
 

 

 

Integrated Population Models and Habitat Metrics 

for Wildlife Management 

Thèse 

James Nowak 

Doctorat en sciences forestières  

Philosophiae Doctor (Ph.D.) 

Québec, Canada 
 

© James Nowak, 2015 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CorpusUL

https://core.ac.uk/display/442641465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 



III 

 

RÉSUMÉ 

La gestion des espèces est entièrement dépendante de notre capacité à évaluer les décisions 

de gestion et de les corriger si nécessaire. Dans un monde idéal les gestionnaires auraient 

une connaissance extensive et mécanistique des systèmes qu’ils gèrent et ces connaissances 

seraient mises à jour de façon continue. Dans la réalité, les gestionnaires doivent gérer les 

populations et développer des objectifs de populations en dépit de leur connaissance 

imparfaites et des manques de données chronique. L’émergence de nouveaux outils 

statistiques ouvrent toutefois la porte à de nouvelles possibilités  ce qui permet une gestion 

plus proactive de la faune. Dans le Chapitre 1, j’ai évalué l’efficacité de modèles intégrés 

de populations (MIP) à combler des lacunes dans notre connaissance en présence de 

données limitées et de modèles de populations mal spécifiés. J’ai démontré que les MIP 

peuvent maintenir une précision élevée et présenter un biais faible, et ce dans une large 

gamme de conditions. Dans le chapitre 2, j’ai développé une approche de MIP qui inclut 

des effets aléatoires entre les différentes populations. J’ai constaté que les effets aléatoires 

permettent améliorer considérablement les performances des algorithmes d'optimisation, 

produisent des estimations raisonnables et permettent même d'estimer les paramètres pour 

les populations avec des données très limitées. J’ai par la suite appliqué le modèle à 51 

unités de gestion du Wapiti en Idaho, USA afin de démonter son application. La viabilité 

des populations à long terme est généralement réalisé à grâce à des manipulations d’habitat 

qui sont identifiées grâces à des méthodes de sélection des ressources. Les méthodes basées 

sur la sélection des ressources assume cependant que l’utilisation disproportionnée d’une 

partie du paysage reflète la volonté d’un individu de remplir une partie de son cycle 

biologique. Toutefois, dans le troisième chapitre j’ai démontré que des simples mesures 

d’habitat sont à mieux de décrire la variation dans la survie des Wapitis. Selon, mes 

résultats, la variation individuelle dans la sélection des habitats était le modèle qui 

expliquait le mieux la corrélation entre les habitats et le succès reproducteur et que les 

coefficients de sélection des ressources n’étaient pas corrélés à la survie.  
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ABSTRACT 

Successful management of harvested species critically depends on an ability to predict the 

consequences of corrective actions.  Ideally, managers would have comprehensive, 

quantitative and continuous knowledge of a managed system upon which to base decisions.  

In reality, wildlife managers rarely have comprehensive system knowledge.  Despite 

imperfect knowledge and data deficiencies, a desire exists to manipulate populations and 

achieve objectives.  To this end, manipulation of harvest regimes and the habitat upon 

which species rely have become staples of wildlife management.  Contemporary statistical 

tools have potential to enhance both the estimation of population size and vital rates while 

making possible more proactive management.  In chapter 1 we evaluate the efficacy of 

integrated population models (IPM) to fill knowledge voids under conditions of limited 

data and model misspecification.  We show that IPMs maintain high accuracy and low bias 

over a wide range of realistic conditions.  In recognition of the fact that many monitoring 

programs have focal data collection areas we then fit a novel form of the IPM that employs 

random effects to effectively share information through space and time.  We find that 

random effects dramatically improve performance of optimization algorithms, produce 

reasonable estimates and make it possible to estimate parameters for populations with very 

limited data.  We applied these random effect models to 51 elk management units in Idaho, 

USA to demonstrate the abilities of the models and information gains.  Many of the 

estimates are the first of their kind.  Short-term forecasting is the focus of population 

models, but managers assess viability on longer time horizons through habitat.  Modern 

approaches to understanding large ungulate habitat requirements largely depend on 

resource selection.  An implicit assumption of the resource selection approach is that 

disproportionate use of the landscape directly reflects an individual’s desire to meet life 

history goals.  However, we show that simple metrics of habitat encountered better describe 

variations in elk survival.  Comparing population level variation through time to individual 

variation we found that individual variation in habitat used was the most supported model 

relating habitat to a fitness component.  Further, resource selection coefficients did not 

correlate with survival.   
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General Introduction 

Successful management of harvested species critically depends on an ability to predict the 

consequences of corrective actions.  Ideally, managers would have comprehensive, 

quantitative and continuous knowledge of a managed system upon which to base decisions 

that seek to meet clearly defined, publicly agreed upon objectives (Lindblom 1959; Bailey 

1982).  In reality, wildlife managers rarely have comprehensive system knowledge.  

Limited data and imperfect system knowledge result from several factors.  First, wildlife 

populations are notoriously difficult to count.  Second, monitoring programs cannot 

produce ideal data sets because of constraints imposed by logistical and budgetary realities.  

Third, wildlife population dynamics are complex, variable and subject to multiple stressors 

that have complex interacting effects.  Despite imperfect knowledge and data deficiencies, 

a desire, and—in some cases—a legal obligation exists to manipulate populations and 

achieve objectives.  To this end, manipulation of harvest regimes and the habitat upon 

which species rely have become staples of wildlife management. 

Proactive species management depends on an ability to identify a preferred course of action 

before implementation.  Consequently, proactive management suggests defining a model 

with strong predictive abilities.  The objective of the model then is to exemplify the 

principle of parsimony while making accurate predictions and accounting for uncertainty in 

biological and observational processes (Nichols & Williams 2006).  A desirable secondary 

objective of the model might include identifying causes of increase or decline, but this goal 

typically outstrips the data available to many species monitoring programs.  Historically, 

many management programs relied on trend detection to incite action.  However, trend 

detection relegates management to a reactionary posture while proactive management 

strategies aim to maintain species near management goals in lieu of continually responding 

to large deviations from objectives. 

Big game management in the Rocky Mountain West, USA, has become a contentious topic 

steeped in litigation and public opinion.  Much of the debate surrounds the re-introduction 

of the gray wolf (Canis lupus) and the consequences for socially and economically 
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important ungulate species, in particular elk (Cervus elaphus).  Nowhere is this more 

apparent than in Idaho.  Approximately 78,000-84,000 hunters enjoy elk hunting in Idaho 

each year.  Elk hunters generate approximately 150 million dollars in annual revenue, 

which represents the largest single financial contribution from the exploitation of any one 

species (Cooper et al. 2002).  Managers strive to meet management objectives and maintain 

a harvestable surplus in the face of uncertainty, but the roles of multiple interacting factors 

in regulating or limiting elk populations remain undefined despite a large body of research. 

Having demonstrated a desire to pursue proactive management, chapters 1 and 2 address 

the feasibility of filling knowledge voids using integrated population models (IPM).  IPM’s 

provide a particularly powerful approach to population modeling by piecing together 

disparate sources of data (Besbeas et al. 2002; White & Lubow 2002; Brooks, King & 

Morgan 2004; Conn et al. 2008; Schaub & Abadi 2011).  Typical sources of data may 

include aerial counts, radio-tagging encounter histories, productivity indices, harvest 

surveys and environmental data.  By combining all or several of these sources of data into 

one analysis, it is possible to obtain more robust (and self-consistent) parameter estimates 

that fully reflect the information available and the true state of the system (Besbeas et al. 

2002). A synthetic approach is desirable because analyzing demographic rates in isolation 

ignores dependencies among rates that produce observed outcomes (Baillie 1991).  Other 

advantages of integrated approaches are the ability to estimate latent or unobserved 

quantities (Abadi et al. 2010b; Schaub et al. 2010), increased precision of parameter 

estimates and so-called honest accounting of error (Besbeas et al. 2002; Clark & Bjørnstad 

2004).  Further IPM’s provide a biologically, if not legally, defensible basis for 

management actions and more efficient allocation of scarce resources.  The framework’s 

flexibility accommodates the many complexities inherent to population monitoring and 

allows for mechanistic linkages between population size and demographic processes.  Last, 

the framework has withstood public scrutiny and proven effective within the context of 

collaborative structured decision-making (Freddy et al. 2004; Thompson 2014). 

Short-term forecasting is the focus of population models, but managers assess viability on 

longer time horizons through habitat.  Modern approaches to understanding large ungulate 
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habitat requirements largely depend on resource selection functions (RSF, (Manly, 

McDonald & Thomas 1993).  An implicit assumption of the RSF approach is that 

disproportionate use of the landscape directly reflects an individual’s desire to meet life 

history goals.  However, recent evidence suggests that animals may not employ the “best” 

strategy that results in maximized fitness (Arlt & Pärt 2007; DeCesare et al. 2013).  Several 

ecological hypotheses suggest the existence of non-ideal habitat selection strategies.  

Should habitat selection models not remain faithful to individual performance their 

application to species management could result in misallocation of resources and failure to 

meet objectives.  The third chapter addresses this idea by evaluating estimates of resource 

selection with survival models.   

Harvest and habitat represent two foundational components of species management.  

Through the combination of modern statistical techniques and ecological knowledge, the 

following document enhances our understanding of current elk population models and 

dynamics.  The last chapter then tests a critical assumption of habitat models, which 

illuminates their applicability to long-term assessments of population viability. 
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Chapter 1. Evaluating Bias, Accuracy and 

Precision when Fitting Population Models to 

Limited Data 

Résumé 

Les gestionnaires de la faune doivent définir des objectifs de populations et travailler à la 

gestion de ces populations, et ce indépendamment de la disponibilité des données. La 

gestion des espèces est une tâche assujettie à des contraintes de temps et devrait donc 

bénéficier du développement d’analyses quantitatives et de modèles.  Les cadres de 

modélisation formelles fournissent un moyen de synthétiser les données tout en tenant 

compte des nuisances caractéristiques des données, ce qui augmente l'accessibilité des 

données et l'efficacité de la gestion tout en décrivant l'état d'un système et l'état des 

connaissances du système. Une approche particulièrement puissante pour la modélisation 

des populations qui consiste à assembler plusieurs sources de données disparates est 

d’utiliser un modèle de population intégré (PMI). Les données disponibles pour la 

modélisation des populations sont toutefois généralement perçues comme étant top limité 

pour les PMI. De plus les données disponibles peuvent avoir un couvrir des espaces ou des 

séquences de temps disparate. Pour surmonter ces problèmes, nous avons développé une 

approche nouvelle qui permet le partage d’information à travers le temps et l’espace grâce à 

l’utilisation d’effets aléatoires dans le modèle. Nous avons utilisé la sélection de modèles 

afin de comparer différents scénarios qui pourraient expliquer variation des taux 

démographiques dans le temps ou dans l'espace. Le modèle qui a tenu le recrutement 

constant et la survie des adultes constante temporellement, mais variable spatialement a 

reçu le plus de support. À l’échelle de l’état, les modèles qui ont reçu le plus de support 

suggèrent que la survie des a femelles adultes a oscillé autour de 0.85 (SD = 3.7E-4),  la 

survie des mâles a oscillé autour de 0.61 (SD = 2.0E-3) tandis que le recrutement a été 

presque constant à 0.33 (SD = 1.3E-3).  Compte tenu de nos résultats, la survie des adultes 

a plus de chances d’affecter la dynamique des populations de Wapiti en Idaho que les 

variations dans le recrutement.  Les variations dans la survie des adultes sont probablement 
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attribuables aux fluctuations dans la récolte. L’utilisation des PMI s'appuyant sur 

l’utilisation d’effets aléatoires nous a permis de combiner plusieurs sources de données et 

nous a permis d’augmenter la précision des estimations, tout en nous permettant de traiter 

les données manquantes et les nombreuses particularités de notre jeu de données.  
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Abstract 

Estimation of demographic rates and population size is central to the study of ecology and 

species management.  Combining such estimates with matrix projection models allows 

researchers to simulate population dynamics.  However, these problems are better framed 

as matters of parameters estimation.  Inverse matrix models allow estimation of 

demographics rates and abundance from a time-series of observations.  Integrated 

population models build upon inverse methods to facilitate the use of multiple sources of 

data while fitting model parameters.  Interest in applying these methods to real life 

scenarios motivated this study in which we used simulation to evaluate the performance of 

inverse methods under conditions of missing data and model misspecification.  To emulate 

low frequency data collection we simulated data according to five frequencies of data 

collection, zero to four years between observations.  In addition to missing data, we also 

simulated three scenarios of model misspecification using linear trends and stochastic 

variation.  We then fit inverse matrix models and integrated population models to aerial 

survey and telemetry data on elk in Idaho, USA.  Results from simulations indicated 

adequate accuracy, precision and bias from inverse matrix methods regardless of data 

collection frequency or model misspecification.  Furthermore, model estimates were most 

sensitive to misspecification involving adult female survival.  Fitting inverse and integrated 

population models to elk data resulted in similar estimates of demographic rates and 

abundance.  These estimates are the first of their kind for a majority of the administrative 

units considered.  Our results suggest that fitting population models to limited noisy data is 

not only possible, but under many circumstances will increase the amount and quality of 

information available for species management. 
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Introduction 

Estimating demographic rates and population size is central to the study of ecology and 

species management.  Population monitoring seeks to quantify demographic rates, changes 

in those rates and the resulting population size (Williams, Nichols & Conroy 2002).  This 

information is critical for effective and predictable management of populations.  However, 

logistical and financial constraints typically prohibit the collection of exhaustive data sets.  

Noisy, incomplete and disparate data are the rule when it comes to population monitoring 

(Clark & Bjørnstad 2004).  Despite data deficiencies, a desire exists to predict future 

populations, establish current population status and defend management decisions (Freddy 

et al. 2004).  To this end, matrix population models have gained immense popularity for 

their relative simplicity, flexibility and their ability to simultaneously handle noisy, 

incomplete data while addressing key management questions (Caswell 2006). 

The use of a matrix model typically proceeds by first estimating mean demographic rates 

by age, sex or other delineations (Lefkovitch 1965).  Future population dynamics are then 

projected by repeatedly multiplying a population vector by the demographic matrix under 

the assumption that demographic rates are known without error.  The ensuing time-series of 

population abundances can then be compared to observed abundances (Caswell 2006).  

Such a simulation-based approach to monitoring is feasible when data describing 

demographic rates are readily available.  However, it is generally only abundances that are 

commonly estimated by many monitoring programs and simulation-based approaches 

relegate these hard-earned demographic estimates to the model validation stage.  While 

seemingly attractive, the use of abundance data to validate simulations encourages the 

modeler to arbitrarily manipulate demographic rates until population projections and 

abundance data “agree”.  As noted by White and Lubow (2002), this problem is better 

posed as a matter of statistical parameter optimization and methods exist to estimate the 

parameters of population models from data. 

One class of model that uses a time-series of abundance estimates to estimate demographic 

rates are so-called inverse matrix models (Gross, Craig & Hutchison 2002; Buckland et al. 
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2004; Caswell 2006; Wielgus et al. 2008).  The term inverse comes from the fact that the 

models estimate the demographic rates from count data whereas simulation based 

approaches use demographic rates to produce abundance estimates.  Despite differences in 

how they use data both methods rely on a common demographic projection matrix to 

specify population transitions through time.  The projection matrix describes the biological 

process of interest.  For species where age or stage classification is possible, fitting a model 

within the inverse framework affords a non-invasive means of estimating demographic 

rates (Wielgus et al. 2008). 

Recently developed integrated population models (IPM) offer an opportunity to bolster 

inverse methods by estimating demographic rates and population size from multiple 

sources of data (Besbeas et al. 2002; Brooks, King & Morgan 2004).  Thus, an IPM is 

nothing more than an inverse matrix model that incorporates auxiliary data on demographic 

parameters.  (Schaub & Abadi 2011) defined integrated population models as any model 

that “jointly analyses data on population size and data on demographic parameters”.  Thus, 

the primary difference between inverse methods and an IPM is the inclusion of 

supplementary data on the demographic rates of interest.  Typical sources of data may 

include aerial counts, radio-tagging encounter histories, productivity indices, harvest 

surveys and environmental data.  The flexible and synthetic nature of IPM’s makes them an 

attractive tool for species management and conservation (e.g Schaub et al. 2007; King et al. 

2008; Johnson et al. 2010). 

Wildlife monitoring programs often cover large spatial extents comprised of many smaller 

administrative units with heterogeneity in the quality and quantity of data available.  

Heterogeneity in data availability challenges our ability to apply a single model to all 

administrative units.  However, progressing from inverse to IPM methods does not 

necessitate change in the demographic projection matrix.  At the complex end of the 

spectrum, data-rich populations might exploit a full IPM with multiple types of data while 

data-poor populations will necessarily require simpler inverse methods relying solely on 

abundance estimates.  The key advantage of a consistent approach is that the same 

demographic projection matrix can be used to model population transitions in any 
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population across a wide range of data quantities and qualities.  Consistency in the 

modeling approach offers a unifying framework for the analysis of monitoring data while 

making possible comparative studies, objective optimization of management alternatives 

and iterative learning from past action all while providing critical information to decision 

makers. 

In this paper, we use simulation to quantify the accuracy, precision and bias of inverse 

matrix models and then fit inverse models to field data for comparison with an IPM and 

demographic rate estimates considered in isolation.  Having identified at the outset that real 

data sets are typically far from ideal, we are interested in quantifying model accuracy, 

precision and bias in the face of missing data and model misspecification. We imagine that 

in practice supplementary data will only be available for a subset of populations.  Models 

describing data-poor units will unfortunately be bottlenecks for model reality and 

performance.  Past assessments of IPM’s demonstrated the capabilities of the methods 

under data-rich circumstances (Abadi et al. 2010a).  Here simulations focus on a worst-case 

scenario where no supplementary data exist (i.e. an inverse model).  The first problem 

addressed by simulation involves missing values in survey data.  Missing values are 

imagined to be the result of only quantifying abundance every 1 to 5 years.  We believe an 

evaluation with missing data to be critical if these methods are to have utility in monitoring 

programs.  Second, we evaluate model performance under three scenarios of 

misspecification plus one scenario using a correctly specified model.  For clarity, the term 

misspecification is used to describe a situation where data were simulated using a model 

that did not match the way in which the data were subsequently analyzed.   

Specifically, we first consider the effects of misspecification by simulating demographic 

rates that vary randomly in time, but are modeled as constant parameters.  Second, we 

evaluate linear temporal trends that are present in the data, but not modeled in the survival 

or recruitment processes.  Scenarios of misspecification are important in a management 

context because limited data will typically dictate the use of reduced parameter models and 

so misspecification is likely to occur.  Quantifying accuracy, precision and bias when 

models are knowingly misspecified helps to quantify their value when data are limited.  
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Finally, we conclude the analyses by estimating demographic parameters for 51 

populations of elk (Cervus elaphus) with inverse methods, an IPM and estimate adult 

survival in isolation.  Through these steps, we highlight information gains, the necessary 

quantification of uncertainty and time-series complexity.  Finally, we discuss accessibility 

of the models and inferential considerations. 

Methods 

To evaluate the feasibility of the inverse methods for sparse data we simulated time-series 

data for 26 years and then fit models to the simulated time-series using a state-space 

formulation of an inverse matrix model.  Parameter values used in the simulations were 

chosen to emulate the characteristics of elk demographic rates in Idaho, USA.  We then fit 

models to aerial survey data of 51 elk populations using a state-space inverse matrix model.  

Following initial model fit, supplementary telemetry data were added to the model structure 

resulting in an IPM.  Finally, telemetry data were used to separately estimate survival for 

comparison.  Fitting multiple models to field data facilitated graphical presentation of 

comparisons among inverse, IPM and demographic data estimates. 

Field Data 

We used data from the research and routine monitoring activities of Idaho Department of 

Fish and Game (IDFG).  We considered data from 51 game management units (GMU) in 

Idaho.  Data span the 26-year period from 1985 to 2011.  GMUs were included in the study 

if they met two criteria.  First, we included only those units where the number of aerial 

surveys conducted between 1985 and 2011 was greater than 1.  Second, we considered only 

GMUs where aerial surveys were designed to produce estimates representative of 

population size, which eliminated GMUs strictly monitored for trends in the north of the 

state.  Consequently, aerial survey data used here were assumed representative of 

population size.  
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Aerial surveys occurred at irregular intervals leading to many missing values and temporal 

patchiness in data quantities.  Surveys occurred in January, February or March.  Surveys 

were generally not flown in the same year for multiple adjacent GMU’s, which created 

spatial patchiness in the sampling protocol and precluded spatial aggregation of units, but 

created an opportunity for units to inform neighboring non-sampled units.  However, some 

units were flown in aggregate with other GMU’s during data collection, which restricted 

our ability to maintain a common spatial unit of organization.  Data collected during full 

aerial surveys included estimates of female, male and calf elk counts.  Periodic composition 

surveys, which are less onerous than full aerial surveys, were used to estimate age ratios.  

Raw counts from full surveys were adjusted for visibility bias using the software Aerial 

Survey 6 (Unsworth et al. 1999a).  The details of the software and the visibility correction 

are described in Samuel et al. (1987). We used the estimated mean and variance of adjusted 

count data as observations because raw count data were not available for this study.   

Data on elk survival consisted of summaries of 641 telemetry collar deployments, including 

date of deployment, date of recovery of sensor, sex of the animal and field based age-class 

estimates.  Collars were a mixture of GPS and VHF technologies and manufacturers.  

Collar deployments spanned a wide geographic range with deployments originating in 21 

unique GMU’s.  Adult elk were captured by helicopter darting or net-gunning, drive nets or 

corral traps during winter of each year.  Animals were fitted with telemetry collars 

equipped with mortality sensors.  IDFG personnel typically monitored the animal’s fate by 

fixed wing aircraft on, at least, a monthly basis.    

Demographic Projection Matrix (Process Model) 

We maintained consistency among all populations by using the same demographic 

projection matrix (i.e. biological process) to fit simulated and field data regardless of the 

method applied (e.g. IPM, inverse).  The demographic projection matrix we used followed 

a discrete time, two-stage, single sex structure where individual females reproduce for the 

first time in their second year of life.  We set the model anniversary to occur in February to 

approximate when IDFG conducts aerial counts of elk.  We fit models assuming that 
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demographic rates are constant and the population is closed to immigration and emigration.  

The model also assumed that males and females were produced in equal proportions.  The 

most general process equations fit to data were as follows: 

௧ܰ
ଵ~	ܲݏ݅݋ሺ ௧ܰ

௔ ∗  ሻߩ	

௧ܰ
௔~	݊݅ܤሺ ௧ܰିଵ

ଵ ∗ 0.5 ൅ ௧ܰିଵ
௔ , ߮௔ሻ. 

Where the number of young ( ௧ܰ
ଵ) at annual time step 2 to t was assumed to be a Poisson 

distributed variable with mean equal to the product of the number of adult females in the 

current time step and a recruitment term (ߩ).  The annual number of adult females ( ௧ܰ
௔) was 

considered the outcome of a binomial trial where the sum of half the number of young in 

the previous time step and the number of adults in the previous time step experience 

survival at a rate equal to ߮௔ for time steps 2:t.  We assume, therefore, that count data can 

differentiate young from adults and further that age classification is correct. 

The recruitment term (ߩ) describes the number of young of the year that are born and 

survive to be counted per adult female.  Recruitment was restricted to the range (0, 1) 

because twinning is rare in elk (Toweill, Thomas & Metz 2002).  In wildlife literature this 

term is commonly called an age ratio.  Age ratios can be difficult to interpret because the 

numerator and denominator both vary according to separate, but likely correlated, 

biological processes (Caughley 1974).  Nevertheless, we suppose that for many populations 

age ratios will be available whereas specific information about pregnancy rates, fecundity 

and survival of young may not.  Additionally, there is some support that age ratios may be a 

reliable index of recruitment in elk populations (Harris, Kauffman & Mills 2008).   

Simulations 

To evaluate inverse matrix model performance we first simulated population time-series’ 

using the above demographic projection matrix and distributions.  The initial population 
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size of adults and young were 6000 and 2000 respectively for all simulations.  These values 

reflect the estimated abundances in GMU 10 in 1985 and do not conform to a stable-stage 

distribution (SSD) assumption.  Thus, the population simulations begin with transitory 

dynamics.  We simulated 1,000 population time-series for each of four scenarios at five 

levels of missing data for a total of 20,000 simulations.  Model parameters were 

stochastically drawn for each iteration.  We added observation uncertainty to simulations 

by assuming that population sizes generated by the process models above were observed 

according to a Poisson process with mean equal to	 ௧ܰ
௔ and ௧ܰ

ଵ for adults and young 

respectively.  Our choice of distribution to describe observation uncertainty was one of 

convenience, but it also ensured that variance increased as the mean increased.  All 

simulations projected population dynamics for 26 years, the length of data available to 

Idaho Department of Fish and Game.  Our four scenarios were constant adult survival and 

recruitment of young (i.e. correctly specified), random variation in adult survival and 

recruitment of young, linearly trending adult survival and linearly trending recruitment.  All 

scenarios except the constant scenario reference a type of misspecification because we 

always fit the same constant parameter model regardless of how the data was generated.  In 

practice, misspecification would occur when simplifying assumptions are made on model 

complexity by choice or because of limitations imposed by a lack of data. 

To simulate the problem of missing data in a time-series of observations, we emulated low 

frequency data collections by omitting data from the simulated datasets according to the 

five frequencies of data collection. For example, if we desired a survey every two years, we 

only extracted observations every other year.   We evaluated the effects using the following 

survey frequencies: once every year, once every other year, every 3, 4 and 5 years. The 

sampling scheme resulted in 26, 13, 9, 7 and 6 observations of the 26 year simulated time-

series, which is approximately 100, 50, 35, 27 and 23 percent coverage of the 

corresponding time-series.     
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Simulation Scenarios 

Constant	Demographic	Rates	

In the simplest simulations, we held demographic rates constant through time.  For each of 

1,000 iterations, a single fixed (i.e., unvarying within the iteration) value of adult survival 

was randomly drawn with equal probability between 0.80 and 0.95.  These values cover the 

range of annual survival rates observed in North American elk populations (Raithel, 

Kauffman & Pletscher 2007) and diverse enough to cause rapid population expansion and 

contraction.  Similarly, a single fixed value for recruitment was drawn for each simulation 

between 0.2 and 0.6 (Raithel, Kauffman & Pletscher 2007).  Simulating data in this way 

served as a control and matched the inverse matrix model used to estimate parameters 

making it the only scenario free from misspecification. 

Random	Temporal	Variation	

The random temporal variation scenario evaluated demographic rates that changed through 

time. We simulated random annual fluctuations around fixed mean values in both adult 

survival and the recruitment of young.  A mean value for the demographic rate was selected 

on the real scale and then annual fluctuations were added according to a Normal 

distribution with a mean of 0 and standard deviation drawn from a Uniform distribution 

with a minimum of 0.2 and maximum of 0.6.  The mean value plus the random noise was 

transformed using a logit function to map the values between 0 and 1 and formed the linear 

predictor for a given demographic rate.  These simulated data were analyzed using the 

constant parameter demographic projection matrix described above.  Thus, this scenario is 

equivalent to modeling a time varying parameter with a model that assumes the parameter 

constant.  Real world analogs for this scenario include weather and harvest that fluctuates 

annually about a mean. 



16 

 

Trending	Survival	and	Recruitment	Rates	

For scenarios where demographic rates experienced linear trends through time we followed 

a similar procedure for projecting and observing the population as described for the 

constant demographic rate models.  The difference was in the creation of the demographic 

rates.  Mean values of survival (ߙ଴) and recruitment (ߚ଴) were drawn as before, but in the 

trending simulations, they were the intercept of a linear predictor (Brooks, King & Morgan 

2004).  The effect of time was included as a covariate that was randomly selected from a 

uniform distribution with bounds at negative one and one.  This procedure resulted in the 

linear predictors, 

ሺ߮௧ݐ݅݃݋݈
௔ሻ ൌ ଴ߙ ൅ ଵߙ ∗  ௧ݎݕ

௧ሻߩሺݐ݅݃݋݈ ൌ ଴ߚ ൅ ଵߚ ∗  .௧ݎݕ

Where yr represents year scaled from zero to one.  An inverse logit link was used on the 

predictor to ensure that all values of recruitment and survival fell in a reasonable range.  

Trends in survival and recruitment were considered separately and treated as two different 

scenarios.  Similar to the random temporal variation scenario, this scenario created data in a 

manner different from how it was analyzed.  However, unlike the random variation 

scenario, when demographic rates change linearly with time the consequences of the 

constant assumption is likely to be more severe.  Real world analogs for this scenario 

include directional habitat change, climate change or a trending predation rate. 

Analysis of Simulated Data 

The state-space formulation of the inverse methods we chose required a process model to 

describe the biological process of interest and an observation model to describe error in the 

observation process (Buckland et al. 2004; Clark & Bjørnstad 2004; Knape, Jonzén & 

Sköld 2011).  We used the demographic projection matrix presented above for the process 



17 

 

model.  All demographic rates were always assumed constant despite how the data might 

have been simulated.  For the observation process, we used a Poisson distribution with 

mean equal to the latent stage specific population size in year t. 

ሺݏ݅݋ܲ~௧ଵݕ ௧ܰ
ଵሻ 

௧ݕ
௔~ܲݏ݅݋ሺ ௧ܰ

௔ሻ, 

Where ݕ௧ଵ is the number of calves and ݕ௧
௔ the number of adult females observed at time t.  

That is, the mean of the observation process is the outcome of the biological process.  An 

implicit assumption of the Poisson distribution is that the variance is equal to the mean of 

the count.  This assumption is convenient from the modeler’s perspective as it restricts the 

error to a finite range and eliminates a parameter from the model. 

Model Evaluations 

Upon completion of each of 1,000 iterations, we compared estimates to the true values of 

demographic rates, geometric mean growth rate and annual estimates of adult female and 

young of the year population size. To evaluate model performance, we calculated the 

accuracy (root mean squared error, RMSE), precision (standard error, SE) and relative bias 

for each parameter. 

Analysis of Field Data 

Inverse Methods 

We fit aerial survey data to the same process model as that used to fit simulated data.  The 

observation model used to fit aerial survey data collected in the field differed from the 

simulation observation model.  Aerial survey data collected by IDFG during routine 

surveys of elk populations consisted of counts of calves (young of the year) and cows (adult 
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females greater than one and a half years of age).  Counts were conducted at highly 

irregular intervals and are always adjusted for visibility bias.  Because data collection 

procedures followed a statistically rigorous design, the visibility bias correction model 

produces variance estimates during the adjustment process.  A desire to incorporate this 

information motivated us to choose a Normal distribution for the observation process when 

using count data.  We could then use the estimated variances as the variance of the 

observation process when modeling survey data.  If ignored, observation error could bias 

results (Calder et al. 2003).  The choice to include estimates of observation error as data 

reduced the number of parameters in the model.  The choice of a Normal distribution 

assumes that observations above and below the true value are possible.  We believe this to 

be reasonable if the assumptions of the visibility bias correction model hold because 

adjustments are as likely to over- as underestimate the true size of the population.  It is also 

important to note that data storage protocols lead to a minimum of information that only 

provided the mean and confidence interval for each estimate.   

IPM Methods 

Transitioning from inverse methods to an IPM model allowed the incorporation of an extra 

observation model for telemetry data describing survival.  However, telemetry data lacked 

complete spatial coverage and only occurred in 20 of 51 GMUs.  We modeled those 20 

units in an IPM framework by combining the telemetry data and aerial survey data.  We 

modeled telemetry data using a known-fate binomial model.  The size parameter of the 

binomial distribution to be the total number of adult females collared (ܥ௠௔ ,) and at risk in 

month m while the response was the number of collared adult females alive (ܣ௠௔ ሻ month m.  

Therefore, we estimated the probability of survival using, ܣ௠௔ ௠௔ܥሺ݊݅ܤ~ , ߬௔ሻ, where we 

estimate ߬௔ as the probability of surviving from month m to month m+1 from the number 

of animals collared and at risk and the number of animals alive.  A monthly time interval 

allowed handling of animals that entered and exited the study at different times.  Annual 

survival was derived by raising monthly survival estimates to the twelfth power ߮௔ ൌ

	߬௔ଵଶ.   
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Telemetry Only Estimates 

For comparison, telemetry data were analyzed independent of aerial survey data to estimate 

adult female survival.  The likelihood was the same as the telemetry observation model 

presented in the IPM Methods section.  Unlike inverse and IPM methods, the estimates of 

survival calculated independently were not informed by the time-series of abundance 

estimates and thus independent of the time-series. 

MCMC 

We fit all models using program R and package rjags to call JAGS 3.0.0 (Plummer 2003; R 

Development Core Team 2013).  The process model remained the same for all analyses 

despite changes in simulation procedures and field data.  Model specification required 

formulation of priors and initial values.  Prior distributions for mean recruitment and 

survival rates were given as N(0, 1000) for both parameters, where N(x,y) indicates a 

normal distribution with a mean, x and a standard deviation, y.  Demogrpahic rate priors 

operated on the real scale and went through a logit link function.  The prior for population 

size in the first year was given as N(6000, 100000) and N(2000, 100000) for adults and 

young respectively.  Population size priors were truncated at 0 to exclude negative values.  

Markov Chain Monte Carlo (MCMC) sampling algorithms require specification of initial 

values. For the time-series of population abundances we drew values from a Poisson 

distribution with mean equal to the mean of the observed time-series.  Initial values of 

demographic rates took randomly drawn values between the minimum and maximum 

values used to simulate data. 

An adaptive phase of 50,000 iterations was followed by 25,000 simulated draws from the 

posterior distributions.  At this point we assessed convergence using the Brooks-Gelman 

(BG) scale reduction statistic (Brooks & Gelman 1998).  If the upper confidence interval of 

any of the BG statistics was deemed greater than 1.1 the model was updated 25,000 more 

iterations.  Upon completion of each iterative update convergence was reassessed.  This 

iterative process continued for a maximum of 10 repetitions. 
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Results 

Analysis of Simulated Data 

As expected, models fit using the same demographic projection matrix for data creation and 

analysis resulted in estimates of survival and recruitment that were least biased, most 

accurate and precise (Column 1 of Figures 1,2 and 3 relative to other columns).  Across all 

scenarios, missing observations decreased precision and to a lesser degree accuracy (across 

x-axis of Figures 1, 2 and 3).  Few generalizations can be made across the scenarios, except 

that precision of demographic rate estimates was similar across all scenarios (row 2 of 

Figures 1 and 2).  Random temporal variation and trending survival scenarios had similar 

effects on bias, precision and accuracy (Columns 2 and 3, Figures 1, 2 and 3), which were 

larger effects than trending recruitment (Columns 4, Figures 1, 2 and 3).  Recruitment trend 

scenarios showed the second highest degree of accuracy and second least amount of bias 

after the constant parameter scenario (column 4 of Figure 1, 2 and 3). 

Estimates of mean population growth rate were consistently unbiased and accurate to two 

decimal places (Figure 3).  The random variation and trending survival scenarios had the 

largest potential to influence mean growth rate as evidenced by the extended error bars in 

Figure 3.  However, the ability to negatively influence the mean decreased at the extremes 

of 0 and 4 years of missing data (Figure 3).   

Increasing numbers of years between surveys consistently decreased accuracy and precision 

of population estimates (pink diamonds, Figures 4 and 5).  Standard error and RMSE 

correctly reflect the implicit time scale of error structures whereby error increases the 

further the distance from an observation (e.g. pink diamonds of Figure 5, rows 2 and 3).  

The tendency of standard error and RMSE to increase with time implies the accumulation 

of error through time due to auto-correlation in the time-series (Figure 4, Figure 5).  

Estimates of adult female population sizes were relatively unbiased.  The most biased 

abundance estimates were the trending survival scenario, which deviates in the last 5 years 
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of the analysis, but note the relatively restricted range of the y-axis, in an absolute sense 

(row 1, Figure 4).  All models considering misspecification produced less precise and more 

biased estimates of calf population size in years without data as evidenced by differences 

among mean performance metrics in years with and without aerial survey data (Figure 5). 

Analysis of Field Data 

Inverse matrix method estimates of adult survival ranged from a low of 0.73 (SD = 2.0x10-

2) to a high of 0.94 (SD = 1.0x10-2, Appendix 1-1, Figure 1), while estimates of recruitment 

spanned a range from 0.13 (SD= 9.7x10-3) to 0.65 (SD = 7.0x10-2, Appendix 1-1, Figure 2).  

Standard deviations of posterior distributions ranged from 4.4x10-3 to 7.2x10-2 for 

recruitment and from 2.0x10-3 to 2.7x10-2 for adult survival (Appendix 1-1, Figure 2).   

IPM methods closely agreed with the inverse methods (Figure 6) producing mean adult 

survival estimates that ranging from 0.73 (SD = 2.0x10-2) to 0.94 (SD = 1.0x10-2).  

Similarly recruitment estimates between the two methods agreed in the range of recruitment 

estimates (0.13-0.64, SD = 9.2x10-3 and 7.2x10-2 respectively).  Precision of estimates, as 

measured by the standard deviation of the posterior distributions, ranged from 2.0x10-3 to 

2.8x10-2. 

Analysis of adult survival using only telemetry data produced a minimum estimate of 0.25 

(SD = 8 x10-2) and a maximum of 0.96 (SD = 2 x10-2).  Estimates from isolated telemetry 

data analysis were generally less precise than combined analyses (range minSD = 2.2x10-2, 

maxSD = 9.6x10-2, Figure 6).    

In the case of GMU 48 telemetry data strongly disagreed with survival estimates from the 

inverse analysis (Figure 6).  Consequently, recruitment estimates obtained using IPM 

methods compensated for a lowered survival rate (GMU 48, Figure 6, Figure 7).  

Independent age ratio observations were highly variable covering a much larger range than 

posterior estimates (Figure 7).   
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Discussion 

Overcoming data limitations is a primary difficulty of species management and 

conservation that challenges the relevance of science in management decisions.  We have 

illustrated a non-invasive procedure for the simultaneous estimation of population size and 

demographic rates from minimal data that scales seamlessly from small-localized areas to 

larger spatial scales.  Estimates of survival and recruitment from field data are the first of 

their kind for 31 of the 51 administrative units considered.  In addition to novel estimates, 

the quantity of information available in all units increased, which made available estimates 

of survival, recruitment and abundance, which also makes possible the calculation of 

annual and mean growth rates.  Considering survival data in combination with aerial 

surveys dramatically increased precision of estimates, which increased utility.  Finally, we 

note that by incorporating aerial survey and telemetry data into the same analysis the model 

ensured more self-consistent estimates as evidenced by adjustments to the recruitment and 

survival estimates obtained in GMU 48. 

Through simulation, we showed that missing data of up to 4 years did not create an 

unreasonable amount of bias for real life conditions like climate change, introduced 

predators, or changes in harvest.  Our results also suggest that mean growth rate maintains 

high fidelity to the true value despite misspecification.  In sum, these results encourage us 

to recommend the use of inverse and IPM methods for management applications. 

We are aware of no other studies that used simulation to describe accuracy and precision of 

model estimates of inverse or IPM based models using stage-structured data.  These 

characterizations help us form realistic expectations when applying such methods in real 

life circumstances.  Several authors used simulation to characterize the influence of 

assumptions (Abadi et al. 2010a), feasibility of estimating populations from age-at-harvest 

data (Conn, White & Laake 2009; Fieberg et al. 2010) and the effect of choice of 

observation distribution for abundance estimates (Knape, Jonzén & Sköld 2011).  Our 

simulations add an assessment of model misspecification and missing data to existing 

literature.  Understanding the influence of these is critical to successful implementation of 



23 

 

the IPM framework for species conservation because observational datasets are frequently 

characterized by these challenges. 

Where model misspecification is likely large, fidelity of geometric mean growth rate 

suggests that at a minimum the method could be used to identify areas or species of 

concern.  A useful derived metric of growth is the cumulative distribution of the mean 

growth rate, which describes the probability of being above or below some objective.  We 

omitted this step because our study did not focus on a specific management application and 

objective.  More focused questions that strive to delve deeper than a mere growth rate will 

necessarily require more data.  We considered a simple representation of population 

growth, but more data facilitates more realistic biological structures and complexities.  

Examples include environmental variation (King et al. 2008; Johnson et al. 2010b), density 

dependence and multiple age classes.  Implementations of added complexities are 

straightforward in practice.  The incorporation of environmental data, for instance, would 

require specifying a covariate in the linear predictor of the demographic rate of interest (e.g. 

survival, recruitment).  Such representations force mechanistic and biologically meaningful 

consideration and analysis of relationships.  Despite these potential additions, the basic 

form of the statistical machinery required to conduct analyses does not change.    

A potential shortcoming of our approach was the use of a Possion distribution to describe 

observation error associated with count data.  The Poisson distribution is a statistically 

reasonable choice for count data.  It was also convenient when coding simulations and 

ensured that the variance of the population increased as the mean increased.  This 

relationship exists because the mean of a Poisson distributed variable is equal to its 

variance.  In practice, the variance of count data is often several times larger than the 

estimated mean.  Because of this, readers working with average datasets (variance >> 

mean) are encouraged to view our results as optimistic, which is to say that we evaluated 

the models under the favorable condition of high quality abundance data.  However, for 

those researchers working with exceptional datasets (variance = mean) our results can be 

considered sufficiently realistic.  In the context of monitoring wild populations, the Poisson 

distribution provides a useful benchmark.  Possion data represent the highest quality of data 
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likely obtainable from field methods such as aerial surveys.  Using such a benchmark to 

describe the best possible outcome is useful because it enables one to quantify losses in 

accuracy and precision as deviations from the benchmark increase.         

Statistical analyses require comprise between generality and complexity.  Differences in 

model complexity derive in part from data availability.  Similarly, the feasibility of using 

stage-structured counts to estimate demographic rates is limited by data availability because 

limited amounts of data restrict model complexity, which in turn holds consequences for 

the accuracy and precision of estimates.  However, when compared to more pointed means 

of investigation (e.g. intensive telemetry studies), using IPMs allowed us to simultaneously 

estimate population size, growth rate and various derived products.  This appears efficient 

from a sampling perspective.  Furthermore, circumvention of legal and ethical difficulties 

may motivate the use of non-invasive methods in some circumstances while risk to 

personnel and individual animals may outweigh advantages of individual based methods in 

other settings.  When desired model complexity outstrips data availability, random effects 

parameterizations that effectively share information through space or time (see Chapter 2) 

may provide a means of improving model estimates. 

Working with limited data implies a certain amount of risk.  The analyses presented here 

leverage statistical tools and compromised biological complexity to provide information for 

the management of elk.  We note that the easy option at the end of an ecological study of 

saying that we need more data does not appear to be true under many conditions.  For 

instance, increasing the frequency of aerial surveys from once every 5 years to once every 4 

years does not change the bias.  So, while we acknowledge that more data could allow for 

better estimates and do not promote prolonged reliance on limited data, decisions are being 

made today. 
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Figure 1‐1 Simulation study survival estimates.  Vertically boxplots are arranged by simulation scenario 
(constant, random temporal variability, survival trend and recruitment trend).  Within each scenario five 
levels of missing data are compared.  On the y‐axis we present bias, precision (SE) and accuracy (RMSE) of 
estimates. 
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Figure 1‐2 Simulation study recruitment estimates.  Vertically boxplots are arranged by simulation scenario (constant, 
random temporal variability, survival trend and recruitment trend).  Within each scenario, five levels of missing data 
are compared.  On the y‐axis we present bias, precision (SE) and accuracy (RMSE) of estimates. 
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Figure  1‐3  Boxplots  of  relative  bias  and  root mean  squared  error  of  geometric mean  growth  rates  from  1,000 
simulations.  The number of years between aerial surveys is depicted on the x‐axis.  Simulation scenarios, from left to 
right, include correct/constant model specification, extra random variation, linear trend in adult survival and a linear 
trend in recruitment. 
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Figure 1‐4 Plots display mean absolute  relative bias,  standard error and  root mean  squared error  (RMSE) of adult 
female population size estimates over the 26 step time‐series.  Black open circles represent mean estimates without 
missing data.   The remaining color shape combinations represent the number of years of missing data where  filled 
green squares, filled dark blue circles, filled light blue triangles and filled pink diamonds represent one through four 
years of missing data between surveys. 
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Figure 1‐5 Plots display mean absolute relative bias, standard error and root mean squared error (RMSE) of young of 
year population  size estimates over  the 26  step  time‐series.   Black open circles  represent mean estimates without 
missing data.   The remaining color shape combinations represent the number of years of missing data where  filled 
green squares, filled dark blue circles, filled light blue triangles and filled pink diamonds represent one through four 
years of missing data between surveys. 
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Figure 1‐6 Comparison of adult survival estimates.   Dashed gray  lines represent posterior density estimates derived 
from an  inverse matrix model using only stage structured aerial survey data of elk  in  Idaho, USA.   Solid black  lines 
depict posterior densities from an IPM considering aerial survey and telemetry data.  Dotted black lines characterize 
estimates obtained from analysis of telemetry data in isolation of aerial survey data. 
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Figure 1‐7 Posterior density plots of recruitment estimates.  Dashed gray lines represent posterior density estimates 
derived from inverse‐matrix model using only stage structured aerial survey data.  Solid black lines show recruitment 
estimates derived from IPM with aerial survey and telemetry data.  Tick marks at the bottom of each plot portray age 
ratio estimates obtained during aerial surveys.  Dotted tick marks depict estimates from independent data collected 
during composition surveys. 
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Appendix 1-1 
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Appendix 1‐1 Posterior density plots of estimated elk recruitment rates for 51 administrative units in Idaho, USA 
(1985 – 2011).  Estimates were computed using inverse methods that considered only age‐structured abundance 
estimates collected at irregular intervals. 
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Appendix 1‐2 Posterior density plots of estimated adult elk survival  rates  for 51 administrative units  in  Idaho, USA 
(1985‐2011).    Estimates  were  computed  using  inverse  methods  that  considered  only  age‐structured  abundance 
estimates collected at irregular intervals. 
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Chapter 2. Big Insights from Little Data: Managing 

Populations when Data are Scarce 

Résumé 

Estimer les paramètres démographiques d’une population et la taille de celle-ci joue un rôle 

central en écologie et pour la gestion des espèces. La combinaison des estimations avec des 

matrices de projection de population permet aux chercheurs de simuler la dynamique des 

populations. Toutefois, ces problèmes peuvent être plus facilement formulés comme un 

problème d’estimation de paramètres. Les matrices inversées de population permettent 

l’estimation de paramètres démographiques et de l’abondance à partir de séries 

chronologiques d’observations. Les modèles de populations intégrés s’appuient sur les 

méthodes de matrices inversées pour faciliter l’utilisation de multiples sources de données 

pour estimer les paramètres du modèle.  L'intérêt pour l'application de ces méthodes à des 

scénarios réalistes a motivé cette étude dans laquelle nous avons utilisé des simulations 

pour évaluer la performance des méthodes inverses dans des conditions de données 

manquantes et spécification du modèle. Pour simuler la collection de données à faible 

fréquence nous avons simulé des données en à des fréquences qui variaient de zéro à quatre 

ans entre les observations. En plus des données manquantes, nous avons aussi simulé trois 

scénarios de spécification du modèle en utilisant des tendances temporelles linéaires dans la 

population et de la variation stochastique. Nous avons par la suite utilisé des modèles de 

matrices inversées de population et des modèles de population intégrés à des inventaires 

aériens et des suivis télémétriques de wapiti dans l'Idaho, É.-U.. Les résultats de 

simulations ont indiqué que les modèles de matrices inverses ont fourni des résultats qui 

avaient  une précision adéquate, indépendamment de la fréquence de collecte des données 

ou de la spécification du modèle. Les estimations du modèle sont cependant les plus 

sensibles aux erreurs de spécification concernant la survie des femelles adultes. 

L’utilisation de matrices de populations inversées et de modèles de population intégrée a 

donné des résultats similaires pour les taux démographiques et l’abondance. Les 

estimations de nos modèles sont les premiers de leur genre pour la majorité des unités 

administratives considérées.  Nos résultats suggèrent que l'ajustement des modèles de 
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population de données limitée qui contiennent du bruit est non seulement possible, mais 

dans de nombreuses circonstances permettront d'accroître la quantité et la qualité de 

l'information disponible pour la gestion des espèces. 
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Abstract 

Wildlife managers have to define population objectives and manipulate wildlife 

populations regardless of data availability.  Species management is a time sensitive iterative 

task that should benefit from quantitative analyses and models.  Formal modeling 

frameworks provide a means of synthesizing data while accounting for characteristic 

nuisances, thereby increasing accessibility of data and efficiency of management while 

describing the state of a system and the state of system knowledge.  A particularly powerful 

approach to population modeling consists of piecing together disparate sources of data 

using an integrated population model (IPM).  However, data may regularly be perceived 

too sparse to fit an IPM.  Moreover, monitoring data may not align in time or space.  To 

overcome these issues we consider a novel parameterization of an IPM that permits sharing 

of information through time and space using random effects.  We used model selection to 

compare a suite of models considering variation in demographic rates through time or 

space.  A model that held recruitment constant while characterizing adult survival as 

constant in time and variable in space received overwhelming support.  Statewide mean 

estimates from the most supported model suggested survival of adult females hovered near 

0.85 (SD = 3.7E-4), while adult male survival was lower at 0.61 (SD = 2.0E-3) and 

recruitment held nearly constant at 0.33 (SD = 1.3E-3).  Given our models, assumptions 

and results, we found that adult survival is the more likely to drive Idaho elk population 

dynamics than recruitment.  Variation in adult survival likely results from fluctuating levels 

of harvest.  As a method of synthesizing monitoring data, IPMs leveraging random effects 

increased precision of estimates, dealt with missing data, combined multiple sources of data 

and accommodated the many idiosyncrasies of our data. 
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Introduction 

Wildlife managers have to define population objectives and manipulate wildlife 

populations regardless of data availability.  Ideally, managers would have comprehensive, 

quantitative and continuous knowledge of a managed system upon which to base decisions 

that seek to meet clearly defined, publicly agreed upon objectives (Lindblom 1959; Bailey 

1982).  In reality, wildlife managers rarely have comprehensive system knowledge.  

Limited data and imperfect system knowledge result from several factors.  First, wildlife 

populations are notoriously difficult and expensive to quantify.  Second, monitoring 

programs cannot produce ideal data sets because of constraints imposed by logistical and 

budgetary realities.  Third, wildlife population dynamics are complex, variable and subject 

to multiple stressors that have complex interacting effects.  Despite imperfect knowledge 

and data deficiencies, a desire, and—in some cases—a legal obligation exists to manage 

populations and achieve objectives. 

Species conservation and management are time sensitive iterative tasks that should benefit 

from quantitative analyses and models.  Quantifying uncertainty is a primary benefit of 

fitting population models (Buckland et al. 2004; Schaub & Abadi 2011); when uncertainty 

is unknown, data tend to convey an overly optimistic assessment of system knowledge.  

Raw data contain high levels of uncertainty due to observational biases, missing values, 

disparate scales and multiple sources of stochasticity (Clark & Bjørnstad 2004; Cressie et 

al. 2009).  Because of uncertainty, direct comparisons and mental syntheses of raw data 

contain limited information.  To further complicate the usefulness of existing data, many 

monitoring programs experience methodological changes over time.  Methodological 

changes do not render data useless, but such changes impose a need for careful handling 

and flexible modeling approaches (e.g. Johnson et al. 2010).  Ultimately, some types of 

models facilitate prediction with uncertainty.  Formal modeling frameworks provide a 

means of synthesizing data while accounting for characteristic nuisances, thereby 

increasing accessibility of data and efficiency of management while describing the state of 

a system and the state of system knowledge (Schaub & Abadi 2011).  Thus, managers gain 
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the ability to play “what if” games to evaluate potential management scenarios.  Proposed 

policies can then be evaluated relative to well-defined objectives (Williams, Nichols & 

Conroy 2002; Nichols & Williams 2006).  In this way, a predictive model allows for the 

identification of optimal policies, given the available data and knowledge of the system. 

Whether or not continuous long-term data sets on demographic rates and population counts 

exist, a particularly powerful approach to population modeling consists of piecing together 

disparate sources of data using an integrated population model (IPM, (Besbeas et al. 2002; 

White & Lubow 2002; Brooks, King & Morgan 2004; Conn et al. 2008; Schaub & Abadi 

2011).  Typical sources of data may include aerial counts, radio-tagging encounter 

histories, productivity indices, harvest surveys and environmental data.  By combining all 

or several of these sources of data into one analysis, it is possible to obtain more robust and 

self-consistent parameter estimates that fully reflect the information available and the true 

state of the system (Besbeas et al. 2002).  A synthetic approach is desirable because 

analyzing demographic rates in isolation ignores dependencies among rates that produce 

observed outcomes (Baillie 1991).  Other advantages of integrated approaches are the 

ability to estimate latent or unobserved quantities (Abadi et al. 2010b; Schaub et al. 2010), 

increased precision of parameter estimates (Besbeas et al. 2002; Tavecchia et al. 2009; 

Abadi et al. 2010b) and so-called honest accounting of error (Besbeas et al. 2002; Clark & 

Bjørnstad 2004).  Further, IPM’s provide a biologically, if not legally, defensible basis for 

management actions and more efficient allocation of scarce resources.  At the core of an 

IPM is a demographic projection matrix model.  The matrix model is used to link 

demographic parameters to population size and subsequently describes population 

transitions through time according to species’ biology (Brooks et al. 2004).  Ideally, the 

demographic rates that populate the matrix model would be estimated from independent 

data alongside the matrix model (Abadi et al. 2010a).  IPMs are a uniquely unified 

framework for the analysis of population count and demographic data.  Their flexibility 

accommodates the many complexities inherent to population monitoring and allows for 

mechanistic linkages between population size and demographic processes. 



40 

 

However, when sparse data do not align in space or time, a means of sharing information 

among analysis units is highly desirable (Lukacs et al. 2009).  Further, sharing information 

bolsters sample sizes to permit inclusion of more complex model structures that may better 

capture the underlying biological processes.  For instance, elk (Cervus elaphus) populations 

are a routinely monitored species in North America due to their value as a game species 

(Toweill, Thomas & Metz 2002).  Long-term and large-scale studies have contributed 

greatly to our understanding of elk population dynamics (Toweill, Thomas & Metz 2002; 

Garrott, White & Watson 2009; Griffin et al. 2011; Brodie et al. 2013).  However, aerial 

survey data in the state of Idaho consist of stage structured aerial counts every 3-5 years 

(Figure 1).  Certain data poor units are characterized by as few as 3 aerial surveys in 27 

years.  Over the last decade Idaho Department of Fish and Game (IDFG) also affixed 

telemetry collars to animals.  Telemetry studies occurred sporadically in time and space 

resulting in far from continuous and complete coverage of the state in time and space, but 

have contributed greatly to localized understanding of vital rates.  Despite imperfect 

knowledge and data deficiencies, elk harvest continues across the state.  Thus, managers 

seek knowledge of the annual population size and an ability to forecast in order to evaluate 

management options. 

We imagine that data may regularly be perceived too sparse to fit a model.  In an effort to 

overcome data limitations, we consider a novel approach to the IPM wherein demographic 

rates are shared across monitored populations via random effects.  Perception of large-scale 

data deficiencies may be intimidating, but some monitoring units are likely better described 

than others.  A consistent population-modeling framework provides an opportunity to share 

demographic rate information across units wherein data rich units may inform data poor 

units in a defensible manner.  To this end, our objectives were 1) to provide a framework 

for modeling multiple populations simultaneously and 2) to demonstrate the ability of 

models to produce estimates in data deficient populations.  We respond to these objectives 

by developing a hierarchical IPM of elk populations in Idaho where we combine routine 

monitoring data with various supplementary data (e.g. GPS and VHF collars) from 

punctuated and opportunistic research activities to inform state-wide management 
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scenarios. Finally, we report model selection results to compare models with different 

forms of varying demographic rates through space and time. 

Methods 

Data Collection 

Data for this study come from the research and routine monitoring activities of IDFG 1985-

2011.  We considered data from 51 game management units (GMU).  We chose to include 

GMUs meeting two criteria: 1) at least one aerial survey was conducted since 1985 2) aerial 

surveys were thought to produce estimates representative of population size.  Historical 

data collection efforts focused on the GMU as the spatial resolution of interest.  A recent 

shift in focus has IDFG considering management at the elk zone level.  An elk zone is 

comprised of multiple GMUs. 

Aerial surveys occurred at irregular intervals leading to many missing values and disparate 

spatial extents (Figure 1 & Figure 2).  Surveys were generally not flown in the same year 

for multiple neighboring GMU’s or those that comprise an elk zone.  Some units were 

flown in aggregate with other GMU’s during data collection and in a few cases an entire elk 

zone made up the sampling unit.  Data collected during full aerial surveys minimally 

consisted of stage-structured counts of the number of female elk, bull elk and calf elk.  Raw 

counts were adjusted for visibility bias using the software Aerial Survey 6 (Unsworth et al. 

1999a).  The details of the software and the visibility bias correction model are described in 

(Unsworth et al. 1999b).  For several unit-year combinations, only partial aerial surveys 

provided herd composition metrics including calf:female ratios and bull:female ratios.  

Surveys occurred in January, February or March. 

Data on elk survival consisted of summaries of 641 telemetry collar deployments, including 

date of deployment, date of recovery or censor, sex of the animal and field-based age-class 

estimates supplemented by cementum annuli analysis of extracted teeth.  Collars were a 
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mixture of GPS and VHF technologies and manufacturers.  Collar deployments spanned a 

wide geographic range with deployments originating in 21 unique GMU’s (Figure 3).  

Adult elk were captured by helicopter darting or net-gunning, drive nets or corral traps 

during winter of each year.  Animals were fitted with telemetry collars equipped with 

mortality sensors.  IDFG personnel typically monitored the animal’s fate by fixed wing 

aircraft. 

Population Growth 

We used a Bayesian IPM to estimate survival, recruitment, population size and derived 

parameters from the previously described sources of data.  Model development begins with 

the state process likelihood.  The model is a pre-birth pulse matrix model with two age 

classes, two sexes, reproduction beginning at age two and an assumption that birth sex ratio 

is equal. 

N୥,୲୤ ~	BinሺN୥,୲ିଵ
୤ ൅

1
2
N୥,୲ିଵ
ଵ , φ୥,୲ିଵ

୤ ሻ	 

N୥,୲୫~	BinሺN୥,୲ିଵ
୫ ൅

1
2
N୥,୲ିଵ
ଵ , φ୥,୲ିଵ

୫ ሻ 

N୥,୲ଵ ~PoisሺN୥,୲୤ ∗ ρ୥,୲ሻ, 

where the expected number of adult female ሺN୥,୲୤ ) elk in GMU g, at time t is equal to the 

number of female elk in the previous year plus half the number of recruited calf elk (N୥,୲ିଵ
ଵ ) 

from the previous year.  Process error is represented by a binomial distribution with, in the 

case of female elk, size parameter equal to the expected number of female elk and 

probability of success equal to annual female elk survival (φ୥,௧ିଵ
୤ ) at the previous time step 

t-1 in GMU g.  Male populations transitioned through time in the same manner as the 

female populations.  We followed (White & Lubow 2002) and defined recruitment as 
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equivalent to the calf:female ratio in the current year (ρ୥,୲) times the number of female elk 

in the current year (N୥,୲୤ ). This formulation was desirable because we lacked information on 

the number of calves born and on survival in the first six months. It also reduced the 

number of parameters to be estimated.  This definition of recruitment further facilitated use 

of observed calf:female ratios collected during herd composition surveys.   

Aerial Counts Likelihood 

Aerial counts were adjusted for visibility bias, which suggested that estimates of population 

size could be smaller or larger than the actual population size.  Visibility correction models 

output a point estimate of abundance and standard deviation for each aerial survey. For this 

reason, we assumed a Normal error distribution for these aerial counts.  Again using female 

elk, the number of females in a given year was assumed to come from a Normal 

distribution with a mean equal to N୥,୧
୤  and standard deviation (SD) equal to the standard 

error estimated by the sightability model applied to the count data in that spatial location 

and year (σ୥,୲୤ ሻ.  Thus, we assumed that the calculated error about the count data was a 

reasonable estimate.  This assumption allowed the observation error to change in space and 

time relative to effort and sighting conditions while keeping the number of parameters in 

the model as small as possible given data uncertainty.  

Recruitment Likelihood 

Calf:female ratios were calculated during full aerial surveys and herd composition flights.  

We only included calf:female estimates from herd composition surveys to maintain 

independence between the recruitment likelihood and aerial count likelihood.  Explicit 

accounting of covariance in the model was not possible due to loss of information when the 

data were stored.  Ratio estimates were also adjusted for sightability and storage protocols 

dictated that the mean and SE alone were recorded in the database.  The counts that gave 

rise to the ratios were rarely recorded in the data, which suggested a Normal distribution 



44 

 

would best describe the available data.  We used a truncated (0-1) Normal distribution with 

mean equal to ρ୥,୲ and SD equal to the SE output by Aerial Survey 6, 

௚ܻ,௧
௔௚௘.௥௔௧௜௢~ܰ൫ρ୥,୲, ௚,௧ߪ

௔௚௘.௥௔௧௜௢൯, ܻ ∈ ሺ0, 1ሻ . 

Sex Ratio Likelihood 

Sex ratio data were collected and stored in the same manner as recruitment data.  For this 

reason we again chose a truncated (0-1) Normal distribution, but the mean of the 

distribution was 
୒ౝ,౪
ౣ

୒ౝ,౪
౜ .  The SD was assumed equal to the SE calculated by the sightability 

model, 

௚ܻ,௧
௦௘௫.௥௔௧௜௢~ܰ ൬	

୒ౝ,౪
ౣ

୒ౝ,౪
౜ , ௚,௧ߪ

௦௘௫.௥௔௧௜௢൰ , ܻ ∈ ሺ0, 1ሻ . 

Survival Likelihood 

To address survival, we incorporated VHF and GPS telemetry data using a known-fate 

product binomial model.  The size parameter of the binomial distribution was set equal to 

the number of at risk collared animals (C୥,୫ୱ ) of sex s in month m in GMU g, while the 

response (A୥,୫ୱ ) was the number of sex s collared animals alive in month m in GMU g.  

Therefore, in the most general case possible the probability of monthly survival (τ୥,୲
ୱ ) 

followed A୥,୫ୱ ~BinሺC୥,୫ୱ , τ୥,୲
ୱ ሻ.  A monthly time interval was used to allow for individual 

animals entering and exiting the study at different times. Monthly probability of survival 

was assumed equal for all months of the year, but in time varying models monthly survival 

was indexed by year t.  Annual survival was calculated by raising the monthly survival 

estimate to the twelfth power, φ୥,୲
ୱ ൌ 	 τ୥,୲

ୱ ଵଶ. 
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Random Effects 

One way to fit a model to sparse data is to reduce the number of parameters.  The simplest 

approach would involve fixing parameters to a single value in space and time.  A single 

fixed value would be useful if the population of interest was the entire study area, but elk 

are managed at a much smaller scale and elk demographic rates are thought to vary in space 

and time (e.g. (Raithel, Kauffman & Pletscher 2007)).  The novelty of our model is the 

sharing of information to overcome data scarcity.  This is accomplished via modeling 

demographic rates with random effects.  From the perspective of data scarcity this two level 

approach is attractive because data poor administrative units will borrow information from 

the global distribution when searching for an optimal parameter value.  When units vary 

distinctly from the global mean, and enough data is available to describe this deviation, the 

local estimate may deviate from the global mean. Random effects can be placed on the 

survival, recruitment or both parameters to allow variation in time and space.  We 

incorporated random effects by adding a random error term to the mean demographic rate 

and indexing by spatial or temporal unit as appropriate for the candidate model structure, 

logitሺφ୥,୧
୤ ሻ ൌ μ ൅	ε୥୤ , 

logitሺφ୲,୧
୤ ሻ ൌ μ ൅	ε௧୤ . 

Where ε୥୤  and ε௧୤  are random effects distributed as ܰሺ0,  ଶሻ.  The global mean survival rateߪ

is represented by μ.  As a result, the annually and spatially indexed survival parameter φ୥,୲
୤  

is the sum of the global mean and the random effect.  The inverse logit link was used to 

ensure appropriate values of demographics (0, 1) were available to the process 

distributions.  Although omitted for brevity, random effects placed on the recruitment terms 

followed the same form as survival and used the same link function because twinning is 

rare in elk (Toweill, Thomas & Metz 2002).  For models where survival or recruitment was 

held constant, the linear predictor was modified to take the form: 
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logitሺφ୥,୧
୤ ሻ ൌ μ. 

Candidate Models and Prior Distributions 

Our interest centers on variation in demographic rates.  Long-lived ungulate populations are 

generally regarded as being most sensitive to changes in adult female survival (Gaillard, 

Festa-Bianchet & Yoccoz 1998).  However, because adult survival can be very stable 

through time, recent literature has focused more attention on the highly variable recruitment 

process (e.g. (Raithel, Kauffman & Pletscher 2007)).  Then again, harvested populations 

may experience elevated variation in adult female survival because of changing hunting 

season structures, weather and hunter participation.   

We considered combinations of spatial and temporal variation among recruitment and 

survival allowing each demographic rate to vary in space or time, but never both (Table 1).  

This was accomplished by specifying a time or space varying random effect on the relevant 

demographic rate(s) as described under subheading random effects in the methods section.  

Our approach produced 7 candidate models, which we ranked according to deviance 

information criterion (DIC).  Similar to AIC, DIC attempts to quantify the tradeoff between 

model complexity and model fit.  This is done using the deviance and a penalty term 

according to 

DIC ൌ 	െ2logLሺθሻ െ 2p஽, 

where െ2logLሺθሻ quantifies how well the model fits the data and 2p஽ is a penalty term 

accounting for the effective number of parameters in the model (Spiegelhalter et al. 2002).  

Bayesian models require prior specification for all parameters.  Because one objective of 

our work was to evaluate the strength of a random effects approach to IPMs, we chose 

vague priors for all parameters.  We hierarchically centered all random effect terms on the 

global estimate.  Global and constant demographic parameters were given a ܰ	ሺ0, 10000ሻ 

prior, while the standard deviations of random effects were specified as ܷሺ0, 50ሻ.  Because 
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the time-series is conditioned on the first year, a prior is needed for the initial population 

size.  We specified initial population size using a normal distribution with a mean equal to 

the first full aerial survey in that GMU, a standard deviation of 100 and truncated the 

distribution so that only positive values were possible. 

Bayesian estimation was performed using Markov Chain Monte Carlo (MCMC) 

simulations as implemented in JAGS called from R using package rjags (Plummer 2003; R 

Core Team 2013).  Model runs consisted of 3 chains run for 200,000 iterations with the 

first 90,000 iterations discarded.  Models were thinned such that every tenth value of the 

MCMC chain was retained.  We evaluated convergence based on the Brooks-Gelman ( ෠ܴ) 

statistic and visual inspection of the MCMC time-series and posterior distributions (Brooks 

& Gelman 1998). 

Derived Parameters 

We calculated derived parameters to enhance our descriptions of populations.  Annual 

population growth rate was calculated using only females following: ሺN୥,௧୤ ൅ N୥,௧ଵ /2ሻ/

	ሺN୥,୲ିଵ
୤ ൅ N୥,୲ିଵ

ଵ /2ሻ.  We used a geometric mean growth rate to describe long-term 

population growth and derived the probability that the geometric growth rate was greater 

than 1 by calculating the proportion of the total iterations that MCMC chains estimated the 

rate above 1.       

Single Unit Comparison 

To illustrate the sharing of data, we selected one data poor unit for which we fit a single 

GMU model with constant demographic rates.  The data used for fitting the illustrative 

model was restricted to data collected in the unit over the course of the study.  Specifically 

we chose GMU 43, which had survey data for just four years between 1985 and 2011.  

There was no telemetry, composition flight or other supplementary data available for this 

unit. With such limited data, fitting a model to GMU 43 in isolation should result in very 
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diffuse posterior distributions and so the comparison is included to illustrate the influence 

of the random effects approach for facilitating estimation in data poor units.     

Results 

Diagnostics of model runs revealed adequate chain mixing, smooth univariate posteriors 

and ෠ܴ estimates less than 1.1 for all parameters, which suggests convergence.  Convergence 

was achieved quickly for simpler models, with diagnostics reporting convergence within 

the first 10,000 iterations.  Moderate amounts of within-chain autocorrelation were present 

when complex models were considered and when data was limited for a given GMU. 

Model selection ranked the model with spatial variation in adult survival and constant 

recruitment well above the other models (Table 1).  The difference in DIC between the top 

model and the second most supported alternative was greater than 1000.  The simplest 

model, which had constant parameters, received the least support (ΔDIC = -4464.84).  Full 

details of model selection results and demographic rate estimates can be found in Tables 1 

and 2 respectively. 

Mean adult female survival fluctuated modestly according to model structure with values 

ranging from 0.82 (SD = 0.11) to 0.89 (SD = 0.03).  Temporal and spatial variation, as 

measured by the random effects, was consistently less in recruitment than variation in adult 

survival.  There did appear to be some relevant spatial autocorrelation, with a large area of 

high female survival (white and light greys) in the west and center-west, and low female 

survival being in the north-north-east (dark grey to black; Figure 4).  Adult male survival 

estimates were lower than adult female survival (Table 2) with state-wide estimates with a 

mean of 0.61 (SD = 0.02).  State-wide recruitment was estimated to be 0.33 (SD = 1.3x10-

3).   

Geometric mean growth rates varied spatially, with some regions appearing to have grown 

over the 26 years, and others declined (Figure 5). Precision of annual growth rate estimates 
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was generally low (meanSD = 0.016, rangeSD = 0.007-0.07).  Geometric means, as 

calculated from the best supported model, varied from a low of 0.91 (SD = 4X10-3) to a 

high value of 1.07 (SD = 5X10-3).  The probability of the geometric mean being greater 

than one was above 0.5 in 22 of 51 GMU’s (Figure 5, right panel).  Thus, 43% of the 

GMUs were likely to have experienced growth between 1985 and 2011.  

When considered in isolation, GMU 43 population size estimates were very similar as 

when this unit was considered in the most supported random effects model (φ(G)ρ(.)). 

However, demographic parameter estimates were considerably less precise in the single 

unit analysis as illustrated by the increased dispersion of the posterior distributions (Figure 

6).  Consistent with the application of random effects we observed a small shift in estimates 

of demographic rates towards the global mean (i.e. shrinkage) in the random effect model 

(Figure 6).     

Discussion 

This is the first time that many of the GMUs have estimates of demographic rates and 

growth rates. This has been previously impossible to do with incomplete data. With formal 

quantitative approaches to information sharing among GMUs combined with Integrated 

Population Model methodologies we can now allow for inference about poorly understood 

locations.  Furthermore, the estimates of the well-studied places are likely even stronger 

than before because of the same information sharing.  Given our model assumptions and 

model selection results, elk populations in Idaho respond most strongly to variation in adult 

survival, which experienced sufficient variability in the spatial dimension to render this 

model the most supported.  Variation in adult survival likely stems from differences in 

harvest among years and/or units (Brodie et al. 2013).  Recruitment data exhibited extreme 

variation in raw form, but recruitment parameters were routinely estimated as a consistent 

quantity in space and time (Table 2).  Such information provides critical non-intuitive data-

driven insights for the management of elk in Idaho. 
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Integrated population models accommodated the numerous disparities in our data while 

synthesizing multiple sources of information to provide precise estimates of population size 

and demographic rates.  IPMs are the subject of active research to which we add the 

strength of hierarchical parameterization (Conn et al. 2008; Abadi et al. 2010b; a; Schaub 

& Abadi 2011).  Our parameterization facilitates sharing of information from areas and 

times with abundant data to help make estimates in places and times of scarce data.  We 

illustrated this point by showing the increased precision of demographic rate estimates in 

data poor GMU 43, though this sharing occurred everywhere, when using the random effect 

parameterization that leveraged data from the entire study area (Figure 6).  In the context of 

population monitoring, a random effects parameterization facilitates estimation of low 

priority populations when monitoring or data collection is stratified by population.  This is 

particularly relevant when one considers the potential for low priority populations to 

become high priority in the future and the subsequent need for modeling change under the 

future conditions. 

In the single unit analysis of GMU 43, the relatively flat posterior distribution of the 

recruitment estimate signals little information contained in the weak dataset.  One way to 

deal with this problem is by specifying an informative prior on the recruitment process 

(Lukacs et al. 2009).  Under the assumption of exchangeability, random effect IPMs do not 

necessitate the use of informative priors for such situations because weakly identifiable 

parameters are subsumed by the hierarchical structure and thus are informed by data shared 

through random effects.  In the biological sense, we defend the exchangeability assumption 

by noting that many biological drivers operate at scales larger than those at which 

populations are monitored, which suggests that each monitoring unit is in fact part of a 

single larger population.  The random effects parameterization thus automatically handles 

“prior” construction by shrinking weakly informed unit specific estimates towards the 

global mean when insufficient data exists to override the global mean. In other words, this 

approach is conservative such that when a GMU has only a few data points that suggest 

catastrophic patterns (e.g., rapid declines or rapid increases that are different than 

elsewhere), the model addresses this by downplaying the weak data in favor of the state-
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wide trend. In practice, confirming an apparent catastrophic pattern would require a focused 

data collection effort, something that the hierarchical model would also require. 

The absence of continuous data collection limits our ability to accurately describe temporal 

variation.  The data used for this study have very few observations in certain years, which 

forces estimation of temporal variability to rely on data from only a few populations.  

When study objectives emphasize temporal variability, a potential solution is to maintain a 

minimum sample size along the temporal axis.  Despite information gains offered by IPMs, 

we imagine that detection of short-term changes in population dynamics will continue to 

prove difficult.  If a desire exists to focus on short-term trend detection, extensive data will 

be required.  However, given realized logistical and financial constraints of monitoring 

agencies, IPMs represent a significant gain in information obtained from existing data.  

Information gains come in the form of demographic rate estimates, annual population size 

estimates, derived parameters (such as probability that the GMU is growing) and 

quantification of uncertainty.  The information gains touted here were once relegated to 

only the most technically well-informed practitioners, but readily available computing 

software has removed many of the obstacles that once separated decision maker from data 

and inference.  

Incorporating harvest data would further our ability to accurately describe temporal 

variability in demographic rates and add realism. In our study, the influence of harvest was 

accounted for by the inclusion of telemetered animals that died from harvest. 

Unfortunately, elk are migratory in most of Idaho and harvest data does not align spatially 

with winter aerial surveys.  Harvested populations are often monitored during the winter 

when visibility bias is minimized (Rabe, Rosenstock & deVos 2002).  However, winter 

counts do not reflect the state of harvested populations if animals migrate among 

management units. IDFG designed the elk zone system, which clusters several GMUs, to 

combat this problem and to make population indices more meaningful to where harvesting 

occurs.  Our models make it relatively simple to derive zone-wide estimates of population 

size.  To calculate a zone-wide population estimate, one would simply need to sum the 

posterior distributions of each GMU that comprise the zone for each year monitored.  
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Alternatively, we can conceive of an open population model with seasonality that would 

overcome the migration problem and we suggest it as a next step for the management of 

migratory harvested wildlife populations that transcend administrative boundaries.  

Regardless of the approach pursued, the process of building an IPM provided critical 

insights into data structures and features of future monitoring protocols that will minimize 

alienation of existing data.   

We assumed all populations were closed to immigration and emigration for the duration of 

the study.  Given high levels of fidelity to winter range (i.e. where the animals are counted) 

observed in telemetry data (unpublished data) we suggest that the closure is an adequate 

approximation of reality.  Regardless of fidelity to winter range, the model as presented 

could estimate a latent immigration term if telemetry data were sophisticated or complete 

enough as to permit incorporation of a multi-state survival likelihood that partitioned 

survival into spatial compartments (Abadi, Gimenez, Ullrich, et al. 2010, Schaub et al. 

2010).  A large portion of the telemetry data available for our study did not include location 

information, which precluded pursuing this model structure. 

Populations of large ungulates respond most strongly to changes in adult female survival 

(Nelson & Peek 1982).  However, a lack of variability in adult survival prompted 

investigation into the more variable recruitment process (Gaillard, Festa-Bianchet & 

Yoccoz 1998; Raithel, Kauffman & Pletscher 2007).  Our results suggest that spatial 

variation in adult female survival has a meaningful effect on Idaho’s elk populations.  

However, the main source of data available for this work consisted of aerial stage-

structured counts with many missing values and a surrogate (calf:female ratio) for the 

recruitment process.  The lack of data on the components of the recruitment process could 

have underrepresented variation and induced covariation between the recruitment 

parameter and adult survival (sensu (Morris & Doak 2004)).  Such buffering would have 

the effect of smoothing the time-series and potentially downplaying the importance of 

recruitment.  Our results are consistent with the work of (Brodie et al. 2013) who suggest 

that potentially dramatic spatial variation in adult female survival can be induced by 

harvest.   (Johnson et al. 2010a) add further support with their work on endangered wild 
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sheep populations.  The authors reported that for some populations variation in population 

growth was is best explained by variation in adult female survival, while for other 

populations recruitment was the most informative vital rate.     

Effective management of wildlife populations relies on detailed information describing 

demographic rates and population size.  Regardless of data availability, our ability to learn 

from and defend management actions relies on a formalization of data and error structures.  

As noted by (Humbert et al. 2009), many simple approaches to population modeling rely 

on unrealistic assumptions, have trouble with missing data and we add cannot 

accommodate disparate sources of data.  IPMs have enormous potential for synthesizing all 

available data for harvested, as well as endangered species. They do not however suggest 

continued collection of minimal disparate data, but rather by quantifying uncertainty they 

suggest the types of data that might be useful and provide incentive for improved species 

monitoring. The random effects parameterization explored here facilitates sharing of 

information, a key step towards modeling areas with severely limiting data.  Quantifying 

key demographic rates and the state of the population is a meaningful first step towards 

continuous quantitative knowledge of biological systems.  
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Model Deviance pD δDIC 

φ(G)ρ(.) 20381.83 8416.44 0.00 

φ(.)ρ(G) 21047.93 9513.69 1763.35 

φ(Y)ρ(Y) 21023.18 9703.80 1928.71 

φ(G)ρ(G) 21009.75 10090.56 2302.05 

φ(Y)ρ(.) 21362.67 9903.93 2468.34 

φ(.)ρ(Y) 21886.32 10704.83 3792.87 

φ(.)ρ(.) 22244.15 11018.96 4464.84 

Table 2‐1 Model comparison results of integrated population models applied to elk populations in Idaho (1985‐2011).  

Where G represents a spatial random effect delineated by game management unit and Y indicates a random effect of 

year on adult elk survival (φ) and recruitment of young (ρ) respectively and a period indicates the parameter was held 

constant. 
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 Female Survival Male Survival Recruitment 

Model 
Mea

n 
SD RE 

RES

D 
Mean SD RE RESD 

Mea

n 
SD RE RESD 

φ(G)ρ(.) 0.85 
0.0

0 

0.2

1 
0.02 0.61 

0.0

2 
0.36 

0.0

4 
0.33 

0.0

0 
– – 

φ(.)ρ(G) 0.86 
0.0

0 
– – 0.61 

0.0

0 
– – 0.32 

0.0

3 
0.32 

0.0

3 

φ(Y)ρ(

Y) 
0.82 

0.1

1 

2.2

1 
0.64 0.64 

0.0

4 
0.53 

0.0

9 
0.40 

0.0

4 
0.92 

0.1

7 

φ(G)ρ(

G) 
0.89 

0.0

3 

1.5

9 
0.27 0.61 

0.0

3 
0.58 

0.1

0 
0.36 

0.1

1 
0.62 

0.1

2 

φ(Y)ρ(.) 0.89 
0.0

3 

1.3

5 
0.28 0.63 

0.0

2 
0.46 

0.0

8 
0.33 

0.0

0 
– – 

φ(.)ρ(Y) 0.85 
0.0

0 
– – 0.60 

0.0

0 
– – 0.32 

0.0

1 
0.30 

0.0

5 

φ(.)ρ(.) 0.85 
0.0

0 
– – 0.60 

0.0

0 
– – 0.33 

0.0

0 
– – 

Table  2‐2  Parameter  estimates  obtained  from  the  seven  fitted models  for  adult  female  survival  (φf),  adult male 

survival (φm), recruitment (ρ) and random effects (RE).  When parameters were assumed constant demographic rates 

represent the mean and standard deviation of the posterior distribution.  When random effects were considered the 

estimate reflects the population level (i.e. global) mean and standard deviation of the posterior distribution.  Columns 

with  heading  RE  depict  the  standard  deviation  of  the  hierarchically  centered  random  effect with  the  uncertainty 

about that estimate following in the RESD column.   The ‐‐ denotes the exclusion of a parameter from a given model.   
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Figure 2‐1 Aerial Survey data collection schematic showing the year of data collection on the bottom, 
spatial unit of collection on the left, the number of aerial surveys per year on top, and the number of full 
aerial surveys per unit on the right.  Full aerial surveys and herd composition flights are represented by 
filled black dots and filled gray dots respectively. 
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Figure 2‐2 Spatial extent of the study area where shaded units indicate inclusion.  Gray scale values also indicate the 
number of full aerial surveys conducted since 1985. 
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Figure  2‐3  Telemetry  data  used  in  the  study.  The  size  of  the  dots  represents  the  number  of  unique  individuals 
monitored in the GMU while the grey scale of the dot is used to show the number of months the GMU had a sample 
size 
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Figure 2‐4 Mean estimate of adult survival (Left: Female, Right: Male) by game management unit.  Estimates 
taken from the most supported model.  Darker colors correspond to lower survival, but note that while the scales 
are different the relative difference in survival is similar. 
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Figure 2‐5 Geometric mean growth rate derived from annual population estimates from 1985‐2011 presented 
on the left.  The map on the right shows the probability that the value is > 1.  Units in white were estimated to 
be growing with a probability of 1.  Units in black represent those units with little to no chance of have 
experienced growth since 1985. 
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Figure 2‐6 Comparison of demographic rate estimates from GMU 43 as suggested by the most supported model 

(φ(G)ρ(.)) and a model considering GMU 43 in isolation with constant demographic rates.  Black lines show 
posterior densities estimated by the random effects model while the gray lines depict the single unit analysis.  
This analysis is included to illustrate the data sharing qualities of a random effects parameterization. 

 



 

 

 



 

 

 

Chapter 3. Relating Habitat Selection and Use to 

Fitness 

Résumé 

Puisque les résultats des études de sélection d’habitats sont appliqués de manière normative 

et ne donnent pas nécessairement des informations sur la qualité de l'habitat ou la 

performance individuelle, il est important de tester ces hypothèses. L’assomption que les 

résultats de la sélection de l’habitat maximisent la valeur adaptative est supportée 

empiriquement en écologie.   Toutefois, en écologie la théorie suggère également 

l’existence d’une sélection non idéale des ressources. Afin d’améliorer la gestion du 

Wapiti, nous avons testé le lien entre la sélection des ressources au niveau de l’individu et 

au niveau de la population à la survie. Au niveau de la population, nous nous sommes 

appuyés sur la variation dans les coefficients de sélection au travers du temps pour 

expliquer la variation dans la survie. Nous avons par la suite créé des mesures d’habitat 

rencontrées puisque les bénéfices conférés aux individus dépendent probablement de la 

durée et de la fréquence d’utilisation de la ressource. Les mesures d’habitats rencontrés ont 

fourni une hypothèse alternative à l’échelle de l’individu et de la population. Nous avons 

trouvé que notre caractérisation de la sélection des ressources n'était pas corrélée avec la 

survie, tant au niveau individuel qu’au niveau de la population. Toutefois, les mesures 

d’habitat rencontré ont été soutenues par des procédures de sélection de variables. Au 

niveau individuel, la sélection des variables a appuyé les modèles contenants des variables 

auxiliaires pour la présence du loup et  de la verdure végétative. Au niveau des populations, 

la sélection des variables a soutenu un modèle incluant les effets du loup et des zones 

récemment brulées. Nos résultats indiquent que l’endroit où se trouve un animal est mieux 

expliqué par sa performance individuelle que là où il veut être. Nos résultats devraient 

encourager les gestionnaires des ressources à  valider les résultats d’analyses de sélection 

d’habitats avant d'appliquer de manière normative les résultats des études. 
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Abstract 

Because the results of habitat selection studies are applied prescriptively and do not 

necessarily convey information about habitat quality or individual performance we require 

tests of these assumptions.  The assumption that habitat selection results in maximized 

fitness is well founded in ecological theory.  However, ecological theory also suggests the 

existence of non-ideal resource selection.  To inform elk habitat management we related 

resource selection at the individual and population level to survival.  At the individual 

level, we related differences between each individual and population level resource 

selection coefficients to survival.  Considering the population level, we leveraged variation 

in selection coefficients through time to explain variation in survival.  We then created 

metrics of habitat encountered because benefits conferred to individuals by resources likely 

relate to the duration and frequency of resource use.  Metrics of habitat encountered 

provided an alternative hypothesis at both the individual and population levels.  We found 

that our characterization of resource selection did not correlate with survival at the 

individual or population level.  Meanwhile, metrics of habitat encountered found support 

from variable selection procedures.  Variable selection supported retention of surrogates for 

wolves and vegetative greenness at the individual level.  Population level variable selection 

supported a model including the effects of wolves and recently burned areas.  Information 

criterion showed the most support for the individual level model incorporating each 

individual’s propensity to encounter wolves and green open areas.  Our results indicate 

where an animal is (habitat use) better explains individual performance than where it wants 

to be (habitat selection).  The results also encourage resource managers to validate the 

habitat performance relationship before prescriptively applying the results of habitat 

selection studies. 
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Introduction 

Animals must consume resources and mitigate risk to sustain life.  Movement is the 

mechanism by which animals adjust their spatial location and in heterogeneous 

environments alter exposure to resources and risks (Hooten et al. 2010).  Spatial patterns 

arising from movements are typically assumed indicative of an animal’s desire to meet life 

history goals (Manly, McDonald & Thomas 1993).  To examine these patterns researchers 

often couple habitat use with a measure of habitat availability, which results in a resource 

selection function (RSF).  A RSF quantifies habitat selection from disproportionate use of 

habitat relative to availability (Manly, McDonald & Thomas 1993).  Estimates of selection 

are then taken to be the outcome of a series of behavioral processes by which animals seek 

to maximize fitness.  However, it is habitat use, not selection, that ultimately determines the 

benefits conferred to the individual by habitat because energetic gains and costs afforded by 

habitats vary with the frequency and duration of habitat use (Gaillard et al. 2010).  The 

ability of habitat selection to predict individual performance is consequently dependent 

upon the level of agreement between selection and use (Keim, DeWitt & Lele 2010).  Thus, 

an implicit relationship between habitat use, selection and individual performance is a 

common and typically untested feature of habitat selection studies (Arlt & Pärt 2007; 

McLoughlin et al. 2010; Gaillard et al. 2010; Keim, DeWitt & Lele 2010; DeCesare et al. 

2013).  Because the results of habitat selection studies are applied prescriptively and do not 

necessarily convey information about habitat quality or individual performance we require 

tests of these assumptions. 

The assumption that habitat selection results in maximized fitness is well founded in 

ecological theory.  Over evolutionary time habitat selection is suggested to  maximize 

fitness if animals follow the Ideal Free Distribution (IFD) (Fretwell & Jr 1969; Morris 

2003).  Such exact habitat selection would ensure relatively uniform and maximized 

fitness.  Consequently, one would not expect variations in space use to be predictive of 

individual performance.  When animals are distributed in accordance with the IFD density 

should reliably indicate habitat quality (Horne 1983).  On time scales relevant to species 
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management, fluctuations in the abundance of animals seem likely given the dynamic 

nature of the landscapes upon which they rely.  As such, failure to corroborate habitat 

selection with other measures of individual performance limits inference and questions 

prescriptive application in matters of species conservation (Keim, DeWitt & Lele 2010). 

Recent evidence suggests that despite a desire to fulfill life history goals, animals may not 

employ the “best” strategy that results in maximized fitness (Arlt & Pärt 2007; DeCesare et 

al. 2013).  Here we define the term non-ideal habitat selection to describe a lack of 1:1 

correspondence between habitat selection and fitness.  One hypothesized pathway to non-

ideal habitat selection involves intentional and inadvertent social cues from successful 

conspecifics.  In practice, such “public information” can lead to aggregation above that 

expected by the IFD and has subsequently gained popularity as a remedial hypothesis 

bridging the gap between IFD and field observations (Boulinier & Danchin 1997; Danchin, 

Boulinier & Massot 1998; Frederiksen & Bregnballe 2001; Doligez, Danchin & Clobert 

2002).  Acting on public information could be a selfish endeavor if certain individuals 

benefit while population fitness (i.e. growth) declines.  For example, one can imagine 

individuals utilizing grouping as an anti-predatory strategy which dilutes individual risk 

while simultaneously increasing conspicuousness of the group, which results in increased 

per captia kill rates and reduces efficacy of positive density dependent effects (Allee 1931; 

Holling 1959).  Finally, we note that habitat selection strategies, and space use in particular, 

resulting from public information are likely to persist in the short-term if habitat selection is 

a learned behavior (Nielsen et al. 2013).  Through learning a non-ideal selection strategy 

could persist until no individual exists to “teach” the strategy.  Such may be the case for 

many imperiled species that temporarily occupy habitat no longer capable of supporting the 

species. 

Other hypothesized pathways to non-ideal habitat selection focus on a lack of information, 

ecological traps and metapopulation dynamics.  A lack of information regarding the larger 

landscape could preclude individuals from seeking the best habitats (Lima & Zollner 1996).  

In their seminal work, Lima and Zollner (1996) point out that where an animal is and where 

it wants to be are not necessarily equivalent and the difference holds very real 
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consequences for the ignorant individual.  Decoupling of habitat selection from individual 

performance is also illustrated by ecological traps (Schlaepfer, Runge & Sherman 2002; 

Battin 2004).  Several examples exist in the literature concerning the order odonata.  

Odonates use visual cues to select habitat for oviposition (Wildermuth 1998).  Dishonest 

visual cues have led researchers to find odonates depositing eggs on oil lakes (Horváth & 

Zeil 1996; Horv&#x000E1;th, Bern&#x000E1;th & Moln&#x000E1;r 1998), glass 

buildings (Kriska et al. 2008), certain colors of gravestones (Horváth et al. 2007) and cars 

(Wildermuth & Horvéth 2005).  A recent study by Raebel et al. (2010) described odonates 

depositing eggs in farm ponds irrespective of quality.  In each of the odonate examples the 

behavioral mechanism that led to habitat use was not indicative of individual performance.  

The same pattern can be observed within the context of a metapopulation where the 

presence of a sink or so-called attractive sink confuses the habitat-performance relationship 

by directing animals towards habitats that are detrimental to individual fitness (Pulliam & 

Danielson 1991; Delibes, Gaona & Ferreras 2001). 

Habitat selection inquiries often employ a resource selection probability function (RSPF) or 

a resource selection function (Johnson 1980; Manly, McDonald & Thomas 1993), but other 

techniques could also be utilized (Johnson et al. 2008; Elith & Leathwick 2009; Johnson, 

Hooten & Kuhn 2013). The RSPF quantifies habitat selection; the probability that a 

resource unit of a given type is selected when encountered (Lele et al. 2013).  The RSPF is 

not a process based model (Austin 2002).  A process based model of habitat selection 

would better align with definitions of resource selection that consider selection the outcome 

of a behavioral process.  Nevertheless, under the RSPF framework estimates of selection 

arise from measures of available and used habitat units.  The concept of a selection ratio, 

൯ݔ൫ݓ ൌ
௙ೆሺ௫ሻ

௙ಲሺ௫ሻ
 illustrates this point and is equivalent to a RSF.  The numerator of the 

selection ratio (݂௎ሺݔሻ) is the distribution of habitat use.  Habitat use can be defined as the 

collection of resources encountered and selected during the course of study (Lele et al. 

2013).  Here we use the preceding definition within the context of resource selection, but 

otherwise consider habitat use as representative of resources.  The denominator of the 

selection ratio ݂஺ሺݔሻ represents the distribution of available resources or those units that 
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could be encountered by the animal (Lele et al. 2013).  Researchers must determine 

available resource units, which has nontrivial effects on estimates of selection (Beyer et al. 

2010; Lele et al. 2013).  Considering habitat selection a hierarchical process has led many 

researchers to evaluate the RSF at multiple spatial scales.  Such analyses quantify how 

selection changes as a function of availability, but the biological interpretation is unclear if 

the observed change is a statistical consequence of altered availability (Beyer et al. 2010).   

Here, we quantify 2nd order habitat selection, which defines the home range of an 

individual within a landscape (Johnson 1980) and habitat encountered by elk (Cervus 

elaphus) and then apply these metrics of resource acquisition and risk avoidance to model 

survival (a surrogate for fitness).  Here we define habitat encountered as those resource 

units in which an individual was observed.  The first question we address is whether habitat 

selection, as characterized by the RSF posed here, correlates positively with survival.  We 

would characterize selection as non-ideal if a resource selection coefficient had a negative 

effect on survival.  The analysis first takes place at the population level allowing selection 

coefficients to vary through time, but no variation among individuals.  We then repeat the 

analysis at the individual level to examine if individual variation is a better predictor of 

survival.  According to the IFD variation among individuals should have no profound effect 

on fitness.   

The second question concerns whether habitat selection or habitat encountered better 

explains variation in survival.  To answer this question we compare the most supported 

habitat selection model to simple metrics of habitat encountered when modeling survival.  

Habitat encountered provides a robust alternative model to habitat selection.  In each of the 

above mentioned examples of non-ideal habitat selection, selection was not a reliable 

indicator of individual performance, but habitat encountered remained predictive of fitness.  

Thus, one might expect metrics of habitat encountered to better align with what individual 

animals experience in their daily activities.  Coefficient estimates from this model provide a 

metric of habitat quality, which we predict will be highest in areas with low probability of 

encountering a wolf and high levels of green vegetation.  Other environmental variables 

considered likely help to predict space use, but have little to no direct impact on individual 
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fitness.  The importance of this work rests in enhancing understanding of habitat studies for 

prescriptive application because long-term management plans are typified by habitat centric 

approaches.  If habitat studies are to suggest a course of action to conserve species then 

results of these studies should relate to individual performance. 

Methods 

To evaluate the relative abilities of our habitat selection model and metrics of habitats 

encountered to explain variation in survival we first compiled environmental data of 

interest, then combined that data with telemetry data from elk and finally fit a series of RSF 

models.  The estimated coefficients of the RSF models and summaries of habitat 

encountered were then used as data to model survival.  Model selection and averaging were 

relied upon to choose the most supported description of habitat selection.  At the survival 

modeling stage model selection arbitrated among competing models.  

 Study Area 

The study area was west central Idaho, an area of almost entirely public land with a vast 

array of users and activities.  Elevations range from 792 to 2987 meters.  Annual 

precipitation averages 65.64 cm.  Conifer forests cover much of the study area.  Tree 

species include ponderosa pine (Pinus ponderosa), Douglas fir (Pseudotsuga menziesii), 

Engelmann spruce (Picea engelmannii), lodgepole pine (Pinus contorta), grand fir (Abies 

grandis), subalpine fir (Abies lasiocarpa), western larch (Larix occidentalis) and whitebark 

pine (Pinus albicaulis).  Shrubs and grasses grow in the non-forested areas. 

Elk in the study area exhibited migratory behavior transiting between high elevation 

subalpine/alpine environments during summer and lower elevation ponderosa pine and 

douglas fir dominated forests during winter.  Local anecdotes suggest that elk migrated 

much further distances than current patterns of migration suggest.  Supplemental feeding in 

the last 40 years encouraged elk to stop short of traditional winter range.  As is true of 
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much of Western North America, the distribution of elk is most likely the result of human 

activity patterns as opposed to a naturally evolved distribution (Toweill, Thomas & Metz 

2002). 

Environmental Data 

A desire to make our results applicable to elk across Idaho compelled us to focus on 

continuous variables for which we could compile freely available data that covered the 

entire state.  Habitat variables were selected according to their availability, spatial coverage 

and past use in studies of elk habitat selection.  We considered five variables. 

The first variable of interest was road density.  We intended to include this variable as a 

measure of anthropogenic risk experienced through hunting and more generally year round 

disturbance (Edge, Marcum & Olson-Edge 1987; Cole, Pope & Anthony 1997; Hayes, 

Leptich & Zager 2002).  Interest in roads also exists because managing agencies can 

manipulate the number of roads.  Roads may also influence predation risk given previous 

work describing preferential use of linear features by wolves (Latham et al. 2011; 

McKenzie et al. 2012).  Because the relationship between road density and humans is not 

unique, we chose to interpret road density as another surrogate for risk whereby we do not 

attempt to disentangle anthropogenic and natural predator risk within the variable.  We 

quantified road density by counting the number of roads in each 250m by 250m cell of a 

grid covering the state.  Road data was created by merging road data from the Boise 

National Forest and the road transportation of Idaho data published by the Idaho Geospatial 

Office (http://inside.uidaho.edu/).  We consider this metric a conservative approach to the 

influence of roads. 

The second variable represented forage resources on the landscape.  For this variable, we 

chose the enhanced vegetative index (EVI) as measured by the Terra Satellite carrying the 

moderate-resolution imaging spectroradiometer payload (MODIS, 

http://modis.gsfc.nasa.gov/).  Data collection occurred at near daily intervals with 16-day 

mosaics routinely published for end users.  From the EVI mosaics we created a grid for 
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each month from January 2008 through December 2011.  All mosaics falling within each 

month were combined by calculating the mean of each grid cell.  Because treed areas we 

hypothesized that treed areas provided less forage than open meadows we weighted EVI 

grids by multiplying by the inverse of canopy cover.  The grids assumed the finest possible 

grain of 250m by 250m.  We note that other remotely sensed options had clear advantages, 

but large amounts of missing data due to faulty hardware precluded their use while MODIS 

facilitated analysis while restricting our inquiry of habitat selection to coarser scales.   

Fire was the third variable we considered.  With this variable we aimed to capture the 

influence of historic fires on elk space use.  Controlled burns and their postulated benefits 

remain a popular means of habitat manipulation in the American West.  We gathered recent 

fire data from the United State Forest Service Region 1 GIS clearing house 

(www.fs.usda.gov), which provided coverage from 1985 to 2012.  We merged these data 

with historic data from the same clearinghouse that dates back to 1889.  The data were then 

gridded in a manner that aligned them with other variables.  In some areas, multiple fires 

occurred within a single grid cell, when this was the case we assigned the grid cell the most 

recent value.  We report the calculation of years since fire later under the Elk Telemetry 

data heading. 

Our fourth variable aspect, was meant to represent the thermal and vegetative differences 

that occur on North versus South facing slopes in mountainous terrain.  Unlike some of the 

other variables aspect did not change through time and so represented a static measure of 

selection and use.  The data came from the LANDFIRE project’s digital elevation model 

(http://www.landfire.gov/).  In raw form, the data represent azimuth of sloped surfaces, but 

because our intent was to represent north and south facing slopes we applied a cosine 

transformation to the data.  This simple transformation resulted in values for north being 

close to 1 and more south facing slopes assuming values near -1.  Finally, the aspect grid 

was resampled to achieve the same grain as other variables. 
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The fifth and final variable in our model was an index of wolf space use.  Concurrent with 

data collection on elk, Idaho Department of Fish and Game (IDFG) closely monitored wolf 

packs in the area.  IDFG had a proposed goal of maintaining at least 1 GPS/ARGOS collar 

in each wolf pack for the duration of the study.  This goal was largely met with most packs 

retaining at least 1 collar for the period considered here.  We sought to characterize wolf 

space use, our surrogate for predation risk, with utilization distributions (UD(Winkle 1975; 

Worton 1989).  Despite IDFG’s monitoring success, data were not abundant enough to 

calculate unique monthly UD’s for the entire period.  To solve this problem we elected to 

calculate monthly UD’s with data aggregated over years.  For example, a January wolf UD 

was calculated using data from all 4 Januarys in the study.  Calculations were performed 

using the R package adehabitatHR (R Development Core Team 2013).  Given that we 

binned data into months, but not years, we chose to fit standardized UD’s at the individual 

level, which had the advantage of alleviating concerns over wrongly assigning individuals 

to packs.  To estimate the UD we implemented the Epanechnikov kernel using a fixed 

bandwith of 3 km following (Fortin et al. 2005).  Each individual UD was standardized 

such that the area under the curve summed to 1, which helped account for sample size 

differences among individuals.  To combine individual UD’s into a population level 

measure we created monthly grids such that a given cell took the maximum value observed 

in that cell and month.  It is worth noting that the UD’s were fit using a grid that matched 

the extent of the study area and grain of other environmental variables.   

Elk Telemetry Data  

In the winter of 2008 IDFG began collaring elk with intent of maintaining a sample of 50 

cow elk, 50 bull elk and 50 calf (~ 6 months old at time of capture) elk.  The majority of 

capture was accomplished by means of helicopter darting, but corral traps were used to 

supplement samples when needed.  Collar manufacturer varied, but those present included 

Lotek (Newmarket, Ontario, CA), Telemetry Solutions (Concord, California, USA), 

Telonics (Mesa, Arizona, USA) and Vectronic Aerospace (Berlin, Germany).  All telemetry 

collars were equipped with GPS tracking units, VHF beacons and mortality switches.  

Collar deployment length varied as a function of GPS fix interval.  Lotek and Telonics 
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collars took fixes every 4 hours with an anticipated deployment of two years.  Vectronic 

collars allowed more flexible programming due to two-way communication via satellite 

modem.  Because of this feature, Vectronic collars took fixes at irregular intervals ranging 

from every 30 minutes to one fix per day with fixes staggered such that battery life enabled 

a one-year deployment.  Programming of Telemetry Solutions collars initially took a 

different approach where fix intervals were sampled from a negative binomial distribution 

with the intent of achieving more random sampling through time.  The initial 11 collars all 

failed and so no data from these collars was incorporated in this study.  A second set of 11 

collars from telemetry solutions collars was deployed programmed to attempt regular fix 

intervals of 3 hours or a more randomized schedule that altered between fine (30 minute) 

and coarse (5 hours) fix intervals. 

IDFG personnel monitored collars by fixed wing aircraft every other week and upon 

hearing a VHF beacon noted the state (i.e. alive or dead) of the mortality switch.  Upon 

detecting a mortality signal, aircraft crew established the animal’s location.  Whenever 

possible, ground crews would investigate mortalities within 48 hours to determine cause of 

death.  Monitoring flight data was subsequently combined with recovered GPS collars to 

build encounter histories for each animal at monthly intervals.  Encounter histories 

represent the state of the animal at each time step where a 1 denotes the animal as alive and 

a 0 dead, application of these data is described under the heading Survival Models. 

Our sampling scheme produced an initial collection of 442,196 GPS points from 133 

individual elk.  The number of successful fixes suggested an estimated fix rate of 

approximately 93%, which is less than a 10% data loss and the point at which coefficients 

are likely biased by data loss (Frair et al. 2004).  However, we further filtered fixes by 

eliminating all fixes with a dilution of precision > 5, which removed 81,878 fixes (Lewis et 

al. 2007).   

Finally, we related GPS fixes to environmental variables by sampling grids at the time and 

location of the fix using packages raster, rgdal and sp in program R.  For static variables 
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like roads and aspect, time was not a consideration and the value of the grid cell within 

which the point fell was related to the fix.  For temporally varying variables the month 

within which a fix was taken was related to the state of environmental variable in the same 

month.  Years since fire was calculated by subtracting the year of the fire from the year of 

the GPS fix.  Time varying environmental variables included EVI, fire and wolves, while 

aspect and roads remained constant in time. 

Resource Selection Models 

We chose to estimate resource selection functions using the classic exponential link 

(McDonald 2013).  It is this form of resource selection that appears to receive the most use 

in the literature and because of its simplicity and ease of implementation we assume it most 

likely to be used for conservation.  We fit all RSF models using the readily available R 

package lme4 (R Development Core Team 2013). 

Resource selection functions require a set of available points.  Given availability of habitat 

data and a desire to examine the consequences of differential space use, our chosen scale of 

inference was equivalent to Jonhnson’s 2nd order (Johnson 1980).  We randomly selected 

points from the landscape to achieve a ratio of 4 random points for every used point in each 

period.  The landscape, or study area, was defined by first calculating a 100% minimum 

convex polygon (MCP) using all elk points and then extracting the smallest square that the 

MCP fit inside.  The last step was to buffer the MCP bounding box by 2 times the 99th 

quantile of the distance moved by elk in 4 hours.  This arbitrary definition of the landscape 

accomplished two things 1) it expanded the area of consideration to encompass unused 

areas and 2) the reliance on the MCP made the procedure repeatable.  We prevented 

random points from falling within bodies of water.  Random points were assigned the time 

of the associated used point so that the same landscape, in time, would be sampled.  

Assigning a time to each available point was important because measures of the landscape 

changed through time.  Environmental variable sampling followed the same procedure as 

that described under the Elk Telemetry Data 
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Model building began by fitting a univariate RSF for each month of the study and each of 

the five environmental variables with a random slope indexed by individual.  Estimates of 

random slopes were then averaged over each individual to obtain the individual’s 

propensity for selecting an environmental variable more or less than the population.  After 

fitting univariate models, we proceeded to fit a suite of monthly multivariate models with 

random intercepts for each individual.  However, prior to fitting multivariate models, we 

calculated Pearson’s product-moment correlation coefficient to screen for multicollinearity 

and standardized covariate data.  Standardization followed the recommendation of Gelman 

and Hill (2006) whereby we subtracted the mean value and divided by 2 times the standard 

deviation of covariate data.  We fit the multivariate models and employed model averaging 

by AIC weight to obtain population level time varying monthly selection coefficients for 

each environmental variable.  Model averaging ensured consistent model dimensions 

through time.  The ability of model averaged estimates to predict space use was evaluated 

using K-fold cross validation with 5 folds (Boyce et al. 2002).  Spearman rank correlations 

were calculated within each month and through time. 

We used a random effects parameterization of the resource selection function.  In our study 

random effects had several advantages including accounting for discrepancies in sample 

size among individuals, repeated measures within individuals, differences in individual 

selection patterns and autocorrelation among GPS fixes (Gillies et al. 2006).  Furthermore, 

population level estimates allowed exploration of the temporal changes at large scales of 

organization.  Inference from multivariate models concentrated on the temporal change in 

population selection because a separate RSF was fit for each month of the study.  Whereas 

the random individual-specific slopes estimated in the univariate models provided a 

measure of individual variation from the population mean.  Thus, we evaluated the 

relationship between resource selection and survival at the population level using variation 

in time and at the individual level using each individual’s deviation from the population 

mean estimate. 
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Habitat Encountered  

To compare habitat selection to habitat encountered we needed to summarize the attributes 

of the resource units in which each animal was sampled by the GPS collar.  This calculation 

followed the foci of the RSF analyses.  To prepare the data we first calculated the mean 

value of habitat encountered by each individual in each period, which resulted in a monthly 

rate of acquisition for each individual.  We then summarized these values at the population 

scale by taking the time indexed mean of habitat encountered across individuals.  We 

captured individual differences by computing a unique mean for each individual.  The data 

mirrored the RSF analyses in that we had a time-varying population level metric of habitat 

encountered and an individual level propensity to encounter a particular environmental 

variable.   

Survival Modeling 

Survival was modeled by borrowing from Mark Recapture protocols (Lebreton et al. 1992) 

and assumed all fates known.  It was necessary to assume known fate because the data 

available for this study consisted of collar deployment summaries.  Nevertheless, we 

described survival as a binary random variable influenced by covariates that entered the 

model through a linear predictor with an inverse logit link to bound predictions between 0 

and 1.  Survival was further assumed to follow a Markovian structure whereby   

௜,௧൯ݑ൫݉ݐ݅݃݋݈ ൌ ଴,௔௚௘ܤ	 ൅ ௜,௝ܤ ௝ܺ ൅  ௜ߛ

௜,௧ݑሺ݉݊ݎ݁ܤ~௜,௧ݕ ∗  .௜,௧ିଵሻݕ

Thus, the state of animal i at time t (ݕ௜,௧) is conditional on its state at t-1 and a function of 

the current value of the linear predictor (݉ݑ௜,௧).  As shown above, the linear predictor was 

comprised of an age specific intercept (ܤ଴,௔௚௘), coefficients (ܤ௜,௝) and an individual specific 

random effect (ߛ௜).  This formulation of the model allowed us to accommodate animals 
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entering the study at different times and leaving the study before death.  Further, all models 

incorporated separate intercepts for 5 age-at-capture categories and an indicator variable for 

animal sex.  The 5 age-at-capture categories represented animals approximately 6 months 

of age, 18 months of age, 2-9 years of age, 10-14 years of age and a last category for 

animals greater than 15 years of age.  All ages reference age-at-capture. 

We used a Bayesian framework to fit survival models.  Adopting a Bayesian perspective 

eased incorporation of uncertainty in population level RSF coefficient estimates and 

implementation of individual random effects.  Because some of the covariate data were 

actually RSF model estimates, we included an observation model to admit uncertainty by 

assuming estimates normally distributed with a mean equal to the mean of the estimate and 

variance equal to the variance of the coefficient estimate.  The value of the covariate was 

then drawn from this distribution at each iteration of the MCMC simulation to approximate 

the uncertainty of the RSF coefficient.  Covariate data were centered and scaled using the 

same procedure as RSF modeling (Gelman & Hill 2006).  Before fitting models, we 

examined covariate data for multicollinearity by calculating Pearson’s product-moment 

correlation coefficient for all combinations of data.  For comparison, we also fit the models 

without incorporating covariate error. 

Bayesian survival models required prior distributions.  We chose distributions with 

compact support, Unif(-10, 10), for the effect of covariates (ܤ௜,௝ሻ and a Unif(0, 1) prior for 

the intercept of the linear predictor (ܤ଴,௔௚௘ሻ, which was back transformed using log(x/(1 – 

x)).  Individual random effects were hierarchically centered and drawn from a normal 

distribution with standard deviation ߪ, which had a prior specification of Unif(0, 50). 

,ሺ0݉ݎ݋ܰ	~௜ߛ  ሻߪ

Where ߛ௜is the deviation of individual i from the population mean. 
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Survival Model Variable Selection 

We used a Bayesian variable selection procedure following the framework of (Kuo & 

Mallick 1998).  For each variable in the linear predictor we introduced an indicator variable 

w having a Bern(0.5) prior distribution and multiplied each variable by w such that the 

usual linear predictor 

௜,௧൯ݑ൫݉ݐ݅݃݋݈ ൌ 	଴ܤ	 ൅ ௝ܤ ∗  ,௜,௧ݔ

became, 

௜,௧൯ݑ൫݉ݐ݅݃݋݈ ൌ 	଴ܤ	 ൅ ௝ݓ ∗ ௝ܤ ∗  .௜,௧ݔ

Using an indicator variable allowed us to calculate a posterior probability of inclusion for 

each environmental variable.  The probabilities were computed by dividing the number of 

times the variable appeared in the model by the number of iterations in the MCMC 

simulation.  Following the same procedure, it was also possible to calculate posterior model 

probabilities for a collection of variables.  We used the variable selection procedure to 

determine the model with the highest posterior probability. 

Survival Model Selection 

Following variable selection we fit the most supported habitat use and habitat selection 

models and compared them using deviance information criterion (DIC, (Spiegelhalter et al. 

2002)).  DIC is a Bayesian analog of the more familiar Akaike Information Criterion.  The 

criterion attempts to balance model complexity with model fit by combining a measure of 

model complexity pD with model fit described by the deviance (ܦሺ̅ߠሻሻ.  The equation for 

DIC used was  

ܥܫܦ ൌ ሻߠሺ̅ܦ ൅  ܦ݌2	
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where 

ܦ݌ ൌ ଵ

ଶ
 .ሻሻߠሺ̅ܦሺݎܽݒ

MCMC 

Bayesian survival models were updated for 130,000 iterations with the first 30,000 

discarded.  Three chains were thinned such that every fifth iteration was retained resulting 

in 20,000 samples of the posterior distribution.  MCMC sampling was accomplished by 

calling JAGS from R through the package R2jags (Plummer 2003). 

Results 

Resource Selection Models 

We fit multivariate and univariate RSF’s for each month of the study period.  More than 20 

collared animals contributed data in the average month, but sample sizes diminished rapidly 

in the final few months of the study (Fig. 1).  The age distribution of collared animals 

fluctuated throughout the study with animals 10-14 years of age comprising a majority of 

the sample initially and animals > 15 years of age dominating the sample in the last year 

(Fig. 1).   

Model averaged results suggest that at large scales elk in our study area select most 

strongly for areas of high wolf concentrations in the winter months, December through 

April (Fig. 2).  The magnitude of selection estimates for our wolf index suggested that other 

variables had less influence during these months.  During the remaining months of the year, 

a more equitable influence of multiple environmental variables determined elk habitat 

selection, as evidenced by reduced variation in the magnitude of effect sizes (Fig. 2).  
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Direct comparison of the magnitude of effect among variables is possible because we 

standardized data prior to fitting models. 

Temporal variation in habitat selection followed regular, if not cyclical, patterns through 

time (Fig. 2).  Elk selection for EVI, fire and wolves remained largely positive in all 

months of the year, while selection for aspect and roads vacillated between positive and 

negative correlations (Fig. 2).  Elk selection for EVI peaked in April each year of the study.  

Coefficient estimates for the effect of aspect suggested selection for southern aspects during 

cool winter months, but relatively equal use of north and south aspects during the warm 

summer months.   

Cross-validation of the multivariate model exhibited high predictive power across months 

(Spearman rank = 1.0).  Within any given month correlations proved highly variable (range 

= 0.4-1.0) and correctly ranked fixes moderately well with approximately 64% of models 

achieving a correlation of 0.8 or greater. 

Survival Models 

Survival models converged within 10,000 iterations, exhibited adequate chain mixing and 

smooth unimodal posteriors.  Convergence diagnostics obtained values below 1.1 for all 

parameters.  Common to all survival models were strong effects of animal sex and age 

(Appendix 3-2).  Estimates of the effect of sex were large and consistently positive, 

meaning that female elk survive at higher rates than males (Appendix 3-2).  Age effects 

also followed very regular patterns.  The youngest age class consistently exhibited the 

lowest survival (Appendix 3-2).  Moving up the age classes survival increased from the 

first to the third age class before beginning a monotonic decline from the third to the fifth 

(Appendix 3-2). 
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Habitat Selection – Survival Model 

When considered with and without estimation uncertainty, habitat selection coefficients 

proved insignificant in describing variation in survival.  Support for this conclusion comes 

from the posterior model probabilities displayed in Table 1.  Neither the population level 

time varying nor the individual propensity selection coefficients warranted inclusion in any 

of the models.  Relative to the amount of variation described by sex and age-at-capture RSF 

coefficients were an unsupported complication.  Analyses stopped at the variable selection 

stage because of a lack of support for selection coefficients.      

Habitat Encountered – Survival Model 

At the individual level, the model selection technique employed showed support for a 

model describing increased survival as a function of an individual’s propensity to overlap 

spatially with wolves (μ = -2.75, SE = 0.37) and high values of EVI (μ = 0.95, SE = 0.38).  

Although, a second model that only included wolf avoidance received relatively similar 

support (Table 1). 

At the population level, the most supported model again included wolf avoidance (μ = -

2.30, SE = 0.63), but at this level of organization using recently burned areas (μ = 2.02, SE 

= 0.61) was more influential than EVI.  Relative to the individual propensity model (DIC = 

536.8, pD = 53.7), the time varying population level survival model had a much higher DIC 

value (DIC = 639.0, pD = 163.5, ΔDIC = 102.2).  

Discussion 

We quantified resource selection and found a lack of relationship between resource 

selection coefficients and survival.  The result held at both the population level and when 

allowing for individual variation.  We also considered an alternative model that related 

survival to habitat encountered.  The habitat encountered model proved useful in describing 
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the effects of wolves, EVI and fire year on elk survival.  While the RSF models quantify 

relative probability of use, the habitat encountered model attempted to quantify the 

frequency and duration of habitat use.  The two approaches quantify habitat in 

fundamentally different ways.   

At the individual level, those animals showing high spatial overlap with wolves 

experienced lowered survival, but the negative effect of wolves was balanced in part by 

heightened survival with exposure to high values of EVI.  Considering the population level, 

we found a similar negative effect of wolves and a contrasting positive effect of recently 

burned areas.  In this way both the individual and population levels models point to a trade-

off between areas of high predation risk and those areas with high potential for forage 

production, which may be the same spatial location.  However, the magnitude of the 

estimates indicates that predation risk is a more influential factor than forage production. 

We used DIC to compare individual and population models.  We found the most support 

for models including individual level variation.  Time-varying population level models 

lagged in their ability to explain variation in survival as a function of habitat encountered.  

As noted at the outset, individual’s occupying heterogenoues landscapes have the 

opportunity to adjust their exposure to resources and risk by moving (Hooten et al. 2010).  

Inclusion of the wolf and EVI covariates in the most supported model suggests that how an 

individual chooses to adjust this exposure holds consequences for fitness (DeCesare et al. 

2013).  In addition, the overwhelming support for an individual based model implies that an 

animal’s utilization of certain habitats is more predictive of survival than temporal 

fluctuations in resource availability or predation risk.  Simply put, some habitats are 

consistently of higher quality than others and regardless of temporal fluctuations those 

inidividuals occupying high quality habitat will realize higher survival rates.  This point 

reiterates the senitiment of Gaillard et al. (2010) who suggested that fitness derives from 

frequency and duration of resource use.  Our results suggest that where an animal is on the 

landscape is likely more influential in determining its fitness than where it wants to be. 
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Several authors have identified pathways to non-ideal habitat selection and decoupling of 

habitat preference from realized fitness.  Briefly, selection may decouple from fitness 

because of public information or social cues (Boulinier & Danchin 1997), a lack of 

information of the greater landscape (Lima & Zollner 1996), ecological traps (Schlaepfer, 

Runge & Sherman 2002) and attractive sink habitats (Pulliam & Danielson 1991).  Elk are 

a social species that are likely subject to the effects of social cues, which may also foster a 

general lack of information of the larger landscape.  We would also expect elk to be 

relatively ignorant of the larger landscape if sociality reduces exploration of the landscape 

by individuals.  This behavior may also be similar in function to what (Nielsen et al. 2013) 

described as learning.  At this time at least two other studies show a similar lack of 

correspondance between resource selection and fitness (Arlt & Pärt 2007; DeCesare et al. 

2013), but (McLoughlin et al. 2006) found a positive relationship.  Certainly more tests of 

the assumption that habitat selection is indicative of fitness seeking behavior are needed. 

One reason to include a sample of available habitats in an analysis of habitat selection is to 

obtain a measure of the species’ or individual’s preference for a given habitat (Johnson 

1980).  The problem with including a measure of availability is the definition of this term 

because analysis results can be sensitive to the choice of available habitat (Johnson et al. 

2008; Beyer et al. 2010).  On the other hand, simple measures of use do not allow 

researchers to determine preference and as such respresent a loss of information, but they 

also relieve investigators from the arbitrary assignment of availability.  When preference is 

the desired outcome of investigation a used-available design is preferred.  However, when 

the response of interest is fitness, or some surrogate of, there is no obvious choice of study 

design.       

Results of the RSF analysis suggest that elk use areas of high wolf occurrence 

disproportionate to their availability.  This result is perhaps surprising, but an alternative 

explanation is that the RSF is unable to tease apart the wolf following the elk from the elk 

following the wolf.  In light of this idea, perhaps our results suggest that at large scales 

wolves do a better job of following elk than elk do of avoiding wolves.  As mentioned in 

the introduction, Austin (2002) called the RSF a pattern based model.  This statement 
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highlights that our result, that elk select for wolves, is free from perspective and process.  

The results of the RSF models simply relate the locations of elk to wolves in a 

phenomenological manner.  As we highlighted with the odonate examples (Horváth & Zeil 

1996; Wildermuth & Horvéth 2005; Kriska et al. 2008), a key advantage of the habitat 

encountered model is fidelity to fitness.  The RSF suggests that elk encounter and select for 

areas with high concentrations of wolves while the habitat encountered model suggests that 

where the two species overlap elk accrue risk more rapidly.  We say accrue risk because the 

mean, as calculated here, of habitat encountered by an individual is equivalent to a rate of 

acquisition and the metric proved useful in predicting decreased survival. 

The approach used here to relate habitat selection and use to a fitness component differs 

from that of previous work.  The work of (McLoughlin et al. 2006) quantified resource 

selection in a univariate fashion using selection ratios and lifetime reproductive success.  

Later, DeCeseare et al. (2013) developed a multivariate approach that used a predictive 

map generated by a hierarchical RSF to quantify the instantaneous and cumulative 

acquisition of RSF values by individuals.  The latter approach incorporated uncertainty by 

considering the mean and boundaries of coefficient confidence intervals.  Key features of 

our approach include the ability to incorporate uncertainty in selection coefficient estimates 

and a model selection technique that allows the independent evaluation of each covariate 

and the model as a whole without the need to separately consider each possible 

combination of covariates.  Further, we incorporated individual variation by using the 

residuals of marginal random effect estimates, but inclusion of error from these estimates 

remains a topic for future research. 

We chose to evaluate habitat at a single scale.  Relating habitat selection to survival 

involves quantifying differences among individuals.  We chose a large scale of availability 

to quantify the differences in monthly space use because it allowed us to hold availability 

constant among individuals while use changed on an individual basis.  Taking this 

approach ignores issues of accessibility, but has the advantage of simplifying the RSF 

(Beyer et al. 2010).  The interpretation of habitat selection coefficients collected at this 

scale relates an individual’s home range to resources available on the landscape.  
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Consequently, we interpret the coefficients of the survival modeling exercise to be related 

to the differences in quality among individual home ranges.  Future efforts might 

standardize differences in availability at finer scales by leveraging the concept of functional 

resource selection (Mysterud & Ims 1998). 

Prescriptive application of habitat studies to matters of conservation requires validation of 

key model assumptions and ideally an understanding of how they relate to population 

dynamics.  A desire to formulate long-term management plans challenges researchers to 

solidify these connections and facilitate meaningful and efficient preemptive action.  The 

methods presented here represent another effort to make this connection between habitat 

and populations. 
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Table 3‐1 Top five elk survival models for each combination of data considered.  The top sets of five models related 
resource selection coefficients to survival while the bottom sets of five considered habitat encountered.  Similarly, the 
left  side of  the  table  represents models  focusing on  individual  variation and  the  right  side  considers  time  varying 
population  level effects.   Each  row of  the  table depicts a unique model.   Models are defined by 1/0  indicating  the 
presence/absence of a variable.  For example, a model coded as 00110 would include the effects of fire year and road 
density.  The furthest right column contains posterior model probabilities.  Note that the intercept always considered 
5 age classes and animal sex was always included as an indicator variable. 

  

Aspect EVI
Fire 

Year

Road 

Density
Wolf

Posterior 

Model 

Probability

Aspect EVI
Fire 

Year

Road 

Density
Wolf

Posterior 

Model 

Probability

0 0 0 0 0 0.60 0 0 0 0 0 0.58

0 0 0 1 0 0.18 0 0 0 1 0 0.20

0 0 0 0 1 0.04 0 1 0 0 0 0.04

0 1 0 0 0 0.04 0 0 0 0 1 0.04

1 0 0 0 0 0.04 0 0 1 0 0 0.03

0 1 0 0 1 0.42 0 0 1 0 1 0.53

0 0 0 0 1 0.37 0 0 0 0 0 0.15

1 1 0 0 1 0.05 1 0 1 0 1 0.05

0 1 0 1 1 0.04 0 1 1 0 1 0.05

0 0 0 1 1 0.03 0 1 0 0 0 0.04

RSF

Use

Population Time VaryingIndividual Propensity
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Figure 3‐1 A plot of  the  changing  sample  size  through  time and  the proportion of  the  sample  comprised of 5 age 
classes used to model survival.  The top panel displays the number of collared male elk with a dashed red line, while 
the number of collared female elk is represented with a dotted blue line.  Atop both of these lines is the total sample 
size or the total number of collared elk in each month.  Resource selection models were fit with data from both sexes 
(dashed and dotted gray line).  The bottom panel shows which age classes comprise the sample.  The five age classes 
were delineated such that animals ≤ 1 year of age were placed in age class 1, animals > 1 and ≤ 2 years of age in age 
class 2 and  so on until age  class  five, which  represents animals older  than 4 years of age.   To  create  the plot we 
started the animal at the estimated age at capture and subsequently aged the animal each year. 
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Figure 3‐2 Plots of monthly habitat selection by elk in Idaho, USA.  Colored dots show mean estimates while vertical 
bars depict 95% confidence  intervals.   Dots are coded  such  that  the color  signifies  the year of  the estimate where 
black, red, green and blue represent 2008, 2009, 2010 and 2011 respectively.  A dashed line is included in each plot to 
mark 0, the point at which environmental variables are used equal to their availability. 
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Appendix 3-1 

 

Appendix  3‐1  Age  and  sex  specific  elk  survival  estimates.    Ages  reference  age‐at‐capture.    An  indicator  variable 
represented whether an animal was a female or not.  Models used a means parameterization for age and an effects 
parameterization for the effect of sex.  Models that produced the estimates shown here did not include any habitat 
covariates. 
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GENERAL CONCLUSION 

Aldo Leopold (1933) defined wildlife management as “…the art of making land produce 

sustained annual crops of wild game for recreational use.”  The contemporary wildlife 

manager works to provide sustainable yields of game in an increasingly litigious society.  

Further, they must defend their decisions to a well-informed public with strong opinions.  

The chapters detailed herein arm managers with tools that promise more and higher quality 

information than is available from summaries of raw data.  They also bring methodological 

rigor to the decision making process.  In sum, better information and employment of 

rigorous methodology suggest not only defensible decisions, but also a more informed and 

potentially effective decision-making process.  These applied niceties come while explicitly 

accounting for species life history.  Such overt accounting of the biology underlying 

population growth promises to lead to a deeper understanding of system dynamics and 

more accurate predictions.  Diminishing knowledge gaps signal progress in achieving 

comprehensive system knowledge.  Meanwhile the ability to address both short- and long-

term strategies takes us one-step closer to proactive management. 

Perceptions of Too Little Data 

Chapter 1 used simulation to quantify the effects of missing data and model 

misspecification when fitting population models.  The primary conclusion of this chapter 

was that under typical circumstances wildlife managers could faithfully employ integrated 

population models (IPM) and inverse methods of model fitting.  This conclusion should 

encourage managers to adopt similarly consistent and rigorous methods for estimating 

population parameters.  Perceptions of insufficient data likely stifle the application of 

IPMs.  However, our simulations clearly delivered the optimistic message that missing data 

and model misspecification carry minimal consequences (over the range of values 

considered).  The methods also bring the benefit of a consistent model framework that, in 

this case, can be applied to the entire state.  A consistent modeling framework is important 

for comparative studies and standardization of formal decision making protocols. 
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In this chapter, we promoted a model fitting approach.  A primary advantage of model 

fitting is the ability to isolate observation error from process error.  Error parsing facilitates 

predictions that do not include observation error while retaining process error (Calder et al. 

2003; Clark & Bjørnstad 2004).  Then too, model fitting avoids the pitfalls and advocacy 

associated with trial and error parameter optimization (White & Lubow 2002).  IPMs and 

inverse methods also provide a non-invasive means of estimating demographic rates for 

long-lived species with slow to moderate reproductive rates.  These ideas were put to work 

when fitting models to 51 elk management units in Idaho, USA.  The estimates were the 

first of their kind for a majority of the units.  In addition to being novel, the estimates also 

increased the quantity of information available in each unit. 

Where model misspecification is likely large, fidelity of geometric mean growth rate 

suggested that at a minimum the method could be used to identify areas or species of 

concern.  A mean growth rate contains similar information as trend estimation.  Trend 

monitoring relegates management to a reactionary posture.  Therefore, this result 

demonstrates need for methods that incorporate prior information or that share information 

in time and space. 

Sharing Information 

The second chapter demonstrated the power of placing random effects on demographic 

parameters, which served as a means of sharing information in time and space.  We also 

compared a suite of models that allowed recruitment and adult survival to vary in time or 

space.  Deviance information criterion (DIC) arbitrated among models.  The most 

supported model of elk population dynamics was a model that held recruitment constant 

and let adult survival vary in space.  We also demonstrated increased precision with an IPM 

approach by comparing inverse methods of model fitting within a single data deficient unit. 

The novelty of the random effects parameterization lies in the reliance on shrinkage to 

inform weakly identifiable parameters.  Elk monitoring data available for this study 
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consisted of aerial surveys collected at low temporal frequency.  Furthermore, 

supplementary data existed for only a small subset of management units.  The random 

effects parameterization provided a means of sharing supplementary data through a hyper-

parameter characterizing the population’s mean level of each demographic rate. 

The model also estimated demographic rates within individual units, which is the level of 

organization of interest for management purposes.  However, a recent shift in focus has 

managers considering aggregations of management units.  This shift in focus poses no 

additional difficulties for the models presented here.  Calculation of derived parameters will 

allow managers to scale parameter estimates and consider aggregations of units with 

associated uncertainty.  A related issue is the potential for currently low priority units to 

become high priority in the future.  The random effects IPM considered here retains the 

ability to switch emphasis without sacrificing the ability to estimate parameters. 

Integrated Population Models – Future Directions 

Several unresolved issues remain for IPMs.  First, the performance of model selection 

techniques remains unevaluated.  The primary issues that suggest evaluation include 

missing data and the combination of several likelihoods.  Future efforts using an iterative 

weighting process may prove more useful than model selection given that the application of 

IPMs typically focuses on prediction.  Second, we did not consider density dependence or 

the incorporation of covariates to explain spatial or temporal variation in demographic 

rates.  Third, we made the assumption of population closure.  Open population variants of 

the models presented here exist, but they typically require special data that would be 

logistically onerous to collect.  To this end, it would be simpler and cheaper to evaluate the 

scale at which biological processes occur.  Again, the quantification of covariation in 

demographic rates seems a fruitful approach.  Fourth, implementation of IPMs requires 

technical expertise.  Biologist lacking the skills to implement such models could still 

benefit from their existence.  Development of a simple user interface would increase 

accessibility of the models and promote their adoption by agency personnel.  Fifth, the 
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incorporation of harvest data presents something of a crossroads.  Evaluations of the 

additivity of harvest mortality typically focus on mortality or its compliment survival.  

However, in the context of population modeling it would seem more useful to characterize 

mortality as additive on abundance.  When harvest mortality is additive on abundance, say 

by subtracting number harvested from abundance, survival need not change rendering it 

compensatory.  Unfortunately, ecological theory has little to offer this quandary. 

Linking Habitat to Population Growth 

The third chapter focused on relating habitat selection and habitat encountered to survival 

(a surrogate of fitness).  Habitat selection was quantified at the population and individual 

levels.  We found no correlation between habitat selection coefficients and elk survival.  A 

competing hypothesis suggested that the frequency and duration of habitat encountered 

better relates to the benefits conferred to individuals.  This competing hypothesis was 

evaluated at the population and individual scales.  Metrics of habitat encountered proved 

useful in describing variations in survival.  Specifically, a model considering an 

individual’s propensity to encounter wolves and green vegetation in open areas received the 

most support.  These results suggest that where an animal wants to be is less predictive of 

individual performance than where it has been. 

The prescriptive application of habitat studies is a long-term management tool that has the 

potential to increase recruitment rates and survival of all demographics.  However, the 

assumption that habitat selection relates to fitness is rarely tested.  We tested this 

assumption and found no evidence that habitat selection (as characterized here by resource 

selection functions) related to fitness.  The Ideal Free Distribution suggests that density 

dependence will create relatively equal fitness across a landscape.  Our results suggest the 

opposite is true.  We found the most support for a model that described survival as a 

function of individual variation. 
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Quantifying the relationship among habitat and fitness components remains an open field.  

Few studies have pursued this course of inquiry in the field.  Because of this many 

questions remain.  For example, the work of (DeCesare et al. 2013) used the outcome of the 

selection process to quantify an individual’s selection.  Here, we used individual selection 

coefficients because we did not assume that all coefficients influenced survival.  The 

difference is subtle, but likely important to overall model performance.  Simplifying the 

models and providing useful guidance for validation of habitat studies should remain a 

priority. 

Put It All Together 

Estimating population parameters from limited noisy data is a challenge.  Here we have 

described a validation of methods and application of a novel model.  Then we related 

habitat to fitness.  Together these components suggest the application of IPMs as a 

consistent framework for management at large and small spatial scales.  The models allow 

managers to make predictions, test hypotheses, and iteratively manage populations.  

Further, the application of a single scalable modeling framework provides consistency.  In 

short, the models efficiently extract maximum information from limited data and make 

possible data informed decision-making. 
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