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Résumé 

 Les traumatismes craniocérébraux constituent une cause importante de mortalité et de morbidité à 

travers le monde, et représentent un fardeau socioéconomique important dans les pays développés en raison 

de l’incapacité résiduelle post-traumatique dont souffrent les patients après leur traumatisme. Malgré la 

fréquence élevée d’issues cliniques défavorables à long terme, il existe actuellement peu d'indicateurs 

pronostiques permettant de guider le clinicien dans la prise en charge aiguë de ces patients et de conseiller 

leurs familles et proches. Plus de quatre décennies d'études observationnelles ont examiné l’utilisation de 

l'imagerie par résonance magnétique effectuée en phase aiguë dans son rôle potentiel à distinguer rapidement 

l’issue clinique post-traumatisme à long terme chez ces patients. Le présent travail vise donc à déterminer la 

valeur pronostique de l’imagerie par résonance magnétique effectuée en phase aiguë de traitement suite à un 

traumatisme craniocérébral modéré ou grave chez l’adulte, en utilisant une méthodologie de revue systématique 

et méta-analyse pronostique, afin d’identifier toutes les études évaluant la relation entre les modèles de lésions 

identifiés par résonance magnétique et l’issue clinique à long terme. 

 Nos travaux ont identifié 58 études individuelles. Après méta-analyse, les lésions localisées dans le 

tronc cérébral se sont révélées être associées à une mortalité augmentée (toutes causes confondues) et une 

issue neurologique défavorable alors que les lésions compatibles avec une lésion axonale diffuse ont été 

associées à une augmentation du risque d’issue neurologique défavorable. Deux échelles de classement 

basées sur la gravité de la lésion ont été associées à des issues neurologiques de plus en plus défavorables au 

fur et à mesure de l’augmentation du nombre de structures cérébrales caudales touchées, confirmant ainsi 

l’importance des lésions profondes. Ces résultats démontrent l'utilité pronostique de l'imagerie par résonance 

magnétique effectuée rapidement après un traumatisme craniocérébral et indiquent la nécessité d’entreprendre 

des études pronostiques de cohorte de haute qualité et bien contrôlées, en raison du risque élevé de biais dans 

la littérature actuelle.  
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Abstract 

 Traumatic brain injury is a major cause of mortality and morbidity worldwide and represents a significant 

socioeconomic burden in developed nations due to residual post-trauma disability among survivors. Despite 

high rates of long-term unfavourable outcome, few prognostic indicators currently exist to guide early clinical 

management and counsel family and friends of patients. Over four decades of observational studies have 

examined the potential role of early magnetic resonance imaging of the brain to distinguish long-term clinical 

outcome by examining lesion patterns identifiable soon after trauma. This present work thus aims to determine 

the prognostic value of early magnetic resonance imaging following moderate or severe traumatic brain injury in 

adults by employing prognostic systematic review and meta-analysis methodology to identify all published 

studies assessing the relationship between magnetic resonance lesion patterns and long-term clinical outcome. 

 Our search identified 58 individual studies; following meta-analysis, lesions located in the brainstem 

were associated with all-cause mortality and unfavourable neurological outcome while shear injury patterns 

compatible with diffuse axonal injury anywhere in the brain were associated with increased risk of unfavourable 

neurological outcome. Two scoring systems based on lesion depth were associated with progressively worse 

neurological outcomes as more caudal cerebral structures were affected, confirming the importance of deep 

lesions. These findings demonstrate the prognostic utility of magnetic resonance imaging early following 

traumatic brain injury and indicate the need for high quality, well-controlled, prognostic cohort studies given the 

elevated risk of bias in the current body of literature.  
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Preface 

 

 This master’s thesis comprises the design and completion of a prognostic factor systematic review and 

meta-analysis undertaken under the supervision of Alexis Turgeon (Canada Research Chair in Critical Care 

Neurology and Trauma).  

 Resulting from this study, two separate research manuscripts form the body of the thesis, both of which 

have been published as articles in peer-reviewed medical journals. The first article, entitled “The Prognostic 

Value of Magnetic Resonance Imaging in Moderate and Severe Traumatic Brain Injury: A Systematic Review 

and Meta-Analysis Protocol” comprises the a priori designed study protocol for the planned systematic review 

which was published in Systematic Reviews in 2016 and is incorporated in full and unchanged as Chapter 1 in 

this thesis.1 The second article, entitled “The Prognostic Value of Magnetic Resonance Imaging in Moderate and 

Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis” comprises the report of the results of 

the full systematic review and meta-analysis which was published in Critical Care Medicine in 2017 and is 

incorporated in full and unchanged as Chapter 2 in this thesis.2 

 The first author of both of these articles is also the author of this thesis. As first author, I designed the 

study protocol, wrote and prepared the protocol for publication, created the systematic search strategy, identified 

eligible studies, extracted study data, undertook data analysis, designed and created tables and figures, and 

wrote and prepared the study manuscript for publication. Alexis Turgeon designed the study question and 

provided direct supervision at all stages of the study and during the production of both manuscripts for 

publication, acting as senior and corresponding author in the publication process. Co-authors François Lauzier, 

Lynne Moore, Ryan Zarychanski, Amélie Boutin, Michèle Shemilt, and Dean Fergusson have also made 

substantial contributions to the conception and design of this study. Co-authors Mathieu Laflamme and Vincent 

Douville also contributed to identifying eligible studies and extracting study data. All authors critically revised 

both manuscripts for important intellectual content prior to publication. 
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Introduction 

General Introduction 

In reviewing the scientific literature to identify the existing foundation of evidence which underlies the 

clinical outcomes and prognostic assessment of patients suffering moderate or severe traumatic brain injury 

(TBI), this introductory chapter serves to situate existing prognostic indicators of TBI in the epidemiological 

context of the disease, describe the application of magnetic resonance imaging (MRI) in this condition as well 

as other neurological emergencies, and propose methodological strategies for conducting a systematic review 

and meta-analysis to rigorously determine the predictive value of lesions found on brain MRI performed in the 

acute phase of care for long-term outcomes in moderate or severe TBI. 

We begin by defining and classifying TBI, along with a discussion of its epidemiology and 

socioeconomic impact on both a local and global scale, then continue on to review the injury sub-types, 

management considerations, and overall prognosis seen in contemporary patients with TBI, with a subsequent 

assessment of established clinical and paraclinical prognostic indicators frequently employed to predict outcome 

in this population. This is followed by an introduction to MRI physics, imaging sequences, and their applications 

to neuroanatomy, with particular emphasis on the utility of MRI in TBI and its overall superiority as compared 

with computed tomography (CT). Consideration is given to feasibility of MRI in the acute phase of critical illness, 

along with the practical limitations of this modality in patients with moderate or severe TBI, and examples where 

this modality is successfully employed in the acute phase of neurological emergencies. Lastly, the methodology 

for the conduct of a prognostic factor systematic review and meta-analysis is reviewed, describing the specific 

tools designed and validated for this relatively novel form of systematic review. We end by describing the 

objectives which underlie the design of our prognostic factor systematic review, targeting the quantitative 

synthesis of prognostic observational cohort studies assessing the association of lesions identified on MRI with 

long-term mortality and neurological outcomes in patients with moderate or severe TBI. 

Traumatic Brain Injury 

Definition 

Traumatic brain injury represents a spectrum of cerebral lesions and clinical presentations culminating 

from trauma inflicted to the head; it has been therefore defined by the National Institute of Neurological Disorders 

and Stroke (NINDS) as an alteration in the brain’s function, or the evidence of brain pathology, induced by an 

external force.3 Compared with the narrower Word Health Organization4 or American Congress of Rehabilitation 

Medicine5 definitions, the breadth of interpretation permitted by these three criteria employed in the NINDS 

definition more adequately acknowledges the overall heterogeneity of TBI as a diagnosis, and the need for any 



 

2 

single definition to reflect the wide range of clinical presentations which may arise as a result of trauma to the 

head.6 

As an acquired condition secondary to external mechanical force, the underlying mechanisms leading 

to head trauma frequently differ between cases and may be grossly categorized as either penetrating trauma, 

where there is open communication between the brain (or other intracranial structures) and the exterior 

environment occurring due to the traumatic insult, or as blunt trauma, where the injury is caused by an external 

impact whose transfer of force to the closed cranial vault causes damage to internal cerebral structures.7,8 

Similarly, just as the aetiology of trauma may differ, the downstream effect of the external impact on the 

brain may be very variable within these two subtypes of head injury or may even vary between two patients with 

the same mechanism of trauma. The clinical manifestations of what is defined as alteration in the brain’s function 

may therefore be very broad, but frequently consists of: a period of loss of consciousness, temporary or 

permanent post-traumatic amnesia, and the new onset of focal neurological deficits (such as motor weakness, 

loss of sensation, impairment of speech, or impairment of vision).3,6,7 

The ability to demonstrate the presence or absence of brain pathology (as well as determine its 

significance on long-term outcome) is a function of both the mechanism and intensity of the traumatic force 

received and the sensitivity of the imaging modalities and clinical or paraclinical tests employed for its detection. 

While the former topic is discussed in greater detail in a subsequent section (Pathophysiology, Injury Sub-Types, 

and Implications for Management), the discussion of the diagnostic and prognostic yield of neuroimaging in TBI 

is a major objective of our research, forming the leading question of our study, and will be addressed in detail 

throughout the course of this thesis. 

Epidemiology 

Traumatic brain injury is a major global health problem and is the leading cause of death among 

individuals under the age of 45 in North America.9 Worldwide, more than 50 million TBIs are estimated to occur 

annually;7 mild TBI accounts for 55% of all cases, with moderate and severe TBI representing 27.7% and 17.3% 

of cases, respectively.10 In the United States alone, upwards of 3.5 million cases of TBI occur annually11 and, 

among those with moderate or severe TBI, nearly half who survive the acute period post-trauma will go on to 

suffer significant long-term disability with neurological or functional impairment.12,13 This prevalence has been 

estimated at 3.2 to 5.3 million individuals, representing more than 2% of the United States’ population.14–16 

In adult populations, moderate and severe TBI has a bimodal age distribution, with the highest rates 

occurring in either young adults aged between 15-24 years or older adults aged >75 years.17 In the latest report 

on vital statistics by the Centre for Disease Control in the United States, the most common mechanisms for 
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injury were identified to be falls, being struck by an object, and motor vehicle collisions;17 while TBI-related 

hospital admissions for motor vehicle collisions were noted to be on the decline, there has been a concomitant 

increase in admissions due to falls in older adults, driving an increase in the overall rate of hospitalizations for 

TBI.17 Apart from age, sex is a risk factor for TBI, with males at higher risk than females.17 Further risk factors 

include lower socioeconomic status, substance use disorder, and a history of psychiatric or cognitive 

comorbidity.18,19 

The incidence of TBI varies widely internationally, ranging from the lowest rates seen in Western Europe 

at 7.3 per 100 000/year, to the highest observed in Asia and New Zealand (the latter at 811 per 100 

000/year).7,10,20 While motor vehicle collisions are the leading cause of TBI in low- and middle-income countries, 

falls are increasingly responsible for most cases of TBI in developed nations.7,10 In Ontario, Canada, 227 605 

individuals suffered TBI in 2010, with over 40% of them aged between 18-39 years.21 The age- and sex-adjusted 

incidence of TBI was determined to have increased from 130 per 100 000/year to 170 per 100 000/year over the 

course of seven years from 2004 to 2011.21 In Québec, Canada, recent data published in 2019 from the Institut 

d’Excellence en Santé et Services Sociaux (INESSS) reporting hospitalizations for TBI in the province of Québec 

demonstrated that 6 089 patients were admitted for moderate or severe TBI between 2013-2016.22 Although 

representing only 11.7% of all trauma admissions in that time period, patients with moderate or severe TBI had 

a disproportionately high mortality rates: 18.2% of this population died during hospitalization compared to the 

5.1% morality rate seen in the general trauma population.22 Further, while an annual decrease in the number of 

cases of moderate TBI was noted in this timeframe, a concomitant increase in the rates of severe TBI was also 

observed.22 

Socioeconomic Impact 

The socioeconomic implications of TBI are vast and attributable to a combination of elevated acute 

health-care resource expenditure related to the index hospitalization, chronic complex care requirements due to 

significant long-term disability, and loss of productivity given the high incidence of this condition in otherwise 

young individuals. As the majority of moderate or severe TBI occurs in individuals who were otherwise in good 

health without comorbidity,23 the magnitude of indirect costs of this condition are considerable, resulting in a 

massive loss of productivity from the workforce due to both the patients’ disabilities and the added potential 

necessity for familial caregivers. Survivors of moderate or severe TBI may experience an undue burden of 

physical, mental, and cognitive disabilities which persist long-term after the index trauma and these may result 

in complex care needs and social supports not readily apparent in the acute phase of trauma.7 

The economic impact of TBI in the United States alone was estimated at over $76.5 billion in 2010 

when both direct and indirect costs were considered, up from $60.4 billion in 2000.24,25 In Ontario, the mean 

direct cost of healthcare expenditure per patient in the first year (incident year) following TBI has been estimated 
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at $9 277, and subsequently $3 854/year thereafter (prevalent years) for each case of TBI.21 This expenditure 

increases with patient age, reaching an approximate nadir of over $27 000/year for patients above 65 years, 

with over 40% of these costs attributable to hospitalizations alone.21 In patients with severe TBI, the incident 

year expenditures are much higher, at $32 132/year, representing the need for critical care and specialist 

intervention in this population.26 Overall total medical costs for the first year of new cases of severe TBI in Ontario 

are therefore estimated at $120.7 million for incident cases in this province alone.26 

Classification of Severity 

TBI is most commonly classified according to its clinical severity as assessed by the Glasgow Coma 

Scale (GCS). This 15-point scoring system initially developed in 197427 is widely used internationally for 

assessing the depth of unresponsiveness as a measure of coma. At the time of first medical contact, the patient’s 

responsiveness is graded over three different domains of reaction to stimuli (eye, verbal, and motor) and the 

score is summed to produce a total score of 3 to 15. In TBI, patients are then classified into groups of GCS 3-8 

(severe TBI), GCS 9-12 (moderate TBI), and GCS 13-15 (mild TBI).27 

While the GCS remains the main method employed for grading severity in TBI due to its simplicity of 

use in the field or at bedside coupled to its high degree of reproducibility,7 alternative clinical models have also 

been proposed. The United States Department of Defense and Department of Veterans Affairs, for example, 

employs an assessment of duration of post-traumatic amnesia and duration of post-trauma loss of 

consciousness, in addition to GCS, to further refine the assessment of TBI severity.28 Neuroimaging findings, in 

particular via computed tomography (CT), have also been proposed as a method of classifying patients into 

categories of severity based on neuroradiological findings such as signs of swelling, focal lesions, hemorrhage, 

skull fracture and/or lesion localisation.29–31 However, as this implies delaying the assessment of severity until 

imaging is acquired and does not integrate the patient’s clinical status, it is best considered as an additional 

assessment of severity when an initial appreciation of the patient’s condition has already been established via 

the GCS. 

Pathophysiology, Injury Sub-Types, and Implications for Management 

While a heterogeneous process, the underlying pathophysiology of the injury suffered by the brain 

following TBI can be conceptualized as two separate, but closely interrelated, processes typically described as 

primary brain injury, occurring at the time of trauma, and secondary brain injury, occurring over the hours to days 

following the initial trauma.6 

Primary brain injury is the insult that occurs at the time of trauma; although itself heterogeneous in 

origin, it arises from whatever environmental mechanism was responsible for transferring external force to 

intracranial contents, and thus inducing direct damage to the brain.6 Primary brain injury can be further 
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conceptualized as either focal or diffuse and intra-axial (within the brain parenchyma) or extra-axial (within the 

skull but outside of the brain itself). Variations in mechanism of injury may tend to favour the production of certain 

lesion phenotypes, although there is considerable overlap and multiple types of lesions frequently coexist in the 

same patient. Mechanisms of direct impact, such as falls, favour the development of focal lesions such as extra-

axial hematomas or focal cerebral contusions, while cases of rapid acceleration and deceleration, such as those 

occurring following motor vehicle collisions, may favour the development of diffuse shear injuries consistent with 

diffuse axonal injury (DAI) or multi-focal cerebral contusions associated with coup-contrecoup injury.8,32–34 

Different lesions carry vastly different prognoses; while focal extra-axial lesions such as epidural and subdural 

hematomas may be amenable to surgical evacuation, diffuse shear injury such as that seen in suspected cases 

of DAI has been associated with extended periods of coma, poor neurological outcomes, and high rates of long-

term mortality.35,36 

 Secondary brain injury is a broad term grouping the array of physiological or pathophysiological host 

responses to brain trauma.6,37 These are hypothesized to be mediated by a cascade of processes, including 

molecular injury mechanisms, sympathetic hyperreactivity, autoimmune cross-reactivity, and coagulopathy.37–43 

Experimental models have demonstrated the variable occurrence of microvascular occlusion, vasospasm, 

activation of apoptotic pathways, mitochondrial dysfunction, or neurotransmitter induced excitotoxicity all leading 

to the downstream effect of further neuronal cell death, cerebral oedema, and elevations in intracranial pressure 

which maintain and exacerbate injury to the brain.37,44–47 

 The anticipation and identification of both primary and secondary brain injuries should begin from the 

time of first contact with medical care and is vital as management strategies for patients with moderate or severe 

TBI centre on the targeted treatment of both types of brain injury. In the acute phase of hospital care following 

TBI, critical supportive and surgical measures may immediately target the manifestations of primary brain injury, 

such as the drainage of extra-axial hematomas, the placement of an interventricular drain, or, occasionally, 

decompressive craniectomy.7,48 Simultaneously, the anticipation, prevention, and/or treatment of secondary 

brain injury should also be routinely conducted; while no clinical trials in humans have demonstrated the benefit 

of any targeted treatments of secondary injury pathways, supportive management may prevent or mitigate the 

extent of secondary brain injury post-TBI.7,48 This includes active intensive monitoring for the avoidance of 

hypotension or hypoxia,49,50 the rapid identification and treatment of seizures, and the control of intracranial 

pressure to maintain safe cerebral perfusion pressures.7,48 The latter potentially requires additional measures of 

sedation, hyperosmotic infusions, or the optimization of mechanical ventilation to avoid hypercapnic cerebral 

vasodilation.7,48 While controversial due to conflicting evidence,7 the latest Brain Trauma Foundation guidelines 

for the management of severe TBI still emphasize the use of goal-directed therapy for the prevention and 
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mitigation of secondary brain injury and thus describe homeostatic thresholds for systolic blood pressure, 

intracranial pressure, and cerebral perfusion pressure.48 

Long-Term Prognosis 

Patients with moderate or severe TBI are typically critically ill with high rates of mortality early in their 

clinical course; increasing levels of TBI severity are consistently associated with decreased survival. A 

systematic review analyzing survival in severe TBI over the past 150 years demonstrated a more than 50% 

historic decrease in mortality in this population, likely associated with improvements in medical and surgical 

management, which has since stagnated and remained largely unchanged over the past quarter century.51 

Contemporaneous observational cohort studies indicate a case-fatality rate now reaching upwards of 35% in 

patients with severe TBI.51 This is likely highly age-dependent as a meta-analysis of 24 studies pooling data on 

elderly patients ≥60 years old found an in-hospital mortality rate of 57% and a 6-month mortality rate of 75% in 

this population.52 While up to 15% of patients with severe TBI are discharged from their index hospitalization in 

a vegetative state,53–55 significant proportions of cases (30-65% of all severe TBI overall) do eventually attain 

independent function following prolonged periods of convalescence.13,56–58 In those discharged in a vegetative 

state specifically, however, only half go on to recover consciousness at one year and effectively all remain totally 

dependent long-term for external care due to severe functional disability.53–55 

 Although survival is an important outcome in moderate and severe TBI, there are limitations inherent 

to this metric which must been considered when interpreting it as a clinical endpoint in this population. 

Frequently, death in critically ill patients having suffered moderate or severe TBI occurs following a decision to 

withdraw life-sustaining therapies.59 As such patients often lack the capacity to make medical decisions in the 

acute phase following the trauma, the decision to implement, continue, or withdraw life-sustaining treatments 

depends on the judgment of patient families and medical teams seeking to best balance patients’ preferences 

for treatment with an estimation of the potential for meaningful neurological recovery if intensive life-sustaining 

therapies are pursued. Despite few robust prognostic factors in the early phase following TBI, over half of such 

decisions to withdraw life-sustaining therapies are made within the first three days of admission.59 These 

decisions, and the resultant effect on mortality statistics, may thus be influenced by the treating physicians’ 

subjective impressions of prognosis and past experiences with similar cases and therefore frequently vary from 

one treating team to another.60,61 As a consequence of this, a multicentre cohort study on this subject found 

considerable variability in mortality rates for moderate and severe TBI between centres in Canada, with the 

primary driver demonstrated to be differences in the incidence of withdrawal of life-sustaining therapy.59 

In contrast to mortality, long-term functional outcomes are likely more clinically relevant to patients and 

family members considering the important burden associated with the injury. Long-term functional status 

following TBI may be assessed with the use of standardized clinical scales; the standard62 and extended63 



 

7 

Glasgow Outcome Scales (GOS and GOSe, respectively) are arguably the best validated and most widely used 

outcome scores in patients with TBI given the extensive historical experience in their use and their high interrater 

reliability.64 The GOS establishes five stages of function ranging from death (stage 1) to absent or minimal 

impairment (stage 5), with vegetative state at stage 2 and stages 3 and 4 as severe and moderate functional 

impairments, respectively.62 The GOSe divides stages 3, 4, and 5 each into two separate categories of 

intermediary function, which has been demonstrated to improve discrimination is generally now the 

recommended version of the scale.63,64 Frequently, scores are further dichotomized into GOS stages 1 to 3 and 

GOSe stages 1 to 4 as representing unfavourable neurological outcome and GOS stages 4 to 5 and GOSe 

stages 5-8 representing favourable neurological outcome. 

Established Prognostic Indicators for Traumatic Brain Injury 

In the existing literature on TBI, the search for reliable prognostic indicators spans a diverse range of 

factors including demographic and clinical factors, electrophysiological monitoring parameters, laboratory 

parameters, biomarkers and neuroimaging findings, including CT and MRI.7,53,65 The most robust evidence to 

date on prognostic indicators on admission in TBI comes from the IMPACT database,65 which combines data 

from eight randomized controlled trials and three observational trials in TBI; this merger permits extensive 

prognostic analyses with high statistical power. Based on the IMPACT database, univariable analyses have 

identified a number of factors measurable during the acute phase of hospitalization which correlate with GOS at 

6 months. Multivariable analyses have further narrowed this list to a select handful of factors that may be 

confidently established as independent prognostic indicators. 

 Such multivariable analyses from the IMPACT study have determined concretely that age, pupillary 

response to light, and the motor subscale of the GCS are the three most powerful independent predictors of 

outcome in acute TBI.65 Age in particular was found to be the most powerful predictor among all the factors 

studied, with the prognostic value of several other factors, such as injury mechanism, in univariable analyses 

being themselves dependant primarily on age.65 

 Two specific laboratory parameters have been found to have strong correlation with GOS at 6 months. 

The first being prothrombin time which, in multivariable analyses, maintain a predictive value comparable to that 

of pupillary reactivity and CT findings in fully adjusted models, likely the reflection of the importance of 

coagulopathy in this population.65 Glucose was also identified as a strong independent prognosticator on 

multivariable analysis;65 this is of significant interest as there has been considerable research in the possible 

neurotoxic effects of presenting and persistent hyperglycaemia post-trauma in general and the role of glucose 

in secondary brain injury after TBI.66 The use of intensive insulin therapy in critically ill patients to maintain strict 

normoglycaemia has been the subject of significant study in the greater critical care population67–69 and it remains 

controversial in TBI patients.70 The identification of these two commonly requested laboratory tests as being 
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predictive of outcome is valuable as they are ubiquitous, as well as simple to demand and interpret, in the acute 

phase of care. 

 In the IMPACT study, the most prognostically-important lesion patterns on acute CT scans were found 

to be the Marshall CT classification30 and the presence of traumatic subarachnoid haemorrhage (tSAH).65 

Globally, the Marshall classification is a CT estimation of total lesion burden and mass effect following TBI, 

graded in increasing severity.30 Even following multivariable analysis, the Marshall classification was found to 

retain relatively significant associations with long-term outcome. Given the near universal acquisition of CT 

imaging in TBI patients at the time of their presentation to hospital, this simple CT classification may therefore 

permit early prognostication at the time of hospital admission. Presence of tSAH on initial CT is also a useful 

finding, with a strong correlation with poor outcome on fully adjusted models when present.65 Interestingly, the 

presence of epidural hematoma on CT was associated with a favourable long-term prognosis in multivariable 

analysis.65 This possibly reflects the generally good response of epidural hematoma (EDH) to rapid surgical 

evacuation; if EDH is the sole manifestation of head trauma, it is reasonable to assume this select population of 

patients will have more favourable outcome than average TBI patients who may have a more complex 

combination of diffuse and local cerebral lesions. 

 Several other modalities have been assessed as potential prognostic indicators. While possibly useful 

for acute monitoring, conventional electroencephalography (EEG) itself has been found to have limited 

independent prognostic potential, possibly due to its susceptibility to interference from anaesthetics and other 

drugs commonly used for sedation in the acute phase post-TBI;71 quantitative EEG is an alternative modality 

which is under investigation as an emerging electrophysiological prognostic tool.72 Other electrophysiological 

parameters have been found to have potential prognostic applications in TBI: abnormal brainstem auditory 

evoked potentials (BAEPs) correlate with unfavourable outcome while normal BAEPs do not seem to carry any 

predictive value.73 Somatosensory evoked potentials (SSEPs) however, may have more robust prognostic 

applications in TBI.74,75 A review of acute severe TBI patients found that presence of normal SSEPs had a 

positive predictive value (PPV) of 71.2% for favourable GOS, while absence of SSEPs bilaterally had a PPV of 

98.5% for unfavourable GOS.74,76 Head-to-head comparison studies between BAEP and SSEP have further 

confirmed the superiority of SSEP over BAEP.77–80 Researchers in this domain have found that better results in 

prediction are obtained if these measures are attained promptly, highlighting the importance of early acute phase 

application of these methods.78,81 

Several novel serum biomarkers have been under investigation for their potential predictive value post-

TBI. Among these, the S-100β protein is arguably the most studied and most promising; a recent meta-analysis 

encompassing 41 studies (2 RCTs and 39 cohort studies) found a significant positive association between serum 

concentrations of S-100β protein post-TBI and mortality and unfavourable long-term GOS with a proposed cut-
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off definition maximizing specificity.82 Neuron-specific enolase is another emerging biomarker with potential to 

act as an early prognosticator following TBI; a meta-analysis of 30 cohort studies found significant positive 

associations between neuron-specific enolase levels and both mortality and unfavourable long-term GOS.83 

Lastly, serum levels of glial fibrillary acidic protein following moderate and severe TBI has also been shown to 

have significant associations with mortality and GOS in a meta-analysis of 10 cohort studies.84 However, in the 

case of the latter two biomarkers, existing patient data does not permit the establishment of clear thresholds. 

While encouraging, clinical use of these proteins remains of uncertain utility as optimal threshold values and 

sampling times post-trauma have not been clearly determined; their application in future studies investigating 

their multimodal combination with other prognosticators for outcome prediction may permit the development of 

more refined risk prediction tools.82–84 

Magnetic Resonance Imaging 

Introduction and Magnetic Resonance Physics 

 Magnetic resonance imaging (MRI) technology provides detailed assessment of anatomy and 

physiology via the indirect imaging of protons, particles abundant in the human body within hydrogen atoms.85,86 

MRI scanners produce a static magnetic field with a defined directional vector; when a patient is placed within 

this field, each individual hydrogen proton acts as its own magnet and spins to either align with or oppose to the 

overall field.85,86 The summation of each proton’s spin can be employed to compute an overall net magnetization 

vector, and this can be situated in a three-dimensional plane, defined by the three orthogonal directions x, y, 

and z. Three corresponding orthogonal sets of gradient coils are set, and any slight alteration in the overall 

strength of the magnetic field as a result of radiofrequency pulses may be detected.85,86 To generate an MRI 

image of a structure, such as the brain, radiofrequency pulses are used to excite the protons’ magnetic spins of 

interest, bringing them to a higher energy state, and moving the net magnetization vector away from the overall 

direction of the MRI scanner’s magnetic field.85,86 The degree to which this movement occurs defines a “flip 

angle”, and this is directly correlated to the amount of energy deposition in the tissue under study and the 

strength and duration of the radiofrequency pulse (which is standardized for each sequence protocol).85,86 The 

strength of the magnetic field is expressed in the units Tesla (T) and is generated by a superconducting 

cylindrical bore magnet; in most clinical systems, a field strength of either 1.5 T or 3.0 T is generated and this 

field strength defines both the imaging speed and resolution.86 

 In generating spin echo pulse sequences, a 90-degree radiofrequency pulse is administered to excite 

the tissue under study followed by a 180-degree refocusing pulse.85 Electromagnetic energy absorbed by tissue 

is then released by several mechanisms simultaneously. The first, longitudinal magnetisation recovery, is 

represented by the time constant T1, defined as the time it takes for the longitudinal component of the 

magnetization vector to return to 63% of its original state.85,86 T1 is a physical characteristic of the tissues under 
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study and is also affected by the strength of the scanner’s field.85 In T1-weighted imaging (T1WI) sequences, 

the time between delivery of two flip angles is kept short, and images are therefore generated which demonstrate 

the spectrum of differences in T1 between the different tissue types under study, generating the radiological 

image.85,86 

The second, transverse magnetization decay, is a product of the interactions between the neighbouring 

spins of two protons; this causes a loss of the transverse component of the net magnetization vector.85,86 This 

exponential loss is typically defined by the time constant T2, which like T1 is tissue-specific but is less dependent 

on magnetic field strength, and represents the time taken to lose 63% of the transverse magnetization.85,86 T2 

differences in tissues are emphasized when time between two flip angles is long, a process targeted for 

developing T2-weighted imaging (T2WI) sequences.85,86 In inversion recovery sequences, such as fluid-

attenuated inversion recovery (FLAIR), a 180-degree preparatory radiofrequency pulse is administered prior to 

the standard spin echo pulse sequence, causing inversion of the longitudinal magnetization vector.85 FLAIR is a 

special type of T2 inversion recovery sequence employed frequently in neuroimaging which uses a prolonged 

inversion time intended to remove signal originating from the cerebrospinal fluid.85 

 Gradient echo pulse sequences are produced by the administration of multiple acute angle (< 90 

degrees) radiofrequency pulses in rapid succession and then reversal of the magnetic field gradient itself to 

refocus proton spins and generate transverse magnetisation, rather than the 180-degree radiofrequency pulse 

used in spin echo.85,86 Similar to spin echo, adjustment of the parameters surrounding administration of the 

radiofrequency pulses allows production of T1- or T2-weighted images. This technique is more efficient than 

spin echo and can generally acquire more information in equivalent periods of time.85 However, gradient echo 

sequences are more inclined to suffer from magnetic field inhomogeneity and resultant susceptibility artifacts.85 

Following an initial excitation pulse in gradient echo imaging, an immediate exponential loss of signal 

amplitude is observed; T2* refers to the decay pattern actually observed by the receiver coil and this is typically 

of far greater magnitude than standard T2.85 This difference in magnitude is a function of the inhomogeneity of 

the magnetic field and may be exploited for imaging purposes. T2* decay underlies all gradient echo sequences, 

and it allows inherently inhomogeneous tissues – such as the blood seen in cerebral microhemorrhages resulting 

from the deposition of paramagnetic hemosiderin or deoxyhemoglobin – to be detected more readily.85 In TBI, 

such cerebral microhemorrhages have been postulated as being indirect indicators of DAI;87,88 sequences such 

as T2*-gradient echo (T2*-GRE) may therefore be hypothesized as more sensitive for the detection of subtle 

abnormalities representative of DAI than spin echo sequences.89 Susceptibility weighted imaging (SWI) is 

another gradient echo sequence which similarly exploits the inhomogeneity of the magnetic field.90 It indicates, 

with high sensitivity, the presence of compounds causing local distortions of the field, thus identifying small 

quantities of hemorrhage or calcium deposition which may be entirely inapparent in other MRI sequences.91–93 
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Application of Magnetic Resonance Imaging Sequences to Neuroanatomy 

In assessing neuroanatomy via MRI, standard imaging protocols typically include T1WI, T2WI, FLAIR, 

and some form of gradient echo imaging, often SWI.88,94,95 This basic protocol can subsequently be modified 

based on the specific clinical scenario with the addition of additional sequences or the more detailed modification 

of imaging parameters. 

 T1WI provides an excellent overview of the general neuroanatomy, as well as visualization of the soft 

tissues below the skull base.88 Fluid, such as cerebrospinal fluid or orbital vitreal fluid, is nulled, appearing dark 

on this sequence, and the brain’s grey matter is darker than the white matter.94 T2WI allows a more detailed 

evaluation of the extra-parenchymal areas, including the basal cisterns, the cerebral ventricles, and the subdural 

spaces and is generally employed to identify pathology.88 Fluid appears bright on T2WI and the blood flow within 

vessels may be more readily appreciated. As opposed to T1WI, white matter is darker than grey matter on this 

sequence.94 FLAIR is a commonly used sequence in neuroimaging which is similar to T2WI in that grey matter 

appears brighter than white matter; however, due to the long inversion recovery time used in this sequence, 

cerebrospinal fluid is nulled, appearing dark, permitting improved visualization of any region where there is 

parenchyma-cerebrospinal fluid interface which may otherwise suffer distortion on standard spin-echo 

sequences.88,94 FLAIR is therefore important for the accurate visualization of the peripheral aspects of the 

hemispheres and the periventricular edges, in addition to its utility for the assessment of white-matter injury.88 

While the aforementioned sequences provide a comprehensive appreciation of the brain’s overall 

structure and anatomy, as well as the presence of gross hemorrhage or injury, the further detection of small 

quantities of blood in the form of microhemorrhages is important for the comprehensive assessment of 

neurotrauma. The so-called “susceptibility-sensitive” sequences are therefore frequently employed in 

contemporary protocols for this purpose.91–93 Such sequences rely on T2*, which is extremely sensitive for 

detecting local distortions in the magnetic field.85 T2*GRE and SWI are examples of sequences which exploit 

this technology, with the latter being the most sensitive for the detection of the products of microhemorrhage 

such as deoxyhaemoglobin, hemosiderin, and ferritin which are paramagnetic compounds it can potentially 

differentiate from diamagnetic compounds such as calcium.88,92,93 Frequently, these minute findings on the 

susceptibility-sensitive sequences are otherwise inapparent on standard MRI sequences.96 

Advantages Over Computed Tomography in the Assessment of Neurotrauma 

 As an imaging tool in neurotrauma, MRI presents several important advantages over CT. These 

benefits are particularly notable for the evaluation of intracranial lesions, as opposed to extracranial lesions for 

which CT still remains the dominant imaging tool given its superiority for assessing bone and rapidly identifying 

fracture in the context of acute trauma.88,94 More specifically, MRI is superior in many ways, namely to assess 
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the posterior fossa and the brainstem. However, MRI takes more time to be performed and are not as easily 

accessible than CT in the acute care setting.  

The first commercial MRI systems became available around 1983, with the greater precision of MRI for 

the evaluation of cerebral lesions in TBI being recognized just a few years thereafter. In as early as 1988, a 

prospective comparison study97 between CT and MRI in closed head injury found MRI to be superior to CT in 

multiple respects, particularly in the detection of non-haemorrhagic parenchymal lesions and brainstem lesions. 

This study of 40 participants with closed head injury found that early MRI in the acute phase of ICU care was far 

more sensitive for identifying non-haemorrhagic injury, detecting up to 93.3% of such lesions, whereas early CT 

identified only 17.7% in the same population.97 Furthermore, CT was particularly insensitive in the evaluation of 

brainstem lesions, detecting less than a tenth of such injuries, while MRI was found to identify them at a more 

than eight-fold higher rate.97 

Significantly, this substantial difference in accuracy was observed utilizing an early low-field strength 

0.5 T MRI machine, employing only the basic T1WI and T2WI sequences.97 Rapid advances in MRI technology 

have further widened this gap between the two imaging modalities and more recent studies with contemporary 

1.5 T and 3.0 T machines employing more advanced imaging sequences have since confirmed and expanded 

upon these results. In particular, a recent study96 employing a standard field-strength 1.5 T machine found that 

T2WI and FLAIR sequences significantly discriminated between favourable and unfavourable long-term GOS. 

Unlike CT, T2WI and FLAIR were found to consistently discriminate outcome based on evaluation of lesion 

volume, volume per lesion and number of lesions. In these same patients, CT’s discriminatory ability only 

reached significance when evaluating volume per lesion.96 Additionally, high susceptibility sequences, such as 

T2*-GRE and SWI have also been demonstrated to carry much higher diagnostic yield, often detecting evidence 

of pathology in patients who otherwise have normal CT scans.96,98 As these sequences are known to be highly 

sensitive for the deposition of blood components and thus the detection of microhemorrhage, it has been 

hypothesized that such findings may represent neuronal shear injury and may therefore correlate with DAI, an 

important diagnosis with poor prognostic implications.87,96,99,100 

CT is suboptimal at imaging the posterior fossa due to significant artifacting originating from the osseous 

structures located in this region.101 This renders CT images unreliable for diagnosing brainstem lesions, as well 

as certain posteriorly situated intra-axial lesions. Given the hypothesized importance of brainstem lesions in 

establishing prognosis following moderate and severe TBI,102 and the preponderance of such lesions with 

increasing severity of trauma, it is particularly important to reliably visualize the brainstem with accuracy in 

neurotrauma patients. Studies on diagnostic accuracy have consistently found that CT imaging detects only a 

small minority of lesions located in this area.35,96,103 This is contrary to MRI, on which the brainstem is a site 

where the presence of lesions has been found to significantly correlate with unfavourable prognosis and is likely 
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a reflection of increased severity of injury (and possibly related to the mechanism of the impact).101,103–108 Further 

underlining the importance of accurate characterization of the location and extent of brainstem lesions, several 

authors have noted compelling evidence that depth of lesion may have greater prognostic weight than total 

lesion burden.101,102,104–107 This is supported by the fact that patients with brainstem lesions generally had poorer 

outcomes than those with normal brainstems on MRI, regardless of the presence or absence of other more 

superficially located lesions.101,104,106,107,109 Such findings imply that accurately characterizing the deepest 

cerebral lesion present in any given patient is an important factor for the prognostication of TBI via 

neuroimaging.101,104–107 

Practical Considerations for Application in Critical Care 

As discussed previously, MRI presents several technical advantages over competing neuroimaging 

methods in regards to image quality, sensitivity and contrast between gray and white matter.88,94 Notable 

practical benefits centre on the use of magnetic fields allowing radiation-free image acquisition and the use of 

gadolinium, rather than iodine, as a contrast agent, which circumvents the possibility of allergic reactions 

occasionally seen when contrast-enhanced CT is used. Alternatively, there exist several practical pitfalls with 

the use of MRI which substantially hamper its application in the acute critical care phase of TBI management. 

The two most significant drawbacks of MRI are the long image acquisition times and the incompatibility of 

metallic objects within the magnetic fields generated by MRI machines. 

 In general, cerebral MRI image acquisition is much longer than that of CT scanning. A robust brain MRI 

examination comprising the full set of sequences for contemporary brain trauma protocols may take upwards of 

approximately 30 to 45 minutes as opposed to brain CT, which may be completed in the span of just a few 

minutes.88 In the acute phase of trauma where patients may be hemodynamically unstable and require advanced 

monitoring, this length of time has a major impact on the management of TBI patients and may pose an 

unacceptable risk. The duration of image acquisition is dependent on several factors, but the number of 

sequences is by far one of the key factors which contributes to increased image acquisition time; acquiring a 

larger and more diverse range of sequences implies greater length of patient time in the MRI scanner.88,94 

Additionally, given that the majority of TBI patients suffer from elevated intracranial pressure post-trauma, the 

physical act of leaving such patients supine for the entire duration of image acquisition may be dangerous and 

potentially aggravate existing lesions.110 Since radiology facilities are frequently outside of critical care units in 

most hospitals, transport of a patient with moderate or severe TBI for MRI in the early phase post-trauma implies 

that patients will need to tolerate a duration of time with reduced medical staff presence and limited monitoring. 

Consideration of the constituent sequences in the MRI protocol employed is therefore important for 

limiting the duration of time required for image acquisition; a balance must be established between the number 

and type of sequences taken and the duration of scan time which may be tolerated before the risks of the test 
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outweigh the clinical benefits that an acute phase MRI analysis can offer. Targeted protocols for contemporary 

1.5 and 3.0 T machines have now been defined which can acquire a full set of the principle sequences, including 

a susceptibility-sensitive sequence, in under 20 to 25 minutes.94 Achieving further decreases in scan time is a 

topic of active investigation as current targeted protocols remain nevertheless relatively prolonged in the context 

of critical illness.111 Ideally, literature in this domain would provide individualized data for each sequence 

employed and describe the merits of the sequences for outcome prediction based on the types of lesions 

evaluated in order to more reliably determine which sequences may be omitted from future protocols. 

Unfortunately, most studies present data that are globally derived from an in-house imaging protocol consisting 

of an amalgamation of several sequences, which both may vary over time and from centre to centre.112 

While current image acquisition times remain long, advances in MRI technology are allowing much 

more efficient imaging protocols and shorter delays in image acquisition.88,94 Research in moderate and severe 

TBI specifically is required to identify which MRI sequences are most useful for assessing cerebral trauma within 

the first few days of injury.112 Furthermore, studies that validate which sequences best complement one another 

in an acute phase protocol are required to ensure maximal information with a minimal number of sequences 

(avoiding repetition).88,94,112 This refinement of imaging protocols and the feasibility of rapid MRI has already 

been proven in other forms of neurological disease conceptually similar to TBI. The best example is acute stroke, 

a neurologic emergency demanding rapid cerebral imaging. Comprehensive MRI stroke protocols taking less 

than 15 minutes to complete have been described with clinical superiority demonstrated in head-to-head 

comparisons against CT 113–116. If a parallel set of sequences could be established for acute moderate and severe 

TBI, the applicability of MRI in the time directly following hospital admission could potentially rival that of CT. 

Beyond the duration of MRI image acquisition, another major barrier to the applicability of MRI for the 

acute evaluation of neurotrauma is the incompatibility of metallic objects and implants in the magnetic fields of 

MRI suites.117–119 As MRI machines generate a magnetic field both within, and in the direct vicinity of the device, 

gross ferromagnetic objects may become displaced, deformed and possibly airborne. A standard 1.5 T machine 

generates a magnetic field easily 100 000 times greater than that of the Earth’s natural field, within which small 

magnetic objects may become projectiles drawn towards the machine and larger heavier objects may be shifted 

or heated.117–119 This phenomenon poses a danger to both technicians and patients and there have been several 

cases of death attributed to this phenomenon.120,121 

Most radiology departments maintain tight safety regulations to ensure that known or potential 

ferromagnetic objects do not enter within range of MR fields, which also limits the types of medical equipment 

that can enter the room. This is particularly concerning in the case of TBI patients as such individuals are often 

under monitoring and ventilator support, with a possible variety of additional support devices, such as 

intraventricular drains or surgical clips, which are normally compatible with MRI, but also intraparenchymal 
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devices for ICP monitoring that may not always have industry clearance or regulatory approval for use in MRI. 

Removal of these and other critical devices for the duration of image acquisition is often either not feasible or 

potentially not ideal for the management of the patient and can thus delay or outright contraindicate MRI in the 

very acute phase of care.110 

The introduction of MRI-safe medical equipment, without ferromagnetic properties, is slowly 

overcoming this challenge; in particular, the introduction of non-ferromagnetic infusion pumps has allowed more 

TBI patients to undergo early MRI as they can still receive intravenous fluid support and vasoactive medication 

to maintain hemodynamic stability during image acquisition.122 

Current Applications in Patients with Acute Brain Injuries 

 In neurological emergencies secondary to the occurrence of acute brain injuries such as ischemic 

stroke, intracranial hemorrhage, or moderate or severe TBI, the use of early neuroimaging in the acute phase is 

a crucial tool for both establishing the diagnosis and determining the immediate management strategy. While 

CT has conventionally been employed in this role, the additional (or substitutive) use of early MRI as a highly 

sensitive imaging modality in the hyperacute (< 6 hours following symptom onset) or acute (first several days 

after presentation) phase is emerging as a new standard of care in assessing acute brain injuries, in particular 

stroke.123 The technical feasibility and safety of employing MRI in the emergency setting of brain injuries has 

been demonstrated in several studies enrolling patients in the hyperacute phase.35,113,116,124–127 The use of limited 

sequences to establish short-duration scan times can be accomplished while maintaining high sensitivity; 

however, few of these studies have enrolled critically ill patients and their extension to this population still remains 

largely unknown. 

 The feasibility of performing MRI in the hyperacute phase for the diagnosis of suspected stroke was 

best assessed in a large, consecutive, real-world cohort of 356 patients referred for neuroimaging due to 

suspicion of acute stroke.125 Following recruitment in the emergency room, these patients underwent both MRI 

and CT assessment. Comparisons between the two modalities demonstrated the superiority of MRI for the 

detection of ischemic stroke, with MRI demonstrating the presence of stroke in 46% of patients as opposed to 

CT, which was diagnostic in solely 10% of cases.125 Similar superiority of MRI was found when restricting 

analyses to very early presenters, patients undergoing neuroimaging within three hours of symptom onset, and 

therefore eligible for thrombolytic therapy. The authors concluded that MRI can feasibly be used as the sole 

neuroimaging tool in suspected acute stroke,125 a conclusion supported by other smaller studies which confirm 

it to be safe as the sole screening method prior to the administration of intravenous thrombolytic therapy.113,124 

 In addition to its application for the accurate early diagnosis of ischemic stroke, the use of brain MRI to 

assess for the presence of intracranial hemorrhage or hemorrhagic transformation following suspected ischemic 
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stroke was assessed in the HEME study, a large cohort study over two centres where patients with suspected 

stroke were recruited to undergo both brain MRI and CT in the hyperacute phase following presentation.116 This 

study employed a scan protocol similar to that frequently used in neurotrauma, including T1WI, T2WI, and an 

obligatory gradient echo sequence, such as T2*-GRE, with a reported total scan duration of only 10 to 15 

minutes.116 Patients were recruited immediately following presentation to the emergency department and all 

safely underwent MRI. While MRI in the hyperacute phase was found to accurately identify acute hemorrhage 

in all patients where it was also found on CT, it also identified chronic microbleeds in nearly a quarter of all 

patients enrolled in the study, all of which were non-apparent on CT and would have been missed if MRI were 

not performed, leading to the study being stopped early.116 These findings further build upon prior findings in the 

German Stroke Competence Network’s B5 Hemorrhage Study, where MRI in the hyperacute phase was 

confirmed to maintain a 100% sensitivity and 100% overall accuracy for the identification of hemorrhage as 

compared with CT in the hyperacute phase, further suggesting this modality could supplant the need for CT 

altogether in acute stroke.128 

 Translation of these findings from the acute stroke or intracranial hemorrhage population to patients 

with acute moderate or severe TBI is challenging, as the latter group of patients are typically critically ill and may 

be frequently unstable at the time of presentation. Initial neuroimaging in this population focuses on the 

determination of the presence or absence of neurosurgical indications (such as the management of fractures or 

need for evacuation of gross hematomas), and thus CT imaging is the most widespread modality employed in 

the first 24 hours following TBI.98,129–131 In line with this, the Brain Trauma Foundation guidelines for the 

management of acute TBI base recommendations for surgical intervention on CT findings alone.48 While no 

studies have examined the use of MRI in the hyperacute setting post-TBI (or as the initial neuroimaging 

modality), several studies have examined the feasibility and yield of undertaking early MRI within the first few 

days following trauma.35,36,127 All of these studies feasibly and safely managed to undertake MRI within 24 to 72 

hours following TBI; patients were described as sedated and heavily monitored throughout the course of MRI 

acquisition, and no adverse events related to the imaging procedure were reported in any of the studies. All 

studies reported findings on early MRI which correlated with long-term (>6 months) mortality and neurological 

outcome. Specifically, brainstem lesions consistent with shear injury identified on MRI as early as 24 hours after 

moderate or severe TBI were independently predictive of long-term outcome,35 raising the possibility that 

acquiring such detailed prognostic information early in the clinical course may help guide acute management 

and level-of-intervention decision-making on the part of clinicians and substitute decision makers.  

Potential Applications in Patients with Traumatic Brain Injury 

There is considerable practice variation in MRI timing and image protocols employed following TBI 

coupled with frequent uncertainty regarding the prognostic implications of many lesion patterns encountered. 
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The current clinical practice guidelines and recommendations for the use of neuroimaging in TBI were updated 

most recently in 2015,130 prior to the conduct of our systematic review, and provide a class I recommendation 

for the use of CT as the first line imaging modality in the acute phase of moderate or severe TBI. 

Recommendations on the use of early MRI are vague; MRI is deemed indicated in the event where the CT 

findings are normal or out of proportion to, a clinically persistent, unexplained, neurological findings (class I 

recommendation).130 The use of MRI with high susceptibility sequences, such as T2*-GRE and SWI, is given a 

class IIa recommendation in the early phase of moderate or severe TBI, with acknowledgement of its high 

sensitivity for establishing the diagnosis of shear injury consistent with DAI, but also a note of the lack of 

conclusive published data examining the relationship such findings with long-term clinical outcome and the need 

for further research.130 

An improved understanding of the role of early MRI in the prognostic assessment of moderate and 

severe TBI is therefore required in order to both establish its appropriate application in this context and 

comprehend the predictive value of the lesion patterns identified. Addressing such uncertainties in the current 

clinical practice guidelines is thus a principle objective of this thesis and the research question we address in 

our study. While MRI data was not studied in the original IMPACT database,65 a large volume of research has 

been published on its use for prognosticating moderate and severe TBI, encompassing variable scan times post-

TBI and diverse imaging protocols, some with emphasis on the use of susceptibility sensitive sequences for the 

detection of lesions considered beyond the scope of CT imaging.35,96  

Given the expected large breadth of studies on this subject and the need to comprehensively assess 

all published MRI lesion patterns with potential prognostic value, the use of systematic review methodology is 

crucial for the identification of all studies potentially relevant to this research question and thus avoid an unbiased 

assessment of evidence.132 Undertaking subsequent quantitative synthesis via meta-analysis will permit the 

simultaneous maximization of statistical power, aiding in the determination of prognostic associations between 

MRI and clinical outcome, and the identification of areas of conflicting evidence or heterogeneity requiring future 

study.132 In conducting this systematic review and meta-analysis, the objectives of this thesis are to 

comprehensively summarize all existing evidence, assess the methodological quality of studies underlying the 

data, and guide the conduct of future high-quality studies in areas where inadequate data exists. 

Prognostic Systematic Review Methods 

Introduction 

 Traditional systematic reviews of interventions with pairwise meta-analysis typically aim to synthesize 

all existing data (usually randomized) for a single treatment, compared to a control or placebo, for a pre-defined 

outcome.132 Extending these original methods to other primary epidemiological study designs is an ongoing 
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priority of the Cochrane Collaboration, which oversees, centralizes, and guides the process of expanding 

systematic review methodology.133 Whilst the design of the primary studies assessed and synthesized in non-

conventional systematic reviews may differ based on the original research question, the basic methodologic 

framework remains largely unchanged. As with systematic reviews of interventions, the major steps in 

undertaking a prognostic systematic review include: identifying the research question, designing and conducting 

a systematic literature search, abstracting and organizing the relevant data, undertaking quantitative synthesis 

(if applicable), appraising risk of bias, and grading of the quality of evidence and strength of conclusions.134 

However, the tools used for each step of this process and their application to the primary literature require their 

adaptation to the methodology of prognosis research in order to optimize their applicability and validity in this 

field. 

 Primary prognosis research has the fundamental aim to provide data on the clinical course, natural 

history, or long-term outcomes of populations with specific diseases or conditions.135 Furthermore, data from 

prognostic studies can be employed to predict the likelihood of a particular outcome in specific individuals via 

the derivation and validation of statistical models.135,136 As individual prognosis studies often present diverging 

or inconsistent findings, increasing numbers of systematic reviews attempting to synthesize their findings and 

assess their methodological quality are being published, often with suboptimal methodology or reporting.137 To 

address this growing need for uniform methodology, and as an adjunct to conventional systematic review and 

meta-analytic methods, the Cochrane Collaboration’s Prognostic Methods Group was established in 2006 as a 

new methodological working group.138 It aims to both construct standards for improving the validity and precision 

of prognostic systematic reviews, as well as improve the reporting of the published primary prognosis 

literature.136,139 

 Within prognosis research, the Prognosis Research Strategy (PROGRESS) group defines three 

principle study designs which comprise the bulk of prognosis research.140 These comprise: studies investigating 

the outcomes of health-related conditions in a set population over time (“fundamental prognostic research”), the 

derivation and validation of statistical models which predict the risk of a future outcome in an individual 

(“prognostic model research”), and the investigation of specific factors associated with prognosis (“prognostic 

factor research”).140–142 The methods for searching, quantitatively pooling, and judging risk of bias are distinct 

between prognostic factor and prediction model studies.136,143–145 Notably, prognostic factor studies relate each 

individual prognosticator with outcome, typically employing a measure of association, while validation studies of 

prediction models present overall model performance statistics (such as discrimination or calibration).134 As this 

thesis focuses specifically on the determination of which brain MRI findings may be individual prognostic factors 

related to mortality and neurological outcome in patients with moderate or severe TBI, the discussion of clinical 
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prediction model studies is beyond its scope and the subsequent sections on prognostic systematic review and 

meta-analysis methods will focus specifically on the search and synthesis of prognostic factor studies. 

Prognostic Systematic Review Search Methods 

 In contrast to systematic reviews of interventions, undertaking a prognostic factor systematic review 

and meta-analysis implies the identification of observational cohort studies, the methodological design typically 

employed to study prognosis in defined populations over time.140,141 Major health research databases such as 

MEDLINE and EMBASE generally have robust indexation for randomized studies of interventions, in turn lending 

to the more straightforward and simple design of high accuracy validated search filters for primary studies of 

randomized trials.146–149 In contrast, observational cohort studies (and by extension studies of prognosis) have 

less detailed or easily navigable indexation, in part due to the variability of their study designs and the only recent 

development of consensus definitions to standardize their methodology and reporting. 

 To address this gap in methodology for systematic reviews of prognostic studies and to address the 

large volume of citations returned by text terms search alone, the Hedge’s Project undertaken at McMaster 

University’s Health Research and Information Unity has developed search filters specific to prognostic factor 

studies validated against a gold standard of hand searching and human review.150 High sensitivity search 

strategies specific to prognostic studies therefore exist for searching within MEDLINE151,152 and EMBASE,152,153 

albeit with far lower rates of precision than their counterparts designed for studies of therapy,146 therefore leading 

to higher volume overall of retrieved citations for title and abstract review. While similar formally validated filters 

for other major health research databases, such as BIOSIS, do not yet exist, our team’s in-house combination 

and conversion of indexing terms found in the MEDLINE and EMBASE search filters permitted the design of a 

novel filter specific to BIOSIS to serve as an adjunct to the two main prognostic search filters. 

Prognostic Meta-Analysis and Evidence Synthesis 

 Statistical methods for the pooling of aggregate data in univariable prognostic factor meta-analysis are 

similar to those employed for traditional pairwise meta-analysis of randomized studies of intervention. This 

requires the reviewers to extract, from each study, either dichotomous data on outcomes for each group with or 

without the prognostic factor (e.g. the number of participants who did or did not die among those with or without 

a specified lesion pattern on MRI, such as in the study conducted in the purvey of this thesis) or an estimate of 

the relationship between the prognostic factor and the defined outcome measure (e.g. the risk ratio for all-cause 

mortality in patients with TBI) with this estimate’s standard error (e.g. the standard error of the log risk ratio, or 

a method for calculating this such as the confidence intervals of the measure of association).132 Weighted data 

synthesis can then be undertaken using either the inverse variance or Mantel-Haenszel methods to generate 

pooled risk ratios with confidence intervals. Given that prognostic research is conducted in observational cohorts 
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that may vary significantly based on the population they were sampled from, the assumptions required for fixed-

effects analysis models generally do not hold and random-effects models should be employed exclusively.154 

 Beyond quantitative data analysis, evidence synthesis in meta-analysis also implies the critical 

appraisal of the underlying studies contributing to the pooled results. The Cochrane Collaboration suggests that 

the methodological quality of each primary study included in a systematic review and contributing data to the 

pooled results requires formal assessment for potential sources of bias, typically undertaken with a risk of bias 

tool.155 Subsequently, an overall judgement on the level of confidence in the quality of the evidence leading to 

the scientific conclusions drawn from each meta-analysis should be performed, usually via the Grading of 

Recommendations Assessment, Development and Evaluation (GRADE) approach, which is now considered a 

standard in determining strength of recommendations.132,156–159 In both these processes, the underlying 

methodology was initially designed for studies of intervention, typically assuming the targets of appraisal would 

be randomized trials of therapy; in prognostic factor systematic review, specific methodological adaptions must 

therefore be employed, adjusting judgments of bias or confidence to standards specific to this field and study 

type. 

Published initially in 2006160 and updated in 2013,161 the Quality in Prognostic Studies (QUIPS) tool has 

been developed and specifically validated for application to prognostic factor studies and is the most robust tool 

for assessing the risk of bias of included studies in systematic reviews and meta-analyses. In studies of 

prognostic factors, QUIPS critically appraises validity across six domains which may introduce bias: participation, 

attrition, prognostic factor measurement, confounding, outcome measurement, and analysis and reporting.161 

Reviewers acting as assessors make a judgement of low, moderate, or high risk of bias for each domain and at 

least two assessors are suggested to examine each study to form a consensus for each domain. Although not 

explicitly advocated by the tool’s developers, an overall judgment on a study’s risk of bias may be made by the 

two assessors, in weighing the final ratings of each of the domains. 

Prior to the availability of QUIPS, no validated tool existed for assessing risk of bias in prognostic factor 

studies. Adaptation of tools and checklists created to assess other forms of observational study designs were 

therefore alternative options for this task; the Quality Assessment of Diagnostic Accuracy Studies 

(QUADAS)162,163 and the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)164,165 

represented two such references previously used to create a standardized tool for prognostic systematic reviews 

in our institution prior to the availability of a final QUIPS tool.166 Despite the availability of QUIPS, the final risk of 

bias assessment strategy employed for this thesis also included the integration of selected searching questions 

from the QUADAS-2 and STROBE tools to both improve the robustness of risk of bias evaluation for each 

individual domain, but to also increase the emphasis on reporting quality, an area which in QUIPS is only 



 

21 

represented in a single domain.161 A final version of the adapted risk of bias tool used in this systematic review 

and meta-analysis is provided (sections 1.9 Appendix 2 and 2.13 Appendix 2). 

Assessing the level of confidence in effect estimates derived from analyses in prognostic factor 

systematic reviews is fundamentally different from studies of intervention where randomized, controlled trials are 

considered the benchmark for high-quality evidence and reports of observational studies are downgraded.167 In 

the adaptation of GRADE methodology for prognostic factor systematic reviews,168,169 observational evidence is 

recognized as beginning as high quality in the field of prognosis. Once this “phase of investigation” is determined, 

confidence can be subsequently rated down when evaluating the five GRADE domains of risk of bias, 

imprecision, inconsistency, indirectness, and publication bias, any one of which representing situations where 

quality of evidence may be compromised.168,169 Although routinely employed when assessing evidence in studies 

of intervention, the domains for rating up confidence (such as large effect size or exposure-response gradient) 

are less frequently applied to rating prognostic effect estimates as the definitions of when these become 

significant enough to be considered applicable is less well-defined in the prognostic literature.168  
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1.1 Résumé 

Introduction : Le traumatisme craniocérébral (TCC) est une condition aux conséquences dévastatrices avec 

un taux de mortalité et de morbidité élevés à long terme. Malgré le besoin d’indicateurs pronostiques objectifs 

permettant de guider la prise en charge clinique initiale, il existe peu des facteurs pronostiques utiles dans la 

phase aiguë. L’imagerie par résonance magnétique effectuée tôt durant la prise en charge a été étudiée comme 

outil pronostique, mais des doutes demeurent quant à sa valeur prédictive et sa capacité à distinguer quels 

types de lésions détectées en phase aiguë sont corrélés avec des issues cliniques à long terme. 

Méthodes : Nous entreprendrons une revue systématique d’études observationnelles de cohorte et d’essais 

cliniques randomisés chez les patients adultes ayant subi un TCC modéré ou grave chez lesquels une IRM 

cérébrale a été effectuée au cours de la phase aiguë de soins. Une stratégie de recherche ayant une sensibilité 

élevée sera employée dans les bases de données MEDLINE, EMBASE, BIOSIS, et Cochrane CENTRAL pour 

identifier les études. Deux réviseurs procéderont indépendamment à une sélection des références identifiées 

pour en déterminer l’éligibilité et extraire les données à l’aide d’un formulaire standardisé. Si la méta-analyse 

est possible, les données quantitatives pour chaque issue clinique seront analysées pour chaque type de lésion 

par des modèles à effets aléatoires exprimées en risque relatif par la méthode Mantel-Haenszel. L’hétérogénéité 

sera évaluée par la valeur statistique I2 et le risque de biais sera évalué avec des échelles standardisées. Des 

analyses de sous-groupes sont planifiées en fonction de la gravité du TCC, le délai de l’IRM post-TCC, 

l’amplitude du champ magnétique, les séquences IRM, le délai de l’évaluation de l’issue clinique, et du risque 

de biais des études. 

Discussion : Nous nous attendons à une hétérogénéité clinique importante étant donné que les études éligibles 

couvriront des périodes différentes de l'évolution de la technologie en IRM, et incluront probablement une 

variabilité importante des protocoles de séquences d'images et des délais d’acquisition post-traumatisme. Sur 

la base des études existantes, nous prévoyons que les lésions détectées dans le tronc cérébral auront une 

valeur prédictive importante. Notre revue systématique permettra aux cliniciens d'interpréter avec une meilleure 

précision l'IRM dans le contexte pronostique des patients atteints de TCC modéré ou grave et d'informer les 

chercheurs dans ce domaine afin d'améliorer la méthodologie des études futures. 

Enregistrement de la revue systématique : Prospero CRD42015017074 
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1.2 Abstract 

Background: Traumatic brain injury (TBI) is a devastating condition with significant long-term mortality and 

morbidity. Despite current need for objective indicators to guide initial decision-making, few reliable acute phase 

prognostic factors have been identified. Early magnetic resonance imaging (MRI) has been investigated as a 

prognostic tool, but uncertainty remains in both its discriminative predictive value and which acute phase lesion 

patterns correlate with long-term outcome. 

Methods: We will conduct a systematic review of observational cohort studies and randomized controlled trials 

of adult moderate or severe TBI patients who underwent MRI in the acute phase after trauma. A high sensitivity 

search strategy will be employed in MEDLINE, EMBASE, BIOSIS, and Cochrane CENTRAL to identify citations. 

Two reviewers will independently screen all identified references for eligibility and extract data into a 

standardized form. Data will be collected on study design, baseline demographics, trauma characteristics, 

magnetic resonance (MR) technical specifications, lesion patterns, and outcomes as related to acute MRI 

imaging. If meta-analysis is possible, quantitative data for each outcome will be pooled per type of lesion pattern 

using random effects models and expressed as Mantel-Haenszel relative risks in order to determine the 

prognostic value of lesions detected on acute MRI and their strength as discriminatory predictors of long-term 

outcome. Statistical heterogeneity will be evaluated with the I2 statistic, and risk of bias and reporting quality will 

be assessed with standardized scales. Subgroup analyses are planned as a function of TBI severity, MRI-timing 

post-TBI, MRI field strength, MRI sequence, timing of outcome assessment, and risk of bias. 

Discussion: We expect significant clinical heterogeneity, as eligible studies will likely encompass different 

periods in evolving MRI technology in addition to significant variability of image sequence protocols and timing 

of acquisition between centers. Based on existing studies in TBI, we expect lesions detected in the brainstem to 

be of significant predictive value. Our systematic review will allow clinicians to more accurately interpret MRI in 

the context of determining prognosis for moderate and severe TBI patients and inform researchers in this domain 

to improve the methodology of future studies. 

Systematic review registration: Prospero CRD42015017074 
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1.3 Background 

Traumatic brain injury (TBI) is a significant global health problem, with the 1.7 million cases occurring 

annually representing upwards of $60 billion of direct and indirect health care costs in the USA alone [1, 2]. 

Moderate and severe TBI are most often life-threatening conditions requiring immediate intensive care. The 

determination of long-term neurological prognosis is thus of importance as it may inform patients or their 

representatives and better guide critical level of intervention decision-making [3]. Few reliable prognostic factors 

currently exist in this domain, with the large-scale IMPACT study identifying only age, pupillary reactivity, and 

the motor subscale of the Glasgow Coma Scale (GCS) as independent predictors of outcome [4, 5]. Recently, 

certain biomarkers [6] have also shown promise as outcome indicators; however, none of these factors are 

presently appropriate for clinical use. 

Computed tomography (CT) currently plays a pivotal role in the immediate post-injury work-up where 

gross lesion characterization and indications for urgent surgical intervention must be rapidly established [7]. In 

the last four decades, magnetic resonance imaging (MRI) has emerged as a highly sensitive imaging tool in TBI. 

Its superiority compared to CT in detecting cerebral lesions in TBI, particularly non-hemorrhagic lesions and 

lesions localized to the posterior fossa, became evident just a few years following its clinical availability [8]. 

Visualization of the brainstem is especially crucial as a large volume of evidence from animal [9] and histological 

[10] studies have demonstrated that deeper, more caudally located lesions are correlated with greater severity 

of trauma. In continuity with this centripetal model [9] of brain injury, it has been proposed that such deeper 

lesions also have a greater significance on long-term outcome and may serve as prognostic indicators [11, 12]. 

Though several setbacks such as long imaging times and incompatibility of metallic objects have limited its use, 

advances in magnetic resonance technology are rapidly overcoming these obstacles giving MRI a growing role 

in the acute phase evaluation of TBI. 

Over the last several decades, numerous studies have investigated the predictive value of MRI lesions. 

Owing at least in part to the diversity of approaches possible in interpreting cerebral lesions induced by TBI and 

correlating them to unfavorable long-term outcome, the results of such studies have been variable to date and 

at times contradictory. We seek to systematically identify all studies in this domain and to methodically synthesize 

their data studying MRI as a prognosticator in moderate and severe TBI. Our primary objective is to determine 

the prognostic value of MRI in TBI by identifying the lesion patterns that significantly correlate with mortality and 

neurological outcome. We also seek to investigate sources of possible heterogeneity and evaluate the 

methodological quality of the included studies. 
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1.4 Methods 

1.4.1 Design 

A team of experts including intensivists, internists, epidemiologists, and a biostatistician collaborated to 

develop the research question and study design of this systematic review, in accordance with the methodological 

guidelines delineated in the Cochrane Handbook for Systematic Reviews and Meta-Analyses [13]. This protocol 

was registered in PROSPERO (CRD42015017074). The final manuscript will be written in accordance with the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations [14]. 

1.4.2 Information Sources and Search Strategy 

MEDLINE, EMBASE, BIOSIS, and the Cochrane Central Register of Controlled Trials (CENTRAL) will 

be systematically searched from their inception, with an update planned before submission for publication. A 

three-pronged search strategy maximizing sensitivity has been developed to identify studies investigating MRI 

as a prognostic tool in TBI. Free text keywords, as well as Medical Subject Heading (MeSH) and Emtree terms, 

linked with the Boolean operator “OR” were used to design each prong of the search strategy, with the three 

prongs linked with the operator “AND.” All strategies will be reviewed by an information specialist (health care 

librarian) for robustness. After selection is complete, the reference lists of included studies will be reviewed to 

identify any additional eligible studies. An example of our search strategy is provided (Appendix 1). 

1.4.3 Eligibility Criteria and Study Selection 

The following inclusion criteria will be utilized to determine study eligibility: (1) cohort studies and 

randomized controlled trials (2) investigating the prognostic value of standard structural MRI (3) performed in 

the acute phase (≤28 days post-trauma) (4) of moderate or severe TBI (≥50 % with GCS ≤12) (5) in an adult 

population (≥80 % of patients aged ≥18 years old) (6) reporting at least one of our outcome measures of interest 

(mortality, Glasgow Outcome Scale (GOS), or extended Glasgow Outcome Scale (GOSe) as defined below). 

Studies with a significant population (>10 %) of penetrating TBI will be excluded. There will be no restriction 

based on publication date or language; translators will be consulted for articles published in languages other 

than English or French. 

Two blinded reviewers will perform screening for study eligibility independently in a two-step process. 

Retrieved citations will initially be screened by title and abstract review for potential eligibility; retained studies 

will then be assessed by full-text analysis to confirm inclusion in the systematic review. A third reviewer will be 

consulted for arbitration in case of discordance. Reasons for exclusion at the full-text stage will be recorded and 

presented for transparency. 
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1.4.4 Data Collection 

Two reviewers will independently extract data into a standardized data abstraction form, with a third to 

be consulted in cases of discordance. The following set of data will be extracted from each study: (1) study 

design, such as year, setting, study type, sample size, duration of follow-up, inclusion and exclusion criteria, 

sources of funding, and conflicts of interest; (2) patient characteristics, such as age, sex, comorbidities, and 

mechanism of injury; (3) therapeutic and supportive measures, such as use of mechanical ventilation, 

intracranial drains, and surgical intervention; (4) characteristics of the magnetic resonance imaging modality, 

such as time to scan, field strength, brand, sequences taken, and image plane; and (5) measures of outcome 

presented in relation to MRI image characteristics, such as lesion localization, lesion type, lesion size, and 

radiological scores, stratified by image sequence when possible. The initial data abstraction form will be piloted 

on five studies to ensure robustness, with subsequent modifications for thoroughness if necessary. 

To avoid duplication, if the same study is published more than once, either the most complete article 

will be retained or all articles will be extracted and presented as a single study in analyses. 

1.4.5 Assessment of Methodological Quality 

The methodological quality of any randomized controlled trials (RCTs) included in this systematic review 

will be evaluated with the Cochrane Collaboration’s risk of bias tool [13]. However, given that this is a prognostic 

systematic review and that we predict that the majority of the studies eligible for this review will have 

observational cohort designs, we modified the Quality in Prognostic Studies (QUIPS) tool [15] to develop a 26-

item checklist appropriate for the evaluation of the risk of bias of such studies (see Additional file 2 for the 

complete tool). The QUIPS tool is a validated method for assessing the risk of bias in prognostic factor studies; 

we supplemented its list of searching questions with excerpts from the QUADAS-2 tool [16, 17] for additional 

rigor as we felt that neither framework alone encompassed all relevant questions regarding risk of bias. The 

STROBE statement’s [18] 22-item checklist will be used to evaluate the reporting quality of the included studies. 

By performing these assessments independently and in parallel, we seek to differentiate between 

methodological bias and omissions in reporting in the primary studies. Summaries of these evaluations will be 

presented in a graphical format to offer precise recommendations for future studies in this domain and, in the 

case of the risk of bias assessment, to also guide subgroup analysis. Both risk of bias and reporting quality 

evaluations will be performed independently by two reviewers. 

1.4.6 Quality of Evidence 

An adaptation of the GRADE framework for prognostic studies [19] will be employed to judge the quality 

of evidence for each outcome reported in this systematic review. 
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1.4.7 Outcomes 

Our primary outcomes will be mortality and unfavorable long-term Glasgow Outcome Scale (GOS or 

GOSe), defined as either a GOS of 1–3 or a GOSe of 1–4. Our secondary outcomes include duration of hospital 

stay, duration of ICU stay, any reported scales employed by the included studies to determine patient function 

(such as the Disability Rating Scale (DRS), the Craig Handicap Assessment and Rating Technique (CHART), 

and mini-mental state examination (MMSE)), and all other possible clinical end-point measures (such as coma 

duration, probability of readmission, and duration of rehabilitation). 

1.4.8 Statistical Analysis and Data Synthesis 

Data will be presented in a descriptive manner. Nominal variables and count data will be reported using 

proportions while continuous variables will be presented as either means with standard deviations or medians 

with ranges, depending on what is reported in the primary studies. If reported, effect measures will be presented 

in both their adjusted forms and unadjusted forms where possible. The number of studies reporting each type of 

lesion pattern in relation to outcome will be reported. 

If meta-analysis is possible, random effects models will be employed. Dichotomous outcomes will be 

presented as risk ratios (RR) with accompanying 95 % confidence intervals (CIs) and forest plots, as generated 

with the Mantel-Haenszel method using Cochrane Review Manager version 5.2 (The Cochrane Collaboration, 

Copenhagen, Denmark, 2012). Data from the mortality and GOS will be presented at hospital discharge, 3, 6, 

and 12 months or beyond, according to the availability of the data. 

Ordinal data will be presented in tabular format, with risks and relative risks for each study accompanied 

by 95 % CIs calculated using exact formulas. P values for global and trend tests will be computed for each study 

using SAS 9.3 (SAS Institute Inc., Cary, NC, USA, 2011). Ordinal data from radiological scores will also be 

dichotomized, when possible, according to the presence or absence of brainstem lesions and pooled using the 

same meta-analytical methods for dichotomic data as described above. 

Heterogeneity will be evaluated by the I2 statistic and interpreted via the recommended standard 

categorization of negligible (<40 %), moderate (30–60 %), substantial (50–90 %), or considerable (75–100 %) 

[13]. Where permitted by the data available, sensitivity and subgroup analyses will be undertaken to explore 

sources of heterogeneity and test the robustness of the results. Such analyses will be performed in regard to 

minimal age of inclusion, severity of TBI, timing of MRI post-TBI, MRI field strength, MRI sequence, timing of 

outcome assessment, inter-rater reproducibility of image analysis, timing of outcome assessment, rehabilitation 

strategies, and study risk of bias. Visual analysis of funnel plots will be used to evaluate the presence and degree 

of publication bias. 
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1.5 Discussion 

Determination of long-term prognosis is an important step in the acute evaluation of moderate and 

severe TBI patients, particularly since a large proportion of such patients are young [1] with few or no comorbid 

conditions. Although a significant body of evidence has shown that MRI is superior to CT in detecting most types 

of traumatic parenchymal lesions [8, 20], only the latter is currently routine whereas use of the former remains 

sporadic in the acute phase. While the presence of several different lesion types, particularly those attaining the 

brainstem, has been correlated with severity of trauma [9, 10], the role of employing sensitive imagery such as 

MRI as an early prognosticator is not yet clear. In TBI patients, doubt remains concerning both the discriminatory 

ability of early MRI as well as which specific lesion patterns yield the highest prognostic information. 

This project seeks to identify, class, and synthesize all existing original research with data relating 

lesions identified on acute MRI to clinical outcome in moderate and severe TBI patients. Our proposed 

systematic review of prognostic studies is based on well-recognized methodological [13, 16] and reporting [14] 

recommendations. It will determine the lesion patterns and radiological characteristics identifiable on acute MRI 

that correlate with the long-term outcome of patients having suffered moderate or severe TBI. By summating all 

existing evidence in the domain, the results of this systematic review will thus seek to conclusively inform 

clinicians and decision-makers on the significance, if any, of information provided by acute MRI in TBI and to 

explicitly establish its pertinence in the early management of moderate and severe TBI. Furthermore, by 

methodically classifying existing evidence and evaluating its risk of bias, our review seeks to also inform 

investigators of future studies in order to improve consistency in the approach to image interpretation and 

establish areas where further research is required. 

Despite our intention to use a rigorous methodology and to employ a widely accepted statistical model 

for data analysis, we expect to likely encounter elevated clinical and statistical heterogeneity in the majority of 

our primary analyses. We anticipate this variability due to several factors, the most notable being that we expect 

that the majority of included studies will be of an observational cohort design. The pool of eligible studies will 

likely also encompass a significant variability in technical characteristics, due to both the evolution of MRI 

technology since its clinical introduction, as well as differences in sequence protocols and timing of imaging 

between study centers. Moreover, the method of image interpretation and lesion characterization is often 

variable, making it difficult to compare results across studies. To address such concerns regarding methodology, 

this systematic review will provide a global analysis of the quality of the evidence through the evaluation of both 

the risk of bias and the reporting quality of all the included studies via standardized assessment tools. The final 

resultant of this review will thus be both a systematic aggregate of the evidence that exists on the subject of 

prognostication in TBI via MRI as well as a critical appraisal of the methodology employed in this domain to 
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ultimately also improve the quality of future studies. Our team plans to disseminate the results of the systematic 

review via presentation at research conferences and by publishing the results in a peer-reviewed journal. 
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1.8 Appendix 1: Example of MEDLINE Search Strategy 

1. ((brain[TIAB] OR brains[TIAB] OR brainstem*[TIAB] OR head[TIAB] OR heads[TIAB] OR 

craniocerebral*[TIAB] OR intracrani*[TIAB] OR intra-crani*[TIAB] OR intercrani*[TIAB] OR inter-crani*[TIAB] 

OR cerebr*[TIAB] OR cerebel*[TIAB] OR forebrain*[TIAB]) AND (injury*[TIAB] OR injuries[TIAB] OR 

injured[TIAB] OR trauma[TIAB] OR traumas[TIAB] OR traumatic*[TIAB] OR traumato*[TIAB] OR 

damag*[TIAB])) OR TBI[TIAB] OR Craniocerebral Trauma[MeSH:NoExp] OR 

Brain Injuries[Mesh:NoExp] OR Brain Hemorrhage, Traumatic[Mesh] OR Diffuse Axonal Injury[Mesh:NoExp] 

OR Coma, Post-Head Injury[Mesh:NoExp] OR Head Injuries, Closed[Mesh:NoExp] OR Intracranial 

Hemorrhage, Traumatic[Mesh] 

2. magnetic resonanc*[TIAB] OR “diffusion weighted”[TIAB] OR “diffusion tensor”[TIAB] OR MRI[TIAB] OR 

MR[TIAB] OR fMRI [TIAB] OR dMRI[TIAB] OR MRS[TIAB] OR MRA[TIAB] OR DTI[TIAB] OR DWI[TIAB] OR 

“T1- weighted”[TIAB] OR “T1 weighted”[TIAB] OR T1WI[TIAB] OR T1[TIAB] OR T1rho[TIAB] OR “T2-

weighted”[TIAB] OR “T2 weighted”[TIAB] OR T2WI[TIAB] OR T2[TIAB] OR “T2*-weighted”[TIAB] OR 

“T2*WI”[TIAB] OR “T2*”[TIAB] OR “T2*-Gradient Echo”[TIAB] OR “T2*-GRE”[TIAB] OR “Fluid attenuated 

inversion recovery”[TIAB] OR FLAIR[TIAB] OR “Susceptibility weighted”[TIAB] OR SWI[TIAB] OR 

“Magnetic Resonance Imaging”[MeSH:NoExp] OR “Diffusion Magnetic Resonance Imaging”[MeSH:Exp] OR 

“Echo-Planar Imaging”[MeSH:NoExp] OR “Magnetic Resonance Angiography”[MeSH:NoExp] OR “Magnetic 

Resonance Imaging, Interventional”[MeSH] 

3. Incidence[MeSH:NoExp] OR Mortality[MeSH Terms] OR Follow Up Studies[MeSH:NoExp] OR pognos*[Text 

Word] OR predict*[Text Word] OR course*[Text Word] 

4. #1 AND #2 AND #3 

5. animals[MeSH] NOT humans[MeSH] 

6. #4 not #5 
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1.9 Appendix 2: Evaluation of Risk of Bias 

 

Domain Description Judgment 
Risk of 

bias 

Applicabili

ty 

concerns 

01. Study Participation 

Was consecutive or 

appropriate random 

sampling used to enroll 

patients? (As opposed to 

voluntary sampling) 

Describe methods of patient 

selection  

Describe included patients 

(previous testing, presentation, 

intended use of index test, and 

setting) 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Was there adequate 

participation in the study 

by eligible individuals?  

Low risk if: 

- Majority (≥85%) of individuals 

meeting eligibility criteria 

participated in study 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Was a case-control 

design avoided? 

Low risk if: 

- Consecutive or random 

selection 

*Careful in distinguishing bias 

vs. applicability concerns: 

judgement call 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Did the study avoid 

inappropriate exclusions? 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Are there concerns that 

the included patients do 

not match the review 

question? 

- All adult (no paediatric) 

population 

- Moderate or severe 

- All pathologies are TBI 

- Blunt head injury (no 

penetrative) 

□ Adults  

□ Moderate 

or severe  

□ Blunt TBI 

  

Overall 

The study sample represents 

the population of interest on 

key characteristics, sufficient to 

limit potential bias of the 

observed relationship between 

the prognostic factor and 

outcome 

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 

02. Prognostic Factor Measurement 

Blinding 

Were the prognostic 

marker results interpreted 

without knowledge of 

clinical data?  

Describe the prognostic marker 

and how it was conducted and 

interpreted 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Was the method of 

prognostic factor 

measurement adequately 

valid to and reliable to 

limit misclassification 

bias? 

Low risk if: 

- Method of measurement 

recognized as valid or standard 

of practice in the domain 

- Information on 

reliability/validity of method of 

measurement presented (ex. 

Cohen’s kappa, etc.) 

- Diagnostic criteria presented 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Inter-rater agreement  

Was inter-rater 

agreement evaluated via 

a statistical measure (ex. 

Cohen’s kappa)? 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 
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If a threshold was used, 

was it specified a priori? [ 

□ Not applicable ] 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Were diagnostic criteria 

for prognostic factors 

well-defined? 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Are there concerns that 
the prognostic marker, its 
conduct, or its 
interpretation differ from 
the review question? 
(including timing of 

assessment) 

Low risk if: 

- The method and setting of 

measurement of the prognostic 

factor is the same for all 

participants 

Applicability concern if: 

- Prognostic marker not 

associated to specific sequence 

(applicability issue; bias unlikely 

to be affected) 

- Prognostic marker (MRI) 

measured over very long period 

□ Specific 

sequence  

□ Measured 

at specific 

time or over a 

short time 

window 

□ High  

□ Low  

□ Unclear 

  

Overall 

The prognostic factor is 

adequately measured in study 

participants to sufficiently limit 

potential bias. 

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 

03. Outcome Measurement 

Was the outcome 

measurement adequate 

(evaluated reliably and 

validly)? 

Describe the outcome 

measurement and how it was 

conducted and interpreted 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

 

 

 

Were all patient 

outcomes evaluated 

identically? 

(method/setting 

standardized) 

Low risk if:  

- Data on reliability/validity 

- Similar method of evaluation 

for all subjects 

- Outcome evaluator blinded to 

patient history 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Blinding 

Were the outcome results 

interpreted without 

knowledge of the results 

of the prognostic 

markers? 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Are there concerns that 
the prognostic marker, its 
conduct, or its 
interpretation differ from 
the review question? 
(including timing of 

assessment) 

Applicability concern if: 

- Outcome measure reported 

as a binomial variable with a 

cut-off different from our review 

- Outcome is measured or 

timing reported over very long 

intervals 

- Minimum 1 measure of 

outcome at ≥6 months post-TBI 

□ Same cut-

off 

□ Specific 

timing of 

assessment 

or short time 

window  

□ Minimum of 

1 measure at 

≥6 months 

post-TBI 

  

Overall 

The outcome of interest is 

adequately measured in study 

participants to sufficiently limit 

potential bias. 

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 
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04. Study Attrition 

Was the response rate 

(proportion of baseline 

sample completing the 

study and providing 

outcome data) adequate? 

Are there subjects not 

included in the analysis? 

Low risk if: 

- < 15% lost to follow-up 

- Loss to follow-up but with 

multiple imputation method 

- Intent-to-treat analysis 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Were all subjects 

included in the analysis? 

(Loss to follow-up? 

Withdrawal? Subjects not 

tested? Missing data? 

Etc.) 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Were attempts made to 

collect information on 

participants who dropped 

out or were lost to follow-

up? 

Reasonable attempts were 

made by investigators to 

acquire information on 

participants who did not 

complete the study and 

characterize them 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Are baseline 

characteristics and 

outcomes similar in 

patients who completed 

the study compared to 

those who did not? 

Low risk if: 

No important differences 

between participants having 

completed the study and those 

who did not 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Overall 

The loss to follow-up or missing 

data affects a small proportion 

of the study participants and is 

not associated with key 

characteristics sufficient to limit 

potential bias to the observed 

relationship between the 

prognostic factor and outcome 

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 

05. Timing 

Was there an appropriate 

interval between the 

prognostic marker and 

the outcome 

measurement? 

(Biologically plausible, 

sufficient duration for 

outcome to occur) 

Describe the interval between 

prognostic markers and the 

outcome measurement 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Low risk if: 

- Mortality or GOS measured at 

hospital discharge or later 

Overall 

The interval of time between 

measurements of the 

prognostic factor and outcome 

is adequate to respond to the 

study hypothesis  

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 

06. Study Confounding 

Did the study adequately 

control for potential 

confounders? 

 

Describe any method used to 

control for potential 

confounding 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 
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Are important potential 

confounders accounted 

for in the analysis? 

Low if: 

- Adjustment for: age, motor 

subscale of the GCS, and 

pupillary reactivity 

High if: 

- No adjusted measure reported 

- Inadequate adjustment 

(important variables not taken 

into account, improper 

statistical method used (ex. 

forward model)) 

Are the measurements of 

all important confounders 

adequately valid and 

reliable? 

Method of measurement 

recognized as valid or standard 

of practice in the domain □ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

The method and setting of 

confounding measurement are 

the same for all study 

participants 

Overall 

Important potential confounders 

are appropriately accounted for, 

limiting potential bias with 

respect to the relationship 

between the prognostic factor 

and outcome. 

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 

07. Statistical Analysis 

Are the statistical 

methods employed in the 

study adequate? 

The statistical tests/methods 

are appropriate for the type of 

data analyzed and are 

adequate for testing the study 

hypothesis 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Is the model development 

strategy adequate (if 

applicable)? 

The strategy for model building 

is appropriate and is based on 

a conceptual framework or 

model 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

The selected statistical model is 

adequate for the design of the 

study. 

Were all statistical 

analyses pre-specified? 

Low if: 

- No post-hoc data analysis 

Reviewer’s judgement if: 

- Post-hoc analysis clearly 

identified as such and 

adequately justified in 

discussion 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Overall 

The statistical analysis is 

appropriate for the design and 

hypothesis of the study, limiting 

potential for invalid or spurious 

results. 

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Modified from: 

• Hayden JA, van der Windt DA, Cartwright JL, Cote P, Bombardier C. Assessing bias in 
studies of prognostic factors. Annals of Internal Medicine. 2013;158(4):280-6. 

• Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al. 
QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. 
Annals of Internal Medicine. 2011;155(8):529-36 
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2.1 Résumé 

Objectifs : Le traumatisme craniocérébral (TCC) constitue une cause majeure de mortalité et d’incapacités. 

Cependant, la plupart des indicateurs pronostiques ne sont pas suffisamment précis pour guider la prise en 

charge initiale. Bien que l’imagerie par résonance magnétique (IRM) soit de plus en plus utilisée dans la phase 

aiguë du TCC, sa valeur pronostique reste incertaine. Nous avons donc entrepris une revue systématique et 

méta-analyse des études évaluant la valeur prédictive des lésions identifiées sur l’IRM aiguë pour la prédiction 

d’issue clinique des patients ayant subi un TCC modéré ou grave. 

Sources des données : MEDLINE, EMBASE, BIOSIS, et CENTRAL de leurs dates de création à novembre 

2015. 

Sélection des études : Les études sur les patients adultes ayant subi un TCC modéré ou grave et soumis à 

une IRM cérébrale dans la phase aiguë de soins. Les issues principales évaluées étaient la mortalité et l’échelle 

de devenir de Glasgow (« Glasgow Outcome Score », GOS). 

Extraction des données : La sélection des études et l’extraction des données ont été effectuées 

indépendamment par deux auteurs. Nous avons calculé les risques relatifs (RR) avec un modèle à effets 

aléatoires, évalué le risque de biais à l’aide d’une version modifiée de l’outil « Quality in Prognostic Studies », 

et déterminé le niveau de preuve avec la méthode de « Grading of Recommendations, Assessment, 

Development, and Evaluation ». 

Résultats : Nous avons inclus 58 études parmi lesquelles 27 (n = 1,652) ont contribué à la méta-analyse. La 

présence des lésions au tronc cérébral était associée avec la mortalité toutes causes confondues (RR, 1.78; 

95% IC, 1.01–3.15; I2 = 43%) ainsi qu’à une évolution défavorable (RR, 2.49; 95% IC, 1.72–3.58; I2 = 81%) à 6 

mois et plus. La présence de lésions de type axonales diffuses était associée à un risque significativement plus 

élevé de GOS défavorable (RR, 2.46; 95% IC, 1.06–5.69; I2 = 74%). Le niveau de gravité identifié à l’IRM sur 

une échelle basée sur la profondeur des lésions cérébrales montrait que le risque de GOS défavorable 

augmentait avec la quantité de structures caudales atteintes. La plupart des études présentaient un risque élevé 

de biais méthodologique. 

Conclusions : Suite à un TCC, l’IRM fournit des informations pronostiques importantes, les types de lésions 

cérébrales étant significativement associés à la survie à long terme et au pronostic neurologique. Compte tenu 

du risque élevé de biais des études sur ce sujet, des études d’envergure et bien exécutées sont nécessaires 

pour mieux quantifier le rôle pronostique de l'IRM aiguë effectuée suite à un TCC modéré ou grave. 
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2.2 Abstract 

Objectives: Traumatic brain injury is a major cause of death and disability, yet many predictors of outcome are 

not precise enough to guide initial clinical decision-making. Although increasingly used in the early phase 

following traumatic brain injury, the prognostic utility of MRI remains uncertain. We thus undertook a systematic 

review and meta-analysis of studies evaluating the predictive value of acute MRI lesion patterns for 

discriminating clinical outcome in traumatic brain injury. 

Data Sources: MEDLINE, EMBASE, BIOSIS, and CENTRAL from inception to November 2015.  

Study Selection: Studies of adults who had MRI in the acute phase following moderate or severe traumatic 

brain injury. Our primary outcomes were all-cause mortality and the Glasgow Outcome Scale.  

Data Extraction: Two authors independently performed study selection and data extraction. We calculated 

pooled effect estimates with a random effects model, evaluated the risk of bias using a modified version of 

Quality in Prognostic Studies and determined the strength of evidence with the Grading of Recommendations, 

Assessment, Development, and Evaluation. 

Data Synthesis: We included 58 eligible studies, of which 27 (n = 1,652) contributed data to meta-analysis. 

Brainstem lesions were associated with all-cause mortality (risk ratio, 1.78; 95% CI, 1.01–3.15; I2 = 43%) and 

unfavorable Glasgow Outcome Scale (risk ratio, 2.49; 95% CI, 1.72–3.58; I2 = 81%) at greater than or equal to 

6 months. Diffuse axonal injury patterns were associated with an increased risk of unfavorable Glasgow 

Outcome Scale (risk ratio, 2.46; 95% CI, 1.06–5.69; I2 = 74%). MRI scores based on lesion depth demonstrated 

increasing risk of unfavorable neurologic outcome as more caudal structures were affected. Most studies were 

at high risk of methodological bias. 

Conclusions: MRI following traumatic brain injury yields important prognostic information, with several lesion 

patterns significantly associated with long-term survival and neurologic outcome. Given the high risk of bias in 

the current body of literature, large well-controlled studies are necessary to better quantify the prognostic role of 

early MRI in moderate and severe traumatic brain injury. 
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2.3 Introduction 

Traumatic brain injury (TBI) is the primary cause of mortality in North Americans under the age of 45 

(1). Among survivors, nearly half of those with moderate or severe TBI suffer long-term disability (2), representing 

more than 1% of the general population in the United States (3). Early assessment of prognosis plays a 

fundamental role in clinical decision-making and permits counselling of patients and their families (4, 5). 

However, few independent predictors of outcome have been established (6), and existing risk prediction models 

are limited in their clinical utility (7). 

In animal models, the depth of traumatic brain lesions directly relates to the severity of traumatic insults 

(8). Lesion depth also correlates with mortality and duration of coma in postmortem neurohistologic studies in 

humans (9, 10). This evidence has given rise to the “centripetal model” of TBI, where the grade of injury is 

determined by the most caudal cerebral structure afflicted by shearing injury (10). 

Applying this model in vivo to prognosticate TBI is challenging. Although nearly all patients with TBI 

undergo CT, this modality lacks sensitivity for detecting deep cerebral lesions, in part due to image artefacts in 

the posterior fossa. MRI is being increasingly employed and has been found to be superior for detecting 

nonhemorrhagic intraparenchymal lesions, brain stem lesions, and shear injury considered to represent diffuse 

axonal injury (DAI) (11, 12). Studies indicate that CT may miss up to 30% of abnormalities detected by MRI (13); 

however, the prognostic significance of these lesions is uncertain. 

Although numerous studies have investigated the predictive ability of various acute phase MRI lesions, 

considerable equipoise persists in the role of MRI for predicting long-term clinical outcome in TBI. We undertook 

a systematic review to evaluate the prognostic value of MRI following moderate and severe TBI by determining 

which lesion patterns, if any, correlated with all-cause mortality and neurologic outcome. We further sought to 

evaluate the methodological quality of the prognostic studies in this domain and investigate sources of clinical 

heterogeneity to inform the design of future studies. 

2.4 Methods 

2.4.1 Design 

We conducted a prognostic systematic review and meta- analysis of studies relating acute MRI lesions 

to clinical outcomes in TBI in accordance with our published protocol (14) (PROSPERO CRD42015017074). 

Our design adheres to the recommendations outlined in the “Cochrane Handbook for Systematic Reviews and 

Meta-Analysis” (15) and the emerging body of methodology on prognostic systematic reviews (16–19), with 

reporting based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (20, 21). 
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2.4.2 Search Strategy 

We systematically searched MEDLINE, EMBASE, BIOSIS, and Cochrane CENTRAL from their 

inception dates to November 2015. In collaboration with an information specialist, we developed search 

strategies specific to each database comprised of broad keywords and indexing terms combined with validated 

high-sensitivity filters for prognostic studies (for full MEDLINE strategy, see Appendix 1, Supplemental Digital 

Content 1, http:// links.lww.com/CCM/C871) (22, 23). Citations were managed with Endnote (version X7.5, 

Thomson Reuters, Toronto, Canada). 

2.4.3 Study Selection and Eligibility Criteria 

Following removal of duplicates, two reviewers (H.H., M.L.) independently undertook screening of titles 

and abstracts, followed by full-text review of retained articles. Discrepancies were resolved by consensus with 

a third author (A.F.T.). 

We included cohort studies that investigated the prognostic value of structural MRI undertaken in the 

acute phase (≤ 28 d) of moderate or severe TBI (≥ 50% of participants with initial Glasgow Coma Scores [GCS] 

≤ 12). We restricted inclusion to studies with an adult population reporting at least one of our primary outcomes 

of interest: mortality, Glasgow Outcome Scale (GOS), or extended GOS (GOSe). No restriction was placed on 

duration of follow-up, publication date, or publication language. Translators were consulted for articles published 

in languages other than English or French. 

2.4.4 Data Extraction 

Two reviewers (H.H., V.D.) independently collected study-level data using a standardized and piloted 

form. Discrepancies were resolved through consensus with a third reviewer (A.F.T.). We extracted information 

relating to study design and funding, patient demographics, clinical scores, CT findings, therapeutic and 

supportive measures, MRI technical characteristics, and measures of outcome presented relative to MRI findings 

such as lesion localization, lesion type (focal or diffuse), lesion size, and radiologic scores. When available, data 

stratified by TBI severity and image sequence were extracted. 

Our primary outcomes were all-cause mortality and unfavorable GOS or GOSe (24). When the GOS or 

GOSe was dichotomized by the authors, their original definitions of unfavorable neurologic outcome were 

retained. If data were provided for the entire spectrum of the scores, we dichotomized the scores to define 

unfavorable neurologic outcome as GOS 1–3 and GOSe 1–4. Secondary outcomes included hospital and ICU 

length of stay, coma duration, and any clinical scales reporting patient function or outcome. In cases where 

patient outcome was assessed at multiple time points, we abstracted data separately for each time point. 



 

43 

In instances where the same study was published more than once, either the most complete article was 

retained or data from all articles were combined and presented as a single study in the analyses. 

2.4.5 Assessment of Risk of Bias and Strength of Evidence 

 We evaluated methodological quality with a modified version of the Quality in Prognostic Studies tool 

(17), a validated method for assessing risk of bias in prognostic factor studies designed for use in prognostic 

systematic reviews. To increase rigor, our team further supplemented its list of searching questions with 

additional items from the Quality Assessment of Diagnostic Accuracy Studies-2 tool (25), creating a 26-item 

checklist (Appendix 2, Supplemental Digital Content 2, http://links.lww.com/CCM/C872). Studies were deemed 

to have adequately controlled for potential confounding if established strong independent prognostic variables 

(age, GCS, and pupillary reactivity) (6) were appropriately accounted for in their statistical analyses. 

The strength of evidence for our primary outcomes was assessed by the modified Grading of 

Recommendations, Assessment, Development, and Evaluation (GRADE) approach for prognostic studies (18, 

19) to determine the level of confidence in the pooled effect measures and provide an assessment of overall 

external validity. The quality of evidence was classified as high, moderate, low, or very low for each major 

association of lesion pattern and primary outcome measure. 

2.4.6 Statistical Analysis and Data Synthesis 

We reported categorical variables using proportions and continuous variables using means with SDs 

or medians with ranges. We performed meta-analysis with random effects models. Pooled dichotomous 

outcomes are presented as Mantel-Haenszel risk ratios (RRs) with 95% CIs. Meta-analysis for mortality and 

GOS outcome data was performed at all available time points in addition to global pooling at the measurement 

furthest from injury. 

Ordinal data are presented in tabular format for each individual study as RR accompanied by 95% CI, 

with the lowest lesion grade taken as the reference category. Data from radiologic scores were also dichotomized 

according to the presence or absence of brainstem lesions and pooled using the meta-analytic technique 

presented above. 

Between-study heterogeneity was evaluated with the I2 statistic, and publication bias was evaluated by 

visual inspection of funnel plots for primary outcomes (15). 

Subgroup and sensitivity analyses based on a priori specified hypotheses were undertaken to explore 

potential sources of heterogeneity. These analyses were based on clinical (TBI severity, lesion localization, 

lesion laterality, timing of outcome assessment, timing of MRI, MRI field strength, MRI sequence) and 
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methodological (adequate control for confounding, study risk of bias) characteristics. Analyses were performed 

for each lesion pattern when possible, dependant on the number of included studies and availability of outcome 

measures. 

A two-tailed alpha of 0.05 was used for all tests and CIs. All analyses were performed with Review 

Manager (Version 5.3; Cochrane Collaboration, Copenhagen, Denmark). 

2.5 Results 

Our search strategy yielded 26,932 unique citations. A total of 67 articles representing 58 unique studies 

(n = 3,306 patients) met eligibility criteria and were included in our systematic review (Fig. 1). All studies 

contributed to demographic data (Supplemental Table 1, Supplemental Digital Content 3, http://links.lww.com/ 

CCM/C873). Fifty-five studies contributed to outcome data, and 27 (n = 1,652 patients) subsequently underwent 

meta-analysis. 

All included studies were observational cohorts with sample sizes ranging from 10 to 167 participants. 

Mean age was 34.4 (± 5.8) years, and males represented 75% of all subjects. Mortality, GOS, and GOSe 

outcomes were reported in 47 (81%), 37 (64%) and 10 (17%) studies, respectively. Outcome measurement was 

most frequently performed at 6 months but ranged from time of hospital discharge to 51 months. At the end of 

follow-up, overall mortality was 18.1%, and 41.5% of participants had an unfavorable neurologic outcome 

(Supplemental Table 1, Supplemental Digital Content 3, http:// links.lww.com/CCM/C873). 

MRI was performed at a mean of 9.7 days post-TBI. The majority (n = 34) of studies employed MRI 

scanners with 1.5 Tesla (T) magnetic fields; eight had high-power (3.0 T) magnetic fields, and eight had magnetic 

fields inferior to 1.5 T. Four sequences were included in approximately half or more of the imaging protocols: 

T1-weighted (T1) (86% of studies), T2-weighted (T2) (76%), T2 gradient echo (T2*-GRE) (45%), and Fluid 

Attenuated Inversion Recovery (49%). Other imaging sequences were employed less commonly; MRI protocols 

for head trauma generally varied greatly (Supplemental Table 2, Supplemental Digital Content 4, 

http://links.lww.com/CCM/C874). 

Three studies (26–34) were attributed an overall low risk of bias. Forty-six studies (12, 35–82) were at 

high risk of bias (Supplemental Fig. 1, Supplemental Digital Content 5, http:// links.lww.com/CCM/C875; legend, 

Supplemental Digital Content 15, http://links.lww.com/CCM/C885) with significant methodological concerns 

primarily driven by inadequate control for confounding (n = 37) and lack of consecutive patient enrollment (n = 

21). 
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The presence of one or more brainstem lesions on MRI significantly increased the risk of all-cause 

mortality (five studies; n = 428 patients; RR, 1.78: 95% CI, 1.01–3.15; I2 = 43%) (Fig. 2) and unfavorable GOS 

(12 studies; n = 775 patients; RR, 2.49; 95% CI 1.72–3.58; I2 = 81%) (Fig. 3). Subgroup analysis of studies 

including only patients with severe TBI (GCS ≤ 8) yielded similar results to those including both moderate and 

severe TBI (GCS ≤ 12) (six studies; n = 289 patients; RR, 1.94 for unfavorable GOS; 95% CI, 1.38–2.73; I2 = 

63%) (Supplemental Fig. 2, Supplemental Digital Content 6, http:// links.lww.com/CCM/C876; legend, 

Supplemental Digital Content 15, http://links.lww.com/CCM/C885) (p = 0.20 for subgroup difference). Meta-

analysis of data on the impact of brainstem lesions on GOS exhibited considerable statistical heterogeneity; 

however, this was reduced when assessing the brain stem with respect to its anatomical subdivisions (midbrain, 

pons, and medulla). Although statistically significant relationships with long-term GOS were maintained in the 

midbrain and pons, this was not the case in the medulla, possibly due to inadequate power or fewer patients 

with such lesions surviving to the time of MRI (Supplemental Fig. 3, A–C, Supplemental Digital Content 7, 

http://links.lww.com/ CCM/C877; legend, Supplemental Digital Content 15, http:// links.lww.com/CCM/C885). 

Lesions in the corpus callosum were not found to be associated with long-term GOS (eight studies; n 

= 590 patients; RR, 1.28; 95% CI, 0.71–2.30; I2 = 77%) (Supplemental Fig. 4, Supplemental Digital Content 8, 

http://links.lww.com/CCM/C878; legend, Supplemental Digital Content 15, http://links.lww.com/CCM/ C885). 

Data on the effect of lesions localized at other regions of the brain such as the cortex, the lobar white matter, 

the thalamus, the basal ganglia, and the cerebellum were also systematically extracted but were too sparse to 

be pooled for meta-analysis. 

Focal cerebral lesions, including cerebral contusions and extra- axial hemorrhages, did not demonstrate 

significant relationships with long-term outcome (Supplemental Table 3, Supplemental Digital Content 9, 

http://links.lww.com/CCM/C879). The presence of shear injury compatible with DAI was significantly associated 

with unfavorable GOS (eight studies; n = 359 patients; RR, 2.46; 95% CI, 1.06–5.69; I2 = 74%) (Fig. 4), but this 

analysis exhibited substantial heterogeneity. Subgrouping studies with a strictly severe TBI (GCS ≤ 8) population 

from those also including both severe and moderate TBI (GCS ≤ 12) resolved a large proportion of this 

heterogeneity (three studies; n = 230 patients; RR, 4.23; 95% CI, 1.40–12.80; I2 = 35%) (Fig. 4) with no 

statistically significant difference between the two subgroups (p = 0.10). The remaining het- erogeneity was 

further resolved in sensitivity analyses examining only studies employing either susceptibility weighted imaging 

or T2*-GRE sequences sensitive for the detection of shear injury patterns, with both sub- groups of GCS severity 

demonstrating statistically significant associations with unfavorable GOS (Supplemental Fig. 5, Supplemental 

Digital Content 10, http://links.lww.com/CCM/C880; legend, Supplemental Digital Content 15, 

http://links.lww.com/CCM/C885). 
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Four studies (43, 45, 58, 61) graded brain lesions on MRI using a radiologic score initially developed 

by Firsching et al (43). Three studies (12, 26, 28, 29) employed the Adams-Gentry score (83), a radiologically 

adapted method of classifying histologic brain lesions (10). The staging assigned by both scores is determined 

by the most caudal brain lesion present, though their definitions vary (Table 1). Pooled data from both scores 

demonstrate progressively increasing risks of unfavorable neurologic outcome as maximal depth of lesion 

increases (Table 1). To increase comparability, the scores were dichotomized to distinguish between stages of 

nonbrainstem lesions (Firsching grade I, Adams-Gentry stages 1 and 2) versus stages where some form of 

brainstem lesion is present (Firsching grades II to IV, Adams- Gentry stage 3). Data from the seven studies in 

binary form were deemed adequately homogenous to be pooled overall, and standard meta-analysis was 

undertaken for the outcome of unfavorable GOS. Pooled data from the seven studies entering this analysis (n = 

530 patients) demonstrate a statistically significant relationship between classification in a stage representing 

brainstem injury and unfavorable GOS (RR, 2.71; 95% CI, 1.91–3.85; I2 = 64%; Supplemental Fig. 6, 

Supplemental Digital Content 11, http://links.lww.com/CCM/C881; legend, Supplemental Digital Content 15, 

http://links.lww.com/CCM/ C885). The results of this alternative meta-analysis further corroborate those of the 

first analysis of brainstem lesions presented above (Fig. 3), as both the direction and the force of the association 

are consistent. 

Sensitivity analyses for the association relating brainstem lesions with unfavorable GOS based on the 

timing of outcome assessment (at 6 vs > 6 mo), MRI field strength (< 1.5 T vs ≥1.5 T), adequacy of control for 

confounding (presence of adjustment for age, GCS, and pupillary reactivity vs absence), and methodological 

quality (low or unclear risk of bias vs high risk of bias) all yielded consistent results without evidence of major 

differences between groups. The sensitivity analysis by mean timing of MRI post-TBI (≤ 7 vs > 7 d) demonstrated 

divergence between groups, with a higher RR of unfavorable GOS in studies where MRI was undertaken greater 

than 7 days following TBI (Supplemental Table 4, Supplemental Digital Content 12, 

http://links.lww.com/CCM/C882). For the association relating DAI type lesions with unfavorable GOS, sensitivity 

analysis based on the use of MRI sequences sensitive for shear injury (employing either T2*-GRE or SWI vs 

neither) demonstrated that only studies employing at least one of the two sequences retained a significant 

relationship with unfavorable GOS, although the difference between groups did not reach statistical significance 

(Supplemental Table 5, Supplemental Digital Content 13, http://links.lww.com/CCM/C883). 

Visual evaluation of funnel plots for meta-analyses of mortality and unfavorable GOS did not suggest 

evidence of publication bias. Level of recommendation was determined by GRADE; the quality of evidence for 

the analyses correlating medullary and corpus callosum lesions with unfavorable GOS was low. The brainstem, 

midbrain, pons, and shear injury lesion analyses’ associations with unfavorable GOS had a moderate quality of 
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evidence. The quality of evidence for mortality was evaluated only in relation to brainstem lesions and was low. 

(Supplemental Table 6, Supplemental Digital Content 14, http://links.lww.com/CCM/C884). 

2.6 Discussion 

We found a strong association between brainstem lesions on MRI and unfavorable long-term prognosis 

in patients with moderate and severe TBI. Injury to any region of the brain stem was significantly predictive of 

both all-cause mortality and unfavorable neurologic outcome. Classification of the depth of brain injury visualized 

on MRI by radiologic scores was also predictive of unfavorable outcome. 

Our study is the first to quantitatively summarize the relationship between acute MRI lesion patterns 

and long-term clinical outcome. Corollary studies in similar domains, such as veterinary studies applying the 

Firsching score in dogs with TBI (84), corroborate the neuroanatomical significance of brainstem lesions on 

prognosis found in our systematic review. 

In our study, 41.5% of patients with moderate and severe TBI progressed to unfavorable neurologic 

outcome (death, vegetative state or severe disability). This is consistent with previous data on the incidence of 

disability following TBI (2). As patients with TBI are often young with few or no comorbidities, accurate 

determination of prognosis is essential for guiding early therapeutic and end-of-life decisions. This was 

highlighted by a recent large Canadian multicenter cohort study on severe TBI (85) demonstrating considerable 

variation in mortality rates between centers, driven in part by variability of life-sustaining therapy withdrawal. 

Our review has several strengths. We conducted this study according to an a priori published protocol, 

with prespecified analyses, and employed methodology designed specifically for prognostic systematic reviews, 

including tools for assessing risk of bias and quality of evidence validated for prognostic factor studies. Our 

search strategy was highly sensitive and contained search filters validated for prognostic studies. We did not 

place a limit on the type of MRI lesions to include in our review to gather data representative of all forms of 

lesions patterns reported in the TBI literature. 

There are limitations to our systematic review. We encountered high levels of heterogeneity; however, 

a portion of this was reduced in our prespecified subgroup analyses, including analysis of the brain stem by its 

anatomical substructure and separation by TBI severity, as well as in sensitivity analyses of shear injury by the 

use of sensitive imaging sequences. Unresolved heterogeneity remained significant and may be due to other 

between-study factors such as differences in MRI variables, including evolving technology, magnetic field 

strength, diversity of imaging sequences, and either the lack or use of automated tools for image analysis which 

may contribute to variability in lesion measurement in the context of baseline weak associations. The term 

“lesion” or its synonyms were often not defined in primary studies, and it was not possible to meta-analyze data 
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by a specific image sequence or lesion appearance; in the case of brainstem lesions specifically, the majority of 

primary studies did not distinguish between primary lesions induced directly by the forces of the initial blunt 

traumatic insult and secondary lesions due to damage from neighboring structures, such as via injury due to 

cerebral herniation or laceration on the free edge of the tentorium. This is compounded by the evolving nature 

of lesions not captured by MRI evaluation at a single point in time. The overall prognostic information detected 

may therefore be the result of multiple diverse pathophysiologic processes as the available data are not 

adequate for establishing robust associations between specific MRI signal characteristics and underlying tissue 

injury. Last, although this meta-analysis was conducted according to high methodological standards, our results 

are limited by the quality of the studies included; most did not report data adjusted for confounding with 

established prognosticators and were at risk of selection bias due to frequent lack of consecutive patient 

recruitment. 

Additional large cohort studies with adequate control of confounding are required to corroborate the 

findings of this meta-analysis (86). Given the diversity of underlying injury mechanisms which contribute to the 

overall phenotype of TBI, the function of energy delivery at the moment of trauma, its translation to MRI signal 

abnormalities, and the relationship of such lesion characteristics to underlying brain tissue injury remain to be 

fully elucidated in future investigations. 

2.7 Conclusion 

Early assessment of deep cerebral structures with MRI in moderate and severe TBI yields significant 

prognostic information. Given the low quality of evidence in the current body of literature, further studies are 

required to confirm our meta-analysis’ findings and evaluate the independent predictive value of MRI. 
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2.10 Tables 

2.10.1 Table 1: Relative Risk for Unfavourable GOS in Depth-of-Lesion MRI 

Scores in Moderate and Severe TBI 

Firsching Score (4 studies, n = 353) 

Grade Definition RR 95% CI I2 

Grade I Supratentorial lesions only 1.00 (Reference)* N/A 

Grade II Unilateral brainstem lesions 1.64 1.21 – 2.23 0% 

Grade III Bilateral midbrain lesions 2.67 1.80 – 3.96 63% 

Grade IV Bilateral pontine lesions 2.81 1.73 – 4.56 73% 

Adams-Gentry Classification (3 studies, n = 165) 

Stage Definition RR 95% CI I2 

Stage 1 
Lesions to the subcortical lobar white 

matter or cerebellum only 
1.00 (Reference)* N/A 

Stage 2 Lesions attaining the corpus callosum 2.01 0.90 – 4.50 0% 

Stage 3 
Lesions attaining the brainstem  

(dorsolateral midbrain or pons) 
4.57 2.23 – 9.33 0% 

*Pooled separately by category, with the most superficial category as reference 
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2.11 Figures 

2.11.1 Figure 1: Study Selection Flow 

 

2.11.2 Figure 2: Relative Risk of Mortality in Moderate and Severe TBI with 

Brainstem Lesions on Acute MRI  
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2.11.3 Figure 3: Relative Risk of Unfavourable GOS in Moderate and Severe 

TBI with Brainstem Lesions on Acute MRI 

 

2.11.4 Figure 4: Relative risk of Unfavourable GOS in TBI with Signs of Shear 

Injury Compatible with Diffuse Axonal Injury on Acute MRI, by Overall and 

Severe GCS 
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2.12 Appendix 1: MEDLINE Search 

1. ((brain[TIAB] OR brains[TIAB] OR brainstem*[TIAB] OR head[TIAB] OR heads[TIAB] OR 

craniocerebral*[TIAB] OR intracrani*[TIAB] OR intra-crani*[TIAB] OR intercrani*[TIAB] OR inter-crani*[TIAB] 

OR cerebr*[TIAB] OR cerebel*[TIAB] OR forebrain*[TIAB]) AND (injury*[TIAB] OR injuries[TIAB] OR 

injured[TIAB] OR trauma[TIAB] OR traumas[TIAB] OR traumatic*[TIAB] OR traumato*[TIAB] OR 

damag*[TIAB])) OR TBI[TIAB] OR Craniocerebral Trauma[MeSH:NoExp] OR  

Brain Injuries[Mesh:NoExp] OR Brain Hemorrhage, Traumatic[Mesh] OR Diffuse Axonal Injury[Mesh:NoExp] 

OR Coma, Post-Head Injury[Mesh:NoExp] OR Head Injuries, Closed[Mesh:NoExp] OR Intracranial 

Hemorrhage, Traumatic[Mesh]  

2. magnetic resonanc*[TIAB] OR “diffusion weighted”[TIAB]  OR “diffusion tensor”[TIAB] OR MRI[TIAB] OR 

MR[TIAB] OR fMRI [TIAB] OR dMRI[TIAB] OR MRS[TIAB] OR MRA[TIAB] OR DTI[TIAB] OR DWI[TIAB] OR 

“T1-weighted”[TIAB] OR “T1 weighted”[TIAB] OR T1WI[TIAB] OR T1[TIAB] OR T1rho[TIAB] OR “T2-

weighted”[TIAB] OR “T2 weighted”[TIAB] OR T2WI[TIAB] OR T2[TIAB] OR “T2*-weighted”[TIAB] OR 

“T2*WI”[TIAB] OR “T2*”[TIAB] OR “T2*-Gradient Echo”[TIAB] OR “T2*-GRE”[TIAB] OR “Fluid attenuated 

inversion recovery”[TIAB] OR FLAIR[TIAB] OR “Susceptibility weighted”[TIAB] OR SWI[TIAB] OR  

“Magnetic Resonance Imaging”[MeSH:NoExp] OR “Diffusion Magnetic Resonance Imaging”[MeSH:Exp] OR  

“Echo-Planar Imaging”[MeSH:NoExp] OR “Magnetic Resonance Angiography”[MeSH:NoExp] OR  

“Magnetic Resonance Imaging, Interventional”[MeSH] 

3. Incidence[MeSH:NoExp] OR Mortality[MeSH Terms] OR Follow Up Studies[MeSH:NoExp] OR pognos*[Text 

Word] OR predict*[Text Word] OR course*[Text Word] 

4. #1 AND #2 AND #3 

5. animals[MeSH] NOT humans[MeSH] 

6. #4 not #5 
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2.13 Appendix 2: Methodological Quality (Risk of Bias) Evaluation 

Tool for Studies of Prognostic Tests (Modified QUIPS Tool with 

Additions from QUADAS-2) 

Domain Description Judgment Risk of bias 
Applicability 

concerns 

01. Study Participation 

Was consecutive or 

appropriate random 

sampling used to enrol 

patients? (As opposed to 

voluntary sampling) 

Describe methods of patient 

selection  

Describe included patients 

(previous testing, presentation, 

intended use of index test, and 

setting) 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Was there adequate 

participation in the study 

by eligible individuals?  

Low risk if: 

- Majority (≥85%) of individuals 

meeting eligibility criteria 

participated in study 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Was a case-control 

design avoided? 
Low risk if: 

- Consecutive or random selection 

*Careful in distinguishing bias vs. 

applicability concerns: judgement 

call 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Did the study avoid 

inappropriate exclusions? 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Are there concerns that 

the included patients do 

not match the review 

question? 

- All adult (no paediatric) 

population 

- Moderate or severe 

- All pathologies are TBI 

- Blunt head injury (no 

penetrative) 

□ Adults  

□ Moderate 

or severe  

□ Blunt TBI 

  

Overall 

The study sample represents the 

population of interest on key 

characteristics, sufficient to limit 

potential bias of the observed 

relationship between the 

prognostic factor and outcome 

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 

02. Prognostic Factor Measurement 

Blinding 

Were the prognostic 

marker results interpreted 

without knowledge of 

clinical data?  

Describe the prognostic marker 

and how it was conducted and 

interpreted 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Was the method of 

prognostic factor 

measurement adequately 

valid to and reliable to 

limit misclassification 

bias? 

Low risk if: 

- Method of measurement 

recognized as valid or standard of 

practice in the domain 

- Information on reliability/validity 

of method of measurement 

presented (ex. Cohen’s kappa, 

etc.) 

- Diagnostic criteria presented 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Inter-rater agreement  

Was inter-rater 

agreement evaluated via 

a statistical measure (ex. 

Cohen’s kappa)? 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 
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If a threshold was used, 

was it specified a priori? 

[□ Not applicable ] 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Were diagnostic criteria 

for prognostic factors 

well-defined? 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Are there concerns that 
the prognostic marker, its 
conduct, or its 
interpretation differ from 
the review question? 
(including timing of 

assessment) 

Low risk if: 

- The method and setting of 

measurement of the prognostic 

factor is the same for all 

participants 

Applicability concern if: 

- Prognostic marker not 

associated to specific sequence 

(applicability issue; bias unlikely 

to be affected) 

- Prognostic marker (MRI) 

measured over very long period 

□ Specific 

sequence  

□ Measured 

at specific 

time or over 

a short time 

window 

□ High  

□ Low  

□ Unclear 

  

Overall 

The prognostic factor is 

adequately measured in study 

participants to sufficiently limit 

potential bias. 

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 

03. Outcome Measurement 

Was the outcome 

measurement adequate 

(evaluated reliably and 

validly)? 

Describe the outcome 

measurement and how it was 

conducted and interpreted 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

 

 

 

Were all patient 

outcomes evaluated 

identically? 

(method/setting 

standardized) 

Low risk if:  

- Data on reliability/validity 

- Similar method of evaluation for 

all subjects 

- Outcome evaluator blinded to 

patient history 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Blinding 

Were the outcome results 

interpreted without 

knowledge of the results 

of the prognostic 

markers? 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Are there concerns that 
the prognostic marker, its 
conduct, or its 
interpretation differ from 
the review question? 
(including timing of 

assessment) 

Applicability concern if: 

- Outcome measure reported as a 

binomial variable with a cut-off 

different from our review 

- Outcome is measured or timing 

reported over very long intervals 

- Minimum 1 measure of outcome 

at ≥6 months post-TBI 

□ Same cut-

off 

□ Specific 

timing of 

assessment 

or short time 

window  

□ Minimum 

of 1 measure 

at ≥6 months 

post-TBI 

  

Overall 

The outcome of interest is 

adequately measured in study 

participants to sufficiently limit 

potential bias. 

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 
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04. Study Attrition 

Was the response rate 

(proportion of baseline 

sample completing the 

study and providing 

outcome data) adequate? 

Are there subjects not 

included in the analysis? 

Low risk if: 

- < 15% lost to follow-up 

- Loss to follow-up but with 

multiple imputation method 

- Intent-to-treat analysis 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Were all subjects 

included in the analysis? 

(Loss to follow-up? 

Withdrawal? Subjects not 

tested? Missing data? 

Etc.) 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Were attempts made to 

collect information on 

participants who dropped 

out or were lost to follow-

up? 

Reasonable attempts were made 

by investigators to acquire 

information on participants who 

did not complete the study and 

characterize them 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Are baseline 

characteristics and 

outcomes similar in 

patients who completed 

the study compared to 

those who did not? 

Low risk if: 

No important differences between 

participants having completed the 

study and those who did not 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Overall 

The loss to follow-up or missing 

data affects a small proportion of 

the study participants and is not 

associated with key 

characteristics sufficient to limit 

potential bias to the observed 

relationship between the 

prognostic factor and outcome 

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 

05. Timing 

Was there an appropriate 

interval between the 

prognostic marker and 

the outcome 

measurement? 

(Biologically plausible, 

sufficient duration for 

outcome to occur) 

Describe the interval between 

prognostic markers and the 

outcome measurement 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Low risk if: 

- Mortality or GOS measured at 

hospital discharge or later 

Overall 

The interval of time between 

measurements of the prognostic 

factor and outcome is adequate to 

respond to the study hypothesis  

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 

06. Study Confounding 

Did the study adequately 

control for potential 

confounders? 

Describe any method used to 

control for potential confounding □ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Low if: 

- Adjustment for: age, motor 

subscale of the GCS or GCS, and 

pupillary reactivity 
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Are important potential 

confounders accounted 

for in the analysis? 

High if: 

- No adjusted measure reported 

- Inadequate adjustment 

(important variables not taken into 

account, improper statistical 

method used) 

Are the measurements of 

all important confounders 

adequately valid and 

reliable? 

Method of measurement 

recognized as valid or standard of 

practice in the domain 
□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

The method and setting of 

confounding measurement are 

the same for all study participants 

Overall 

Important potential confounders 

are appropriately accounted for, 

limiting potential bias with respect 

to the relationship between the 

prognostic factor and outcome. 

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 

07. Statistical Analysis 

Are the statistical 

methods employed in the 

study adequate? 

The statistical tests/methods are 

appropriate for the type of data 

analysed and are adequate for 

testing the study hypothesis 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Is the model development 

strategy adequate 

(if applicable)? 

The strategy for model building is 

appropriate and is based on a 

conceptual framework or model 
□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

The selected statistical model is 

adequate for the design of the 

study. 

Were all statistical 

analyses pre-specified? 

Low if: 

- No post-hoc data analysis 

Reviewer’s judgement if: 

- Post-hoc analysis clearly 

identified as such and adequately 

justified in discussion 

□ Yes  

□ No  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Overall 

The statistical analysis is 

appropriate for the design and 

hypothesis of the study, limiting 

potential for invalid or spurious 

results. 

□ True  

□ False  

□ Unclear 

□ High  

□ Low  

□ Unclear 

□ High  

□ Low  

□ Unclear 

 

Modified from: 

• Hayden JA, van der Windt DA, Cartwright JL, Cote P, Bombardier C. Assessing bias in studies of 
prognostic factors. Annals of Internal Medicine. 2013;158(4):280-6. 

• Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al. QUADAS-2: a revised 
tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine. 
2011;155(8):529-36 
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2.14 Appendix 3: Supplementary Figures 

2.14.1 Supplementary Figure 1: Risk of Bias Assessment (adapted QUIPS 

Tool) 

 

2.14.2 Supplementary Figure 2: Relative Risk of Unfavourable GOS in Severe 

TBI with Brainstem Lesions on Acute MRI 
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2.14.3 Supplementary Figure 3: Relative Risk of Unfavourable GOS in 

Moderate and Severe TBI with Brainstem Lesions on Acute MRI, by Lesion 

Depth Within the Brainstem 

A. Midbrain 

 
B. Pons 

 
C. Medulla 

 

2.14.4 Supplementary Figure 4: Relative Risk of Unfavourable GOS in TBI 

with Corpus Callosum Lesions on Acute MRI 
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2.14.5 Supplementary Figure 5: Relative Risk of Unfavourable GOS in TBI 

with Signs of Shear Injury Compatible with Diffuse Axonal Injury on Acute 

MRI Employing Either Susceptibility Weighted Imaging or T2* Gradient Echo 

Sequences, by Overall and Severe GCS 

 

2.14.6 Supplementary Figure 6: Relative Risk for Unfavourable GOS with 

Firsching Grades II to IV or Adams-Gentry Stage 3 on Acute MRI in TBI 
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2.15 Appendix 4: Supplementary Tables 

2.15.1 Supplementary Table 1: Demographic Characteristics of Included Studies 

Study (year) 

Number 

of 

subjects 

Age 

(years); 

mean ± SD 

(range) 

Male/Female 

Ratio 

Initial GCS; 

mean ± SD 

(Range) 

Timing of outcome 

assessment 

(months); 

Mean ± SD (Range) 

Type of 

Outcome 

Measure 

Unfavourable 

GOS [latest]; 

n (%) 

Bagley et al. 

(2000) 
28 

36.2 ± 17.5 

(19-77) 
17/11 8.4 ± 4 (3-36) GOS 15 (54%) 

Bavetta et al. 

(1994) 
10 

29.4 

(17-60) 
8/2 NR 17 (12-24) GOSe 3 (30%) 

Betz et al.  

(2012) 
41 38 ± 17 33/8 NR 

Median = 0.6  

(0.13-1.6) 
Mortality NR 

Carpentier et al. 

(2006) 
40 33 ± 15 NR 6 ± 3 18 GOS 18 (45%) 

Chastain et al. 

(2009)  
38 35.7 30/8 

7.8 ± 4.1 

(3-15) 
9.2 (0.1-22) GOS 10 (26%) 

Chelly et al. 

(2011) 
124 28 ± 15.8 100/24 6.6 ± 2.5 12.3 ± 10.9 (3-51) GOS 64 (52%) 

Chew et al. 

(2012)  
36 

45.5 

(17-90) 
25/11 6 (3-15) 6 GOS 19 (53%) 

de la Plata et al. 

(2007)  
24 28.2 ±13·3 16/8 

5.1 ± 4.2  

(3-15) 
6 GOSe 11 (46%) 

Ding et al.  

(2008)  
20 

26 ± 12 

(16-62) 
13/7 7 ± 5 (3-15) Median = 8 (6-11) Other NR 

Du et al.  

(2011)  
72 

41.3 

(17-66) 
54/18 NR 3 GOSe 26 (36%) 
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Firsching et al. 

(1998)  
61 23 (7-65) 38/23 NR NR Mortality NR 

Firsching et al. 

(2001)  
102 36 (2-86) 76/26 NR 22 (3-36) GOS 49 (48%) 

Firsching et al. 

(2002)  
100 31 (4-86) 64/36 NR 6 Mortality NR 

Firsching et al. 

(2008)  
55 38.7 42/13 NR 6 GOS 36 (65%) 

Galanaud et al. 

(2012)  
105 36.8 ± 16 85/20 5.2 (3-8) 12 GOS 40 (38%) 

Garnett et al. 

(2000)  
17 37 15/2 11.4 6 GOS 3 (18%) 

Gerber et al. 

(2004)  
43 32 (17-59) 31/12 NR 12 Other NR 

Godersky et al. 

(1990)  
49 29 (14-74) 40/9 9 (4-15) NR Other NR 

Hilario et al. 

(2012)  
52 26 38/14 NR 6 GOSe 17 (33%) 

Holshouser et al. 

(2006)  
42 

30 ± 16 

(14-79) 
28/14 5 ± 2 (3-8) 1, 3, 6-12 GOS 10 (24%) 

Hou et al.  

(2007)  
37 30 ± 16.8  28/9 NR 6-12 GOS 10 (27%) 

Iwamura et al. 

(2012)  
21 34 (8-77) 16/5 5.3 (3-8) 6 GOS 7 (33%) 

Janousek et al. 

(1999)  
42 38 (8-88) 29/13 NR 2-50 Mortality NR 

Kuchta et al. 

(2009)  
44 31 (15-64) NR NR 6 Mortality NR 
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Lagares et al. 

(2009)  
100 33 (15-71) 83/17 NR 6 GOSe 30 (30%) 

Ledig et al. 

(2015)  
61 38.6 ± 14.9 48/13 5 6 GOS 27 (44%) 

Lutkenhoff et al. 

(2013)  
24 35.6 ± 15.3 21/3 NR 6 GOSe 15 (63%) 

Lv et al.  

(2010)  
87 41.3 ± 18 72/15 6.0 ± 1.5 12 GOS 43 (49%) 

Mannion et al. 

(2007)  
46 34 (16-70) 35/11 NR 6 GOS 29 (63%) 

Marino et al. 

(2006)  
10 

44.6 

(21-77) 
7/3 NR 3 GOS 5 (50%) 

Moen/Skandsen 

et al. (2010-2012, 

2014)  

128 
33.9 

(11.4-69.3) 
96/32 

Median = 8 

(3-15) 
12 GOSe 22 (17%) 

Paterakis et al. 

(2000)  
24 (15-64) 21/3 NR 6 GOS 5 (21%) 

Perez et al. 

(2014)  
16 29.1 ± 11.3 14/2 6.8 ± 4.6 7 GOSe NR 

Potapov et al. 

(2014)  
162 

29.6 ± 12.8 

(8-72) 
109/53 8 ± 3 NR GOS 79 (49%) 

Prieto-Valderrey 

et al. (2013)  
23 37.0 ± 18.8 15/8 NR ICU discharge, 6 GOS 10 (43%) 

Reissberg et al. 

(2003) 
100 37.5 (2-80) 78/22 NR 21.6 (3-36) GOS 42 (42%) 

Rosa et al. 

(2011)  
102 30.5 ± 15.5 79/23 5.5 ± 1.6 6 GOS 36 (35%) 

Shakir et al. 

(2016) 
76 49.6 ± 19 53/23 NR Discharge Mortality NR 
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Shibata et al. 

(1999)  
30 NR NR NR 6 GOS 14 (47%) 

Shibata et al. 

(2000)  
17 35.5 11/6 7.3 

Median = 4  

(0.33-18) 
GOS 6 (35%) 

Shutter et al. 

(2004)  
42 

31 ± 16 

(14-79) 
28/14 5 ± 2 (3-8) (6-12) GOS 10 (24%) 

Soldner et al. 

(2001)  
30 26.9 (7-64) 23/7 NR Discharge, 3, 12 GOS 12 (40%) 

Tollard et al. 

(2009)  
43 34.8 ± 12 40/3 6.6 ± 4·5 12 GOS 19 (44%) 

Wang et al. 

(2008)  
12 

26 ± 8.1 

(16-37) 
8/4 

4.4 ± 2.1 

(3-8) 
Discharge GOSe 6 (50%) 

Wang et al. 

(2014)  
53 

51.3 ± 11.4 

(36-54) 
35/18 NR 3 Mortality NR 

Warner et al. 

(2010)  
25 26.8 18/7 6.2 ± 4.5 7.8 ± 1.9 (6-14) GOSe 5 (20%) 

Wedekind et al. 

(1999)  
57 NR NR NR (6-18) GOS 30 (53%) 

Wedekind et al. 

(2002)  
40 NR 30/10 NR 11.3 (6-24) GOS 17 (43%) 

Weiss et al. 

(2008)  
73 36 ± 14 58/15 6 ± 3 12 GOS 41 (56%) 

Wilberger et al. 

(1987)  
24 28 (15-53) NR NR 6 GOS 19 (21%) 

Woischneck et al. 

(1999)  
70 NR NR NR 6 Mortality NR 

Woischneck et al. 

(2008)  
146 NR NR NR Discharge, 36 GOS 21 (14%) 
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Woischneck et al. 

(2010) 
100 37 (5-80) 72/28 NR 6 GOS 55 (55%) 

Woischneck et al. 

(2010, 2011) 
167 35 (1-86) NR NR 6 GOS 74 (44%) 

Woischneck et al. 

(2015) 
120 

Median = 

36 (2-86) 
NR NR 6 GOS 79 (66%) 

Yanagawa et al. 

(2000) 
34 27 ± 13.6 23/11 

9.3 ± 3.3 

(5-15) 
3 GOS 7 (21%) 

Yanagawa et al. 

(2009) 
19 

32.2 ± 3.9 

(10-69) 
17/2 

5.8 ± 0.3 (3-

8) 
3 GOS 11 (58%) 

Yu et al.  

(2012) 
42 42.8 (8-80) NR NR 6 GOS 9 (21%) 

 

Legend: GCS, Glasgow coma score; SD, standard deviation; GOS, Glasgow outcome scale; NR, not reported; GOSe, extended 

Glasgow outcome scale 

 

2.15.2 Supplementary Table 2: MRI Characteristics of Included Studies 

Study (year) 
Time to MRI (days); 

Mean ± SD (Range) 

MRI field 

strength 

(Tesla) 

Sequences 
Type of data 

reported 

Bagley et al. (2000) 10.2 ± 7.4 (1-29) 1.5 T1, T2, T2*-GRE Localisation 

Bavetta et al. (1994) 20 (3-60) 0.08 NR Size 

Betz et al. (2012) 3.7 ± 6.1 (Within 28) 1.5 T1, T2, FLAIR, DTI NR 

Carpentier et al. (2006) 17.5 ± 6.4 1.5 T1, T2, T2*-GRE, FLAIR Localisation, size 

Chastain et al. (2009) 5.6 (0-24) 1.5 T1 SE, T2 dual SE, FLAIR Size 

Chelly et al. (2011) 7.7 ± 8.6 (1-60) 1.0 T1, T2, FLAIR NR 
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Chew et al. (2012) (0-35) 1.5 
T1 SE, T2 SE, T2*-GRE, T2-Weighted 

FLAIR, DWI 
Localisation, size  

de la Plata et al. (2007) (Within 14) 1.5 FLAIR Size 

Ding et al. (2008) 11 ± 10 (1-35) 3.0 T1, FLAIR NR 

Du et al. (2011) 9.5 (1-16) 3.0 T1, T2, FLAIR NR 

Firsching et al. (1998) 3.5 (Within 7) 1.5 T1, T2 Localisation 

Firsching et al. (2001) (Within 8) 1.5 T1, T2, TIRM Localisation, score 

Firsching et al. (2002) (Within 7) 1.5 T1, T2 NR 

Firsching et al. (2008) Median = 3 (Within 7) NR NR Score 

Galanaud et al. (2012) 21 ± 9 1.5 – 3.0 T1, T2, T2*-GRE, FLAIR NR 

Garnett et al. (2000) 12 (3-35) 2.0 T1, T2 Type 

Gerber et al. (2004) 26 (4-57) 1.5 T1 SE, T2 SE, T2*-GRE NR 

Godersky et al. (1990) 7 (2-19) 0.5 or 1.5 T1, T2 NR 

Hilario et al. (2012) 
Median = 17 

(Within 30) 
1.5  T1, T2, T2*-GRE, FLAIR Localisation 

Holshouser et al. (2006) 7 ± 4 (1-16) 1.5 T1, T2, SWI Type 

Hou et al. (2007)( 4.8 ± 2.6 (0-24) 1.5 T1, T2*GRE, FLAIR, DWI NR 

Iwamura et al. (2012) 
11 ± 5.6  

(Within 30) 
1.5 T1, T2, FLAIR, SWI, DWI Localisation, type 

Janousek et al. (1999) NR NR NR NR 

Kuchta et al. (2009) 3 (1-38) 1.5 T1, T2, T2*-GRE, FLAIR Localisation 

Lagares et al. (2009) 
Median = 15  

(Within 30) 
NR T2, T2*-GRE, FLAIR 

Localisation, type, 

score 

Ledig et al. (2015) 3.7 ± 4.2 NR T1 Type 

Lutkenhoff et al. (2013) Median = 3 3.0 T1 Type 

Lv et al. (2010) (Within 30) NR NR NR 

Mannion et al. (2007) Median = 1 (Within 3) 3.0 T2, T2*-GRE, FLAIR, Proton Localisation, score 

Marino et al. (2006) (2-3) 1.5 T2, FLAIR Localisation, type 



 

74 

Moen/Skandsen et al. (2010-

2012, 2014) 
Median = 8 (0-28) 1.5 

T1-SE, T2-Turbo SE, T2*-GRE, 

FLAIR, DWI 

Size, localisation, 

type, score 

Paterakis et al. (2000) (Within 2) 1.0 
T1 Echo Planar, T2 Turbo SE, 

T2*-GRE, FLAIR 

Localisation, type, 

score 

Perez et al. (2014) 1.11 ± 0.66 (0-3) 3.0 NR NR 

Potapov et al. (2014) (Within 21) NR T1, T2, T2*-GRE, FLAIR Localisation, score 

Prieto-Valderrey et al. (2013) 4.2 ± 4.7 1.5 T1, T2, FLAIR, DWI NR 

Reissberg et al. (2003) 5 (1-10) 1.5 T1, T2 NR 

Rosa et al. (2011) (1-3) 1.5 NR NR 

Shakir et al. (2016) (1-13) 1.5 DWI NR 

Shibata et al. (1999) 10.3 (3-21) NR NR Localisation 

Shibata et al. (2000) (Within 6) 0.5 T1, T2 Localisation 

Shutter et al. (2004) 7 ± 4 (2-17) 1.5 T1, T2, T2*-GRE, SWI Type 

Soldner et al. (2001) 6 (2-34) NR T1, T2, T2*-GRE, FLAIR NR 

Tollard et al. (2009) 24 ± 11 1.5 T1, T2*-GRE, FLAIR NR 

Wang et al. (2008) 6.7 ± 4.2 (0-15) 3.0 T1, FLAIR, DTI NR 

Wang et al. (2014) NR NR NR Localisation 

Warner et al. (2010) 2.5 ± 2.6 (0.5-9) 3.0 3D T1-Weighted Structural MPRAGE NR 

Wedekind et al. (1999) 14 (1-39) 1.0 or 1.5 T1, T2, T2*-GRE Localisation 

Wedekind et al. (2002) 12 (1-39) 1.0 or 1.5 T1 SE, T2 Fast SE, T2*-GRE Localisation 

Weiss et al. (2008) 26 ± 21 1.5 T1, T2*-GRE, FLAIR Localisation 

Wilberger et al. (1987) (Within 5) 0.35-0.5 T1, T2 Localisation, type 

Woischneck et al. (1999) NR 1.5 T1, T2 Localisation 

Woischneck et al. (2008) (1-8) 1.5 T1, T2 Localisation 

Woischneck et al. (2010) 4.2 (1-8) 1.5 T1, T2 NR 

Woischneck et al. (2010, 

2011) 
(1-8) 1.5 T1, T2, T2*-GRE Score 

Woischneck et al. (2015) 3.8 (1-8) 1.5 T1, T2, FLAIR Localisation 
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Yanagawa et al. (2000) 16.8 ± 5.6 (1-21) 1.5 T2-FSE, T2*-GRE Size 

Yanagawa et al. (2009) 16.8 ± 1.5 (5-27) 1.5 T2*-GRE Size 

Yu et al. (2012) 2 (Within 7) NR NR Localisation 

 

Legend: MRI, magnetic resonance imaging; SD, standard deviation; GRE, gradient echo; NR, not reported; FLAIR, fluid attenuated 

inversion recovery; DTI, diffusion tensor imaging; SE, spin echo; DWI, diffusion weighted imaging; TIRM, turbo inversion recovery 

magnitude; MPRAGE, magnetization-prepared rapid gradient-echo 
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2.15.3 Supplementary Table 3: Relative Risk of Unfavourable GOS in 

Moderate and Severe TBI by Type of Focal Lesions on Acute MRI 

 

 

 

 

 

 

2.15.4 Supplementary Table 4: Sensitivity Analyses for the Association of 

Brainstem Lesions with Unfavourable GOS in Moderate and Severe TBI 

 Studies Subjects RR (95% CI) I2 (%) 

Timing of outcome assessment:     

     At 6 months 6 345 1.77 (1.12 to 2.80) 80 

     > 6 months 4 240 4.16 (2.30 to 7.54) 55 

Mean timing of MRI post-TBI:     

      7 days 2 70 1.39 (1.07 to 1.81) 0 

     > 7 days 7 387 3.89 (2.43 to 6.22) 59 

MRI field strength:     

     < 1.5 Tesla 3 121 2.28 (0.87 to 5.93) 87 

      1.5 Tesla 7 394 2.22 (1.38 to 3.56) 78 

Confounding:     

     Adequate control 2 203 8.67 (2.57 to 29.20) 60 

     Inadequate control 10 572 2.05 (1.50 to 2.82) 74 

Methodological quality:     

     Low or unclear risk of bias 3 241 5.84 (2.67 to 12.79) 62 

     High risk of bias 9 534 1.93 (1.39 to 2.69) 74 

 
Legend: RR, relative risk; CI, confidence interval; MRI, magnetic resonance imaging; TBI, 

traumatic brain injury; GOS, Glasgow outcome score; DAI, diffuse axonal injury 

2.15.5 Supplementary Table 5: Sensitivity Analysis for the Association of 

Shear Injury Compatible with Diffuse Axonal Injury with Unfavourable GOS in 

Moderate and Severe TBI 

 Studies Subjects RR (95% CI) I2 (%) 

MRI sequences:     

     SWI and T2*GRE absent 3 51 1.46 (0.88 to 2.40) 14 

     SWI or T2*GRE employed 5 308 3.05 (1.33 to 7.03) 37 

Lesion Type Studies Subjects RR 95% CI I2 

Contusion 7 272 0.96 0.47 – 1.95 34% 

Epidural Haematoma 3 73 1.00 0.47 – 2.11 0% 

Subdural Haematoma 5 114 1.38 0.64 – 2.97 32% 

Subarachnoid Haemorrhage 3 73 1.17 0.41 – 3.40 44% 
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2.15.6 Supplementary Table 6: Summary of Evidence for Associations of Key 

Lesions with Mortality and Unfavourable Neurological Outcomes in Patients 

with TBI 

 

Legend: RR, relative risk; CI, confidence interval; GRADE, Grades of Recommendation, 

Assessment, Development, and Evaluation; GOS, Glasgow outcome score; DAI, diffuse 

axonal injury 

 

  

Lesion Outcome 

No of 

participants 

(studies) 

RR (95% CI) 
Quality of 

Evidence (GRADE) 

Brainstem GOS  775 (12) 2.49 (1.72-3.58) Moderate 

Brainstem Mortality 418 (5) 1.78 (1.01-3.15) Low 

Midbrain GOS 692 (9) 1.87 (1.52-2.31) Moderate 

Pons GOS 515 (6) 2.08 (1.79-2.43) Moderate 

Medulla GOS 439 (4) 1.43 (0.93-2.18) Low 

Corpus Callosum GOS 590 (8) 1.28 (0.71-2.30) Low 

Shear injury (DAI) GOS 359 (8) 2.46 (1.06-5.69) Moderate 
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General Conclusion 

 Moderate and severe TBI are associated with high rates of mortality and long-term disability, are 

responsible for major direct and indirect healthcare costs, and can be a source of significant cascading social 

repercussions for family members or friends who support afflicted patients by taking on caregiver roles. The 

determination of prognosis early in the course of this condition is pivotal for informing acute clinical management 

and counseling substitute decision makers during discussions regarding level of intervention or resuscitation for 

the possibility of cardiopulmonary arrest. Recent research into clinical outcomes in moderate and severe TBI 

demonstrates that the decision by substitute decision makers to withdraw life sustaining therapy in the context 

of critical illness is a major pathway leading to death following TBI59 and that these practices can be highly 

variable between centres.59 As the decision to withdraw life sustaining therapies is frequently taken early, often 

within just days of the index trauma,59 it is crucial that reliable acute-phase prognostic indicators are established 

to guide critical care physicians. 

 Considering its improving accessibility, employing MRI early in the care of these patients represents an 

advanced imaging modality which may serve as a novel prognostic indicator given the increasing feasibility of 

its application in the acute setting. As a highly sensitive neuroimaging modality, its potential ability to improve 

outcome prediction beyond CT coupled to its exclusion from other major observational studies of prognosis and 

prognostic model derivation studies in TBI have made it an attractive area of ongoing investigation as a 

complementary prognostic indicator early following neurotrauma.65 The published literature studying the use of 

MRI in this setting spans nearly four decades, beginning roughly from the time of magnetic resonance 

technology’s introduction into clinical practice up to modern day. This field therefore encompasses a vast 

evolution of MRI technology, the introduction of novel high sensitivity sequences, and the progressive 

improvement of post-acquisition image processing. Given this diversity in imaging protocols and the variability 

in how cerebral lesions have been studied, the ability for individual studies to directly inform clinical practice is 

limited and a need for cohesive evidence synthesis exists to permit effective and balanced knowledge translation 

into clinical practice. 

 The principle objective of this thesis was therefore to determine the prognostic value of cerebral lesion 

patterns visible on MRI performed in the acute phase of care for determining long-term clinical outcomes in 

patients having suffered moderate or severe TBI. To cohesively study the full spectrum of articles published on 

this topic, we undertook a high-sensitivity systematic review, without any exclusions based on lesion pattern 

studied or language of article publication, and performed pairwise random effects meta-analyses for all 

sufficiently homogeneous lesion-outcome analyses. Secondarily, this thesis sought to systematically assess the 

risk of bias of the studies published in this domain and determine the level of recommendation of the meta-

analyses undertaken for each outcome in order to guide future research priorities in this field in addition to 
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informing clinicians on the confidence with which the final analyses can be made. This thesis contributes to the 

growing field of early risk assessment following TBI by providing objective data on the use of MRI in this 

population to assist long-term prognostication; it is the first systematic review and meta-analysis to quantitatively 

summarize the relationship between acute MRI lesion patterns and long-term clinical outcomes. 

 Our study established the prognostic value of several different patterns of brain lesions visible on early 

structural MRI as predictive of long-term clinical outcome. We demonstrated significant, strong relationships 

between the presence of lesions anywhere in the brainstem and both all-cause mortality (RR, 1.78; 95% CI, 

1.01–3.15; I2 = 43%) and unfavourable GOS (RR, 2.49; 95% CI 1.72–3.58; I2 = 81%) at six months or greater 

follow-up. When the anatomical subdivisions of the brainstem were considered individually, this association 

remained statistically significant for lesions in both the midbrain and pons. Conversely, the presence of lesions 

in the corpus callosum, a structure superficial to the brainstem, were not found to significantly discriminate patient 

outcome. The presence of shear injury patterns suggestive of DAI was also heavily associated with unfavourable 

neurological outcome (RR, 2.46; 95% CI, 1.06–5.69; I2 = 74%) and, importantly, subgroup analyses 

demonstrated that this relationship only remained significant in studies employing at least one of the two major 

susceptibility-sensitive sequences (either T2*-GRE or SWI), indicating the importance of such sequences in 

contemporary neurotrauma MRI protocols. Two scoring systems were used recurrently in multiple retrieved 

studies: the Firsching score106 and the Adams-Gentry classification,102 both of which classify patient MRIs in 

grades defined by the location of the deepest lesions visualized regardless of the presence or absence of higher 

lesions. In both classifications, the superficial-most grade is defined as being in the supratentorium (lobar white 

matter) and the deepest as being in the brainstem. Meta-analysis of studies presenting data for both scores 

demonstrated increasing risks of unfavourable neurological outcome as increasingly caudal structures were 

affected. 

 Globally, the findings of our meta-analyses are consistent with prior experimental preclinical models of 

TBI which have given rise to the current pathophysiological models thought to underpin the spectrum of injury 

and disability seen in TBI. In animal studies of TBI, where the severity of traumatic insults can be controlled and 

adjusted, the depth of traumatic lesions within the brain have been directly found to relate to the severity of the 

trauma.170,171 Neurohistological studies performed during autopsy on patients with TBI have similarly 

demonstrated a relationship between lesion depth and mortality and duration of coma.102 Maximal lesion depth 

is therefore a key determinant for the precise assessment of patient prognosis as this is likely a key mediator in 

the pathway between severity of trauma sustained and eventual clinical outcome. Based on this body of 

evidence, a “centripetal model” of TBI has been proposed, where the brain itself can be conceptualized as a 

funnel in which the force of trauma is transferred caudally, and the maximal depth achieved is a function of the 

trauma’s severity; in this proposed model, the grade of injury is determined by the caudal-most cerebral structure 



 

80 

receiving shear injury.102 The findings of our meta-analysis support this model: the lesions most powerfully 

predictive of outcome were located in the brainstem and analysis of both of the depth-of-lesion scoring systems 

demonstrated progressively increasing risks of unfavourable neurological outcome with caudal grades. Brain 

MRI, specifically, is therefore a necessary modality for determining lesion depth accurately as CT cannot reliably 

assess the brainstem or other structures in the posterior fossa. 

Although our systematic review was undertaken employing high-sensitivity search methods and 

methodology specifically adapted for prognostic factor studies when possible, several potential limitations exist 

which may constrain the direct clinical application of our findings. While we found consistent and statistically 

significant relationships between several lesion patterns and clinical outcomes in our primary analyses, the force 

of association varied considerably between studies for most analyses and we encountered high levels of 

heterogeneity as a result. While multifactorial in nature, the major portion of this heterogeneity is likely related to 

the broad nature of our inclusion criteria, resulting in potentially variable populations of TBI patients of differing 

acuity and trauma mechanisms to be included in our analyses. Additionally, a large amount of the heterogeneity 

may be attributable to the inherently observational design of studies examining prognosis in this field, leading to 

the possibility of significant and variable selection bias in the cohort of patients recruited and assessed. In 

particular, the majority of studies did not explicitly employ consecutive patient enrollment, a factor which may 

have led to lower acuity patients being overrepresented in such studies; this phenomenon may have attenuated 

the strength of some associations and possibly concealed the prognostic value of other MRI lesion patterns if 

the sickest patients were not recruited. Even in studies with consecutive patient enrollment, the impact of survival 

bias is likely not negligible as many of the highest acuity patients may have been too unstable to undergo MRI 

and subsequently died prior to being sent for neuroimaging. This survival bias is compounded by the fact that 

early mortality in the first few days following trauma is heavily driven by the decision to withdraw life-sustaining 

therapies, a practice shown to vary widely between centres, likely due variations in local practice patterns.59 

Except for the few prospectively conducted studies stipulating routine MRI in consecutively enrolled patients, 

the decision to undertake MRI in the majority of the included studies was at the discretion of the attending 

physician and thus susceptible to be selection bias and confounding by indication. Although in many of the 

included studies MRI was prospectively planned to be conducted for the express purpose of 

neuroprognostication, in some studies with retrospective designs this may not have been the case, contributing 

to the observed heterogeneity due to differences in scan protocols. Further, most studies did not adjust for 

potential confounders, presenting only univariable measures of association or crude outcome data. The potential 

for bias from confounding cannot therefore be excluded and the independence of any associations between 

lesion patterns on MRI and clinical outcomes cannot be determined from our data. 
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We explored possible sources of heterogeneity by undertaking subgroup analyses when possible 

according to trauma severity (GCS), the use of susceptibility sensitive MRI sequences, and anatomical 

subdivisions of the brainstem (among others) which partially aided in explaining this heterogeneity. Residual 

heterogeneity remained significant and may be due to numerous factors including variations between studies 

stemming from the evolution of MRI technology over time, the use or absence of semi-automated image 

processing, the exact sequences obtained, and MRI field strength. Beyond technological factors, studies differed 

on how they conceptualized injury: the term “lesion” has no standardized neuroradiological definition and no 

studies undertook post-mortem assessments to correlate specific MRI signal characteristics with underlying 

histopathological tissue injury. This is further compounded by the evolving nature of lesions not captured by MRI 

evaluation at a single point in time; the overall prognostic information detected may therefore be the result of 

multiple diverse pathophysiologic processes and cannot be directly attributable to a single primary or secondary 

process. Furthermore, the timing of outcome ascertainment was not uniform between studies and, in many 

instances, varied within study as well. Although mortality in TBI is frequently clustered in the early phase following 

trauma, patients’ neurological deficits may evolve and improve over time, especially following prolonged 

rehabilitation; this is therefore poorly reflected in studies which solely evaluated patient outcomes at the time of 

hospital discharge. Primarily due to this non-consecutive patient selection and absence of control for 

confounding, almost all studies were rated at moderate or high risk of bias, a primary factor responsible for the 

overwhelmingly low to moderate confidence in our final analyses as assessed by the GRADE method. Lastly, 

although we designed a highly sensitive search strategy, we only applied our search to peer-reviewed journal 

publications and searches within grey literature were not performed, which may lead to the theoretical possibility 

of publication bias. 

Several avenues of future research remain to be elucidated prior to the definitive implementation of 

MRI as a routine prognostic tool in the early assessment of patients with moderate or severe TBI. By employing 

a broad systematic search coupled with quantitative meta-analytic techniques, we have identified lesions 

patterns most consistently predictive of long-term all-cause mortality and neurological disability in patients with 

moderate or severe TBI; however, given the relatively low to modest level of confidence in our final results as 

determined by GRADE, these findings should be interpreted with caution until corroborated externally by high-

quality independent data. Potential major areas requiring further investigation therefore include the need for 

confirmation of our study’s findings in a large, contemporary cohort of TBI patients with the ability to control for 

large numbers of potential confounders. Furthermore, additional detailed MRI-centric studies should be 

undertaken to build upon our findings and perform head-to-head comparisons of specific sequences or scan 

protocols in moderate and severe TBI in order to determine which combinations of sequences maximizes clinical 

information while maintaining scan times brief in the acute setting. A major multicentre observational prognostic 

study in this field, the TBI Prognosis study,172 has just been completed; MRI data was collected in a systematic 



 

82 

manner as part of this large prospective study, along with the collection of other clinical and paraclinical variables 

which should permit robust control of confounding and build upon the findings of this meta-analysis in order to 

determine whether the identified relationships remain statistically significant following multivariable analysis and 

thus maintain their prognostic value independent of other known independent prognostic indicators. 
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