
Sensitivity Analysis of Oscillating Hybrid Systems

by

Vibhu Prakash Saxena

B.Tech., Mechanical Engineering
Indian Institute of Technology, Madras (2007)

Submitted to the School of Engineering
in partial fulfillment of the requirements for the degree of

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

SEP 0 2 2010

LIBRARIES

ARCHivES

Master of Science in Computation for Design and Optimization

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

A u th or ........................................... ... . ............
School of Engineering

February 18, 2010

Certified by............................. ..... ........... ..
Paul I. Barton

Lammot du Pont Professor of Chemical Engineering
Thesis Supervisor

Accepted by ...................
e'17 Karen Willcox

Associate Professor of Aeronautics and Astronautics
Codirector, Computation for Design and Optimization Program



2



Sensitivity Analysis of Oscillating Hybrid Systems

by

Vibhu Prakash Saxena

Submitted to the School of Engineering
on February 18, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science in Computation for Design and Optimization

Abstract

Many models of physical systems oscillate periodically and exhibit both discrete-state

and continuous-state dynamics. These systems are called oscillating hybrid systems

and find applications in diverse areas of science and engineering, including robotics,
power systems, systems biology, and so on. A useful tool that can provide valuable

insights into the influence of parameters on the dynamic behavior of such systems is

sensitivity analysis. A theory for sensitivity analysis with respect to the initial con-

ditions and/or parameters of oscillating hybrid systems is developed and discussed.

Boundary-value formulations are presented for initial conditions, period, period sen-

sitivity and initial conditions for the sensitivities. A difference equation analysis of

general homogeneous equations and parametric sensitivity equations with linear pe-

riodic piecewise continuous coefficients is presented. It is noted that the monodromy

matrix for these systems is not a fundamental matrix evaluated after one period, but

depends on one. A three part decomposition of the sensitivities is presented based on

the analysis. These three parts classify the influence of the parameters on the period,
amplitude and relative phase of the limit-cycles of hybrid systems, respectively. The

theory developed is then applied to the computation of sensitivity information for

some examples of oscillating hybrid systems using existing numerical techniques and

methods. The relevant information given by the sensitivity trajectory and its parts

can be used in algorithms for different applications such as parameter estimation,
control system design, stability analysis and dynamic optimization.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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Chapter 1

Introduction

Sensitivity analysis is a useful tool for analyzing a dynamic system. It can be used to

predict the change in the behavior of the system with an infinitesimal perturbation

in parameters appearing in the model for the system/and or initial conditions. This

information can be utilized in various engineering and scientific applications. For ex-

ample model reduction, stability analysis (of for example power systems [26]), control

system design, parameter estimation, experimental design, process sensitivity studies

and numerical optimal control.

There exist higher-order sensitivities in other studies, but the sensitivities which

are discussed in this thesis are first-order sensitivities, defined as:

Ox x(i, t, a + ee) - x(i, t, a)
(i, t, a) = lim

09% -0 E

where t E [o-, r], ej is the jth unit vector, and x(i, t, a) is a scalar or vector of state

variables which changes in time according to the equations of the hybrid system:

dx

dt

where mi is the mode of the hybrid system in the ith epoch, which defines the right-

hand side of the differential equations, and a is a scalar or vector-valued quantity

which can be either a model parameter, or initial conditions of hybrid system or a



combination of both as mentioned earlier.

The concept of sensitivity analysis is well understood for continuous dynamic

systems [14][45], continuous oscillating systems [46, 47] and hybrid systems [15][6].

This study focuses on sensitivity analysis of limit-cycle oscillators in hybrid systems.

In particular, the parameter sensitivities are calculated for the state variables, period

of the system, amplitude of the state variables and different phases of the system.

1.1 Oscillating Hybrid Systems

Hybrid systems are those systems that exhibit both discrete-state and continuous-

state dynamics. These systems are characterized by interactions between discrete and

continuous states which are significant to an extent that they cannot be decoupled

and analyzed simultaneously. These are modeled in the past often by partitioning

into discrete and continuous parts. There a diverse range of applications where hybrid

systems are common. Robotics [35], manufacturing [33], air traffic control [44], power

systems [20], safety interlock systems and embedded systems are a few examples.

The sensitivity analysis for such systems has been established in [15] by extending

the sensitivity analysis for discontinuous systems by [37]. A hybrid system can be

described by a collection of different systems of differential equations. In this thesis we

limit ourselves to the study of differential-algebraic equations (DAEs) and ordinary

differential equations (ODEs).

Many hybrid systems exhibit periodic behavior. An oscillating hybrid system has a

mix of discrete and continuous state variables which repeat values as time progresses.

There are different classes of oscillating dynamical systems: limit-cycle oscillators

(LCOs), non-limit-cycle oscillators (NLCOs) and intermediate type oscillators. A

comprehensive guide for the sensitivity analysis of these three different classes of

oscillating system is presented in [46, 47]. Oscillating hybrid systems also have these

three different classes but this thesis sticks to sensitivity analysis of LCOs in hybrid

systems. Such systems can be found in cell cycles [9] and robotic motions which

are naturally periodic. Stability analysis of limit cycles in hybrid systems has been



presented in [19]. A model for a compass gait biped robot [17, 18] is analyzed in [19].

Limit cycles have a closed and isolated periodic orbit [40]. This orbit is solely de-

termined by the parameters of the system. The limit cycles can be stable (attracting)

or unstable (repelling). This work focuses on stable limit cycles in hybrid systems.

The shape and position of the limit cycle is independent of the initial conditions as

long as the initial conditions lie within the region of attraction. It is shown later

how the initial conditions for a LCO in hybrid systems are calculated by solving a

boundary-value problem.

1.2 Motivational Example of Oscillating Hybrid

Systems: Raibert's Hopper

This is an application of oscillating hybrid systems in robotics described in [4]. It

is a control problem involving dynamical behavior and stability of a hopping robot.

A simplified model for the machine built by Raibert [36] is described in [24], which

is used here. Raibert's hopper consists of two main components: a body which has

a control mechanism and a compressible leg as shown in the Figure 1-1. The leg is

modeled and constructed as a pneumatic cylinder which has gas whose pressure is

subject to feedback control. The robot is dropped from a short distance above the

surface and after some transient time, it hops periodically in the vertical direction for

some parameter values.

The hopping robot system dynamics are described by four phases: flight, com-

pression, thrust, and decompression. The robot is dropped from a height x 1,0 and it is

in the flight phase until the bottom surface of the cylinder comes in contact with the

surface below. During this phase, the gas in the cylinder is at pressure pinit and the

leg is at its fully extended length 1. As soon as the leg makes contact with the surface,

the gas inside the cylinder compresses and the compression phase begins. The com-

pression is modeled using a nonlinear spring with a spring constant r/ and mechanical

damping with a coefficient of friction -y. At the point of maximal leg compression,



or minimum value of xi, the thrust phase begins and it lasts for a fixed period of

time 6. During the thrust phase, gas at Pth is admitted into the cylinder exerting a

constant force T to move the body upwards. The thrust phase starts at tb and ends

at tb + J with a body height of xi,et. At the end of thrust phase, the gas in cylinder

starts decompressing. The decompression phase is modeled as nonlinear spring with

spring constant rx,et. The decompression phase ends when the leg reaches its fully

extended length 1 and it lifts from the surface going to the flight phase. Therefore,

the robot hops periodically going into four phases in each cycle. The four phases

mentioned here are later referred to as modes in the text for a general hybrid system.

The four phases can be noticed in the periodic orbit in the phase portrait plotted in

Figure 1-2(a). Figure 1-2(b) displays the height of the body as a function of time.

Each hop is represented by a single cycle in the figure and the maximum height of the

hop is constant. The limit cycle in this hybrid system is attracting and is approached

asymptotically from any initial conditions within the region of attraction. The system

of ODEs for the four phases are given as:

i1 = X2
Flight : when (xi > 1) ,

x 2 = -9

Ti= x2
Compression: j X when (xi < 1) A (X 2 < 0),

x 2 = -X2 - 9

Thrust: when (xi < 1) A (X2 > 0) A (tb < t < tb + 3),
't2 - 7yX 2 - g

:i1 = T
Decompression :Tri,e when (xi < l) A (2 > 0) A (t > tb + ).

1X2 = -YX 2 -g

This system has six parameters: 1, g, T, 3, q and -y. The sensitivity analysis with

respect to these parameters is useful in control design of such systems.



body

Compression/l

Decompression

Figure 1-1: Simplified model of Raibert's hopper (24].

1.3 Organization

This thesis is organized as follows. Theoretical background which is used in the

thesis to develop the theory of sensitivity analysis of limit cycles of hybrid systems

is presented in Chapter 2. A description of ODE systems, hybrid systems and LCOs

along with general sensitivity theory of these systems is presented. The theory of

sensitivity analysis of limit cycles of hybrid systems is developed in Chapter 3. It

is shown how a fundamental matrix evaluated after one period is different from the

monodromy matrix for oscillating hybrid systems, in contrast to regular LCOs. Using

difference-equation analysis, the properties of the initial-condition sensitivities are

proved. A similar analysis is done for the parametric sensitivities to obtain a general

solution for sensitivity equations for the limit cycles of hybrid systems. This analysis

shows that the sensitivities can be decomposed into an unbounded and a periodic part

much like regular LCOs. The periodic part can further be decomposed into periodic

effects of shape and phase change in the limit cycles of hybrid systems. Numerical

implementation of the developed theory is discussed in Chapter 4. Chapter 5 discusses

some of the applications of the analysis to simple oscillating hybrid systems. The work

is concluded in Chapter 6 with recommendations for future work.
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Chapter 2

Theoretical Background

In this chapter, theoretical background on ODEs, ODE-embedded hybrid systems and

LCOs is presented. After describing these systems, the theory of sensitivity analysis

(developed earlier) of such systems is also presented briefly.

2.1 ODEs and Linear Systems Theory

Many engineering and scientific problems are described by ODEs and DAEs. Since

the focus of this thesis is on ODEs, some theory for systems which are represented by

a system of ODEs is presented in this section. Consider such a general system with

parameters:
dx

= F(x(p,t),p,t), Vt, x(p, to) = xo(p), (2.1)
dt

where x(p, t) E X C R", p E P c R n, to is the initial time and F : X x P x R -+ R".

is a vector containing real continuous functions. Here n,, and n are the dimension and

number of parameters in the ODE system, respectively. Existence and uniqueness of

the solutions of the above initial-value problem is discussed in [10]. According to the

Picard-Lindelof theorem, if F is a vector of real continuous functions and satisfies the

Lipschitz condition, then there exists a unique solution of Equation (2.1).



2.1.1 Linear Homogeneous Systems

A particularly interesting system is the linear homogeneous system given by equations:

dx
t = A(p,t)x(p,t), Vt, x(p,to) = xo(p), (2.2)

where x(p, t) E X C R7-, p E P C Rnp, and the elements of A(p, t) are continuous

functions of t. For such a linear system where the elements of A(p, t) are continuous

on [to, ty], there is one and only one solution x(p, t; xo, to) of the Equation (2.2)

passing through state xo at time to [10]. Let A(p, t) be an integrable function of t

such that IIA(p, t)|| < a(t) and f' a(t) dt < +oo, then the unique solution satisfies

the following equation [49]:

x(p, t; x0 , to) = x 0(p) + A(p, r)x(p, r; xo, to) dr.

Let D(p, t, to) be the n. x n., matrix which is the solution of the equations:

dt (p, t, to) = A(p, t) D(p, t, to), Vt, (p, to, to) = I. (2.3)

Then the solution of Equation (2.2) is given by:

x(p, t; xo, to) = D(p, t, to) xo (p), Vt, Vxo (p).

The matrix D(p, t, to) is called the state transition matrix or principal fundamental

matrix. A necessary and sufficient condition that a solution matrix 4) of Equation

(2.3) be a fundamental matrix is that det P(p, t, to) $ 0, Vt [10].

2.1.2 Properties of <b(p, t, to)

The following are some properties of the state transition matrix 4(p, t, to):

1. The state transition matrix has the group property:

)(P, ti, t2)(p, t2, t3) = @(p, t1 , t3 ), Vti, t 2 , t3-



2. An immediate consequence of Property 1 is:

- 1 (p, ti, t 2 ) = (p, t2, ti).

3. If, for all t, 1k A(r) d-r and A(t) commute, then:

4(p, t, to) = exp [ff A(p, r) dr.

4. Let 4(p, t, to) be the state transition matrix, then:

det 4 (p, t, to) = exp [ff TrA(p, T) dr]

2.1.3 Inhomogeneous Linear Systems

The inhomogeneous linear system is given by the equations:

dx
-(p, t) = A(p, t)x(p, t) + b(p, t), Vt, x(p, to) = xo(p), (2.4)

di

where x(p, t) E X C R4-, p E P C R"P, and the elements of the A(p, t) matrix and

b(p, t) vector are continuous functions of t. The solution of Equation (2.4) that goes

through state xo(p) at to, is given by following equation [10]:

x(p, t; xo, to) = 4(p, t, to)xo(p) + J @(p, t, T)b(p, T) dr.

It can be noted that 4(t, T)= exp [A(t - r)] in the case of time-invariant systems.

2.2 ODE-embedded Multi-stage Hybrid systems

Hybrid systems exhibit both the continuous state and discrete state dynamics which

cannot be decoupled and must be analyzed simultaneously. These systems are con-

veniently modeled by partitioning into discrete and continuous states. In general,



there is a continuous or discrete time formulation for modeling of hybrid systems.

In continuous time formulation, there is a variety of embedded differential equation

subsystems including ODEs, DAEs, and PDEs. The focus of this thesis is on ODEs

embedded in oscillating hybrid system and hence a formulation is presented for them.

A modification of modeling framework presented in [27] is used in Chapter 3. That

framework was based on hybrid automaton representation for hybrid systems which

is useful for mathematical and numerical analysis.

The evolution of a hybrid system through time consists of starting at an initial time

with initial conditions for the discrete and continuous state variables of the hybrid

system. The continuous state variables evolve according to differential equations

which depend on the discrete state of the system. At some point of time, a change

or transition may occur in the system and the continuous state variables then evolve

according to different differential equations corresponding to the new discrete state

described by a new value for the discrete state variable. After some more time, again

a transition occurs and the cycle is repeated indefinitely.

The time axis is called the time horizon, which is further divided into time intervals

called epochs. The discrete and continuous subsystems interact via discrete changes

or transitions at points in time called events. Each epoch is a closed time interval

[o-, ri], with o-,+ 1 = T and -r <; -r+1 for all i E E where E is a finite set of epochs, with

initial time o-1. In the ith epoch, the system evolves continuously by allowing time to

pass if oi < r. The evolution of the hybrid system stops at final time tf = -r, where

ne is the total number of epochs in the time horizon.

The hybrid system can be viewed as a directed graph whose vertices are the

continuous state subsystems, called modes, and edges are the possible transitions. A

hybrid system consists of the following elements:

1. A finite set index M for the modes, M = {1, 2, 3, ... , nm} where nm is the total

number of modes in the hybrid system. A sequence of modes corresponding

to the time evolution of hybrid system, is called the hybrid mode trajectory

Tp = {mi}' 1 , mi M where mi is the mode in the ith epoch. For the class

of problems discussed here, the transitions which occur are known a priori, and



hence the evolution follows a fixed mode sequence for all the parameter values.

2. A set of variables {x, p, t}, where x(i, p, t) c X C R"nx are the state variables

in an ODE-embedded hybrid system. The time-invariant parameters p E P C

R p, and time t E R, are the independent variables. Also, for t E (0i, Ti],

x(i, p, t) evolves according to the differential equations in mode mi.

3. A set of equations for each mode mi C M. The state of the hybrid system

evolves according to the dynamics of the system, which are represented by

ODEs given by:
dx

S(i, p, t) = F(mi, x(i, p, t), p),

where F : M x X x P --+ R"nx. A set of initial conditions is given for the first

epoch,

x(1, p, a-) = xo(p).

4. A set of transitions in a fixed mode sequence from predecessor mode mi to

successor mode mi+ 1 . The transitions are described by:

(a) Transition conditions L(mi, x(i, p, t), p), where L : M x X x R n -+ R,

determining the transition times at which switching from mode mi to mi+1

occurs. At the start of the ith epoch, it is assumed that the transition

condition satisfies:

L (mi, x (i, p, t), p) > 0.

The earliest time at which the transition condition crosses zero defines the

transition time ri(p).

(b) Each transition has a transition function T(mi, x(i, p, t), p) which relates

the final condition in mode mi to the initial condition in the next mode

mi+1 at the transition time t =Tr :

x(i + 1, p, oi+1(p)) = T(mi, x(i, p, T(p)), p), Vi = 1, ... , ne - 1.



2.3 Limit-Cycle Oscillators

Oscillating dynamical systems described by ODEs as in Equation (2.1) can be classi-

fied into three different classes: LCOs, NLCOs and intermediate-type oscillators. A

short discussion on the three is given in [47].

This work is focused on LCOs, in which the periodic orbit is isolated and closed

[40]. Unlike the other two classes, the period and location of the limit-cycle are

independent of the initial conditions and are solely determined by the parameters of

the system. Limit cycles can be further classified into two types: stable and unstable.

Stable limit cycles, which are the focus of the present work, are approached from any

initial condition as t -* +oo within the region of attraction. On the other hand,

unstable limit cycles are repelling and are approached from any initial condition as

t -> -oo. The stability of limit cycles is determined by the characteristic multipliers.

An explanation for that, which is known as Floquet theory, is given later in this

chapter in the section on Floquet theory. To analyze a limit-cycle trajectory, initial

conditions on the limit cycle must be identified. These initial conditions depend on

the parameters of the system.

Consider a LCO with parameters p modeled by nonlinear ODEs. A boundary

value problem (BVP) is formulated for xo(p) and T(p) subject to:

x (p, T(p); xo(p), 0) - xo(p) = 0, (2.5)

'i(to, p; xo(p), 0) = 0, (2.6)

for some arbitrary i E {1,. .. , n} with x (p, t; xo(p),0) E X C Rnx is given by the

solution of:
dx
dt (p, t) = F(x(p, t), p), Vt, x(p, 0) = xo(p), (2.7)

Solving this BVP yields initial conditions xo(p) corresponding to a point on a limit

cycle, defined by Eq. (2.6), and the period T(p).

Equation (2.6) fixes zero time for the BVP to a point on the limit cycle and is

known as a phase locking condition (PLC) [47]. A valid PLC is required to find the



solution of the BVP. A PLC is valid if it defines an isolated point on the periodic

orbit and it yields a solution that is unique and smooth in a neighborhood of p.

2.4 Sensitivity Analysis: ODE Systems,

ODE-embedded Multi-stage Hybrid Systems,

LCOs

Sensitivity analysis is the study of the influence of infinitesimal perturbations in

parameters and/or initial conditions on the state of a system. It plays an important

role in design, modeling, parameter estimation and optimization of systems. This

section gives some theoretical background on sensitivity analysis of ODE systems,

ODE-embedded multi-stage hybrid systems (with fixed hybrid mode trajectory) and

oscillating dynamical systems (limit cycles).

2.4.1 Sensitivity Analysis of ODE Systems

The theory for sensitivity analysis of systems with continuous dynamics is well es-

tablished [14, 8]. Consider the system defined by Equation (2.1). Sensitivity analysis

entails finding the partial derivative of the solution with respect to the parameters

p. The sensitivity trajectory given by the matrix a(p, t) E R nxnp is a continuous

function of time and satisfies the following inhomogeneous linear system of differential

equations:

d Ox (x Ox Oxo
(i~(p, t) = A (p, t) -(p, t) + B(p, t), Vt, (p, to) = (p), (2.8)

dt op )p Op Op

where A(p, t) = "(x(p, t), p, t), and B(p, t) = 2(x(p, t), p, t) with elements which

are continuous functions of t. Equation (2.8) is an inhomogeneous linear system of

equations and the solution of such systems was given in the Section 2.1.3, which can

be written in terms of the fundamental matrix <b(p, t, to) for the homogeneous system.

In [281, the simultaneous corrector method was proposed to compute the para-



metric sensitivity which reduced computational cost compared to earlier efforts. In

[13], the staggered corrector method was developed and demonstrated for solving stiff

ODEs and sensitivities. This algorithm was shown to have a number of advantages

over that of the simultaneous corrector algorithm. The sensitivities are calculated by

integrating the sensitivity Equation (2.8) using the staggered corrector method given

in [13], which solves the sensitivity system after completing the corrector iteration for

the state variables.

2.4.2 Sensitivity Analysis of ODE-embedded Multi-stage Hy-

brid Systems

The theory for sensitivity analysis of hybrid systems has been recently developed [15]

which was an extension of work done earlier in [38].

Existence and uniqueness theorems for sensitivity functions of hybrid systems

are given in [15] and used later in Chapter 3. Let us consider an ODE-embedded

hybrid system with fixed hybrid mode trajectory T = {mi, M2 , M3 , ..., mn} as de-

scribed in Section 2.2. Suppose that for t E (-i, Ti], i E E, the partial derivatives

S(mi, x(i, p,t), p) and "(mi, x(i, p, t), p) exist and are continuous in a neighbor-

hood of the solution x(i, p, t). In [15], it has been proved that the sensitivity trajec-

tories matrix a(i, p, t), Vi E E exist and satisfy the differential equations:

d Op (i, p, t) = Ap X (i, p, t) + Bc(p, t), Vt E (-i(p),ri(p)],

Ox Ox0a(1,p,co-(p)) = (p), (2.9)
Op Op

where A(p,t) = ((i, x(i,p,t),p),Vt E (-i(p),Tri(p)], Vi E & and B(p, t) =

(i, x(i, p, t), p), Vt E (-i (p), i(p)], Vi C E with elements continuous functions of

t.

Now, consider an event between the ith and i+1Ith epochs where state continuity



is employed as the transition function:

x(i + 1, p, Ti+1(p)) = x(i, p, Ti(p)), Vi = 1, 2, ... , ne - 1.

At oi+1 (p) =T (p), the relationship between the final values of the sensitivities in

epoch i and the initial values of the sensitivities in epoch i + 1 is determined by

differentiation of the transition function:

(i+1,p, Ui+ 1(P)) = O(i, p, Ti(p))+((i, p, Ti(p)) - i(i + 1, p, a-i+1(p))) Ou+iap Op Op

Ox
(I + 1, p, oi+1(p))

Op

(i, p, Tj(p)) + (F(mi, x(i, p, ri(p)), p) - F(mi+1 , x(i + 1, p, -i+1 (p)), p))

x (1
p)

The above equation reveals the qualitative behavior of the sensitivities at an event.

The equation indicates that the sensitivities will "jump" at an event when two con-

ditions are both satisfied: (a) the vector field is discontinuous and (b) the event time

is sensitive to the parameters p. The event-time sensitivity is calculated by using

the fact that the transition condition is zero at the event. The transition condition

triggering the event between the ith and i + ith epochs at the event is:

£C(mi, x(i, p, -i+1 (p)), p) = 0. (2.10)

Differentiating Equation (2.10) with respect to the parameters p:

OL Bo- +1 Ox
(mi, x(i, p, Ui+1(p)), p) x(i, p, cai+1(p)) (p) + -(i1, p Ui+1(p))

+ (i, x(i, p, o-i+1(p)), p) = 0. (2.11)

Equation (2.11) is linear and can be solved for a unique "+ (p), Vi = 1, 2, ..., ne - 1,



provided that:

(mL xipi+(p)), p)ii pJ+(p)) /0at:

The expression obtained for (p) is:
ap

B+1_ _ (m,, x(i, p, oi+(p)), P)(ip, 0i+1(p)) + , (mi, x(ip, joi+1(p)), P)

BP~a P(i ~ , , i+1(P)), P*x(i, P, ri+1 (P))
(2.12)

The above equations can be solved for the evolution of the states and sensitivities in

a mode by using the staggered corrector method given in [13]. Correct location of

the state events is done using the state event location algorithm given in [32]. The

above algorithms have been implemented in DSL48SE.

2.4.3 Sensitivity Analysis of Limit-Cycle Oscillators

The sensitivity analysis for LCOs and NLCOs was formulated separately and dis-

cussed in [47]. The matrix of parametric sensitivities !(p, t) E R"nx"" is obtained

by taking the partial derivatives of a LCO described by the ODE system in the

Equations (2.7) and satisfy the following differential equations:

d (ax' tx ax ax0(p, t) = A(p, t)(p, t) + B(p, t), Vt, (p, 0) = ap (p), (2.13)
di Op Op 19p Op

where A(p,t) = 2(x(p,t),p), and B(p,t) = g (x(p,t),p) have elements which

are continuous and periodic in time t with period T(p) because x(p, t) is periodic.

Since the initial conditions on the limit cycle depend on the parameters of LCOs,

the sensitivity initial conditions a (p) cannot be set to zero, as is usually done

for dynamic systems when the initial conditions are independent of parameters. To

determine the correct initial conditions %XO (p), a BVP is formulated by differentiating

Equations (2.5) and (2.6) with respect to the parameters p [47]:

dx aT (ax N x ax0
dx (p, T(p)) OT (p) + (p, T(p)) + ax (p, T(p)) ap)

dt Op (Op ) XO=COnst. O0O

ax ax0ax(p, 0) (p) = 0, (2.14)NxO ap



O(xX(p), P) (P)+ * (x(p), p) = 0. (2.15)
Ox Op 09p

The BVP in Equations (2.14) and (2.15) can be solved to obtain sensitivity initial

conditions !2E (p) and period sensitivities aT (p).

Before proceeding to the solution of Equation (2.13), it is interesting to look

at the solution of the homogeneous linear system which is satisfied by the partial

derivatives of the solution with respect to the initial conditions xO, resulting in the

matrix -!2- (p, t) C R"xf"l.

Linear Homogeneous System with Periodic Coefficients

The initial-condition sensitivity matrix -(p, t) is the solution of the linear system

with periodically time-varying coefficients:

d(Ox\ Ox Ox
(p, t) = A(p, t) (p t), Vt, (p, 0) = I. (2.16)

dt OxO xO Ox

If P(p, t, 0) is the state transition matrix of Equation (2.16), then its solution will be

given [10]:
Ox (p, t; I, 0) = D(p, t, 0)I = )(p, t, 0), Vt. (2.17)
Oxo

Hence the initial-condition sensitivity matrix is actually the state transition matrix

for the homogeneous linear system and follows all the properties of the state transition

matrix given in Section 2.1.2. An expression for the g (p, t) matrix has been obtained

in [37]:
Ox
Oxo (p, t) = K(p, t) exp (N(p)t) ,

where the matrix K(p, t) is nonsingular and satisfies the conditions:

K(p, t + T(p)) = K(p, t), K(p, 0) = I,

and the constant matrix N(p) is given by:

1 [x l
N(p) = In (p, T(p))I.

T(p) 1 xo

31



The matrix

M(p) = 1(p, T(p)) = exp (N(p)T(p))

is called the monodromy matrix and has the property:

(p, t + T(p)) = O(p, t)M(p).

Floquet Theory

The Floquet theorem says that if state transition matrix is diagonalizable, we have

[11]:

D (p, t - s) = diag [exp (A1 (p) (t - s)) , ... , exp (An,(p) (t - s))]

then the state transition matrix of the linear system in Equation (2.16) can be written

in the form:

<P(p, t, s) = U(p, t)D(p, t - s)V(p, s), (2.18)

where U(p, t) E RlX"-T and V(p, t) E R"-""- are both T(p)-periodic and non-

singular (for all t) and satisfy:

U(p, t) = V1(p, t).

Aj(p) are called the characteristic (Floquet) exponents of the Equation (2.16), pi(p) =

exp [Ai(p)T(p)] are the eigenvalues of M(p) and are called the (Floquet) characteristic

multipliers [37] given by the solutions of the characteristic equation:

det [M(p) - p(p)I] = 0.

These characteristic multipliers are used to determine whether a periodic steady-state

solution of Equations (2.5) and (2.6), i.e., the limit cycle, is stable. A limit cycle is

orbitally stable if one of the multipliers is equal to 1 and all others lie strictly inside

the unit circle [2]. The work done in this thesis involves only limit cycles which are

stable.



For s = 0, it follows that D(p, t, 0) can be written as:

4(p, t, 0) = I1(p, t, 0) + #2(p, t, 0),

where #1(p, t, 0) and (2(p, t, 0) are both solutions to Equation (2.16) and given by:

1 (p, t, 0) = [(p, t)

'2(p, t, 0) = IOn,,1

Onx,nxII V(p, 0),

G(p, t) V(p, 0),

with Oi,k is the zero matrix with i rows and k columns [37, 7]. The matrix 42(p, t, 0)

decays for large times t but #1(p, t, 0) is T(p) periodic, so that D(p, t, 0) -+ D1(p, t, 0)

as t --+ +oo. So the expression for D(p, t, 0) is given by:

P(p, t, 0) = [k(p, t) G(p, t) V(p, 0).

Since the LCO has an oscillatory mode, one of the Floquet exponents is zero, say

A = 0. For s = 0, Eq. (2.18) will then become:

D(p, t, 0) = U(p, t)D(p, t)V(p, 0), (2.20)

where D(p, t) = diag [1, exp (A2(p)t) , ... , exp (A,(p)t)]. Let u(p, t) be the first col-

umn of U(p, t). Eq. (2.20) becomes:

Comparing Eq. (2.21) with Eq.

U(p, t).

G(p, t) IV(p, 0). (2.21)

(2.19), it shows that k(p, t) is the first column of

Inhomogeneous Linear Systems with Periodic Coefficients

The sensitivity equations which were described in Equation (2.13) are inhomogeneous

linear systems with periodic coefficients as described in Section 2.1.3. The solution

(2.19)

D(p, t, 0) = L u(p, t)



of Equation (2.13) can be given in terms of the state transition matrix <b(p, t, 0):

Ox Oxo
-(p, t) = (p, t, 0) (p (p, t, T)B(p, r) dr. (2.22)

It was shown in [37], that this solution given in Equation (2.22) can be written in

the form:

N(p, t) = tR(p, t) + Z (p, t) , Vt, Z (p, 0) = (p),ap 19p
where R(p, t) is T(p)-periodic in time and contains the influence of the period on the

sensitivity:

R(p, t) = p(pt)OT )
T(p) Op

and Z (p, t) is also periodic in time with period T(p), and corresponds to the partial

derivatives of the state variables with respect to the parameters keeping the period

constant:
(Ox

= P9 T(p)=const.

It was also sometimes referred to as the "cleaned-out" sensitivity and was reported

to contain the influence of the parameters on the shape and phase behavior of the

limit cycle. This can be further decomposed into two parts [46]:

Z(p, t) = W(p, t) + 5(p, t)6(p, t),

where W(p, t) is a T(p)-periodic matrix, containing information on the shape of the

limit cycle, and is constructed from Z(p, t) using the projection:

W(p, t) (I - 2k(p, t)k(p, OT Z(p, t),(p, t)112

and 6 (p, t) is also a T(p)-periodic row vector known as the phase sensitivity, con-

taining information on the phase behavior of the limit cycle, and is constructed from



Z(p, t) using the projection onto the direction of x(p, t):

6 (p, t) = 1_
I(ppt))="2 [k(p, t)T Z(p, t)]

The quantities which are relevant to calculate for a LCO given in [47] were ampli-

tude sensitivities and peak-to-peak sensitivities. It was shown in [47] that amplitude

sensitivities can be obtained from:

(p) = Si (p, ti,m.(p)) - Si (p, ti'min(p)),

where Qi(p) is the amplitude for the state variable xi, si represents the ith row of

the full sensitivity matrix, ti,max(p) and ti,min(p) are the times at which xi attains its

supremum and infimum value, respectively. The peak-to-peak sensitivities represent

the influence of the parameters on a phase ( 3(p)), which is defined as the time

difference between the peak of one state variable to the peak of another state variable.

It can be calculated by solving following equation for !L(p):

(x (p, /(p)) p) i(P,(p)) (P) + OX (p, (p))

OF-
+ (x (p, O(p)) , p) = 0

OP

where F is the right-hand side of the differential equation for the state variable xz,

and /3(p) is the time elapsed at the extremum of xj relative to the extremum of xi,

for i f j.
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Chapter 3

Sensitivity Analysis of Oscillating

Hybrid Systems

3.1 Hybrid Systems: Definition

The hybrid systems analyzed in this thesis are defined using a modification of the

modeling framework in [27] as a basis:

Definition 1. The hybrid system considered is a 12-tuple ' (M, ., T, p, x, F,

xo, T, C, r, -r, T), where

eM = {1,.. .,n}, 1 < nm < 00,

S = {1,...,ne + 1}, 1 < ne < oo,

e T, = {mi}ies, mi E M, mne+1 = mi,

" pcPcR r,

e x:ExPxxR ->X,XCR n,

* F: M x X x P-> R",

0 xo P - X,

* T: P -I R,



* C: M x X x P --> R,

0- : P -+Rnc +1,

Ir: P -Rne+1, and

ST:MxXxP-->X.

The elements of M are called the modes of 'H and S is the index set for the epochs

which are illustrated in Figure 3-1 for one period of the cycle. T is called the hybrid

mode trajectory. p is the vector of parameters, x is the vector of continuous state

variables, and F is the vector field for x. xO are the initial conditions, T is the period,

L is the transition condition, o- are the initial times of epochs, r are the end times

of epochs (also known as events) and T are the transition functions.

While Figure 3-1 shows the event times for one period, in general the event times

can be defined for each period as:

gi,N(p) NT(p) + ui(p), Vi = 2,... , ne + 1, VN E {,1, .. . , oo}, (3.1)

Ti,N(p) NT(p) + ri(p),Vi =1, ... , ne, VN E {0, 1, ..., oo}1.

m I M2 I + mn, mh

o11(p) =0 T, (p) T2 (P) 7n,_1(9)r() T(P) T n, (P)

Figure 3-1: Epochs on the hybrid time trajectory.

3.2 Sensitivity Analysis of the Limit-Cycles of Hy-

brid Systems

In this work, sensitivity analysis of hybrid dynamic systems that are limit-cycle oscilla-

tors is investigated. A hybrid dynamic system is one that exhibits both discrete-state



and continuous-state dynamics. Limit-cycle oscillators (LCOs) are common in hybrid

systems and can be stable or unstable. A limit-cycle oscillator has an isolated and

closed periodic orbit. In other words, the periodic orbit is solely determined by the

parameters of the system and does not depend on the initial conditions. The focus

of the present work is stable hybrid LCOs, in which the periodic orbit is approached

asymptotically from any initial condition that lies within the region of attraction. If

the initial condition is on the limit cycle, the hybrid system follows its dynamics and

returns to this initial condition after time T.

3.2.1 Boundary Value Problem

Given p C P, a boundary value problem (BVP) is formulated to define xo(p), T(p),

o-(p) and -r(p) implicitly:

x(ne + 1, p, (N + 1)T(p)) - xo(p) = 0, (3.2)

i (1, p, 01,N(p)) = 0, (3.3)

for some arbitrary j E {1,. . . , n} and N E {0, 1, . .. , oo} with x(i, p, t), Vi E S given

by

$(i, p, t) = F(mi, x(i, p, t), p), Vt E (Oi,N(p), Ti,N(p)], (3.4)
dt

x(1, p, 01,N(p)) = xo(p),

where the event times o,(p) and -ri(p) within first period (for N = 0) are determined

by the transition condition L and the definition o1(p) = 0. At the start of an epoch,

it is assumed that the transition condition satisfies:

L (mi, x (i, p, t),7 p) > 0. (3.5)

Then, the earliest time at which the transition condition crosses zero defines ri(p),

as illustrated in Figure 3-2. Furthermore, oi+1(p) = Ti(p), Vi = 1,. - - , ne . Assuming

L(m,-,-) is a continuous function Vm E M, this implies that Ti(P) > o-i(p),Vi =



L(mi,,X(i, p, t), p)

-T ,(p) t

Figure 3-2: Transition time ri(p) for the ith epoch

1,. ne. Finally, T(p) = e+1(p), and we assume that T(p) > onc+I(p).

The transition functions map the final values of the continuous state variables in

the predecessor mode mi to their initial values in the successor mode mi+1 at time t

= Ti,N(p):

x(i+1, p, Oi+1,N(P)) = T(mi, x(i, p, Ti,N(P)), p), Vi = 1,.- ,ne, VN E {0, 1,... , oo}.

By solving this BVP for given values of p and N = 0, initial conditions xo(p) for

the continuous state variables that lie on a limit cycle are obtained, as well as the

period of oscillation, T(p). Eq. (3.2) defines the trajectory to be a limit cycle. Eq.

(3.3) is one possible example of a valid phase locking condition (PLC), which fixes

the zero time to an isolated point on the limit cycle, and determines the event times

o-(p) and -r(p) with respect to this reference point. We assume that the BVP as

defined has a solution x(i, p, -), Vi E E, Vt > 0 where defined, that exists, is unique

and satisfies the assumptions imposed. Furthermore, for the sensitivity analysis, we

assume the functions:

F(m, , ),Vm E M

L(m,-, -),Vr E M,

T(m, -, -),Vm C M,



are continuously differentiable on their domains, assumed to be open sets.

3.2.2 Homogeneous Linear Differential Equations with Piece-

wise Continuous Periodic Coefficients

Homogeneous Equation and Fundamental Matrix

Given x(i, p, -),Vi E S as defined in Section 2.1, define

OF
A(p, t) = T(mi, x(i, p, t - NT(p)), p), Vt c (Ji,N(p), Ti,N(p)],

for N= 0, 1, .... Hence, the elements of A(p, t) are piecewise continuous and periodic

functions of t with period T(p).

Let 4(p, t, to) be the matrix which is the solution of the equations

&P (p, t, to) = A(p, t)4(p, t, to), Vt > 0, 4(p, to, to) = I, Vto > 0. (3.6)
di

The matrix 4(p, t, to) is called the principal fundamental matrix or the state transi-

tion matrix [49]. The solution of Eq. (3.6) will exist and be unique in the sense of

Carath6odory [10].

Initial-Condition Sensitivities

While the state variables are T(p) periodic where they are defined, neither the initial-

condition sensitivities nor the parametric sensitivities are T(p) periodic. Suppose that

state continuity is employed as the transition function for each mode so that:

x(i + 1, p, Ui+,N(p)) = x(i, p, Ti,N(P)), Vi = 1, - , ?e, VN E {0, 1, ... , 0}. (3.7)



Recalling that Ui+1,N(P) = ri,N(P), VN E {0, 1,... . , oo} and differentiating Eq. (3.7)

with respect to initial conditions xO yields:

+ 1, P, i+1,N(p))
ax

= (i, p,Oi+1,N(p))

+ (k(i, p, Ji+1,N(P)) - i(i + 1, p, Ui+1,N(P))) O ),N

where aO +1,N (p) are determined by the transition conditions. Note that 5(i, p, Ji+1,N(p)

and k(i + 1, p, Ui+1,N(p)) are the left-hand and right-hand derivatives, respectively.

At Ti,N(P) > 9i,N(p):

L(mi, x(i, P, Ti,N(p)), p) = 0. (3.9)

Again, recalling that Uji+1,N(p) = Ti,N(p) and differentiating Eq. (3.9) with respect

to xO we have,

-(mi, x(i, p, Ui+1,N(P)),P) (iP,OJi+1,N(P)) i (POX aO
OX

+ -X(i, P, i1,N (P))l

The above linear equations can be solved for unique ali+1,N (p), Vi = 1, ... , Ine, VN EOXO

{0, 1,... , oo}, provided that:

X(i, p, Ji+1,N(P)), p)5(i, p, Ji+1,N(P)) $ 0.

The expression obtained for "i+1,N (p) after solving Eq. (3.10) is:aO

09i+1,N

Oxo (3.11)

Note that a&i+1,N (p) can be different for each N because I-(i, p, i+1,N(P)) is not

necessarily periodic. Consider the homogeneous linear system with state jumps, for

(3.8)

= 0.

(3.10)

Vi* = 1, . .. , ne, VN E {0,1 *01,o},

(mi X1, P, gi+1,N(P)), P)(, P, 07i+1,N(p))

'(mi, x(i, p, i+1,N(p)), p)l(i, p, i+1,N(p))



d (Ox N x
OX) (i, p, t) = A(p, t) 0 (i, p, t), Vt C (Oi,N(p), ri,N(p)], Vi C , (3.12)

ax
-(1, p, ai(p)) = I,

where - (i, p, ci,N(p)) is given by Eq. (3.8) for i = 2,. , ne + 1. From continuity of

the vector field at t = NT(p):

Ox (1, p, NT(p))= O(ne + 1, P, NT(p)), VN {, 1, ... , 00}.

The solution of this system ? (i, p, .), Vi C F, gives the sensitivity with respect to the

initial conditions xo(p) [15] but in general it is not a fundamental matrix because of

the potential state jumps at the epoch boundaries. Then, the solution of Eq. (3.12)

is:
Ox
- (1, p, t) = <k(p, t, 1 (p)), Vt E [o1(p), Ti(p)],
xo

Ox Oxax(1, p, t) = <D (p, t, O'1,N(p))O (ne + 1, p, NT(p)),

Vt C [U1,N(p), 7,N(p)], VN C {1, 2,... , Oo},

Ox I[OX i PT- 1 , (P) O1, P
P, t) = <(p, t, cri,N(p)) (Ox0  p, T1,Np] (3.13)

Vt C [ON(p), Ti,N(p)], Vi = 2, ... , ne + 1, VN E {,1,. . . 00}



where the Ai,N(p) are given by

Ox Ox
A N O (' + 1, P, Oi+1,N(P)) N (i, p, Ti,N(P))

= (k(i, p, Ti,N(p)) - k(i + 1, i+1 ,N (P))) N ,

= -((i, P, Ui+1,N(P)) - k(i + 1, p, 07i+1,N(P))

(-(mnix(i,p, o-i+1,N(P)), P)- X(i, P, i+1,N(P))

x (mi, x(i, p, Ui+1,N(P)), P)(i P, Oi+1,N(P))

= -C(i, p, Oi+1 (P)) -(i, P, 9i+1,N(P)),V = 1, - , ne, VN C {0, 1,. . . , oo}.

Note that all terms in the premultiplying matrix are T(p) periodic, so C(i, p, oi+1(P))

can be defined as:

C(i, p, Ui+ 1 (P)) = (5(i, p, oi+1(p)) - (i + 1, p, ai+1(P)))

x $m, x, p, u +i)p),p) ) (3.14)

Vi 1, . .. ,I ne.

Rewriting Eq. (3.13) for epoch i + 1, N = 0 and substituting for AO(p) we have:

(i + 1, p, t) = <(p, t, o-i+ 1(p)) [I - C(i, p, o-i+1(p))I ox(i, P, Oi+1(P)),

Vt C [O-i+ 1 (P), i+1(P)), Vi = 1,. .,ne (3.15)

Since ' (1, p, o-1(p)) = I, we have I (1, p, ri(p)) = <(p, ri(p), o-1(p)). Expanding



the recursion formula in Eq. (3.15) we have,

Ox0 (i + 1, p, t) = D(p, t, Oi+1i(p)) [I - C(i, p, oi+1(p))] (p, Ti(p), o~( p))

x [I - C(i - 1, p, o-i(p))] ... D(p, -2(p), 0-2(P))

x [I - C(1, p, o2(P))] (p, T 1 (p), o 1 (p))

X [I - C(0, p, oi(p))] @(p, To(p), 0o(p))

= 4'(p, t, oUi+1 (p)) X

H [I - C(i - k, p, Oi+1-k(P))] (p, Ti-k(p), Oi-k(P)),
k=O

Vt E [o-i+1(p), Ti+1(p)], Vi = 0,. ne,

where C(0, p, a1 (p)) - 0 and 4(p, To(p), oo(p)) =I. Let us define:

A, (t) = 4(p, t, o-i(p)), Vt E [o-i(p), Ti(p)], Vi E S,

A. =- (p, Ti(p), -i (p)), Vi = 1,... ne,

Ao0 I

Ci C(ipoi+1(p)),VI= 1 - e,

CO =- 0.

Rewriting Eq. (3.16) in terms of As and Cis we have,

+ 1, p, t) = A-+1 [ - ci-k]Ai--k),
(k=O

Vt E [oi+ 1 (p),Ti+1(p)], Vi = 0,... ,ne-

Theorem 1. The right-hand side of equation (3.17) can be expressed as,

Ai+1 (t) [- Cik]A _k
(k=O /

= A+1(t ) (
b eBi1

(*bk+1 C _Abk))

\k=O

Vt E [i+1(P), Ti+1(p)], Vi = 0,... ,ne, (3.1

(3.16)

(3.17)
OXo

(3.18)



where Bi = {0, 1}', Vi C S.

Proof. The result can be proved using mathematical induction. Let P(i) be the state-

ment in the equation (3.18) for any non-negative integer i. P(O) asserts A1(t)A 0 -

A1 (t)AO, which is true. P(1) asserts A 2(t)[I - C1]A1 = A 2 (t)A - A 2(t)C1 A 1 ,Vt C

[o-2 (P), 72(p)], which is also clearly true. We assume there is a i for which P(i) is true,

then we must prove for this same i, P(i + 1) is true, i.e.,

A +2 ( Ci+l-kA+1-k A+2(t) - ibk+1 -kA+k
\k=0 bE Bi+2 \k=0

Vt E [O-i+2(P), Ti+2(P)],

where Bi+2 = {0, 1}i+2. Simplifying the LHS and using P(i),

Ai+ 2(t) - Ci+1-kIA+1-k) A+2 (t)[I - C i]A-+1 ( r' - Ci-k]Ai-k
\k=0 (k=0

= Ai+2 (t)[I - Ci+1]Ai

X -((1)lCb1 +1 A-k
bEB+1 \k=0

A+2(t) [C+ 1Ai 1 - +1+1

x (( 
-1 6 + C +

( [ ( -i~b~ bk+l +k

bE~i+1 \k

i+2 ~~1 bk+1 i+-kAi+1-k

bEBi+2 \k=0

Vt E [O-i+2(P), Ti+ 2 (P).

Hence P(i + 1) is true. I



Equation (3.17) can be rewritten as:

+ 1,p, t) = A+1 (t) (1)b±1 C$j A-k: ,)
bEBi+ \k= (3-19)

Vt E [j+1(P),Ti+ 1(P)),Vi = 0, ne-

The state transition matrix has the group property [491:

(3.20)

Simplifying equation (3.19) and rewriting as:

(i + 1, p, t) = Ai+1(t) A-A
k=0

+ Ai+ 1(t) ( (-1)+ c.kk1A-))

(bEBi+1\{0}i+1 \k=0

Vt E [ci+1(P), Ti+1(P)],V= 0, - - ne,

where Ai+1(t) ] A- is simplified further by using the property in Equation (3.20):
k=

Ai+(t Q k = (P, t, Ui+ 1(P)) ( P, Ti (P), ri (P)) -. -D (P, T2(P), 0'2(P))
k=0

X 4P(p, T1i(p), ai(p))

Then Equation (3.17) becomes:

(i + 1, p, t) = D(p, t, ri(p)) + A+1(t)
O

((1)0+ Ck -1
bEBi+\{}i+1 (k=0 -

Vt E [i+1(P), Ti+1(P)], 1 = 0, - -- , ne .

(Dp, ti, t2)'D(P, t2, t3) = 'P(p, ti, t3) Vti, t2, t3 ;> 0.



At t = T(p) and i = ne we have:

x(ne+1, 
P, T(p)) =Ane+i(T(p)) I : r(J (_1)bk+l CfkAfl"

bEBn,+ I \k0O. ,k

For t = NT(p), i = ne and N = 0, 1, ... ,

(ne + 1, p, NT(p)) =

b(p, NT(p), (N - 1)T(p) + -ne+1(p)) [I - C(ne, p ,-n+1(p))]

x [I - C(1, p, 0-2 (p))] (p, (N - 1)T(p) + T(p), (N - 1)T(p) + o-1 (p))

x I(p, (N - 1)T(p), (N - 2)T(p) + one+1(p))

x [I - C(ne, p, o-.,+1(p))] ... [I - C(1, p, o-2 (p))]

x D(p, (N - 2)T(p) + T(p), (N - 2)T(p) + o-1(p)) ...

x (D(p, T (p), o-nc+1 (P)) [I - C (ne, p, ornc+1(p))] ... [I - C (1, P, U2(P))]

X 4(p, Ti(p), o~1(p)) [I - C(0, p, o-1(p))] JD(p, ro(p), o-o(p)).

The state transition matrix also has the property [49]:

'(p, t, to) = D(p, to, t), Vt, to 0.

Proposition 1. If D(p, t, to) is the state transition matrix of a system of equations

with piecewise continuous periodic coefficients A(p, t) with period T(p) as defined in

Eq. (3.6), then:

D(p, NT(p) + t, NT(p)) = 4(p, t, 0), Vt 2 0, VN C {0, 1,. . . , oo}.

Proof. From Eq. (3.6):

dt (p, NT(p) + t, NT(p)) = A(p, NT(p) + t)(p, NT(p) + t, NT(p)),

Vt > -NT(p), b(p, NT(p), NT(p)) = I.

(3.21)

(3.22)

(3.23)

(3.24)



Because A(p, t) is periodic with period T(p), this is equivalent to:

(p, NT(p) + t, NT(p)) = A(p, t)D(p, NT(p) + t, NT(p)), Vt > 0,
dt

4(p, NT(p), NT(p)) = I.

Now, let us define:

-_(p, to +dtJ t, to) = A(p, t)4'(p, to + t, to), Vt > 0, XF(p, to, to) = I.

By inspection:

4(p, NT(p) + t, NT(p)) = 41(p, to + t, to),

for any to. Also, by comparison with Eq. (3.6), if t = t + to, then:

'P (p, t + to, to) = 4,(p, t, to),

which implies to = 0 and

<b(p, NT(p) + t, NT(p)) = b(p, t, 0), Vt > 0.

D

Using Proposition 1, the properties of the state transition matrix in Eq. (3.20)

and Eq. (3.23), for N E {0, 1,. . ., oo} and i = 1, ... , e+ 1:

<D(p, NT(p)+ri(p), NT(p) + oa(p))

= @(p, NT(p) + ri(p), NT(p)) (p, NT(p), NT(p) + o(p)),

= D(p, NT(p) + Tj(p), NT(p))D 1 (p, NT(p) + aj(p), NT(p)),

= (D(p, ri (p), 0) ( - (p, 07i (p), 0),

(3.25)= 4D(p, -ri (p), o- (p)).



Using Equation (3.25) in Equation (3.22) we have,

Ox
(ne + 1 p7O

NT(p)) = [,b (p, T(p), o-ne+1(p)) [I - C(ne, , one+1(p))) -

X [I - C(1, p, -2(P))] D(p, T1(p), o1(p))]N

Ane(T(p)) ( 1)bk+1 cbk+I

Using E o ( abEBne+1 ik=t ))aoequtn
Using Equation (3.21) and rewriting the above equation:

1, p, NT(p)) = (ne + 1, p, T(p))]N ,VN E {0, 1,.

Extending this expression for the initial condition sensitivities for all times yields:

x(i + 1, p, t)

= 4(p, t, NT(p) + ori+ 1(p)) [I - C(i, p, oi+1 (p ... [I - C(1, P, U-2(P)))

x b(p, NT(p) + T1(p), NT(p) + o-1(p))a (ne + 1, p, NT(p))
O

= D(p, t - NT(p), oi+ 1 (p)) [I - C(i, p, o-i+ 1 (p)) . [I - C(1, p,o 2 (p))]

X 4.(p, T1 (p), a-1(p)) ax(ne + 1, p, NT(p))OxO

A1+,(t - NT(p))

Aqie+1(T(p))

b EBi+1 \k=0(1O 
+ C *i-k

-N

r _1)bk+1 Cbk+1

bEB e+1 k= 0 e k, -

Vt C [o-+1,N(P), Ti+1,N(P)], Vi - 0, ... , ne,

VN = 0,1, . (3.26)

OX .. ,00}.

X



3.2.3 The Monodromy Matrix

The monodromy matrix M of the system described in Section 2.1 can be defined as

M = ' (ne + 1, p, T(p)) and it follows from Eq. (3.26) that:

Ox Ox
(i, p, t + T(p)) = (i, p, t)M, Vt C [ou (p), Tr(p)], Vi E S. (3.27)

Ox0  x

The eigenvalues pi of M are called the multipliers [37] of Equation (3.12). The

characteristic exponents of Eq. (3.12) are then Ai = In pi. A solution of Eqs. (3.2)

and (3.4) is orbitally stable if one multiplier is equal to 1 and all others lie strictly

inside the unit circle. Throughout this study it is assumed that the solution of Eq.

(3.4) is orbitally stable.

3.2.4 Properties of the Matrix ox(i, p, t)

Matrix 2x (i, p, t) obeys Eq. (3.27) which is exactly the same as in the case of regular

limit-cycle oscillators. Hence, it can be written as:

Ox Oxx )it) 8x
Ox( (i, p,t) + 2(, p, t)

where (aX (i, p, t) and (- (i, p, t) are given by:

Ox (i pt) = u(t) Onx,,1 V(0)

Oxo 2

where 0 i,k is a zero matrix with i rows and k columns [37]. The matrix () (i, p, t)

decays for large times and (i, p, t) is T(p)-periodic. The next section confirms

and derives this expression for steady-state periodic solution for g- (i, p, t) using

difference equation analysis.

This decomposition implies that the event-time sensitivities (as given by Eq.

(3.11)) will experience an initial transient, but will settle down to constant values



as the steady-state periodic solution is reached.

3.2.5 Difference Equation Formulations

From Eq. (3.26), we have:

(i + 1, p, t + NT(p))

= Ai+1 (t) ( -(1)b+1 C-A.k))
(3.28)

ne - N

E f (-1)bk+' Cbk+1lAne

(bEBne+1 (k=0 
.k -

Vt E [ji+1(p), Ti+1(p)],Vi = 0,...,ne.

Also from Eq. (3.26), we have:

(i + 1, p, t + (N + 1)T(p))

bEBi+1

N+1
ne

x Ane,+1(T(p)) 11 (-1)bk+l Cbk+lAe

(bEBne+1 (k=0 
ek~e

Vt E [o-i+1 (p), Tri+1 (p)], Vi = 0, -.-.-. ne -

Using Eq. (3.28) in Eq. (3.29) we have,

(i + 1, p, t + (N + 1)T(p))

pOOx(i'+1,p, t +NT (p))
Ox0

x Ate+1 (T(P))

(bEBne+1 \k=0

= (iZ+ 1, p, t + NT(p))M,Oxo

(-1)b+1 Ck+kAnk)

Vt C [o-i+1(p), Tj+1(p)), Vi = 0,. .. , n.e, VN = 0, 1, ....

(3.29)

(3.30)

x Ane,+1(T (p))

\k=0 
-



Equation (3.30) is the difference equation for initial condition sensitivities.

Steady-State Solution of Difference Equations

If the initial condition sensitivities have a periodic steady-state solution it follows

from Eq. (3.30) that it will satisfy:

OX

OX (M - I) = 0. (3.31)

Uniqueness of the solution of Eq. (3.31) depends on the eigenvalues pi of the matrix

M. Since for stable limit cycles, M has one eigenvalue equal to 1 and the rest lie

strictly inside the unit circle, Eq. (3.31) has infinite solutions. Hence there exists a

periodic steady-state solution for the initial-condition sensitivities and this orbit is

attractive.

Denote the periodic steady-state solution for all times by (i, p, t), Vt E

(0i,N(p), Ti,N (p), Vi C S, VN = 0, 1 ..... Then, it will satisfy Eq. (3.30):

Sx) 1(i, p, t) (M - I) = 0. (3.32)

Since it is a LCO, then by definition M has only one eigenvalue equal to 1. Therefore:

Ox'T
k 'O (Z p, t) = u(t)vf, (3.33)

where vi is a left eigenvector of M corresponding to the eigenvalue equal to 1. Note

that this is a periodic time-varying rank one matrix. Eq. (3.33) is equivalent to the

statement:
OX ) p,t) =[ u(t) O , i _ V(0), (3.34)
Oxo 1

with the first row of V(0) as vf and the remaining rows of V(0) can be anything.



Also for t = T(p), Eq. (3.28) and Eq. (3.29) imply the additional relation:

Ox
(i, p, (N +

Ox
1)T(p)) = MOX (i, p,Ox0

NT(p)), VN = 0, 1 .....

Therefore, the periodic steady-state solution at t = T(p) also satisfies Eq. (3.35):

(M - I) (i, p, T(p)) = 0,

= (M - I) u(T(p))vT = 0,

= (M - I) u(T(p)) vIII1 1= 0,

and it follows that u(T(p)) is a right eigenvector of M corresponding to the eigenvalue

equal to 1.

Let t > s, then the forward state transition function for the hybrid system from

the initial condition:

x(j, p, s) = a,

is defined as:

x(i, p, t) = Y(t - s, i, j, a), Vt E [ui,Ni (P), Ti,Ni (P1 ,
(3.36)

Vs E [Jj,N2 (p), Tj,N2 (P)),

for some N1 and N2, Ni > N2. From Eq. (3.12):

X(i, p, t)
OF

0,i 1,x(1, P, 0)).

From the above equation and continuity at t = T(p), the expression for the mon-

odromy matrix M is:

Ox
M =p TO(p))

9x
Ox(1, p, T(p)) = Da (T(p), 1, 1, x(1, p, 0)).

(3.35)

(3.37)



From Eq. (3.36):

x(i, p, t + T(p)) = .'F(T(p), i, i, x(i, p, t)), Vt E [oj(p), rj(p)], Vi E E. (3.38)

Now differentiate Eq. (3.38) with respect to t; at right and left epoch boundaries,

left-hand and right-hand derivatives are taken, respectively. This yields:

xiF
ic(i, p, t + T(p)) =a (T(p), i, i, x(i, p, t))5,(i, p, t). (3.39)

From Eq. (3.39) at t = 0, for a LCO:

k(1, p, 0) = k(1, p, T(p)) = B (T(p), 1, 1, x(1, p,

Using Eq. (3.37) in Eq. (3.40) to obtain:

0))k(1, p, 0).

k(1, p, 0) = Mk(1, p,0).

Eq. (3.41) illustrates an important property of the monodromy matrix, i.e., it

has eigenvalue 1 corresponding to a right eigenvector which is kC(ne + 1, p, T(p))

k(1, p, 0). Hence we can choose u(T(p)) = u(0) = k(1, p, 0).

3.2.6 Parametric Sensitivity Analysis

Given x(i, p, .), Vi C E as defined in Section 2.1, define

B(p, t) = -- (mi, x(i, p, t - NT(p)), p), Vt E
19p

for N c {0, 1,..., oo}. Hence, the elements of B(p, t) are piecewise continuous and

periodic functions of t with period T(p).

(3.40)

(3.41)

(O'i,N (P), Ti,N (p)],7



Differentiating Eq. (3.7) with respect to parameters p yields:

(i +(,pOi+1,N(P))= (i, P, Ji+1,N(P))

+ (1(i, P, xi+1,N(p) - i(i + 1, P, Ji+1,N(P)))

x a'i+1,N (p), Vi 1, .... ,ne, VN E {0, 1,... , oo}, (3.42)
OP

where ad±1,N (p) are determined by the transition conditions. Differentiating equation

(3.1) with respect to the parameters p yields:

Oui N OT OJ
' (p)=N (p)+ 0 (p),Vi=2,... ,Ine +1,VN E {0,1,...,oo}. (3.43)

Equation (3.43) shows that (on the limit cycle) as one goes further out in time the

period stretch has larger and larger influence on the parametric event-time sensitivities

and hence on the jumps in the parametric sensitivities. Note that this was not true

for the initial-condition sensitivities because initial condition perturbations do not

necessarily stay on the limit cycle.

Similar to the initial condition case we have:

(mi,x(i, p, Ji+1,N(P)),p) (*iP, i+1,N(P) N (P) +1,N((, P, 0i+1,N(P)

+ a-(mi, x(i, p, Oi+1,N(P)), P) = 0-

(3.44)

The above linear equations can be solved for unique aa%+1,N (p), Vi 1 ... I ne, VN E

{,1,..., oo}, provided that

h(i, X(, P, oi+1,N(P), P)(i, P, Vi+1,N(P)) # 0.

The expression obtained for aC'2+1,N (p), Vi = 1, . . ,neVN c {0, 1, .. ,oo} after



solving Eq. (3.44) is:

(mi, X(ip, P 0i+1,N (P)), P) 2 (i, P, -i+1,N (P)) + 2 (mi, x(i, p, ±i+1,N (P)), P)aO'i+1,N
ap

(3.45)

The matrix of sensitivities with respect to the parameters !(i, p, t) E R""f,"p

satisfies the following inhomogeneous linear system of differential equations with state

jumps, VN E {O,1, ... ,oo:

= A(p, t) (i, p, t) + B(p, t), Vt E (ui,N(p), Ti,N(p)), Vi E S
Op

(3.46)

ax (OxO
(1 pp

where ' (p) are the initial conditions for the sensitivities. ±2i + 1, p, i+1,N(p))

is given by Eq. (3.42) for i = 2,.. .,e + 1. From continuity of the vector field at

t = NT(p):

NT(p)) = O( (ne + 1, p, NT(p)), VN E
Op

{ ,1,.. ., 00}.

Note that a (p) are not zero because of the dependence of the limit cycle on the

parameters.

The solution of Eq. (3.46) is given by:

Op o(p)) 0 (p) +Op JLi(p) <b(p, t, s)B(p, s)ds, Vt C [or1(p), T1 (p)),

S 
N

t
al, N(P)

Vt C [o1,N(P), T1,N(P)I, VN E {1, 2,. .. , oo},

Ox

Op

W(mri, x(i, P, 'i+1,N (P)), P)X-(i, P, Ui+1,N(P))

d x
(,p, t)dt 8p

OX(1, P, t) = b(P, t, 91,N (P)) OX(ne + 1, P, NT(p)) +
Op Op

<b (p, t, s) B(p, s) ds,



(i, p, t) = 4(p, t, Oi,N(P)) (i - 1, P, Ti-1,N(P)) + i-l,N(P)
Op IU, P)IT

+ (D(p, t, s) B(p, s) ds,/i, N (P)

Vt E kUi,N(P), Ti,N(P)], Vi = 2, ... , ne + 1, VN E {0, 1,... , oo}, (3.47)

where the AiN(p) are given by

Ap ox ox
AiN(P) O +1, P, i+1,N (P)) - (i P, Ti,N(P))

= ((i, P, Ti,N(p)) - 5(i + 1, P, i+1,N(P))) Op i1N

-(k(i, p, Ui+1,N(P)) - x(i + 1, p, Ji+1,N(P)

(m2ri, x(i, p, Ji+1,N(p)), P)2-((, P, Ji+1,N(P))

(mni, x(i, P, 'i+1,N (P)), P):k(i, P, 'i+1,N (P)

+ i(mi, x(i, p, i+1,N(p)), P)

9(mi, x(i, p, Ji+1,N(P)), P)-(t, p, Ji+1,N(P))

Ox
= C(i, p, oi+1 ()) O(i, P, Ui+1,N (p)) - D(i, p, oi+1(p)),

Vi 1,. .. , ne,VN E {O,1, .. . oo).

C(i,p,ui+1 (p)) is defined by Eq. (3.14) and since D(i,p,ui+1 (p)) is T(p)-periodic,

it can be given by:

D(i, p, oi+ 1(p)) = (i(i, p, oi+1(p)) - i(i + 1, p, -i+1(P)))

x , , +0 , (3.48)
(mi, x(i, p, ui+ 1(p)), P)if (, P, oi+1(p))(

Vi = 1, ... ne.



Rewriting Eq. (3.47) for epoch i + 1, N = 0 and substituting for A N(P) we have,

(i + 1, p,t) = 4 (P, t, Oi+1(p)) [I - C(i, p, oi+1(p))] j-(i, P, oi+i(p))

t

- +(p, t, oi+ 1(p))D(i, p, oi(p)) +

Vt E oi+ 1(p), Ti+1(p)], Vi =,. - ,fle.

Expanding the recursion formula in Eq. (3.49) we have,

(i + 1, p, t)

[I - C(i - k, p, Oi+1-k(P))](P, Ti-k(P), i-k(p))

+ D(p, t, O-i+ (p)) [I - C(i, p, O-i+1(p))
i-1i--j-1

X ( ( f(p, Tik(P), 7i-k(P)) [I - C(i - 1 - k, P, gi-k(p)))
j=1 

k=0

x (14 (p, -rj (p), s) B(p, s) ds)
0oj(P)

+ P(p, t, oi+ 1(p)) [I - C(i, p, Uj+ 1(P))]

- D(p, t,o i(p))

+
Ui+ 1 (P)

[I - C(i - k,p,Uil+-k(p)))

x D p, o-j+1(p))

P(p, t, s)B(p, s)ds - D(p, t, ou+ 1(p))D(i, p, oi+1(p)),

Vt E [i+i(p), Ti+I(p)], Vi = 0( --I ne,5

(3.49)

Op

(p, Ti(p), s)B (p, s)ds)

4)(p, t, s) B(p, s) dsI

= 4D(p, t, o-i+1I(p))

(3.50)



where D(0, p, oi(p)) = 0. Let us define:

Ti(t) = P(p, t, s) B(p, s) ds, Vt E [oi (p), -ri (p))], Vi E .6,

i (p)

ri(p)

i J b (p, ri(p), s)B(p, s)ds, Vi = 1 ne,
Ui(p)

-O = 0,

Di = D(i,p,o-i+1 (p)),Vi = 1, ... ne,

DO = 0.

Rewriting Eq. (3.50) in terms of As, Cis, Vis and I s we have,

&x(i 
t) Ai+1(t) [-

i-j--1

HA _k[I - Ci_1_|+ A-+1 (t)[I - Ci]

i-i-1

k=0

[I - Ck]Ak )

I? )

(3.51)
Dj)

+ A-+1(t)[I - Ci]Is + I+ 1(t) - A ( ,

Vt E [0-i+1(p), Ti+1(p)], Vi = 0, . , ne-

Cj_ k]A'-k OX (p)

(j=1



Using Eq. (3.18) and simplifying Eq. (3.51), we have

Ox
(i+ 1, p,t) =

+1 _J~-1 ] & -j1
( y1- bP )

1 i- -1-Ai 1 (t) ( (-1~ CkA~)"+ C A0

+ A~± 1(t[I - c~(~1 (b~ ( _I(~)bk+l f%7kZl~k)~(.2

j=1 (bEB i- k=0

+ Ai+1 (t)[I - C ]I + I-+ 1() -A

Vt E [ai+I(P), i+(P)] , V -,,fl ne-

After one time period t = T(p) and i = ne we have,

O(ne + 1, p, T(p)) =

ne -n -
+An + 1 (T (p))[ IC] ((l)bk+- C-)k+kAnek)J I

~~j1bEB,, = ,_ k k =0(P

ne -1 ne -j-1

/ (nc~ k~l bk1
+ Ane+ 1(T(p))[ (-Cn-1171* Cb+_A k Dje

1 bE bEBne k=

+ Ane+1(T(p))[I - Cne]Ine +Ine+1(T(p)) - Ane+1(T(p))Dne.

(3.53)

By definition the Cis, and Ds are constant. From Equation (3.53) for t = NT(p)



and i = ne it follows:

O(ne + 1, p, NT(p))

(Ane+1(T(p)) (b~,(- 0 (6)+1 Cfl*_kAe _)) (p))N
N-1 ne

± ( Ane+(T(p)) (ik (1)b+1 CA+1k Ae_) )q=(bE Bne+ k= 0N-i E fj (_~bk~lbk~ll
ne -1 ne -

x= An+(T(p))L - Cne) (i ( , ( -K (-1b+l Ane-kC*_JJ 3 J
j=1 Ekk=O

ne -1 ne-j-1

+ Ane+1 (T(p))[I - Cne]Ine + Ine+1(T(p)) - Ane+1(T(p))Dnej

VNE{O, 1, .. ., oo}.

(3.54)

Extending the expression for the parametric sensitivities for all times yields:

(+1, p, t) = A4+ 1 (t) (-*1 1A_ (ne +±1 p, NT(p))

ni-1 i-j -1

,+ , '\bEB)+ kk 0  )bk+ C kk) 1,

+ Ai+1(t)[I - Cj ] (y ( (-1)k+1 Ai-kC )+)_ I)

- Ai+1(t) (~ ( ( ~ (-1)k+1 Ci+ Ai) )Dj

j= 1 bEB-j k= 0

+ AA+ 1(t)[I - C2]I, + -I+1 (t) - A+(p)I,

Vt E [ci+1(p), 7+1,N(P),Vi =0,..-, ne,

(3.55)

for VN E {0, 1.+, oo} and where 1(ne + 1, p, NT(p)) is given by Eq. (3.54).



Difference Equation for Parametric Sensitivity Analysis

Let us define P as:

ne -1 ne -j-1

P = An,+ 1 (T(p))[I - Cn7 1 ] E Z ( (-1 )k+ Ate-kC*bk-1
j= 1 \bEB,,-j \k=o

- An+1(T(p))
ne-1 ne--j-1

JJ (- 1 )bk+l Cbk+1 Ae-k
j=1 beBe-j k=O

+ Ane+1(T(p))[I - Cn]In Ine + 1 (T(p)) - Ane+1(T(p))'ne.

(3.56)

Then Eq. (3.54) can be written as,

(ne + 1, p, NT(p))
9p

= MN OXO(p)
Op

for N E {o, 1,.. . , oo}. Rewriting Eq. (3.57) for N + 1:

1, p, (N + 1)T(p))

1, p, (N + 1)T(p))

= MN+1 OX(P)
Op

= M MN (P)

e p ,
= M Ox(ne + l Pi

q=O

N-

+ 1MP +ZP,

NT(p)) + P.

Equation (3.58) is the difference equation for parametric sensitivities. But, it will not

be of this form for t / NT(p).

General Solution of the Sensitivity Equations

The difference equation in Eq. (3.58) can be reduced to a general solution of the

sensitivity equations as a consequence of the following theorem.

N-1

qP
(3.57)

Ox
Opie

Ox(ne 
+

Op
(3.58)



Theorem 2. Suppose the matrices Z, R c R"xn"P satisfy the following equations:

MR=R, 
(3(3.59)

(3.60)(M-I)Z -R+P = 0,

and SNE R ffp is given by

SN+1 = MSN+ P,VN = 0, 1,... , (3.61)

where So C R"lz*"li is any arbitrary matrix. Then:

SN = NR.+ Z + MN(So - Z), (3.62)

for N C {0, 1, .. ., oo}.

Proof. This result can be proved by using mathematical induction. Let P(N) be the

statement in Eq. (3.62) for any positive integer N. P(1) asserts

Si R + Z + M(So - Z).

Manipulating Eq. (3.61) for N = 0, using equation (3.60) we have,

Si =MSo + P

=MSo + R - (M - I)Z

=R +Z+M(So-Z).

Hence P(1) is true. Now we assume there is a N for which P(N) is true then we

must prove for the same N, P(N + 1) is true, i.e.,

SN+1 = (N + 1)R + Z + MN+1(So - Z).



Manipulating Eq. (3.61) using Eq. (3.62), Eq. (3.60) and Eq. (3.59) we have,

SN+1 = MSN + P,

= M [NR + Z + MN (S0 - Z)] + p,

= NMR + MZ + MN+1(so - Z) + P,

= NMR + MZ + MN+1 (S0 - Z) + R - (M - I)Z),

- (N + 1)R + Z + MN+1(S 0 - Z).

Hence P(N + 1) is true.

Proposition 2. If R is expressed as:

R=TR = -5c(ne + 1, p, T(p)) (Tp)

where the left-hand derivative is taken at t = T(p) then

MR = R.

Proof. From Eq. (3.41) and continuity of the vector field at T(p):

Mk(ne + 1, p, T(p)) = k(ne + 1, p, T(p)).

Hence,

MR=M (- (ne+ 1, P, T(p))O (p)

-i (ne + 1, p, T(p)) (p)

=R.

Under the hypothesis of Theorem 2, the general solution of the difference Equa-

tions (3.61) is given by Eq. (3.62). The third term in Eq. (3.62) shows the influence



of initial conditions for the sensitivities, So. Since the initial condition for the system

depend on the parameters, the matrix So cannot be set to zero and needs to be de-

termined. Similar to as shown in [37] for regular oscillating systems, the solution of

these difference equations takes the form

SN = NR + Z, (3.63)

when Z = So.

In [15], a detailed theory of sufficient conditions for existence and uniqueness of

sensitivity functions of hybrid systems with ODEs is developed and it is proved that

under the assumptions already made Eq. (3.2) and Eq. (3.3) involve continuously

differentiable mappings wrt p. Differentiating Eq. (3.2) for N = 0 with respect to

the parameters p:

Ox xo Oxo OT
(ne + 1, p, T(p)) (p) - (p) + i(ne + 1, p, T(p)) (p)Oxo Op Op p

+ (X(ne + 1, p, T(p)) = 0,
( 19P )xo=const.

= (M - I)'Oxo (p) + k(ne + 1, p, T(p)) n(p) + (x(ne + 1, p, T(P)) =0.
Op ap 8ap ocnt

(3.64)

Hence 2 (p) must satisfy Eq. (3.64).

Let So = Z = O (p). Then Eq. (3.53) and the expression defining P in Eq.

(3.56) indicate that P corresponds to the partial derivatives of the state variables

with respect to parameters while keeping the initial conditions constant. Choosing

R = -C(ne +1, p, T(p))2T (p) and Z = 2(p) in Eq. (3.60) shows that it is satisfied

by Eq. (3.64). Hence from Eq. (3.58) and Eq. (3.63), for N E {0, 1,.. . , oo}:

Ox OT Oxo
(ne + 1, p, NT(p)) = -Nk(ne + 1, p, NT(p)) (p) + 0 (p). (3.65)

9p (9p ap



Expressions for R(i, p, t), P(i, p, t) and Z(i, p, t)

Theorem 3. Suppose R(i, p, t) is a solution of:

dR
d-(i, p, t) = A(t)R(i, p, t), Vt E (-i (p), ri(p)], Vi E s (3.66)
dt

with

R(1, p, o1(p)) = -k(ne + 1, p, T(p)) OT(p), (3.67)

and

R(i + 1, p, oi+1) = R(i, p, o-+ 1 ) + (k(i, p, -i+1 ) - k(i + 1, p, o-i+ 1)) O (p),

Vi = 1, ... , ne.

Then, R(i, p, t) is given by:

Rz~~t OT (-8

R(ikp,t) = -(i, p,t)-(p),Vt E [Ui(p),ri(p)], Vi E . (3.68)
ap

Proof. The above result can be proved by simply substituting it into the equations

(3.66) and (3.67). Since k(i, p, -) is a continuous T(p) periodic function where it is de-

fined, the expression for R(i, p, t) satisfies Equation (3.67). Differentiating Equation

(3.68) yields:

(i, p, t) = -k(i, p, t) (p) = -A(t) (i, p, t) (p) = (t)R(i,p
dt Op Op

Vt E (o-i(p), Ti(p)], Vi E S.

At the right boundaries, left-hand derivatives are taken. Hence Eq. (3.68) satisfies Eq.

(3.66). The expression for R(i, p, t) also satisfies the jumps at the boundaries. L

Let P(i, p, t) represent the sensitivities with respect to parameters keeping the

initial conditions constant, hence it is the solution of following system of differential



equations for N C {o, 1, ... , oo}:

dP
dt (i, p, t) = A(t)P(i, p, t) + B(t), Vt E (9i,N(p), Ti,N(p)],Vi E ,

with

P(1, p, o-1(p)) = 0,

and

P(i + 1, p, ci+1,N(p)) = (I - C(i + 1, p, Ui+ 1 (p))) P(i, p, i+1,N(p))

- D (i + 1, p, o-i+1 (p)), Vi = 1,.-- ne, VN E { 0, 1,...,o}

and from continuity of the vector field

P(1, p, NT(p)) = P(ne + 1, p, NT(p)), VN E {0, 1,..., oo}.

Note that P = P(ne + 1, p, T(p)).

In general, similar to the case for regular oscillating systems [37], for N = 0, 1, ...

and for any t E [i,N(P), Ti,N(p)], we will show that the parametric sensitivities can

be written as

(3.69)

Eq. (3.69) satisfies the expression for parametric sensitivities for t = NT(p) and

i = n, + 1 (Eq. (3.65)), if it is shown that the matrix Z(i, p, -) given by

zxZ(i, p, t) = (i, p, t) t
T(p) R(i, p, t) (3.70)

is T(p) periodic. Note also that:

Z(1,,0) X Ox
, ( 1 ,p, 0 ) =

Oxo
OP.

Since x(i, p, -) is T(p) periodic where it is defined, it follows for any fixed t E

OX(i, p, t) = t R(i, p, t) + Z (i, p, t), Vi- E E.



[o-(p), Ti(p)] that:

x(i, p, t + T(p)) = x(i, p, t). (3.71)

Eq. (3.71) involves continuously differentiable mappings with respect to p [15] and

hence differentiating with respect to the parameters p yields:

Ox OT
(i, p, t + T(p)) + k(i, p, t) (p)

Ox
= (i, P, t).

Rewriting Eq. (3.70) for t + T(p) and simplifying using Eq. (3.68) and Eq. (3.72)

Z(i, p, t + T(p)) =
Ox (t±+T(p))Ri± )
a(i, p, t + T(p)) - T(p) R(i, p, t + T(p)),

Ox
O (i, p, t)
ax
Op(i, p, t)

OT
- k(i, p, t) (p) -

t
T R(i, p, t),T(p)

t R(pt)
T(p)

OT
S (i, p, (p),

= Z(i, p, t).

So, matrix Z(i, p, -) is continuous T(p) periodic where it is defined and hence the

general expression for the sensitivities in Eq. (3.69) satisfies Eq. (3.65). As mentioned

in [45] for regular oscillating systems, Z(i, p, t) are the cleaned-out sensitivities, as

illustrated below.

Introduce the "cyclic time" T= t, then i(i, p, T(t, T(p))) can be defined such

that k(i, p, T(t, T(p))) = x(i, p, t) and the parametric sensitivity will be given by

T(,p, r(t, T(p)))

(O i p, r(t, Sr(t,T(p))=const.

+ (i, p,T (t, T(p))) I (t,
dTr(a

= ((i
7 ,pr(t,Op

at
T(p)) t+

O T
T(p))) t 2 (P)

(T(p)) p

VT E [i(p) ri(p) (V3 .
IT(p)' T(p)_

(3.72)

T(p)) (p)(p ,

di (.
T p ) ) r(t,T (p))=const. - d z P IT t

(3.73)



Since
dx dx dt dx

d(i, p, t ,Pt(r)) = id = T(p) (i, p, t(r)),

and by definition:
di dx

(i , T (t, T(p))) = dx-(i, p, t),

so that:
di dx

(i, p, r(t, T(p))) = T(p) -x(i, p, t),

and using the equivalent terms, Eq. (3.73) can be written as:

'_Ox OX t aT
(i, p, t)) (i, p, t) i(i, p, t) - (p),

)T(p)=const. t(3.'4)

Vt E [O-i(p), Ti(p)], Vi E S.

Comparing Eq. (3.69) for N = 0 with Eq. (3.74):

OX
Z(i, p, t) ( (iPt) , Vt E [-(p),(p)],Vi E S. (3.75)

(O T(p)=const. 'V a p,-i()17(.5

Eq. (3.75) shows that Z(i, p, t) can be interpreted as the part of the sensitivity

keeping the period constant.

3.2.7 Boundary Value Formulation for the Period Sensitivi-

ties

As discussed earlier, the initial conditions for the sensitivities 2 cannot be set to

zero and need to be determined. In [15], a detailed theory of sufficient conditions

for existence and uniqueness of sensitivity functions of hybrid systems with ODEs is

developed and it is proved that under the assumptions already made Eq. (3.2) and

Eq. (3.3) involve continuously differentiable mappings wrt p. Hence, differentiating

Eq. (3.2) and Eq. (3.3) with respect to the parameters p for N = 0, the following



equations are obtained:

dxOT (Oxdx(n + 1, p, T(p)) (p) + OX(ne + 1, p, T(p))
SO± ' 1 a0() )xo=const. (3.76)

Ox OXo Oxo
+ (ne + 1, P, T(p)) 0 () - 0 (p)=,O ap (9p

(9F- 8xo oF-0 (mi,xo(p),p) x(p) + (i7,xo(p), p)=0
Ox Op 8

In matrix form,

(M(p) - I) 5(ne + 1, p, T(p)) (p) -P (ne + 1, p, T(p))

2 (mi,xo(p),p) 0 (p) j-%(mi, xo(p), p)

It has been shown in [461, that the solution of this equation exists and is unique. The

following matrix of unknowns are determined by this equation,

P(p)[P (P)1

obtaining a set of initial conditions for the sensitivities a (p) and the period sensi-

tivities.

3.2.8 Decomposition of the Z(i, p, t) matrix

Similar to regular oscillating systems [25], we will argue that Z(i, p, t) represents the

information on how the parameters effect the shape of the limit cycle and contain

information about phase behavior of the limit cycle. Hence the Z(i p, t) matrix can

be decomposed into two parts corresponding to these two effects of the parameters on

the limit cycle by taking an orthogonal projection of Z(i, p, t) onto k(i, p, t). Then,

the expression for Z(i, p, t) will be:

Z(i, p, t) = W(i, p, t) + k(i, p, t)6(i, p, t),

Vt C [-i(p), ri(p)), Vi E S,



where left-hand and right-hand derivatives are taken at the boundaries. The matrix

W(i, p, t) and 3(i, p, t) can be obtained from Z(i, p, t) by projection

W(i, p, t) = I - (i, p, t)k(i, p, t)T

||~ ,p, t)| /1 2 Z Pt)

Vt E [0-i(p), ri(p)], Vi E S,

6(Zpt) [S(i, p, t)T Z(i, p, t)]
||_(i, p, t)||2

Vt E [-i (p), ri(p)], Vi E E.

Since Z(i, p, -) and k(i, p, -) are both continuous T(p) periodic where they are defined,

so are W(i, p, -) and 6(i, p, -).

Overall sensitivities can be expressed in terms of the decomposition of the Z(i, p, t)

matrix as:

t
- (i, p,

T(p)

OT
t - NT(p)) (P) + W(i, p, top

+ Z(i, p, t - NT(p))3(i, p, t),

Vt E [fi,N(p), Ti,N(p)I, Vi C E, VN = 0, 1 .

3.2.9 Amplitude Sensitivities

The amplitude of state variable xj for some ij,max E E and ij,min C E can be defined

as

Qi(p) = j(jmax, p, tj,max(p)) - Xj(jjmin, p, ti,min(p)),

tj,max(p) E [o-ij'a (P), Timax (P)], (3.78)

tj,min (P) C [o-imjn (P), r-imin (p)l

where tj,max(p) and ti,min(p) are times at which xz attains its infimum and supremum

value with respect to time, respectively.

(3.77)

Ox
-(i, p,t) = NT(p))



Differentiating Eq. (3.78) with respect to the parameters p yields:

692 (P) = Sj (ij,max, P, tj,max(p)) + i (ij,max, p, tj,max(p)) )a
OP OP(3.79)

- S (ij,min, p, tj,min(p)) - azj(ij,min, p, tj,min(p)) 't"mi (p)

where sj represents the jth row of the sensitivity matrix ! and as usual, left-hand

and right-hand time derivatives are taken at epoch boundaries. The second and fourth

terms in Eq. (3.79) are nonzero only if both (a) the vector fields of state variable xj at

tj,max(p) and tj,min(p) and (b) the minimum and maximum time sensitivities a(p)

and atJ,max (p) are nonzero. Both of these conditions can be possibly true when the

infimum and/or supremum is attained at event times, i.e., at the epoch boundaries.

In such a case, the minimum- and maximum-time sensitivities gtjmin (p) and Dtjmax (p)

are obtained from Equation (3.45). If the extremum occurs at an epoch boundary and

both the left- and right-time derivative limits are nonzero, the amplitude sensitivity

exists [15]. The case where one or both limits are zero is discussed next.

Consider the situation when a maximum occurs at an epoch boundary Ti(p) and

one of time-derivative limits is zero, the three cases that can occur are:

(a) The time derivative of the variable is continuous at the epoch boundary:

y (i P, Ti (p)) = z(i + 1, p, Ti(p)).

This case is shown in the Figure 3-3(a). There is no problem in calculating the

amplitude sensitivity because the extremum is stationary point and not caused

by the event.

(b) The time derivative jumps from zero to a negative value at the epoch boundary:

z± (i, p, ri(p)) = 0,

zb (i + 1,p,ri(p)) < 0.

This case is shown in Figure 3-3(b).



x, (i,p,t)

Ti (t
r,(p)

(a)

,(iK (i(p))= 0

X (i+1,,,(P)) <0

x (i,p,t)

T (p)

(b)

x (i,p, t)

(i,p, T, (p)) > 0

ij (i+ 1,p, T(p))= 0

T (p)

(c)

Figure 3-3: Maximum at an epoch boundary when one of time-derivative limits is zero:
(a) Continuous vector field zj (i, p, Ti(p)) = zy (i + 1, p, T (p)), (b) zj (i, p, ri(p)) = 0
and z (i + 1, p, ri(p)) < 0 and (c) zj (i, p, Tj(p)) > 0 and zy (i + 1, p, Ti(p)) = 0.

,i r(p))=i (i +1, P,T, (p))



(c) The time derivative jumps from a positive value to zero at the epoch boundary:

i(i, p, Ti(p)) > 0,

z, ( + 1, p, -ri (p)) = 0.

This case is shown in Figure 3-3(c).

In the second and third cases above, the amplitude is unlikely to be a smooth function

of the parameters and hence the amplitude sensitivity will not exist.

For a minimum at an epoch boundary and one of time derivative limits is zero,

again there are three cases:

(a) The time derivative of the variable is continuous at the epoch boundary:

,i(i, p, ri(p)) = i (i + 1, p, ri(p)).

(b) The time derivative jumps from zero to a positive value at the epoch boundary:

iy (i, p,ri(p)) = 0,

zb (i + 1, p, Ti(p)) > 0.

(c) The time derivative jumps from a negative value to zero at the epoch boundary:

z(i, p, ri(p)) < 0,

ig(i- + 1, p, Ti(p)) = 0.

Again, the amplitude is unlikely to be a smooth function of the parameters for the

second and third cases.

The expression for the amplitude sensitivity in Eq. (3.79) can be further simplified

in two different cases:

(a) If tj,miiax(p) and tj,min(p) are interior to epochs, i.e.:

o-ic (p) < tj,max(p) < Ti3 m.x(P),



and

-ijmin (P) < tj,min(P) < Ti3 m (P),

then ij(ij,max, P, tj,max) = 0 and zj(ij,min, P, tj,min) = 0, respectively. Equation

(3.79) reduces to:

OQ -
(p) = Sj(ij,max, p, tj,max(p)) - Sj(ij,min, p, tj,min(p)). (3.80)

In this case, the amplitude sensitivity can be calculated using 2, as:

Sj(ij,max, p, tj,max(p)) = Zj(ijmax, P, tj,max(p)) = Wj(ij,max, P, tj,max(p)).

Also from this, it can be concluded that the amplitude sensitivity does not vary

from period to period in this case because zj and wj are T(p)-periodic.

(b) If one of tj,max(p) or tj,min(p) are at one of the epoch boundaries, for e.g.

tj,max(p) = ojj,_x(p) and

o-ijgin(p) < tj,min(p) < -rijM.(p),

then j(j,min P, ti,min) = 0 but ij(ij,max, p, tj,max) -$ 0. Equation (3.79) reduces

to:

(p) = Sj(i,max, P, -ij,ax (P)) + di'j(ij,max, P, o-ijmax(p)) ' ()
p 1(3.81)

- sj(ij,min, P, tj,min(P))

Note that the infimum and supremum repeat at same time relative to start of

the period in each period of the limit cycle. To check whether the amplitude

sensitivities change from period to period in this case, let us consider the above



equation for amplitude sensitivity for each period:

OQJN 0O7ij axN

N (P) = Sj(ij,max, P, 0-ij,max,N(P)) + izj(ij,max, P, Oij,maxN(P)) ()max,N

- sj(zj,min, P, tj,min,N(P)),

VN E {,1, ... , oo} (3.82)

Putting the expression for sj(ij,max, P, P ij,max,N(p)) and Sj(ij,min, p, tj,min,N(P)) in

Eq. (3.82) yields:

_____ Oij~a N(P) OaQj,N - _ (j,max, ( ij,max, PT (P)) (P)
ap T(p) p

+ Zj (j,max, P, Iij,max,N (P))

+ (ij,max, P, Cj,max,N(P)) max,N

+ min,N(P) tj,min,N(P)) (P) - Zj(ij,max, P, tj,min,N(P))+ T(p) j(jmn ,toi, p))a

VN E {,1, .... ,oo} (3.83)

Again, recalling that zj is T-periodic, ±j(ij,min, p, tj,min) = 0 and using Eq.

(3.43) to reduce Eq. (3.83) to:

DajN NT(p) + 0ij,.(p) . T___ NTP) +k Ui~a()1(i,max, P, O'jm.ax (P)) 2  (P)
p) = T(p) mxp

+ Zj(ij,max, P, Ujjmax(P))

+ j (ij,max, p, j,max(P)) N (P) + "a(p)

- zj(ij,max, p, tj,min(p))

0-ima (P) , T
j (ij,max, p, O, max (p)) - (P) + Zj (i,max, P, ,,max (P))T(p) a

+ ij(ij,max, P, 0-j,max(P)) * (p) - Zj(ij,max, P, tj,min(p))

Sj (ij,max, P,ijmax (p)) + ij (j, max, Pa, max(P)) ma (P)

-j s(ij,min, P, tj,min (P))



Hence in this case also, above equation shows that the amplitude sensitivity do

not change from one period to another.

As in the case of regular LCOs, it will be shown that the continuous matrix

W(i, p, t) is uniquely defined by x(i, p, t) on each point of the limit cycle away from

the events.

Take two sensitivity (2) and (!) solutions with initial conditions

and (p), obtained from PLC1 and PLC2, respectively. At some point of time

on the limit cycle x1 (i, p, t = a) = x 2 (j, p, s = #) due to two PLCs. Assume that

a E (-i (p), ri(p)), 0 E (c-j(p), ry (p)) are not equal to event times. Differentiate this

with respect to parameters to obtain:

a) +ii(i, a)- (P) - (p)(j, p,s=#) +2(j,Ps =

(3.84)

Eq. (3.84) shows that the two sensitivity solutions satisfying the BVP in Eq. (3.76)

differ only in parts in the direction of ki(i, p, t = a) = k2(j, p, s = /3). This difference

is eliminated from W(i, p, t) by taking the projection of Z(i, p, t) in a direction per-

pendicular to k(i, p, t) as illustrated in the Eq. (3.77). Hence W(i, p, t) is uniquely

defined by the value x(i, p, t) for each point on the limit cycle away from the events.

Note that the possibility of xj attaining a supremum or an infimum at a time that

its time derivative is not equal to zero does not occur for a regular LCO.

3.2.10 Phase Sensitivities

Relative Phase Sensitivities 6(i, p, t)

It was suggested in the previous study of oscillating dynamical systems [46], that

3(i, p, t) is a relative phase sensitivity of the limit cycle, where relative phase is

defined as the time difference between two points described by two different PLCs.

Consider x*(l, p, t) to be the solution of the BVP with initial conditions x*(p) using



PLC1 . Then the sensitivity solution with respect to this PLC will be given by:

(lpt) k*(l, p, W*(l p, t) + *(1 p, t) 5*(1, p, t),
Op (1 ,t)(p) it Op ()+W1 P0 (3.85)

Vt E [9l,N(P), T,N(p)], Vl E E, VN E {0, 1,. .. , 00}.

Let x**(o, p, s) to be the solution of the BVP with initial conditions x8*(p) using

PLC 2. Then the sensitivity solution with respect to this PLC will be given by

ax** s OT
S(o Ps) =- T() j**(0 p, S)-(p) + W**(op, p, s) + 5**(, p, s)6**(o, p, s),

Vs E [Uo,N(P), To,N(p)], Vo E E, VN E {0, 1,.

Defining a pair (a(p),#3(p)) for some 1 and o by

x*(l, p, t = O(p)) = x**(o, p, S = a(p)),

and thus it follows:

5*(l, p, (p)) = k**(0, p, a(p))

Differentiating Eq. (3.87) with respect parameters p to obtain:

ax *
(l, p, 0(p)) +

1Pp
Op

x*l ,#p) ()
-x ((

0 (oP p, a(p)) + ***(0, p, a (p)) 9Oz(p).

Using Eqs. (3.85) and (3.86) to cancel identical terms:

k*(l p, (p)) ( 3(p)
T(p)

a(p) PT+ (p)T(p) Op
O#3 Oa

+ 6* (1 P, O3(p))

- **(o, p, a(P))) + W*(l, p, 3(p)) - W**(o, p, a(p)) = 0.

.. ,oo}. (3.86)

(3.87)



As shown in the last section, W*(l, p, #(p)) = W**(o, p, a(p)) and the system is not

stationary, so that

a(a(p) - 0(p)) _ (a(p) - /3(p)) OT
Op T(p) p(p) ± 3*(l p, #(p)) - 6*(o p, a(p)). (3.88)

The first term on the right-hand side of the above result is the contribution of period

sensitivity to the phase sensitivity while the second term is the phase sensitivity while

keeping the period constant.

Peak-to-Peak Phase Sensitivities

As defined previously for regular LCOs [46], peak-to-peak sensitivities are phase sensi-

tivities where the relative phase is the time difference between the extrema in different

state variables. First, it is assumed that the extrema occur interior to epochs.

Consider the time scale defined by the PLC with initial conditions xo(p):

zi(1, p, o-1(p)) = 0. (3.89)

Then for some 1 E E, define 3(p) E (u-(p),T(p)) as the time of the extremum of xj

relative to extremum of xi using the equation:

g (l, p, (p)) = 0, (3.90)

which can be written as:

Fj (ml, x(l, p, /(p)), p) = 0. (3.91)

Differentiate Eq. (3.91) with respect to the parameters p to obtain:

OF. 0# Oxj(mi,x(l,p,#(p)),p) (,( p, # /(p))3 O(p)+ /(p,(P))
ax ap(3.92)

OF-
+ , (mi, x(l, p, #(p)), p) = 0.Op



Eq. (3.92) can solved directly for "(p) provided that:

x (mi, x(l, p, (p)), p)x(l, p, O(p)) # 0.

The PLC chosen to define the time scale should be valid as in the case of regular

LCOs.

To extend the peak-to-peak sensitivities for all the periods, let us define /N(p) E

(u-I,N(p), T,N (p)) , VN E {0, 1,. .. , oo} as the time extremum of xz in the N + ith

period relative to extremum of x. Since the vector field is T(p)-periodic, 3 N(p) can

be written in terms of O(p) as:

ON(p) = NT(p) + 3(p), VN E {0,1,... , oo}. (3.93)

Differentiate Eq. (3.93) with respect to the parameters p to obtain:

NA (p) = N--T(p) + (p), VN E {0, 1, . .. ,oo}. (3.94)
Op Op 1pp

Eq. (3.94) shows that the peak-to-peak sensitivity remains constant within a period

and increases by a constant amount equal to period sensitivity 21(p) at the start of

the succeeding period. This is intuitively expected as the time /3N(p) of extremum of

x, relative to xi increases by T(p) when moving to a succeeding period and period

stretch due to perturbations in parameters should affect this time. Also, Eq. (3.94)

can be used to calculate the peak-to-peak sensitivity after solving for 9 (p) using Eq.

(3.92).

Consider x(l, p, t) to be the solution using Eq. (3.89) as PLC1 and x**(o, p, s) to be

the solution using Eq. (3.90) as PLC 2 and a = 0, so that x(l, p, O(p)) = x**(1, p, 0).



Then Eq. (3.92) can be written as:

0F (mi, x(l, p, /3(p)), p) 5(l, p,OX
3 (p)) ' p)

+ W(1, p, #(p))

#(Op) OT
T p (p) + 6(l, p, O(p)))

OF
+ j(mi, x(l, p,/3(p)), p) = 0.

Op

(3.95)

From PLC2 it can obtained:

OF-
Ox(m x**(1, p, 0), p) (**(1, P, o)6**(1, P, 0) + W**(1, p, 0))

±F
+ j(ml, x** (1, p, 0), p) = 0.

As was proved earlier, W**(1, p, 0) = W(l, p, 0(p)) and thus using Eq.

simplify Eq. (3.95) to obtain:

(3.96)

(3.96) to

OF- (0(me, x(l, p, /3(p)), p)x(l, p,/(p)) (p) -Ox a T p (p)+ (,p,)-6**(1,p,0) =39,

(3.97)

which can also be obtained from Eq. (3.88).

Considering a special case where the phase is the time difference between the peak

of one state variable and the next peak in the same state variable, which is after time

period T(p). Then PLC2 can be written as:

F1(mne+1, x(ne + 1, p, T(p)), p) = 0.

Differentiating the above equation with respect to p to obtain:

+ 1, p, T(p)), p) I(e + 1, p, T(p)) (p) + (ne + 1, P, T(p)))

OF1
+ F (nne+1, X(ne + 1, p, T(p)), p) = 0

OP

(3.98)

Using the fact that F1 is T(p) periodic in time, it can be shown that the Eq. (3.98)

can be reduced to the BVP for period sensitivities described in Eq. (3.76). Hence,

OF1Ox(mn+, x(ne



as shown for regular LCOs, the period sensitivity is a special case of peak-to-peak

sensitivities for oscillating hybrid systems as well.

Also, consider the case when the extremum of the variable x3 relative to variable

x1 happens at an epoch boundary. For the present work, a sufficient condition for

this extremum to be an isolated extremum is that the time derivative of variable xj

should change sign at the epoch boundary. This condition is illustrated in Figure

3-4. Figure 3-4(a) shows that a maximum of the variable xz occurs at the epoch

boundary when the time derivative of xj changes sign from positive to negative and

vice versa for the minimum, which is also shown in Figure 3-4(b). Similar to the

amplitude sensitivities, if an extremum occurs at an epoch boundary it is required to

have to have both left- and right-hand time derivatives nonzero or both equal to zero

otherwise the relative phase between peaks of xj and x1 will unlikely to be a smooth

function of the parameters. The discussion in Section 3.2.9 on an extremum at an

epoch boundary with one of the time-derivative limits as zero, also applies here.

1. (l,p,r,(p)) > 0 k (I +1,p,cr+,(p)) <0 i;(I,p, r,( p)) < 0 ( +1, p, 0, (p)) > 0

xj (l,p,t) xj(l+1,p,t)

t t01+ (p) to0+1(p) t
(a) (b)

Figure 3-4: Extremum of variable xj at epoch boundaries: (a) maximum and (b)

minimum.

The phase here will be given by the event time, i.e., /(p) = o-j+ 1(p). Then the

peak-to-peak sensitivity will be given by the event sensitivity, with some conditions

that the event time remains an extrema for small parameter variations. In this case,

peak-to-peak sensitivity can be calculated by Eq. (3.45) for N = 0, given that - is



fixed by Eq. (3.89). Peak-to-peak sensitivity for all periods will be given by:

__N 
0 Ul+1 N 07 00'l1

O (p) = ' (p) = N--(p) + (p), VN C {0, 1, ... , oo}. (3.99)ap 9p ap ap

The above equations shows that peak-to-peak sensitivity remains constant within a

period and increase by a constant amount equal to the period sensitivity a(p) at

the start of the next period.



Chapter 4

Numerical Methods

The importance of simulation of hybrid systems in different applications has moti-

vated the development of many software packages (some of them are mentioned in

[31]). Simulation of pure continuous and pure discrete systems is well-understood.

These systems are commonly modeled with ODEs and DAEs. A number of robust

codes exist for solving purely continuous systems, e.g., DSL48S [5], CVODES [39],

DASSL [34]. In general, these simulation packages use implicit linear multi-step

method, e.g., Gear's BDF method [16] or implicit Runga Kutta methods [3]. This

thesis involves simulation of hybrid systems, which exhibit both continuous state and

discrete state behavior, to solve the BVP for the limit cycle. DSL48SE [42] is used in

the current work for solving the stiff ODEs and to compute the sensitivities according

to the staggered-corrector method given in [13].

A general description of working with DSL48SE:

1. The model is compiled and validated.

2. The current mode is set to initial mode.

3. A consistent initialization is performed to determine a set of initial condition

values for the continuous state and sensitivity variables.

4. The original ODE augmented with the sensitivity system is numerically in-

tegrated efficiently according to the staggered-corrector algorithm. After the



integration step, DSL48SE performs state event location using the algorithm

given in [32]. One of the following occurs upon the completion of the step:

(a) integration is advanced a single step containing no state events.

(b) an event occurs and the integration is advanced to the earliest state event

time and consistent state, time derivatives, and sensitivities at this point

are returned.

5. If the integration step was successful and no events occurred, the calculation is

advanced by calling DSL48SE again.

6. If the event was identified, the model is locked into a the new mode (the state

condition causing the event is used to determine which mode is active), a consis-

tent re-initialization is performed for the new model to compute values for the

states and time derivatives at the start of the new mode, and the integration is

advanced by calling DSL48SE again. During the first call to DSL48SE after an

event is located, the jump in the sensitivities is computed automatically.

Hence, DSL48SE is called repeatedly to perform a series of integration steps to

compute state and sensitivity trajectories similar to DSL48S (in fact, DSL48S is called

within DSL48SE to perform the actual step). As in DSL48E [41], DSL48SE is called

with the model locked into the current mode by performing discontinuity locking.

The state event location algorithm employed by DSL48SE consists of three main

phases: state event detection/location, state event polishing, and computation of the

jumps in sensitivities.

Event detection is performed during each integration step and it determines whether

or not one or more events occur over the integration step just taken. If an event oc-

curs, the event time is determined using the algorithm described in [32] and the

earliest state event time is guaranteed to be found.

Event polishing involves adjusting the state event time to prevent discontinuity

sticking and determining consistent values for state variables, derivatives, and sensi-

tivities at this time.



The computation of the jumps in the sensitivities is done by using the equations

provided in [15].

Some of the features of DSL48SE code:

1. The large unstructured sparse linear algebra package MA48 [12] is embedded

in DSL48SE and DSL48S for the solution of the corrector equation. The MA48

package is especially suited for the types of problems that arise in chemical

engineering, as well as other applications.

2. It offers to identify sensitivity variables with respect to a subset of the param-

eters as identically zero which helps in improving the efficiency of the control

parametrization method.

3. There is an option to include or exclude the sensitivity variables from the trun-

cation error test. This improves the efficiency of some applications that do not

require guaranteed accuracy for sensitivity variables.

4. The staggered-corrector method has been employed in DSL48SE. It offers the

options for solving the system alone or with sensitivities.

5. DSL48SE provides the capability of explicitly computing the sensitivity jumps

and thus, time events and state events can be both handled by DSL48SE.

The additional information required to perform all the steps while using DSL48SE

is generated by using DAEPACK [43). Only a subroutine returning the residuals of

the original hybrid system is provided to generate this information. The residual files

for the three examples discussed in this thesis have been provided in the Appendix.

A technique used earlier to solve the BVP, which is computationally the most

demanding part of the simulation, is followed here.



4.1 Transformation of the BVP

Using the cyclic time r = ', the BVP described in Eqs. (3.2) and (3.3) was

transformed to:

i(ne +1, p, N + 1) - io(p) = 0, (4.1)

f (mi, R(1P 7  (p)) , P = 0, (4.2)

where j E {1, ... ,ni} and N = 0, 1, ... with k(i,p,-r(t,T(p))), Vi C S given by

-(i, p, r(t, T(p))) = T(p) - F(m , *(i, p, T(t, T(p))), p), VT E(,N(P) TiN(P) 1d-r T (p) I T (p) I'

X (i + 1, p, =r+,NP x i, p, , Vi = 1, ... ,n, VN E {0, 1, . .. , oo},

i 1, p, ,(p) =Ro(p), VN E {,1, ... , oo}.

The above transformation allows us to integrate to time 1 for solving the BVP for

N = 0 and thus reducing the required computational time.

4.2 Solution of the BVP

The BVP which is given in the Eq. (4.1) and Eq. (4.2) for the initial conditions

ko(p) and time period T(p), was solved using the shooting method by converting it

into an Initial Value Problem (IVP).

An initial guess was provided for the initial conditions *o(p) and the period T(p).

This guess needs to be in the region of attraction for the limit cycle so that New-

ton's method can converge to a point on the cycle. The transformed BVP was then

integrated from 0 to 1. The values of the state variables after integration should be

equal to the initial conditions. This forms a system of nonlinear equations in io(p)

and T(p) which are solved using Newton's method. The set of equations are given

by the BVP in Eq. (4.1) and Eq. (4.2).

The Newton step requires a calculation of the Jacobian matrix for deciding the



direction to move towards the solution. The Jacobian matrix J for the Newton step

is given by:

-j(ne + 1, p, 1)-Ii(ne + 1, p, 1)(43

T(p)OF (mi, i(1,P p, ( ,p) F (mi, (1p, ),p

Calculation of the Jacobian given by the Equation (4.3), needs the evaluation of

the initial-condition sensitivities and sensitivities with respect to the period T(p).

The last row of the Jacobian is just given by the derivatives of the PLC in Eq. (4.2)

with respect to ko and T.

The sensitivities with respect to the variables of the BVP were integrated along

with the original ODE system using DSL48SE. DSL48SE is a stiff initial-value solver

with sensitivity capabilities described more in the previous section. The algorithm

used for the calculation of the sensitivities in DSL48SE was the staggered-corrector

method [13] which has a number of advantages over the simultaneous-corrector algo-

rithm described in [28].

The Newton iteration involves solving the following system of linear equations for

the step and then using the step to determine the new approximation for zeros of the

nonlinear equations:

J X0+1 0n 0R (ne + 1, p, 1)

Tk Tk+1 Tk Tk.y (i 1 ,(

Equation (4.4) was solved using Linear Algebra PACKage (LAPACK) [1]. LA-

PACK is written in Fortran90 and provides subroutines for solving systems of si-

multaneous systems of equations. Subroutine dgsev was used for the calculations

here.

Integration was performed using DSL48SE with a relative tolerance of 10-8 and

absolute tolerance of 10-10. The BVP was solved to an absolute and relative tolerance

of 10-8 and 10~6, respectively.

It should also be mentioned that for a small system of LCOs that have a short



transient time, which means that the approach to the periodic orbit is rapid from any

initial condition, one can solve the BVP effectively by integrating over a sufficiently

large time span. An event detection function can be used to determine the period of

oscillation. However, for more accuracy it is recommended to solve the BVP which

gives the value of the initial conditions and time period with more significant figures.

4.3 Solution of the Sensitivity Equations

After solving the BVP using the shooting method for initial conditions xo(p) and the

time period T(p) of the limit cycle, value of M is calculated by finding sensitivities

with respect to the initial conditions by setting the initial value of the initial condition

sensitivities as an identity matrix and integrating Eq. (3.12) over one time period

using DSL48SE.

The value of (ne + 1, p, T(p))) is calculated by integrating the para-

metric sensitivity equation (3.46) over one period by setting the sensitivity initial

conditions as zero. The absolute and relative tolerances were set to 10-10 and 10-8,

respectively.

The matrix operations to solve the system of linear equations given in Eq. (3.76)

were performed in MATLAB. The initial conditions for the sensitivity matrix, ,0 (p),

and the period sensitivities, 2 (p), are obtained as a result of these operations.

Using these initial conditions for the sensitivity matrix, the parametric sensitivity

equation (3.46) are again integrated to the desired number of periods using DSL48SE

to obtain the raw sensitivities. Raw sensitivities are then decomposed to obtain

R(i, p, t) and Z(i, p, t) by solving Eq. (3.68) and Eq. (3.70), respectively using

MATLAB. The matrix W(i, p, t) and vector 6(i, p, t) are constructed by performing

matrix operations on Z(i, p, t) using MATLAB to project it perpendicular to and onto

the direction of x(i, p, t), respectively. Finally, matrix operations are performed in

MATLAB to calculate the amplitude sensitivities and peak-to-peak phase sensitivities

using Equation (3.79) and Equation (3.92), respectively.



Chapter 5

Applications and Results

5.1 Pressure Relief Valve Hybrid System

A pressure relief valve is a type of valve usually used to control or limit the pressure

in a vessel which can build up due to a process upset or equipment failure. The

pressure is relieved by allowing the pressurized fluid to flow from an auxiliary passage

out of the system. The model for the system is shown in Figure 5-1. A fluid enters

the vessel with a flow rate, Fi. The pressure relief value opens at a predetermined

set pressure, P, and a portion of the fluid is diverted out through the auxiliary route

until the pressure in the vessel reaches a predetermined reseat pressure, P, at which

time the valve closes. The system switches from Mode 1 to 2 when P > P, and

from Mode 2 to 1 when P < P,. The value of ne is 2 and hybrid mode trajectory is

given by T, = {1, 2, 1}. The value of pressure in the vessel P(t) oscillates in a limit

cycle between P, and P. This is an example of an 1-dimensional limit cycle where

the system has only one continuous state variable, pressure P. This system has 8

parameters p = (R, Tf, V, k, Pa, Ps, Pr, F,) with Ps > Pr. R is the ideal gas constant,

T1 is the temperature of the fluid entering the vessel, V is the volume of the vessel,

k is the valve constant and Pa is atmospheric pressure. The values of the parameters

are given in Table 5.1.



Table 5.1: Values of the parameters in the pressure relief valve hybrid system.

Parameters Value

R 8.314472 x 10-5 M3 bar
K mol

Tf 300 K

V 1.0221 m3

k 20 '" M0
s barD.

Pa 1.01325 bar

Ps 10 bar

Pr 9 bar

Fn 40 i

k)P-P

P < P,

Figure 5-1: Hybrid dynamic model of the pressure relief valve hybrid system.



This system is described by the following sets of ODEs:

RT5
Mode 1: P = Fin,

Mode 2: P= RT Fin
V

- k P - Pa).

State continuity is employed at the transitions:

P(i + 1, p, Ui+1,N(P)) = P(i, p, Ti,N(P)), Vi E {1, 2}, VN E {0, 1, .. , 00}.

Figure 5-2 shows the state trajectory P(t) for the pressure relief valve hybrid

system over time. The BVP for the initial conditions and the period given in Eq.

(3.2) and Eq. (3.3) was solved using the PLC P(t = 0) = 9.5 yielding results given

in Table 5.2. The monodromy matrix contains only one value because there is only

5 10 15 20
time

Figure 5-2: State trajectory P(t) for the pressure relief valve hybrid system.

one continuous state variable. The value of the monodromy matrix is:

oP
M = -= 1.

OP

Table 5.2 gives the results for the sensitivity initial conditions as well as period sen-
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9.2
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Table 5.2: Results for the sensitivity analysis of the pressure relief valve hybrid system.
The resulting initial conditions were P(0) = 9.5 and period T(p) = 3.2757.

Parameters aT o
__________ Op ap

R -39397.86 0

Tf -0.0109 0

V 3.2049 0

k -0.3607 0

Pa 0.4268 0

PS 3.0778 0

Pr -3.5046 0

Fin 0.0984 0

sitivities obtained by solving the BVP given by following system of linear equations:

P(ne + 1, p, T(p))

0

%I(p)

P[ (P)1=

P(p)[ -Po 1
-P(ne + 1, p, T(p))

0 0 0 0 0 0 0 0

-0.0107 3.1285 -0.3521 0.4166 3.0044 -3.4211 0.0961

0 0 0 0 0 0 0

OPO

0 0.9762

1 0o

-38458.75

0

The system of parametric sensitivity ODEs for this example are given by:

dt
Mode 1 :

OP) OP

0 1p 0 0 0 0 Rf,I-FinV Fin+ LfFin



d (OP RTf k OPMode2 -- =- --- +
dt \\Op 2V y!P -- Pa P

T5 (F F- -kV7 F-~~) R( Fin -k v'P ~P) RTf (Fi.-k1P-P.) RTfVP-P RTf k R-_L .

V V ------ V2  V 2VP P.

D 0.5

-D
C

o 0

- -0.5

0 5 10 15 20
time

Figure 5-3: Initial condition sensitivity trajectory of P w.r.t. Po for the pressure relief
valve hybrid system.

Initial-Condition Sensitivity Trajectory: The trajectory for the initial-condition

sensitivity of the pressure relief valve hybrid system are shown in Figure 5-3. The

initial-condition sensitivities have only a periodic part and a decaying part, mentioned

in Section 3.2.4, is zero for all the times.

Sensitivity Trajectories: The sensitivity trajectories for the state variable P with

respect to the parameter k are shown in Figure 5-4, along with trajectories for the

relevant element of Z(t), W(t), and relative phase sensitivity with respect to k, 6 k(t).

The sensitivity in Figure 5-4(a) grows as time evolves because of the unbounded

part R(t) while the other part of the sensitivity Z(t) (shown in Figure 5-4(b)) is

periodic in time. Both the unbounded part as well as the periodic part have jumps

in them because the vector field is discontinuous at the transition and the event-

time is sensitive to the parameter k (with the exception of the first event). Further

decomposition of the periodic part into W(t) and 6 k(t) is shown in Figures 5-4(c)
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0.5
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-0.5 -0.04
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time time

(a) (b)
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0.04
0.5

0.02

0 0

-0.02
-0.5

-0.04

-1 -0.06
0 2 4 6 8 0 2 4 6 8

time time

(c) (d)

Figure 5-4: Sensitivity trajectories for the pressure relief valve hybrid system, all with
respect to the parameter k: (a) full sensitivities of P, when 2(1, p, o1 (p)) = ,(p),
(b) period-independent periodic part Z(i, p, t), (c) period and phase-independent part
W(i, p, t) and (d) relative phase sensitivity with respect to k, 6 k(i, p, t).



Table 5.3: Results of the amplitude sensitivities for the state variable P in the pressure
relief valve hybrid system.

Parameters (p)

R 0

T5 0

V 0

k 0

Pa 0

P 1

Pr -1

Fin 0

and 5-4(d). Since there is only one state variable for this system, W(t), which is the

projection of Z(t) perpendicular to P(i, p, t) and is calculated by Eq. (3.77), is zero

over time.

Amplitude Sensitivity: The amplitude sensitivities for the state variable P are

given in Table 5.3. These sensitivities are calculated by using the formula given in

the Eq. (3.79). The amplitude for P is given by the difference in the values of P, and

Pr. Hence the amplitude sensitivity is nonzero only with respect to the parameters

P, and Pr.

5.2 Simple Switching Hybrid System

A simple switching hybrid system has been constructed in earlier work to show

Raibert-type bifurcations [22]. It consists of 2 continuous state variables and 3 param-

eters. The value of ne is 4 and hybrid mode trajectory is given by T, = {1, 2, 3,4, 1}.

This system is given by the sets of ODEs which are also shown in Figure 5-5:

x = y
Mode 1:

y = -cx - by,



= -cx - by,

Mode 3:

= -cx - by.

Figure 5-5: Hybrid dynamic model of simple switching hybrid system.

Note that the original formulation of this model [22] only had two modes and

included "AND" operators in the transition conditions; these are avoided in the cur-

rent formulation via the introduction of additional modes. The system switches from

Mode 1 to 2 when x < 0, from Mode 2 to 3 when y ; 0, from Mode 3 to 4 when

y > r and from Mode 4 to 1 when y ( 0. The state variable vector is x = (x, y).

State continuity is employed at the transitions:

x(i + 1, p, c7i+,N(p)) = x(i, p, Ti,N(P)), Vi E {1, 2,3, 4}, VN E {0, 1,... , oo}.

Mode 2:

Mode 4:



Figure 5-6 shows the limit cycle on the phase portrait for the simple switching

hybrid system and the state trajectories x and y over the time. The parameters

p = (r, b, c) are constrained as b > 0, c > 0, (b2 - 4c) < 0 and r > 0. The parameter

values used for this example are b = 0.1, c = 1.5 and r = 0.710. The BVP for the

initial conditions and the time period given in Eq. (3.2) and Eq. (3.3) was solved

using the PLC z(t = 0) = 0 yielding the results given in Table 5.4. Table 5.4 gives

the results for the sensitivity initial conditions as well as period sensitivities obtained

by solving the BVP given by following system of linear equations:

M - I x(ne + 1, p, T(p)) 1 (p) -P(ne + 1, p, T(p))

0 1 0 (p) 0 0 0

M - I 0 o
-1.2314 ap

aT
0 1 0 _ L (

The system of parametric sensitivity

d
Mode 1:.

0

-C

-c

Ox
Op)

I) _J

- 0.4718

- 0.5117

0

0
0

1.6122

0.7237

0

0.0573

1.6805

0

ODEs for this example are given by:

1]
-b

Ox

Op

0 0
-y -x

d
Mode 2:

di
Kx)
0p)

L
Op

-c -b

0 0
L~ J

Mode 3: ()
dt (Op)

0 0 0

0 -y -x

0 0 0

0 0 0



d
Mode 4: 

dt
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time
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time

Figure 5-6: Dynamics of simple switching hybrid system:
trajectory x(t) and (c) state trajectory y(t).

(c)

(a) limit cycle, (b) state

Initial-Condition Sensitivity Trajectories: The trajectories for the initial-condition

sensitivities of the simple switching hybrid system are shown in Figure 5-7. This

figure shows the property of the matrix (i, p, t) discussed in Section 3.2.4. The

initial-condition sensitivities can be decomposed into a periodic part and a decaying

part which vanishes over long times. It can be noticed in the figure that the initial-
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Table 5.4: Results for the sensitivity analysis of the simple switching hybrid system.
The resulting initial
5.2787.

conditions were x(0) = 0.8209, y(O) = 0 and period T(p) =

Parameters r b c

aT 1 -2.5849 -1.4357aP
ax 1.1559 -3.9496 -0.1404
ap
0 YO 0 0 0
ap

1

0.5

0

-0.5

-1

0 20 40 60 80 100 120
time

0 20 40 60 80 100 120
time

(b)

0.5

0

-0.5

0 20 40 60
time

1

0.5

0

-0.5

80 100 120 0 20 40 60
time

Figure 5-7: Initial condition sensitivity trajectories for the simple switching hybrid

system: (a) sensitivities of x w.r.t. xo, (b) sensitivities of y w.r.t. xo, (c) sensitivities

of x w.r.t. yo and (d) sensitivities of y w.r.t. yo.
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-1 -0.5 0 0.5
a x/a x

-1 0
a y/a x0

Figure 5-8: Phase portrait plot of the
hybrid system: (a) vs.2 and (b)

initial condition sensitivity for simple switching

y vs.a.
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condition sensitivities of each state becomes periodic after some amount of time.

The value of these initial-condition sensitivities after one period is the monodromy

matrix. The value of the monodromy matrix for this example is:

0.5918 0.0000
M =

0.6227 1.0000

The eigenvalues of the monodromy matrix are 0.5918 and 1.

Figure 5-8 shows phase portrait plots of the initial-condition sensitivities of the

simple switching hybrid system for long times. A plot of initial-condition sensitivity

versus -- and -2- versus 2 are shown in Figures 5-8(a) and 5-8(b), respectively.

This figure shows that the initial condition sensitivity decays to a periodic solution

as t -> +oo, which lies along a line after long time has passed. This is also the

conclusion of the Eq. (3.31) given in Section 3.2.5. The periodic solution is given by

Eq. (3.33) and the line along which it lies is spanned by vi, a left eigenvector of M

corresponding to the eigenvalue 1. In this case the left eigenvector is calculated to

be vi = (1.5255, 1). Figures 5-8(a) and 5-8(b) confirm that the steady solution lies

along the direction of vi.

Sensitivity Trajectories: The sensitivity trajectories for the state variable x with

respect to the parameter r are shown in Figure 5-9, along with trajectories for the

relevant element of Z(t), W(t), and the relative phase sensitivity with respect to r,

6,(t). These sensitivities are dependent on the initial conditions and hence the choice

of the PLC, therefore it is difficult to compare trajectories starting from different

initial conditions or reference point. Thus, it is important to have a time reference,

i.e., PLC, along with the sensitivities while reporting them. The trajectories have

jumps in the sensitivities at the change of the mode in the hybrid trajectory. These

are because of the discontinuities in the vector fields and non-zero sensitivity of the

event time with respect to the parameter at the epoch boundaries and are given by

Eq. (3.42). The sensitivity in Figure 5-9(a) grows as the time evolves because of the

unbounded part R(t) while the other part of the sensitivity Z(t) (shown in Figure
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5-9(b)) is periodic in time. Both the unbounded part as well as the periodic part

have jumps in them. Further decomposition of the periodic part into W(t) and 6(t)

is shown in Figures 5-9(c) and 5-9(d).

15 . .
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time
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1.5

0.5

0

-0.5
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-1.5
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time

0.8 -

0.6

0.4

0.2-/

0

-0.2

-0.4

-0.6 -

8 10

0 2 4 6 8 10 0 2 4 6 8 10
time time

Figure 5-9: Sensitivity trajectories for the simple switching hybrid system, all with
respect to the parameter r: (a) full sensitivities of x, when L(1, p, o1 (p)) = a-aQ(p),
(b) period-independent periodic part Z(i, p, t), (c) period and phase-independent part
W(i, p, t) and (d) relative phase sensitivity with respect to r, 6r(i, p, t).

It is also important to note here that although the differential equations for the

sensitivities with respect to the parameter r are the same as the initial condition sen-

sitivity equations, the two trajectories are different because r appears in the transition

conditions for the system. This gives a non-zero value for a (mi, x(i, p, oi1(p), p)

in the formula for 2eg (p) in Eq. (3.44). This value is zero in the expression for
ap

Djii (p) which is given in Eq. (3.11). Hence, the jumps in the parametric sensitivity

and initial-condition sensitivities are different.
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The trajectory for the state variable x as well as the relevant element of Z(t), W(t)

and the relative phase sensitivity, &c(t), with respect to parameter c, which appears in

the right-hand side of the ODEs for the simple switching hybrid system, are shown in

Figure 5-10. The sensitivity equations in this case are different from initial-condition

sensitivity equations because the parameter appears in the right-hand side of the

ODEs.

0 20 40
time

60 80 -0.2'
0 20 40

(b)

-0.2

0 2 4 6 8 10 0 2 4 6 8 10
time time

(c) (d)

Figure 5-10: Sensitivity trajectories for the simple switching hybrid system, all with
respect to the parameter c: (a) full sensitivities of x, when L(1, p, o,(p)) = (p),
(b) period-independent periodic part Z(i, p, t), (c) period and phase-independent part

W(i, p, t) and (d) relative phase sensitivity with respect to c, &c(i, p, t).

Amplitude Sensitivity: The amplitude sensitivities for the state variables x and y

are given in Table 5.5. Figure 5-6 shows that there are non-unique minima for x, i.e.,

x is at its infimum for the entire time when the system is in mode 3. The value of i is

zero during mode 3 as well as both limits at the event time where a transition occurs
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Table 5.5: Results of the amplitude sensitivities for the state variables in the simple
switching hybrid system.

Parameters r b c

For x, %' (p) 2.1710 -8.3469 -0.2329

For y, 192 (p) 2.8354 -9.5418 0.3292

from mode 2 to 3. This is just a coincidence because the condition k = 0 during

mode 3 and the transition condition (y = 0) at the event are equivalent. This is the

case where a minimum occurs at an epoch boundary and both time-derivative limits

are zero, discussed in Section 3.2.9. Hence Eq. (3.80) can be used to calculate the

amplitude sensitivity for x because the second and fourth term in Eq. (3.79) drop

out as i(ij,extremum, p, tj,extremum) = 0. The sensitivity differential equation for 2 in
ap

mode 3 has a right-hand side value of zero in mode 3 and the sensitivity L remains

at a constant value. This is the reason that the amplitude sensitivity for x given in

Table 5.5 is unique even when the minima of x are non-unique.

The extrema for variable y occur away from the event times and the value of

9(ij,extremum, p, tj,extremum) is zero. Hence the second and fourth terms in Eq. (3.79)

drop out to yield Eq. (3.80) for amplitude sensitivity for y. This implies that

Zj (ij,extremum, p, tj,extremum) or wj (ij,extremum, p, tj,extremum) can also be used to calcu-

late the values for amplitude sensitivities.

Peak-to-peak sensitivity: The peak-to-peak sensitivities for the simple switching

hybrid system, where the relative phase is the time difference (3(p)) between the

peak of the variable y and the peak of state variable x, are shown in Table 5.6. The

results agree well with the finite-difference approximation with a finite difference of

e = 0.01, with a maximum deviation of 1%.

5.3 Planar Hybrid System

This system was earlier used in [29] to show how a classical shooting algorithm can

be used to compute periodic solutions of piecewise continuous systems. The system
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Table 5.6: Results of the peak-to-peak sensitivities for the simple switching hybrid

system. L=peak-to-peak sensitivity, FD = finite-difference approximation of a
(with a finite-difference of E = 0.01)

Parameters r b c

-0.0026 0.3230 0.4962
Fp

FD -0.0026 0.3230 0.5012

has 2 continuous states, the value of ne is 4 and hybrid mode trajectory is given by

T = {1, 2,3,4, 1}. Again, additional modes are introduced to avoid the use of "AND"

operators. Two parameters p = (Pi, P2) having values pi = 0.4 and P2 = 0.75 can be

introduced in this system. The stability of the limit cycle depends upon the values

of these parameters and for the values presented, the cycle is stable. The system is

given by the following sets of ODEs in the four modes:

I = x (1 - V2 + y2) - y (2 - + Y2 - P2 X/ 2 + y2)

Mode 1:

=y (1 - /2 + y2) + (2 - /2 + y2 - P2x/ 2 + y2),

d =3 -pix (2 - /x2 + y2) - y (2 - /X2 + y2 - P2x/ 2 + y2)
Mode 2:

y=-piy (2 - V2 + y2) + x (2 - V/2 + Y2 - P2x/2 + y2),

Mode 3: { X 2-2 + y2) - y (2 - /2 + y2 - P2 x/ X2 + y2)

y =1- 2 + y2) + X (2 - X/2 + Y2 _ P2X/ /2 + y2)

The hybrid dynamic model for the planar hybrid system is shown in Figure 5-11.

The system switches from Mode 1 to 2 when y < 0, from Mode 2 to 3 when x > 0,

from Mode 3 to 4 when y > 0 and from Mode 4 to 1 when x < 0. The state variable
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Mode 1:

=x ( 1-1)+y(- y -; y 2 =- -x(2 px +y

y= y(- 1 +Ix (2- - +p -px1i+y )

Mode 45 : Mode 2:

resutin iniia codtin wer 2(0 - 0,x y(+ = 0.3745r and peio T= = 4.0835.7

kPa-rxameters P 2y -p,xl

j= 1- +x - -p x -7. p9 1.11662 -~x

y00 Mode3
k = -px (2 -I-7+7 y(2 - N~ '- px/ x+

j=-p,y 2-4 + +x(2-47y -p,/x/+Y

Figure 5-11: Hybrid dynamic model of the planar hybrid system.

Table 5.7: Results for the sensitivity analysis for the planar hybrid system. The
resulting initial conditions were x(0) = 0, y(0) = 0.3745 and period T(p) = 4.0835.

Parameters Pi P2

OT -7.0399 1.1166

ap axo0 0

ay0 -3.2214 0.109509p

Table 5.8: Results of the amplitude sensitivities for planar hybrid system.

Parameters Pi P2

For x, %'(p) -6.5612 80.7430

For y, a2(p) -6.0026 0.1814
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vector is x = (x, y). State continuity is employed at the transitions:

x(i + 1, p, Oi+1,N(P)) = x(i, p, Ti,N(P)), Vi E {1, 2, 3, 4}, VN E {0, 1,... , 00},

Figure 5-12 shows the limit cycle on the phase portrait for the planar system and

the state trajectories x and y over time. The BVP for the initial conditions and the

period given in Eq. (3.2) and Eq. (3.3) was solved using the PLC x(t = 0) = 0,

yielding the results given in Table 5.7. The value of the monodromy matrix is:

1.4112 1.0687

- 0.2888 0.2495

The eigenvalues of the monodromy matrix are 0.6607 and 1. Table 5.7 gives the

results for the sensitivity initial conditions as well as period sensitivities obtained by

solving the BVP given by the following system of linear equations:

x(ne + 1, p, T(p))

0

M - I

1 0

- 0.6088

0.2343

0]

Op (P)

9(p)

ap)
p)

-P(ne + 1, p, T(p))

0 0

-0.8431 0.5627

-0.7682

0

The system of parametric sensitivity ODEs for this example

-0.1794

0

are given by:[Fi OF1
9P1 aP2

OF2  OF2
OP1 0P2 J

M -I

d( x)_

di (Op

OF1
OxE F2Ox

F1 1
oy

OF2
ay
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OF1
Ox

OF 1

Oy

OF 2

Ox

OF 2

Oy

OF 1

OPi

x 2

/ 2 + y2

X(p2 - Y)

/x 2 + y2

X(P2 + y)

VX 2 + y2

y 2

IX 2+y y2

+ 2 )

(x 2 + y2)

+ )
+ (x 2  i)

x (x(x 2 +-y 2) + P2Y2)

(x2 + y2)2

xy(x 2 + y2 _ p2X)

(x 2 + y2)2

1- /x2 + y2_

=12 + y2 - 2 +

=2 - /2 +y 2_

=1 - /x2 + y2_

=0 F=0 OF2
aP2 ' O1

+ y (x (x2 ) + P2Y2)
2 + y2)2

= /x2+y2 -2+

=2 - /zx2 -+y2 _

X2 + y2)
VX2y 2G

X(Py+ P2)

VfX- 2±+ y2

OF1 O=-X(2 - V/x2 + y2), = -

y 2(X 2 + y 2 - P2X)

(x 2 + y2)i

x(x(x 2 + )P2Y)

xy(x2 + y2 - P2x)

Sy2) ( 2 + 2

y(2 - V/x2 +y 2 )

OF 2  xy OF 2 _ __2

OP1 /x2 + y2' 0P2 V/X2 + y2

x 2

I/X-2 +y2, (x2 + y2)

- -2 +x(PlY+P 2)

X2 + y2 y

X(Py + 2)

- 2 + X2 _ y2

\/ 
2

y2 (X2 + y2 - P2x)

(x 2+±y2),
_W + 2 26

x(x(x 2 + y2 ) +P2y)

W + Y - 22

+ / (x2 + y2)_

y2

OF1
1 = -y(2 - V/x 2 + y 2 )

OP2
x2

V/x-2 + y2'

110

Mode 1: <

xy OF 2 _ _ 2

X2 + y2' OP2 /2 + y2 '

OF
1 = _p1

Ox
(2- /x2 ± y2 _

x2

V 2 +y2)

OF1

Oy

OF 2

Ox
Mode 2:

OF
2 _

Oy

OF1

aP1

OF 1 =

Ox - (2 -V/x2+y2

Mode 3:

- X2 +

2 - /(

=-pi (2

OF 2

OF 2

Oy

= -x(2 - Vx2 + y2 ),
OP1i
OF 2  xy OF 2

OPi /2 + y2' OP2

V~rX2-+y2 y2

v/2



= V X2 + y2 -

=1 fx 2+y 2 -2+

=2- x2 +y 2 _Mode 4:

OF1

Ox

OF1

OF 2

Ox

OF2

Oy

OF1

8O1

The trajectory for the sensitivity of the state variable y with respect to pi is shown

in Figure 5-13 along with the relevant element of Z(t), W(t), and the relative phase

sensitivity with respect to pi, 3y (t). The results for the amplitude sensitivities for

the planar hybrid system are given in Table 5.8. The amplitude sensitivity for the

variable y was calculated using the Eq. (3.80) as y(iy,extremum, p, ty,extremum) are zero.

But the value of i(ix,min, p, tx,min) is not zero and hence the calculation is done using

the equation similar to the Eq. (3.81) obtained by setting ±j(ij,max, p, tj,max) equal

to zero in Eq. (3.79).

Peak-to-peak sensitivity: To calculate the peak-to-peak sensitivities for the planar

hybrid system, y(0) = 0 is taken to be PLC to define the time scale because y is a

smooth function of time and attains its peak away from the events. The BVP for the

initial conditions and the period given in Eq. (3.2) and Eq. (3.3) is solved to yield

the results given in Table 5.9. The monodromy matrix is given by:

1 1.4567
M =.

0 0.6608

Table 5.9 also gives the results for the sensitivity initial conditions and period sen-
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Figure 5-12: Dynamics of simple planar hybrid system:
trajectory x(t) and (c) state trajectory y(t).

(a) limit cycle, (b) state

Table 5.9: Results for the sensitivity analysis for the planar hybrid system with PLC
as y(0) = 0 . The resulting initial conditions were x(0) = -0.1278, y(O) = 0.3978 and
period T(p) = 4.0835.

Parameters Pi P2

-7.0399 1.1166ap
Oxo 0.6090 -0.0014

-3.2657 0.1074ap
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Figure 5-13: Sensitivity trajectories for the planar hybrid system, all with respect

to the parameter pi: (a) full sensitivities of x, when 2(1, p, o-i(p)) = I(p), (b)

period-independent periodic part Z(i, p, t), (c) period and phase-independent part

W(i, p, t), and (d) relative phase sensitivity with respect to pi, 6p,(i, p, t).
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Table 5.10: Results of the peak-to-peak sensitivities for the
for 4 periods. -'-=peak-to-peak sensitivity in N + 1 period,
approximation of 03 (with a finite-difference of c = 0.0001)Op

Parameters Pi P2

O00 -1.6306 -0.1465
Op

FD of 3 -1.6254 -0.1468ap

D3i -8.6705 0.9700
Op

FD of g -8.6554 0.9530Op

032 -15.7103 2.0866
OP

FD of ! -15.6889 2.0721
&p

-22.7499 3.2031
Op

ED) of 013 -22.7215 3.1904
ap

planar hybrid system
FD = finite-difference

sitivities obtained by solving the BVP given by following system of linear equations:

M - I x(ne + 1, p, T(p))

OF2 aF 2
Ox Dy

M - I

2.1022 0.3920

- 0.7951

0

0

-T (p)aP32p)

ap (P)ap21()

-P(ne + 1, p, T(p))

._F2  aF2
DPi aP2

0.8398 -0.7313

1.1077 -0.0364

0 0.0391

The infimum of state variable x is attained at the transition from Mode 1 to 2,

where y = 0. Hence the peak-to-peak sensitivity is given by the event time sensitiv-

ity in Eq. (3.45). The peak-to-peak sensitivity where the relative phase is the time

difference between the minimum of x relative to the maximum of x, is shown in Table

5.10 for 4 periods. It can be noted that the results satisfy Eq. (3.99).
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5.4 Neural Oscillator

This example is a biological application of oscillating hybrid systems also known

as a neural oscillator [23]. Various autonomous oscillators existing in living things

are produced by rhythmic activities of the corresponding neural systems for, e.g.,

locomotion, heart beat, etc. Adaptation of the neurons plays a very important role in

the generation and sustenance of the oscillations. A mathematical discussion of the

oscillations generated due to mutual inhibition of neurons is presented in [23]. The

model suggested in this paper consists of two neurons mutually inhibiting to produce

limit-cycle oscillations. This oscillator is used in the area of robotics in feedback with

oscillatory systems such as legged locomotion [21][30] and juggling [48]. The neural

oscillator consists of 4 continuous states and 3 parameters. The value of ne is 6 and

hybrid mode trajectory is given by T,= {1, 2, 3, 4, 5, 6, 1}. The systems of ODEs for

the neural oscillator are given by:

Mode 1:

Mode 2:

Mode 3:

= -10(xi + bX2 - 1)

= 10 (X1 - x 2 ) /T

= -10(axi + x 3 + b4 - 1)

z4 = -10X 4 /T,

z1 = -10(x1 + aX + bX2 - 1)

z2 = 10 (X1 - x2) /T

a3 = -10(axi + x3 + bX4 - 1)

z4 = 10 (X3 - x4) /T,

si = -10(x1 + aX3 + bX2 - 1)

= -10X 2/T

= -10(X 3 + bX4 - 1)

X4 = 10 (X3 - x4) /T,
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z1 = -10(x1 + ax3 + bX 2 - 1)

Mode 4: z2 = -10z2/r

is6 = -10(X3 + bX 4 - 1)

k4 = 10 (X3 - X4) /T,

z1 = -10(x1 + ax3 + bX2 - 1)

Mode 5: zk2 = 10 (x1 - X2) /T

zk3 =-10(axi + X3 + bX4 - 1)

k4 = 10 (X3 - X4) /r,

-1 = -10(x1 + bX 2 - 1)

Mode 6: z=10 (xI - X 2 ) /T

= -10(ax1 + X3 + bX 4 - 1)

4 = -10x4/T.

The hybrid dynamic model for the neural oscillator is shown in Figure 5-14. Addi-

tional modes are introduced in this formulation to avoid the use of "AND" operators.

The system switches from Mode 1 to 2 when X3 > 0, from Mode 2 to 3 when x1 < 0,

from Mode 3 to 4 when x3 < 0.36, from Mode 4 to 5 when x1 > 0, from Mode 5

to 6 when X3 0 and from Mode 6 to 1 when x1 > 0.45. The values of the three

parameters p = (a, b, T) are: a = 2, b= 2 and T = 2. The state variable vector is

x = (zi, X2,33, X4). State continuity is employed at the transitions:

x(i + 1, p, o-i+1,N(P)) = x(i, P, Ti,N(P)), Vi E {1, 2,3,4,5, 6}, VN E {0, 1,. . . , oo}.

Figure 5-15 shows the limit cycle of the neural oscillator projected onto (a) Xi - X2

plane, (b) X1 - X3 plane, and (c) XI - X4 plane. The state trajectories for the neural

oscillator are shown in Figure 5-16. The BVP for the initial conditions and the period

given in Eq. (3.2) and Eq. (3.3) was solved using the PLC 1 (t = 0) = 0, yielding
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Mode 1:
i, = -10(x, + bx2 -1)

12 =10(xs - x2)/r

-10(ax, + x3 +bx 4 -

'4 = -10x 4 / r
X, -

Mode 6:
i, = -10(x, +bx 2 -1)

- 2 =10(X1 -X 2 )/r

= -10(ax, +x3 +bx 4 -

k4 = 4-10x4

Mode 2:
-10(x, +ax + bx2

- 2 =10(X -X 2 )/T
: -10(ax, + x3 +bx 4

k4 =10(x -x 4 )/'*

Mode 5:
-10(x, + ax3 + bx 2

' 2 =10(xI - x2)/r

-10(ax, + x3 + bx4

'4 =10(x 3-x 4 )/r

Mode 4:
--1O(x, + ax3 + bx 2

"2 =-10x
2 /r

10(x3 + bx4 -

- 4 =10(x-x 4 )/r

Mode 3:
-10(x 1 +ax3 + bx 2

"2 = -10X2 /'r

3 = -1O(x 3 +bx4 -1

'4 =10(X3 -X4)/T

x3 0.36

Figure 5-14: Hybrid dynamic model of the neural oscillator.
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the results given in Table 5.11. The value of the monodromy matrix is:

-0.0005 -0.0024 -0.0005 -0.0020

0.0551 0.6579 0.0570 -0.6024
M=

-0.0682 -0.8195 -0.0702 0.7617

-0.0379 -0.4523 -0.0392 0.4126

The eigenvalues of the monodromy matrix are -0.0002, -0.0008, 0.0008 and 1. Table

5.11 gives the results for the sensitivity initial conditions and period sensitivities

obtained by solving the BVP given by following system of linear equations:

M - I

-10 -10b 0 0

xc(ne + 1, p, T(p))

%-5 (p)

( (p)

-P(ne + 1, p, T(p))

0 -10x 2,0

M-I

-10 -10b 0 0

0

1.2859

-1.6134

-0.8826

0

P)

P,((p)

-0.0505 0.0973 -0.0533

0.4782 -0.4418 0.2822

-0.2388 0.5997 -0.1908

-0.2963 0.3699 -0.2139

0 -2.47604 0

The system of parametric sensitivity ODEs for this example is given by:

-10 -10b 0 0

10

-10a 0 -10 -10b

0 0 0 10

Ox

19p

0 -10x 2  0

0 0 10 (xI -x 2)
0 0

-lOx1 -lOx4

0 0

0

lOX 4
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-10 -10b -10a 0

10

,
0 0

-10a 0 -10 -10b

10
0 0 -

10
7-

-10X3 -10X2 0

-10(Xi -X2)

0 02

-10x1 -10X4 0

-10(13 -14)
0 02

-10 -10b -10a 0

10
0 -- 0 0b

0 0 -10 -10b

10
0 0 -

10

-T

Ox
Op

-10X3 -10X2 0

-1012
0 0 T2

0 -10X4 0

-10(X3 -X4)
0 0 72

d
Mode 4 :

dt

d
Mode 5 :

di

(x

ap)

Ox
Op)

d (Ox'
Mode 6 :

dt 0p)

-10 -10b

10
0 --

'7-

-10a

0 0

0 0 -10

10
0 0 -

T

-10 -10b

10 10

-10b

10
--

-10a 0

0 0

-10a 0 -10 -10b

10
0 0 -

10
--

-10 -10b 0 0

10 10
0 0

-10a 0 -10 -10b

10
0 0 0 --

T _-

Ox

Op

Ox

Op

Ox
OP

-10X3 -10X2

-1012
0 0 2

0 -10X4

0 0 -10 (13 - 4)

0 0 2

-10X3 -10X2 0

-10(xi - 2)
0 02

-1Ox1 -10X4 0

-10(13 -14)
0 02

0 -1012 0

0 0 -10(XI-X2)
T2

-10XI -10x4

0 0

0

1014
72

The time derivatives for the 4 state variables are shown in Figure 5-17. Since the

time derivatives shown here are continuous, there are no jumps in the sensitivities.

It can be noticed by putting the terms corresponding to the jumps in the present

analysis equal to zero that the results will reduce to those for oscillating dynamical
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Table 5.11: Results for the sensitivity analysis of the neural oscillator. The resulting
initial conditions were xi(0) = 0.5048, x 2 (0) = 0.2476, x 3 (0) = -0.2013, x 4 (0) =
0.1765 and period T(p) = 0.8973.

Parameters a b r

0.3708 -0.3686 0.2339ap
,Dx1,O 0.0507 -0.0971 0.0533ap
49X2,0 -0.0254 -0.0753 -0.026749p,

-0.3300 0.0485 -0.1299p
aX4,0 -0.0145 -0.0149 0.0385
49p
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0
-0.2 0 0.2 0.4 0.6
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Figure 5-15: Limit cycle of the neural oscillator projected onto: (a) X1 - X2 plane, (b)
X1 - x3 plane, and (c) X1 - X4 plane.
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Figure 5-16: State
and (d) x4 (t).

trajectories of the neural oscillator: (a) x1 (t), (b) x 2 (t), (c) x 3 (t)
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systems [46], in particular LCOs. Hence, all the theory which is applicable for regular

LCOs can be used here. The trajectory for the sensitivity of the state variable x 3

with respect to the parameter a, along with the relevant element of Z(t), W(t), and

the relative phase sensitivity with respect to a, 6a(t) are shown in Figure 5-18. The

results of the amplitude sensitivities for the 4 state variables for the neural oscillator

are shown in Table 5.12. The calculation of amplitude sensitivity is done using Eq.

(3.80).

1.5

1

0.5

0

-0.5

-1
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time time
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0

-0.5

-1

-1.5

time time

Figure 5-17: Time derivatives for
neural oscillator.

the states (a) xi, (b) X 2 , (c) X3 and (d) X4 in the
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Figure 5-18: Sensitivity trajectories for the neural oscillator, all with respect to the
parameter a: (a) full sensitivities of x 3, when L(1, p, u1 (p)) = "0 (p), (b) period

independent periodic part Z(i, p, t), (c) period and phase independent part W(i, p, t)
and (d) relative phase sensitivity with respect to a, 6a(i, p, t).

Table 5.12: Results of the amplitude sensitivities for the neural oscillator.

Parameters a b T

For x1, ,(p) 0.4719 -0.1554 0.2092

For x 2 , '(p) 0.0653 -0.1256 -0.0222

For x 3 , %(p) 0.4783 -0.1617 0.2132

For x4, (p) 0.0673 -0.1274 -0.0210
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Chapter 6

Conclusions and Future Work

In this work, the theory for sensitivity analysis of oscillating hybrid systems (in par-

ticular, stable LCOs) is developed and discussed. A BVP is formulated for initial

conditions, period, period sensitivities and initial conditions for sensitivities. This

BVP is solved for a point on the limit cycle by using a PLC. The PLC defines

the time reference and starting point on the cycle with initial conditions for states

and sensitivities. A mathematical analysis of the initial-condition sensitivities and

parametric sensitivities is presented. Analysis of the solution of general homoge-

neous linear equations with linear piecewise periodic coefficients is used to obtain

an expression for the initial condition sensitivities in terms of fundamental matrices,

vector fields and event-time sensitivities for different transition times. This analysis

concludes that the monodromy matrix is different from a fundamental matrix evalu-

ated after one period for limit cycles of hybrid systems. Also, a decomposition of the

initial condition sensitivity matrix is done into periodic and decaying parts based on

this analysis. An expression for the general parametric sensitivity equations for limit

cycles of hybrid systems is also obtained. This expression and difference equation

analysis suggests a decomposition of the parametric sensitivities into an unbounded

part (period dependent) and a periodic part (period independent). For simple LCOs

in hybrid systems this periodic part can further be decomposed into two parts which

affect shape (independent of the PLC) and phase of the limit-cycle, respectively. This

provides a useful framework for calculating relevant quantities such as peak-to-peak
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sensitivities similar to regular oscillating systems. The trajectory sensitivity and its

three part decomposition provides valuable insights into the influence of parameters

on the dynamic behavior of oscillating hybrid systems. This is illustrated by applying

the analysis to some simple examples.

However, although this analysis covers LCOs in hybrid systems very well, there

is still a need for a separate analysis for other types of oscillators, such as NLCOs

and intermediate-type oscillators. This work has focused on ODE embedded oscil-

lating hybrid systems which have continuous state variables, but a large number of

hybrid systems have discontinuities (jumps) in the states in practical applications.

There is a need for an extension of the theory of sensitivity analysis to such systems

(represented by DAEs) and applications. The relevant information given by the tra-

jectory sensitivity and its parts can be used in algorithms for different applications

such as parameter estimation, control system design, stability analysis and dynamic

optimization. This work forms a basis of the extension to these and other applications

of oscillating hybrid systems.
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Appendix A

Residual Subroutines provided to

DSL48SE

A.1 Residual Subroutine for Pressure Relief Valve

Hybrid System

C### This model implements Pressure Relief Valve Hybrid System

subroutine hybridO(neq,t,y,ydot,delta,ires,ichvar,rpar,ipar)

implicit none

integer neq,ires,ichvar,ipar(1)

double precision t,y(neq),ydot(neq),delta(neq),rpar(14)

double precision x,xdot

double precision R,Tf,V,k,Pa,Ps,Pr,Fin

integer ndsc, A,B

parameter (A=1,B=2)

common /DISCRETESTATES/ mode

integer mode

127



c### The discrete state is kept in common block and is written

c### to by the hybriddriver.f file

x = y(1)

xdot = ydot(1)

R = rpar(1)

Tf = rpar(2)

V = rpar(3)

k = rpar(4)

Pa = rpar(5)

Ps = rpar(6)

Pr = rpar(7)

Fin = rpar(8)

if (mode.eq.A.and.x.ge.Ps) then

mode = B

end if

if (mode.eq.B.and.x.le.Pr) then

mode = A

end if

c### Calculating Residuals

if (mode.eq.A) then

delta(1) = -xdot+R*Tf*Fin/V

else if (mode.eq.B) then

delta(1) = -xdot+R*Tf*(Fin-k*sqrt(x-Pa))/V

end if

128



c### Debug information

ires = 0

return

end

A.2 Residual Subroutine for Simple Switching Hy-

brid System

C### This model implements a Simple Switching Hybrid Systems

subroutine hybrido(neq,t,y,ydot,delta,ires,ichvar,rpar,ipar)

implicit none

integer neq,ires,ichvar,ipar(1)

double precision t,y(neq),ydot(neq),delta(neq),rpar(14)

double precision xl,x2,xldot,x2dot

double precision r,b,c

integer ndsc, A,BB,CC,D

parameter (A=1,BB=2,CC=3,D=4)

common /DISCRETESTATES/ mode

integer mode

c### The discrete state is kept in common block and is written

c### to by the hybriddriver.f file

x1 = y(1)

x2 = y(2)

x1dot = ydot(l)

x2dot = ydot(2)
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r = rpar(1)

b = rpar(2)

c = rpar(3)

if (mode.eq.A.and.xl.le.0.0) then

mode = BB

end if

if (mode.eq.BB.and.x2.ge.0.0) then

mode = CC

end if

if (mode.eq.CC.and.x2.ge.r) then

mode = D

end if

if (mode.eq.D.and.x2.le.0.0) then

mode = A

end if

c### Calculating Residuals

if (mode.eq.A) then

delta(1) = -xldot+x2

delta(2) = -x2dot-c*xl-b*x2

else if (mode.eq.BB) then

delta(1) = -xldot+x2

delta(2) = -x2dot-c*xl-b*x2

else if (mode.eq.CC) then

delta(1) = -xldot+0.0

delta(2) = -x2dot+1.0

else if (mode.eq.D) then

delta(1) = -xldot+x2
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delta(2) = -x2dot-c*xl-b*x2

end if

c### Debug information

ires = 0

return

end

A.3 Residual Subroutine for Planar Hybrid Sys-

tem

C### This model implements Planar Hybrid System

subroutine hybrido(neq,t,y,ydot,delta,ires,ichvar,rpar,ipar)

implicit none

integer neq,ires,ichvar,ipar(1)

double precision t,y(neq),ydot(neq),delta(neq),rpar(14)

double precision x1,x2,xldot,x2dot

double precision pl,p2

integer ndsc, A,B,C,D

parameter (A=1,B=2,C=3,D=4)

common /DISCRETESTATES/ mode

integer mode

c### The discrete state is kept in common block and is written

c### to by the hybriddriver.f file

x1 = y(1)

x2 = y(2)
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x1dot = ydot(1)

x2dot = ydot(2)

p1 = rpar(1)

p2 = rpar(2)

if (mode.eq.A.and.x2.le.0) then

mode = B

end if

if (mode.eq.B.and.xl.ge.0) then

mode = C

end if

if (mode.eq.CC.and.x2.ge.0) then

mode = D

end if

if (mode.eq.D.and.xl.le.0) then

mode = A

end if

c### Calculating Residuals

if (mode.eq.A) then

delta(1) = -xldot+xl*(1-sqrt(xl**2+x2**2))-x2*(2-

+ sqrt(xl**2+x2**2)-p2*xl/(sqrt(xl**2+x2**2)))

delta(2) = -x2dot+x2*(1-sqrt(xl**2+x2**2))+xl*(2-

+ sqrt(xl**2+x2**2)-p2*xl/(sqrt(xl**2+x2**2)))

else if (mode.eq.B) then

delta(1) = -xldot-pl*x1*(2-sqrt(xl**2+x2**2))-x2*(2-

+ sqrt(xl**2+x2**2)-p2*x1/(sqrt(xl**2+x2**2)))

delta(2) = -x2dot-pl*x2*(2-sqrt(xl**2+x2**2))+xl*(2-
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+ sqrt(xl**2+x2**2)-p2*xl/(sqrt(xl**2+x2**2)))

else if (mode.eq.C) then

delta(1) = -xldot-pl*xl*(2-sqrt(xl**2+x2**2))-x2*(2-

+ sqrt(xl**2+x2**2)-p2*xl/(sqrt(xl**2+x2**2)))

delta(2) = -x2dot-pl*x2*(2-sqrt(xl**2+x2**2))+xl*(2-

+ sqrt(xl**2+x2**2)-p2*xl/(sqrt(x1**2+x2**2)))

else if (mode.eq.D) then

delta(1) = -xldot+xl*(1-sqrt(xl**2+x2**2))-x2*(2-

+ sqrt(xl**2+x2**2)-p2*xl/(sqrt(xl**2+x2**2)))

delta(2) = -x2dot+x2*(1-sqrt(xl**2+x2**2))+xl*(2-

+ sqrt(xl**2+x2**2)-p2*xl/(sqrt(xl**2+x2**2)))

end if

c### Debug information

ires = 0

return

end

A.4 Residual Subroutine for Neural Oscillator

C### This model implements Neural Oscillator

subroutine hybridO(neq,t,y,ydot,delta,ires,ichvar,rpar,ipar)

implicit none

integer neq,ires,ichvar,ipar(1)

double precision t,y(neq),ydot(neq),delta(neq),rpar(14)

double precision x,xdot,x1,x2,x3,xldot,x2dot,x3dot

double precision aa,TT,bb,x4,x4dot

integer ndsc, A,B,C,D,E,F

parameter (A=1,B=2,C=3,D=4,E=5,F=6)
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common /DISCRETESTATES/ mode

integer mode

The discrete state is kept in common block and is written

to by the hybriddriver.f file

x1

x2

x3

x4

x1dot

x2dot

x3dot

x4dot

aa =

bb =

TT =

= y(1)

= y( 2 )

= y( 3 )

= y( 4 )

= ydot (1)

= ydot (2)

= ydot (3)

= ydot (4)

rpar (1)

rpar (2)

rpar (3)

if (mode.eq.A.and.x3.ge.0.0) then

mode = B

end if

if (mode.eq.B.and.xl.le.0.0) then

mode = C

end if

if (mode.eq.C.and.x3.le.0.36) then

mode = D

end if

if (mode.eq.D.and.xl.ge.0.0) then
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mode = E

end if

if (mode.eq.E.and.x3.le.0.0) then

mode = F

end if

if (mode.eq.F.and.xl.ge.0.45) then

mode = A

end if

c### Calculating Residuals

if (mode.eq.A) then

delta(1) = -xldot-10*(xl+bb*x2-1)

delta(2) = -x2dot+(10*(xl-x2))/TT

delta(3) = -x3dot-10*(aa*xl+x3+bb*x4-1)

delta(4) = -x4dot+(10*(-x4))/TT

else if (mode.eq.B) then

delta(1) = -xldot-10*(xl+aa*x3+bb*x2-1)

delta(2) = -x2dot+(10*(xl-x2))/TT

delta(3) = -x3dot-10*(aa*xl+x3+bb*x4-1)

delta(4) = -x4dot+(10*(x3-x4))/TT

else if (mode.eq.C) then

delta(1) = -xldot-10*(xl+aa*x3+bb*x2-1)

delta(2) = -x2dot+(10*(-x2))/TT

delta(3) = -x3dot-10*(x3+bb*x4-1)

delta(4) = -x4dot+(10*(x3-x4))/TT

else if (mode.eq.D) then

delta(1) = -xldot-10*(xl+aa*x3+bb*x2-1)

delta(2) = -x2dot+(10*(-x2))/TT

delta(3) = -x3dot-10*(x3+bb*x4-1)

delta(4) = -x4dot+(10*(x3-x4))/TT
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else if (mode.eq.E) then

delta(1) = -xtdot-10*(xl+aa*x3+bb*x2-1)

delta(2) = -x2dot+(10*(xl-x2))/TT

delta(3) = -x3dot-10*(aa*xl+x3+bb*x4-1)

delta(4) = -x4dot+(10*(x3-x4))/TT

else if (mode.eq.F) then

delta(1) = -xldot-10*(xl+bb*x2-1)

delta(2) = -x2dot+(10*(xl-x2))/TT

delta(3) = -x3dot-10*(aa*xl+x3+bb*x4-1)

delta(4) = -x4dot+(10*(-x4))/TT

end if

c### Debug information

ires = 0

return

end
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