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Abstract

We investigate the effectiveness of an (s, S, p) policy relative to an (s, S, A, p) policy
in a single product, periodic review, finite horizon model with stochastic multiplica-
tive demand and fixed ordering cost, in which an (s, S, A, p) policy is optimal. An
extensive numerical study shows that empirically an (s, S, p) policy is highly effective
relative to an (s, S, A, p) policy. We also formulate two alternative benchmark poli-
cies and find that the (s, S, p) policy is superior in terms of profit. In addition, we
propose an efficient algorithm with simulated annealing and modified binary search
to determine the (s, S, p) policy for the model.
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Chapter 1

Introduction

1.1 Background and Motivation

Retail and manufacturing companies always strive to improve their operational prof-

itability. Traditional inventory management models such as the Economic Order

Quantity (EOQ) model and the newsvendor model assume exogenously determined

demands and focus on effective inventory replenishment strategies to better meet

customer demand. Recently, revenue management techniques have been applied in

practice. More and more companies currently explore dynamic pricing strategies to

adjust demands in order to boost their operation profits and bottom lines. For ex-

ample, with the help of dynamic pricing, Dell Computers, Ford Motor and American

Airlines all experienced major growth in revenue. For details, the interested reader is

referred to Gallego and van Ryzin (1994), Agrawal and Kambil (2000), Leibs (2000)

and Cook (2000).

In recent years, integrating inventory control and pricing strategies has gained

increasing attention (See Elmaghraby and Keskinocak (2003) and Chan et al. (2004)

for a review and classification of the recent literature). In particular, Chen and Simchi-

Levi (2004a) investigate a single product, periodic review, finite horizon model with

stochastic demand and fixed ordering cost. They prove that an (s, S,p) policy is

optimal with additive demand. In this policy, the inventory control strategy is the

well-known (s, S) policy: An order is placed to raise the inventory level to the order-



up-to level, St, if the initial inventory level in period t is below the reorder point

St. Otherwise, no order is placed. The optimal price pt in period t depends on the

initial inventory level at the beginning of period t. However, Chen and Simchi-Levi

(2004a) show that this (s, S, p) policy may not necessarily be optimal with general,

non-additive demand, e.g. multiplicative demand. They develop and employ the

concept of symmetric k-convexity to discover an optimal (s, S, A, p) policy for this

scenario. This policy includes a special set At E [st, s"±S] for period t. When the

initial inventory level in period t, Xt, is less than st or xt E At, an order is placed to

raise the inventory level from Xt to St. Otherwise, no order is placed. Similar to an

(s, S, p) policy, the optimal price of an (s, S, A, p) policy in each period depends on

its initial inventory level.

Although an (s, S, A, p) policy is optimal for the general demand scenario, it is

a complicated and less intuitive policy for many operations managers. The set At

for period t is not easy to determine, may not be connected and does not always

exist. Thus, if we can identify a simpler policy that yields a profit close to that of an

(s, S, A, p) policy, it would become much more popular in practice. The (s, S, p) policy

is naturally a good candidate for two reasons. First, Chen and Simchi-Levi(2004b,

2006) further prove that an (s, S, p) policy is optimal for a single product, periodic

review, infinite horizon model and single product, continuous review models. It means

that an (s, S, p) policy is the optimal policy in all the cases with the exception of the

single product, periodic review, finite horizon model with general demand. Second,

this policy is a more intuitive policy. It is easier for operations managers to understand

and execute. The goal of this thesis is therefore to test numerically the effectiveness

of an (s, S, p) policy relative to an (s, S, A, p) policy, in scenarios with the latter as

the optimal policy.

1.2 Literature Review

Research on coordinating price and inventory control strategies started with Whitin

(1955), who investigates the newsvendor problem with price depending linearly on



demand. Mills (1959), Lau and Lau (1988) and Polatoglu (1991) all examine single

product, single period, additive demand models and they show that the optimal

price with stochastic demand is no greater than that with deterministic demand. In

contrast, Karlin and Carr (1962) address a single product, single period, multiplicative

demand model and they find the optimal price with stochastic demand is no smaller

than that with deterministic demand. Pertruzzi and Dada (1999) introduce a base

price and demonstrate that the optimal price is equivalent to a base price plus a price

premium.

Following Wagner and Whitin (1958), who first extend the single product, single

period models to multi-period models with deterministic demand, Zabel (1972) and

Thowsen (1975) add stochastic components to the demand processes and show the

existence of a unique optimal solution under certain assumptions of the demand

processes. Federgruen and Heching (1999) consider only variable ordering cost, linear

demand model, and assumes backlogging of excess demand. They find that a base

stock list price policy is optimal. In this policy, if the initial inventory level is below

the base stock level, an order is placed to raise the inventory level to the base stock

level. Otherwise, no order is placed and a discount price is offered. Thomas (1974)

adds fixed ordering cost and analyzes a single product periodic review, finite horizon

model. He conjectures that an (s, S, p) policy is optimal if all prices in an interval are

under consideration. He also provides a counterexample to show that this policy may

not be optimal if prices are chosen from a discrete set. Polatoglu and Sahin (2000)

consider a similar model but allow lost sales. Although they point out sufficient

conditions for the optimality of an (s, S, p) policy, they do not specify what kind of

demand processes satisfy those conditions. Chen and Simchi-Levi (2004a) continue

the research by Thomas (1974) and prove that when the demand process is additive,

an (s, S,p) policy is optimal. When the demand process is general, however, an

(s, S, A, p) policy is shown to be optimal by applying a new concept called symmetric

k-convexity.

Amihud and Mendelson (1983) address an infinite horizon model and demonstrate

the phenomenon of price smoothing in reaction to changes in inventory level. Chen



and Simchi-Levi (2004b) use approaches similar to Iglehart (1963) and Veinott (1966)

and characterize a stationary (s, S, p) policy as the optimal policy for the infinite hori-

zon model, under both discounted and average profit criteria with general demand.

Unlike Chen and Simchi-Levi (2004b), who consider a periodic review model, Feng

and Chen (2002) develop a single product, continuous review, infinite horizon model

with Poisson demand process and integral demand size. They show that an (s, S, p)

policy is optimal for this model. Chao and Zhou (2006) further identify a close form

solution and design an efficient algorithm to compute the optimal policy. Chen and

Simchi-Levi (2006) generalize Feng and Chen (2002)'s result and demonstrate that

there exists a stationary (s, S, p) policy that is optimal for the single product, con-

tinuous review, infinite horizon model.

We can see that the recent studies have shown that an (s, S, p) policy is optimal

in most cases with the exception of the single product, periodic review, finite horizon

model with stochastic general demand and fixed ordering cost, in which an (s, S, A, p)

policy is optimal. An interesting question that naturally arises is how good an (s, S, p)

policy is in a model with an (s, S, A, p) policy as the optimal policy. Although Chen

and Simchi-Levi (2004a) prove the optimality of an (s, S, A, p) policy in such a model,

they never specify how to compute the special set A. In fact, the majority of the

research in coordinating pricing and inventory control strategies is theoretical and

only a few, such as Federgruen and Heching (1999) and Chao and Zhou (2006), have

done a numerical study. However, their numerical studies assume additive demand

processes and, as a result, the optimal policy is an (s, S, p) policy. We know of no

prior numerical studies focusing with multiplicative demand process, probably due to

its more complicated optimal policy. In this thesis, we fill in the gap by conducting a

comprehensive numerical study with stochastic multiplicative demand. We not only

implement the dynamic programming process proposed by Chen and Simchi-Levi

(2004a) to determine an optimal (s, S, A, p) policy, but also compare its profit with

that from a corresponding (s, S, p) policy. We would like to show numerically that an

(s, S, p) policy is highly effective relative to an (s, S, A, p) policy and thus becomes a

good substitute for the latter.



1.3 Overview

This thesis is organized as follows. In Section 2, we describe the model used in this

thesis and review the main assumptions. In Section 3, we investigate the effectiveness

of an (s, S, p) policy relative to an (s, S, A, p) policy with an extensive numerical study.

We would like to perform sensitivity analysis on the input parameters of the model

and examine how they affect the effectiveness of an (s, S, p) policy. In Section 4, we

formulate several alternative benchmark polices and compare them with an (s, S, p)

policy to check whether the latter policy is superior. In Section 5, we propose a feasible

and fairly efficient algorithm to compute an (s, S, p) policy. Finally, we provide the

concluding remarks in Section 6.
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Chapter 2

The Model

2.1 Notations and Assumptions

In this thesis, we follow the model described in Chen and Simchi-Levi (2004a) with

stochastic multiplicative demand. We consider a firm that has to make simultaneous

ordering and pricing decisions over a finite time horizon of T periods with time inde-

pendent demand process. We assume lead time is zero and orders arrive immediately.

For each period t, where t = 1, 2, ..., T, we define

wt = actual demand observed in period t,

pt = selling price in period t,

p,,pt are price floor and price ceiling of pt, respectively.

We assume wt := atDt(pt)+t, where at, ft are two random variables with E(at) =

1 and E(3) = 0. Clearly, this assumption can be made without loss of generality.

If at = 1 and wt = Dt(pt) + #t, it is referred to as the additive case. If #t = 0 and

wt = atDt(pt), it is referred to as the multiplicative case. Moreover, Dt(pt) = bt - atpt

is referred to as the additive demand function whereas Dt(pt) = ap"bt is referred to

as the multiplicative demand function. According to Petruzzi and Dada (1999), both

are common demand functions in economics literatures. In this thesis, we focus on

multiplicative demand process, which means wt = at(atp;bt). When the demand

process is multiplicative, the expected revenue Rt(dt) = dept = dtDj (di) is clearly

a concave function of the expected demand dt, where D71 (dt) represents the inverse



function of Dt and is continuous and strictly decreasing.

Let xt and yt be the inventory levels at the beginning of period t, just before and

after placing an order, respectively. In other word, yt - xt is the amount of products

ordered in period t. The ordering cost consists of both a fixed ordering cost and a

variable ordering cost. For every period t E T, it is calculated as k6(yt-xt)+ct(yt-xt),

where the fixed ordering cost k is time independent and the binary function 6(p) is

defined as

1 if P > 0,

0 otherwise.

We also assume excess demand is backlogged. Thus, xt+1, which represents the

inventory level carried over from period t to period t + 1, may be either positive or

negative. It is easy to see that xt+1 = yt - wt. Inventory holding cost is incurred when

xt+1 > 0 whereas backorder cost is incurred when xt+1 < 0. Let the corresponding

cost function be ht(yt, wt) = Cht(Yt - Wt)+ + cbt(yt - wt) , where Cht and Cbt represent

the unit inventory holding cost and the unit backorder cost for period t.

Denote Gt(yt,pt) = E[ht(yt - wt)]. Similar to Federgruen and Heching (1999),

we assume ht(yt, wt) is a convex function with limys+ Gt(yt, pt) = limy,-_[cty +

Gt(yt,pt)] = limy-+0 [(ct - ct+1)y + Gt(ytpt)] = oo. We further assume that 0 <

Gt(ytpt) = O(|y|P) for some integer p and E[wt]P = E[atDt(pt) + i t]P < oo for all

p E [~,pt].

Since wt := atDt(pt) + #t, there is a one to one relationship between the selling

price pt and the expected demand dt. In particular, the expected demand floor d

follows d = Dt(pt) whereas the expected demand ceiling dt follows dt = Dt(p). We

would like to maximize the total expected profit over the entire horizon by selecting

an inventory level yt and an expected demand dt for each period t.

Let Vt(xt) be the profit-to-go function at the beginning of period t with an initial

inventory level xt. vt(xt) can be computed recursively through a dynamic program-

ming process with VT+1(Xt+1) = 0.

For t = 1, 2, ...T, we have Vt(xt) = ctxt + max(-k6(yt - xt) + gt(yt, dt(yt)), where

dt(yt) is the expected demand corresponding to the best selling price for a given



inventory level yt, i.e. dt arg=--7: max(gt(yt, dt)).

The function gt(yt, dt) satisfies gt(yt, dt) = Rt(dt) - cty + E[-ht(yt - atdt - 3t) +

vt+1(yt - atdt - #t)].

2.2 Symmetric k-convexity and Optimal Solution

Scarf (1960) uses a model similar to Chen and Simchi-Levi (2004a) and assumes

stochastic demand. He shows that an (s, S) policy is optimal with the help of a

concept called k-convexity. Chen and Simchi-Levi use an equivalent definition of k-

convexity discovered by Porteus (1971) to show that the g(yt, dt(yt)) function, i.e. the

g function in short and hence the profit-to-go function are both k-concave and prove

the optimality of an (s, S, p) policy, when the demand is stochastic and additive.

Definition 2.1. A real-valued function f is called k-convex for k > 0, if for any

x0  xi and A E [0, 1],

f((1 - A)xo + Axi) < (1 - A)f(xo) + Af(xi) + Ak

A function f is called k-concave if -f is k-convex.

For stochastic multiplicative demand process, however, Chen and Simchi-Levi

(2004a) demonstrate that the g function is not always k-concave and an (s, S, p)

policy may not necessarily be optimal. In order to identify the optimal policy, they

employ a new concept called symmetric k-convexity.

Definition 2.2. A real-valued function f is called symmetric k-convex for k > 0, if

for any x0 , x1 and A E [0, 1],

f ((1 - A)xo + Axi) < (1 - A)f(xo) + Af (xi) + max{A, 1 - A}k.

A function f is called symmetric k-concave if -f is symmetric k-convex.

In fact, k-convexity is a special case of symmetric k-convexity. For more details

about properties of k-convexity and symmetric k-convexity, the interested reader is

referred to Bertsekas (1995) and Chen and Simchi-Levi (2004a).

Chen and Simchi-Levi (2004a) show that the g function and hence the profit-

to-go function, i.e. the v function, in the stochastic multiplicative demand model

are both symmetric k-concave. They further show that for t = T, T - 1, ... , 1, there



exist a reorder point st and an order up-to-level St with st < St and a special set

At c [st, St+St] such that when the initial inventory level Xt < st or xt E At, it is

optimal to order St - xt and set the expected demand level dt = dt(St); otherwise it

is optimal to order nothing and set dt = dt(xt). As illustrated in Figure 2-1, when

xt < st or Xt C At, g(St, dt(St)) - k > g(xt, dt(xt)), and hence it is optimal to place

an order to raise the inventory level to St. Otherwise, g(St, dt(St)) - k < g(xt, dt(xt))

and no order should be placed. This optimal policy is called an (s, S, A, p) policy.

9(vt~dt(yt))

-------- --- ---- -------------- ----------------

2

Figure 2-1: Illustration of Symmetric k-Concavity and (s, S, A, p) Policy



Chapter 3

Numerical Study

3.1 Methodology

Empirical research on (s, S, A, p) has been a challenging issue for two reasons. First,

we do not know, for a given set of parameters, whether the special set A exists

and we are not sure how many elements the set A contains, imposing difficulties in

determining the set A. Second, solving the model numerically has to discretize the

inventory and pricing variables to a certain level. However, Chen and Simchi-Levi

(2004b) and Simchi-Levi et al. (2005) show that with discrete prices, an (s, S, p) policy

and an (s, S, A, p) policy may not be optimal for the additive demand process and

multiplicative demand process models, respectively. Nevertheless, Chen and Simchi-

Levi (2004b) propose that it is feasible to discretize the inventory variables and then

choose the best pricing variables accordingly from a continuous set, in order to solve

a discretized model.

Our approach in the numerical study follows the suggestion made by Chen and

Simchi-Levi (2004b) and, for each period, we discretize the inventory variables to

integer level and then choose the expected demand that associates with the best

price. The reason for the choice of integer level discretization is threefold. First,

integer level discretization approximates the solution of the continuous model very

well. As we discretize the inventory variables further, we obtain more accurate results,

which are closer to the solution of the continuous model. After comparing the results



from different levels of discretization, we find that the solution and the associated

expected profit of the integer level discretized model are very close to that from the

further discretized models. In fact, in many cases, if we round the solutions of the

further discretized models, we can get the solution of the integer level discretized

model. Moreover, the effectiveness of an (s.S, p) policy relative to an (s, S, A, p)
policy from the integer level discretized model tends to be lower than those from

the further discretized models, probably due to the cumulative rounding error of the

discretization. In some sense, the integer level discretized model provides a lower

bound for the effectiveness, which is useful for our investigation in this numerical

study. Second, we can compute the optimal solution much faster with integer level

discretization. For the same set of input parameters, the integer level discretized

model may require less than 10 seconds to solve whereas the 0.1 discretized model

takes several minutes to solve, and the time increases exponentially as we discretize

the model further. Last and importantly, inventory level is always an integer in real-

life practice. It therefore makes sense to use the integer level discretized model in

our numerical study. In addition, since the special set At for any period t is hard

to determine, we use an enumeration method to find the elements in the set At and

make sure the computed (s, S, A, p) policy is accurate. In section 5, we propose a

more efficient algorithm to determine the (s, S, p) policy instead of the (s, S, A, p)
policy for the original continuous model.

3.2 Sensitivity Analysis

3.2.1 Baseline Parameters

In this section, we perform an extensive sensitivity analysis on all the parameters

of our integer level discretized model. Our objective is to test the effectiveness of

an (s, S,p) policy relative to an (s, S, A,p) policy, where the latter is optimal, and

understand how changes in different parameters affect the effectiveness.

We have tested a number of different combinations of input parameters with our



model and, surprisingly, in most cases the special set A does not exist. As a result,

an (s, S, p) policy is equivalent to an (s, S, A, p) policy. When there is a difference

between the two policies, an (s, S, p) policy is highly effective relative to an (s, S, A, p)

policy and the effectiveness is usually above 98%.

After careful consideration, we select our baseline parameters as follows. The

demand function parameters are a = 500 and b = 1.5, i.e. Dt(pt) = at(500pt1-5 ).

The randomness parameter a follows uniform distribution around 1 and E(a) = 1,

as specified in our assumptions. For simplicity, we use a E { , 1, 1} in most analyses.

The total number of time periods is T = 3. The range of price is p E [5, 20]. The

variable ordering cost and the fixed ordering cost are c = 3 and k = 1, respectively.

The unit inventory holding cost is 10% of the average price and the unit backorder

cost is 120% of the price ceiling. Moreover, the initial inventory level at the beginning

of the first period x1 is chosen such that x1 = 0 if A does not exist; otherwise xi E A

and the associated effectiveness is the lowest for all x c A. We then generate the profit

of an (s, S, p) policy and that of an (s, S, A, p) policy and compute the effectiveness

by taking the ratio of the two profits. For the baseline parameters, we have Si = 21,

si = 17 and x1 = 18. The effectiveness when x1 = 18 is 99.8158%.

We choose this set of baseline parameters, because its associated special set A

usually exists, when we conduct sensitivity analysis on a parameter. To make our

numerical study more robust, we perform sensitivity analysis on all input parameters

in the following subsections and examine how the effectiveness of an (s, S, p) policy

changes, as we alter a particular input parameter.

3.2.2 Initial Inventory Level

We first test the influence of the initial inventory level on the effectiveness of an

(s, S, p) policy. From the baseline parameters, we vary the initial inventory level at

the beginning of the first period from 0 to 25 and plot the corresponding effectiveness

in Figure 3-1. From the graph, we can see that the special set A1 for the first period

only contains one element at x 1 = 18 and the associated effectiveness is 99.8185%.

At all the other initial inventory levels, the effectiveness remains 100%.
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Figure 3-1: Effectiveness of an (s, S, p) Policy against Initial Inventory Level

We find that the effectiveness of an (s, S, p) policy relative to an (s, S, A, p) policy

may be less than 100%, when the initial inventory xt at the beginning of period t falls

in the special set At, provided At exists. There are generally three ways to make a

difference between the two policies:

1. The special set A1 for period t = 1 exists and x1 C A1 .

2. The special set At+1(t > 1) exists and the initial inventory Xt (xt > St) in

period t minus the actual demand wt falls in At+1 , i.e. xt - wt C At+1 -

3. The special set At+1 (t > 1) exists and an order is placed to increase the initial

inventory xt(Xt < St) in period t to the inventory up to level St, which after meeting

the actual demand wt, falls in At+1 , i.e. St - wt C At+1

In general, the effectiveness reduces, when the input parameters satisfy a combina-

tion of two or three of the abovementioned conditions. Figure 3-2 shows an example

of the three conditions, when we change the randomness parameters a in the set of

the baseline parameters to be a E {j, 1, 1} for the first period and a E {0.3, 1.1, 1.6}

for the next two periods. In this example, the special sets for the first two periods A1

and A 2 both exist. At an initial inventory level of x1 = 22, condition 2 is satisfied, as

x1 > Si and one instance of x1 - wi E A2 . The associated effectiveness is 99.9434%.

At an initial inventory level of x1 = 19, x1 C A1 and one instance of Si - wi E A2 -

It satisfies both condition 1 and condition 3. The associated effectiveness hence be-



comes the lowest at x1 = 19, which equals 99.6853%. Nevertheless, we can see that

the (s, S, p) policy in this case is still highly effective.
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Figure 3-2: Effectiveness of an (s, S, p) Policy with a Combination of Two Conditions

3.2.3 Total Number of Periods

We then check the effect of the total number of periods on the effectiveness of an

(s, S, p) policy relative to an (s, S, A, p) policy. From the baseline parameters, we

change the total number of periods, T, from 1 to 20. The graph of the effectiveness

against the total number of periods is shown in Figure 3-3.

From the graph, we have three observations. First, when there is only one period,

i.e. T = 1, the effectiveness is always 100%. This result is in accordance with a

study by Simchi-Levi et al. (2005), which states for a single period, single product,

periodic review, stochastic demand model, an (s, S, p) policy is always optimal. Thus,

the special set A does not exist and an (s, S, p) policy is equivalent to an (s, S, A, p)

policy. Second, after testing with different sets of parameters, we find the effectiveness

tends to be the lowest when the special set A exists for the first time, as T increases.

In this case, A first appears when T = 2 and the associated effectiveness reaches

the lowest point at 99.7394%. Last, an (s, S, p) policy becomes more effective as T

increases, provided A exists. If A does not exist, the effectiveness is 100%. Otherwise

if A exists, the effectiveness approaches 100%, as T -+ o. This result coincides with



that from Chen and Simchi-Levi (2004b), proving that an (s, S, p) policy is optimal

for an infinite horizon model.
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Figure 3-3: Effectiveness of an (s, S, p) Policy against Total Number of Periods

3.2.4 Ordering Costs

For the sensitivity analysis of the effectiveness of an (s, S, p) policy relative to an

(s, S, A, p) policy on the ordering costs, we first look at the fixed ordering cost and

then proceed to the variable ordering cost. From the baseline parameters, we increase

the fixed ordering cost from 0 to 25 with an incremental interval equal to 1. Figure 3-4

shows the graph of the effectiveness of an (s, S, p) policy against the fixed ordering

cost. We also change the variable ordering cost to 2 and then perform the same

analysis. The result is plotted in Figure 3-5.

The results show that, in general, it is more likely for an (s, S, p) policy to be

equivalent to an (s, S, A, p) policy, when the fixed ordering cost becomes very large.

However, we have found some counterexamples, which demonstrate that it is still

possible for the special set A to exist, when the ratio of the fixed ordering cost to

the price is very high. Moreover, when the fixed ordering cost is 0, the effectiveness

is always 100% and St = st for every period t C- T. This result is in line with

Federgruen and Heching (1999), who prove a base stock list price policy is optimal,

i.e. St = st, when there is no fixed ordering cost. Another interesting observation



99.9

S99.85

99.8
W
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Figure 3-5: Effectiveness of an (s, , p) Policy against Fixed Ordering Cost with c 2

is that as the fixed ordering cost increases, the order up-to-level St may increase or

remain unchanged whereas the reorder point st may decrease or remain unchanged for

period t. Whenever a new set of (st, St) appears and At also exists, the effectiveness

tends to be the lowest. In addition, for the same set of (st, St), the effectiveness tends

to be non-decreasing, as the fixed ordering cost increases.

For the sensitivity analysis on the variable ordering cost, we increase the variable

ordering cost from 0 to 5.5 (the ratio of the variable ordering cost to the price floor

changes from 0% to 110%) with an incremental interval equal to 0.5. The graph of

the effectiveness against the variable ordering cost is shown in Figure 3-6. The graph



shows that when the variable ordering cost is close to 0 or very high (greater than

the price floor in this case), the effectiveness becomes 100% and there is no difference

between an (s, S, p) policy and an (s, S, A, p) policy. In particular, when there is no

variable ordering cost, the sets of (st, St) are the same for all period t and an (s, S, p)

policy is always optimal. Furthermore, unlike the fixed ordering cost, as the variable

ordering cost increases, both the reorder point st and the order up-to-level St are

non-increasing for every period t E T.
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Figure 3-6: Effectiveness of an (s, S, p) Policy against Variable Ordering Cost

3.2.5 Inventory Holding Cost

Next, we perform sensitivity analysis on the inventory holding cost to examine its

impact on the effectiveness of an (s, S, p) policy relative to an (s, S, A, p) policy. In

the set of baseline parameters, we specify the unit inventory holding cost as 10% of

the average price. In this sensitivity analysis, we change the unit inventory holding

cost from 0% to 80% of the average price with an incremental interval equal to 5%

and compute the corresponding effectiveness. The graph of the effectiveness against

the percentage of inventory holding cost is shown in Figure 3-7.

From the graph, we can see that when the inventory holding cost is close to 0 or

very high (greater than 50% in this case), the effectiveness of an (s, S, p) policy is

100%. We notice that for this set of parameters, when the inventory holding cost is



about 45% of the average price, the effectiveness can be as low as 98.2017%, though

it is still considered to be highly effective. Similar to the variable ordering cost, as

the inventory holding cost increases, both the reorder point st and the order up-to-

level St are non-increasing with st decreasing first for every period t E T. Figure 3-8

illustrates how the reorder point si and the order up-to-level S1 of the first period

change, as the inventory holding cost increases. We also observe that, for the same St,

the associated effectiveness is non-increasing, as the inventory holding cost increases.

In addition, we find the effectiveness of an (s, S, p) policy is insensitive to change in

the backorder cost, because backorder is very costly and undesirable.
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Figure 3-7: Effectiveness of an (s, S, p) Policy against Percentage of Inventory Holding
Cost

3.2.6 Price Range

In the set of baseline parameters, the price ranges from 5 to 20. In this subsection,

we conduct sensitivity analysis on both the price floor and the price ceiling in order

to test their effects on the effectiveness of an (s, S, p) policy relative to an (s, S, A, p)

policy. It should be noted that since the unit inventory holding cost is set to be 10%

of the average price, the inventory holding cost is also affected, as the price range

changes.

In Figure 3-9, we plot the graph of the effectiveness against the price floor, which
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Figure 3-8: Movements of Reorder Point si and Order Up-to-level S1 against Per-
centage of Inventory Holding Cost

increases from 3 to 20 with an incremental interval of 1. Notice the range is chosen

because we want to make sure the price floor is no less than the variable ordering

cost, which equals 3, and no greater than the price ceiling, which equals 20. The

graph shows that the effectiveness is quite steady around 99.8% until it jumps to

100%, when the price floor reaches 11. From 11 to 20, the special set A does not exist

and hence the effectiveness remains 100%. When the price floor increases from 3 to

10, the sets of reorder point st and the order up-to-level St remain unchanged and

the best prices corresponding to Si and S2 are around 10, which are within the price

range. However, the best prices of Si and S2 in this case are bounded and equal to

the price floor, when the price floor increases to 11 and above. As a result, an (s, S, p)

policy is equivalent to an (s, S, A, p) policy, when the price floor increases from 11 to

20.

We also change the price ceiling from 5 to 40 with an incremental interval of 1

from the set of baseline parameters and plot the effectiveness against the price ceiling

in Figure 3-10. The graph shows the effectiveness is quite steady around 99.8%, when

the price ceiling ranges from 11 to 27. This is because the special set A exists and

the set of best price remain unchanged, as the price ceiling varies within this range.

When the price ceiling becomes greater than 27, the best prices increase, which is
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Figure 3-9: Effectiveness of an (s, S, p) Policy against Price Floor

partially due to the increase in the inventory holding cost, and the special set A no

longer exists. As a result, the effectiveness becomes 100%. In particular, when the

price floor equal to the price ceiling, the price and the expected demand become fixed

for all the periods and the associated effectiveness is hence always equal to 100%.
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Figure 3-10: Effectiveness of an (s, S, p) Policy against Price Ceiling

3.2.7 Demand Function Parameters

After looking at the inventory, time, cost and price parameters, we turn our attention

to the demand function parameters, namely a and b. From Dt(pt) = apt-bt, we

~1

/
/
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know demand is an increasing function of parameter a, but a decreasing function of

parameter b. We first increase the parameter a from 100 to 2000 with an incremental

interval of 50 and plot the graph of the effectiveness in Figure 3-11.

The graph shows that when the parameter a is very small, the effectiveness of an

(s, S,p) policy is equal to 100%. This is because if a is too small, the demand range

would be very narrow and the special set A does not exist. We observe that both the

reorder point st and the order up-to-level St increase for period t, as the parameter a

increases. For this set of parameters, we can see that the effectiveness fluctuate less

and becomes more stable around 99.9%, as the parameter a increases. However, in

general, we do not observe any trend of the effectiveness on the parameter a, when it

is large enough for the special set A to exist.
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Figure 3-11: Effectiveness of an (s, S, p) Policy against Parameter a

We next increase the parameter b from 1.0 to 3.0 with an incremental interval of

0.1. The graph of the effectiveness against the parameter b is shown in Figure 3-12.

We can see from the graph, when b is very close to 1, the effectiveness is 100% and

St = st for every period t, which indicates a baseline list price policy is optimal. When

b is very large (greater than 2.7 in this case), the effectiveness is also 100%, because

the demand range becomes very narrow and the special set A does not exist. Unlike

the parameter a, both the reorder point st and the order up-to-level St decrease, as

the parameter b increases. For this set of parameters, the effectiveness is as low as



98.1635% when b = 2.5. This is because the special sets A1and A2 both exist and

the associated initial inventory level satisfy the conditions 1 and 3 abovementioned

in section 3.2.2. In general, there is no noticeable trend of the effectiveness on the

parameter b.
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Figure 3-12: Effectiveness of an (s, S, p) Policy against Parameter b

Another interesting question to ask is whether the effectiveness would be lower if

different demand functions are used in different periods. We find that the effective-

ness behaves similarly as the uniform demand function case. For example, from the

baseline parameters, if we change the demand parameters to be (ai, bi) = (1500, 2.5)

for the first period, (a2 , b2 ) =(1000, 2.0) for the second period and (a3 , b3 ) = (500, 1.5)

for the last period, the lowest effectiveness equals 99.7589% with an initial inventory

of 22, which is still highly effective.

3.2.8 Coefficient of Variation of Randomness

Finally, we perform sensitivity analysis on the coefficient of variation of the ran-

domness parameter a. The coefficient of variation (CV) is a measure of statistical

dispersion of randomness, which is defined as the ratio of the standard deviation to

the mean, i.e. cv = (. Since E(a) = 1 in our stochastic multiplicative demand

process, the coefficient of variation is effectively equal to the standard deviation, o(a).

We perform two tests on the coefficient of variation of randomness. First, from



the baseline parameters, we fix the number of elements in the set of a and increase

the coefficient of variation from 0 to 0.95 with an incremental interval of 0.05. The

graph of the effectiveness against the coefficient of variation of randomness is shown

in Figure 3-13. Second, we increase the number of elements in the set of a from 1

to 10 with randomly generated elements and plot the graph of the effectiveness in

Figure 3-14. Not surprisingly, the two graphs show that the effect of randomness

on the effectiveness of an (s, S, p) policy relative to an (s, S, A, p) policy is random.

However, when the coefficient of variation is equal to 0, the effectiveness of an (s, S, p)

policy is 100%. This is because an (s, S, p) policy is always optimal if there is no

randomness in the demand process.
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Figure 3-13: Effectiveness of an (s, S, p) Policy against Coefficient of Variation of
Randomness with Fixed Number of Elements in the Set of a

3.3 Overall Observation

In general, the effectiveness of an (s, S, p) policy relative to an (s, S, A, p) depends

on the existence of the special set At and whether the initial inventory xt of period

t falls into At. If this condition does not hold for all periods in the horizon, then

the effectiveness is always 100% and an (s, S, p) policy is equivalent to an (s, S, A, p)

policy. Otherwise, the effectiveness is less than 100%. The existence of the special set

At may be affected by the time parameters, cost parameters, price parameters and
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the demand parameters, as we have discussed above.

We find, in most cases, the effectiveness of an (s, S, p) policy relative to an

(s, S, A, p) policy is very close to 100%. In Figure 3-15, we plot the three dimen-

sional graph of the g function values against the inventory level after placing an order

y and the expected demand d for the first period with the set of baseline parameters.

The graph seems to be quite flat around its global optimal value. We zoom in at

the global optimum, which is displayed in Figure 3-16. The image shows that the g

function, which has been proven to be symmetric k-concave, is not concave and there

are some local optima around the global optimum. However, the values of the local

optima are close to that of the global optimum. It explains why an (s, S, p) policy is

highly effective relative to an (s, S, A, p) policy for the baseline parameters. In some

extreme cases, when we use different sets of carefully selected input parameters in

different periods, we can obtain an effectiveness as low as 95%, though it implies that

an (s, S, p) policy is still very effective. Thus, we can conclude that empirically an

(s, S, p) policy is highly effective relative to an (s, S, A, p) policy in this stochastic

multiplicative demand model.
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Chapter 4

Comparisons with Alternative

Policies

4.1 Comparison with a Deterministic Policy

We have seen that, as a relatively simple policy, an (s, S, p) policy closely approxi-

mates an (s, S, A, p) policy in our model. But what is its performance in comparison

with some even simpler policies? If an (s, S, p) policy does not outperform an sim-

pler alternative policy, we may want to use the alternative one to approximate an

(s, S, A, p) policy, because it is simpler and takes less time to compute.

In this section, we first compare the performance of an (s, S, p) policy with that

of a deterministic policy. In this policy, we assume the demand process is always

deterministic. If there is no randomness in the demand, an (s, S, p) policy is always

optimal with the reorder point st equal to the order up-to-level St for every period

t. We call this policy a deterministic policy. Of course, the deterministic policy is

different from the original (s, S, p) policy, as they are based on different demands. We

then compute the total profit of the deterministic policy under stochastic demand.

In Table 4.1, we present the profits of the two policies and their computation time,

respectively, with the set of baseline parameters.

The results show that, for the baseline parameters, the profit of the deterministic

policy is only 69.8% of that of the (s, S, p) policy. In other words, the (s, S, p) policy



Table 4.1: Comparison between an (s, S, p) Policy and a Deterministic Policy
Policy Total Profit ($) Computation Time (s)

Deterministic 245.86 0.372
(s, S, p) 352.24 0.527

generates significantly more profit than the deterministic policy, though the latter

policy is faster to compute. Indeed, after testing with different parameters, we find

an (s, S, p) policy is strictly superior to a deterministic policy. This is because in a

deterministic policy, the price and inventory up-to-level are set in such a way that

the inventory level after an order is placed is equal to the expected demand. As the

expected randomness is equal to 1, there must be cases under stochastic demand,

in which the demand cannot be met with the inventory at stock and the additional

demand has to be backordered, which is very costly. As a result, a deterministic

policy performs worse than an (s, S, p) policy. In addition, we find the profit of a

deterministic policy tends to be closer to that of an (s, S, p) policy when the coefficient

of variation of the randomness in demand is smaller.

4.2 Comparison with a Fixed Price Policy

We next formulate another alternative policy and compare it with an (s, S, p) policy.

In this alternative policy, we first ignore the randomness and choose a price that

maximizes the expected revenue of each period. As there is a one-to-one relationship

between the expected demand dt and the price pt, i.e. dt = apt-bt, the expected

revenue R = dtpt = ap-t. Since the demand function parameters at > 0, bt > 1,

clearly Rt is maximized when pt is set to be the price floor, i.e. pt = p. For the

baseline parameters, we thus let Pt 5 for all the three periods. By fixing the

price, we effectively fix the expected demand dt in each period. We then consider the

randomness in demand and the optimal policy in this case becomes the well-known

(s, S) policy. We call this alternative policy a fixed price policy. Table 4.2 shows

the profits of the two policies and their computation time, using the set of baseline

parameters,.



Table 4.2: Comparison between an (s, S, p) Policy and a Fixed Price Policy
Policy Total Profit ($) Computation Time (s)

Fixed Price 220.35 0.034
(s, S,p) 352.24 0.527

We can see from the table that the fixed price policy generates only 62.6% of the

profit of the (s, S, p) policy in this case. The reason is this policy aims to maximize

the expected revenue instead of the expected profit and it hence performs poorly

when the cost is high relative to the revenue. On the other hand, when the cost plays

a less significant role in the profit, a fixed price policy can be very effective in terms

of profit. Table 4.3 shows another comparison between the two policies, when we

lower the variable ordering cost from 3 to 1 in the set of baseline parameters. This

time the profit of the fixed price policy becomes 99.2% of that of the (s, S, p) policy.

Furthermore, though an (s, S, p) policy generates greater profit than a fixed price

policy, the latter policy requires much less computation time, as we no longer need

to spend much time to determine the best price. In this case, the fixed price policy

takes only about 6% of the computation time of the (s, S, p) policy. Thus, when the

cost revenue ratio is low, a fixed price policy can become a good alternative to an

(s, S, p) policy and it is a much more efficient policy.

Table 4.3: Comparison between an (s, S, p) Policy and a Fixed Price Policy with Low
Ordering Cost

Policy Total Profit ($) Computation Time (s)

Fixed Price 478.35 0.036

(s, S, p) 482.05 0.527
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Chapter 5

Proposed Algorithm for (s, S, p)

Policy

5.1 Proposed Algorithm

We have shown in Chapter 3 that an (s, S, p) policy is empirically highly effective

relative to an (s, S, A, p) policy under stochastic multiplicative demand, in which the

latter policy is optimal. The question now is how to efficiently compute an (s, S, p)

policy. Chen and Simchi-Levi (2004a) suggest a natural dynamic programming pro-

cedure. But solving this dynamic programming procedure imposes an empirical chal-

lenge. The enumeration method we have used previously is time consuming, when the

total number of periods is large or the model is further discretized. In this section, we

propose an fairly efficient algorithm using simulated annealing and modified binary

search to solve the dynamic programming procedure in the original continuous model.

To solve the dynamic programming procedure we first need to find the global

optimum of the g function, i.e. the best (yt, dt) pair for period t, which corresponds

to the order up-to-level St and its associated best price pt. We feel that gradient

methods are not suitable for this problem, because in the dynamic programming

procedure, the g function calls the v function iteratively and thus it is difficult to

obtain an explicit expression for the gradient of the g function. After observing the

plot in Figure 3-15, we can see that though the graph is not convex, it has a rather



smooth shape with some, but not too many local optima. This inspires us to use an

simulated annealing algorithm to determine the global optimum.

Simulated annealing is a popular generic probabilistic heuristic algorithm for opti-

mization problems. From a starting point, the algorithm updates its current position

in every iteration, by searching randomly in its neighborhood. If a neighbor point

has a better value than the current point, the algorithm moves to this neighbor point

at the end of the iteration. Otherwise, it still has a certain probability to move to

this neighbor point. This probability depends on the cooling scheme of the algo-

rithm, which typically starts from a very high energy state and gradually moves to

a stable, low energy state. The algorithm terminates when the energy state is low

enough. In general, simulated annealing is proven to be a more efficient algorithm

than enumeration in solving optimizations with multiple local optima.

For the simulated annealing algorithm used to solve the original continuous prob-

lem, we use an initial temperature of 10000 and adopt a cooling scheme with To"' =

0.95TO, where To and n represent the temperature and iteration number, respectively.

We believe this cooling scheme is effective enough for the algorithm to jump out of

most local optima and return a near-optimal solution, if not the global optimum it-

self. For the starting point, the initial expected demand do is set to be the mid-point

in the demand range and the initial inventory up-to-level yo is set to be equal to do.

The initial g function value at the starting point is hence equal to g(yo, do). The

neighbor (y, d) pairs are randomly selected with the criteria IYneighbor - Ycurrent < 1

and Idneighbor - dcurrent I 1 and the new (y, d) pair must be within the feasible set.

After determining the best (yt, dt) pair for period t, we set the order up-to-level St to

St = Yt.

Next, we need to locate the reorder point st for period t. Since the g function is

symmetric k-concave, we have g(st, d(st)) = g(St, d(St)) - k, where d(st) and d(St)

are the best expected demands associated with st and St, respectively. Let g, =

g(st, d(st)). If the g function is k-concave, as in the additive demand model, there is

only one point smaller than St with a g function value of g, and we can use binary

search to find st easily. However, in our multiplicative demand model, the g function



is symmetric k-concave and there are multiple points smaller than St, which have g

function values equal to g,. The reorder point st corresponds to the smallest yt that

has g(yt, d(yt)) = go.

We decide to use a modified binary search to find the reorder point st. Since st E

(0, St), we let the upper bound -9 be St and the lower bound s_ be 0 at the beginning

of the modified binary search. In each iteration, we take the mid-point smid 2

and check its associated g function value, g(smid, d(Smid)). If g(Smid, d(Smid)) > g,

we reset the upper bound to it = smid and continue the modified binary search.

Otherwise, if g(Smid, d(Smid)) < gs, we check whether there is any point s' E (0, Smid)

with a g function value greater than or equal to gs, using simulated annealing. If

g(s', d(s')) g8, we reset the upper bound to 9t = s' and continue the modified

binary search. Otherwise if the maximum g function value in the range of (0, smid)

is smaller than gs, we reset the lower bound st = smid and continue the modified

binary search. The modified binary search terminates when g(smid, d(Smid)) = gs and

it = smid. We believe our algorithm of simulated annealing and modified binary

search is more efficient in determining the (s, S, p) policy of the continuous model.

5.2 Empirical Performance

The empirical results and computation time of our proposed algorithm vary slightly,

because each time the randomly generated neighbor pairs may be different, which

affect the performance of the algorithm. It should be noted that our proposed algo-

rithm only returns a good approximation of the true (s, S, p) policy, since simulated

annealing is a heuristic method. However, as the g function has a flat shape at its

optimum, our near-optimal solution works very well and generates a profit that is

almost identical to that of the true (s, S, p) solution. In Figure 5-1, we compare the

profit of our proposed algorithm with that of the enumeration method in 20 differ-

ent instances and the results show that our proposed algorithm is highly effective.

Moreover, for the set of baseline parameters, our proposed algorithm generally fin-

ishes within 10 minutes whereas it requires the further discretized model more than



5 hours to achieve the same level of accuracy. It shows that our proposed algorithm

is indeed much more efficient than the enumeration method. In addition, it is also

worth noting that the choice of the cooling scheme has a significant impact on the

empirical performance of the algorithm. If a faster cooling scheme is adopted, the

computation time will decrease. But the quality of the approximated (s, S, p) policy

is likely to be compromised.

2 4 6 8 10
Instance Number

12 14 16 18 20

Figure 5-1: Effectiveness of Proposed Algorithm relative to Enumeration Method
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Chapter 6

Concluding Remarks

6.1 Conclusion

In this thesis, we investigate the effectiveness of an (s, S, p) policy for coordinating

inventory control and pricing strategies. We show empirically that an (s, S, p) policy is

highly effective relative to an (s, S, A, p) policy in the single product, periodic review,

finite horizon model with stochastic multiplicative demand and fixed ordering cost, in

which the latter policy is optimal. We find that the effectiveness depends on whether

the initial inventory xt of period t falls into At, if the special set At E [st, * s *] exists.

If this condition is satisfied for at least one period in the time horizon, the effectiveness

is less than 100%. Otherwise, the effectiveness equals 100% and an (s, S, p) policy is

equivalent to an (s, S, A, p) policy. Our empirical results show that the effectiveness

of an (s, S, p) policy relative to an (s, S, A, p) policy is equal to 100% in most cases,

and even when it is less than 100%, the effectiveness is generally above 95%. We

also conduct sensitivity analysis on the input parameters of the model, which jointly

affect the effectiveness of an (s, S, p) policy. In particular, we find the effectiveness

increases as the total number of periods increases. When the fixed ordering cost is 0,

the reorder point st is equal to the order up-to-level St for all periods, which indicates

that a base stock list price policy is optimal. Moreover, we compare the performances

of a deterministic policy and a fixed price policy with that of an (s, S, p) policy and

find the latter policy is superior in terms of profit, though the fixed price policy can



be an effective and more efficient policy, when the cost is insignificant in comparison

with the revenue. In addition, we propose an algorithm with simulated annealing and

modified binary search to determine the (s, S, p) policy for the continuous model.

The fact that an (s, S, p) policy is highly effective relative to an (s, S, A, p) policy

has important practical meanings. Chen and Simchi-Levi (2004a, 2004b, 2006) prove

that an (s, S, p) policy is optimal for all kinds of single product, stochastic demand

models with fixed ordering cost, with the exception of the periodic review, finite

horizon model with stochastic non-additive demand model, in which this policy is

highly effective relative to the optimal (s, S, A, p) policy. Furthermore, an (s, S, p)

policy is also more intuitive and simpler than an (s, S, A, p) policy. Thus, we can apply

the (s, S, p) policy in industry practice to help supply chain managers coordinate their

inventory control and pricing strategies and achieve superior profits. Our proposed

algorithm can then be used to determine the (s, S, p) policy for the supply chain

managers.

6.2 Limitations and Extensions

It is necessary to discuss some of the limitations and possible extensions of our work

in this thesis. First, our tests on the effectiveness of an (s, S, p) policy relative to

an (s, S, A, p) policy are on the integer level discretized model instead of the original

continuous model. As Chen and Simchi-Levi (2004b) point out, the structure of the

optimal policy may be different after discretization of the original continuous model.

Since every numerical study has to discretize the inventory variables and the pricing

variables to a certain extent, the results from the numerical study serve only as an

approximation. Second, although we have tried to conduct our numerical study with

many different sets of input parameters, it is infeasible to cover all cases. Thus,

it is entirely possible that, in some extreme cases, the effectiveness of an (s, S, p)

policy is much lower. Third, in this thesis, we only examine the effectiveness of

an (s, S, p) policy under stochastic multiplicative demand. Chen and Simchi-Levi

(2004a) proves that an (s, S, A, p) policy is optimal under stochastic general demand.



Thus, in future studies, the effectiveness of an (s, S, p) policy should also be tested,

when the demand is stochastic, non-additive and non-multiplicative. Nevertheless,

we feel our conclusion that an (s, S, p) policy is highly effective relative to an (s, S, p)

policy still holds in general. Perhaps the best way to overcome these problems is

to investigate the effectiveness of an (s, S, p) policy relative to an (s, S, A, p) policy

theoretically, though this goal could be difficult to achieve. In further works, it would

also be interesting to find out how to determine the special set A efficiently in the

original continuous model.

In addition, there are some limitations in the model formulated by Chen and

Simchi-Levi (2004a), which is used in this thesis. The model ignores capacity con-

straint and lead time, which are two important factors in supply chain management.

Indeed, there are examples showing that an (s, S, A, p) policy fails to be optimal in

the model under capacity constraint. With lead time, the price when an order is

placed may be different from the price when the product arrives. Thus, the structure

of the optimal policy would be affected, when lead time is considered. Moreover,

Chen and Simchi-Levi (2004a) also suggest that it may be more appropriate to use a

non-decreasing function of price as the backorder cost. Further work should be done

to incorporate these factors in the model and analyze its optimal policy.
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