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Abstract: It is now almost impossible to deal with spatial data without considering some explicit
specification that captures possible spatial effects. One valuable feature of spatial econometrics
models is their decomposition of marginal effects into spatial spillover effect and spatial externalities.
Progress in interpreting spatial econometrics models has now been extended to the spatial-panel case.
However, little consideration has been given to the possible interpretation of models using spatial data
pooled over time. This paper proposes a spatio-temporal difference-in-differences (STDID) estimator
to measure the effect of urban externalities, such as transport infrastructures, as revealed through
real-estate prices. Based on an empirical application for a new development of commuter trains in
the Montreal suburbs, this paper shows how such propositions can help us to better understand and
evaluate changes in mass transit systems.

Keywords: spatio-temporal data; spatial econometric; marginal effects; difference-in-differences
(DID) estimator; mass transit system

1. Introduction

Measuring urban externalities is a challenge, notably, in urban economics, economic geography,
and transportation. Since development of the hedonic theory [1], many applications have relied on this
approach based on revealed preferences to measure willingness-to-pay (WTP) for urban externalities.
Hedonic pricing models have been widely applied to real-estate values. Although such an application
is fairly straightforward, many challenges remain when it comes to adequately measuring the effect of
urban externalities on real-estate values.

Empirical analysis is complicated by the fact that real-estate values clearly display a spatial pattern
that directly influences the precise estimation of the effect of the implicit prices of extrinsic amenities
on real-estate values. Various techniques have been developed to deal with spatial autocorrelation
among residuals, such as geo-statistical techniques [2–4], the coefficient expansion method [5,6],
local regression techniques [7–10] and spatial econometric models [11–13].

Spatial econometric models are used increasingly for practical matters—because detection
of spatial autocorrelation among residuals can invalidate the conclusions of the estimated
models [14,15]—but also for theoretical matters—dealing with spatial heterogeneity, spatial
externalities, and spatial spillovers [16]. A clear advantage of spatial econometric models lies in
the decomposition of the marginal effect to account for spatial externalities, and of the spatial spillover
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effect, also denoted by local and global spatial effects [17]. Recently, [18] has explicitly presented the
best practices related to the use of spatial econometrics in empirical applications. Of course, like any
other modelling approach, spatial econometrics is not without its critics (see [19–21]). However, some
criticisms, such as the myth behind the effect of the choice of the weights matrix on the sensitivity of
results, have recently been demystified [22].

The particularities of real-estate transaction data raise some additional complications when
estimating spatial hedonic pricing models. The fact that spatial data are collected (or pooled) over
time underlines the importance of taking into account spatial considerations, but also additional
constraints relate to temporal unidirectional relations among the observations (transactions) [23].
Although adequate spatio-temporal models have been proposed for such data [24–27] and the difference
between the structure of spatio-temporal and spatial weights matrices has been demonstrated [28], not
much emphasis has been placed on how to interpret the estimated coefficients of such models. In such
a case, the decomposition of the spatial effects into two separate effects—spatial multidirectional effect
and spatial unidirectional effect—plainly affect the calculation of the marginal effect.

The aim of the paper is twofold. First, a complete spatio-temporal difference-in-differences
(STDID) estimator is proposed to evaluate the impact of urban externalities on real-estate values
through a quasi-natural experiment. Second, a complete interpretation of the marginal effects
accounting for the fact that the spatial effect can be decomposed into two separate components
(multidirectional spatial effect and unidirectional spatial effect) is proposed. One advantage of the
paper is that it offers simple formulas with which to retrieve the indirect spatial effect from the total
marginal effect for a given time period, and with which to evaluate the short-run and long-run spatial
effects. In the end, the interpretation proposed is different from what has usually been suggested, but it
clearly facilitates computation and interpretation using multiplication of scalar parameters to evaluate
the mean effect, which will surely reduce the misinterpretation of such effects in empirical analysis.

To demonstrate the potential of STDID, it is applied empirically to the development of a
new public transit system in the Montreal (Canada) suburban area. On the basis of individual
transactions between 1992 and 2009, the model isolates the (exogenous) effect of a change in the mass
transit system. Previous work based on difference-in-differences (DID) estimators [29,30] and spatial
difference-in-differences (SDID) estimators [31] are revisited and the estimated model shows how the
effect on house prices (or house price growth) can induce spatial spillover effects as well as dynamic
spatial effects.

The paper is divided into four sections. The first section presents a brief overview of the hedonic
pricing model and its extension to spatial econometrics. It also sets out the interpretation related to
the calculation of the marginal effects for such models. Particular emphasis is placed on presenting
the characteristics and specificities of such models for spatial data pooled over time. The second
section presents a variation of the hedonic pricing model based on the repeated-sales approach,
which is a natural application of the DID estimator. A natural extension of the estimator based on
spatial and spatio-temporal considerations is presented, with special emphasis on the calculation
and interpretation of the calculation of the marginal effects. The third section presents the empirical
investigation: the data used, the model estimated, and the interpretation of the results. The paper
concludes with a summary of the main results and with perspectives for future uses and needs for
spatio-temporal econometric models for spatial data pooled over time.

2. Measuring Urban Externalities with the Hedonic Pricing Model

2.1. The Hedonic Pricing Model

Hedonic pricing theory was formally defined by [1]. Since that pioneering work, many empirical
applications relying on hedonic pricing (HP) models have been developed, expressing the statistical
relationship between the price of a complex good, y, as a function of the individual (intrinsic and
extrinsic) amenities that form the bundle describing the real-estate good (Equation (1)).
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y = αι + Xβ + ε (1)

Whereas the dependent variables are stacked in a vector y of dimension (N × 1), the list of
independent variables are stacked in a matrix X of dimension (N × K), ι is a vector of one, and ε a
vector of errors, both of dimension (N × 1). The vector of parameters β is designed to evaluate the
implicit price of each amenity and is of dimension (K × 1), while α is a scalar parameter.

There are many criticisms of this linear representation of the price equation. One such criticism
relates to the choice of the functional form of the price equation. According to [32], adopting a poor
specification of the functional form can introduce bias into the measurement of the parameters and
so invalidate the measurement of the implicit price of the different amenities, even more so if the
relation is not linear with respect to the amenities. Of course, this problem can be solved by adopting
a more flexible functional form, introducing non-linear variables (mathematical transformations of
the independent variables, crossed multiplied variables—e.g., piecewise regression—or polynomial
transformations) or by considering semi-parametric or non-parametric models.

Another criticism that can be made of the hedonic pricing model is related to the more general
problem of omission of significant variables in the specification [33–35]. Since it is almost impossible to
measure all the different amenities of the goods, there is a strong possibility that the omission of such a
measurement may introduce bias into the estimated coefficients. This is even more important when
the main variable of interest is closely correlated with the omitted variables. The variable omission
problem is tightly bound up with the problem of spatial autocorrelation. The omission of a spatially
structured independent variable generally results in a spatial pattern detected among the residuals of
the models. According to [36] imposing particular relations among the variables of the model can also
generate spatial autocorrelation.

One of the possible solutions to solve the problem of the omission of spatial variables from the
specification has been to adopt spatial autoregressive specifications developed in spatial econometrics.
Without loss of generality, spatial econometric models rely on the addition of a: (i) spatial spillover
effect (SAR model—Equation (2)); (ii) a spatial externalities effect (SLX model—Equation (3)); or (iii) a
latent spatial effect (SEM model—Equation (4)).

y = $Wy + αι + Xβ + ε (2)

y = αι + Xβ + WXθ + ε (3)

y = αι + Xβ + u
u = λWu + ε

(4)

where W is an (exogenous) spatial weights matrix of dimension (N × N), expressing the possible
spatial relations (or connections) among the observations, the parameters $ and λ, and the vector of
parameters θ of dimension (P × 1), that allows us to capture the spatial effects (with P ≤ K), while ε is
the vector of error terms, which is assumed to be homoskedastic and independent. The autoregressive
parameter $ capture the global spatial effect, while the vector of parameters θ capture the local spatial
effect [16,17,37].

Recently, many authors have suggested adopting a general spatial Durbin model as the reference
model (SDM model—Equation (5)) because it generalizes the SAR and SLX models, while being a
special case of the SEM model [37,38] (A mathematical manipulation can be made to write the SEM
model as y = λWy + αι + Xβ + WX(λβ) + ε).

y = $Wy + αι + Xβ + WXθ + ε (5)

One advantage of the spatial econometric specification, except for the SEM model, is that it allows
us to decompose the marginal effect into separate components [16,28]. For the SLX model, the marginal
effect is direct, but no longer equal to the coefficient βk (Equation (6)).
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∂y/∂xk = (Iβk + Wθk) (6)

where I is the identity matrix of dimension (N × N). With the weights matrix W row-standardized, the
interpretation can be simplified to include the local spatial (externalities) effect (θk). In such a case, the
marginal effect is decomposed into a direct effect (βk) and the total effect (βk + θk).

For SAR and SDM models, [16,17] show that the marginal effect is given by the partial derivative
of the y reduced form equation with respect to a change in variable xk (Equation (7)). In the SAR
specification θk = 0 and the second term on the right-hand side can be simplified.

∂y/∂xk = (I − $W)−1(Iβk + Wθk) (7)

where (I − $W)−1 is a spatial multiplier that can be expressed as the sum of powers of the weights
matrix W (Equation (8)—[16,39]) (According to the infinite series properties).

(I − $W)−1 = I + $W + ($2W2 + $3W3 + $4W4 + . . . ) = S(W) (8)

Different interpretations have been made of the expression in Equations (7) and (8) in the SAR
model context. On the one hand, some propose to decompose marginal effect into: (i) a direct effect, as
measured by the Iβk (or by [Iβk + Wθk] for the SDM); (ii) an induced effect, as measured by $Wβk (or
$W[Iβk + Wθk])); (Or by $βk or $(βk + θk) when the weights matrix W is row-standardized) and (iii) a
spillover effect, as measured by the rest of the terms appearing in parentheses on the right-hand side of
Equation (8) multiplied by Iβk (or (Iβk + Wθk)) [39]. On the other hand, others argue that the marginal
effect should be decompose into: (i) the direct effect, as measured by the mean elements appearing on
the diagonal of the matrix S(W)Iβk for the SAR model or S(W)(Iβk + Wθk) for the SDM specification;
(ii) the indirect effect, as measured by the mean of the elements appearing on the off-diagonal; and (iii)
the sum of both effect to yield the total marginal effect [5].

It is also demonstrated that when weights matrices matrixes are row-standardized, the spatial
multiplier can be expressed as (1 − $)−1 (see [16,39–42]). In such a case, the total marginal effect can
be expressed as βk/(1 − $) for the SAR model and (βk + θk)/(1 − $) in the SDM model [43]. Using
such a simplification to express the total marginal effect, [28] have suggested that βk, for the SAR
model, or (βk + θk) for the SDM model can be interpreted as direct effects. The difference between
the total marginal effect and the direct marginal effect enables us to ascertain the indirect marginal
effect. This interpretation greatly simplifies the calculation, while returning an interpretation akin
to the one usually made within a multiple regression framework. However, it does not allow us to
directly retrieve the significance of such marginal effects, except for the direct marginal effects.

Marginal effect in the hedonic pricing model should be interpreted with caution when applied to
real-estate data ([40]). Spatial multiplier only applies when the change in the independent variables,
xk, results from a technological change and not from a pecuniary change. Thus, there is a challenge to
distinguish between technological and pecuniary changes. However, this challenge can be partly solved
when working with cross-sectional data that also include a time factor, such as real-estate transactions.

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation as well as the experimental conclusions that can
be drawn.

2.2. Spatial Data Pooled over Time and Weights Matrices

The spatial structure of transactions raises no doubt (they certainly occur somewhere), but the
transactions also occur at given times. The pure cross-sectional structure of spatial data imply that the
observations (i = 1, 2, . . . , N) are collected in the same time window, and that the total sample size is
equal to N. In spatial panel data, the individual observations (i = 1, 2, . . . , N) are observed in each
time period (t = 1, 2, . . . , T) and the total sample size for a fully balanced panel is equal to NT. These
two cases clearly fail to account for the particularity of the transaction data. For spatial data pooled
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over time, such as transaction data, the total number of observations collected in each time period is
different (it = 1, 2, . . . , Nt), while individual observations are rarely repeated over time. In such a case,
the total sample size is equal to NT (NT = Σt Nt for t = 1, 2, . . . , τ). The visual reading of such data can
be seen as a collection of spatial layers of information pooled over time when data are aggregated into
discrete time periods [25]. Consequently, the dimensions of the matrices and vectors depend on the
nature of the data under consideration, while the validity of the estimation of the parameters relies on
the observance of the usual assumptions made about the error terms.

Moreover, the structure of the weights matrix needs to account for the temporal dimension of
the spatial data. To isolate for spatial multidirectional effects, a temporal weights matrix, T, with a
general element tij taking a value of 1 if observations i and j are collected in the same time period (or
interval) and 0 otherwise is built [23,43,44]. This temporal weights matrix is then after multiplied,
element-by-element, with a general spatial weights matrix, W, to obtain a general weights matrix that
enables us to isolate multidirectional spatial effect: S = W

⊙
T, where

⊙
is a Hadamard product. The

individual elements of the spatial weights matrix are defined as usual, i.e., as a function of the distance
separating two observations i and j such that wij = f(dij), where f(·) could be any decreasing function,
assigning a higher value to closer observations and a lower value to more remote observations.

Another spatial effect is also possible for such a database. A spatial unidirectional effect, i.e.,
how previous observations were spatially located can influence actual observations, is possible. To
account for such a possibility, it is possible to generate a second temporal weights matrix. By noting T
a general weights matrix indicating the temporal distance among observations i and j if observation
j has been collected before i, then a general weights matrix W = W

⊙
T, can be used to isolate a

spatial unidirectional effect [24,28] (As previously argued by [43,44], the form of both temporal weights
matrices, T and T, can be simplified if the observations are chronologically ordered beforehand. In
such a case, the temporal weights matrix takes on a structure divided into three separate parts: (i) the
upper-triangular part is defined by elements all equal to zero (0), indicating that future observations
cannot exert any influence on present or past observations; (ii) a block-diagonal structure that isolates
observations occurring in the same time period, or in the same time window; and (iii) a lower-triangular
part that expresses the possible relations between previous observations and current observations).

Using this notation, it is possible to build a new variable, Wyt−1, that, when W is
row-standardized, expresses the mean value of y for observations collected previously within a
spatial delimitation. One interesting feature of this new variable is that it can be seen as strictly
exogenous (Since the observations are not the same in each time period, it is necessary to use a
different notation than the spatial panel case where the observations are repeated in each time period
and the same weights matrix is used).Thus, the standard linear regression model can incorporate
the variable Wyt−1 in the specification and the model can still be estimated using ordinary least
squares (OLS) or generalized least squares (GLS) [17,34]. By denoting ψ the additional coefficient
related to the variable Wyt−1, and by using the weights matrix S based on the Hadamard product to
isolate spatial multidirectional effects, one obtains a more complex set of (spatio-temporal) models
(Equations (9)–(12), see [23]).

yt = $Syt + ψWyt−1 + αι + Xtβ + εt (9)

yt = αι + ψWyt−1 + Xtβ + SXtθ + εt (10)

yt = αι + ψWyt−1 + Xtβ + ut

ut = λSut + εt
(11)

yt = $Syt + ψWyt−1 + αι + Xtβ + SXtθ + εt (12)

where the marginal effects previously presented (Equation (7)) still hold since the change of xk in time
t does not influence the variable yt−1 and Wyt−1 is exogenous from the time period t (In such a case,
the data generating process can be expressed as yt = (I − $S)−1 [ψWyt−1 + αι + Xtβ + SXtθ] and the
partial derivative of the function yt with respect to xkt become ∂yt/∂xkt = (I − $S)−1(Iβk + Sθk)).
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However, an additional effect appears: a dynamic temporal effect, as measured by the coefficient
ψ. Thus, considering the SDM specification (Equation (9)), the total marginal effect can be extended to
calculate both the short-run (Equation (13)) and the long-run (Equation (14)) total marginal effects.

∂yt+1/∂xkt = ψ × (I − $S)−1(Iβk + Sθk) (13)

∂yt+s/∂xkt = (1 − ψ)−1 × (I − $S)−1(Iβk + Sθk) (14)

Thus, it is possible to develop suitable models to account for spatial multidirectional and spatial
unidirectional spatial relations in HP models. However, this approach does not necessarily ensure that
the omitted variables problem is under control in HP models.

3. Difference-in-Differences (DID) Estimator

3.1. Repeated-Sales (RS) Approach, or DID Estimator

Hedonic pricing models have been adapted for multiple sales [45–47]. The repeated-sales (RS)
approach is mainly used to generate price indexes, putting particular emphasis on the temporal
dimension [48,49]. The RS (or DID) approach relies on two hedonic price equations: (i) one occurring
at the time of the first sale (s—Equation (15)); and (ii) one occurring at the time of the second sale
(resale) (r—Equation (16)).

ys = αsι + Xsβ + us (15)

yr = αrι + Xrβ + ur (16)

The difference between the price equation for the same goods, i, resold at time r and sold at time s
(Equation (17)), gives the repeated-sales estimator.

(yr − ys) = (αr − αs)ι + (Xr − Xs)β + (ur − us)
∆yt = (αr − αs)ι + ∆Xtβ + εt

(17)

The value of this model has mainly been to focus on the construction of the price index using
the estimated coefficients αt. In such a case, the difference in the amenities of the goods (Xr − Xs) is
assumed to be zero, while the exponential of the coefficients αt allows us to ascertain a global price
index, with the first time period as the reference (price index = 1).

The RS/DID approach has the advantage of eliminating the (constant) omitted variables from
the HP model, and procuring a useful estimator (DID) allowing us to measure the effect of changes
in X over time on price (or price growth) (This approach can also be extended to the case where no
particular amenities change over time, but where the implicit prices of the amenities are assumed
to evolve over time by denoting the implicit price by βt instead of β in Equations (13) and (14)).
This approach is used to measure the impact of changes in environmental (and exogenous) amenities
on price or price growth [29,30]. Such an approach allows us to adequately control for most criticisms
levelled at the hedonic pricing model.

Of course, one of the possible drawbacks of such an approach may be related to the selectivity
problem. In this case, the multiple transactions may have characteristics that make them more likely to
be sold and resold within a given time period. This problem can be formally tested using a logit or
probit model to see whether being sold multiple times can be explained by their own characteristics.
If so, a simple correction method, inspired by the Heckman transformation [27,50,51] can be applied
to control for this possible selectivity bias. If not, then the multiple transactions occurring have the
same characteristics as the other transactions. However, in both cases, the total number of observations
available to estimate the model is slightly reduced. To distinguish between the hedonic pricing
model and the repeated-sales approach, the total number of observations is noted nT instead of NT,
where NT >> nT and where the total number of observations per period is given by nt.
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3.2. DID, SDID, STDID and Marginal Effects

The DID approach appears to be one of the best ways to isolate the effect related to a (exogenous)
change in the independent variable on a variable of interest [52]. Applied to real estate, DID has
been proved to be a valuable way to evaluate the impact of environmental or landscaping policies.
However, as mentioned by [53], this estimator neglects the possible spatial dimension of the price
determination process. According to the spatial and temporal dimension of the price determination
process, a spatial Durbin model (SDM) can express the sale price of a complex good, yt, as a function
of its own characteristics, Xt, but also as a function of the other sale prices occurring in the same time
period around the good i, Syt, and as a function of the characteristics of the goods sold within the
same time period, SXt (Equation (18)).

yt = $Syt + αtι + Xtβ + SXtθ + ut (18)

where S is a row-standardized weights matrix expressing the spatial relations for observations recorded
in the same time period.

The spatial difference-in-differences (SDID) estimator can be written as a first difference equation
between the price equation at the time of a resale and the first sale (Equation (19)).

∆yt = (αr − αs)ι + $S∆yt + ∆Xtβ + S∆Xtθ + εt (19)

In such a case, the marginal effect of an exogenous change in amenities, relating mainly to a
change in landscape policies or other public policies influencing the extrinsic amenities of a given
good, takes a more complex expression introducing the spatial multiplier (Equation (20)).

∂∆yt/∂∆xkt = (βk + θk)/(1 − $) (20)

This general framework can be used to account for both effects: spatial externalities and spatial
spillover effects. It can also be used to decompose the marginal effect to account for such an effect in
the calculation, much as [41] do for the SDID estimator.

In the literature, SDID estimators have been proposed, but most of them have focused
on the introduction of spatial lagged variables of the independent variables in spatial panel
specifications [54,55]—see also [56], while those models introducing a spatial lag of the dependent
variable do not account for such an effect in calculating the marginal effect [43] (A recent study by [57]
proposed an approach based on Geographically Weighted Regression (GWR)).

The HP model can also be extended to include the spatial unidirectional effect [31]. In such a
case, the spatial and temporal dimension of the price determination process, a spatio-temporal Durbin
model (STDM) introduces an additional variable: the sale price recorded in the previous time period,
Wyt−1 (Equation (21)).

yt = $Syt + ψWyt−1 + αtι + Xtβ + SXtθ + ut (21)

where W is a row-standardized weights matrix isolating the spatial unidirectional relations, from
observations collected from the previous time period.

As before, the spatio-temporal difference-in-differences (STDID) estimator can be written as a first
difference equation between the price equation at the time of a resale and the first sale (Equation (22)).

∆yt = (αr − αs)ι + $S∆yt + ψW∆yt−1 + ∆Xtβ + S∆Xtθ + εt (22)

The STDID estimator allows us to retrieve the total marginal effect for a change in a given time
period (Equation (20)), but also to calculate a spatial dynamic propagation effect. This effect can be
decomposed into a short-term effect (Equation (23)) and a long-term effect (Equation (24)).

∂∆yt+1/∂∆xkt = ψ(βk + θk)/(1 − $) (23)
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∂∆yt+∞/∂∆xkt = (βk + θk)/[(1 − $)(1 − ψ)] (24)

For a variation in the value of an independent variable for one (of few) observations, then, we
can say that the value of the dependent variable will change (∆xikt → ∆yit) (Figure 1). This is denoted
by the direct (or first-round) effect. Thus, the first observation to record a change in the value of yit

is the observation that first records an exogenous change in xkt. The variation in the value of yit will
necessarily imply changes in values of the dependent variables for the other observations spatially
close to the observations that have recorded a change in x, and so on (∆yit → S∆yit → ∆yjt). Thus, the
second wave of change implies the indirect effects. The change in the values of yit, and by extension of
S∆yit, will necessarily impact the values of yit+1, and S∆yit+1, and so on. These additional effects are
spatially localized dynamic effects, generating short- and long-term direct effects.

In the end, the STDID estimator allows us to decompose the total effect of a change in the amenities
on house prices into four (4) separate effects: (i) direct effect (βk); (ii) direct spatial effect (βk + θk) if
the SDM or STDM specification is used); (iii) a total spatial effect ((βk + θk)/(1 − $)); and (iv) a total
short-term (ψ× [(βk + θk)/(1− $)]) and total long-term marginal effect ((βk + θk)/[(1 − $) × (1 − ψ)])
(Based on Equations (13) and (14)).
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Figure 1. Schematic representation of the decomposition of the marginal effect according to the type of
model selected.

We now turn to explore the impact of using such a decomposition of the marginal effect on
empirical applications, or how should the information provided so far for analyzing a practical
empirical case be used.

4. Empirical Investigation

The empirical investigation is based on a change in the mass transit system in metropolitan
suburbs (The estimation has been performed with Stata software and the spreg command. More
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detail on the estimation procedure can be found in appendix of the book of [24]). The case study
examines two separate commuter rail trains (CRT) in the Montreal (QC, Canada) metropolitan area.
The first CRT serves the north shore part of the metropolitan area and was inaugurated in May
1997, when the first station opened in the municipality of Blainville and Sainte-Thérèse (the green
line—Figure 2). Two more stations opened after that. The first was in Rosmère, a few months after
the inauguration (1 January 1998), while the next stations only opened in January 2007 in St-Jérôme,
the municipality located in the northern part of the metropolitan area. The impact of this new mass
transit system has already been studied by [20]. The second CRT serves the eastern part of Montreal
and has six stations. The service was officially introduced in 2000 when the first three stations opened,
respectively Saint-Bruno (February 2000), and Saint-Lambert and McMasterville (May 2000). Two years
after, the station of Mont-Saint-Hilaire was inaugurated (September 2002), while the last two stations
opened in late 2003: Saint-Basile-le-Grand and Saint-Hubert (the purple line—Figure 2).
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The transaction data on single-family properties, property characteristics, and prices come from
the Greater Montreal Real Estate Board (GMREB) and have been cleaned and structured by the Altus
Group (Quebec City, QC, Canada), an international appraisal firm operating throughout Canada.
The data contain information on the detailed price deal (sale price, asking price, date of sale, particular
context if any), the dwelling type, property age, building and land attributes (living area, number
of bathrooms, finished basement, lot size, etc.) as well as information about any renovation to the
house; outbuilding attributes (garage, swimming pool, shed, etc.) are also documented. Finally, data
contain information about the extrinsic (location, neighbourhood, and environmental) characteristics
of the property.

These two cases offer the possibility of studying the impact of the proximity of the houses to the
stations on the price growth or property values since residential transactions are available between
1992 and 2009. The fact that some transactions were observed before and after the opening of the
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stations also allows us to use spatial difference-in-differences estimators [20] to investigate the impact,
but also to calculate the marginal effect based on two separate spatial effects: the unidirectional spatial
effect and the multidirectional spatial effect.

Since all accessibility times change for houses as a new station comes into operation and the effect
is captured using a dummy variable, the STDM model (Equation (21)) does not appear suitable. This is
because the variables in the matrix SX will necessarily be closely correlated to those in the matrix X,
introducing a collinearity problem. However, the price determination process can clearly depict a
spatial component that can be controlled for using the STAR model (when θ = 0 in Equation (21)),
which allows us to decompose the spatial effect into two separate spatial components.

The model largely simplifies the analysis and focuses on the impact of the changes on the
house-price determination process. Here, the main characteristic that changes over time is the distance
to the nearest station, which varies with the location of the house and the opening date of the stations.
The models are estimated using the DID, SDID, and STDID estimators, allowing for a comparison of
the effects depending on the specification used.

4.1. Descriptive Statistics

The pairs of transactions used in the analysis consider 6 years before the opening of the first station
of the new mass transit system. In the case of the south-east CRT, the database includes transactions
from 1995 until 2009 (Table 1), while in the case of the north CRT, transactions run from 1992 until
2009 (Table 2). In both cases, the number of transactions in the grey shaded part of the tables indicates
houses that may experience a change in mass transit supply between sale and resale. These data are
considered to form the treatment group, while transactions occurring both before and after the change
in mass transit supply are considered to form the control group. The main idea of the DID, SDID, and
STDID estimators is to use these treatment and control groups to infer the possible effect related to the
opening of new CRT stations.

One advantage of the case study here is the fact that the new mass transit service operates on
an existing railway system. The railway was mainly used to transport freight before the authorities
decided to develop a CRT line on these existing lines. Consequently, there is no possible anticipation
effect or any other cross-effect related to the implantation of the lines before the implementation of the
new service.
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Table 1. Temporal distribution of the transactions along the south-east (purple) CRT line, 1995–2009.

Sale

Resale 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1995
1996 57 11
1997 117 68 13
1998 126 141 60 15
1999 151 188 140 73 16
2000 149 200 193 151 87 15

2001 160 212 226 198 204 143 22
2002 136 204 188 220 252 209 161 28
2003 100 150 176 193 197 219 266 202 30
2004 90 132 159 138 193 234 288 297 216 43
2005 82 123 139 147 178 190 257 298 257 217 42
2006 64 118 120 104 131 137 216 308 268 286 159 29
2007 61 113 114 103 117 151 198 254 276 290 307 175 40
2008 70 75 96 103 120 162 149 192 227 248 297 230 146 31
2009 58 67 87 93 95 139 175 206 194 235 246 257 229 148 19
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Table 2. Temporal distribution of the transactions along the north (green) CRT line, 1992–2009.

Sale

Resale 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1992
1993 5 0
1994 21 34 7
1995 32 56 29 1
1996 58 89 64 39 5
1997 47 94 93 78 46 8
1998 39 81 104 93 90 59 7
1999 39 79 119 89 138 111 69 11
2000 47 63 91 101 149 146 119 95 17
2001 38 84 102 93 141 173 171 209 109 17
2002 31 87 112 105 147 181 197 235 212 199 32
2003 43 64 81 74 125 114 163 198 217 264 216 48
2004 27 52 66 67 100 127 140 201 228 276 324 218 43
2005 16 40 56 68 95 98 143 138 183 269 318 309 258 30
2006 18 42 50 56 74 86 75 125 128 189 242 313 319 209 23
2007 20 40 48 51 91 78 112 109 168 188 247 284 362 369 228 40
2008 16 28 32 45 60 68 74 94 110 156 194 212 275 283 305 165 24
2009 10 29 39 52 54 68 71 104 87 157 171 201 263 305 310 269 134 25
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In both cases, the number of transactions (sale and resale) are comparable, with a larger number
of first transactions (sale) occurring at the beginning of the database that progressively decreased over
time, while having a small number of second transactions (resale) occurring at the beginning of the
database, but where the number progressively increases as years go by (Figure 3). The total number of
transactions is also quite comparable within the database, with a total of 18,320 pairs of transactions
recorded for the south-east shore of the metropolitan area for the east CRT line, and with a total of
19,808 pairs of transactions for the north shore.
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Figure 3. Temporal distribution of sales and resales over time for both samples, 1992–2009; Legend:
grey→south shore, black→north shore; solid line→sale, dashed line→resale.

The spatio-temporal distribution of sales reveals that the most important variation in time to
access the nearest station is recorded for the south-east CRT line (Figure 4) (All distances where
calculated based on operational road network and implemented within the Network Analyst extension
of ArcGIS (ESRI)—see [29,31] for more detail). This is so because there was already a CRT station that
served the north shore (Deux-Montagnes). Thus, the appearance of new stations reduced the mean
time to access the nearest stations, but the gain was less important on the north shore. The fact that
some time distance gains are negative for the north shore indicates that some houses were originally
at a distance of between 10 and 12 min to the nearest station and that, after that the new CRT station
opened, the distance to the nearest station fell to 2 or 4 min. A total of 6837 houses experienced a
decrease in the total time to the nearest station for the south-east CRT line, while this number was
only 1877 for the north CRT line. This is also related to the fact that the last station on the north-shore
opened in 2007.

Some transactions have also experienced a change in “on foot” accessibility to the nearest station.
By differentiating the possible effect into three separate walkable zones, defined by a radius of influence
of 500 m, (The distance was selected to make sure that enough observations were available within
these ranges to correctly estimate the possible effect) it appears once again that the place where more
changes occurs is on the east CRT line (Table 3). In both cases, the number of houses experiencing a
positive change in accessibility by being within 500 m of the station are rare: 12 cases for the south-east
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CRT line and 22 cases for the north CRT line. The change for houses located between 500 and 1500 m
is higher, varying between 78 and 424.
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Table 3. Number of houses experiencing improved “on foot” accessibility.

∆ Walking Distance South North

(0–500) m 12 22
(50–1000) m 122 78

(1000–1500) m 424 198
No improvement 17,762 19,510

Total 18,320 19,808

Before turning our attention to the estimation results, let us mention that the distribution of the
dependent variables, the difference in the log sale (and resale) price shows an interesting pattern, that
is not purely normally distributed but not too far from it (Figure 5). Since the dependent variable
express the difference in the log sale prices, this variable can be seen as an approximation of price
growth. The mean growth was 35.02% for south-east shore transactions versus 31.23% for north
shore transactions.
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Figure 5. Distribution of the sale and resale price according to the logarithmic transformation among
samples: (a) Distribution of (first) sale price for the south-east corridor; (b) Distribution of (second)
resale price for the south-east corridor; (c) Difference between resale and sale price for the south-east
corridor; (d) Distribution of (first) sale price for the north corridor; (e) Distribution of (second) resale
price for the north corridor; (f) Difference between resale and sale price for the north corridor.

4.2. Estimation Results

For the exercise, the models were specified using a complex pattern of price appreciation
incorporating an anisotropic representation of the shape of the effect on house price. Thus, the
dummy variables indicating an improvement in accessibility to the nearest station are also multiplied
by the distance of individual houses to the Montreal CBD (see [29]) (Define with reference to the
location of the Place Ville-Marie, the highest skyscraper in downtown Montreal). This functional
form allows the effect to be increasing or decreasing with the distance to the CBD and introduces an
anisotropic location rent pattern.

4.2.1. The South-East CRT Line

The first estimation result is for the south-east CRT line. The comparison between the estimated
coefficients obtained from the DID, the SDID, and the STDID reveals only minor differences (Table 4).
On the overall performance, the pseudo-R2 is higher in the STDID model, but the gain is marginal.
The Akaike information criterion (AIC) and the Schwartz information criterion (BIC) both indicate
the significant gain of considering the SDID and STDID estimator instead of the usual DID approach.
This is also confirmed by comparing the log-likelihood statistics. A log-likelihood ratio (LR) test
indicates that both specifications are statistically preferable to the DID model (LR = 142.62 for the SDID
and LR = 159.92 for the STDID). This is also supported by the fact that the autoregressive coefficients
are statistically significant, as proposed by the t-test. The comparison between the SDID and the STDID
is less clear, but the LR test indicates that the STDID model is preferable (LR = 17.20). Thus, statistically,
the STDID model performs better globally.

Regarding the individual effect of the proximity of the station on house price, the significant
effect appears to be spatially diffused within less than a 10-min drive from the nearest station, for
the SDID and the STDID. This is also the case for the DID, but the effect appears to be significant for
houses located within a 10 to 12-min drive from the nearest station. The cross-effect with distance to
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the CBD is also significant for the 4 to 6 min-drive for the DID only. Thus, taking into account the
spatial consideration of spillover effects influences the significance of some parameters. This suggests
that the spatial dimension, if not explicitly taken into account in the model, contributes to some extent,
to the omitted variable problem, generating bias on the estimated coefficients.

Table 4. Estimation results for the south-east CRT line (purple line).

Models DID Equation (17) SDID Equation (19) STDID Equation (22)

Variables Coeff. Sign. Coeff. Sign. Coeff. Sign.

∆ Sale situation

Forclosure −0.1468 *** −0.1473 *** −0.1474 ***
Without legal warranty −0.0792 *** −0.0778 *** −0.0776 ***

Succession −0.0898 *** −0.0824 *** −0.0816 ***
Transfer −0.0178 *** −0.0189 *** −0.0190 ***

∆ Walking distance

(0–500) m 0.0573 0.0570 0.0578
(500–1000) m 0.0408 * 0.0379 * 0.0380 *

(1000–1500) m 0.0080 0.0076 0.0075

∆ Driving distance

(0–2) min. 0.1743 *** 0.1773 *** 0.1774 ***
(2–4) min. 0.1199 *** 0.1179 *** 0.1177 ***
(4–6) min. 0.0528 *** 0.0517 *** 0.0519 ***
(6–8) min. −0.0148 −0.0149 −0.0145

(8–10) min. 0.0427 *** 0.0410 ** 0.0408 **
(10–12) min. 0.0378 ** 0.0363 0.0361
(12–14) min. 0.0490 0.0514 0.0519

(0–2) min. × distance to CBD −0.0060 *** −0.0060 *** −0.0060 ***
(2–4) min. × distance to CBD −0.0034 *** −0.0033 *** −0.0033 ***
(4–6) min. × distance to CBD −0.0007 * −0.0007 −0.0007
(6–8) min. × distance to CBD 0.0020 *** 0.0020 *** 0.0020 ***

(8–10) min. × distance to CBD −0.0012 −0.0011 −0.0011
(10–12) min. × distance to CBD −0.0011 −0.0011 −0.0010
(12–14) min. × distance to CBD −0.0016 −0.0017 −0.0017

Temporal dummies variables Yes Yes Yes
Dynamic spatial effect (ψ) – – 0.0215 ***

Multidirectional spatial effect ($) – 0.0562 *** 0.0443 ***

R2 0.7371 0.7372 0.7373

LL 9540.08 9611.39 9619.98
AIC −18,920 −19,058 −19,074
BIC −18,294 −18,417 −18,425
NT 18,320 18,320 18,320

Legend: *** p < 0.001; ** p < 0.01; * p <0.05.

4.2.2. The North CRT Line

The difference between the DID, the SDID, and the STDID approaches for the estimate of the
north CRT line is less pronounced. This is partly related to the fact that the spatial autoregressive
coefficients are lower, even if statistically significant (Table 5). Once again, the pseudo-R2 is higher in
the STDID model, but the gain is once again marginal, while the AIC and BIC statistics are both lower
in the STDID specification. The log-likelihood ratio (LR) test also points in favor of the superiority of
the SDID and the STDID models over the DID model (72.10 for the SDID and 83.21 for the STDID).
The comparison between the SDID and the STDID is less clear, but the LR test indicates that the
STDID model is preferable (LR = 10.20). Thus, statistically, the STDID model gives, once again, a better
global performance.
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Even if the autoregressive coefficients are low, this does not means they make no impact. Here, the
estimation results suggest that no effect related to the “on foot” proximity is significant. Moreover, the
effect is concentrated for transactions that are located within a 4-min drive, while only houses located
within 0 to 2-min drive to the nearest station show a complex relation according to the distance from
the CBD. If the marginal effect for houses located between a 2 and 4-min drive from the nearest station
is constant over space, the location rent varies for the 0 to 2-min drive depending on the distance to the
Montreal CBD. Thus, this effect can also turn out to be quite low for houses located in Saint-Jérôme,
about 55 kilometers from the CBD.

Table 5. Estimation results for the north CRT line (green line).

Models DID Equation (17) SDID Equation (19) STDID Equation (22)

Variables Coeff. Sign. Coeff. Sign. Coeff. Sign.

∆ Sale situation

Forclosure −0.1160 *** −0.1162 *** −0.1163 ***
Without legal warranty −0.0727 *** −0.0726 *** −0.0727 ***

Succession −0.0945 *** −0.0900 *** −0.0891 ***
Transfer −0.0177 *** −0.0185 *** −0.0186 ***

∆ Walking distance

(0–500) m 0.0009 0.0024 0.0027
(500–1000) m −0.0182 −0.0165 −0.0170

(1000–1500) m −0.0035 −0.0010 −0.0009

∆ Driving distance

(0–2) min. 0.1643 ** 0.1589 *** 0.1611 ***
(2–4) min. 0.0650 * 0.0633 * 0.0633 *
(4–6) min. 0.0431 0.0410 0.0390
(6–8) min. 0.0585 0.0553 0.0547

(8–10) min. 0.0228 0.0236 0.0230
(10–12) min. −0.0566 −0.0562 −0.0564
(12–14) min. 0.0018 0.0013 0.0016

(0–2) min. × distance to CBD −0.0026 * −0.0025 ** −0.0026 **
(2–4) min. × distance to CBD −0.0012 −0.0012 −0.0012
(4–6) min. × distance to CBD −0.0007 −0.0007 −0.0006
(6–8) min. × distance to CBD −0.0009 −0.0009 −0.0009

(8–10) min. × distance to CBD −0.0004 −0.0004 −0.0004
(10–12) min. × distance to CBD 0,0016 0.0016 * 0.0016 *
(12–14) min. × distance to CBD −0,0001 −0.0001 −0.0001

Temporal dummies variables Yes Yes Yes
Dynamic spatial effect (ψ) – – 0.0139 **

Multidirectional spatial effect ($) – 0.0342 *** 0.0273 ***

R2 0.7875 0.7875 0.7876

LL 13,126.78 13,162.83 13,167.93
AIC −26,072 −26,140 −26,148
BIC −25,353 −25,406 −25,406
NT 19,808 19,808 19,808

Legend: *** p < 0.001; ** p < 0.01; * p < 0.05.

4.2.3. Calculating and Interpreting the Marginal Effect

Turning our attention to the interpretation of the marginal effect, depending on the specification,
yields interesting results. The marginal effect reveals an interesting pattern here, with a higher effect
for houses located closer to the CBD, on the south shore and on the north shore, while this effect slowly
diminishes with distance to the station, or distance to the CBD.

For the south-east CRT line stations (Table 6), houses located within 0 to 2 min of the nearest CRT
station to the CBD (St-Lambert) located about 5 km from the CBD (dCBD = 5), but not within walking
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distance of the station, the DID (in such as case, ∂yt/∂d0–2t = β0–2 + dCBD × β0–2;CBD) suggests a direct
price increase of about 14.45% (with ∂yt/∂d0–2t = β0–2 + dCBD × β0–2; CBD = 0.1774 + (5 × (−0.0066))
versus 14.71% for the SDID and 14.72% for the STDID. Moreover, the spatial spillover effect implies
that the total marginal effect is evaluated at 15.58% for the SDID (∂yt/∂d0-2t = (β0–2 + dCBD ×β0–2CBD)
× (1 − $)−1) and 15.40% for the STDID, while the total and final impact for the STDID (∂yt+∞/∂d0–2t =
(β0–2 + dCBD ×β0–2CBD) × [(1 − $) × (1 − ψ)]−1) is estimated at 15.74% (Table 5). Thus, the total effect
is higher by more than 1 percentage point in the STDID than in the DID model.

For houses located within a 0 to 2 min distance of the Mont-St-Hilaire CRT station, and about
40 km from the CBD, the DID suggests a direct price rise of about −6.37%, as compared to −6.43% for
the SDID and −6.39% for the STDID. The final total marginal effect is −6.81% for the SDID model and
−6.84% for the STDID. Once again, the impact is higher decomposing the marginal effect to account
for the spatial spillover (multidirectional) effect as well as the spatial dynamic (unidirectional) effect,
but the gap is of less than half a percentage point in the STDID as compared to the DID model, while it
is comparable between SDID and STDID models.

Table 6. Calculation of the marginal effect with the different specifications (south-east line).

Distances [0–2[ min. ‡ [2–4[ min. [4–6[ min. [6–8[ min. [8–10[ min.

St-Lambert

DID 0.1445 0.1031 0.0492 −0.0046 0.0368
SDID 0.1558 0.1073 0.0509 −0.0051 0.0377

STDID 0.1574 0.1081 0.0517 −0.0048 0.0379

St-Hubert

DID 0.0850 0.0695 0.0419 0.0158 0.0249
SDID 0.0919 0.0720 0.0433 0.0162 0.0263

STDID 0.0929 0.0727 0.0439 0.0166 0.0265

St-Bruno

DID 0.0553 0.0528 0.0383 0.0260 0.0190
SDID 0.0599 0.0544 0.0395 0.0269 0.0206

STDID 0.0607 0.0550 0.0400 0.0274 0.0208

St-Basile-le-Grand

DID −0.0042 0.0192 0.0310 0.0464 0.0072
SDID −0.0041 0.0191 0.0318 0.0482 0.0091

STDID −0.0039 0.0196 0.0323 0.0488 0.0094

McMasterville

DID −0.0340 0.0024 0.0274 0.0566 0.0013
SDID −0.0361 0.0015 0.0280 0.0589 0.0034

STDID −0.0361 0.0019 0.0284 0.0595 0.0037

Mont-Saint-Hilaire

DID −0.0637 −0.0144 0.0237 0.0668 −0.0047
SDID −0.0681 −0.0162 0.0242 0.0695 −0.0023

STDID −0.0684 −0.0158 0.0245 0.0702 −0.0020

Legend: ‡ excluding walking accessibility effect.

The difference between the estimation gains is less pronounced on the north-shore (Table 7), with
the highest gap between the DID and the STDID being 0.13 percentage points for houses located close
to Rosemère station, the first station on the north-shore. However, the relative gain of the STDID
model, as compared to the SDID model, accounts for the larger part of this gain. Thus, the introduction
of both spatial effects in the model raises interesting gains to evaluate the total gain of the new CRT
service, while allowing us to decompose the effect accounting for spatial spillover, but also for the
dynamic spatial effect over time.
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Table 7. Calculation of the marginal effect with the different specifications (north line).

Distances [0–2[ min. ‡ [2–4[ min. [4–6[ min. [6–8[ min. [8–10[ min.

Rosemère

DID 0.0861 0.0283 0.0213 0.0302 0.0107
SDID 0.0864 0.0283 0.0213 0.0304 0.0106

STDID 0.0874 0.0285 0.0211 0.0302 0.0105

Ste-Thérèse

DID 0.0731 0.0222 0.0176 0.0255 0.0086
SDID 0.0734 0.0221 0.0178 0.0259 0.0083

STDID 0.0740 0.0223 0.0178 0.0258 0.0082

Blainville

DID 0.0601 0.0161 0.0140 0.0208 0.0066
SDID 0.0604 0.0159 0.0142 0.0215 0.0060

STDID 0.0606 0.0160 0.0146 0.0213 0.0060

St-Jérôme

DID 0.0210 −0.0022 0.0031 0.0067 0.0006
SDID 0.0213 −0.0027 0.0037 0.0080 −0.0009

STDID 0.0203 −0.0027 0.0048 0.0079 −0.0008

Legend: ‡ excluding walking accessibility effect.

4.3. Discussion

The demonstration in the case of house transactions and price appreciation (or the price
determination process) is a good example of how it is possible to decompose the marginal effect, not
only accounting for the indirect and total spatial spillover effect, but also accounting for a unidirectional
(dynamic) spatial effect. The latest effect allows us to account for the temporal decomposition of the
marginal effects accounting for the short-term and long-term impacts of the spatial multidirectional
spillover effect. This decomposition is similar to what is done in the spatial panel case, but the
application here lies on a totally different type of data: spatial data pooled over time, i.e., individual
spatial data that are treated as different observations over time.

Thus, opting for a DID estimator necessarily implies that we can observe at least a given
observation (house) twice. However, single observations are seldom repeated more than twice over a
decade, let alone more. Moreover, since the sale implies different actors—the first buyer now being the
seller, while a first seller and a second buyer are different economic agents—these observations may be
viewed as separate observations, while being in the same spatial location. Thus, opting for the DID,
SDID, or STDID estimators implies dealing with pairs of observations, but these pairs can be seen as
individual spatial data pooled over time.

To our knowledge, this is the first attempt to calculate the short- and long-term marginal effect for
spatial data pooled over time. This implies extending the SDID estimator, as developed by [31], to
incorporate two types of spatial effect: (i) a multidirectional effect, which is the usual spatial spillover
effect, i.e., the spatial effect for a given time period; and (ii) a unidirectional effect, which is equivalent
to a temporal effect, but locally measured. The inclusion of these two effects gives a STDID estimator
and allows us to decompose the marginal effect according to the spatial spillover effect, as well as a
short- and long-term spillover effect.

In the end, the paper shows how it is possible to account for separate effects in an STDID approach
with spatial data pooled over time. Although the difference between the DID and the STDID does not
appear great at first glance, even so calculation of the marginal effects shows how, even for low values
of the autoregressive parameters, this effect can be important in the long run. Of course, as the spatial
autoregressive parameters are low, the difference between the estimation of the effect obtained through
a DID, a SDID, or a STDID approach decrease and may even converge to the same values. However,
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the only situation in which the estimation results will be equal is when the spatial autoregressive
parameters are not statistically different from zero (0).

Translating individual effects into global effects by considering the full total housing stock over
time can represent a huge difference, even if the individual difference is about half a percentage point.
Considering the fact that some houses have been sold for more than $CAN 1 million and that many
of these transactions have occurred, the total economic impact of implementing a new mass transit
system could easily be underestimated [29,30]. Translated on the full housing stock, a gain of one
percentage point difference can represent a large total economic impact. For example, [29] estimate
that taxing the total gain for proximity to a CRT station can easily pay for the full operating cost of the
service within a given year. For this reason, we think that the decomposition of the spatial effects and
the calculation of the marginal effects accounting for both spatial effects can be a useful framework for
future analysis of the impact of public policy using spatial data pooled over time.

5. Conclusions

The paper proposes developing a spatio-temporal difference-in-differences (STDID) estimator to
account for two separate effects in the calculation of the marginal effect of an exogenous change in
environmental amenities: (i) a spatial multidirectional effect; and (ii) a spatial unidirectional effect.
Taking into account those two effects, the paper shows how one can take into account these two
spatial dimensions in the calculation of the marginal effects, and how such effects may change the
global portrait of the calculation of the economic impact of landscaping policies on real estate prices.
The STDID allows us to decompose the effect to incorporate spatial spillover effects, but also short-
and long-term dynamic spatial effects.

The originality of this paper is twofold. First, it is the first time that such a framework has
been applied to spatial data pooled over time, and it is the first time that the calculation of the
marginal effects has been discussed for such a database. The calculation of the marginal effects using
row-standardized weights matrices and equivalence results and proof from previous study, lead us to
propose a simple way to calculate marginal effects. This framework can be used by scholars for future
applications and enable the use of complicated matrix calculations: the marginal effects are calculated
using the parameters (scalars) only. Second, the model developed in first-difference on real estate
transactions is a direct application of a spatio-temporal difference-in-differences (STDID) estimator,
which is a natural extension of the spatial difference-in-differences (SDID) proposed by [31].

To illustrate the calculation of the marginal effect, an empirical case related to change in mass
transit supply, more specifically on a commuter rail train (CRT), is investigated. The results show
how ignoring the spatial spillover effect can underestimate the total marginal effect and influence
the total economic impact. The importance of the indirect marginal spatial spillover effect and the
short- and long-term effects are directly related to the size of the autoregressive coefficients. Thus,
even if, in the actual applications, the coefficients remain quite low ($ and ψ < 0.05), the interpretation
nevertheless shows how these coefficients can have a global influence on the calculation, for example,
of the economic benefits of a new mass transit supply.

In the end, we hope that this work will guide future interpretations about the estimation of
the possible impact of changes in public policies when dealing with spatial data pooled over time.
The precision and the richness of what can be said when the effects are decomposed according
to their spatial dimension, but also their temporal dimension is a clear contribution of this paper.
Addressing the complex spillover effect of landscaping and planning public policies is a real challenge
that can be addressed using the development proposed in this paper.
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