows a novel method that

uses a small fiber collimator to lead the laser beam from an external laser source to

the objective lens. This method eliminates the need for a large solid state laser diode

and removes the need for bulky and heavy fine adjustment mechanisms.

This method has the advantage that the laser diode module is mounted outside

of the optical subassembly. This method also does not require heavy adjustment

mechanisms required to align the laser diode module and the photodiode detector.

We expect this design to be able to reach a bandwidth of 1KHz and a range of at

least 50 microns.

However, we need to incorporate a way to adjust the back of the cantilever to the

focal point of the objective lens since the laser diode and objective lens is fixed.

Laser Diode
Source

Quadrant
Photodiode

Central Stage Tiny Fiber Collimator
Objective Lens

/Magnet
T. apping Piezo

Cantilever

Figure 2-8: Fiber Collimator method for tracking cantilever.



Table 2.1 list the advantages and the disadvantages of the each proposed method.

Table 2.1: Summary of Tracking Methods

Specifications Mechanical Galvanometer Fiber Bundle Penta Prism Fiber Collimator

Bandwidth > 1kHz < 1kHz > 1kHz > 1kHz > 1kHz
Range 50 micron 50 micron 50 micron 50 micron 50 micron

Resolution nm microns nm nm nm

Alignment Difficult Difficult Easy Difficult Difficult
Assembly Difficult Easy Easy Difficult Easy

Cost Low High High Low High
Weight High Low Low Low Low

2.4 Summary

In this chapter, the challenges that are faced when tracking the cantilever that is

moving in the X and Y direction at 1kHz and with a range of 50 microns is pre-

sented. Finally, a summary of the performance of a scanning mirror method versus a

mechanical tracking method is tabulated.
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Chapter 3

Objective Lens for AFM Optics

3.1 Introduction

To track a small cantilever at high speed, large range and with minimum error, we

chose to use an objective lens method for the optics. In this chapter, we describe

the use of an objective lens to focus the laser beam onto the back of the cantilever

and direct the reflected laser beam back into the photodiode detector. The optics ray

tracing is presented and the optics components are chosen so that the laser spot size

is focused to under 10 microns. The depth of focus for this lens is discussed and the

optical power along the laser beam path is recorded.

3.2 Overview of Optics System

3.3 Geometrical Laser Path Tracing

This section will describe how the laser beam will travel from the laser diode to the

cantilever and back to the quadrant photodiode. Figure 3-1 shows the layout of the

optics components and the travel of the laser path from the solid state laser diode, the

900 mirror, objective lens and the quadrant photodiode detector. The laser source



from the solid state laser is directed at the objective lens. The laser beam is reflected

900 by the 90' mirror and focused onto the back of cantilever with the help of the

objective lens. The reflected laser beam is directed back into the left side of the

objective lens. It travels back to the left side of the 90 mirror and finally to the

quadrant photodiode detector.

Optics
Assembly
Tilt

Cantilever Movement

Figure 3-1: A diagram of the laser path from the laser diode to the quadrant detector.

3.4 Selection of Objective Lens

This section describes our specifications for the objective lens we chose. The proper

selection of an appropriate objective lens is crucial and it is selected to fulfill the

following requirements:

The proper selection of an appropriate objective lens is crucial and it is

selected to fulfill the following requirements:

Lens diameter < 7mm

Working distance < 5mm



Clear aperture

Laser spot size

Numerical aperture

> 4mm

< 5 microns

> 0.5

Lens Diameter

Figure 3-2: Parameters of a lens.

The lens diameter is the outside diameter of the objective lens as shown in figure 3-

2. The lens diameter is preferred to be as small as possible to reduce the weight at

the central stage of the scanner. This also affects how close the Z piezos can be to

the focal point of the objective lens when mounted on the central stage.

The working distance is the distance from the face of the lens to the focal point

as shown in figure 3-2. This is the actual distance that the back of the cantilever has

Focal
Length



to be placed from the face of the lens. It is different from the focal length as the focal

length starts inside the lens. The working distance is the actual parameter we use to

position the back of the cantilever from the face of the lens.

The clear aperture is the diameter that light can be focused effectively without

clipping. It is shown in figure 3-2. It is smaller than the lens diameter. Outside the

clear aperture, the laser beam is dispersed. A larger clear aperture is preferred so

that we can allow a larger cantilever tilt angle when the laser beam is reflected back

into the objective lens.

The laser spot size is the diameter of the focused laser beam at the focal point of

the objective lens as shown in figure 3-2. A small laser spot diameter is preferred so

that the laser spot will not fall out of the back of the cantilever when the scanner is

in operation.

The numerical aperture is a dimensionless number that characterizes the angle

over which the lens can emit and receive light, NA. Figure 3-3 shows the angle of the

NA. The NA needs to be a large as possible to enable the smallest spot size.

Focal \6

Point

Figure 3-3: Numerical aperture of a lens.

This can be estimated with the following equation:

NA = nsin 8 (3.1)



where NA is the numerical aperture, n is the index of refraction and E is the

half-angle of the maximum angle that light exits or is received by the lens.

NA - (3.2)
TD

where A is the wavelength of the laser beam (i.e. 650nm in our system) and D is

the diameter of the laser spot. With a numerical aperture of 0.55 and a wavelength

of 650nm, we can calculate the laser spot size to be 1.6 microns.

The working distance is the distance from the front of the lens to the focal point

of the lens. It is thus related to the focal length of the lens. The focal length is in

turn related to the numerical aperture.

D D
NA = n sin E = n sin arctan - ~ n D (3.3)

2f 2f

From the derivation, it shows that to obtain a lens with high NA, it is desirable

to select a lens with a large diameter and a focal length that is small. There is a

trade-off as there is a limit on the diameter of the lens and an optimal focal length

to accommodate the Z and tapping/dithering piezos.

The lens that is selected will have to have a good set of parameters that satisfy all

the specifications. The selected lens is a precision molded aspheric lens 46-351 from

Edmund Optics. The lens has the following specifications:

Table 3.1: Summary of Lens Specification
Parameters Requirement Lens Specifications

Lens diameter <7mm 6.325mm
Working distance <5mm 2.91mm
Clear aperture >4mm 4.95
Laser spot size <5 microns Approximately 2 microns
Numerical aperture >0.5 0.55



3.5 Selection of Solid State Laser Diode

We chose a solid state laser diode that is compact and has a well collimated circular

laser beam. The laser diode that we used is the VLM2 Miniature Diode Laser Module

from Coherent Inc. It is a 4mW laser diode module that is able to output a circular

laser beam spot with a diameter of 1mm. The divergence is only 0.7mrad. The

wavelength of the laser beam is 635nm and can be powered with just a 5V regulated

power supply. The module is only 15mm in diameter and only 34mm in length.

Figure 3-4 is a drawing of the laser diode module.

VLM2
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Body 

Lengt
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Figure 3-4: VLM2 laser diode module from Coherent.[13]

3.6 Depth of Focus

This section describes how depth of focus of a lens allow the laser spot size to be still

under 10 microns even with the Z translation of the cantilever. The depth of focus

is the maximum Z direction error of the cantilever that will allow the laser spot that

falls onto the back of the cantilever to be still under 10 microns. This is shown in

figure 3-5.

This means that even if the cantilever tip moves up or down by 5 microns in either

direction, the laser spot diameter will still be below 10 microns, which in turn means

that the laser spot will still fall onto the back of the cantilever.



This is important because we can make sure that the laser spot falls onto the back

of the cantilever when the cantilever is oscillating.
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Laser Spot Size Laser Spot
--- -- 5um up < 10 microns

. .5 um dow n

Depth of Focus

3.7 Optical Power Along Laser Beam Path

This section describes the optical power at different points of the laser beam path.

Figure 3-6 shows the optical power along the path that the laser beam travel. It can

be seen that optical power is lost as the laser beam is reflected from the cantilever

tip. The optical power that the solid state laser emits is 2.4mW and the optical

power of the laser that comes out of the objective lens is 1.8mW. The optical power

that does not fall onto the cantilever is 400 microwatts. According to measurement,

the laser beam power that falls onto the quadrant photodiode is approximately 600

microwatts. This is sufficient for accurately tracking of the cantilever oscillation.

uantilever lip
Cantilever Tip
Spot size of laser < 10 micron

Figure 3-5: Depth of focus for objective lens.
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Figure 3-6: Intensity of laser at different points of its path.

3.8 Summary

We described the use of an objective lens in detail in this chapter. This is a mechanical

mean of tracking the cantilever tip while maintaining high speeds (i.e 1kHz). The

laser beam path is also presented and optics components selected based on required

specifications.

This chapter addressed how the laser spot size is focused using the objective lens

to under 10 microns so that the laser spot will not fall out of the back of the cantilever.

We used an objective lens that has the correct parameters and thus satisfied the laser

spot size requirement.



Chapter 4

Lever Method - Cantilever

Tracking

4.1 Introduction

In this chapter, we describe a lever method that uses the objective lens described in

chapter 3 to connect to the scanner so that the laser spot is able to track the back of

the cantilever at high speed.

4.2 Mechanical Connection of Optical Subassem-

bly and X-Y Scanner

This section describes in detail the lever method that uses a tube to mechanically

connect the optical subassembly to the X-Y scanner and the components that are

mechanically connected. Figure 4-1 shows the optical subassembly connected to the

tube. The tube is in turn connected to the bottom flexure and this bottom flexure is

connected to the central stage of the X-Y scanner.

We will describe the components of the optical subassembly and the adjustment
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Figure 4-1: How optics is connected to central stage of X-Y scanner.

mechanism incorporated. We will also describe how the tube, objective lens and the

bottom flexure is connected to the X-Y scanner. Figure 4-2 is an exploded view of the

optical subassembly integrated with the X-Y scanner. At the very top of figure 4-2,

there is a flexure that is attached to the optical subassembly. This flexure is to hold

the optical subassembly and to allow the optical subassembly to rotate about the X

and Y axis. The top plate and the 10mm spacer is used to hold the 1-axis slide A for

the 900 mirror. The 90' mirror is mounted on the 900 mirror extension, which is in

turn attached to the 1 axis slide at the top.

The purpose of the laser support and the 1-axis slide C in figure 4-2 is to hold

the solid state laser. The 1-axis slide C allows the solid state laser to be adjustable

in the X translation axis.

The purpose of the corner support and the 1 axis slide B in figure 4-2 is to hold

the quadrant photodiode detector. The 1-axis slide allows the quadrant photodiode



detector to be translated in the Z axis for adjusting the photodiode detector so that

the laser beam is at the center of the four quadrants of the quadrant photodiode

detector.

The purpose of the bottom plate is to hold the laser support and the 1-axis slide

C for the photodiode detector in place. In addition, the bottom plate is connected to

the tube via a 3D printed bottom tube connect.

The tube is then connected to the bottom flexure and the objective lens. This

bottom flexure is in turn connected to the X-Y scanner. This assembly couples the

optical subassembly to the X-Y scanner mechanically.
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Figure 4-2: Exploded view of all mechanical parts in the optical subassembly in
Prototype 3.



4.3 Tracking of the Cantilever

This section describes how the cantilever is tracked as the optics subassembly, that is

connected to the X-Y scanner, tilts when the X-Y scanner is in operation. Figure 4-3

shows a top flexure and a bottom flexure that is connected to the optical subassembly

and the X-Y scanner via the tube. The purpose of these 2 flexures is to allow the

optical subassembly to tilt when the scanner is in operation. With the 2 flexures, the

optical subassembly can rotate about the X (i.e. out of the page) and the Y axis as

the X-Y scanner translates.

Figure 4-4 illustrates the path of the laser beam as the optical subassembly tilts

and shows how the laser spot will fall onto the back of the cantilever when the

cantilever moves to the left and to the right.

The laser beam that is emitted from the solidstate laser is reflected 900 by the

90' mirror. The laser beam is directed to the objective lens and the objective lens

focuses the laser beam onto the back of the cantilever. The size of the laser spot is

under 10 microns as described in chapter 3. The laser spot is reflected back into the

objective lens and finally reflected 90' by the 900 mirror to the quadrant photodiode

detector.

Figure 4-4 shows how the objective lens is able to keep the laser spot on the back

of the cantilever even as the cantilever is moving. The focal point of the objective

lens is still on the back of the cantilever as the cantilever moves. The addition of an

objective lens thus is crucial in tracking the back of the cantilever.
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Figure 4-3: Flexure to allow tilt of the optical subassembly for tracking the cantilever.
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Figure 4-4: Laser landing on the cantilever as the optical subassembly tilts.



4.4 Summary

In this chapter, we described how the optical subassembly is connected to the X-Y

scanner and how the optical subassembly is able to track the back of the cantilever

as the cantilever is translating in the X and Y directions.



Chapter 5

Lever Method - Kinematics

5.1 Introduction

In this chapter, we describe our consideration for deciding the length of the tube that

connects the optical subassembly and the X-Y scanner. The length of the tube will

affect the magnitude of the errors that are produced as the optical subassembly tilts.

The length of the tube will also affect the range of the initial adjustment of the laser

spot when a new cantilever is mounted.

5.2 Offset Error Introduced as Optics Subassem-

bly Tilts

In this section, simple geometry is used to predict the errors that will be generated

when the optical subsystem is rotated about the center of the top flexure. The error

that will be generated is a function of the ratio between the objective lens focal length

and the pivot length of the optical subsystem. A detailed analysis will be given and

graphs of the relationship between the length of the pivot to the objective lens, the

working distance and the offset error in percentage of the width of the cantilever.



The length of the tube (e.g. 50mm) and the translation of the cantilever (i.e.

25 microns) forms the adjacent and opposite sides of a triangle. A smaller similar

triangle has the working distance of the objective lens (i.e.2.91mm) and the offset

of the laser spot as the adjacent and the opposite sides of the smaller triangle. To

compute the offset, we multiply 25 microns (X-Y scanner range) with 2.91mm (i.e.

working distance of the objective lens) and divide the result by 50mm (i.e. length

of the tube). The example calculation for figure 5-1 is shown in the equation and

computation below.

Offset Error Range of scanner x Working distance of the objective lens
Length of the tube

25microns x 2.91mm
1.454 microns

50mm

From figure 5-1, we calculate that the offset error to be 1.454 mircons at the

maximum range of the scanner (i.e. 25 microns in all directions from the center of

the scanner).
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Objective Lens

Cantilever Tip

Offset
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50m

Wor
2.91

Cantilever Movement
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Figure 5-1: Geometry for calculating the offset error that the system has as the optics
subassembly tilts.

Figure 5-2 is the computed error in degrees when the scanner moves from 0 microns

to i 25 microns in one direction. The X axis is the position along the 50 micron

range and the Y axis is the error in degrees.

Figure 5-3 is a plot of the changes in the errors with respect to tube length and

focal length. This allows us to select the optimum tube length and a suitable working

distance of the lens. The computation for the tube length is shown in the next

paragraph.

We set our error to be less than 7.5 percent of the width of the cantilever. As-

suming the cantilever to be 10 microns, the offset error allowable will be 0.075 * 10

microns = 0.75 micron. The equation below shows the computation for the length of

the tube.

25microns Offset
50mm 2.91 mm

50m

eLength
m

king Distance
mm
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Figure 5-2: 2D graph of error versus scanner position (i.e. 25 microns).
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Figure 5-3: Errors computed with change in tube length and focal length.
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We selected a tube length of 100 mm based on the limit of 7.5 percent error that

will be introduced.

5.3 Angular Error Introduced as Optics Subassem-

bly Tilts

This section describes the geometry used to calculate the angular error. In addition

to the offset error, there is an angular error that is introduced when the optical

subassembly tilts. This error, however, can be eliminated with the built in lock-in

amplifier built into the Anfatec controller.

O ' ' ti e Lens Large bQctly le e li

Angle Sma\\er

Catlee Movemen

Cantilever Movement Cantilever Movement Cantilever Movement

Figure 5-4: Changes in cantilever reflection angles as optics subassembly tilts.

As can be seen from figure 5-4, even when the cantilever is not tapping or oscillat-

ing, there will be a displacement recorded on the quadrant photodiode detector when

the entire optics subassembly is tilted as the scanner and cantilever moves in the X

and Y directions. The generated displacement on the quadrant photodiode detector

due to the tilt of the optics subassembly instead of the oscillation of the cantilever

can be taken out as the lock-in amplifier will only accept signals at the oscillation

frequency of the cantilever. The lock-in amplifier method to overcome this tilt error

is explained in detail in section 5.4.



5.4 Lock-in Amplifier to Eliminate Changes in Can-

tilever Angle when Optics Subassembly Tilt

A lock-in amplifier is essentially a narrow bandpass filter that allows only signal of

a narrow passband region to be captured or measured (parameters measured are

phase and amplitude). Figure 5-5 shows the Anfatec controller that hosts the lock-in

amplifier.

Figure 5-5: Photo of Anfatec controller with built-in lock-in amplifier.[11]

The frequency to lock into is set using the Anfatec SPM controller SXM software.

This is accomplished by connecting the dither/tapping output of the Anfatec con-

troller (i.e. oscillate the cantilever at a range of frequency) to the dither/tapping piezo

and capturing the output of the top minus bottom output signal from the quadrant

photodiode detector. This is clearly depicted in figure 5-6.

The Dynamic Non-Contact (i.e. tuning) window is selected to and run (i.e. the

green round button at the top left corner) at a gain of 1 and a driving voltage of

approximately 0.1 volt. A frequency sweep is carried out and the frequency that has

the high amplitude is selected. Figure 5-7 shows a graph of the amplitude from a low

frequency (i.e. 306611 Hz) to a high frequency (i.e. 311560 Hz). The frequency with
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Anfatec
Controller

T-B
Input

Figure 5-6: Diagram showing the connections between the Anfatec controller and the
tapping piezos and quadrant photodiode detector for the tuning curve.

the highest amplitude (i.e. 310071 Hz) is selected as the lock-in frequency.

Dynamit Non-Contact

Figure 5-7: Tuning curve captured by the Anfatec controller SXM software.[11]

With the selected lock on frequency, we can extract only the amplitude of the

top-minus-bottom signals from the quadrant photodiode detector with the same fre-

quency. Any other change in amplitude at a different frequency will not be captured.



This will resolve the changes in output of the quadrant photodiode detector due to

the tilt of the optics subassembly even when the cantilever is not tapping/dithering.

5.5 Fine Adjustment of Laser Spot during Initial

Setup

This section describes the geometry for calculating the adjustable range of the optical

subassembly and position of the laser spot during initial setup. In order to allow for

the fine adjustment of the laser spot onto a cantilever tip that is newly mounted,

we make use of our proposed top and a bottom flexures. These flexures are flexible

enough for fine adjustment of the focal point of the objective lens so that the laser

spot will fall on the cantilever tip. This is shown in figure 5-8.

Figure 5-9 shows the geometric calculations to determine the range of the laser

focal point when we move the top flexure by 5mm. This time, the pivot point is at

the center of the bottom flexure. The length of the tube is the adjacent side of the

larger triangle. The top flexure is translated by 5mm and this is the opposite side of

the larger triangle. The smaller triangle is formed with the adjacent side from the

working distance of the objective lens and the fine adjustment range as the opposite

side of the smaller triangle.

Using the ratio of the length of the tube to the distance between the center of

the bottom flexure to the focal point, we determine that moving the top flexure by

5mm results in a displacement of 145.5 microns of the laser spot. This is shown in

the equation below.

Fine Adjustment Range =Translation of top flexure * Working distance of lens
Length of tube

5mm * 2.91mm

100mm = 145.5microns

64



Pivot -

Laser Path

Top Flexure

Bottom Flexure

Objective Lens

Figure 5-8: Top and bottom flexure to allow optical subassembly to tilt and allow
fine adjustment of the laser spot.

Therefore, the laser spot will be adjustable within the range of 145.5 microns in

the X and Y directions.
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Figure 5-9: Geometry for calculating the range that the system can have for initial

adjustment.



Figure 5-10 is a graph that shows the effect the ratio of the tube length to the

focal length has on the range for initial adjustment as described above. The front

axis is tube length in meters and the left axis is the focal length of the objective lens.

The vertical axis is the adjustment range in meters.

X 10

C

E
o.5,-

0

6

0.11

x 10 -33- - 0.6 .7

0.03
Focal Length (m) 0.02

Tube Length (m)

Figure 5-10: Range for initial adjustment of the focus point with a translation of
5mm at the top translation stage.

5.6 Mass of Optical Subassembly on Scanner Cen-

tral Stage

In this section, we make use of the mechanical advantage of the lever method to

reduce the effect of the mass of the optical subassembly on the X-Y scanner with

simple geometry. It is desirable to move the optical subassembly as near to the pivot

(i.e. center of the top flexure) as possible to make use of mechanical advantage of the

lever method.



Figure 5-11 shows the calculations that gives the effective mass of the optics

subassembly at the X-Y scanner. The theoretical weight of the optics subassembly is

62.44g and the effective mass at the X-Y scanner is 2.907g. This mass is significantly

lower than if the optics components were mounted on the central stage.

Effective Mass =
Distance of pivot to center of gravity2 * Mass of optical subassembly

Length of tube2

21.58 2 mm * 62.44grams
1002Tn= 2.907grams100 2mm

Pivot

2 21.58mm

Center of
Gravity

100mm

62.44g

4- 2.907g

Figure 5-11: Calculation of effective weight on the central stage.

5.7 Summary

In this chapter, we described the kinematics and geometry of the lever method in

detail. Due to the tilt of the optical subassembly, an offset error and an angular error

is introduced. The offset error can be reduced by extending the length of the tube or



reducing the working distance of the lens. The angular error can be eliminated with

the lock-in amplifier of the Anfatec controller. We also used geometry to calculate

the range for the initial adjustment of the position of the laser spot. Finally, we make

use of the mechanical advantage of the lever method to reduce the effective mass of

the optical subassembly on the X-Y scanner.
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Chapter 6

Lever Method - Dynamics

6.1 Introduction

In this chapter, we present the simulations of the stiffnesses and the resonance of

the top flexure, bottom flexure and the optical subassembly integrated with the X-Y

scanner. By simulating the stiffnesses of the flexures, we can evaluate and optimize

the sizing of the flexures so that the optical subassembly will not significantly affect

the dynamics of the X-Y scanner. This chapter also describes our design consider-

ations and how we assign the stiffnesses for all 6 degrees of freedom of the optical

subassembly.

6.2 Relationship between Spring Constant and Nat-

ural Frequency

The mass and spring constant or stiffness of the optical subassembly has a significant

effect on the resonance of the entire assembly. Thus, we can assign stiffnesses appro-

priately to increase the resonance of the optical subassembly. We want the stiffness

to be as high as possible to increase the resonance of the optical subassembly. It is



also preferred that the mass be reduced as much as possible. The resonant frequency

of for a simple mass and spring system is governed by

k -
m

(6.1)

where w is the angular frequency in rad/s, k is the stiffness in N/m and m is the

mass in kg.

6.3 Stiffness and Resonance of Top Flexure

This section discusses the simulations of the stiffnesses of the top flexure in all 6

degrees of freedom. The specifications we assign for the stiffnesses are also presented.

We decided to use a disc for the top flexure due to the ease of manufacturing so

that we can quickly test our concept. The flexure is shown in figure 6-1. There are

eight holes at the periphery of the disc flexure that is to be bolted to ground.

Figure 6-1: Photo of the top flexure.

We want the top flexure to have a low stiffness for 0, and O6 while maintaining

high stiffness for X, Y, Z and 0, directions. This is because we only want the top

flexure to allow the optical subassembly to rotate about the X and Y axis and be



rigid in all other axes.

We assign the ratio of Z stiffness to the 0, and 0. as follows:

Ratio of Z stiffness to 0, or 0. stiffness > 10 : 1

The stiffnesses of the first top flexure is simulated using COSMOSWorks. Fig-

ures 6-2, 6-3 and 6-5 are simulations of the top flexure to obtain the stiffnesses in the

Z, Ox and 02 respectively. The stiffness of OY is the same as the stiffness of 02 due

to symmetry. The stiffnesses for the X and Y directions are not included because

they are greater than 10ON/mm. In all simulations, the disc is fixed at the faces of

the 8 holes at the circumference. The material properties we use for simulations is

tabulated in section 7.3.
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Figure 6-2: COSMOSWorks simulation of top flexure for Z with a force of IN.

Figure 6-2 is a COSMOSWorks simulation of the Z axis stiffness. The eight holes

at the circumference of the disc is grounded and a force of IN is applied at the center

of the disc in the Z direction. The force is divided by the maximum deflection shown

on the simulation to determine the stiffness in the Z direction. The maximum Z

displacement is 0.089mm and taking the reciprocal of the maximum Z displacement

gives us a Z stiffness of 11.31N/mm.



Mode name Top Fleure
Study ntt SbWdy 3
PM type' Sabc displacemerd Dipce
Deformaon scale 60766

URESMim)

I 4itt000

1 467e+000

1.321e+00

I 174e+000

1.027e+0G

8 X4m-00

z

Figure 6-3: COSMOSWorks simulation of top flexure for O, with a torque of 1Nm.

Figures 6-3 is COSMOSWorks simulation of the Or stiffness. The eight holes at

the circumference of the disc is grounded and a torque of 1Nm is applied at the center

of the disc and about the X axis.



URES (mm)

1 761 e+000

1,61 4e+000

1 467e+000

1,321 e+000

ST804001

4 40e-001

4.402e-001

X

1 467e-001

1.000e-030

URES (mm)

1.761e+000

1 .614e+000

1.467e+000

. I.321e+000

. 1.174e+000
Node 1 (0,0.207,-1.71 mm)

=3.1 29e-001 mm

8.804e-001

7.337e-001

Z . 5.870e-001

4.402e-001

2.935e-001

1.467e-001

1 .000e-030

Figure 6-4: Section of simulation of top flexure for 0, with a torque of lNm.

Figure 6-4 is a zoomed-in section of the top flexure across the Y axis. The defor-

mation of the top flexure is shown in the figure at the top. The lower figure displays

the value of the deformation (i.e. 0.3129mm) at a coordinate of -1.71mm along the Y

axis. The angle formed from this deformation is the arctangent of 0.3129 divided by

1.71. The angle formed when the flexure deflect from 1Nm of torque is 0.18 radians.

Taking the reciprocal of the 0.18 radians gives a stiffness of 5.53Nm/rad.

The simulation of the stiffness about the Y axis (i.e. y) is the same as the

simulation of the stiffness about the X axis due to symmetry.
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Figure 6-5: COSMOSWorks simulation of top flexure for 0, with a torque of 1Nm.

Figure 6-5 is a COSMOSWorks simulation of the 02 stiffness. The eight holes at

the circumference of the disc is grounded and a torque of 1Nm is applied at the center

of the disc and about the Z axis.
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Figure 6-6: Section of simulation of top flexure for 0z with a torque of 1Nm.

Figure 6-6 is a view from the top of the top flexure. Figure 6-6 displays the value

of the deformation (i.e. 0.7759mm) at a coordinate of 4mm along the X axis. The

angle formed from this deformation is the arctangent of 0.7759 divided by 4. The

angle formed when the flexure deflect from 1Nm of torque is 0.19 radians. Taking the

reciprocal of the 0.19 radians gives a stiffness of 5.23Nm/rad.
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Figure 6-7: COSMOSWorks simulation of top flexure for resonance in the Z direction.

Figure 6-7 is a simulation of the Z resonant frequency of the top disc flexure.

Figure 6-7 has no forces applied to the disc and are fixed with the faces of the 8

holes at the circumference of the disc. From the simulation, it can be seen that the

resonance in the Z direction of the disc is only 294.01Hz. That is not desirable when

the scanner is scanning or moving at 1kHz. Due to the top disc flexures' poor Z

resonance, the top disc flexure is not suitable for our application. We used it because

it can be fabricated easily to quickly test our prototype.

From the top disc flexure stiffnesses in Table 6.1, we can see that the stiffness of

the top disc flexure in the Z direction is only about 11.31 N/mm. This does not satisfy

our initial specifications but we decided to test the integrated optical subassembly

and X-Y scanner.



Table 6.1: Stiffness of top flexure
Direction Top Flexure Stiffness

X >100
Y >100 P

Z 11.31"
5 5 3 Nm

0 5 .5 3 Jm

Oz 5.23 mrad

6.4 Stiffness and Resonance of Bottom Flexure

This section discusses the simulations of the stiffnesses of the bottom flexure in all 6

degrees of freedom. The specifications we assign for the stiffnesses is also presented.

We decided to use a cross layout for the bottom flexure for easy of manufacture

so that we can test our concept quickly. This is shown in figure 6-8. The four outer

sides of the bottom flexure are to be epoxied the central stage of the X-Y scanner.

Figure 6-8: Photo of the bottom flexure.

For the bottom flexure, we want it to allow rotation about the X and Y axis and

prevent rotation about the Z axis.

We assign the ratio of 0, stiffness to the Ox and Oy as follows:



Ratio of 0, stiffness to 02 or O6 stiffness

We will now discuss the simulation results for the bottom flexure. Figures 6-

9, 6-10, 6-11 and 6-13 are simulations for the bottom flexure in the X, Z, 0. and 02

respectively. The stiffness of the Y direction is the same as the stiffness for the X

direction due to symmetry. The flexure is grounded at the 4 outer faces as shown in

the figures. For the X and Z direction simulation, a force of IN is applied to the center

of the flexure. A torque of 1Nm is applied to the center of the flexure to compute

the angular stiffnesses about the Z and X axis (i.e. 02 and 62). To apply the torque

at the center of the flexure, a rectangular plate is added to the circular ring in the

center. The torque is applied to the face of the added plate. The material properties

we use for simulations is tabulated in section 7.3.

;> 10 : 1
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Figure 6-9: COSMOSWorks simulation of bottom flexure for X with a force of IN.

Figure 6-9 is a COSMOSWorks simulation of the X axis stiffness. The four sides

of the flexure is grounded and a force of IN is applied at the center in the X direction.

The force is divided by the maximum deflection shown on the simulation to determine

the stiffness in the X direction. The maximum X displacement is 0.0002792mm and

taking the reciprocal of the maximum X displacement gives us a X stiffness of greater

than 1OON/mm.
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Figure 6-10: COSMOSWorks simulation of bottom flexure for Z with a force of IN.

Figure 6-10 is a COSMOSWorks simulation of the Z axis stiffness. The four sides of

the flexure is grounded and a force of IN is applied at the center in the Z direction. The

force is divided by the maximum deflection shown on the simulation to determine the

stiffness in the Z direction. The maximum Z displacement is 0.01825mm and taking

the reciprocal of the maximum Z displacement gives us a Z stiffness of 54.8N/mm.
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Figure 6-11:
1Nm.

COSMOSWorks simulation of bottom flexure for 0. with a.torque of

Figures 6-11 is COSMOSWorks simulation of the 0. stiffness. The four sides of

the flexure is grounded and a torque of 1Nm is applied about the center about the X

axis.
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Figure 6-12: Section of simulation of bottom flexure for 0. with a torque of 1Nm.

Figure 6-12 is a zoomed-in section of the bottom flexure across the Y axis. The

deformation of the bottom flexure is shown in the figure at the top. The lower

figure displays the value of the deformation (i.e. 0.6503mm) at a coordinate of -

2.75mm along the Y axis. The angle formed from this deformation is the arctangent

of 0.3129 divided by 1.71. The angle formed when the flexure deflect from 1Nm of

torque is 0.232 radians. Taking the reciprocal of the 0.18 radians gives a stiffness of

4.31Nm/rad.

The simulation of the stiffness about the Y axis (i.e. O6) is the same as the

simulation of the stiffness about the X axis due to symmetry.
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Figure 6-13 is a COSMOSWorks simulation of the 0z stiffness.The four sides of

the flexure is grounded and a torque of 1Nm is applied at the center about the Z axis.
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Figure 6-14: Section of simulation of bottom flexure for 02 with a torque of 1Nm.

Figure 6-14 is a view from the top of the bottom flexure. Figure 6-14 displays

the value of the deformation (i.e. 0.02725mm) at a coordinate of 4.17mm along the

X axis. The angle formed from this deformation is the arctangent of 0.02725 divided

by 4.17. The angle formed when the flexure deflect from 1Nm of torque is 0.0065

radians. Taking the reciprocal of the 0.0065 radians gives a stiffness of 153Nm/rad.
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Figure 6-15: COSMOSWorks simulation of bottom flexure for resonance in the 0,
direction.

Figure 6-15 is a simulation of the resonance modes of the bottom flexure. Figure 6-

15 has no forces applied to the flexure and is fixed with the faces of 4 outer sides.

From the simulation, it can be seen that the resonance of the flexure is 19853Hz. The

high 0z resonance will help in increasing the Oz resonance when the flexure in bonded

to the optical subassembly.



Table 6.2 lists the stiffnesses of the bottom flexure in all 6 degree of freedom. The

values are calculated from simulations in COSMOSWorks and are shown in figures 6-

9, 6-10, 6-11 and 6-13. From the stiffness estimated with COSMOSWorks, it can

be seen that the this bottom flexure satisfy our requirements of high 0, stiffness to

0. and OY stiffnesses. The high stiffness in O2 will also increase the resonance of the

flexure about the Z axis (i.e. 02).

Table 6.2: Stiffness of bottom flexure
Direction Bottom Flexure Stiffness

X
Y

X ~ >100N

Y >100

Z 54.805
ox ~ 4.31 Tmad

~~4.31 a

6z 1 5 3 .0 0 ra

6.5 Stiffness and Resonance of Integrated Optical

Subassembly and X-Y Scanner

After evaluating the stiffnesses and resonance of the top and bottom flexure, we

simulate the stiffnesses and frequencies of resonance of the optical subassembly (i.e.

top flexure, bottom flexure, tube and optical components) integrated with the X-Y

scanner.

The optics components (i.e. 900 mirror, objective lens, laser diode and photodiode

detector sensor) is not included into the simulation to simplify the model so that

computation time can be reduced.

We want the resonance of the integrated optical subassembly and the X-Y scanner

to be as high as possible. This high resonance will ensure that the optical subassembly

will not affect the dynamics of the X-Y scanner.
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Figure 6-16: COSMOSWorks simulation of optics subassembly for X with a force of
iN.

Figure 6-16 is a simulation of the X stiffness of the integrated assembly. The entire

system was simulated assuming the 8 holes at the circumference of the top flexure

and faces A and B are fixed. Taking the maximum displacement (i.e. 0.5054mm) and

then the reciprocal of the maximum X displacement, we found that the X stiffness is

approximately 2N/mm. The Y axis stiffness is also the same due to symmetry.
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Figure 6-17: COSMOSWorks simulation of optics subassembly for Z with a force of
iN.

Figure 6-17 is a simulation of the Z stiffness of the integrated assembly. The

top flexure is grounded at the eight holes around the circumference and the X-Y

scanner is also grounded at the faces A and B. Taking the maximum displacement

(i.e. 0.01639mm) and then the reciprocal of the maximum Z displacement, we found

that the Z stiffness is approximately 61N/mm.
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Figure 6-18: COSMOSWorks simulation of optics subassembly for 02 with a torque
of 1Nm.

Figure 6-18 is a simulation of the 02 stiffness of the integrated assembly. The top

flexure is grounded at the eight holes around the circumference and the X-Y scanner

is also grounded at faces A and B.



Figure 6-19: Bottom view of simulation of optics subassembly for 02 with a torque of
1Nm.

Figure 6-19 is a view from the bottom of the integrated optical subassembly and

X-Y scanner. Figure 6-19 displays the value of the deformation (i.e. 0.007098mm)

at a coordinate of 5mm along the X axis. The angle formed from this deformation is

the arctangent of 0.007098 divided by 5. The angle formed when the flexure deflect

from 1Nm of torque is 0.00142 radians. Taking the reciprocal of the 0.0065 radians

gives a stiffness of 704Nm/rad.

We integrated both flexures to the optics subassembly and used COSMOSWorks

to simulate the stiffnesses in X, Y Z and 02 direction. This is listed in table 6.3. The

table shows that our optics subassembly has relatively low stiffnesses in the X and Y

direction while maintaining a high stiffness in the Z direction. The angular stiffness,

OZ, is also relatively high.

The large Z stiffness to X and Y stiffness ratio will help decouple the Z resonance

of the optics subassembly from the scanner. A high Oz stiffness will also prevent the



tube from rotating about the Z axis at resonance.

Table 6.3: Stiffness of optics subassembly
Direction Optics Subassembly Stiffness

X 2 N

Y 2_

Z61
Oz 704 rnrad

After calculating the stiffnesses of the integrated optical subassembly and the X-Y

scanner, we now simulate the resonance frequencies of the integrated system in the

X, Y, Z and Oz directions.

The different resonance modes of the optical subassembly is carried out on a

simplified model due to the long computation time it takes to compute the first 30

modes of the subassembly.

Figures 6-20, 6-21, 6-22 and 6-23, in the following pages are the X,Y,Z direc-

tion resonance and O2 resonance of the optical subassembly integrated with the X-Y

scanner.
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Figure 6-20: COSMOSWorks simulation of optics subassembly for resonance in the
X direction.

Figure 6-20 is the simulation of the resonance of the integrated optical subassembly

and the X-Y scanner. The resonance in the X direction is only 1581.1Hz as shown in

the top left of the simulation plot.
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Figure 6-21: COSMOSWorks simulation of optics subassembly for resonance in the
Y direction.

Figure 6-21 is the simulation of the resonance of the integrated optical subassembly

and the X-Y scanner. The resonance in the Y direction is only 1361.9Hz as shown in

the top left of the simulation plot.
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Figure 6-22: COSMOSWorks simulation of optics subassembly for resonance in the
Z direction.

Figure 6-22 is the simulation of the resonance of the integrated optical subassembly

and the X-Y scanner. The resonance in the Z direction is only 233.72Hz as shown in

the top left of the simulation plot.
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Figure 6-23: COSMOSWorks simulation of optics subassembly for resonance in the

02 direction.

Figure 6-23 is the simulation of the resonance of the integrated optical subassembly

and the X-Y scanner. The resonance in the 0, direction is only 1037Hz as shown in

the top left of the simulation plot.

Table 6.4: Resonances of optics subassembly
Direction Optics Subassembly Resonance Frequency

X 1581.1Hz
Y 1361.9Hz
Z 233.72Hz
0z 1037Hz

As can be seen from figures 6-20, 6-21, 6-22 and 6-23, the X,Y,Z direction reso-

nance and Oz resonance of the optical subassembly integrated with the X-Y scanner

are 1581.1Hz, 1361.9Hz, 233.72Hz and 1037Hz respectively. The values are not much



higher than the speed of the X-Y scanner (i.e. 1kHz). However, we adopted this

flexure to quickly test our prototype. This is tabulated in table 6.4 and the next 2

figures shows the simulations of the Z and 0, resonances.

6.6 Summary

This chapter describes the simulation and evaluation of the top flexure, bottom flex-

ures and the optical subassembly. The main objective of the flexure design is to

reduce the effect of the optical subassembly on the X-Y scanner dynamics.
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Chapter 7

Lever Method - Prototype

Fabrication and Assembly

7.1 Introduction

This chapter describes in detail the design and fabrication of 3 different prototypes of

the optical subsystems and their components. The purpose of building these proto-

types is to verify our proposed optical design and simulation discussed in chapter 5.

Therefore, the design of the mechanical components are made to be easy to manu-

facture and assemble. The 3 different prototypes built and materials used are also

described in detail.

7.2 Mechanical prototypes of Optical Subsystem

Components

Prototype 1 of the mechanical structure is built using standard optics components,

stages and mounts. Figure 7-1 is a photo of the actual setup to test the concept of our

proposed objective lens optics. The 3mm solid state laser diode is mounted onto a
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kinematic mount so that fine adjustment of the tilt (roll and pitch) of the laser diode

is possible. This is necessary to accurately align the 3mm solid state laser diode with

the 900 mirror. The 90' mirror is mounted on a rotation (yaw) stage which is in turn

fixed to a kinematic mount. This allows the 900 mirror to rotate and ensure that the

laser that reflects to the objective lens and laser beam that returns from the objective

lens is horizontal. Figure 7-2 illustrates the need to have fine adjustment of the 900

mirror rotation.

Tapping/Dither
Piezo Driver
Circuit

3V Power Supply for
Solid State Laser D iode

Photo'diode Quadrant 900 Mirror Solid State Objective Lens Cantilever
Detector Photodiode on Tilt and Laser Diode on Kinematic on X-Y Stage
Circuit Detector on X-Y Stage Rotation Stage on Kinematic Mount Mount

Figure 7-1: Experimental setup of prototype 1.

The objective lens is mounted on another kinematic to allow the objective lens to

adjust its focal point to the back of the cantilever. The cantilever is also mounted on

an X-Y translation stage to further assist the aligning the focal point of the lens to
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Small Rotation
900 Mirror of 90* Mirror

Tilted Horizontal

Laser Beam Laser Diode Laser Beam Laser Diode
Return from Laser Spot Return from Laser Spot
Objective Lens Objective Lens

Figure 7-2: Slight adjustment of 900 mirror to align laser beam that returns from

objective lens.

the tip of the cantilever.

Finally, the quadrant photodiode detector is mounted on another X-Y translation

stage to move the quadrant photodiode to the center of the reflected laser beam so

that the amplitude of the cantilever deflection will be centered at zero. The quadrant

diode is moved to the center of the reflected laser beam by moving the quadrant

diode up or down. It is desired to have the reflected laser beam at the center of the

quadrant photodiode. This is illustrated in figure 7-3.

Quadrant
Photodiode
Detector

Quadrant
Photodiode
Detector
Moves Up

Laser Spot Centered

Off-center Laser Spot

Figure 7-3: Illustration of centering laser spot on quadrant photodiode detector.
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Now that the optical components are aligned, we will show that the laser spot falls

on the cantilever. In order to show this, we obtain a tuning curve of the cantilever.

We excite the tapping piezo and measure the output signal from the photodiode

and plot the frequency response of the photodiode signal. This is shown in figure 7-4.

Figure 7-4 shows the result taken from a digital signal analyzer. The X axis is the

frequency and the Y axis is the amplitude in volts.

The amplitude of the cantilever vibration is captured and plotted in figure 7-4.

As can be seen from the results, the cantilever resonates at a frequency of 82.91kHz.

The results are relatively free from noise and show a distinct peak.

Amplitude of Cantilever Vibration/Tapping vs Frequency
0.08-

0.07-

0.06-
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E
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0 -
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Figure 7-4: Amplitude of cantilever vibration at different input signal frequency of
prototype 1.

Prototype 2 was an improvement from prototype 1 and is made to verify our

proposed objective lens concept while the cantilever moves in steps of 5 microns in

the X and Y directions.

Prototype 2 is different from prototype 1 in that the top and bottom flexures that

allows the optical components to tilt is integrated into the optical subassembly. In

prototype 2, the optical components are also embedded into an aluminum block (i.e.

104



2cm by 2cm by 2cm) while in prototype 1, the optical components are mounted on

optical stages and kinematic mounts. Prototype 2 also uses a small cantilever instead

of a conventional cantilever as in prototype 1. The resonance of a small cantilever is

approximately 350KHz.

With the prototype 2, we want to verify 2 objectives. The first objective is to

have the laser spot is small enough and fall onto the cantilever when the cantilever

moves in the X and Y direction by 50 micron. The second objective is to have an

initial adjustment mechanism that is necessary move the focal point of the laser spot

to the desired tip of the cantilever. Both objectives are proven to work as proposed.

After describing the difference between prototype 1 and prototype 2, we will de-

scribe the model of prototype 2. A model of prototype 2 is shown in figure 7-5.

Starting from the top of the figure, we have the top flexure. This top flexure carries

the aluminum block that holds the laser diode, photodiode detector and the 900 mir-

ror. The tube is then connected to the aluminum block. The other end of the tube

is connected to a bottom flexure and the objective lens.

T op Flexure

1 Axis
Slide for
Quadrant
Photodiode

Laser Diode
Housing

90o Mirror
Housing

Tube

Bottom Flexure

Figure 7-5: Prototype 2 model.
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After describing the model of prototype 2, we will describe the experimental setup.

The experimental setup of prototype 2 is shown in 7-6. The optical subassembly is

mounted horizontally. Starting from the right of the figure, an X-Y micrometer stage

is mounted on 2 aluminum frames. The X-Y micrometer stage is used a base for the

top flexure. The aluminum block (i.e. 2cm by 2cm by 2cm) is attached to the top

flexure. A 100mm tube is used to connect the aluminum block to the X-Y-Z and tilt

stage. At the end of the 100mm tube, we attach the objective lens. The X-Y-Z and

tilt stage holds the cantilever.

Quadrant
Photodiode
Dectector on
1-Axis Stage

Photodiode
Detector Circuit

X-Y-Z and Solid State Top Flexure Initial
Tilt Stage Laser Diode Adjustment
for Cantilever X-Y Stage

Figure 7-6: Prototype 2.

Figure 7-7 is the flexure that is fabricated for prototype 2. This flexure is cut out

of blue-finished spring steel that is 0.4572mm(0.018") thick.The material properties

in described in section 7.3. This flexure is fabricated with a waterjet machine. The

detailed drawings can be found in Appendix A.

Figure 7-8 is the flexure that is used in prototype 2 and prototype 3. The material
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Figure 7-7: Photo of the top flexure.

properties of the bottom flexure is the same as the top flexure. This flexure is also

made using a waterjet machine and is also spring steel.

Figure 7-8: Photo of the bottom flexure.
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In what follows, we present results showing that the laser spot falls onto the

cantilever for the prototype 2 system.

The results of the amplitude plot of the prototype 2 is shown in figure 7-9. The X

axis is the frequency and the Y axis is the amplitude of the signal from the photodiode

detector. The result shows that the resonant frequency is approximately 355kHz.

Amplitude of Cantilever Vibration/Tapping vs Frequency
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Figure 7-9: Amplitude of cantilever vibration at different input signal frequency of
prototype 2.

The plot, however, is more noisy than the plot from the prototype 1 because there

is optical clipping in the assembly. The clipping is caused by misalignment when the

optical components are assembled in the aluminum block. There is no way to do fine

adjustment of the optical components after they are embedded into the aluminum

block. Numerous attempt were made to obtain accurate alignment by taking out all

the optical components and re-assembling the optical components into the aluminum

block but was not a good long term solution. Therefore, there is a need for the

prototype 3 that does not have optical clipping.
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We made some enhancements in prototype 3. In prototype 3, more adjustment

mechanisms such as the miniature 1 axis slides were integrated in the optical sub-

assembly so that we can align the 900 mirror, laser diode and photodiode detector.

The adjustment mechanisms allow us to overcome optical clipping that exist in pro-

totype 2. In prototype 2, there was no adjustment mechanisms for the optical compo-

nents. Prototype 3 optical subassembly is also lighter and weighs only 62.44 grams.

Prototype 2 weighs about 100 grams.

Prototype 3 is shown in figure 7-10. The detailed explanation of the mechanical

assembly is in section 4.2.

Top Flexure

Spacer Top Plate

10mm Spacer
1 -Axis Slide

Corner Support Laser Support

1-Axis 5ide 1-Axis Slide

Bottom Plate

Bottom Tube Connec 90* Mirror Extension

90* Mirror

Tube

Scanner

Bottom Flexure

Objective Lens

Figure 7-10: Exploded view of all mechanical parts in the optics subassembly of

prototype 3.
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In prototype 3, the objective lens, bottom flexure and the tube are epoxied to-

gether to prevent micro-slips that may occur when the scanner is in operation. This

assembly of the tube, bottom flexure and the objective lens is shown in figure 7-11.

Bottom Flexure

Objective Lens

zTube

Figure 7-11: Bottom flexure and objective lens glued to the extension tube.

The assembled prototype that includes the optics subassembly and the X-Y scan-

ner is shown in 7-12.

7.3 Material Selection for Optical Subsystem Com-

ponents

There are 3 different types of materials we use for the flexures, extension tube and

aluminum housing.

Both the top and bottom flexures are made of blue-finished and polished 1095

spring steel that is 0.4572mm(0.018") thick. Spring steel is necessary for the flexures

as spring is able to restore it to its original shape after distortion.

The tensile strength of 1095 spring steel is 1015 MPa, yield strength is 505 MPa

and modulus of elasticity is 205 GPa. The Poisson ratio is 0.29 and the density is
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Figure 7-12: Photo of assembled prototype 3.

7850 kg/cubic meter[12].

The extension tube needs to be extremely stiff to prevent buckling and also need

to be light. Therefore a stainless steel tube with 0.254mm(0.01") wall thickness.

The tensile strength of stainless steel is 870 MPa, yield strength is 613 MPa and

modulus of elasticity is 196 GPa. The Poisson ratio is 0.284 and the density is 7810

kg/cubic meter[12].

Housings to locate and hold all the optics components such as the 900 mirror, etc.

are made of 6061 aluminum for dimensional stability and light weight.

The tensile strength of 6061 aluminum is 124 MPa, yield strength is 55.2 MPa

and modulus of elasticity is 68.9 GPa. The Poisson ratio is 0.33 and the density is

2700 kg/cubic meter[12].
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Tables 7.1 and 7.2 lists the material properties of the 3 materials we use in proto-

type 3.

Table 7.1: Summary of Material Properties1
Material Tensile Strength Yield Strength Modulus of Elasticity

1095 Spring Steel 1015 MPa 505 MPa 205 GPa
Stainless Steel 870 MPa 613 MPa 196 GPa

6061 Aluminum 124 MPa 55.2 MPa 68.9 GPa

Table 7.2: Summary of Material Properties 2
Material Poission Ratio Density

1095 Spring Steel 0.29 7850m 2

Stainless Steel 0.284 7510m 2

6061 Aluminum 0.33 2700kg/n 2

7.4 Summary

This chapter describes in detail the 3 different prototypes built and materials used.

Prototype 3 design incorporated fine adjustment of the solid state laser diode, quad-

rant photodiode detector and the 900 mirror because the various optics components

are extremely sensitive to misalignment and any slight misalignment will introduce

optical clipping. This requirement is accomplished with small single axis slides weigh-

ing below 100g for all 3 optics components.
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Chapter 8

Fiber Collimator Method - Design

8.1 Introduction

This chapter describes the design of the fiber collimator method. An overview of

the concept is provided. The design of the optical subassembly is discussed and the

design for integrating the optical subassembly to the X-Y scanner is also discussed.

8.2 Overview of the Fiber Optics Method

This section describes the fiber collimator design that uses a tiny fiber optic collimator

instead of the Coherent VLM2 laser module used in the lever method. This eliminates

the need for a lever mechanism. Therefore, the tube and heavy optical subassembly

is not necessary.

However, the small optics lacks the facility to adjust the laser spot onto the back

of the cantilever. To overcome this, we used a total of 4 single axis stages to move the

cantilever holder so that the back of the cantilever is at the focal point of the objective

lens. Another 1 single axis stage is used to move the quadrant diode detector to the

center of the reflected laser beam.

Therefore, the main 2 differences between the lever method and the fiber collimator
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method are the use of a fiber collimator instead of a laser diode module and the

initial adjustment of the cantilever instead of the initial adjustment of the optical

subassembly when a new cantilever is mounted.

Figure 8-1 shows the key components of the fiber optics method to track the

cantilever. The optical path is the same as the objective lens method presented in

chapter 3.

In figure 8-1, the laser beam comes from an external source and is guided to the

optical subassembly using a fiber collimator. The laser beam from the fiber collimator

is directed to the objective lens. The objective lens focuses the laser beam onto the

back of the cantilever and the back of the cantilever reflects the laser beam back into

the other end of the objective lens (as described in chapter 3). The reflected laser

beam that passes through the objective lens then travels back up to the quadrant

photodiode that is mounted at the top of the central stage of the X-Y scanner.

From figure 8-1, we see that the cantilever is attached to a tapping piezo and

secured to the bottom of the central stage of the scanner using a magnet.

To adjust the cantilever so that the back of the cantilever falls onto the focal point

of the objective lens, a 1 axis linear stage for cantilever adjustment is mounted near

the cantilever so that we can push the cantilever with the 1 axis linear stage. A total

of 4 single axis linear stages are necessary to move the cantilever in the X and Y

directions (i.e. 2 for X direction and 2 for Y direction).

To adjust the quadrant photodiode, we mount another linear stage near the quad-

rant photodiode to move the quadrant photodiode in the X direction only. This is to

move the quadrant photodiode so that the quadrant photodiode is at the center of the

reflected laser beam. A total of 1 linear stage is necessary for moving the quadrant

photodiode.

After all the adjustment is made, the 5 adjustment mechanism (i.e. 4 for the

cantilever adjustment and 1 for the quadrant photodiode adjustment) will be removed
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so that the X-Y scanner can start scanning.

In the next section, we will show the optical fiber collimator that will be integrated

into the optical subassembly.

Laser Diode
Source

Linear Stage Quadrant
for Diode Photodiode
Adjustment

Central Stage Tiny Fiber Collimator
Objective Lens

Magnet
Tapping Piezo Linear Stage

or Cantilever
Cantilever Adjustment

Figure 8-1: Schematic of the operation of the fiber optics method for tracking the
cantilever.

8.3 Fiber Collimator

In this section, we will briefly describe the fiber collimator that we use for integration

into the optical subassembly. Figure 8-2 is a photo of the tiny fiber collimator that

is used in the fiber optics method. The collimator is at the tip of the fiber and the

5mW laser source is connected to the other end of the fiber. The supplier is Silicon

Lightwave Inc. and the address is included in appendix B.

The next section discuss the design of the optical subassembly that includes the
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fiber collimator, quadrant photodiode, optical subassembly block and the Z piezo

stacks.

Figure 8-2: Photo of a tiny fiber collimator. [81

8.4 Design of the Optical Subassembly for the Fiber

Collimator Method

Figure 8-3 shows the design of the optical subassembly for holding the tiny fiber

collimator and the quadrant photodiode. The optical subassembly block is made

using ABS plastics. This optical subassembly block is displayed in transparent mode

in figure 8-3.

There is also an opening to allow the stacking of 3 2x2mm Z piezo stack for the Z

actuators. The cantilever epoxied to the cantilever cross as shown in figure 8-3 and

can be adjusted in small steps to position the back of the cantilever at the focal point

of the objective lens.

In the next section, we will discuss how this optical subassembly is integrated into

the X-Y scanner.
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Quadrant Photodiode

Optical Subassembly
Block

2x2 mm
Z Piezo Stacks

Cantilever Cross

Figure 8-3: Design of central stage to hold tiny fiber collimator and bi-cell photodiode.
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8.5 Integration of Optical Subassembly to the X-Y

Scanner

We will now describe how the optical subassembly for the fiber collimator method is

integrated into the X-Y scanner.

The design of the assembly that integrates the fiber collimator optical subassembly

to the X-Y scanner is shown in figure 8-4. At the top of figure 8-4, there is a

photodiode adjustment slide. This slide is to move the photodiode to the center of the

reflected laser beam. This adjustment slide in mounted on a photodiode adjustment

support plate.

Below the photodiode adjustment support plate, there are 4 adjustment linear

stages. They are named as the cantilever adjustment slides in figure 8-4. These 4

single axis linear slides are in turn mounted on the cantilever adjustment support

plate.

The cantilever adjustment support plate is then attached to the top of the scan-

ner. At the bottom of the scanner are the objective lens, cantilever holder and the

cantilever.

8.6 Summary

This chapter outlines the design of the fiber collimator design and the integration

design with the X-Y scanner to track the cantilever.
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Photod iodeAdjustment Slide

Cantilever Adjustment Slides

Photodiode
Adjustment
Support Plate

Fiber Laser

Cantilever
Adjustment
Support Plate

Objective Lens Scanner

Cantilever Holder

Cantilever

Figure 8-4: Design of the assembly of the central stage, the X-Y scanner and precision
adjustment stage.
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Chapter 9

Quadrant Photodiode Circuit for

Lever and Fiber Optics Method

9.1 Introduction

This chapter describes the design details, simulation, fabrication and testing of the

quadrant photodiode detector circuit. Section 9.3 provides a brief introduction of the

sensor. Suitable quadrant photodiode sensor with a corresponding equivalent circuit

model and high speed current to voltage converters with the correct specification

are selected and described in sections 9.4 and 9.6 respectively. A simulation of the

circuit is carried out and presented in section 9.7. The final section documents the

fabrication, testing and deployment of the circuit.

9.2 Custom Quadrant Photodetector Circuit

There is a need to design and fabricate a new quadrant photodiode detector circuit

because of a high 2MHz bandwidth requirement and limitations on size. A 2MHz

bandwidth is required since we are using small cantilevers with resonance frequency

of approximately 2 MHz. Typical resonance frequency of small cantilevers are in

121



the range of hundreds of KHz. Commercial quadrant photodiode position sensors'

cost thousands of dollars and have a maximum bandwidth of only 150kHz. Our

quadrant photo detector circuit cost only approximately $200 including the quadrant

photodiode sensor[9].

9.3 Quadrant Photodiode Basics

A quadrant photodiode is a 2x2 array of different photodiode active areas. These 4

active areas are arrange in a rectangular fasion, 2 at the top and 2 at the bottom.

These active areas are also separated by a small gap. As light enters a semiconductor

material such as silicon, the semiconductor material produces a small current as shown

in figure 9-1. This is known as the photo effect.

Light

Photoelectric effect generates current

Figure 9-1: Photoelectric effect generates electric current.

A photodiode can also be configured to operate in reverse bias (photoconductive)

or forward bias (photovoltaic) mode. When in reverse bias mode, the junction ca-

pacitance of the photodiode will be less, resulting in faster response. The tradeoff is
1such as Thorlabs and New Focus
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a higher dark current when the active area is not exposed to any light. This dark

current2 will induce a offset in the output of the amplifier even when there is no light.

The dark current offset in the amplifier can be overcome by choosing an appropriate

amplifier that will be described in section 9.6. This current and voltage characteristics

is shown in figure 9-2.

iT =ld-i pT

S I M Increosing
illumninotion.

Drk 0 =0 0 ep

Current

0. =2 0em

Increosing
illurninction PHOTOCONDUCTIVE PHOTOVOLTAIC

Figure 9-2: Operating regions of photoconductive and photovoltaic configurations of
a photodiode.[9]

2Dark current is a small current that is produced by the photodiode even when there is no light
falling on the sensor
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9.4 Quadrant Photodiode Sensor

This section describes how we choose a suitable quadrant photodiode sensor for our

application.

The requirements of the quadrant photodiode sensor are:

" 15mm diameter geometrical constraint

" 50g weight constraint

* 50 micron range

" 2MHz bandwidth

* nanometer resolution

A suitable photodiode that will satisfy the above specifications will have be in

a package that has a diameter that is less than 15 mm. The standard TO-5 metal

package has a diameter of 8mm and is smaller than 15 mm. Typical photodetector in

the TO-5 metal package weight less than 10g. The active area of a TO-5 photodiode

detector sensor is also larger than 50 microns. The photodetector sensor must also

have a low junction capacitance (Cd) for a 2 MHz bandwidth. The final photodiode

that is selected is a red enhanced quad cell silicon photodiode SD085-23-21-021 from

Advanced Photonix Inc. Figure 9-3 shows the photodiode that is used in the optical

system. The supplier is Advanced Photonix Inc. and the address is included in

appendix B.

9.5 Quadrant Photodiode Sensor Equivalent Cir-

cuit

In order to model the response of the photodiode, the photodiode circuit model shown

in figure 9-4 is used to simulate a real photodiode in SPICE.
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Figure 9-3: A photo of the quadrant photodiode used in the optics system. [10]

Since the photodiode detector sensor is a current source when light falls on the

photodiode detector, we model current that the photodiode detector sensor produces

as a current source (ip). The photodiode detector is represented by the diode in

figure 9-4. The junction capacitance is the capacitance of the active area of the

photodiode detector sensor. The junction capacitance of the active area is lower when

in reverse bias than when in forward bias. A junction capacitance of 9pF is assigned

to the model because the diode is operating in the reverse biased configuration. The

shunt resistance (R,) represents the resistance of the photodiode detector sensor that

is connect in parallel and is specified as 350MOhm in the datasheet. The series

resistance (Rd) is assumed to be negligible.

R =Negligible
A AI~ V

Cd R s
Fi 9pF 3509atd e.

Figure 9-4: A model of an individual active area of a 2x2 aray quadrant photodiode.
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9.6 High Speed Photodetector Circuit Design

The output of the photodiode needs to be converted from current to voltage. A

transimpedance amplifier or current to voltage converter is used for this purpose.

The input of the transimpedance (current to voltage) amplifier accepts signals from

either the top 2 active areas or bottom 2 active areas (both active areas connected in

parallel) of the quadrant photodiode. This is shown in figure 9-5.

Reference
Voltage +1 OV

Transimpedance

Top1 T Amplifier 1 Output to
B A Instrumentation Anfatec

Bot1 Bot2 Amplifier Controller

'V
- - - - -I

I I +

IL

2 Top Quadrants Parallel

Figure 9-5: Schematic of a single current to voltage converter (also known as tran-

simpedance amplifier).
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The requirements of the transimpedance amplifiers are:

" 2MHz bandwidth

" i10V output

" Zero DC offset

" SOIC package

" Dual or quad package configuration

To achieve a bandwidth of 2 MHz, an amplifier of at least 10MHz is required.

A ±12V supply for the amplifier will be able to satisfy an output of 1OV. The dark

current that is generated by the quadrant photodiode has to be suppressed with an

amplifier that has extremely low input bias current, preferably in the pA range. An

80 MHz FASTFETTM operational amplifier AD8034 from Analog Devices Inc. meets

both the high bandwidth and ±10V output. This amplifier also has a low input bias

current of IpA. The amplifiers also come in dual 8-pin SOIC package.

The second stage of the amplifier circuit for the quadrant photodiode circuit is

an instrumentation amplifier that subtracts the bottom 2 active areas of the 2x2

array from the top 2 active areas. The output from the first stage transimpedance

amplifiers that is connected to the top 2 active areas is wired to the positive input

of the instrumentation amplifier. Similarly, the output of the first stage amplifier

that is connected to the bottom 2 active areas is wired to the negative input of the

instrumentation amplifier.

The instrumentation amplifier chosen is AD8253 from Analog Devices Inc. It is

a programmable gain instrumentation amplifier with a bandwidth of 10MHz at a

gain of 1 and accepts a supply voltage of +12V. This makes it the most suitable
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instrumentation amplifier for a 2MHz photodetector circuit. The full schematic of

the photodetector circuit is shown in figure 9-6.

In addition, we want to operate the photodiode detector in reverse bias mode.

Therefore, we need to provide a precision reference voltage of 1OV to the common of

the 4 active areas of the quadrant photodetector sensor.

In order to operate the photodiode detector in reverse bias, we use a precision ref-

erence voltage REF102AU from Texas Instrument Inc. that provides a reverse voltage

of 10V to the common cathode of the quadrant photodiode. This 10V reverse bias

voltage will force the photodiode to operate in the reverse bias configuration and will

result in faster response. The dark current that is present when the photodiode is in

the reverse bias mode is circumvented by using a transimpedance amplifier (AD8034)

with only IpA input bias current. The precision reference voltage is included in the

schematic in figure 9-6.

To reduce the power-supply noise coupling to the circuit, a pair of ±12V regulators

are also included in the circuit. Decoupling capacitors are also placed at the supply

pins of all amplifiers to reduce noise. Since all power supply sources come from

on-board components, noise coupling from external power supply is reduced to a

minimum.
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9.7 Circuit Simulation

The proposed circuit design is simulated in SPICE to verify the stability and band-

width of the electrical design. From the simulation, we can obtain the frequency

response of the circuit. The target bandwidth of our circuit should be approximately

2MHz

The quadrant photodiodes are simulated as sine wave current source with a shunt

resistance of 1750Mohm and a junction capacitance of 18pF. The datasheet specified

the shunt resistance and junction capacitance of each active area to be 350MOhm and

9 pF respectively. The shunt resistance and junction capacitance is set to 175Mohm

and 18pF respectively because 2 active areas (top 2 or bottom 2) of the quadrant

photodiode is connected in parallel. Figure 9-7 is the circuit that is used to simulate

the performance of the proposed design in SPICE.

To obtain the frequency response of the circuit, we run a simulation with frequency

of the sine wave current source ranging from 100Hz to 20MHz. This is known as AC

analysis in SPICE. Figures 9-8 and 9-9 are the simulated result presented as a bode

plot in magnitude and phase respectively. From the figure, it can be seen that the

circuit have a bandwidth of about 2 MHz (where the magnitude is at -3dB).
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Figure 9-8: Magnitude bode plot of the output of the simulated circuit.
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Figure 9-9: Phase bode plot of the output of the simulated circuit.
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9.8 Circuit Fabrication and Testing

After simulation and getting a good estimate of the bandwidth of the photo detector

amplifier circuit design, we proceeded to layout the circuit for fabrication.

The layout is made to be as small as possible. The entire circuit is routed into a

2 layer printed circuit board (PCB) that is 2cm by 2cm.

The PCB layout is routed so that the traces between the leads of the quadrant

photodiode are as near to the first stage transimpedance amplifiers as possible. This is

to reduce the potential of noise that is attributed to long copper traces. Decoupling

capacitor are also placed right beside the supply pins of all operational amplifiers,

instrumentation amplifiers and precision voltage reference. This is to ensure that

noise contributed by the positive and negative power supply is reduced to a minimum.

All unused PCB area is also flooded with a ground polygon plane on both the

layers so that external noise interference can be reduced as a large ground plane

forms a small coupling between itself and neighboring traces, thereby reducing high-

frequency energy. Figures 9-10 and 9-11 are the top and bottom layer layout of the

PCB respectively. The supplier is Sunstone Circuits Inc. and the address is included

in appendix B.

The 5 way connector of the PCB circuit includes the external positive and negative

15V input (red and yellow wires), ground (black wire), top and bottom output signal

from the first stage transimpedance amplifiers (white and green wires) and the top

minus bottom signal from the instrumentation amplifier (white wire). Figure 9-12 is

shows the actual assembled circuit that is used in the optical subsystem.
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Figure 9-10: Top layer of the printed circuit board layout.

Figure 9-11: Bottom layer of the printed circuit board layout.
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Figure 9-12: Actual assembled circuit of the photodetector design.

9.9 Summary

In this chapter, we presented a quadrant photodiode detector circuit that has a high

2MHz bandwidth. This high bandwidth is required since we are using small can-

tilevers with resonance frequency of approximately 2 MHz. Typical resonance fre-

quency of standard cantilevers are in the range of hundred of KHz.

A simulation of the circuit is carried out and presented and the fabrication, testing

and deployment of the circuit is also documented.
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Chapter 10

Experimental Results

10.1 Introduction

This chapter will describe the experiments that are carried out and the setup needed.

The range and dynamics of the integrated optical subassembly and the X-Y scanner,

optical sensitivity, thermal tune, error sensitivity, and imaging are presented.

10.2 Scanner Range

The scanner range experiment shows how far the scanner can move in the X and Y

directions. This result determines the size of the image that we can scan.

The range experiment for the X-Y scanner that is integrated with the optical sub-

assembly is conducted by measuring the maximum displacement of the X-Y scanner

(i.e. integrated with optical subassembly) when the scanner is in operation.

The range is measured with an interferometer with a 0.1nm resolution in the X

axis and the Y axis. The range for both the X and Y axes are the same.

Figure 10-1 shows the range of the integrated X-Y scanner and optical subassem-

bly. The voltage applied to the scanner piezos are from 0 to 150 volts. This X-Y

scanner moves a total range of 16 microns. The reduced range is due to the larger
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central stage. The central stage is enlarged to accommodate the optical subassembly.

After taking the range for the integrated scanner and optical subassembly, we then

take the range for just the scanner.

The optical subassembly is then taken apart from the X-Y scanner and the range

of the scanner only is taken again. The experiment shows that the range of the X-Y

scanner by itself is also 16 microns.

This means that the lever based optical subassembly does not affect the range of

the X-Y scanner when the optical subassembly is integrated into the X-Y scanner.

Figure 10-1: Range of scanner measured with interferometer.
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10.3 Scanner Dynamics

The scanner dynamics experiment shows how the X-Y scanner range is affected by

different input frequencies. This result determines how fast we can scan an image.

To identify the dynamics of the X-Y scanner for the X-Y scanner that is integrated

with the optical subassembly, experiments were conducted by measuring its range

while the X-Y scanner is in operation. Using the system identification toolbox in

Matlab, we fit a model to represent the frequency response of the integrated AFM.

Similar to the range experiment, we use an interferometer with a 0.1nm resolution.

102 Frequency response

10" -

< 10-2

10
10' 10 10- 10, 10 10' 10' 101 102 10' 104

100-

0 --- - . .... - -.
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Excite Y Measure Y
-200 - ExciteYMeasure -

-300 id- L- " uI .uI ui 1 0
10 1 10 10 10 10' 10 10 10 102 10 10'

Frequency (Hz)

Figure 10-2: Bode plot of the range of the X-Y scanner as a function of frequency.

The results of the scanner dynamics are shown in figure 10-2. For the amplitude

plot, the Y axis is amplitude and the X axis is the frequency in hertz. The dotted line

and the solid line at the top of the amplitude plot are the amplitude bode plots of

the X and Y axis when the scanner is excited in the X and Y directions respectively.

The dashed and the dashed and dotted lines at the bottom are the amplitude bode

plots of the X and Y axis when the scanner is excited in the Y and X directions

respectively. Similarly, the phase of the corresponding lines are shown in the phase
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bode plots.

From the bode plot of the dynamics of the scanner integrated with the optical

subassembly, it shows that the dynamics of the scanner is not affected by the optical

subassembly. This is because the bode plot shows no resonance at frequencies at and

below 1KHz, which is the speed that the X-Y scanner will operate at.

10.4 Optical Sensitivity

The optical sensitivity is how sensitive the optical subsystem is to a change in the

deflection of the cantilever. The optical sensitivity will determine the quality of the

image taken by the integrated optical subassembly and the X-Y scanner.

To conduct the optical sensitivity experiment, we lowered the integrated optical

subassembly and the X-Y scanner to approach the sample by controlling the stepper

motor of the approach mechanism. When the cantilever has approached the sample,

the Z topography piezos is extended by 1.4 microns and the deflection of the cantilever

is captured by the photodiode detector. The output is a voltage from the photodiode

detector circuit. The force distance curve is done using the force distance curve

function provided in the Anfatec controller. This produces the force distance curve

plot and is used to determine the optical sensitivity.

The optical sensitivity of the optical subassembly is shown in Figure 10-3. From

the results, we can see that the optical sensitivity is 1.14 microns per volt.
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Figure 10-3: Force distance curve of the optical subassembly.

10.5 Thermal Tune

A thermal tune is an experiment conducted to find out the thermal noise that exists

when the cantilever is not oscillating and the X-Y scanner is not scanning. The

experiment is conducted over a short period of time and the amplitude of the signal

is read from the optical subassembly. A fourier transform for the short period of signal

recorded previously is carried out and a plot of the amplitude versus the frequency is

presented in a graph. This result will show how susceptible the optical subassembly

is to noise.

To perform the thermal tune experiment, the integrated optical subassembly and

the X-Y scanner is retracted and the cantilever is lifted from the sample. This ensures

that the cantilever is not in contact with the sample. The thermal tune function

provided in the Anfatec controller software allows us to conduct a thermal tune of

the optical subassembly and the cantilever as described in the previous paragraph.

Figure 10-4 is a thermal tune of the optical subassembly taken with the Anfatec

controller. As can be seen from figure 10-4, the amplitude is approximately 116.8
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microvolts (root-mean-square) and the frequencies are around 162.5KHz. It is near

to the resonance frequency of the cantilever that was mounted (i.e. 150 KHz) [14].

1iamuain-0

Figur 10-4: Thra ueoNh otclsbseby

10.6 Error Sensitivity

The error sensitivity is how susceptible to error the optical subassembly is when the

optical subassembly tilts. This can be captured by taking the tuning curve of the

cantilever at various positions of the entire range of the X-Y scanner.

In this error sensitivity test, we perform 2 experiments (i.e. static error sensitivity

and dynamic error sensitivity).

In the static error sensitivity experiment, the scanner is moved, in steps of 5

microns, from the center position to the full range of the X-Y scanner (i.e. ± 25

microns in both the X and Y directions.) The t 25 microns makes a total of 50

microns (i.e. the full range of the scanner).

In the dynamic error sensitivity experiment, we first obtain a good tuning curve

of the resonance frequency of the cantilever using the Anfatec controller. While the

Anfatec controller is continuously taking the tuning curve of the cantilever, we start
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the scanning (i.e. the X-Y scanner moves in both the X and Y directions) to conduct

the dynamics error sensitivity experiment.

If the laser spot falls onto the back of the cantilever (i.e. the error sensitivity

is acceptable), the tuning curve will not change significantly when the scanner is in

operation .

In the static error sensitivity experiment, the tuning curve is plotted as the scanner

is moved in steps of 5 microns.

The results shown are the tunning curve of the cantilever as the scanner is moved

to different positions, in steps of 5 microns (e.g. 5, 10, 15, 20, 25 microns), of the

50 micron scanner range statically. The results show that the cantilever is tracked

successfully and the amplitude and frequency of the cantilever is captured.

Cantilever Tip Amplitude from 3
40KHz to 380 KHz

3.4 3.45 3.5 3.55 3.6 3.65 3.7 3.75 3.8
Frequency (Hz) x 105

Figure 10-5: Tuning curve of the cantilever at various
scanner.

The previous experiment shows the error sensitivity

assembly and the X-Y scanner in static steps. The next

curve of the scanner as the scanner is in operation (i.e.

and Y direction in a raster fashion).

X and Y coordinates of the

of the integrated optical sub-

experiment shows the tuning

X-Y scanner moves in the X
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Figure 10-6 shows the tuning curve of the cantilever taken with the Anfatec soft-

ware. From figure 10-6, we can see that the tuning curve of the cantilever does not

change when the X-Y scanner is in operation.

5 Tuning Curves During Scanning
0.35

0.3

0.15

0.1 Tune 3

0.0 amm Tune 4

0 Tune 5

0 100000 200000 300000 400000

Frequency (Hz)

Figure 10-6: Tuning curve of cantilever when scanner is scanning.

144



10.7 Imaging Results

The imaging experimental setup of the optical subassembly integrated with the X-Y

scanner is shown in figure 10-7. This experimental setup also includes the approach

mechanism which allows the scanner to be lowered to the sample to be scanned in

nanometer steps.

For the imaging experiment, we connect the Anfactec controller to the AFM

scanner and optical subassembly. The Anfatec controller provides the input signals

to command the X-Y scanner to scan the sample in the X and Y directions. The

quadrant photodiode detector signal that is output from the photodiode detector

circuit is feedback into the Anfatec controller.

Figure 10-7: Integrated optical subassembly and X-Y scanner mounted on approach
mechanism for imaging.
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Finally, we used the integrated optical subassembly and the X-Y scanner to take

an image of a triangular grating. The grating that we imaged has a 3 micron step

pitch and a 1.8 micron step height.

Figure 10-8 is the image that is taken with our AFM. The range of the scanner is

set to 8 microns and the image that is shown is the topography of the grating.

Figure 10-8: Image of a grating.

10.8 Summary

This chapter summarizes the experimental procedure and presents the experimental

results that are obtained. From the results, we have shown that the cantilever is

tracked successfully as the scanner is scanning. This can be accomplished because

the laser spot is small enough to fall on the cantilever tip and the optical subassembly

has acceptable error sensitivity and optical sensitivity. It shows that this design is

acceptable and has an error sensitivity and optical sensitivity that is suitable for our

application.
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Chapter 11

Conclusions and Closing Remarks

11.1 Introduction

This chapter summarizes the entire thesis and suggest future work that can be done.

11.2 Problem Statement

The main challenge of this optical deflection sensing system is the tracking of a

cantilever mounted on an AFM X-Y scanner that is scanning at 1kHz and at a large

range of 50 microns.

In addition to the large range and high speed, we also need to be able to focus

a laser spot size that is under 10 microns onto the back of the cantilever. This is

because we are using cantilevers that are only 10 microns in width.

Furthermore, there is a need to facilitate initial adjustment of the laser focus point

whenever a new cantilever is mounted. The range for initial adjustment needs to be

sufficient for initial adjustment setup.

The above mentioned requirements are conflicting and a trade-off must be made

to satisfy all these requirements simultaneously.
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11.3 Thesis Contributions

The contributions of this thesis are the design of 2 novel optical cantilever tracking

methods and the development of a high bandwidth quadrant photodiode detector

circuit.

For the lever method, we conducted the range, statics, dynamics, error sensitivity

and optical sensitivity experiments to show that the lever method of tracking the

cantilever is achieved. The lever method also allows initial adjustment of the laser

spot onto the back of the cantilever when a new cantilever is mounted.

For the fiber collimator method, we showed that we are able to track the cantilever

and also adjust the cantilever holder instead of adjusting the optical subassembly

during initial setup.

Both methods proved to be feasible and can be explored further to optimize the

designs.

11.4 Future Work for Lever and Fiber Collimator

Method

This section discuses future work that can be carried out to improve the current setup

and is divided into four subsections (i.e. Optics, Initial Adjustment and Photodetector

and Circuit Design). These suggestions are applicable to both the lever method and

the fiber collimator method.

11.4.1 Optics

To make the optical subassembly lighter, we need to reduce the weight of the ad-

justment mechanisms. The precision adjustment mechanisms for aligning the optics

contribute most to the weight of the optical subassembly. To reduce the overall
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weight of the optical subassembly, we can either make these precision adjustment

mechanisms smaller or totally eliminate these mechanisms by eliminating the need

for optics alignment (e.g. pre-aligning the optics components and bonding them to-

gether).

11.4.2 Initial Adjustment

There is always a need to adjust both the optical subassembly and the photodiode

detector whenever a new cantilever is mounted. This process is repetitive and tedious.

To automate this initial adjustment process, we can make use of piezos to replace

these heavy precision adjustment mechanisms and automatically adjust the connected

optics components (i.e. laser source and photodiode detector) so that the focused

laser beam fall onto the cantilever and the reflected laser beam from the cantilever

is centered about the photodiode detector. This can be applied both to the lever

method and the fiber collimator method.

11.4.3 Photodetector

To eliminate the adjustment mechanism of the photodiode detector, we propose the

use of an array of small photodetectors in series. The array of photodetectors allow

the automatic centering of the reflected laser spot by averaging the intensity of the

array of linear photodetectors.

Another suggestion is to incorporate a summing operational amplifier to output

the sum of the intensity of the quadrant photodiode and the normalized signal of the

top minus bottom signal (i.e. by dividing the top minus bottom signal by the sum

signal). The normalized signal of the top minus bottom signal may provide a better

measure of the cantilever deflection.
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11.5 Summary

This chapter summarizes the implementation of 2 novel methods to track a cantilever

mechanically (i.e. lever method and fiber collimator method). We solved various

problems that we faced in optics, mechanical design for alignment and adjustment,

decoupling the resonances of the optics subassembly from the resonances of the scan-

ner and designed a quadrant detector circuit that has a high bandwidth.

Both methods are able to the track the cantilever dynamically and the system has

acceptable error sensitivity and optical sensitivity. An image of a grating is taken

with the integrated X-Y scanner and optical subassembly for the lever method.

Finally, we listed the improvements that can be made on the existing system to

obtain a better performance.
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Appendix A

Drawings

This section contains selected drawings for the parts manufactured.
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Appendix B

Vendors

This appendix provides the suppliers for the equipment used and purchased for this

thesis
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Analog Devices Inc.
ADI Sales Wilmington
831 Woburn St
Wilmington, MA 01887-4601
United States
TEL (800) 262-5645 TEL2 781-937-2384

Advanced Photonics Inc.
2925 Boardwalk
Ann Arbor, MI 48104
Main Phone: (734) 864-5600
Main Fax: (734) 998-3474

Coherent Inc.
5100 Patrick Henry Drive
Santa Clara, CA 95054 USA
Main Phone: 408-764-4000
Main Fax: 408-764-4800

Edmund Optics Inc.
101 East Gloucester Pike
Barrington, NJ 08007 USA
Phone: 1-856-573-6250
Toll-Free: 1-800-363-1992
Fax: 1-856-573-6295

Newport Corporation
1791 Deere Avenue
Irvine CA 92606
USA
Tel: (949)-863-3144
Fax: (949)-253-1680

PI (Physik Instrumente) L.P.
16 Albert St.
Auburn, MA 01501
Tel: +1 (508) 832 3456
Fax: +1 (508) 832 0506
Email: infoOpi-usa.us

Silicon Lightwave Technology, Inc.
16 Technology Drive, Suite 168
Irvine, CA 92618
Ph: (949) 753-0421
Fx: (949) 753-8033
Email: info5slwti.com
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Sunstone Circuits
13626 S. Freeman Road
Mulino, OR 97042
Phone: 503-829-9109
Fax: 503-829-6657
Email: support@sunstone.com

Thorlabs - Newton, New Jersey

435 Route 206 North
Newton, NJ 07860
Phone: 1-973-579-7227
Fax: 1-973-300-3600
Email: salesKthorlabs.com
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Appendix C

Datasheet

This appendix provides the specification sheets for the equipment used and purchased

for this thesis.
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ANALOG
DEVICES

Low Cost, 80 MHz
FastFETOp Amps
AD8033/AD8034

FEATURES
FET input amplifier

1 pA typical input bias current
Very low cost
High speed

80 MHz, -3 dB bandwidth (G = +1)
80 V/ps slew rate (G = +2)

Low noise
11 nV/NHz (f = 100 kHz)
0.7 fA/VHz (f = 100 kHz)

Wide supply voltage range: 5 V to 24 V
Low offset voltage: 1 mV typical
Single-supply and rail-to-rail output
High common-mode rejection ratio: -100 dB
Low power: 3.3 mA/amplifier typical supply current
No phase reversal
Small packaging: 8-lead SOIC, 8-lead SOT-23, and 5-lead SC70

APPLICATIONS
Instrumentation
Filters
Level shifting
Buffering

GENERAL DESCRIPTION
The AD8033/AD8034 FastFET~ amplifiers are voltage feedback
amplifiers with FET inputs, offering ease of use and excellent
performance. The AD8033 is a single amplifier and the AD8034
is a dual amplifier. The AD8033/AD8034 FastFET op amps in
Analog Devices, Inc., proprietary XFCB process offer significant
performance improvements over other low cost FET amps, such
as low noise (11 nV/qHz and 0.7 fA/ Hz) and high speed (80 MHz
bandwidth and 80 V/ps slew rate).

With a wide supply voltage range from 5 V to 24 V and fully
operational on a single supply, the AD8033/AD8034 amplifiers
work in more applications than similarly priced FET input
amplifiers. In addition, the AD8033/AD8034 have rail-to-rail
outputs for added versatility.

Despite their low cost, the amplifiers provide excellent overall
performance. They offer a high common-mode rejection of
-100 dB, low input offset voltage of 2 mV maximum, and low
noise of I1 nV/VHz.
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Figure 2.S5-Lead SC70(KS)
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The AD8033/AD8034 amplifiers only draw 3.3 mA/amplifier of
quiescent current while having the capability of delivering up to
40 mA of load current.

The AD8033 is available in a small package 8-lead SOIC and a
small package 5-lead SC70. The AD8034 is also available in a
small package 8-lead SOIC and a small package 8-lead SOT-23.
They are rated to work over the industrial temperature range of
-40*C to +85*C without a premium over commercial grade
products.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 02002-2008 Analog Devices, Inc. All rights reserved.
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AD8033/AD8034

SPECIFICATIONS
TA = 25*C, Vs = ±5 V, RL = 1 kO, gain = +2, unless otherwise noted.

Table 1.
Parameter Conditions Min Typ Max Unit
DYNAMIC PERFORMANCE

-3 dB Bandwidth G = +1, VoUT = 0.2 V p-p 65 80 MHz
G = +2, VooT = 0.2 V p-p 30 MHz
G=+2,VooT=2Vp-p 21 MHz

Input Overdrive RecoveryTime -6 V to +6 V input 135 ns
Output Overdrive RecoveryTime -3 V to +3 V input, G = +2 135 ns
Slew Rate (25% to 75%) G = +2, Vosr = 4 V step 55 80 V/ps
Settling Time to 0.1% G = +2, Vour = 2 V step 95 ns

G = +2, VoUT = 8 V step 225 ns

NOISE/HARMONIC PERFORMANCE
Distortion fc = 1 MHz, VOUT = 2 V p-p

Second Harmonic RL = 500 0 -82 dBc
RL=1 kQ -85 dBc

Third Harmonic RL = 500 0 -70 dBc
RL=1 kQ -81 dBc

Crosstalk, Output-to-Output f = 1 MHz, G = +2 -86 dB
Input Voltage Noise f = 100 kHz 11 nV/lHz
Input Current Noise f = 100 kHz 0.7 fA/VHz

DC PERFORMANCE
Input Offset Voltage VcM = 0 V 1 2 mV

TMIN - TMAX 3.5 mV

Input Offset Voltage Match 2.5 mV
Input Offset Voltage Drift 4 27 pV*C
Input Bias Current 1.5 11 pA

TMIN - TMAX 50 pA

Open-Loop Gain VOUT= 3 V 89 92 dB

INPUT CHARACTERISTICS
Common-Mode Input Impedance 1000112.3 G0I1pF
Differential Input Impedance 1000111.7 GO||pF
Input Common-Mode Voltage Range

FET Input Range -5.0 to +2.2 V
Common-Mode Rejection Ratio VcM = -3 V to +1.5 V -89 -100 dB

OUTPUT CHARACTERISTICS
Output Voltage Swing ±4.75 ±4.95 V
Output Short-Circuit Current 40 mA
Capacitive Load Drive 30% overshoot, G = +1, VouT= 400 mV p-p 35 pF

POWER SUPPLY
Operating Range 5 24 V
Quiescent Current per Amplifier 3.3 3.5 mA
Power Supply Rejection Ratio Vs = ±2 V -90 -100 dB

Rev. D I Page 3 of 24
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AD8033/AD8034

TA = 25*C, Vs = 5 V, RL = 1 kM, gain = +2, unless otherwise noted.

Table 2.

Parameter Conditions Min Typ Max Unit

DYNAMIC PERFORMANCE
-3 dB Bandwidth G =+1, VouT= 0.2V p-p 70 80 MHz

G = +2, VouT = 0.2 V p-p 32 MHz

G=+2,Vour=2Vp-p 21 MHz

Input Overdrive RecoveryTime -3 V to +3 V input 180 ns

Output Overdrive RecoveryTime -1.5 V to +1.5 V input, G = +2 200 ns

Slew Rate (25% to 75%) G = +2, VoUT = 4 V step 55 70 V/ps

Settling Time to 0.1% G = +2, VOUT = 2 V step 100 ns

NOISE/HARMONIC PERFORMANCE
Distortion fc = 1 MHz, VOUT = 2 V p-p

Second Harmonic RL = 5000 -80 dBc

RL I kO -84 dBc

Third Harmonic RL = 500 0 -70 dBc

RL= 1 kQ -80 dBc

Crosstalk, Output to Output f = 1 MHz, G = +2 -86 dB

Input Voltage Noise f = 100 kHz 11 nV/VHz

Input Current Noise f = 100 kHz 0.7 fA/VHz

DC PERFORMANCE
Input Offset Voltage VCM = 0V 1 2 mV

TMIN - TMAX 3.5 mV

Input Offset Voltage Match 2.5 mV

Input Offset Voltage Drift 4 30 pV/*C

Input Bias Current 1 10 pA

TMIN - TMAX 50 pA

Open-Loop Gain Vour = 0 V to 3 V 87 92 dB

INPUT CHARACTERISTICS
Common-Mode Input Impedance 1000112.3 GOI|pF

Differential Input Impedance 1000111.7 GQOlpF

Input Common-Mode Voltage Range
FET Input Range 0 to 2.0 V

Common-Mode Rejection Ratio Vcm = 1.0 V to 2.5 V -80 -100 dB

OUTPUT CHARACTERISTICS
Output Voltage Swing RL = 1 kO 0.16 to 4.83 0.04 to 4.95 V

Output Short-Circuit Current 30 mA

Capacitive Load Drive 30% overshoot, G = +1, VouT= 400 mV p-p 25 pF

POWER SUPPLY
Operating Range 5 24 V

Quiescent Current per Amplifier 3.3 3.5 mA

Power Supply Rejection Ratio Vs = ±1 V -80 -100 dB

Rev. D I Page 4 of 24
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AD8033/AD8034

TA = 25*C, Vs = ±12 V, RL = 1 kO, gain = +2, unless otherwise noted.

Table 3.
Parameter Conditions Min Typ Max Unit

DYNAMIC PERFORMANCE
-3 dB Bandwidth G = +1, VouT= 0.2 V p-p 65 80 MHz

G = +2, VOuT = 0.2 V p-p 30 MHz
G = +2, VoUr = 2 V p-p 21 MHz

Input Overdrive RecoveryTime -13 V to +13 V input 100 ns

Output Overdrive Recovery Time -6.5 V to +6.5 V input, G = +2 100 ns

Slew Rate (25% to 75%) G = +2, VouT= 4 V step 55 80 V/ps

Settling Time to 0.1% G = +2, VoUT = 2 V step 90 ns
G = +2, VoUr = 10 V step 225 ns

NOISE/HARMONIC PERFORMANCE
Distortion fc = 1 MHz, VOUT = 2 V p-p

Second Harmonic Rt = 500 0 -80 dBc
RL =1 kf -82 dBc

Third Harmonic RL = 500 0 -70 dBc
RL = 1 kO -82 dBc

Crosstalk, Output to Output f = 1 MHz, G = +2 -86 dB

Input Voltage Noise f = 100 kHz 11 nV/VHz

Input Current Noise f = 100 kHz 0.7 fA/VHz

DC PERFORMANCE
Input Offset Voltage VcM = 0 V 1 2 mV

TMIN - TMAX 3.5 mV

Input Offset Voltage Match 2.5 mV

Input Offset Voltage Drift 4 24 pV/*C

Input Bias Current 2 12 pA
TMIN - TAx 50 pA

Open-Loop Gain VOUT = ±8 V 88 96 dB

INPUT CHARACTERISTICS
Common-Mode Input Impedance 1000112.3 GO||pF

Differential Input Impedance 1000111.7 GO||pF

Input Common-Mode Voltage Range
FET Input Range -12.0 to +9.0 V

Common-Mode Rejection Ratio Vcm = ±5 V -92 -100 dB

OUTPUT CHARACTERISTICS
Output Voltage Swing ±11.52 ±11.84 V

Output Short-Circuit Current 60 mA

Capacitive Load Drive 30% overshoot, G = +1 35 pF

POWER SUPPLY
Operating Range 5 24 V

Quiescent Current per Amplifier 3.3 3.5 mA

Power Supply Rejection Ratio Vs = ±2 V -85 -100 dB

Rev. DI Page 5 of 24
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AD8033/AD8034

ABSOLUTE MAXIMUM RATINGS
Table 4.

Parameter Rating

Supply Voltage 26.4V
Power Dissipation See Figure 5
Common-Mode Input Voltage 26.4 V
Differential Input Voltage 1.4 V
Storage Temperature Range -65*C to +125*C
Operating Temperature Range -40*C to +85'C
Lead Temperature (Soldering 10 sec) 300*C

Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.

MAXIMUM POWER DISSIPATION
The maximum safe power dissipation in the AD8033/AD8034
packages is limited by the associated rise in junction temperature
(Tj) on the die. The plastic that encapsulates the die locally
reaches the junction temperature. At approximately 150*C,
which is the glass transition temperature, the plastic changes its
properties. Even temporarily exceeding this temperature limit
can change the stresses that the package exerts on the die,
permanently shifting the parametric performance of the AD8033/
AD8034. Exceeding a junction temperature of 175*C for an
extended period can result in changes in silicon devices, potentially
causing failure.

The still-air thermal properties of the package and PCB (0J),

ambient temperature (TA), and the total power dissipated in the
package (PD) determine the junction temperature of the die.
The junction temperature can be calculated as

T,= TA + (PD x OA)

Po is the sum of the quiescent power dissipation and the power
dissipated in the package due to the load drive for all outputs.
The quiescent power is the voltage between the supply pins (Vs)
times the quiescent current (Is). Assuming the load (RL) is
referenced to midsupply, the total drive power is Vs/2 x IOUT,

some of which is dissipated in the package and some in the load
(Vour x Iour). The difference between the total drive power and
the load power is the drive power dissipated in the package

PD = Quiescent Power + (Total Drive Power - Load Power)

If the rms signal levels are indeterminate, consider the worst case,
when VOUT = Vs/4 for RL to midSupply

Pr = (Vs x Is) + (Vs/4)'/RL

In single-supply operation with RL referenced to Vs-, worst case
is Vou-r = Vs/2.

2.0

1 .5
SOT-23-S soic-

:1.0---

SC7-5

0.5

-60 -40 -20 0 20 40 60 80 100
AMBIENT TEMPERATURE (*C)

Figure 5. Maximum Power Dissipation vs.
Ambient Temperature for a 4-Layer Board

Airflow increases heat dissipation, effectively reducing OJA. In
addition, more metal directly in contact with the package leads
from metal traces, through holes, ground, and power planes
reduces the 01A. Care must be taken to minimize parasitic
capacitances at the input leads of high speed op amps as discussed
in the Layout, Grounding, and Bypassing Considerations section.

Figure 5 shows the maximum power dissipation in the package
vs. the ambient temperature for the 8-lead SOIC (125*C/W),
5-lead SC70 (210*C/W), and 8-lead SOT-23 (160*C/W) packages
on a JEDEC standard 4-layer board. OJA values are approximations.

OUTPUT SHORT CIRCUIT
Shorting the output to ground or drawing excessive current for
the AD8033/AD8034 will likely cause catastrophic failure.

ESD CAUTION
ESD (electrostatic discharge) sensitive device.
Charged devices and circuit boards can discharge
without detection. Although this product features
patented or proprietary protection circuitry, damage
may occur on devices subjected to high energy ESD.
Therefore, proper ESD precautions should be taken to
avoid performance degradation or loss of functionality.

PD = [Vs x Is] + [(VsI2) x (VouIRL)] - [ Vou-r/RL]

RMS output voltages should be considered. If RL is referenced
to -Vs, as in single-supply operation, the total drive power is
Vs x IoUT.

Rev. D1 Page 6 of 24
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AD8033/AD8034

TYPICAL PERFORMANCE CHARACTERISTICS
Default conditions: Vs = ±5 V, CL = 5 pF, RL - I kn, TA = 25*C.

24 I I I VOUT 200mV p-

21 - G =,v +101 
IY

15-G =+5--

12 1

9 -a 
II

G=+21

3

0 G+1

-3 1 G= -1
-6

_91

0.1 1 10
FREQUENCY (MHz)

1000

Figure 6. Small Signal Frequency Response for Various Gains
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Figure 9. Frequency Response for Various Output Amplitudes (See Figure 45)
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Figure 12. Small Signal Frequency Response for Various Ct (See Figure 44)
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Figure 13. Small Signal Frequency Response for Various CF (See Figure 45)
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Figure 14. Output Impedance vs. Frequency (See Figure 47)
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Figure 17. Open-Loop Response
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Figure 15. Small Signal Frequency Response for Various CL (See Figure45)
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Figure 18. H arm onic Distortion vs. Frequency for Various Loads
(See Figure 45)
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Figure 21. Harmonic Distortion vs. Frequency for Various Gains
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Figure 19. Harmonic Distortion vs. Frequency for Various Supply Voltages
(See Figure 45)
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Figure 24. Small Signal Transient Responses5 V (See Figure 44)

Figure 25. Large Signal Transient Response (See Figure 44)
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Figure 28. Large Signal Transient Response (See Figure 45)
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FEATURES
Small package: 10-lead MSOP
Programmable gains: 1, 10, 100, 1000
Digital or pin-programmable gain setting
Wide supply: ±5 V to ±15 V
Excellent dc performance

High CMRR: 100 dB (minimum), G = 100
Low gain drift: 10 ppm/*C (maximum)
Low offset drift: 1.2 pV/'C (maximum), G = 1000

Excellent ac performance
Fast settling time: 780 ns to 0.001% (maximum)
High slew rate: 20 V/ps (minimum)
Low distortion: -110 dB THD at 1 kHz,1 0 V swing
High CMRR over frequency: 100 dB to 20 kHz (minimum)
Low noise: 10 nV/VHz, G = 1000 (maximum)
Low power: 4 mA

APPLICATIONS
Data acquisition
Biomedical analysis
Test and measurement

GENERAL DESCRIPTION
The AD8253 is an instrumentation amplifier with digitally
programmable gains that has gigaohm (GO) input impedance,
low output noise, and low distortion, making it suitable for
interfacing with sensors and driving high sample rate analog-to-
digital converters (ADCs).

It has a high bandwidth of 10 MHz, low THD of -110 dB, and
fast settling time of 780 ns (maximum) to 0.001%. Offset drift and
gain drift are guaranteed to 1.2 PV/*C and 10 ppm/*C, respectively,
for G = 1000. In addition to its wide input common voltage range,
it boasts a high common-mode rejection of 100 dB at G = 1000
from dc to 20 kHz. The combination of precision dc performance
coupled with high speed capabilities makes the AD8253 an
excellent candidate for data acquisition. Furthermore, this
monolithic solution simplifies design and manufacturing and
boosts performance of instrumentation by maintaining a tight
match of internal resistors and amplifiers.

The AD8253 user interface consists of a parallel port that allows
users to set the gain in one of two different ways (see Figure 1
for the functional block diagram). A 2-bit word sent via a bus
can be latched using the WR input. An alternative is to use
transparent gain mode, where the state of logic levels at the gain
port determines the gain.
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10 MHz, 20 V/ps, G = 1, 10, 100, 1000 iCM0S
Programmable Gain Instrumentation Amplifier

AD8253
FUNCTIONAL BLOCK DIAGRAM

Figure 1.
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Figure 2. Gain vs. Frequency
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Table 1. Instrumentation Amplifiers by Category
General Zero Mil Low High Speed
Purpose Drift Grade Power PGA
AD8220

1  
AD8231

1  
AD620 AD627

1  
AD8250

AD8221 AD85531 AD621 AD623
1  

AD8251
AD8222 AD85551 AD524 AD8223

1  
AD8253

AD82241 AD8556
1  

AD526

AD8228 AD8557
1  

AD624

' Rail-to-rail output.

The AD8253 is available in a 10-lead MSOP package and is
specified over the -40'C to +85*C temperature range, making it
an excellent solution for applications where size and packing
density are important considerations.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 @2008 Analog Devices, Inc. All rights reserved.
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AD8253

SPECIFICATIONS
+Vs = +15 V, -Vs = -15 V, VREF -0 V @ TA = 25*C, G = 1, RL = 2 kfl, unless otherwise noted.

Table 2.
Parameter Conditions Min Typ Max Unit
COMMON-MODE REJECTION RATIO (CMRR)

CMRR to 60 Hz with 1 kO Source Imbalance +IN = -IN = -10 V to +10 V
G=1 80 100 dB
G=10 96 120 dB
G = 100 100 120 dB
G = 1000 100 120 dB

CMRRto20kHz' +IN=-IN=-10Vto+10V
G = 1 80 dB
G=10 96 dB
G=100 100 *dB
G = 1000 100 dB

NOISE
Voltage Noise, 1 kHz, RTI

G = 1 45 nV/VHz
G= 10 12 nV/VHz
G =100 11 nV/VHz
G = 1000 10 nV/VHz

0.1 Hz to 10 Hz, RTI
G = 1 2.5 pV p-p
G=10 1 pVp-p
G = 100 0.5 pV p-p
G = 1000 0.5 pV p-p

Current Noise, 1 kHz 5 pA/VHz
Current Noise, 0.1 Hz to 10 Hz 60 pA p-p

VOLTAGE OFFSET
Offset RTI Vos G = 1, 10, 100, 1000 ±150 + 900/G pV

Over Temperature T = -40'C to +85'C ±210 + 900/G pV
Average TC T = -40'C to +85*C ±1.2 + 5/G pV/*C

Offset Referred to the Input vs. Supply (PSR) Vs = ±5 V to ±15 V ±5 + 25/G pV/V
INPUT CURRENT

Input Bias Current 5 50 nA
Over Temperature2  

T = -40*C to +85'C 40 60 nA
Average TC T = -40*C to +85*C 400 pA/*C

Input Offset Current 5 40 nA
OverTemperature T = -40*C to +85*C 40 nA
Average TC T = -40'C to +85'C 160 pA/*C

DYNAMIC RESPONSE
Small-Signal -3 dB Bandwidth

G=1 10 MHz
G=10 4 MHz
G= 100 550 kHz
G =1000 60 kHz

Settling Time 0.01% AOUT= 10 V step
G = 1 700 ns
G=10 680 ns
G =100 1.5 ps
G = 1000 14 ps
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AD8253

Parameter Conditions Min Typ Max Unit

Settling Time 0.001% AOUT = 10 V step
G= 1 780 ns

G=10 880 ns

G =100 1.8 ps
G = 1000 1.8 Ps

Slew Rate
G=1 20 V/ps
G= 10 20 V/ps
G = 100 12 V/ps
G = 1000 2 V/ps

Total Harmonic Distortion + Noise f = 1 kHz, RL = 10 kf), ±10 V, -110 dB
G = 1, 10 Hz to 22 kHz band-
pass filter

GAIN
Gain Range G = 1, 10, 100, 1000 1 1000 VN
Gain Error OUT = ±1 OV

G = 1 0.03 %
G =10,100,1000 0.04 %

Gain Nonlinearity OUT = -10 V to +10 V
G = 1 RL = 10 k, 2 kD, 600 0 5 ppm
G=10 RL = 10 k, 2 kQ, 600 0 3 ppm
G = 100 RL = 10 kO, 2 kO, 600 0 18 ppm
G = 1000 RL = 10 k, 2 k0, 600 0 110 ppm

Gain vs.Temperature All gains 3 10 ppm/*C

INPUT
Input Impedance

Differential 4111.25 GOIlpF

Common Mode 11|5 GQjlpF
Input Operating Voltage Range Vs = ±5 V to ±15 V -Vs + 1 +Vs - 1.5 V

OverTemperature
3  T = -40'C to +85'C -Vs + 1.2 +Vs - 1.7 V

OUTPUT
Output Swing -13.7 +13.6 V
OverTemperature

4  T = -40'C to +85*C -13.7 +13.6 V
Short-Circuit Current 37 mA

REFERENCE INPUT
RIN 20 k
[IN +IN, -IN, REF = 0 1 pA
Voltage Range -Vs +Vs V
Gain to Output 1 ±0.0001 V/V

DIGITAL LOGIC
Digital Ground Voltage, DGND Referred to GND -Vs + 4.25 0 +Vs - 2.7 V

Digital Input Voltage Low Referred to GND DGND 1.2 V
Digital Input Voltage High Referred to GND 1.5 +Vs V
Digital Input Current 1 pA
Gain Switching Time' 325 ns

tsu See Figure 3 timing diagram 15 ns

tHD 30 ns

t WR-LOW 20 ns

t WR -HIGH 15 ns
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AD8253

Parameter Conditions Min Typ Max Unit
POWER SUPPLY

Operating Range ±5 +15 V
Quiescent Current, +ls 4.6 5.3 mA
Quiescent Current, -is 4.5 5.3 mA
OverTemperature T = -40'C to +85'C 6 mA

TEMPERATURE RANGE
Specified Performance -40 +85 C

See Figure 20 for CMRR vs. frequency for more information on typical performance over frequency.
2 Input bias current over temperature: minimum at hot and maximum at cold.
See Figure 30 for input voltage limit vs. supply voltage and temperature.
See Figure 32, Figure 33, and Figure 34 for output voltage swing vs. supply voltage and temperature for various loads.
Add time for the output to slew and settle to calculate the total time for a gain change.

TIMING DIAGRAM

AO, Al

Figure 3. Timing Diagram for Latched Gain Mode (See the Timing for Latched Gain Mode Section)
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AD8253

ABSOLUTE MAXIMUM RATINGS
Table 3.

Parameter Rating
Supply Voltage ±17V
Power Dissipation See Figure 4
Output Short-Circuit Current Indefinite'
Common-Mode Input Voltage ±Vs
Differential Input Voltage ±Vs
Digital Logic Inputs iVs
Storage Temperature Range -65'C to +1 25*C
Operating Temperature Range

2  -40*C to +85*C
Lead Temperature (Soldering 10 sec) 300*C
Junction Temperature 140*C

eJA (4-Layer JEDEC Standard Board) 11 2*C/W

Package Glass Transition Temperature 140*C

Assumes the load is referenced to midsupply.
2Temperature for specified performance is -40"C to +85"C. For performance
to +1 25'C, see the Typical Performance Characteristics section.

Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.

MAXIMUM POWER DISSIPATION

The maximum safe power dissipation in the AD8253 package is
limited by the associated rise in junction temperature (TI) on
the die. The plastic encapsulating the die locally reaches the
junction temperature. At approximately 140*C, which is the
glass transition temperature, the plastic changes its properties.
Even temporarily exceeding this temperature limit can change
the stresses that the package exerts on the die, permanently
shifting the parametric performance of the AD8253. Exceeding
a junction temperature of 140*C for an extended period can
result in changes in silicon devices, potentially causing failure.

The still-air thermal properties of the package and PCB (OA),
the ambient temperature (TA), and the total power dissipated in
the package (PD) determine the junction temperature of the die.
The junction temperature is calculated as

T, - T + (P x )rI)
The power dissipated in the package (PD) is the sum of the
quiescent power dissipation and the power dissipated in the
package due to the load drive for all outputs. The quiescent

power is the voltage between the supply pins (Vs) times the
quiescent current (Is). Assuming the load (RL) is referenced to
midsupply, the total drive power is Vs/2 x IOUT, some of which is
dissipated in the package and some of which is dissipated in the
load (VOUT X IOUT).

The difference between the total drive power and the load
power is the drive power dissipated in the package.

PD = Quiescent Power + (Total Drive Power - Load Power)

Po = (Vs X Is + Vo _ OT vour 2

(2 RL RL

In single-supply operation with RL referenced to -Vs, the worst

case is VOUT = Vs/2.

Airflow increases heat dissipation, effectively reducing OJA. In
addition, more metal directly in contact with the package leads
from metal traces through holes, ground, and power planes
reduces the 01A.

Figure 4 shows the maximum safe power dissipation in the

package vs. the ambient temperature on a 4-layer JEDEC

standard board.

-40 -20 0 20 40 60 80 100 120

AMBIENT TEMPERATURE ("C)

Figure 4. Maximum Power Dissipation vs. Ambient Temperature

ESD CAUTION
ESD (electrostatic discharge) sensitive device.
Charged devices and circuit boards can discharge
without detection. Although this product features
patented or proprietary protection circuitry, damage
may occur on devices subjected to high energy ESD.
Therefore, proper ESD precautions should be taken to
avoid performance degradation or loss of functionality.
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AD8253

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

-N 101 +IN
DGND F AD8253 9 REF

-VS TOP VIEW : +VS
AO (Not to Scale) 7 OUT

A1 : JoJ R

Figure 5. 10 -Lead MSOP (RM-10) Pin Configuration

Table 4. Pin Function Descriptions

Pin No. Mnemonic Description
1 -IN Inverting Input Terminal. True differential input.
2 DGND Digital Ground.
3 -Vs Negative Supply Terminal.
4 AO Gain Setting Pin (LSB).
5 Al Gain Setting Pin (MSB).
6 WR Write Enable.
7 OUT Output Terminal.
8 +Vs Positive SupplyTerminal.
9 REF Reference Voltage Terminal.
10 +IN Noninverting Input Terminal. True differential input.
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AD8253

TYPICAL PERFORMANCE CHARACTERISTICS
TA @ 25*C, +Vs = +15 V, -Vs = -15 V, RL = 10 kl, unless otherwise noted.
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Figure 6. Typical Distribution of CMRR, G = 1
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Figure 7. Typical Distribution of Offset Voltage, Vos,
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Figure 8. Typical Distribution of Input Bias Current
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Figure 9. Typical Distribution of Input Offset Current
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Figure 10. Voltage Spectral Density Noise vs. Frequency
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Figure 12. 0.1 Hzto 10HzRT Voltage Noise, G -1000
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Figure 13. Current Noise Spectral Density vs. Frequency
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Figure 15. Change in Input Offset Voltage vs. Worm-Up Time, G = 1000
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Figure 16. Positive PSRR vs. Frequency, RTI
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Figure 18. Input Bias Current and Offset Current vs. Common-Mode Voltage
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Figure 19. Input Bias Current and Offset Current vs. Temperature
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Figure 21. CMRR vs. Frequency, I kO Source Imbalance
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