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We present a general method for constructing numerical Jacobian matrices for flows discretized on
a Poincaré surface of section. Special attention is given to Hamiltonian flows where the additional
constraint of energy conservation is explicitly taken into account. We demonstrate the approach for
a conservative dynamical flow and apply the technique for the general detection of periodic
orbits. © 2005 American Institute of Physics. fDOI: 10.1063/1.1854031g

It was the genius of Henri Poincaré which brought us a
set of brilliant tools for exploring dynamical systems. For
studying continuous flows, thesurface of section, known
as the Poincaré Surface of Section (PSS), is perhaps its
most celebrated method. On this surface, the flow is faith-
fully represented by a discrete map, thePoincaré map.
The study of this mapping often reveals more dynamical
informations than the trajectories themselves. In most
cases however, the map can only be obtained numerically
as well as its Jacobian matrix necessary for the charac-
terization of the stability of the underlying trajectories.
We show how to obtain accurate Jacobian matrices from
general flows with special attention to Hamiltonian sys-
tems. We take the opportunity to generalize the proce-
dure to systems where many constraints are present other
than the one imposed by the PSS. We are concerned in
particular with constraints that effectively decrease the
dimensionality of the system. The case of a conservative
system is detailed and serves to illuminate the analysis.
The technique developed finds a first application in the
detection of unstable periodic orbits whose importance
transcends nonlinear dynamics, from the reconstruction
of invariants to the control of chaos.

I. INTRODUCTION

The choice of aPoincaré Surface of Section (PSS), an
arbitrary hypersurface generically not tangent to the vector
field, is often the first step in the study of a continuous flow.
It is always possible to find an hypersurface of codimension
onesi.e., one dimension less than that of the flowd for which
all points on the hypersurface are projected back to it by
integrating the flow for a finite interval of time. The numeri-
cal methods necessary to achieve the construction of the en-
suing Poincaré map, have a long history1 and are well de-
scribed in the literature.2,3

The construction of a discrete map and its associated
Jacobian matrix from a flow has some technical aspects that
need to be considered. For instance, the explicit construction

of the Jacobian matrix on the PSS for a Hamiltonian system,
although an important element among the tools for the analy-
sis of nonlinear systems, seems to have been somewhat ne-
glected in the literature. This paper presents a detailed deri-
vation of the methodology necessary to construct numerical
Jacobian matrices, and although the emphasis is on conser-
vative flows, it applies equally well to dissipative systems.

One of the motivations for doing so is related to some
technical problems associated with the detection of periodic
orbits. Indeed, one of the faithful aspects of the Poincaré
mapping are theperiodic orbits, which play a fundamental
role in the description and characterization of the dynamics
of chaotic systems. For instance, for hyperbolic attractors,
the natural measure, the Lyapunov exponents and the fractal
dimension can be written in term of Unstable Periodic Orbits
shereafter UPOsd.4–6 For open systems, one can estimate the
escape rate from the UPOs.7 In Hamiltonians systems, the
quantum mechanical density of states can be expressed, in
the semiclassical regime, by a series expansion with respect
to the stability coefficients of the periodic orbits.8 The UPOs
therefore constitute the most fundamental building blocks of
a chaotic system and this has motivated the research for ef-
ficient techniques to detect them. The reader may wish to
consult9 for further discussion of the importance and utility
of periodic orbits.

The completedetection of UPOs in a chaotic set is a
difficult task. One reason is related to the stability of the
orbits: trajectories that enter the neighborhood of the UPOs
will be repelled from it. The other reason is related to their
quantity: the number of UPOs grows exponentially with in-
creasing period. Novel numerical methods have been pro-
posed recently to detect UPOs in discrete chaotic
systems.10–12 When dealing with a continuous flow, these
methods can be implemented using the PSS to construct the
discrete map from the flow. The detection of periodic orbits
benefits then from the fact that the dimension of phase space
on the PSS is smaller than that of the continuous flow. Futh-
ermore, the latest numerical techniques for finding UPOs
needboth the discrete map describing the dynamics and its
Jacobian matrix.12,13 As we will see however, the power of
the methods emerges fully when their constituing elements
are accurately evaluated and it is therefore timely to develop
reliable methods to calculate them.

adAuthor to whom correspondence should be addressed. Electronic mail:
bdoyon@phy.ulaval.ca

bdAlso at Laboratoire de Chimie-Physique Matière et Rayonnement, Univer-
sité Pierre et Marie Curie, 75231 Paris 05, France.

CHAOS 15, 013108s2005d

1054-1500/2005/15~1!/013108/8/$22.50 © 2005 American Institute of Physics15, 013108-1

Downloaded 28 Feb 2005 to 132.203.76.237. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CorpusUL

https://core.ac.uk/display/442640506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.1854031


The paper is organized as follows: Section II reviews the
method for constructing a discrete map from a flow and sets
the notation for the rest of the paper. The construction of the
Jacobian matrix on the PSS is considered in detail, with spe-
cial attention to Hamiltonian systems. Section III presents a
concrete example of the formulas of Sec. II, through the
construction of a discrete map of a particular Hamiltonian
flow: the Diamagnetic Kepler Problem (DKP). Section IV
applies the construction of thenumericaldiscrete map to the
detection of UPOs in the DKP. It is shown in particular that
inaccurate Jacobian matrices result in an important reduction
of the number of detected UPOs. Our conclusions are then
summarized in the final section.

II. GENERAL FORMULATION

Our starting point is theN differential equations that
describe the dynamical problem of interest

dṽ

dt
= f̃sṽd, ṽ P RN s1d

or equivalently,

1
dṽ1

dt

]

dṽN

dt
2 = 1 f̃1sṽd

]

f̃Nsṽd
2 .

In general, this system of equations is solved numerically
and the flowf̃sṽ ,td; ṽstd corresponds to the solution of the
integration after a timet, starting from the initial conditionṽ.
The symbol ˜ is reserved for allN-component vectors. Our
goal is to obtain numerically a mappingvn°vn+1;Fsvnd at
discrete timestn from this continuous flow. The map will
haveD components withD,N. We will now give a general
formulation of how to obtain thenumericaldiscrete system
Fsvnd from the flowf̃sṽ ,td.

The mapping is produced by collecting successive points
of directed intersections between the flow and a predefined
hypersurfaceP of dimensionN−1, the PSS. If this hypersur-
face is the only constraint available, the numerical mapping
Fsvnd will have D=N−1 components. In general though, we
can haveNc constraints between the different variables of the
system andD=N−Nc. For example, we could be studying a
Hamiltonian system withN=4 and 2 constraintssNc=2d.
One of these constraints would come from the conservation
of energy and the other from the PSS.

ThoseNc constraintssincluding the PSSd are important
since they make possible the construction of the discrete
map. We will denote byṽstd the state of the flow at timet
and useṽn to describe the state of the systemon the PSS at
the nth intersectionsṽnPRNd. In distinction, the vectorvn

corresponds to the state in the numerically constructed dis-
crete systemFsvnd svn,FPRDd. It is important to realize
that the vectorvn is not a new coordinate system, but it is a
projection of ṽn in a smaller subsystem. We are simply re-
moving Nc components from the vectorṽn. TheNc removed
components are noted byv̆nPRNc.

The constraints are usually given by equations. By speci-
fying the statevn, we can deducev̆n and recover the whole
stateṽn by using the equations of constraints. In general, the
componentsv̆n will depend on the variables that we keep
svnd and we will therefore writev̆nsvnd. The vector state on
the PSSsṽnd is then noted

ṽn = Svn

v̆nsvnd
D . s2d

This notation will prove useful in calculating the Jacobian
matrix of the discrete systemFsvnd. For simplicity and with-
out lack of generality, we choose the firstD components of
ṽn to form vn.

To obtain the iterateṽn, we consider the intersection of
the flow with the PSS. In general, this section will be a
hyperplane described by the following equation:

hsṽstdd = j̃Tsṽstd − ṽ0d, s3d

where ṽ0 is a point on the hyperplane andj̃, a vector or-
thogonal to this hyperplane. Ifṽstd is a solution of the inte-
gration, then we will havehsṽstdd=0 whenṽstd is precisely
on the hyperplane. The sign of the functionhsṽstdd will
change wheneverṽstd goes from one side of the hyperplane
to the other.

The applicationṽn° ṽn+1 is obtained by integrating Eq.
s1d from ṽn for a particular timet=tsṽnd;tn,

ṽn+1 = f̃sṽn,tsṽndd. s4d

This time will have to be chosen such thatṽn+1 is on the
hyperplane and also satisfies anorientation condition. By
convention, we will keep the intersection points when the
flow is going from negative to positive values ofh.

The numerically constructed mapFsvnd is obtained by
taking the firstD components ofṽn+1 fEq. s4dg. The map
Fsvnd can be noted

Fsvnd = fsṽn,tsṽndd = fsvn,v̆nsvnd,tsvn,v̆nsvnddd. s5d

The first equality comes from Eq.s4d, where we have re-
moved thẽ on the vectorf̃ to remind us that we only use
the first D components. The second expression comes from
Eq. s2d. The advantage of this notation is that it highlights
the dependence ofF on v, which, as we will see, is important
to establish the Jacobian matrix ofF. Equations5d has the
following meaning. To evaluate the iterate ofvn in the nu-
merically constructed discrete system, we first use the equa-
tions of constraintsv̆svndd to recover the stateṽn. We then
proceed to the numerical integration of the flow fromṽn. We
integrate for a specific timet=tn when the flow is back on
the PSS and the dynamical state isṽn+1. We finally take the
first D components to formvn+1 and repeat the procedure.
The numerical mapFsvnd is thereby constructed from the
flow.

The difficult part in this process is that we do not know
a priori the timetn required to get back on the PSS. Some
numerical technique must be used to determinetn. For in-
stance, one can integrate the flow and look for a change of
sign of the functionh fEq. s3dg. By a bracketing procedure,
we can adjust the local integration time steps to bringh to

013108-2 B. Doyon and L. J. Dubé Chaos 15, 013108 ~2005!

Downloaded 28 Feb 2005 to 132.203.76.237. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



zero within a prescribed accuracy. The total integration time
to bring the system back toh=0 corresponds totn. Another
way of doing things is known asHénon’s method.1 Hénon
has suggested to introduce a variableu;hsṽstdd and to use it
as the new integration variable. This approach is very elegant
and powerful and has been used in most of our calculations.
We refer the reader to Refs. 1 and 3 for a complete descrip-
tion of the method.

We now turn to the determination of theD3D Jacobian
matrix Jsvnd of the numerical mapFsvnd, i.e., the matrix
relating subsequent infinitesimal variations on the PSS by

dvn+1 = Jsvnddvn.

It is obtained by differentiating the mapF with respect tov.
One notes that because of the dependence of the constrained
variables and the return times onv, a total derivative must be
taken. Froms5d and using the chain rule for derivatives, we
get

Jsvnd = U d

dv
FsvndU

vn

= U d

dv
fsvn,v̆nsvnd,tsvn,v̆nsvndddU

ṽn,tn

= uDvfuṽn,tn
+ uDv̆fuṽn,tn

uDvv̆uṽn
+ F ]f

]t

d

dv
tG

ṽn,tn

= uDvfuṽn,tn
+ uDv̆fuṽn,tn

uDvv̆uṽn

+ F ]f

]t
hDvt + Dv̆tDvv̆jG

ṽn,tn

, s6d

whereDx denotes the partial derivatives with respect to the
components ofx. By regrouping the different terms and
making use of Eq.s1d, it is possible to interpret the indi-
vidual contributions to the Jacobian matrix. This is done by
isolating all the elements depending explicitly onv̆, viz.

Jsvnd = uDvfuṽn,tn

+ ffsf̃dDvtgṽn,tn
+ fhDv̆f + fsf̃dDv̆tjDvv̆gṽn,tn

.

s7d

This is the central equation of this section and it is
worthwhile to look at each term in turn. The first term can be
calculated by integrating the variational equations associated
with Eq. s1d. These equations will generate theN3N Jaco-

bian matrix J̃f̃sṽ ,td. It collects the information on how a
perturbation evolves with time in the neighborhood of
f̃sṽ ,td and takes the explicit form

J̃f̃sṽ,td ; Dṽf̃sṽ,td =1
]f̃1

]ṽ1
¯

]f̃1

]ṽN

] � ]

]f̃N

]ṽ1
¯

]f̃N

]ṽN

2 . s8d

This matrix is a solution of the variational equations3

dJ̃f̃sṽ,td

dt
= Dṽf̃sṽdJ̃f̃sṽ,td, s9d

with initial condition J̃f̃sṽ ,t=0d=1, wheref̃sṽd is the vector
field associated with the systems1d. The first term of Eq.s7d
is calculated by integrating Eq.s9d from ṽn for a particular
time t=tn. The result of this integration gives theN3N ma-

trix J̃f̃sṽ= ṽn,t=tnd. The termuDvfuṽn,tn
corresponds then to

the D3D submatrix ofJ̃f̃sṽ= ṽn,t=tnd made of the firstD

elements of the firstD columns ofJ̃f̃sṽ= ṽn,t=tnd.
Figure 1 gives a simple geometrical interpretation for the

effect of the Jacobian matrixJ̃f̃sṽ= ṽn,t=tnd on a small per-
turbationdṽn added toṽn. The vectordṽstnd represents the
perturbation att=tn since

dṽstnd = J̃f̃sṽ = ṽn,t = tnddṽn.

In this figure, the two lines represent the integration, for a
time t=tn of two different trajectories. The one starting atṽn

will get back on the PSS after a timetn. During thissame
period of time, the other trajectory, starting atṽn+dṽn will
not, in general, fall on the PSS. The matrix needed to map an
arbitrary deviationdṽn on the PSS to the subsequent one
dṽn+1 salso on the PSSd must acknowledge the implicit de-
pendence of the return timet on ṽ. In other words,

dṽn+1 ; J̃sṽnddṽn

=
d

dṽ
f̃sṽ,tddṽn = FDṽf̃ +

]f̃

]t
DṽtG

ṽn,tn

dṽn

= FJ̃f̃sṽ,td +
]f̃

]t
DṽtG

ṽn,tn

dṽn. s10d

It is then clear that since we are looking for the Jacobian
matrix of F, which maps two pointson the PSS, we need

more than just the submatrixJ̃f̃sṽ ,td. This brings us to the
second term in Eq.s7d, namely, ufsf̃dDvtuṽn,tn

.

We know how to evaluateufsf̃duṽn,tn
: it is simply the

first D components of Eq.s1d evaluated atf̃sṽ= ṽn,t=tnd
= ṽn+1. In order to calculate the derivativesDvt, we note that
the condition thatdṽn+1 must be on the PSS imposes the

restriction thatj̃Tdṽn+1=0, which in turn leads to

FIG. 1. Geometric interpretation of Eq.s7d.
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j̃TFDṽf̃ +
]f̃

]t
DṽtG

ṽn,tn

= 0. s11d

Indeed, since]f̃ /]t= f̃sf̃d, we obtain easily the relation

uDṽtuṽn,tn
=

− j̃TuDṽf̃uṽn,tn

j̃Tuf̃sf̃duṽn,tn

, s12d

and hence the derivativesDvt as its firstD components.
The last term ins7d is important if the eliminated vari-

ablesv̆ depends onv, as in the case of Hamiltonian systems.
All the elements composing this term can be evaluated. First,
Dv̆f is the D3Nc submatrix of the variational matrix

J̃f̃sṽ= ṽn,t=tnd. Second,Dv̆t is the line vector composed of
the lastNc elements ofuDṽtuṽn,tn

fEq. s12dg. And finally, Dvv̆
is an Nc3D matrix consisting of derivatives ofv̆ with re-
spect tov as given by the equations of constraints.

This completes the description of the procedure to obtain
from a continuous flow a numerically constructed map and
its associated Jacobian matrix. In practice,s1d and s9d are
integrated simultaneously. As already mentioned, the non
trivial aspect of this integration is the determination of the
time tn needed to get back on the PSS. For systems where
the only constraint comes from the PSSse.g., dissipative
systems where the energy is not conservedd, and with a ju-
dicious choice of the surface of section, one can makev̆
independent ofv. The calculation of the Jacobian matrix then
simplifies greatly since the last term ofs7d drops out of the
calculation.

A further point of interest is the connection of some of
our matrices with themonodromy matrix.14–16If ṽn is part of
closed orbit of periodT sor alternatively am-periodic orbit as
registered bym intersections with the PSS, i.e.,ṽn+m= ṽn

with T=oi=1
m tmd, the monodromy matrixM̃ n relates an infini-

tesimal variationdṽn with the corresponding change after
one period,dṽn+m, as

dṽn+m = M̃ ndṽn. s13d

According to Eq.s10d, this means that

M̃ n = fJ̃sṽn+m−1d ¯ J̃sṽndg s14d

and can easily be calculated as a by-product of our analysis.
This relationship emphasizes the equivalence between the
closed trajectory on the one hand and its periodic intersec-
tions with a given PSS on the other. In particular, since the
stability of the orbit is directly related to the eigenvalues of

M̃ n for the product ofJ̃sṽn+id at each intersectiong, the closed
trajectory and its discrete PSS components will share the

same property. It is also clear that one eigenvalue ofM̃ n will
always be equal to unity, corresponding to the direction
along the trajectory. This observation may be used as a fur-
ther test of the numerical accuracy of the construction.

III. IMPLEMENTATION

Since the general formulation may be somewhat hard to
digest, a concrete example should help to visualize the
implementation of the analysis.

The chosen system is a four-dimensional Hamiltonian
flow representing the motion of an electron under the com-
bined influence of a Coulomb and a magnetic field. It goes
under the name,diamagnetic Kepler problem (DKP), and
occupies central stage in classical and quantum chaos
research.17

It has proven useful18,19 to consider aspseudo-d Hamil-

tonian function,Ĥ, in scaled semiparabolic coordinatesshere
for angular momentumL=0d

Ĥ = 1
2spm

2 + pn
2d − esm2 + n2d + 1

8m2n2sm2 + n2d ; 2, s15d

for the dynamical evolution wheree acts as a dynamical
parameter and is related to the physical energyE by e
=g−2/3E. The parameterg=B/Bc denotes the strength of the
magnetic field relative to the unitBc.2.35 105 T. As e is

varied, the classical flow ofĤ covers a wide range of Hamil-
tonian dynamics reaching from bound, nearly integrable be-
havior to completely chaotic and unbound motion.18,19

The differential equations for this Hamiltonian are given
explicitly by

dṽ

dt
=1

dṽ1

dt

dṽ2

dt

dṽ3

dt

dṽ4

dt

2 ;1
dn

dt

dpn

dt

dm

dt

dpm

dt

2 =1
pn

ns2e − 1
4m4 − 1

2n2m2d
pm

ms2e − 1
4n4 − 1

2n2m2d
2 .

s16d

We have put the first two components ofṽ asn andpn since
these variables are the ones we have selected to describe the
dynamics of the discrete map.

The variational equationss9d are given explicitly by

dJ̃f̃

dt
= ṼDKPJ̃f̃sṽ,td,

whereṼDKP stands for

ṼDKP =1
0 1 0 0

2e − 1
4m4 − 3

2m2n2 0 − mnsm2 + n2d 0

0 0 0 1

− mnsm2 + n2d 0 2e − 1
4n4 − 3

2m2n2 0
2 .

These 16 differential equations are to be added to the initial
system. With the notation

n̂i =
]n

]ṽi , p̂n
i =

]pn

]ṽi ,

m̂i =
]m

]ṽi , p̂m
i =

]pm

]ṽi ,

the variational equations can be written as
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d

dt1
n̂i

p̂n
i

m̂i

p̂m
i
2 = ṼDKP1

n̂i

p̂n
i

m̂i

p̂m
i
2 , s17d

for i =h1,4j. We then integrate simultaneouslys16d ands17d
s20 equations in alld from a particular stateṽn and the initial
conditions for the variational equations

J̃f̃sṽ = ṽn,t = 0d = 1,

or

n̂i = di1, p̂n
i = di2,

m̂i = di3, p̂m
i = di4,

wheredi j is the Kronecker symbol.
For the DKP, a “natural” choice for the PSS ism=0 or

n=0. We takem=0 such thatj̃T=s0 0 1 0 d and a pointṽ0

on the PSS is thenṽ0
T=sn0 pn0

0 pm0
d. The functionhsṽstdd

= j̃Tsṽstd− ṽ0d is written explicitly as

hsm,n,pm,pnd = s0 0 1 0d1
nstd − n0

pnstd − pn0

mstd − 0

pmstd − pm0

2 = mstd. s18d

On the PSS,h is by definition equals zero. This gives us a
first constraint equationson the PSSd

constraint 1:mn = 0. s19d

Furthermore, the energy is conserved and given by the
spseudod-Hamiltonians15d as

Ĥ ; 2 = 1
2spm

2 + pn
2d + Vsm,nd,

where Vsm ,nd=esm2+n2d+ 1
8m2n2sm2+n2d. With this con-

straint, we choose to eliminate the variablepm

pm = Î2sĤ − Vsm,ndd − pn
2,

swe choose the1 sign in agreement with the orientation
convention udm /dtutn

.0d which on the PSS gives us a sec-
ond equation of constraint

constraint 2:pmn
= Î2sĤ − Vsmn = 0,nndd − pnn

2 . s20d

In accord with our notation, for the flow of the DKP, we have
Nc=2 constraint equations. These allow us to write the elimi-
nated variablessv̆n=hmn,pmn

jd as a function of the remaining
variablessvn=hnn,pnn

jd.
The discrete system is then composed solely ofnn and

pnn
. On the PSS chosen, these variables are area preserving,

i.e., the Jacobian matrix must have a determinant equal to 1.8

The four-dimensional vectorṽn, composed of the 2 vectors
svn and v̆nd is

ṽn = S vn

v̆nsvnd
D =1

vn
1

vn
2

v̆n
1svnd

v̆n
2svnd

2 ; 1
nn

pnn

mn

pmn
snn,pnn

d
2 .

To obtain numerically the iteratevn and the Jacobian
matrix at this point, we proceed as follows. We choose an
initial condition v=snn,pnn

dT. Using the constraint equations
s19d and s20d, we then calculatev̆=smn,pmn

dT and integrate
simultaneously Eqs.s16d and s17d. During the integration,
the h function fh=mstdg will change sign twice. We stop the
integration just beforeh changes sign for the second time.
Recall that we want to stop the integration when we are back
on the PSS, soh must be equal 0. This can be achieved by
using Hénon’s method for example. We now have in hand
the initial conditionsṽnd, its iterate on the PSSsṽn+1d and the
time of integration between these statesstnd. We now calcu-
late the Jacobian matrix, using Eq.s7d.

We already have in hand the elements ofDvf andDv̆f

taken from the upper part of the 434 matrix Dṽf̃ that we
have integrated for a timetn fEq. s17dg, explicitly

uDvfuṽn,tn
;1 ]f̃1

]ṽ1

]f̃1

]ṽ2

]f̃2

]ṽ1

]f̃2

]ṽ2
2

ṽn,tn

; Sn̂1 n̂2

p̂n
1 p̂n

2D
ṽn,tn

,

and

uDv̆fuṽn,tn
;1 ]f̃1

]ṽ3

]f̃1

]ṽ4

]f̃2

]ṽ3

]f̃2

]ṽ4
2

ṽn,tn

; Sn̂3 n̂4

p̂n
3 p̂n

4D
ṽn,tn

.

Turning to the second term ofs7d, its first part can be calcu-
lated usings16d directly

ufsf̃duvn,tn
= fsṽn+1d ; S f1sṽn+1d

f2sṽn+1d
D .

The vectorsDvt andDv̆t can be obtained from the complete
vectorDṽt as expressed ins12d by
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uDṽtuṽn,tn
; S ]t

]n

]t

]pn

]t

]m

]t

]pm
D

ṽn,tn

=
12

−F j̃TDṽf̃

j̃Tf̃sf̃d
G

ṽn,tn

=

− s0 0 1 0d1
n̂1 n̂2 n̂3 n̂4

p̂n
1 p̂n

2 p̂n
3 p̂n

4

m̂1 m̂2 m̂3 m̂4

p̂m
1 p̂m

2 p̂m
3 p̂m

4
2

ṽn,tn

s0 0 1 0d1
f̃1sṽn+1d

f̃2sṽn+1d

f̃3sṽn+1d

f̃4sṽn+1d
2

=
− 1

f̃3sṽn+1d
sm̂1 m̂2 m̂3 m̂4dṽn,tn

=
− 1

pmn+1

sm̂1 m̂2 m̂3 m̂4dṽn,tn
. s21d

The vector uDvtuṽn,tn
suDv̆tuṽn,tn

d corresponds to the first
slastd two components of this equation, namely

uDvtuṽn,tn
; S ]t

]n

]t

]pn
D

ṽn,tn

=
− 1

pmn+1

sm̂1 m̂2dṽn,tn
s22d

uDv̆tuṽn,tn
; S ]t

]m

]t

]pm
D

ṽn,tn

=
− 1

pmn+1

sm̂3 m̂4dṽn,tn
. s23d

The remaining contribution consists of derivatives of the
constrained vectorv̆=smpmdT with respect tov. This gives
rise to the 232 matrix Dvv̆ given by

Dvv̆ = 1 0 0

−
1

pm

]V

]n
−

pn

pm
2 s24d

and with the further simplification that −]V/]n=dpn /dt= f̃2,
one finally gets

uDvv̆uṽn,tn
=

1

pmn

S 0 0

f̃2smn = 0,nnd − pn
D . s25d

This completes the procedure for calculating the map
Fsvnd and its Jacobian matrix on the PSS for the flow of the
DKP. A typical numerical implementation gives a map whose
elements are located on the PSS with an absolute accuracy of
10−15 swe have used Hénon’s methodd with a Jacobian matrix
of determinant 1 to better than 10−14. sIn theory, the determi-
nant has to be 1 for this particular flow.d Figure 2 illustrates
a projection of the flow in a three-dimensional phase space
and on the PSS fore=−0.1.

IV. APPLICATION: DETECTION OF PERIODIC ORBITS

In the last sections, we have given the details for con-
structing a discrete mapFsvnd and its Jacobian matrix from a
continuous flow. The procedure can be very useful if one has
to work with a discrete dynamical system, for instance, while
considering recent methods for the detection of periodic or-
bits. The effectiveness of our technique will be examplified
by a search of UPOs in the DKP.

Before embarking in the study of this specific example,
it is perhaps instructive to pause to describe the classical
Newton–RaphsonsNRd search,20 specifically for continuous
flows. For anN-dimensional flow, discretized on a PSS, a
period-m orbit is found as the zeros of the following func-
tion:

G̃sṽd = F̃smdsṽd − ṽ, s26d

where F̃smd consists ofm applications of the corresponding

nonlinear mapF̃.

FIG. 2. sad Projection of the flow on a three-dimensional phase space
se=−0.1d; sbd The PSSsmstnd=0d where two typical UPOs of period-1 and
period-4 are indicated. Notice the absence ofsresolvedd regular phase space
structures at this pseudo-energy indicating almost complete chaotic behav-
ior. In the bottom panel, the corresponding trajectories in thesmnpnd space
of sad are also sketched.

013108-6 B. Doyon and L. J. Dubé Chaos 15, 013108 ~2005!

Downloaded 28 Feb 2005 to 132.203.76.237. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



Conceptually, any numerical approach to find the zeros
of a nonlinear function amounts to the choice of an initial
condition ṽ0 and its gradual modification according to an
iterative scheme

ṽi+1 = ṽi + dṽi si ù 0d s27d

until the conditionG̃sṽi+1d<0 is met to a certain accuracy.
The correction for the NR algorithm is obtained by im-

posing that the linearized functionG̃sṽi +dṽid satisfies

G̃sṽi + dṽid , G̃sṽid +
dG̃

dṽ
dṽi = 0,

from which the equation fordṽi follows

s1 − J̃smdddṽi = G̃sṽid, s28d

whereJ̃smd is obtained from the integration of the variational
equations afterm intersectionssin the same directionsd with
the PSSfEqs.s8d and s9dg.

For flows, the NR method runs into two difficulties.

First, for every periodic orbit, one of the eigenvalues ofJ̃smd

is equal to 1, and the procedure may become unstable. Sec-

ondly, G̃sṽi +dṽid is in generalnot on the PSS. These two
problems are solved simultaneously by the addition of one
extra equation to Eq.s28d.3 Furthermore, if the flow is
Hamiltonian, another eigenvalue is equal to 1 and one more
equation is needed to remove the instability.9

Within the NR scheme, our alternative solution is to
work, not with theN-dimensional system, but rather with the
D-dimensional mapFsmdsvd and its associated Jacobian ma-
trix Jsmdsvd fEqs.s5d and s7dg. By construction, sinceJsmd is
constrained to the PSS and takes into account thet and v̆
dependence onv, the inherent instabilities are effectively re-
moved. The functionG is reduced toD components

Gsvd = Fsmdsvd − v s29d

as is the iterative step

vi+1 = vi + dvi , s30d

where the correctionsdvi are obtained from the solution of

s1 − Jsmdddvi = Gsvid. s31d

One notes thatGsvd depends however implicitly on the com-
plete stateṽ where theNc=N−D missing components are
calculated from the constraining equationsfsee Eq.s5dg.

Whatever implementation is used, the augmented system
s28d or the reduced sets31d, quadratic convergence is guar-
anteed for sufficiently close initial starting conditions. How-
ever, the NR method looses rapidly its efficacy for increasing
m since the basin of attraction of every single periodic orbits
becomes very small and the choice of suitable initial condi-
tions becomes increasingly cumbersome. This has led
Schmelcher and Diakonos10 to propose an ingenious correc-
tion dvi that has the effect of increasing the size of the basins
of attraction for the periodic orbits and therefore making the
convergence more global.

Further, a hybrid scheme combining the global conver-
gence of Schmelcher–Diakonos method to the fast conver-

gence rate of the NR algorithm has been proposed by David-
chack and Lai.12 They consider a correctiondvi given by

dvi = f1bgsvnd − CkJGsvndg−1CkGsvnd, s32d

wheregsvnd;iGsvndiù0, Ck is an orthogonalD3D matrix
with element Cij P h0, ±1j and whose rows and columns
contain only one entry different from zerossee Ref. 10 for
further detailsd, and whereb is a constant parameter adjusted
to optimize the performance of the algorithm. The Jacobian
matrix of G, notedJG, can be evaluated from the knowledge
of Jsmdsvnd= udFsmd /dvuvn

as

JGsvnd = Jsmdsvnd − 1, s33d

according to the prescriptions7d. Since a complete search
requires that the iterations be performed for all matricesCk

stheir number grows rapidly with dimensionDd, the DL cor-
rections are optimally constructed for the smallest possible
dimension of the Jacobian matrix; this is where our method
gains its full strength.

Implementing the Davidchack–Lai algorithm on the
DKP, we have made ansalmostd exhaustive determination of
periodic orbits up tom=5. The results are presented in Table
I. We present in this table the number of UPOs found, the
average stability of them-cycle skuruul, given by the average
of the largest absolute eigenvalues of the Jacobian matrixd,
the average timesktld and the longest timestmaxd taken form
returns on the the PSS. Two periodic orbitssperiod 1 and 4d
are indicated in Fig. 2.

For the detection of a particular period, we use several
initial conditions s<104d and use the iterative schemes30d
with dvi given bys32d. With the method of Sec. III we con-
struct the mapFsvnd from the flow. Recall that the PSS is
placed atm=0 andpm is eliminated from the map using the
constraint of energy conservation. The dimension of phase
space of the numerically constructed mapFsvnd is D=2 and
vn;snnpnn

dT.
For the Davidchack–Lai corrections32d, we chooseb

=20, but this value is not critical and other values can be
used. Every initial condition is iterated for 10b steps or until
convergence to a periodic orbit. The initial conditions are
selected uniformly in the first quadrant of then–pn plane and
must be such thatpm fEq. s20dg takes on real values. Only the
first quadrant has to be considered since the differential
equations for the DKP are invariant under the reflection
n°−n andpn°−pn. Once a periodic orbit is found, we use

TABLE I. Periodic orbits in the DKPse=−0.1d. For each periodp, we give
the number of periodic orbitsdetected on the PSS given bysmn

=0, usdm /dtdutn
.0d, their stability, kuruul, gauged by the average of the

largest absolute eigenvalues of the Jacobian matrix, theaverage time, ktl,
and thelongest time, tmax, taken forp returns on the PSS.

Period Number of POs kuruul ktl tmax

1 323 844.5 10.8 14.0
2 1088 37983.1 17.4 27.9
3 1232 45935.2 17.4 40.7
4 2550 131826.2 20.3 28.3
5 2932 206057.0 22.2 32.5
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the same symmetry to deduce the other periodic orbits asso-
ciated with the reflectionn°−n andpn°−pn.

In a recent article, Pingelet al.13 have also considered
the DKP in order to extract UPOs. Our reported results show
a much greater number of different UPOs detected. Al-
though, they did not claim explicitly to have made an ex-
haustive search, the discrepancys,2 orders of magnituded is
somewhat puzzling. Two main reasons come to mind to ex-
plain the difference.

First, the authors have used a somewhat different method
salthough similar in spiritd than the approach of Davidchack
and Lai. They combine their correction10 for the global ap-
proach to a UPO with a NR correction once they have en-
tered a close enough neighborhood of the UPO. In constrast,
the scheme of Davidchack and Lai is a unique correction that
combines global with quadratic NR convergence. However,
our experience21 indicates that although a loss of efficiency
may be experienced with their procedure, with sufficient ef-
fort it does not lead to a net loss of detected UPOs.

Second, as mentioned previously, the treatment of
Hamiltonian systems must acknowledge the fact that the en-
ergy is an invariant of the dynamics. The usual procedure is
to include this constraint explicitly in the NR stepsfsee e.g.,
Ref. 9, Eq.s14.18dg in order to remove the associated nu-
merical instability. It would appear that the procedure used in
Ref. 13ftheir Eq.s16dg does not take into account this aspect
of the calculation. This may have a small incidence on the
results if one is sufficiently close to the UPO, although the
individual NR increments are not quite correct.

Irrespective of the final reason for the difference in
UPOs found, the situation has induced us to consider the
influence of a less than accurate Jacobian matrix on the de-
tection of the UPOs. We have therefore repeated the calcu-
lations of Table I by adding 5% of white noise to every
element of our Jacobian matrix. As shown in Fig. 3, a rapid

decrease of the number of UPOs detected is observed, rang-
ing from a loss of 1/2 of the UPOs of period 1 to 1/20 for
the period 5; altogether this amounts to only 10% of the
previously found UPOs.

V. CONCLUDING REMARKS

In this paper, we have presented a method to calculate
the Jacobian matrix of a dynamical mapFsvd obtained nu-
merically from an arbitrary flow. The method is general and
particulary useful if there are constraints other than the one
imposed by the Poincaré surface of section where the map is
constructed. Hamiltonian systems fall in this category and an
explicit formulation of the procedure was given. Its imple-
mentation is straightforward as examplified by the set of
equations obtained for a conservative dynamical system,
namely theDiamagnetic Kepler ProblemsDKPd. The accu-
racy of our method was tested on the DKP as well as on the
dissipative Lorenz flowsRef. 22, not shown hered, where, in
both cases, analytical results exist for the Jacobian.

The usefulness of the Jacobian matrix was shown by
calculating the Unstable Periodic Orbits of the DKP and the
importance of its accurate construction was demonstrated.
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