Surgical aortic valve replacement and patient-prosthesis mismatch: a meta-analysis of 108182 patients

Michel Pompeu Barros de Oliveira Sáa ${ }^{\text {ab,c,c*, }}$, Martinha Millianny Barros de Carvalho ${ }^{\text {b,c },}$ Dário Celestino Sobral Filho ${ }^{\mathrm{b}, \mathrm{c}}$, Luiz Rafael Pereira Cavalcantia ${ }^{\mathrm{a}, \mathrm{b}}$, Sérgio da Costa Rayo ${ }^{\mathrm{a}, \mathrm{b}}$, Roberto Gouvea Silva Diniz ${ }^{\text {a,b }}$, Alexandre Motta Menezes ${ }^{\text {ab, }}$, Marie-Annick Clavel ${ }^{\text {d }}$, Philippe Pibarot ${ }^{\mathrm{d}}$ and Ricardo Carvalho Lima ${ }^{\text {a,b,c }}$

${ }^{a}$ Division of Cardiovascular Surgery of Pronto Socorro Cardiológico de Pernambuco-PROCAPE, Recife, Brazil
${ }^{\text {b }}$ University of Pernambuco-UPE, Recife, Brazil
${ }^{\text {c }}$ Nucleus of Postgraduate and Research in Health Sciences of Faculty of Medical Sciences and Biological Sciences Institute-FCM/ICB, Recife, Brazil
${ }^{\text {d }}$ Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Canada

Key question

What are the incidence and impact of patientprosthesis mismatch (PPM) on the outcomes of aortic valve replacement?

Key findings

- The incidence of PPM is high.
- PPM is associated with higher mortality
- Moderate as well as severe PPM poses a problem.

Take-home message

Implementation of surgical strategies to prevent PPM after surgical aortic valve replacement is necessary.

Odds ratio and 95\% CI
Mortality

Non-significant/No PPM Moderate/Severe PPM

Figure 1: Flow diagram of studies included in data search. CCTR: Cochrane Controlled Trials Register; LILACS: Literatura Latino Americana em Ciências da Saúde; PPM: patient-prosthesis mismatch; SciELO: Scientific Electronic Library Online.

Moderate/Severe PPM vs Non-significant/No PPM

Study name	Statistics for each study				Weight (Random)			Odds ratio and $95 \% \mathrm{Cl}$ Perioperative mortality		
	OddA ratio	Lower limit	Upper limit	P-Value	Relative weight	(\%)				
Fallon 2018	1.238	1.120	1.368	<0.001	9.67					
Thourani 2017	1.317	0.559	3.103	0.529	2.01					
Mannacio 2017	1.421	0.760	2.656	0.271	3.21					
Lee 2017	1.000	0.002	464.154	1.000	0.05					
Kindo 2017	19.124	0.970	377.027	0.052	0.20					
Guo 2017	4.039	0.894	18.250	0.070	0.75					
Alizadeh-Ghavidel 2016	1.000	0.001	669.252	1.000	0.04					
Joshi 2016	1.257	0.154	10.240	0.831	0.40					
Sportelli 2016	0.855	0.117	6.243	0.877	0.44					
Zorn 2016	1.500	0.378	5.948	0.564	0.88					
van Slooten 2016	1.000	0.042	23.658	1.000	0.18					
Swinkels 2016	0.360	0.082	1.576	0.175	0.78					
Mizia-Stec 2016	1.000	0.007	134.436	1.000	0.08					
Dayan 2015	1.450	0.999	2.104	0.051	5.76					
Dumani 2015	1.404	0.160	12.357	0.760	0.37					
Hu 2014	1.000	0.020	50.057	1.000	0.12					
Hoffmann 2014	0.221	0.044	1.101	0.065	0.66					
Shahzeb 2014	6.091	2.441	15.200	<0.001	1.81					
Koene 2013	1.801	1.128	2.875	0.014	4.60					
Kitamura 2013	0.718	0.031	16.417	0.835	0.18					
Kaminishi 2013	1.781	0.957	3.316	0.069	3.24					
Hong 2013	1.782	0.354	8.964	0.483	0.66					
Concistrè 2013	0.894	0.367	2.182	0.806	1.88					
Chacko 2013	4.102	0.475	35.380	0.199	0.38					
Bonderman 2013	2.481	1.042	5.907	0.040	1.97					
Tully 2013	1.098	0.496	2.429	0.818	2.27					
Yottasurodom 2012	1.582	0.420	5.964	0.498	0.95					
Astudillo 2012	2.965	0.819	10.727	0.098	1.00					
Hernandez-Vaquero 2011	0.411	0.124	1.362	0.146	1.13					
Garatti 2011	0.256	0.029	2.241	0.218	0.38					
Cotoni 2011	1.968	0.411	9.414	0.397	0.70					
Urso 2010	0.580	0.180	1.873	0.363	1.18					
Jamieson 2010	1.028	0.707	1.496	0.885	5.73					
Howell 2010	1.729	0.552	5.411	0.347	1.24					
Rabus 2009	2.748	1.331	5.677	0.006	2.60					
Qiam 2009	1.976	0.315	12.373	0.467	0.52					
Mrówczynski 2009	2.655	0.571	12.344	0.213	0.72					
Moon 2009	1.024	0.699	1.499	0.904	5.64					
Mannacio 2009	0.952	0.154	5.866	0.957	0.53					
Ferreira 2009	2.764	0.727	10.505	0.135	0.94					
Kohsaka 2008	1.359	0.721	2.564	0.343	3.15					
Mascherbauer 2008	1.970	0.871	4.453	0.103	2.17					
Ryomoto 2008	1.200	0.269	5.351	0.811	0.76					
Vicchio 2008	7.236	2.159	24.257	0.001	1.12					
Tsutsumi 2008	2.114	0.490	9.117	0.316	0.79					
Tao 2007	11.129	1.118	110.744	0.040	0.34					
Nozohoor 2007	0.825	0.459	1.482	0.519	3.51					
Monin 2007	1.225	0.445	3.374	0.695	1.52					
Kato 2007	1.000	0.038	26.459	1.000	0.17					
Fuster 2007 (Cohort A)	1.951	0.641	5.939	0.239	1.29					
Fuster 2007 (Cohort B)	1.553	0.542	4.449	0.413	1.42					
Walther 2006	1.529	1.208	1.935	<0.001	7.80					
Kulik 2006	1.607	0.303	8.524	0.577	0.62					
Penta de Peppo 2005	1.000	0.008	125.326	1.000	0.08					
Gelsomino 2004	4.455	0.258	76.848	0.304	0.22					
Hanayama 2002	18.676	1.673	208.433	0.017	0.31					
Blais 2003	2.506	1.457	4.310	0.001	3.87					
Rao 2000	1.779	1.051	3.011	0.032	4.02					
Pibarot 1998	0.797	0.221	2.869	0.728	1.01					
Overall effect	1.491	1.302	1.707	<0.001						
Total (95\% CI): 55394 (PPM); 45924 (No PPM)							0.01	0.1	10	100
Total events: 2146 (PPM); Test for heterogeneity: Chi Test for overall random effe	1465 (No $=81.31$ $c t:$ $Z=5$	PPM) df $=58$ 77 ($\mathrm{P}<0$	$\begin{aligned} & =0.023 \text {); } \\ & 001 \text {) } \end{aligned}$	$12=28.6^{\circ}$			Non-significant/No PPM		Moderate/Severe P	

Figure 2: Odds ratio and conclusions plot of perioperative mortality. The summary effect of moderate/severe PPM on perioperative mortality is shown. Cl: confidence interval; PPM: patient-prosthesis mismatch.

Moderate/Severe PPM vs Non-significant/No PPM

Figure 3: Odds ratio and conclusions plot of 1-year mortality. The summary effect of moderate/severe PPM on 1-year mortality is shown. CI: confidence interval; PPM: patient-prosthesis mismatch.

Moderate/Severe PPM vs Non-significant/No PPM

Study name	Statistics for each study				Weight (Random)		Odds ratio and $95 \% \mathrm{Cl}$ 5-year mortality		
	Odds ratio	Lower limit	Upper limit	P-Value	Relative weight	(\%)			
Fallon 2018	1.131	1.088	1.177	<0.001	5.21				
Mannacio 2017	2.157	1.618	2.876	<0.001	3.84				
Lee 2017	0.808	0.307	2.126	0.666	1.02				
Sportelli 2016	0.503	0.259	0.977	0.042	1.78				
Swinkels 2016	0.963	0.630	1.471	0.861	2.92				
Dayan 2015	1.521	1.229	1.882	<0.001	4.37			들	
Hu 2014	0.479	0.155	1.477	0.200	0.79				
Hernandez-Vaquero 2014	2.460	1.085	5.575	0.031	1.33				
Tully 2013	0.845	0.636	1.123	0.245	3.86				
Koene 2013	1.078	0.793	1.467	0.631	3.70				
Kitamura 2013	0.138	0.026	0.746	0.021	0.39				
Kandler 2013	0.728	0.309	1.718	0.469	1.23				
Hong 2013	2.817	1.120	7.089	0.028	1.10				
Concistrè 2013	0.894	0.367	2.182	0.806	1.16				
Bonderman 2013	1.417	0.858	2.338	0.173	2.49				
Hernandez-Vaquero 2011	0.830	0.399	1.730	0.620	1.55				
Cotoni 2011	1.220	0.575	2.591	0.604	1.50				
Sakamoto 2010	1.505	0.420	5.390	0.530	0.64				
Jamieson 2010	1.140	0.958	1.357	0.139	4.63				
Howell 2010	0.786	0.528	1.169	0.234	3.09				
Bleiziffer 2010	1.752	1.085	2.829	0.022	2.60				
Urso 2009	0.764	0.376	1.550	0.455	1.63				
Mrówczynski 2009	2.170	1.286	3.663	0.004	2.37				
Moon 2009	0.901	0.722	1.125	0.358	4.31				
Mohty 2009	1.252	1.010	1.551	0.040	4.36				
Mannacio 2009	0.615	0.171	2.221	0.458	0.63				
Florath 2008	1.696	0.977	2.945	0.060	2.24				
Kohsaka 2008	1.755	1.121	2.747	0.014	2.78				
Mascherbauer 2008	1.612	0.772	3.366	0.204	1.55				
Ryomoto 2008	1.658	0.661	4.160	0.281	1.11				
Vicchio 2008	2.521	1.372	4.633	0.003	1.99				
Tsutsumi 2008	2.114	0.490	9.117	0.316	0.50				
Tao 2007	2.271	0.760	6.786	0.142	0.83				
Nozohoor 2007	1.713	1.380	2.127	<0.001	4.34				
Monin 2007	1.021	0.515	2.025	0.952	1.71				
Kato 2007	1.500	0.694	3.241	0.302	1.45				
Fuster 2007 (Cohort A)	2.947	1.419	6.117	0.004	1.56				
Flameng 2006	1.377	0.853	2.224	0.191	2.60				
Tasca 2006	3.078	1.468	6.454	0.003	1.53			-	
Ruel 2006 (Cohort A)	2.843	1.487	5.436	0.002	1.84				
Ruel 2006 (Cohort B)	3.287	1.641	6.583	0.001	1.68				
Mohty-Echaidi 2006	1.627	0.949	2.792	0.077	2.29				
Kulik 2006	2.063	0.726	5.868	0.174	0.90				
Penta de Peppo 2005	1.810	0.282	11.599	0.532	0.32				
Hanayama 2002	1.609	0.654	3.959	0.301	1.14				
Rao 2000	1.776	1.110	2.844	0.017	2.65				
Pibarot 1998	1.215	0.734	2.012	0.448	2.47				
Overall effect	1.358	1.218	1.515	<0.001				1	
Total ($95 \% \mathrm{CI}$): 52990 (PPM); 38751 (No PPM) Total events: 13020 (PPM); 7591 (No PPM) Test for heterogeneity: $\mathrm{Chi}^{2}=139.06 ; \mathrm{df}=46(\mathrm{P}<0.001) ; \mathrm{I}^{2}=66.9 \%$ Test for overall random effect: $Z=5.51(P<0.001)$							Non-significant/No PPM Moderate/Severe PPM		

Figure 4: Odds ratio and conclusions plot of 5-year mortality. The summary effect of moderate/severe PPM on 5-year mortality is shown. CI: confidence interval; PPM: patient-prosthesis mismatch.

Moderate/Severe PPM vs Non-significant/No PPM

Figure 5: Odds ratio and conclusions plot of 10-year mortality. The summary effect of moderate/severe PPM on 10-year mortality is shown. CI: confidence interval; PPM: patient-prosthesis mismatch.

Figure 6: Publication bias. Funnel plot analysis of the outcomes on perioperative mortality, 1-year mortality, 5-year mortality and 10-year mortality.

Table 1: Sensitivity analysis

Perioperative mortality	Studies (N)	Patients (N)	Summary measures			Heterogeneity	
			OR	95\% Cl	P-value	1^{2} (\%)	$\chi^{2} P$-value
Moderate PPM ${ }^{\text {a }}$							
Perioperative	32	76540	1.283	1.095-1.503	<0.001	25.9	0.002
1 year	30	76494	1.232	1.020-1.489	0.031	66.3	<0.001
5 years	27	75446	1.231	1.091-1.388	0.001	65.4	<0.001
10 years	18	67842	1.310	1.028-1.668	0.029	92.6	<0.001
Severe PPM ${ }^{\text {a }}$							
Perioperative	26	40723	2.284	1.566-3.329	<0.001	61.4	<0.001
1 year	24	38480	2.136	1.575-2.897	<0.001	65.0	<0.001
5 years	18	36659	1.841	1.401-2.418	<0.001	78.1	<0.001
10 years	13	35152	1.963	1.173-3.285	<0.001	94.3	<0.001
Severe PPM versus moderate PPM							
Perioperative	23	50924	1.736	1.252-2.406	0.001	51.2	0.003
1 year	20	48532	1.532	1.169-2.006	0.002	53.5	0.003
5 years	17	47536	1.412	1.165-1.710	<0.001	56.7	0.002
10 years	13	46555	1.476	1.103-1.952	0.009	79.3	<0.001

${ }^{\text {a }}$ Compared with non-significant/no PPM.
CI: confidence interval; OR: odds ratio; PPM: patient-prosthesis mismatch.

Table 2: Sensitivity analysis

Perioperative mortality	Studies (N)	Patients (N)	Summary measures			Heterogeneity	
			OR	95\% Cl	P-value	1^{2} (\%)	$\chi^{2} P$-value
Patients included only within the last 10 years ${ }^{\text {a }}$	10	7245	1.750	1.167-2.623	0.007	0.0	0.886
Type of valve ${ }^{\text {a }}$							
Only mechanical	14	3431	1.678	1.145-2.457	0.008	40.8	0.088
Only bioprosthesis	9	6251	1.330	0.858-2.060	0.203	0.0	0.491
iEOA measurement ${ }^{\text {a }}$							
In vitro	10	15241	1.787	1.450-2.203	<0.001	9.9	0.350
In vivo	32	77286	1.272	1.071-1.512	0.006	27.6	0.077
Doppler echocardiography	17	8791	1.799	1.309-2.472	<0.001	0.0	0.565

${ }^{\text {a Comparing moderate/severe PPM with non-significant/no PPM. }}$
Cl : confidence interval; iEOA: indexed effective orifice area; OR: odds ratio; PPM: patient-prosthesis mismatch.

