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Résumé

Nous rappelons d’abord le concept d’algèbre de Kleene avec domaine (AKD). Puis,

nous expliquons comment utiliser les opérateurs des AKD pour définir un ordre partiel

appelé raffinement démoniaque ainsi que d’autres opérateurs démoniaques (plusieurs de

ces définitions proviennent de la littérature). Nous cherchons à comprendre comment se

comportent les AKD munies des opérateurs démoniaques quand on exclut les opérateurs

angéliques usuels. C’est ainsi que les propriétés de ces opérateurs démoniaques nous

servent de base pour axiomatiser une algèbre que nous appelons Algèbre démoniaque

avec domaine et opérateur t-conditionnel (ADD-G•). Les lois des ADD-G• qui ne con-

cernent pas l’opérateur de domaine correspondent à celles présentées dans l’article Laws

of programming par Hoare et al. publié dans la revue Communications of the ACM en

1987.

Ensuite, nous étudions les liens entre les ADD-G• et les AKD munies des opérateurs

démoniaques. La question est de savoir si ces structures sont isomorphes. Nous

démontrons que ce n’est pas le cas en général et nous caractérisons celles qui le sont.

En effet, nous montrons qu’une AKD peut être transformée en une ADD-G• qui peut

être transformée à son tour en l’AKD de départ. Puis, nous présentons les conditions

nécessaires et suffisantes pour qu’une ADD-G• puisse être transformée en une AKD qui

peut être transformée à nouveau en l’ADD-G• de départ.

Les conditions nécessaires et suffisantes mentionnées précédemment font intervenir

un nouveau concept, celui de décomposition. Dans un contexte démoniaque, il est

difficile de distinguer des transitions qui, à partir d’un même état, mènent à des

états différents. Le concept de décomposition permet d’y arriver simplement. Nous

présentons sa définition ainsi que plusieurs de ses propriétés.



Abstract

We first recall the concept of Kleene algebra with domain (KAD). Then we explain

how to use the operators of KAD to define a demonic refinement ordering and demonic

operators (many of these definitions come from the literature). We want to know how

do KADs with the demonic operators but without the usual angelic ones behave. Then,

taking the properties of the KAD-based demonic operators as a guideline, we axiomatise

an algebra that we call Demonic algebra with domain and t-conditional (DAD-G•). The

laws of DAD-G• not concerning the domain operator agree with those given in the 1987

Communications of the ACM paper Laws of programming by Hoare et al.

Then, we investigate the relationship between DAD-G• and KAD-based demonic

algebras. The question is whether every DAD-G• is isomorphic to a KAD-based demonic

algebra. We show that it is not the case in general. However, we characterise those

that are. Indeed, we demonstrate that a KAD can be transformed into a DAD-G•

which can be transformed back into the initial KAD. We also establish necessary and

sufficient conditions for which a DAD-G• can be transformed into a KAD which can be

transformed back into the initial DAD-G•.

Finally, we define the concept of decomposition. This notion is involved in the

necessary and sufficient conditions previously mentioned. In a demonic context, it is

difficult to distinguish between transitions that, from a given state, go to different

states. The concept of decomposition enables to do it easily. We present its definition

together with some of its properties.
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passion et la même rigueur, que ce soit dans les moments de grande réussite ou dans les
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étape de ce travail.
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Chapter 1

Introduction

In software engineering and in computer science (as well as in many other fields of engi-

neering), the notion of refinement is omnipresent [Som06]. Indeed, program refinement

is behind many practical approaches that are used for developing software systems. In

theoretical computer science, formal methods are interested in many questions includ-

ing program refinement and how it can be used to improve automatic code generation.

Since one of the basis of theoretical computer science is mathematics, formal methods

study refinement via mathematical tools. For this task, many algebraic structures have

been introduced throughout the last decades.

These structures encapsulate refinement via a partial order operator. The follow-

ing list gives an idea of how a structure can mathematically represent operations on

programs. Generally,

• an addition operator or supremum operator (+, t or H) denotes non-deterministic

choice,

• a multiplication operator (·, “;” or 2) denotes sequential composition,

• a unary exponent operator (∗, ω or ×) denotes finite (or infinite) iteration

• and an inequality symbol (≤, v or E) denotes refinement. Usually

x ≤ y ⇐⇒ x+ y = y

so that x refines y means that a non-deterministic choice between x and y is

equivalent to y.
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There is more than one such structure, each of them having its intended model and

each of them representing a particular semantics of programs. Among other aspects,

these algebraic structures handle angelic or demonic semantics. The expression “angelic

semantics” may intuitively be thought of as the set of all possible behaviours, while the

expression “demonic semantics” may be viewed as the set of all behaviours that can be

guaranteed.

Moreover, some structures make it possible to analyse program semantics in a

partial-correctness framework and others in a total-correctness framework. Partial-

correctness means that the models of the structure focus only on transitions of a program

that initialise and terminate successfully. Total-correctness means that the structure

focuses on all possible transitions of a program, even those that do not lead to successful

termination.

1.1 Three Algebraic Structures

The first structure worth mentioning is relation algebra (RA) [SS93, Tar41]. It is a

structure that has relations as its intended model. Its axioms are satisfied by the usual

operators on relations. Suppose a context where there are five possible states for a

program P. Note S5 = {1, 2, 3, 4, 5} the set of possible states and suppose that P is

represented by the relation {(1, 1), (1, 4), (2, 5), (3, 2)}. It means that the program P

has four possible behaviours.

1. From state 1, it may either stay there

2. or go to state 4,

3. from state 2, it can only go to state 5

4. and from state 3, it can only go to state 2.

From other states, there is no possible action.

Intuitively1, one can think of relations as subsets of S × S for a set of states S.

The program interpretation of the usual operators on relations is as follows. Union (∪)

stands for non-deterministic choice, composition of relations (;) stands for sequential

1RA admits non representable models, but for the needs of this introduction, we only consider
representable ones.
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composition, reflexive transitive closure (∗) stands for finite iteration and inclusion (⊆)

stands for program refinement. Having in mind the previous three paragraphs, one can

see that RA deals with angelic semantics in a partial-correctness framework.

Another well-known structure is Kleene algebra (KA) [Con71, Koz94]. Its canonical

model is that of regular languages [Bro89]. Union of languages is represented by the

operator +, concatenation of languages is represented by the operator ·, the closure of

languages is represented by the operator ∗ and inclusion of languages is represented by

the partial order ≤. KA enables to model non-deterministic choice, program sequence,

finite iteration and program refinement. It turns out that KA admits relations as a

model too and it is also used for giving angelic semantics of programs in a partial-

correctness framework. KA was extended to Kleene algebra with tests (KAT) [Koz97],

which has been extended to Kleene algebra with domain (KAD) [DMS04, DMS06b,

DMT06]. KAD has a domain operator that gives a grip on the inputs of the program

(which is a useful tool). For the purpose of this introduction, we do not say more

about it (see Chapter 2 for details), but we mention the name here for completeness.

The intuition of regular languages or relations remains the best one for KA and its

extensions.

In parallel to the study of relations, predicate transformers were introduced [Dij76].

Considering a fixed set of states S, one can see a predicate as a subset of S. We denote

the set of subsets of S by ℘(S). A predicate transformer is then a function of type

℘(S) −→ ℘(S). Suppose a context where there are three possible states for a program

P. Denote by S3 = {1, 2, 3} the set of states and suppose that P is represented by the

predicate transformer

T : ℘ (S3) −→ ℘ (S3)

{} 7→ {}
{1} 7→ {1}
{2} 7→ {}
{3} 7→ {2}

{1, 2} 7→ {1}
{1, 3} 7→ {1, 2}
{2, 3} 7→ {2}

{1, 2, 3} 7→ {1, 2, 3} .

An association A 7→ B has the following interpretation: to ensure that the program P

terminates in any state of A, it must start in a state of B.

• The association {1} 7→ {1} means that to terminate in state 1, the program P
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must start in state 1.

• The association {2} 7→ {} means that there is no state from which the program

P necessarily goes to state 2.

• The association {2, 3} 7→ {2} means that to terminate in either of states 2 or 3,

the program P must start in state 2.

• The association {1, 3} 7→ {1, 2} means that to terminate in either of states 1 or

3, the program P must start either in state 1 or 2.

Now take any two predicate transformers T1 : ℘ (S3) −→ ℘ (S3) and T2 : ℘ (S3) −→
℘ (S3). Here is a description of some operators on predicate transformers.

• The supremum operator H is such that (T1 H T2)(p) = T1(p) ∩ T2(p) for all p ∈
℘ (S3).

• The composition operator is (T12T2)(p) = T1(T2(p)) for all p ∈ ℘ (S3).

• For now, the easiest way to describe the iteration operator on a predicate trans-

former T : ℘ (S3) −→ ℘ (S3) is

T× = 1 H T H (T 2T ) H (T 2T 2T ) ,

where 1, defined by 1(p) = p for all p ∈ ℘ (S3), is the identity for the composition

operator. This iteration operator is then a finite iteration operator since it iter-

ates T no more than three times. Note that this definition is only valid for S3.

The general definition (including the case where S is infinite) of T× involves the

calculation of the least fixpoint of a well-chosen function. For the time being, we

skip the details.

• We write T1 E T2 when T2(p) ⊆ T1(p) for all p ∈ ℘ (S3).

With this interpretation, predicate transformers give demonic semantics of programs in

a total-correctness framework.

Recently, Von Wright defined demonic refinement algebra (DRA) [vW04]. This

structure has the positively conjunctive predicate transformers2 as its intended model.

2Let I 6= {} be an index set. A predicate transformer T over a set of states S is positively conjunctive
if

T

(⋂
i∈I

pi

)
=
⋂
i∈I

T (pi) ,

where pi ∈ ℘(S).
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In addition to the finite iteration operator, it includes an infinite iteration operator ω

related to the calculation of the greatest fixpoint of a well-chosen function. DRA has

been extended to demonic refinement algebra with enabledness (DRAe) [Sol07, SvW06].

The name of this operator (enabledness operator) reflects its semantic interpretation

in the realm of programs and its axiomatisation is inspired by that of the domain

operator of KAD. For the purpose of this introduction, we do not say more about it

(see [DD06c, DD08b, Sol07, SvW06] for details or Section 6.2 for a brief presentation).

The intuition of positively conjunctive predicate transformers remains the best one for

DRA and DRAe.

1.2 The Meeting Point of Two Parallel Lines

Relations and predicate transformers seem to be the “opposite” of each other. Relations

represent an angelic semantics of programs in a partial-correctness framework and they

model the states where a program may go from a given state. Predicate transformers

represent a demonic semantics of programs in a total-correctness framework and they

model the states from which a program is guaranteed to get to a given state.

However, work has been done to bring together angelic and demonic semantics.

For instance, demonic operators were defined in RA from the angelic ones [BvdW93,

BZ86, DBS+95, DMN97, Kah01, Mad96, TD99]. Demonic operators were defined from

the angelic ones in KAD too [DMT00, DMT06]. It is worth mentioning since, as said

previously, relations are also a model of KAD. Other works relating angelic and demonic

semantics have been published [BvW92, MCR07, Sol07]. At the moment, no algebraic

structure has relations with demonic operators (or KAD with demonic operators) as its

intended model.

It turns out that relations and predicate transformers can be connected. Take

S2 = {1, 2}. The lattice of relations over S2 has the shape of the one of Figure 1.1.

This lattice might be seen as a model of RA as well as a model of KAD. By ordering

the same relations but with demonic refinement (which can be defined from the angelic

operators in RA), one gets a semilattice of the shape of the one of Figure 1.2. As

mentioned before, no algebraic structure has relations with demonic operators as its

intended model. The lattice of positively conjunctive predicate transformers over S2

has the shape of the one of Figure 1.3. This lattice might be seen as a model of DRAe.

Looking carefully at these three semilattices, one can gather them in the lattice of

Figure 1.4.
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Figure 1.1: Lattice of relations over S2 ordered by angelic refinement.
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Even though the lattice of Figure 1.4 is not a complete surprise, it raises questions.

• Is there a similar connection when S is any (finite or infinite) set of states?

• Is there a similar connection between KAD, RA and DRAe in general rather than

just between some of their models?

• Is it possible to describe this connection in an algebraic way?

1.3 Contributions

In [DD06c, DD08b], we show that, under suitable hypotheses, every DRAe is isomorphic

to an algebra of ordered pairs of elements of a KAD. This establishes an algebraic

connection between the bottom part of the lattice and the whole lattice —refer to

Figure 1.4. We are going to present a general survey of this result in Section 6.2.

In this thesis (as well as in [DD06a, DD06b, DD08a]),

1. To those demonic operators that were defined in the context of KAD, we add two

new ones: the demonic iteration operator ×A and the t-conditionnal operator GA•.

2. We demonstrate many properties of the demonic iteration operator and the t-

conditionnal operator.

3. We define an algebraic structure called demonic algebra with domain and t-

conditional (DAD-G•) that has KAD with demonic operators as its intended model

(so that the semilattice of Figure 1.2 might be seen as a model of DAD-G•).

4. We prove the independence of many axioms of DAD-G• by means of appro-

priate counter-examples. Many of these counter-examples were generated by

Mace4 [Mac], an automated theorem prover system that generates finite (coun-

ter)models from first-order axioms.

5. We demonstrate many properties of DAD-G•.

6. We define angelic operators from the demonic ones of DAD-G•.

7. We demonstrate that, under suitable hypotheses, DAD-G• together with the afore-

mentioned angelic operators form a KAD.
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KAD

DAD-G•

DAD-G•
with

decomposable
elements

@@R
F

@@I
G

Figure 1.5: Representation of the duality between KAD and DAD-G•.

8. We demonstrate that a KAD can be transformed into a DAD-G• which can be

transformed back into the initial KAD. We also demonstrate that, under suitable

hypotheses, a DAD-G• can be transformed into a KAD which can be transformed

back into the initial DAD-G•. Consequently, under the same suitable hypotheses,

one can see DAD-G• as a dual of KAD. This duality is an algebraic connection

between the bottom part and the upper part of the lattice of Figure 1.4 for

any model of KAD. Showing it is the ultimate goal of this text. The suitable

hypotheses mentioned above are related to the notion of decomposable elements

and we skip the details for this introduction. Figure 1.5 gives a picture of the

duality between KAD and DAD-G•.

In [DD06c, DD08b], we also establish, under suitable hypotheses, an algebraic con-

nection between the upper part of the lattice and the whole lattice —refer to Figure 1.4.

1.4 Plan of the Thesis

There are two kinds of tasks we have to accomplish. Firstly, the lower part of the

lattice, the upper part of the lattice and the whole lattice of Figure 1.4 must have an

algebraic foundation. In other words, we have to define three algebraic structures, each
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one of them having one part of the lattice as its intended model. KAD is an algebraic

foundation for the lower part, DAD-G• is an algebraic foundation for the upper part,

and DRAe is an algebraic foundation for the whole lattice. Secondly, we have to define

transformations from any part of the lattice to any other part of the lattice. In this

thesis, we mainly concentrate on the bottom part and the upper part. The treatment

of the whole lattice will only be skimmed over.

Here is how the thesis is divided. At first, in Chapter 2, we recall the definitions of

Kleene algebra (KA) and its extensions, Kleene algebra with tests (KAT) and Kleene

algebra with domain (KAD). This chapter also contains the definitions of the usual

demonic operators in terms of the KAD’s operators. To these operators, we add two

new demonic ones and we derive new simple results about all of them. The chapter

concludes with a fundamental theorem stating that the elements of a KAD together with

the demonic operators form a demonic algebra with domain and t-conditional (defined

in the following chapter). It is the first step toward the desired duality.

Secondly, in Chapter 3, we present a new structure called demonic algebra (DA) and

its extensions, demonic algebra with tests (DAT), demonic algebra with domain (DAD)

and demonic algebra with domain and t-conditional (DAD-G•). We also demonstrate

many results about these structures.

Thirdly, in Chapter 4, we define angelic operators from DAD-G•’s operators. In

order to do so, we need to define decomposable elements. These are indispensable for the

definition of angelic composition. Once angelic operators are defined, we present major

results about them and about decomposable elements. The chapter concludes with

a fundamental theorem stating that the decomposable elements of a DAD-G• together

with the angelic operators form a KAD. It is the second step toward the desired duality.

Then, in Chapter 5, we define —refer to Figure 1.5— functions F and G such that

F(K) is a DAD-G• for each KAD K and, under suitable conditions, G(A) is a KAD

for each DAD-G• A. Then, we demonstrate that (under the same suitable conditions)

G ◦ F is the identity on any KAD K and F ◦ G is the identity on any DAD-G• A. It is

the third and last step toward the desired duality.

In Chapter 6, we present a short discussion about two different algebras of ordered

pairs. The first algebra helps understand models of DAD-G•. The second one was

defined in [DD06c, DD08b] and it is behind an algebraic connection between the bottom

part of the lattice and the whole lattice of Figure 1.4.

We finally conclude in Chapter 7.



Chapter 2

Kleene Algebra with Domain and

KAD-based Demonic Operators

We explained in the introduction that the ultimate goal of this thesis is to establish an

algebraic connection —a duality— between the lower part and the upper part of the

lattice of Figure 1.4. In order to do so, we need an algebraic description of each part.

In this chapter, we present algebraic foundations for the lower part of the lattice of

Figure 1.4. Indeed, we recall basic definitions about Kleene algebra (KA) (Section 2.1)

and its extensions, Kleene algebra with tests (KAT) (Section 2.2) and Kleene algebra

with domain (KAD) (Section 2.3).

Then we present the KAD-based definition of the demonic operators (Section 2.4)

together with crucial properties they satisfy (Section 2.5). It prepares the ground for

Chapter 3 where we present algebraic foundations for the upper part of the lattice of

Figure 1.4. It is the first step toward the desired duality (refer to Section 1.3).

2.1 Kleene Algebra

In this section, we present the concept of Kleene algebra (KA) and we discuss some of

its axioms. Initially, different variants of KA were introduced by Conway [Con71], but

since then, one of them has become well known, thanks to Kozen [Koz94]. This is the

one we present in this section and use throughout this thesis.
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Definition 2.1 (Kleene algebra). A Kleene algebra (KA) is a structure K = (K,+, ·, ∗,
0, 1) such that the following properties hold for all x, y, z ∈ K.

(x+ y) + z = x+ (y + z) (2.1)

x+ y = y + x (2.2)

x+ x = x (2.3)

0 + x = x (2.4)

(x · y) · z = x · (y · z) (2.5)

0 · x = x · 0 = 0 (2.6)

1 · x = x · 1 = x (2.7)

x · (y + z) = x · y + x · z (2.8)

(x+ y) · z = x · z + y · z (2.9)

x∗ = x∗ · x+ 1 (2.10)

Addition induces a partial order ≤ such that, for all x, y ∈ K,

x ≤ y ⇐⇒ x+ y = y . (2.11)

Finally, the following properties must be satisfied for all x, y, z ∈ K.

x · z + y ≤ z =⇒ x∗ · y ≤ z (2.12)

z · x+ y ≤ z =⇒ y · x∗ ≤ z (2.13)

Remark 2.2. Hollenberg has shown that the following symmetric version of (2.10),

x∗ = x · x∗ + 1 , (2.14)

is derivable from these axioms [Hol96]. The converse is true. Indeed, if (2.10) were re-

placed by (2.14) in the axiomatisation of KA, then (2.10) would be derivable from these

axioms. Moreover, Kozen has shown in [Koz90] that (2.12) and (2.13) are independent.

Also, one can show x∗ = µ≤(y :: y · x + 1) with (2.7), (2.10) and (2.13), and

x∗ = µ≤(y :: x · y + 1) with (2.7), (2.14) and (2.12).

Finally, in the presence of the other axioms, (2.12) and (2.13) are equivalent to the

following two.

x · z ≤ z =⇒ x∗ · z ≤ z (2.15)

z · x ≤ z =⇒ z · x∗ ≤ z (2.16)

The natural model of KA is regular languages. However, it is the study of relational

models of KA that led us to the lattice of Figure 1.4 and inspired us for the present

work. This is why, throughout this thesis, we elude regular languages.
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Figure 2.1: Relation algebra over the set S2 ordered by ⊆.

Consider the relations over the set S2 = {1, 2}. Interpreting + as union (∪), · as

composition of relations (;), ∗ as reflexive transitive closure, 0 as {}, 1 as {(1, 1), (2, 2)}
and ≤ as inclusion (⊆), one gets a model of KA. Figure 2.1 displays the Boolean matrix

representation of the lattice of these relations ordered by ⊆. It is a more detailed version

of Figure 1.1.

2.2 Kleene Algebra with Tests

KA, as defined in the previous section, is itself an algebraic foundation of the lower

part of the lattice of Figure 1.4. However, as we mentioned earlier, we want to define

demonic operators in the context of KA. For this matter (see Section 2.4), we need a

domain operator that cannot be defined without the concept of test.

Of course, at first, the purpose of tests was not to define a domain operator. His-
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Program Semantics

abort 0

skip 1

x[]y x+ y

x; y x · y
if t then x else y t · x+ ¬t · y
while t do x (t · x)∗ · ¬t

Table 2.1: Angelic semantics of programs in KAT.

torically, tests have been firstly introduced to reason about programs. Indeed, a test

can be seen as a precondition that must be true in order to enable a program to be

executed.

Hence we present the definition of Kleene algebra with tests (KAT). It was first

proposed by Kozen [Koz97].

Definition 2.3 (Kleene algebra with tests). A Kleene algebra with tests (KAT) is

a structure K = (K, test(K),+, ·, ∗, 0, 1,¬) such that test(K) ⊆ {t : K | t ≤ 1},
(K,+, ·, ∗, 0, 1) is a KA and (test(K),+, ·,¬, 0, 1) is a Boolean algebra.

In the sequel, we use the letters w, x, y, z for arbitrary elements of a KA and s, t, u, v

for tests. In proofs and discussions, we use the hint “Boolean algebra” to indicate

application of any Boolean properties of tests.

The usual semantics of programs as given by KAT is shown in Table 2.1, where

x[]y is the non-deterministic choice between x and y. Note that in this table, we use

the letters t, x and y for elementary programs as well as for their semantics. Having

in mind the relational model, one can see that this semantics focuses on the set of all

possible behaviours. This interpretation is pictured in the following example. Suppose

there are four possible states for programs P1 and P2. Note S4 = {1, 2, 3, 4} the set of

possible states and suppose that P1 and P2 are respectively represented by the relations

x = {(1, 1), (1, 4), (2, 4), (3, 2)} and y = {(2, 1), (2, 3), (3, 4)}. Now take the test t =

{(1, 1), (3, 3)}. We have

if t then P1 else P2 = if t then x else y

= t · x+ ¬t · y
= {(1, 1), (3, 3)} · {(1, 1), (1, 4), (2, 4), (3, 2)}+

¬{(1, 1), (3, 3)} · {(2, 1), (2, 3), (3, 4)}



Chapter 2. Kleene Algebra with Domain and KAD-based Demonic Operators 16

= {(1, 1), (3, 3)} · {(1, 1), (1, 4), (2, 4), (3, 2)}+

{(2, 2), (4, 4)} · {(2, 1), (2, 3), (3, 4)}
= {(1, 1), (1, 4), (3, 2)}+ {(2, 1), (2, 3)}
= {(1, 1), (1, 4), (2, 1), (2, 3), (3, 2)}

which is the set of all possible behaviours. It is now easy to see that the semantics

presented in Table 2.1 are angelic ones.

2.3 Kleene Algebra with Domain

It is useful to have a grip on the inputs of the aforementioned programs. The domain

operator encapsulates the necessary properties. Moreover, it is an essential operator in

the definition of demonic operators in the context of KA (see Section 2.4).

Here is the definition of Kleene algebra with domain (KAD) as defined by Desharnais,

Möller, Struth and Tchier [DMS04, DMS06b, DMT06].

Definition 2.4 (Kleene algebra with domain). A Kleene algebra with domain (KAD)

is a structure K = (K, test(K),+, ·, ∗, 0, 1,¬, p ) such that (K, test(K),+, ·, ∗, 0, 1,¬) is

a KAT and, for all x ∈ K and all t ∈ test(K),

x ≤ px · x , (2.17)

p(t · x) ≤ t , (2.18)

p(x · py) ≤ p(x · y) . (2.19)

Remark 2.5. It turns out that these axioms force the test algebra test(K) to be the

maximal Boolean algebra included in {t : K | t ≤ 1} (see [DMS06b]).

Note that (2.19) is satisfied for relation algebras1. It is called locality . However,

there are KATs where it does not hold. Indeed, the following counter-example appears

in [DM01].

Example 2.6. Take K = {0, 1, a, b} and test(K) = {0, 1}. The operators defined by

the following tables make (K, test(K),+, ·, ∗, 0, 1,¬) a KAT.

+ 0 1 a b

0 0 1 a b

1 1 1 b b

a a b a b

b b b b b

· 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a 0 a

b 0 b a b

∗

0 1

1 1

a b

b b

¬
0 1

1 0

p

0 0

1 1

a 1

b 1

1For a relation R on a set S, pR = {(s, s) : S × S | (∃ t : S | (s, t) ∈ R)}.
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Figure 2.2: Hasse diagram of Example 2.6.

The refinement ordering corresponding to + is represented in the lattice of Fig-

ure 2.2. It turns out that the present algebra is a KAT where (2.17) and (2.18) hold

but not (2.19). Indeed, p(a · pa) = 1 6≤ 0 = p(a · a).

Here is an illustration of the domain operator for the familiar model of relations.

p{(0, 0), (0, 1), (2, 1)} = {(0, 0), (2, 2)}
p{(0, 0), (0, 1), (0, 2)} = {(0, 0)}

p{} = {}

Hence the domain operator gives the states (represented by an appropriate test) from

which there is a possible transition.

There are many properties about KA, KAT and KAD and we gather those that will

be used later on in the following proposition. See [DMS06b, DMT06, Koz94] for proofs.

Proposition 2.7. Let K be a KAD. The following laws hold for all x, y ∈ K and all

t ∈ test(K).

1. (x+ y)∗ = (x∗ · y)∗ · x∗

2. (x+ y)∗ = x∗ · (y · x∗)∗

3. x = y ⇐⇒ t · x = t · y ∧ ¬t · x = ¬t · y

4. x = y ⇐⇒ x · t = y · t ∧ x · ¬t = y · ¬t

5. px = min≤{t : test(K) | t · x = x}

6. px · x = x

7. px ≤ t ⇐⇒ x ≤ t · x

8. p(x · py) = p(x · y)
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9. ¬px · x = 0

10. pt = t

11. p(t · x) = t · px

12. p(x · y) ≤ px

13. p(x+ y) = px+ py

14. x ≤ y =⇒ px ≤ py

15. p(x · t) ≤ t ⇐⇒ p(x∗ · t) ≤ t

16. p(x∗) = 1

The following operator characterises the set of states from which no computation

as described by x may lead outside the domain of y. It facilitates the presentation and

the comprehension of further definitions and results.

Definition 2.8 (KA-implication). Let K be a KAD and take x, y ∈ K. The KA-

implication x→ y is defined by

x→ y = ¬p(x · ¬py) .

2.4 KAD-Based Demonic Operators

We are now ready to introduce demonic operators in the context of KAD. What do

we need them for? When we constructed the upper part of the lattice displayed in

Figure 1.4 in the introduction, we took the elements of the bottom part of the same

lattice and we (partially-)ordered them by demonic refinement. Those elements are

relations and it is possible to define not only demonic refinement on them, but many

demonic operators (see [BvdW93, BZ86, DBS+95, DMN97, Kah01, Mad96, TD99]).

What we are trying to develop is an algebraic description of the lattice of Figure 1.4

and of its connections, but for any model of KAD. Therefore, we need to look at the

definition of demonic operators, but from now, in the context of KAD. Most of them

were defined in [DMT00, DMT06].

Here is the definition of demonic refinement.
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Definition 2.9 (Demonic refinement). Let K be a KAD and take x, y ∈ K. We say

that x refines y, noted x EA y, when

py ≤ px ,

py · x ≤ y .

The subscript A in EA indicates that the demonic refinement is defined with the

operators of the angelic world. An analogous notation will be introduced when we

define angelic operators in the demonic world.

This definition can be simply illustrated with relations. Let Q = {(1, 2), (2, 4)}
and R = {(1, 2), (1, 3)}. Then pR = {(1, 1)} ⊆ {(1, 1), (2, 2)} = pQ. Since in addition

pR ·Q = {(1, 2)} ⊆ R, we have Q EA R.

The following proposition helps understand the definition of EA (see [DMT06] for

proof).

Proposition 2.10 (Demonic upper semilattice).

1. The relation EA defined in KAD is a partial order and it induces an upper semi-

lattice with demonic join HA:

x EA y ⇐⇒ x HA y = y .

2. Demonic join satisfies the following two properties.

x HA y = px · py · (x+ y)

p(x HA y) = px HA py = px · py

Remark 2.11. Note that for all s, t ∈ test(K),

s EA t ⇐⇒ t ≤ s .

Figure 2.3 represents the relations over the set S2 = {1, 2} ordered by EA. It is

a more detailed version of Figure 1.2. It can also be seen as the demonic version of

Figure 2.1.

Then we present the definition of demonic composition. The way it is defined

corresponds to doing the composition of x by y, but without those states from which

x may lead outside the domain of y. This last sentence reminds of the KA-implication

operator (see Definition 2.8) and this is not a coincidence.
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Figure 2.3: Relation algebra over the set S2 = {1, 2} ordered by EA.

Definition 2.12 (Demonic composition). Let K be a KAD and take x, y ∈ K. The

demonic composition of x and y, written x 2A y, is defined by

x 2A y = (x→ y) · x · y .

Again using relations, we illustrate this definition. Let Q = {(1, 2), (1, 4), (2, 3),

(4, 1)}, R = {(1, 1), (2, 4)} and suppose the state space is S4 = {1, 2, 3, 4}. Then

Q→ R = {(1, 2), (1, 4), (2, 3), (4, 1)} → {(1, 1), (2, 4)}
= ¬p({(1, 2), (1, 4), (2, 3), (4, 1)} · ¬p{(1, 1), (2, 4)})
= ¬p({(1, 2), (1, 4), (2, 3), (4, 1)} · ¬{(1, 1), (2, 2)})
= ¬p({(1, 2), (1, 4), (2, 3), (4, 1)} · {(3, 3), (4, 4)})
= ¬p{(1, 4), (2, 3)}
= ¬{(1, 1), (2, 2)}
= {(3, 3), (4, 4)}

so

Q 2A R = (Q→ R) ·Q ·R



Chapter 2. Kleene Algebra with Domain and KAD-based Demonic Operators 21

= {(3, 3), (4, 4)} · {(1, 2), (1, 4), (2, 3), (4, 1)} · {(1, 1), (2, 4)}
= {(3, 3), (4, 4)} · {(1, 4), (4, 1)}
= {(4, 1)} .

There are many properties about KA-implication and demonic composition and

we gather those that will be used later on in the following proposition. See [DMT00,

DMT06] for proofs.

Proposition 2.13. Let K be a KAD. The following laws hold for all x, y, z ∈ K and

all t ∈ test(K).

1. x 2A (y 2A z) = (x 2A y) 2A z

2. t 2A x = t · x

3. py = 1 =⇒ x 2A y = x · y

4. p(x 2A y) = (x→ y) · px

5. x→ y = x→ py

6. (x→ y) · x = (x→ y) · x · py

7. (x · y) → z = x→ (y → z)

8. t ≤ x→ t ⇐⇒ t ≤ x∗ → t

9. x ≤ y =⇒ y → z ≤ x→ z

10. y ≤ z =⇒ x→ y ≤ x→ z

11. x 2A y ≤ x · y

12. x EA y =⇒ x 2A z EA y 2A z

13. x EA y =⇒ z 2A x EA z 2A y

In this section, we are defining a demonic version of the usual operators of KAD.

Knowing that x∗ = µ≤(y :: y · x + 1) (see Remark 2.2), the demonic version of the

Kleene star ought to be x×A = µEA
(y :: y 2A x HA 1). This is the object of the following

definition, lemma and proposition.

Definition 2.14 (Demonic iteration operator). Let K be a KAD and take x ∈ K. The

demonic iteration operator ×A is defined by x×A = x∗ 2A px.
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Lemma 2.15. Let K be a KAD and take x ∈ K. Then

p(x×A) = x∗ → px .

Proof :

p(x×A)

= 〈 by Definition 2.14 〉

p(x∗ 2A px)

= 〈 by Proposition 2.13-4 〉

(x∗ → px) · p(x∗)
= 〈 by Proposition 2.7-16 and Boolean algebra 〉

x∗ → px

2

Proposition 2.16. Let K be a KAD and take x, y, z ∈ K.

1. x×A = x×A 2A x HA 1

2. x 2A z EA z =⇒ x×A 2A z EA z

3. z 2A x EA z =⇒ z 2A x
×A EA z

4. x 2A z HA y EA z =⇒ x×A 2A y EA z

5. z 2A x HA y EA z =⇒ y 2A x
×A EA z

Proof :

1. x×A 2A x HA 1

= 〈 by Definition 2.14 and Proposition 2.13-1 〉

x∗ 2A (px 2A x) HA 1

= 〈 by Propositions 2.13-2 and 2.7-6 〉

x∗ 2A x HA 1
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= 〈 by Propositions 2.10 and 2.7-10, and (2.7) 〉

p(x∗ 2A x) · (x∗ 2A x+ 1)

= 〈 by Proposition 2.13-4 and Definition 2.12 〉

(x∗ → x) · p(x∗) · ((x∗ → x) · x∗ · x+ 1)

= 〈 by Proposition 2.7-16 and (2.7) 〉

(x∗ → x) · ((x∗ → x) · x∗ · x+ 1)

= 〈 by (2.8) and Boolean algebra 〉

(x∗ → x) · (x∗ · x+ 1)

= 〈 by (2.10) 〉

(x∗ → x) · x∗

= 〈 by Propositions 2.13-6 and 2.7-6 〉

(x∗ → x) · x∗ · px
= 〈 by Definitions 2.12 and 2.14 〉

x×A

2. x×A 2A z EA z

⇐⇒ 〈 by Definition 2.14 and Proposition 2.13-1 〉

x∗2(px 2A z) EA z

⇐⇒ 〈 by Proposition 2.13-2 〉

x∗ 2A (px · z) EA z

⇐⇒ 〈 by Definition 2.9 〉

pz ≤ p(x∗ 2A (px · z)) ∧ pz · (x∗ 2A (px · z)) ≤ z

⇐⇒ 〈 by Proposition 2.13-4 and Definition 2.12 〉

pz ≤ (x∗ → (px · z)) · p(x∗) ∧ pz · (x∗ → (px · z)) · x∗ · px · z ≤ z

⇐⇒ 〈 by Proposition 2.7-16 and (2.7) 〉

pz ≤ x∗ → (px · z) ∧ pz · (x∗ → (px · z)) · x∗ · px · z ≤ z

⇐⇒ 〈 by Boolean algebra 〉

pz ≤ x∗ → (px · z) ∧ pz · x∗ · px · z ≤ z

⇐= 〈 by Proposition 2.7-6, Boolean algebra and since pz ≤ px,
z = pz · z = px · pz · z = px · z 〉

pz ≤ px ∧ pz ≤ x∗ → z ∧ pz · x∗ · z ≤ z

⇐⇒ 〈 by Proposition 2.13-5, (2.8) and Boolean algebra 〉
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pz ≤ px ∧ pz ≤ x∗ → pz ∧ pz · (pz · x+ ¬pz · x)∗ · z ≤ z

⇐⇒ 〈 by Propositions 2.13-8 and 2.7-1 〉

pz ≤ px ∧ pz ≤ x→ pz ∧ pz · ((pz · x)∗ · ¬pz · x)∗ · (pz · x)∗ · z ≤ z

⇐⇒ 〈 by Boolean algebra, Propositions 2.13-4 and 2.13-6,

and since pz ≤ x→ pz,
pz · x = pz · (x→ pz) · x = pz · (x→ pz) · x · pz = pz · x · pz 〉

pz ≤ px ∧ pz ≤ x→ pz ∧ pz · ((pz · x · pz)∗ · ¬pz · x)∗ · (pz · x)∗ · z ≤ z

⇐⇒ 〈 by (2.10) 〉

pz ≤ px ∧ pz ≤ x→ pz ∧
pz ·
(
((pz · x · pz)∗ · pz · x · pz + 1) · ¬pz · x

)∗
· (pz · x)∗ · z ≤ z

⇐⇒ 〈 by (2.9), (2.4) and Boolean algebra 〉

pz ≤ px ∧ pz ≤ x→ pz ∧ pz · (¬pz · x)∗ · (pz · x)∗ · z ≤ z

⇐⇒ 〈 by Proposition 2.13-5 and (2.14) 〉

pz ≤ px ∧ pz ≤ x→ z ∧ pz · (¬pz · x · (¬pz · x)∗ + 1) · (pz · x)∗ · z ≤ z

⇐⇒ 〈 by (2.8), (2.4), (2.7) and Boolean algebra 〉

pz ≤ px ∧ pz ≤ x→ z ∧ pz · (pz · x)∗ · z ≤ z

⇐= 〈 by Proposition 2.7-6,

(pz · x)∗ · z ≤ z =⇒ pz · (pz · x)∗ · z ≤ z 〉
pz ≤ px ∧ pz ≤ x→ z ∧ (pz · x)∗ · z ≤ z

⇐= 〈 by (2.15) 〉

pz ≤ px ∧ pz ≤ x→ z ∧ pz · x · z ≤ z

⇐⇒ 〈 by Boolean algebra 〉

pz ≤ (x→ z) · px ∧ pz · (x→ z) · x · z ≤ z

⇐⇒ 〈 by Proposition 2.13-4 and Definition 2.12 〉

pz ≤ p(x 2A z) ∧ pz · (x 2A z) ≤ z

⇐⇒ 〈 by Definition 2.9 〉

x 2A z EA z

3. z 2A x EA z

⇐⇒ 〈 by Definition 2.9 〉

pz ≤ p(z 2A x) ∧ pz · (z 2A x) ≤ z

⇐⇒ 〈 by Proposition 2.13-4 and Definition 2.12 〉

pz ≤ (z → x) · pz ∧ pz · (z → x) · z · x ≤ z
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⇐⇒ 〈 by Boolean algebra and Proposition 2.7-6 〉

pz ≤ (z → x) · pz ∧ z · x ≤ z

=⇒ 〈 by Proposition 2.13-5 and (2.16) 〉

pz ≤ (z → px) · pz ∧ z · x∗ ≤ z

This derivation thus gives

pz ≤ (z → px) · pz , (2.20)

z · x∗ ≤ z . (2.21)

pz

≤ 〈 by (2.20) 〉

(z → px) · pz
≤ 〈 by (2.21) and Proposition 2.13-9 〉

((z · x∗) → px) · pz
= 〈 by Proposition 2.13-7 〉

(z → (x∗ → px)) · pz
= 〈 by Proposition 2.7-16 and (2.7) 〉

(z → ((x∗ → px) · p(x∗))) · pz
= 〈 by Propositions 2.13-4 and 2.13-5 〉

(z → (x∗ 2A px)) · pz
= 〈 by Proposition 2.13-4 〉

p(z 2A (x∗ 2A px))

= 〈 by Definition 2.14 〉

p(z 2A x
×A)

The following inequality is also needed.

pz · (z 2A x
×A)

= 〈 by Definition 2.14 〉

pz · (z 2A (x∗ 2A px))

≤ 〈 Proposition 2.12-11 〉

pz · z · (x∗ 2A px)

≤ 〈 Proposition 2.12-11 〉
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pz · z · x∗ · px
≤ 〈 by (2.21) and because pz ≤ 1 and px ≤ 1 〉

z

The result then follows from Definition 2.9.

4. Suppose x 2A z HA y EA z. Then y EA z and x 2A z EA z by Proposition 2.10. Then

Part 2 of the present proposition gives x×A 2A z EA z. This is used in the following

derivation.

x×A 2A y

EA 〈 by the hypothesis and Proposition 2.13-13,

y EA x 2A z HA y EA z 〉
x×A 2A z

EA 〈 derived above from the hypothesis 〉

z

5. The proof is similar to the previous one. 2

Based on the partial order EA, one can focus on tests and calculate the demonic

meet of tests.

Definition 2.17 (Demonic meet of tests). Let K be a KAD. For each s, t ∈ test(K),

define

s GA t = s+ t .

Remark 2.11 together with Proposition 2.10 confirm that the operator GA really is

the demonic meet of tests with respect to EA. We now define, for any test t, the t-

conditional operator GAt that generalises the demonic meet of tests to any elements of

a KAD. Since the demonic meet of x and y does not exist in general2, xGAt y is not the

demonic meet of x and y, but rather the demonic meet of t 2A x and ¬t 2A y.

Definition 2.18 (t-conditional operator). Let K be a KAD. For each x, y ∈ K and

t ∈ test(K), the t-conditional operator is defined by xGAty = t ·x+¬t ·y. The family of

t-conditional operators corresponds to a single ternary operator GA• taking as arguments

a test t and two arbitrary elements x and y.

2Indeed, look at
(

1 0
1 0

)
and

(
0 1
0 1

)
in Figure 2.3.
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The following proposition says that the t-conditionnal operator does generalise the

demonic meet of tests and that it calculates the demonic meet of t 2A x and ¬t2y for

any test t.

Proposition 2.19. Let K be a KAD. The following properties hold for all x, y ∈ K

and all s, t ∈ test(K).

1. 1 GAs t = s GA t

2. The demonic meet of t 2A x and ¬t 2A y with respect to EA exists and it is equal to

x GAt y.

Proof :

1. 1 GAs t

= 〈 by Definition 2.18 〉

s · 1 + ¬s · t
= 〈 by Boolean algebra 〉

s+ t

= 〈 by Definition 2.17 〉

s GA t

2. We have to show that x GAt y EA t 2A x, x GAt y EA ¬t 2A y and that x GAt y is the

greatest element with these two properties.

z EA t 2A x ∧ z EA ¬t 2A y

⇐⇒ 〈 by Proposition 2.10 〉

z HA t 2A x = t 2A x ∧ z HA ¬t 2A y = ¬t 2A y

⇐⇒ 〈 by Proposition 2.13-2 〉

z HA t · x = t · x ∧ z HA ¬t · y = ¬t · y
⇐⇒ 〈 by Proposition 2.10 〉

pz · p(t · x) · (z + t · x) = t · x ∧ pz · p(¬t · y) · (z + ¬t · y) = ¬t · y
⇐⇒ 〈 by (2.8), Boolean algebra and Proposition 2.7-6 〉

p(t · x) · z + pz · t · x = t · x ∧ p(¬t · y) · z + pz · ¬t · y = ¬t · y
⇐⇒ 〈 by (2.8), Propositions 2.7-11 and 2.7-10, Boolean algebra, (2.6)

and (2.4) 〉
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p(t · x) · z + p(¬t · y) · z + pz · t · x+ pz · ¬t · y = t · x+ ¬t · y
⇐⇒ 〈 by (2.8) and (2.9) 〉

(p(t · x) + p(¬t · y)) · z + pz · (t · x+ ¬t · y) = t · x+ ¬t · y
⇐⇒ 〈 by Proposition 2.7-13 〉

p(t · x+ ¬t · y) · z + pz · (t · x+ ¬t · y) = t · x+ ¬t · y
⇐⇒ 〈 by Definition 2.18 〉

p(x GAt y) · z + pz · (x GAt y) = x GAt y

⇐⇒ 〈 by Proposition 2.7-6, Boolean algebra and (2.8) 〉

pz · p(x GAt y) · (z + (x GAt y)) = x GAt y

⇐⇒ 〈 by Proposition 2.10 〉

z EA x GAt y

We derived

z EA t 2A x ∧ z EA ¬t 2A y ⇐⇒ z EA x GAt y . (2.22)

Taking z = x GAt y in (2.22), we see that x GAt y is a lower bound of t 2A x and

¬t 2A y. Then (2.22) says that x GAt y is the greatest lower bound of t 2A x and

¬t 2A y. 2

The demonic join operator HA is used to give the semantics of demonic non-deter-

ministic choices and 2A is used for sequences. Among the interesting properties of 2A,

we cite t 2A x = t · x (Proposition 2.13-2), which says that composing a test t with an

arbitrary element x is the same in the angelic and demonic worlds, and x 2A y = x · y if

py = 1 (Proposition 2.13-3), which says that if the second element of a composition is

total, then again the angelic and demonic compositions coincide. The ternary operator

GA• is similar to the conditional choice operator / . of Hoare et al. [HHJ+87, HJ98].

It corresponds to a guarded choice with disjoint alternatives. The demonic iteration

operator ×A rejects the finite computations that go through a state from which it is

possible to reach a state where no computation is defined (e.g., due to blocking or

abnormal termination).
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2.5 A Framework for Demonic Algebra with Do-

main and t-Conditional Within KAD

We now present four theorems about the demonic operators introduced in the previous

section. Theorem 2.20 contains laws relating HA, 2A and ×A . Theorem 2.21 concerns

the Boolean lattice of demonic tests. Theorem 2.22 is about the relationship between

HA, 2A,
×A and p. And Theorem 2.21 concerns the t-conditional operator GAt.

These theorems are the best witnesses of what might be an algebraic structure that

has the upper part of the lattice of Figure 1.4 as its intended model. Consequently,

their laws will be taken as axioms of demonic algebra with domain and GA• (DAD-GA•)

in Chapter 3.

As usual, unary operators have the highest precedence, and demonic composition

2A binds stronger than HA and GA•, which have the same precedence.

Theorem 2.20. Let K be a KAD. The following properties hold for all x, y, z ∈ K, so

(K,HA, 2A,
×A , 0, 1) is a demonic algebra (see Definition 3.1).

1. x HA (y HA z) = (x HA y) HA z

2. x HA y = y HA x

3. x HA x = x

4. 0 HA x = 0

5. x 2A (y 2A z) = (x 2A y) 2A z

6. 0 2A x = x 2A 0 = 0

7. 1 2A x = x 2A 1 = x

8. x 2A (y HA z) = x 2A y HA x 2A z

9. (x HA y) 2A z = x 2A z HA y 2A z

10. x×A = x×A 2A x HA 1

11. x EA y ⇐⇒ x HA y = y

12. z 2A x HA y EA z =⇒ y 2A x
×A EA z

13. x 2A z HA y EA z =⇒ x×A 2A y EA z
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Proof : See [DMT06] for the proof of 1 to 9 and 11. Refer to Proposition 2.16 for the

proof of 10, 12 and 13. 2

Theorem 2.21. Let K be a KAD. Then (test(K),HA,GA,¬, 1, 0) is a Boolean algebra,

so (K, test(K),HA, 2A,
×A , 0, 1,¬,GA) is a demonic algebra with tests (see Definition 3.4).

Proof : The fact that (test(K),HA,GA,¬, 1, 0) is a Boolean algebra is a direct conse-

quence of Proposition 2.10 and Definition 2.17. Therefore, (K, test(K),HA, 2A,
×A , 0, 1,

¬,GA) is a demonic algebra with tests by Theorem 2.20. 2

Theorem 2.21 together with Remark 2.11 show that the Boolean lattice of tests in

the demonic world is the same as in the angelic world, but reversed. Therefore, in any

relational model, the demonic tests are the subidentities.

Theorem 2.22. Let K be a KAD. The following properties hold for all x, y ∈ K and

all t ∈ test(K), so (K, test(K),HA, 2A,
×A , 0, 1,¬,GA, p) is a demonic algebra with domain

(see Definition 3.8).

1. p(x 2A t) 2A x = x 2A t

2. p(x 2A y) = p(x 2A py)

3. p(x HA y) = px HA py

4. p(x 2A t) EA t =⇒ p(x×A 2A t) EA t

Proof :

1. p(x 2A t) 2A x

= 〈 by Propositions 2.13-2, 2.13-4 and 2.7-6 〉

(x→ t) · x
= 〈 by Propositions 2.13-6 and 2.7-10 〉

(x→ t) · x · t
= 〈 by Definition 2.12 〉

x 2A t

2. p(x 2A y)

= 〈 by Proposition 2.13-4 〉
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(x→ y) · px
= 〈 by Proposition 2.13-5 〉

(x→ py) · px
= 〈 by Proposition 2.13-4 〉

p(x 2A py)

3. p(x HA y)

= 〈 by Proposition 2.10 〉

px · py
= 〈 by Boolean algebra 〉

px · py · (px+ py)

= 〈 by Propositions 2.10 and 2.7-10 〉

px HA py

4. p(x 2A t) EA t

⇐⇒ 〈 by Remark 2.11 and Proposition 2.13-4 〉

t ≤ (x→ t) · px
⇐⇒ 〈 by Boolean algebra 〉

t ≤ x→ t ∧ t ≤ px

=⇒ 〈 by Proposition 2.13-8 〉

t ≤ x∗ → t ∧ t ≤ px

=⇒ 〈 by Proposition 2.13-10 〉

t ≤ x∗ → t ∧ t ≤ x∗ → px

These two inequalities will be used.

t ≤ x∗ → t (2.23)

t ≤ x∗ → px (2.24)

p(x×A 2A t) EA t

⇐⇒ 〈 by Remark 2.11 and Proposition 2.13-4 〉

t ≤ (x×A → t) · p(x×A)

⇐⇒ 〈 by Boolean algebra 〉

t ≤ x×A → t ∧ t ≤ p(x×A)

⇐⇒ 〈 by Definition 2.14 〉
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t ≤ (x∗ 2A px) → t ∧ t ≤ p(x∗ 2A px)

⇐⇒ 〈 by Definition 2.12, Propositions 2.13-4 and 2.7-16, and (2.7) 〉

t ≤ ((x∗ → px) · x∗ · px) → t ∧ t ≤ x∗ → px

⇐⇒ 〈 by (2.24) 〉

t ≤ ((x∗ → px) · x∗ · px) → t

⇐= 〈 by Proposition 2.13-9 〉

t ≤ x∗ → t

⇐⇒ 〈 by (2.23) 〉

true

Therefore, (K, test(K),HA, 2A,
×A , 0, 1,¬,GA, p ) is a demonic algebra with domain by

Theorem 2.21. 2

Theorem 2.23. Let K be a KAD. Then

x GAt y = z ⇐⇒ t 2A x = t 2A z ∧ ¬t 2A y = ¬t 2A z

for all x, y, z ∈ K and all t ∈ test(K), so (K, test(K),HA, 2A,
×A , 0, 1,¬,GA, p ,GA•) is a

demonic algebra with domain and t-conditional (see Definition 3.18).

Proof :

x GAt y = z

⇐⇒ 〈 by Definition 2.18 〉

t · x+ ¬t · y = z

⇐⇒ 〈 by Proposition 2.7-3 〉

t · (t · x+ ¬t · y) = t · z ∧ ¬t · (t · x+ ¬t · y) = ¬t · z
⇐⇒ 〈 by (2.8), Boolean algebra, (2.6) and (2.4) 〉

t · x = t · z ∧ ¬t · y = ¬t · z
⇐⇒ 〈 by Proposition 2.13-2 〉

t 2A x = t 2A z ∧ ¬t 2A y = ¬t 2A z

Therefore, (K, test(K),HA, 2A,
×A , 0, 1,¬,GA, p ,GA•) is a demonic algebra with domain

and t-conditional by Theorem 2.22. 2



Chapter 3

Axiomatisation of Demonic Algebra

with Domain and t-Conditional

In the previous chapter, we demonstrated that the demonic operators introduced in

Section 2.4 satisfy Theorems 2.20, 2.21, 2.22 and 2.23. Since we want to know how do

KADs with the demonic operators but without the usual angelic ones behave, these laws

will become axioms for a new algebraic structure called demonic algebra with domain

and t-conditional (DAD-G•). Therefore, it is easy to see that any model of KAD can

be transformed into a DAD-G• by taking the elements of the KAD and the demonic

operators defined in Section 2.4, and then forgetting the angelic operators.

We expect DAD-G• to be an algebraic foundation for the upper part of the lattice

of Figure 1.4. Also, we want to define algebraic transformations between the lower

part and the upper part of this lattice. This last goal guided our choice of laws for

the theorems of Section 2.5 and hence, our choice of axioms for Definitions 3.1, 3.4, 3.8

and 3.18.

In the presentation of the next definitions, we follow the same path as for the defini-

tion of KAD. That is, we first define demonic algebra (DA) (Section 3.1), then demonic

algebra with tests (DAT) (Section 3.2) and demonic algebra with domain (DAD) (Sec-

tion 3.3). Finally, and it is a difference between DA and KA, we need an extra operator,

so we define demonic algebra with domain and t-conditional (DAD-G•) (Section 3.4).

The reasons why we need this operator will be discussed in Section 3.4.
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3.1 Demonic Algebra

In this section, we present demonic algebra (DA), we discuss some of its axioms and we

look at a first proposition about this structure.

Like KA, DA has a sum, a composition and an iteration operator. Moreover, its

sum induces a partial order.

Definition 3.1 (Demonic algebra). A demonic algebra (DA) is a structure A =

(A,H, 2, ×,>, 1) such that the following properties are satisfied for all x, y, z ∈ A.

x H (y H z) = (x H y) H z (3.1)

x H y = y H x (3.2)

x H x = x (3.3)

> H x = > (3.4)

x2(y2z) = (x2y)2z (3.5)

>2x = x2> = > (3.6)

12x = x21 = x (3.7)

x2(y H z) = x2y H x2z (3.8)

(x H y)2z = x2z H y2z (3.9)

x× = x×2x H 1 (3.10)

There is a partial order E induced by H such that for all x, y ∈ A,

x E y ⇐⇒ x H y = y . (3.11)

The next two properties are also satisfied for all x, y, z ∈ A.

x2z H y E z =⇒ x×2y E z (3.12)

z2x H y E z =⇒ y2x× E z (3.13)

When comparing Definitions 2.1 and 3.1, one observes the obvious correspondences

+ ↔ H, · ↔ 2, ∗ ↔ ×, 0 ↔ >, 1 ↔ 1. The only difference in the axiomatisation between

KA and DA is that 0 is the left and right identity of addition in KA (+), while >
is a left and right zero of addition in DA (H). However, this minor difference has a

rather important impact. While KAs and DAs are upper semilattices with + as the

join operator for KAs and H for DAs, the element 0 is the bottom of the semilattice for

KAs and > is the top of the semilattice for DAs. Indeed, by (3.4) and (3.11),

x E > (3.14)
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for all x ∈ A.

The following obvious refinements will be used in what follows.

x E x H y ∧ y E x H y (3.15)

They hold by (3.11), (3.2) and (3.3).

All operators are monotonic with respect to the refinement ordering E. That is, for

all x, y, z ∈ A,

x E y =⇒ z H x E z H y ∧ z2x E z2y ∧ x2z E y2z ∧ x× E y× .

Monotonicity of H and 2 can easily be derived from (3.11), (3.8) and (3.9). That of ×

is shown from (3.10) and (3.13) as follows:

x E y =⇒ y×2x H 1 E y×2y H 1 ⇐⇒ y×2x H 1 E y× =⇒ x× E y× .

Most of the time, this property will be used without explicit mention.

Remark 3.2. Like for the corresponding unfolding law (2.14) in KA, the following

symmetric version of (3.10),

x× = x2x× H 1 , (3.16)

is derivable from these axioms. Indeed,

x× E x2x× H 1

⇐= 〈 by (3.12) and (3.7) 〉

x2(x2x× H 1) H 1 E x2x× H 1

⇐= 〈 by monotonicity of 2 and H 〉

x2x× H 1 E x× —this is the other inequality we have to show

⇐⇒ 〈 by (3.10) 〉

x2x× H 1 E x×2x H 1

⇐= 〈 by monotonicity of H 〉

x2x× E x×2x

⇐= 〈 by (3.13) 〉

x×2x2x H x E x×2x

⇐⇒ 〈 by (3.10), (3.9) and (3.7) 〉

true .
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Also, one can show x× = µE(y :: y2x H 1) with (3.7), (3.10) and (3.13), and x× =

µE(y :: x2y H 1) with (3.7), (3.16) and (3.12).

Finally, in the presence of the other axioms, (3.12) and (3.13) are equivalent to the

following two.

x2z E z =⇒ x×2z E z (3.17)

z2x E z =⇒ z2x× E z (3.18)

The following proposition presents properties of the iteration operator ×. They

might be thought of as the demonic version of properties of the Kleene star ∗.

Proposition 3.3. Let A be a DA. The following laws hold for all x, y ∈ A.

1. 1 E x×, x×2x E x× and x2x× E x×

2. x E x×

3. x2y E y2x =⇒ x×2y E y2x×

4. y2x E x2y =⇒ y2x× E x×2y

5. x×2x× = x×

6. (x×)× = x×

7. x2(y2x)× = (x2y)×2x

8. (x H y)× = x×2(y2x×)× = (x×2y)×2x×

Proof :

1. This is direct from (3.10), (3.16) and (3.15).

2. This follows from (3.7) and Proposition 3.3-1. Indeed x = 12x E x×2x E x×.

3. Assume x2y E y2x.

x×2y E y2x×

⇐= 〈 by (3.12) 〉

x2y2x× H y E y2x×
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⇐= 〈 by the hypothesis 〉

y2x2x× H y E y2x×

⇐⇒ 〈 by (3.7), (3.8) and (3.16) 〉

true

4. Assume y2x E x2y.

y2x× E x×2y

⇐= 〈 by (3.13) 〉

x×2y2x H y E x×2y

⇐= 〈 by the hypothesis 〉

x×2x2y H y E x×2y

⇐⇒ 〈 by (3.7), (3.9) and (3.10) 〉

true

5. x×2x×

E 〈 by Proposition 3.3-1 and (3.17) 〉

x×

E 〈 by Proposition 3.3-1 〉

x×2x×

6. We first derive (x×)× E x×.

(x×)× E x×

⇐= 〈 by (3.12) and (3.7) 〉

x×2x× H 1 E x×

⇐⇒ 〈 by Propositions 3.3-1 and 3.3-5 〉

true

By Proposition 3.3-2, x× E (x×)×.

7. We first derive x2(y2x)× E (x2y)×2x.

x2(y2x)× E (x2y)×2x

⇐= 〈 by (3.13) 〉



Chapter 3. Axiomatisation of Demonic Algebra with Domain and t-Conditional 38

(x2y)×2x2y2x H x E (x2y)×2x

⇐⇒ 〈 by Proposition 3.3-1, (3.9) and (3.7) 〉

true.

The derivation of (x2y)×2x E x2(y2x)× is similar, using (3.12).

8. We first derive (x H y)× E x×2(y2x×)×.

(x H y)× E x×2(y2x×)×

⇐= 〈 by (3.12) and (3.7) 〉

(x H y)2x×2(y2x×)× H 1 E x×2(y2x×)×

⇐⇒ 〈 by Proposition 3.3-1, (3.7) and (3.9) 〉

x2x×2(y2x×)× H y2x×2(y2x×)× E x×2(y2x×)×

⇐= 〈 by Proposition 3.3-1 and (3.16) 〉

(y2x×)× E x×2(y2x×)×

⇐⇒ 〈 by Proposition 3.3-1 and (3.7) 〉

true.

And here is the derivation of x×2(y2x×)× E (x H y)×.

true

⇐⇒ 〈 by (3.15) and Proposition 3.3-2 〉

y E (x H y)× ∧ x× E (x H y)×

=⇒ 〈 by Propositions 3.3-5 and 3.3-6 〉

(y2x×)× E (x H y)× ∧ x× E (x H y)×

=⇒ 〈 by Proposition 3.3-5 〉

x×2(y2x×)× E (x H y)×

The proof of (x H y)× = (x×2y)×2x× is similar. 2

3.2 Demonic Algebra with Tests

Now comes the first extension of DA, demonic algebra with tests (DAT). This extension

has a concept of Boolean algebra of tests like the one in KAT and it also adds the G
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operator. Introducing G provides a way to express the meet of tests, as will be shown

below. In KAT, + and · are respectively the join and meet operators of the Boolean

lattice of tests. But in Section 3.3, it will turn out that for any tests s and t, sH t = s2t,

so that H and 2 both act as the join operator on tests (this is also the case for the

KAD-based definition of these operators given in Section 2.4, as can be checked).

In this section, we also discuss the implications of the definition of DAT and we

present a simple lemma related to demonic tests.

Here is how we deal with tests in a demonic world.

Definition 3.4 (Demonic algebra with tests). A demonic algebra with tests (DAT)

is a structure A = (A, test(A),H, 2, ×,>, 1,¬,G) such that {1,>} ⊆ test(A) ⊆ A,

(A,H, 2, ×,>, 1) is a DA and (test(A),H,G,¬, 1,>) is a Boolean algebra. The elements

in test(A) are called (demonic) tests. The operator G stands for the infimum of elements

in test(A) with respect to E.

Note that 1 and > are respectively the bottom and the top of the Boolean lattice

of tests. We insist that the operators G and ¬ are defined exclusively on test(A). In

the sequel, we use the letters w, x, y, z for arbitrary elements of DA and s, t, u, v for

demonic tests.

A basic property of demonic algebra with domain (DAD) (see Section 3.3) is that

s2t = sHt (see Proposition 3.14-3). Therefore, in DAD, s2¬s = sH¬s = > and ¬1 = >.

This is why we are going to say that two tests s and t are disjoint when s2t = sH t = >.

The following example presents a situation where this does not stand in DAT. It was

constructed using Mace4 [Mac].

Example 3.5. For this example, A = test(A) = {>, s, t, 1}. The demonic operators are

defined by the following tables.

H > s t 1

> > > > >
s > s > s

t > > t t

1 > s t 1

2 > s t 1

> > > > >
s > > > s

t > > > t

1 > s t 1

×

> >
s >
t >
1 1

¬
> 1

s t

t s

1 >

G > s t 1

> > s t 1

s s s 1 1

t t 1 t 1

1 1 1 1 1



Chapter 3. Axiomatisation of Demonic Algebra with Domain and t-Conditional 40

>

��
��

��
�

>>
>>

>>
>>

s

??
??

??
?? t

��
��

��
��

1

Figure 3.1: Hasse diagram of Example 3.5.

The demonic refinement ordering corresponding to H is represented in the semilattice

of Figure 3.1. It turns out that the present algebra is a DAT where s2t = sH t does not

hold. Indeed, s H s = s 6= > = s2s. Note that s2(tG u) = s2tG s2u does not hold either.

Indeed, s2(s G t) = s 6= > = s2s G s2t.

Definition 3.4 does not even tell whether test(A) is closed under 2. It is not the

case, as can be seen in the following example (also constructed by Mace4 [Mac]).

Example 3.6. For this example, A = {>, s, t, 1, a} and test(A) = {>, s, t, 1}. The

demonic operators are defined by the following tables.

H > s t 1 a

> > > > > >
s > s > s a

t > > t t >
1 > s t 1 a

a > a > a a

2 > s t 1 a

> > > > > >
s > a > s >
t > > > t >
1 > s t 1 a

a > > > a >

×

> >
s >
t >
1 1

a >

¬
> 1

s t

t s

1 >

G > s t 1

> > s t 1

s s s 1 1

t t 1 t 1

1 1 1 1 1

The demonic refinement ordering corresponding to H is represented in the semilattice

of Figure 3.2. In that DAT, test(A) is not closed under 2. Indeed, s2s = a 6∈ test(A).

The axioms provided by demonic algebra with domain (see Section 3.3) will bring

light to these questions. But before leaving this section, let us introduce the following

lemma.

Lemma 3.7. Let A be a DAT. The following refinements hold for all x ∈ A and all

s, t ∈ test(A).
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Figure 3.2: Hasse diagram of Example 3.6.

1. x E t2x ∧ x E x2t

2. s H t E s2t

3. t2¬t = ¬t2t = >

4. 1 E s2t

5. t2x E x =⇒ > E ¬t2x

6. t E x×2t and t E t2x×

Proof :

1. true

⇐⇒ 〈 by Boolean algebra 〉

1 E t

=⇒ 〈 by (3.7) 〉

x E t2x

The proof of the second refinement is similar.

2. By Lemma 3.7-1, s E s2t and t E s2t. So s H t E s2t by (3.3).

3. >
= 〈 by Boolean algebra 〉

t H ¬t
E 〈 by Lemma 3.7-2 〉

t2¬t
So t2¬t = > by (3.14). The proof of the second equality is similar.
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4. By Boolean algebra, 1 E s and 1 E t. So 1 E s2t by (3.7).

5. t2x E x

=⇒ 〈 〉

¬t2t2x E ¬t2x

⇐⇒ 〈 by Lemma 3.7-3 〉

>2x E ¬t2x

⇐⇒ 〈 by (3.6) 〉

> E ¬t2x

6. By Proposition 3.3-1, t = 12t E x×2t and t = t21 E t2x×. 2

3.3 Demonic Algebra with Domain

Still following KAD’s footsteps, the next extension consists in adding a domain operator

to DAT to obtain the demonic algebra with domain (DAD). In this section, we also

demonstrate that axioms of DAD are independent, we present an important proposition

about the domain operator (Proposition 3.14) and we demonstrate a technical lemma

that is going to simplify many derivations in subsequent chapters.

In the demonic world, we denote the domain operator by the symbol pp.

Definition 3.8 (Demonic algebra with domain). A demonic algebra with domain

(DAD) is a structure A = (A, test(A),H, 2, ×,>, 1,¬,G, pp), where (A, test(A),H, 2, ×,>,
1,¬,G) is a DAT, and the domain operator pp : A → test(A) satisfies the following

properties for all x, y ∈ A and all t ∈ test(A).

pp(x2t)2x = x2t (3.19)

pp(x2y) = pp(x2ppy) (3.20)

pp(x H y) = ppx H ppy (3.21)

pp(x2t) E t =⇒ pp(x×2t) E t (3.22)

Remark 3.9. As noted above, the axiomatisation of DA (respectively DAT) is very sim-

ilar to that of KA (respectively KAT), so one might expect the resemblance to continue

between DAD and KAD. In particular, looking at the angelic version of Definition 3.8,

namely Definition 2.4, one might expect to find axioms like ppx2x E x and t E pp(t2x).

These two properties can be derived from the chosen axioms (see Propositions 3.14-

7 and 3.14-10) but (3.19) cannot be derived from them, even when assuming (3.20),
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(3.21) and (3.22) (see Example 3.10). Nevertheless (3.19) holds in KAD-based demonic

algebras (see Theorem 2.22-1). Since our goal is to come as close as possible to these,

we include (3.19) as an axiom.

Examples 3.10, 3.11, 3.12 and 3.13 illustrate the independence of Axioms (3.19),

(3.20), (3.21) and (3.22). Except for Example 3.13, which is an infinite one, they were

all constructed by Mace4 [Mac].

Example 3.10. For this example, A = {>, s, t, 1, a, b} and test(A) = {>, s, t, 1}. The

demonic operators are defined by the following tables.

H > s t 1 a b

> > > > > > >
s > s > s a b

t > > t t > >
1 > s t 1 a b

a > a > a a b

b > b > b b b

2 > s t 1 a b

> > > > > > >
s > s > s a b

t > > t t > >
1 > s t 1 a b

a > b > a b b

b > b > b b b

×

> >
s s

t t

1 1

a b

b b

¬
> 1

s t

t s

1 >

G > s t 1

> > s t 1

s s s 1 1

t t 1 t 1

1 1 1 1 1

pp

> >
s s

t t

1 1

a s

b s

The demonic refinement ordering corresponding to H is represented in the semilattice

of Figure 3.3. This algebra is a DAT for which ppx2x E x, t E pp(t2x), (3.20), (3.21) and

(3.22) all hold, but (3.19) does not. Indeed pp(a2s)2a = a 6= b = a2s.

Then why choose (3.19) rather than ppx2x E x and t E pp(t2x)? The justification

is twofold. Firstly, as already mentioned in Remark 3.9, models that come from KAD

satisfy property (3.19). Secondly, there are strong indications that this law is essential

to reach the main goal of this thesis (refer to item 8 of Section 1.3).

Law (3.20) is locality in a demonic world.

In KAD, it is not necessary to have an axiom like (3.21), because additivity of

p (Proposition 2.7-13) can be demonstrated from the laws of KAD. However, it is

necessary in the context of DA, since the following example satisfies all prescribed laws

except that one.
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Figure 3.3: Hasse diagram of Example 3.10.
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Figure 3.4: Hasse diagram of Example 3.11.

Example 3.11. For this example, A = {>, s, t, 1, a} and test(A) = {>, s, t, 1}. The

demonic operators are defined by the following tables.

H > s t 1 a

> > > > > >
s > s > s >
t > > t t >
1 > s t 1 >
a > > > > a

2 > s t 1 a

> > > > > >
s > s > s a

t > > t t >
1 > s t 1 a

a > > > a >

×

> >
s s

t t

1 1

a >

¬
> 1

s t

t s

1 >

G > s t 1

> > s t 1

s s s 1 1

t t 1 t 1

1 1 1 1 1

pp

> >
s s

t t

1 1

a s

The demonic refinement ordering corresponding to H is represented in the semilattice

of Figure 3.4. This algebra is a DAT and, in addition, (3.19), (3.20) and (3.22) are

satisfied, but (3.21) is not. Indeed pp(1 H a) = > 6= s = pp1 H ppa.
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Figure 3.5: Hasse diagram of Example 3.12.

Example 3.12. For this example, A = {>, s, t, 1, a, b, c, d} and test(A) = {>, s, t, 1}.
The demonic operators are defined by the following tables.

H > s t 1 a b c d

> > > > > > > > >
s > s > s > s > >
t > > t t a d c d

1 > s t 1 a b c d

a > > a a a c c c

b > s d b c b c d

c > > c c c c c c

d > > d d c d c d

2 > s t 1 a b c d

> > > > > > > > >
s > s > s > s > >
t > > t t a d c d

1 > s t 1 a b c d

a > > a a a > > >
b > s > b > b > >
c > > > c > > > >
d > > > d > d > >

×

> >
s s

t t

1 1

a a

b b

c >
d >

¬
> 1

s t

t s

1 >

G > s t 1

> > s t 1

s s s 1 1

t t 1 t 1

1 1 1 1 1

pp

> >
s s

t t

1 1

a t

b 1

c t

d t

The demonic refinement ordering corresponding to H is represented in the semilattice

of Figure 3.5. In this DAT, (3.19), (3.21) and (3.22) are satisfied, but (3.20) is not.

Indeed pp(a2b) = > 6= t = pp(a2ppb).

Finally, we add Axiom (3.22) since it is true in KAD-based demonic algebras (see

Theorem 2.22-4) and it helps manipulating × with pp . Moreover, like Axiom (3.19),
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there are strong indications that this law is essential to reach the main goal of this

thesis.

Examples 3.10, 3.11 and 3.12 show that Axioms (3.19), (3.20) and (3.21) are inde-

pendent from each other and also from (3.22). The following example completes the

proof of independence of (3.19), (3.20), (3.21) and (3.22).

Example 3.13. For this example, A = {E : ℘(N) | E is finite} and test(A) = {{}, {0}}.
The demonic operators are as follows.

H : A× A −→ A

(E,F ) 7→
{
E ∪ F if E 6= {} and F 6= {}
{} if E = {} or F = {}

2 : A× A −→ A

(E,F ) 7→ {x : N | (∃ e : E, f : F | x = e+ f)}

× : A −→ A

E 7→
{
{0} if E = {0}
{} if E 6= {0}

pp : A −→ test(A)

E 7→
{
{0} if E 6= {}
{} if E = {}

Hence {} is the top of the upper semilattice (A,E) and {0} is neutral for demonic

composition. Since the only tests are {0} and {}, the operators ¬ and G are trivially

defined. In this DAT, (3.19), (3.20) and (3.21) are satisfied, but (3.22) is not. Indeed,

pp({1}2{0}) E {0} ⇐⇒ true 6=⇒ false ⇐⇒ pp({1}×2{0}) E {0} .

By Proposition 3.14-7 below, ppx is a left preserver of x. By Proposition 3.14-14, it

is the greatest left preserver. Similarly, by Proposition 3.14-17, ¬ppx is a left annihilator

of x. By Proposition 3.14-16, it is the least left annihilator (since Proposition 3.14-16

can be rewritten as ¬ppx E t ⇐⇒ > E t2x). Hence, on the left of the equivalence of

Proposition 3.14-13, t acts as a left preserver of x and on the right, ¬t acts as a left

annihilator.

The axioms of DAD impose important restrictions on demonic tests. It turns out

that these restrictions are actually useful properties and they are presented in the

following proposition together with properties of pp.
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Proposition 3.14. Let A be a DAD. The following laws hold for all x, y ∈ A and all

s, t, u ∈ test(A).

1. ppt = t

2. t2t = t

3. s H t = s2t and hence test(A) is closed under 2

4. s2(t G u) = s2t G s2u and (s G t)2u = s2u G t2u

5. s2t = t2s

6. x E t2y ⇐⇒ t2x E t2y

7. ppx2x = x

8. x E y =⇒ ppx E ppy

9. pp(t2x) = t2ppx

10. t E pp(t2x)

11. x H y = ppx2ppy2(x H y)

12. pp(x2s)2pp(x2t) = pp(x2s2t)

13. t2x E x ⇐⇒ > E ¬t2x

14. t E ppx ⇐⇒ t2x E x

15. ppx = maxE{t : test(A) | t2x = x}

16. t E ppx ⇐⇒ > E ¬t2x

17. ¬ppx2x = >

18. ppx E pp(x2y)

19. ppx = > ⇐⇒ x = >

20. t2(x H y) = t2x H y = x H t2y

21. ppx2ppy = > =⇒ ppx2y = ppy2x

22. ppx = 1 =⇒ pp(x×) = 1

Proof :
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1. This is direct from (3.19) with x := 1 and (3.7).

2. This is direct from (3.19) with x, t := t, 1, (3.7) and Proposition 3.14-1.

3. s2t

E 〈 by (3.15) 〉

(s H t)2(s H t)

= 〈 by Proposition 3.14-2 〉

s H t

E 〈 by Lemma 3.7-2 〉

s2t

4. This follows from Proposition 3.14-3 and Boolean algebra.

5. This follows from Proposition 3.14-3 and Boolean algebra.

6. x E t2y

=⇒ 〈 〉

t2x E t2t2y

⇐⇒ 〈 by Proposition 3.14-2 〉

t2x E t2y

=⇒ 〈 by Lemma 3.7-1 and transitivity of E 〉

x E t2y

7. This is direct from (3.19) with t := 1 and (3.7).

8. x E y

⇐⇒ 〈 by (3.11) 〉

x H y = y

=⇒ 〈 by Leibniz and (3.21) 〉

ppx H ppy = ppy

⇐⇒ 〈 by (3.11) 〉

ppx E ppy

9. t2ppx

= 〈 by Propositions 3.14-3 and 3.14-1 〉

pp(t2ppx)
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= 〈 by (3.20) 〉

pp(t2x)

10. By Lemma 3.7-1 and Proposition 3.14-9, t E t2ppx = pp(t2x).

11. x H y

= 〈 by Proposition 3.14-7 〉

pp(x H y)2(x H y)

= 〈 by (3.21) 〉

(ppx H ppy)2(x H y)

= 〈 by Proposition 3.14-3 〉

ppx2ppy2(x H y)

12. pp(x2s)2pp(x2t)

= 〈 by Proposition 3.14-3 〉

pp(x2s) H pp(x2t)

= 〈 by ( 3.21) 〉

pp((x2s) H (x2t))

= 〈 by (3.8) 〉

pp(x2(s H t))

= 〈 by Proposition 3.14-3 〉

pp(x2s2t)

13. t2x E x

=⇒ 〈 by Lemma 3.7-5 〉

> E ¬t2x

=⇒ 〈 by Proposition 3.14-8 〉

pp> E pp(¬t2x)

⇐⇒ 〈 by Propositions 3.14-1 and 3.14-9 〉

> E ¬t2ppx

=⇒ 〈 by Boolean algebra 〉

t2ppx E t2ppx G ¬t2ppx

⇐⇒ 〈 by Proposition 3.14-4, Boolean algebra and (3.7) 〉

t2ppx E ppx



Chapter 3. Axiomatisation of Demonic Algebra with Domain and t-Conditional 50

=⇒ 〈 by Proposition 3.14-7 〉

t2x E x

14. [=⇒] By assumption, monotonicity of 2 and Proposition 3.14-7, t2x E ppx2x = x.

[⇐=]

t2x E x

=⇒ 〈 by Proposition 3.14-8 〉

pp(t2x) E ppx

=⇒ 〈 by Proposition 3.14-10 〉

t E ppx

15. This is direct from Proposition 3.14-14.

16. This is direct from Propositions 3.14-14 and 3.14-13.

17. This law follows directly from Proposition 3.14-16 and (3.14).

18. Since ppx2(x2y) = (ppx2x)2y = x2y, the result follows from Proposition 3.14-14.

19. ppx = >
⇐⇒ 〈 by (3.14) 〉

> E ppx

⇐⇒ 〈 by Proposition 3.14-14 〉

>2x E x

⇐⇒ 〈 by (3.6) 〉

> E x

⇐⇒ 〈 by (3.14) 〉

x = >

20. t2x H y

= 〈 by Proposition 3.14-11 〉

pp(t2x)2ppy2(t2x H y)

= 〈 by Proposition 3.14-9 〉

t2ppx2ppy2(t2x H y)

= 〈 by Propositions 3.14-5 and 3.14-2, and (3.8) 〉
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t2ppx2t2ppy2(t2x H t2y)

= 〈 by Proposition 3.14-9 〉

pp(t2x)2pp(t2y)2(t2x H t2y)

= 〈 by Proposition 3.14-11 and (3.8) 〉

t2(x H y)

The derivation for the second equality is similar.

21. ppx2ppy = >
⇐⇒ 〈 by Propositions 3.14-19 and 3.14-9, and Boolean algebra 〉

ppx2y = > ∧ ppy2x = >
=⇒ 〈 〉

ppx2y = ppy2x

22. ppx = 1

⇐⇒ 〈 by (3.7) and Boolean algebra 〉

pp(x21) E 1

=⇒ 〈 by (3.22) 〉

pp(x×21) E 1

⇐⇒ 〈 by (3.7) and Boolean algebra 〉

pp(x×) = 1

2

All the above laws except 12 are identical to laws of p , after compensating for the

reverse ordering of the Boolean lattice (on tests, E corresponds to ≥).

Although Proposition 3.14-1 is a quite basic property, its proof uses (3.19). Further-

more, Proposition 3.14-1 and (3.19) are used in the proof of Propositions 3.14-2, 3.14-3,

3.14-4, 3.14-5, 3.14-6 and 3.14-7. Since (3.19) is not as natural as the others, it would

be interesting to find an argument that only involves (3.20) and (3.21). It turns out

that it is not possible. Indeed, see Example 3.15 (also constructed by Mace4 [Mac]).

Example 3.15. For this example, A = test(A) = {>, s, t, 1}. The demonic operators
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Figure 3.6: Hasse diagram of Example 3.15.

are defined by the following tables.

H > s t 1

> > > > >
s > s > s

t > > t t

1 > s t 1

2 > s t 1

> > > > >
s > > > s

t > > > t

1 > s t 1

×

> >
s >
t >
1 1

¬
> 1

s t

t s

1 >

G > s t 1

> > s t 1

s s s 1 1

t t 1 t 1

1 1 1 1 1

pp

> >
s >
t >
1 >

The demonic refinement ordering corresponding to H is represented in the semilattice

of Figure 3.6. This algebra is a DAT and, in addition, (3.20), (3.21) and (3.22) are

satisfied, but (3.19) and ppt = t are not. Indeed pp(s21)2s = > 6= s = s21 and pp1 = > 6= 1.

Note that Propositions 3.14-2, 3.14-3, 3.14-4, 3.14-6 and 3.14-7 are not satisfied neither.

For those who are wondering, the major difference between Example 3.10 and Ex-

ample 3.15 is that ppx2x E x is satisfied in the former and not in the latter.

The following derivation closes the discussion about the choice of axioms for DAD.

Suppose ppx2x E x and t E pp(t2x) for all x ∈ A and all t ∈ test(A). Then, by Lemma 3.7-

1, one has ppt2t E t E ppt2t, so that ppt2t = t. Therefore,

t

E 〈 by the hypothesis with x, t := 1, t 〉

ppt

E 〈 by Lemma 3.7-1 〉



Chapter 3. Axiomatisation of Demonic Algebra with Domain and t-Conditional 53

ppt2t

= 〈 derived above from the hypothesis 〉

t ,

so ppt = t.

In conclusion,

ppx2x E x ∧ t E pp(t2x) ∧ (3.20) ∧ (3.21) 6=⇒ (3.19) ,

(3.19) ∧ (3.20) ∧ (3.21) =⇒ ppx2x E x ∧ t E pp(t2x) ,

(3.20) ∧ (3.21) 6=⇒ ppt = t ,

ppx2x E x ∧ t E pp(t2x) ∧ (3.20) ∧ (3.21) =⇒ ppt = t .

Remark 3.16. Since in any DADA, s2t = sHt for all s, t ∈ test(A) (see Proposition 3.14-

3), the Boolean algebra of demonic tests test(A) may be viewed as (test(A),H,G,¬, 1,>)

or as (test(A), 2,G,¬, 1,>). Therefore, each time we use a law from Boolean algebra,

whether it is written with H or with 2, we will invoke “Boolean algebra”.

We finish this section with a lemma that will mostly be used in Sections 4.4 and 4.5.

It is presented here because it is a natural continuation of Proposition 3.14.

Lemma 3.17. In any DAD A, the domain operator satisfies the following properties

for all x ∈ A and all s, t ∈ test(A).

1. ppx2pp(x2t) = pp(x2t)

2. ¬ppx2pp(x2t) = >

3. ¬ppx2¬pp(x2t) = ¬ppx

4. pp(x2t)2pp(x2¬t) = >

5. pp(x2t)2¬pp(x2¬t) = pp(x2t) and hence ¬pp(x2¬t) E pp(x2t)

6. pp(x2(s G t)) E pp(x2s) and pp(x2(s G t)) E pp(x2t)

Proof :

1. It follows from Propositions 3.14-9 and 3.14-7.
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2. It follows from Propositions 3.14-9, 3.14-17, and 3.14-1, and (3.6).

3. true

⇐⇒ 〈 by Proposition 3.14-18 〉

ppx E pp(x2t)

⇐⇒ 〈 by Boolean algebra and Proposition 3.14-3 〉

¬ppx2¬pp(x2t) = ¬ppx

4. It follows from Propositions 3.14-12, and 3.14-1, and (3.6).

5. true

⇐⇒ 〈 by Lemma 3.17-4 〉

pp(x2t)2pp(x2¬t) = >
⇐⇒ 〈 by Proposition 3.14-3 and Boolean algebra 〉

¬pp(x2¬t) E pp(x2t)

⇐⇒ 〈 by Boolean algebra and Proposition 3.14-3 〉

pp(x2t)2¬pp(x2¬t) = pp(x2t)

6. It follows from Boolean algebra and Proposition 3.14-8. 2

3.4 Demonic Algebra with Domain and t-Conditio-

nal

At this point, we have defined DA, which is an algebraic foundation for the upper part

of the lattice of Figure 1.4 and we have extended it to DAT and then to DAD in such

a way that we followed the same path as for the definition of KAD. In this section, we

define another operator, the t-conditional operator G•. We also demonstrate that the

definition of the G• operator is independent from the definition of DAD.

There are two important reasons why we need this extra operator. Now that we

have an algebraic foundation for both the lower and the upper part of the lattice of

Figure 1.4, we are looking for connections between those parts of the lattice. The

upward link from KAD to DAD is well defined thanks to Theorems 2.20, 2.21 and 2.22.

The strategy to define a downward link from DAD to KAD could be inspired by the

one for the upward link: define angelic operators from DAD and demonstrate that the

elements of DAD together with these angelic operators constitute a KAD. But it is
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not that easy. It seems impossible to achieve without the G• operator (the reading of

Chapter 4 might convince you).

The other reason why we add an operator to DAD is related to the G operator

defined on test(A). Of course, it is essential since it ensures that we have a Boolean

algebra of demonic tests, but it is unfortunate that it is exclusively defined on test(A).

Therefore, G• is an operator defined on A that is introduced as a generalisation of G. In

KAD, the addition of an analogous operator is not necessary since · already corresponds

to the meet of tests.

At first sight, this extra operator could complicate things with the upward link

established by Theorems 2.20, 2.21 and 2.22. Does the link from KAD to DAD extend

to a link from KAD to DAD-G•? Thanks to Theorem 2.23, the answer is yes. And then

the downward link we are looking for is from DAD-G• to KAD.

The axiom for the operator G• (see (3.23)) was chosen having two things in mind.

Firstly, it has to respect G when evaluated on demonic tests. Secondly, we want it to

behave like a choice operator.

Definition 3.18 (Demonic algebra with domain and t-conditional). A demonic algebra

with domain and t-conditional (DAD-G•) is a structure A = (A, test(A),H, 2, ×,>, 1,¬,
G, pp,G•), where (A, test(A),H, 2, ×,>, 1,¬,G, pp) is a DAD and the t-conditional operator

G• is a ternary operator of type test(A)×A×A→ A that can be thought of as a family

of binary operators. For each t ∈ test(A), Gt is an operator of type A×A→ A, and of

type test(A)× test(A) → test(A) if its two arguments belong to test(A). It satisfies the

following property for all x, y, z ∈ A and all t ∈ test(A).

x Gt y = z ⇐⇒ t2x = t2z ∧ ¬t2y = ¬t2z (3.23)

The following example shows that (3.23) is independent from laws of DAD. It was

constructed by Mace4 [Mac].

Example 3.19. For this example, A = {>, s, t, 1, a} and test(A) = {>, s, t, 1}.

H > s t 1 a

> > > > > >
s > s > s s

t > > t t t

1 > s t 1 1

a > s t 1 a

2 > s t 1 a

> > > > > >
s > s > s s

t > > t t t

1 > s t 1 a

a > s t a a

×

> >
s s

t t

1 1

a 1
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Figure 3.7: Hasse diagram of Example 3.19.

¬
> 1

s t

t s

1 >

G > s t 1

> > s t 1

s s s 1 1

t t 1 t 1

1 1 1 1 1

pp

> >
s s

t t

1 1

a 1

The demonic refinement ordering corresponding to H is represented in the semilattice

of Figure 3.7. This algebra is a DAD, but (3.23) is not satisfied. Indeed,

true ⇐⇒ s21 = s21 ∧ ¬ s21 = ¬ s21 ⇐⇒ 1 Gs 1 = 1

and

true ⇐⇒ s21 = s2a ∧ ¬ s21 = ¬ s2a ⇐⇒ 1 Gs 1 = a

would give 1 = a.

We now prove some properties of Gt.

Proposition 3.20. Let A be a DAD-G•. The following properties are true for all

x, x1, x2, y, y1, y2, z ∈ A and all s, t, u ∈ test(A).

1. t2(x Gt y) = t2x ∧ ¬t2(x Gt y) = ¬t2y

2. x Gt y = y G¬t x

3. (t2x) Gt y = x Gt y

4. x Gt (¬t2y) = x Gt y

5. x Gt > = t2x

6. > Gt x = ¬t2x
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7. (x Gt y)2z = x2z Gt y2z

8. s2(x Gt y) = s2x Gt s2y

9. x Gt (y H z) = (x Gt y) H (x Gt z)

10. x H (y Gt z) = (x H y) Gt (x H z)

11. 1 Gs t = s G t

12. s Gt u = t2s G ¬t2u

13. x Gt x = x

14. x E y =⇒ x Gt z E y Gt z

15. x E y =⇒ z Gt x E z Gt y

16. x E y ⇐⇒ t2x E t2y ∧ ¬t2x E ¬t2y

17. x = y ⇐⇒ t2x = t2y ∧ ¬t2x = ¬t2y

18. x E y Gt z ⇐⇒ x E t2y ∧ x E ¬t2z

19. (x1 Gs y1) Gt (x2 Gs y2) = (x1 Gt x2) Gs (y1 Gt y2)

20. pp(x Gt y) = ppx Gt ppy

21. The demonic meet of t2x and ¬t2y with respect to E exists and is equal to xGt y.

Proof :

1. true

⇐⇒ 〈 〉

x Gt y = x Gt y

⇐⇒ 〈 by (3.23) 〉

t2(x Gt y) = t2x ∧ ¬t2(x Gt y) = ¬t2y

2. x Gt y = y G¬t x

⇐⇒ 〈 by (3.23) 〉

t2x = t2(y G¬t x) ∧ ¬t2y = ¬t2(y G¬t x)

⇐⇒ 〈 by Boolean algebra 〉
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t2x = ¬¬t2(y G¬t x) ∧ ¬t2y = ¬t2(y G¬t x)

⇐⇒ 〈 by Proposition 3.20-1 〉

t2x = ¬¬t2x ∧ ¬t2y = ¬t2y

⇐⇒ 〈 by Boolean algebra 〉

true

3. (t2x) Gt y = x Gt y

⇐⇒ 〈 by (3.23) 〉

t2t2x = t2(x Gt y) ∧ ¬t2y = ¬t2(x Gt y)

⇐⇒ 〈 by Proposition 3.20-1 〉

t2t2x = t2x ∧ ¬t2y = ¬t2y

⇐⇒ 〈 by Boolean algebra 〉

true

4. x Gt (¬t2y)

= 〈 by Proposition 3.20-2 〉

(¬t2y) G¬t x

= 〈 by Proposition 3.20-3 〉

y G¬t x

= 〈 by Proposition 3.20-2 〉

x Gt y

5. x Gt > = t2x

⇐⇒ 〈 by (3.23) 〉

t2x = t2t2x ∧ ¬t2> = ¬t2t2x

⇐⇒ 〈 by Boolean algebra 〉

t2x = t2x ∧ > = >2x

⇐⇒ 〈 by (3.6) 〉

true

6. > Gt x

= 〈 by Proposition 3.20-2 〉

x G¬t >
= 〈 by Proposition 3.20-5 〉
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¬t2x

7. x2z Gt y2z = (x Gt y)2z

⇐⇒ 〈 by (3.23) 〉

t2x2z = t2(x Gt y)2z ∧ ¬t2y2z = ¬t2(x Gt y)2z

⇐⇒ 〈 by Proposition 3.20-1 〉

true

8. s2x Gt s2y = s2(x Gt y)

⇐⇒ 〈 by (3.23) 〉

t2s2x = t2s2(x Gt y) ∧ ¬t2s2y = ¬t2s2(x Gt y)

⇐⇒ 〈 by Boolean algebra 〉

s2t2x = s2t2(x Gt y) ∧ s2¬t2y = s2¬t2(x Gt y)

⇐⇒ 〈 by Proposition 3.20-1 〉

true

9. x Gt (y H z) = (x Gt y) H (x Gt z)

⇐⇒ 〈 by (3.23) 〉

t2x = t2((x Gt y) H (x Gt z)) ∧ ¬t2(y H z) = ¬t2((x Gt y) H (x Gt z))

⇐⇒ 〈 by (3.8) 〉

t2x = t2(x Gt y) H t2(x Gt z) ∧ ¬t2y H ¬t2z = ¬t2(x Gt y) H ¬t2(x Gt z)

⇐⇒ 〈 by Proposition 3.20-1 and (3.3) 〉

true

10. (x H y) Gt (x H z) = x H (y Gt z)

⇐⇒ 〈 by (3.23) 〉

t2(x H y) = t2(x H (y Gt z)) ∧ ¬t2(x H z) = ¬t2(x H (y Gt z))

⇐⇒ 〈 by (3.8) 〉

t2x H t2y = t2x H t2(y Gt z) ∧ ¬t2x H ¬t2z = ¬t2x H ¬t2(y Gt z)

⇐⇒ 〈 by Proposition 3.20-1 〉

true

11. 1 Gs t = s G t

⇐⇒ 〈 by (3.23) and Boolean algebra 〉
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s = s2(s G t) ∧ ¬s2t = ¬s2(s G t)

⇐⇒ 〈 by Boolean algebra 〉

true

12. s Gt u = t2s G ¬t2u

⇐⇒ 〈 by (3.23) 〉

t2s = t2(t2s G ¬t2u) ∧ ¬t2u = ¬t2(t2s G ¬t2u)

⇐⇒ 〈 by Boolean algebra 〉

true

13. This is direct from (3.23).

14. x E y

⇐⇒ 〈 by (3.11) 〉

x H y = y

=⇒ 〈 by Leibniz 〉

(x H y) Gt z = y Gt z

⇐⇒ 〈 by Proposition 3.20-2 〉

z G¬t (x H y) = y Gt z

⇐⇒ 〈 by Proposition 3.20-9 〉

(z G¬t x) H (z G¬t y) = y Gt z

⇐⇒ 〈 by Proposition 3.20-2 〉

(x Gt z) H (y Gt z) = y Gt z

⇐⇒ 〈 by (3.11) 〉

x Gt z E y Gt z

15. x E y

=⇒ 〈 by Proposition 3.20-14 〉

x G¬t z E y G¬t z

⇐⇒ 〈 by Proposition 3.20-2 〉

z Gt x E z Gt y

16. x E y

=⇒ 〈 〉
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t2x E t2y ∧ ¬t2x E ¬t2y

=⇒ 〈 by Proposition 3.20-14 〉

t2x Gt ¬t2x E t2y Gt ¬t2x ∧ ¬t2x G¬t t2y E ¬t2y G¬t t2y

⇐⇒ 〈 by Proposition 3.20-2 〉

t2x Gt ¬t2x E t2y Gt ¬t2x ∧ t2y Gt ¬t2x E t2y Gt ¬t2y

=⇒ 〈 by transitivity of E 〉

t2x Gt ¬t2x E t2y Gt ¬t2y

⇐⇒ 〈 by Propositions 3.20-3 and 3.20-4 〉

x Gt x E y Gt y

⇐⇒ 〈 by Proposition 3.20-13 〉

x E y

17. t2x = t2y ∧ ¬t2x = ¬t2y

⇐⇒ 〈 by (3.23) 〉

x Gt x = y

⇐⇒ 〈 by Proposition 3.20-13 〉

x = y

18. x E y Gt z

⇐⇒ 〈 by Proposition 3.20-16 〉

t2x E t2(y Gt z) ∧ ¬t2x E ¬t2(y Gt z)

⇐⇒ 〈 by Proposition 3.20-1 〉

t2x E t2y ∧ ¬t2x E ¬t2z

⇐⇒ 〈 by Proposition 3.14-6 〉

x E t2y ∧ x E ¬t2z

19. This is direct from (3.23) and Propositions 3.20-8 and 3.20-1.

20. ppx Gt ppy = pp(x Gt y)

⇐⇒ 〈 by (3.23) 〉

t2ppx = t2pp(x Gt y) ∧ ¬t2ppy = ¬t2pp(x Gt y)

⇐⇒ 〈 by Proposition 3.14-9 〉

pp(t2x) = pp(t2(x Gt y)) ∧ pp(¬t2y) = pp(¬t2(x Gt y))

⇐⇒ 〈 by Proposition 3.20-1 〉
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true

21. By Proposition 3.20-18, x Gt y is the greatest lower bound of t2x and ¬t2y. 2

If we draw up what we got, tests have quite similar properties in KAT and DAT.

But there are important differences as well. The first one is that H and 2 behave the

same way on tests (Proposition 3.14-3). The second one concerns Laws 16 and 17 of

Proposition 3.20, which show how a proof of refinement or equality can be done by case

analysis by decomposing it with cases t and ¬t. The same is true in KAT. However, in

KAT, this decomposition can also be done on the right side, since for instance the law

x ≤ y ⇐⇒ x · t ≤ y · t ∧ x · ¬t ≤ y · ¬t

holds (see Proposition 2.7-4), while the corresponding law does not hold in DAT. With

the t-conditional operator, there is an asymmetry between left and right that can be

traced back to Propositions 3.20-7 and 3.20-8. In Proposition 3.20-7, right distributivity

holds for arbitrary elements, while left distributivity in Proposition 3.20-8 holds only

for tests.

Propositions 3.20-14 and 3.20-15 simply express the monotonicity of Gt in its two

arguments. On the other hand, G• is not monotonic with respect to its test argument.

Indeed, > G1 1 = > and > G> 1 = 1, so 1 E > 6=⇒ > G1 1 E > G> 1. Proposi-

tion 3.20-11 establishes the link between G• and G and makes it clear that the former is

a generalisation of the latter. This is a generalisation since it has the same behaviour

on demonic tests and it still calculates a meet with respect to E on other elements.

Proposition 3.20-21 tells us that x Gt y is the demonic meet of t2x and ¬t2y.

Note that the axiom for Gt (refer to (3.23)) is satisfied by the conditional choice

operator / t . of Hoare et al. [HHJ+87, HJ98]. We list the correspondence between

the axioms of DAD-G•, the properties of the G• operator and the properties of Hoare et

al.’s conditional choice operator in Table 3.1, using the same notation as the authors.

The G• operator satisfies a lot of additional laws, as shown by Proposition 3.20. Note

that the G• operator and the conditional choice operator of Hoare et al. are also related

to the conditional forms of McCarthy presented in the precursor paper [McC63].

To simplify the notation when possible, we will use the abbreviation

x G y = x Gppx y . (3.24)

It turns out that it is consistent with the demonic meet on demonic tests. Under

special conditions, G has easy to use properties, as shown by the next corollary. The

most useful cases are when G is used on tests and when ppx2ppy = >.
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DAD-G• Laws of programming [HHJ+87] UTP [HJ98]
x E y ⇐⇒ x H y = y P ⊆ Q ⇐⇒ P ∪Q = Q [P ⇒ Q] ⇐⇒ [P uQ = Q]
x H (y H z) = (x H y) H z P ∪ (Q ∪R) = (P ∪Q) ∪R P u (Q uR) = (P uQ) uR

x H y = y H x P ∪Q = Q ∪ P P uQ = Q u P

x H x = x P ∪ P = P P u P = P

> H x = > ⊥ ∪ P = ⊥ true u P = true

x2(y2z) = (x2y)2z P ; (Q;R) = (P ;Q);R P ; (Q;R) = (P ;Q);R
>2x = x2> = > ⊥;P = P ;⊥ = ⊥ true;P = P ; true = true

12x = x21 = x II ;P = P ; II = P II αP ;P = P ; II αP = P

x2(y H z) = x2y H x2z P ; (Q ∪R) = (P ;Q) ∪ (P ;R) P ; (Q uR) = (P ;Q) u (P ;R)
(x H y)2z = x2z H y2z (P ∪Q);R = (P ;R) ∪ (Q;R) (P uQ);R = (P ;R) u (Q;R)
x Gt y = y G¬t x P / b . Q = Q / ¬b . P P / b . Q = Q / ¬b . P

x Gt x = x P / b . P = P P / b . P = P

(x Gt y)2z = x2z Gt y2z (P / b . Q);R = (P ;R) / b . (Q;R) (P / b . Q);R = (P ;R) / b . (Q;R)
x× = µE(y :: y2x H 1) νR • (P ;R u II α(P ;R))

Table 3.1: Correspondence between the axioms of DAD-G•, the properties of the G•

operator and the properties of Hoare et al.’s conditional choice operator.

Corollary 3.21. Let A be a DAD-G•. The following properties are true for all x, y, z ∈
A and all s, t, t1, t2, ..., tn, u ∈ test(A) (n ≥ 2).

1. s G t as defined by (3.24) is equal to the meet of s and t in the Boolean lattice of

tests defined in Definition 3.4 (so there is no possible confusion).

2. x G y = x G ¬ppx2y

3. > G x = x G > = x

4. t2(x G y) = t2x G t2y

5. (s G t)2x = s2x G t2x

6. x = t2x G ¬t2x

7. ppx E t =⇒ t2(x G y) = t2x

8. ¬ppx E t =⇒ t2(x G y) = t2y

9. x Gu y = u2x G ¬u2y

10. ppx2y = ppy2x =⇒ x G y = y G x

11. x G x = x

12. x G y E x
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13. (x G y) G z = x G (y G z)

14. x H (y G z) = (x H y) G (x H z)

15. x G (y H z) = (x G y) H (x G z)

16. pp(x G y) = ppx G ppy

17. ppx2ppy = > =⇒ (x G y)2z = x2z G y2z

18. x2z = x ∧ y2z = y =⇒ (x Gt y)2z = x Gt y ∧ (x G y)2z = x G y

19. If t1 G t2 G ... G tn = 1 and t1, t2, ..., tn are pairwise disjoint (n ≥ 2), then

x E y ⇐⇒ t12x E t12y ∧ t22x E t22y ∧ ... ∧ tn2x E tn2y .

Proof :

1. From (3.24), we get

s G t

= 〈 by (3.24) and Proposition 3.14-1 〉

s Gs t

= 〈 by Boolean algebra and Proposition 3.20-3 〉

1 Gs t.

From Definition 3.4, we get

s G t

= 〈 by Proposition 3.20-11 〉

1 Gs t.

2. x G y = x G ¬ppx2y

⇐⇒ 〈 by (3.24) 〉

x Gppx y = x Gppx ¬ppx2y

⇐⇒ 〈 by Proposition 3.20-4 〉

true
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3. > G x

= 〈 by (3.24) and Proposition 3.14-1 〉

> G> x

= 〈 by Proposition 3.20-6 〉

¬>2x

= 〈 by Boolean algebra and (3.7) 〉

x

= 〈 by Propositions 3.20-5 and 3.14-7 〉

x Gppx >
= 〈 by (3.24) 〉

x G >

4. t2x G t2y = t2(x G y)

⇐⇒ 〈 by (3.24) 〉

t2x Gpp(t2x) t2y = t2(x Gppx y)

⇐⇒ 〈 by (3.23) 〉

pp(t2x)2t2x = pp(t2x)2t2(x Gppx y) ∧ ¬pp(t2x)2t2y = ¬pp(t2x)2t2(x Gppx y)

⇐⇒ 〈 by Propositions 3.14-9 and 3.14-7, and Boolean algebra 〉

t2x = t2ppx2(x Gppx y) ∧ t2¬ppx2y = t2¬ppx2(x Gppx y)

⇐⇒ 〈 by Propositions 3.20-1 and 3.14-7 〉

true

5. (s G t)2x = s2x G t2x

⇐⇒ 〈 by Proposition 3.20-17 〉

s2(s G t)2x = s2(s2x G t2x) ∧ ¬s2(s G t)2x = ¬s2(s2x G t2x)

⇐⇒ 〈 Boolean algebra, Corollary 3.21-4 and (3.6) 〉

s2x = s2(x G t2x) ∧ ¬s2t2x = > G ¬s2t2x

⇐⇒ 〈 by Corollaries 3.21-2 and 3.21-3 〉

s2x = s2(x G ¬ppx2t2x)

⇐⇒ 〈 by Boolean algebra, Proposition 3.14-17, (3.6) and Corollary

3.21-3 〉
true
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6. x = t2x G ¬t2x

⇐⇒ 〈 by Proposition 3.20-17 〉

t2x = t2(t2x G ¬t2x) ∧ ¬t2x = ¬t2(t2x G ¬t2x)

⇐⇒ 〈 by Corollary 3.21-4, Boolean algebra and (3.6) 〉

t2x = t2x G > ∧ ¬t2x = > G ¬t2x

⇐⇒ 〈 by Corollary 3.21-3 〉

true

7. Suppose ppx E t. Hence t = t2ppx by Boolean algebra.

t2(x G y) = t2x

⇐⇒ 〈 by (3.24) and the hypothesis 〉

t2ppx2(x Gppx y) = t2x

⇐⇒ 〈 by Propositions 3.20-1 and 3.14-7 〉

true

8. Suppose ¬ppx E t. Hence t = t2¬ppx by Boolean algebra.

t2(x G y) = t2y

⇐⇒ 〈 by (3.24) and the hypothesis 〉

t2¬ppx2(x Gppx y) = t2y

⇐⇒ 〈 by Proposition 3.20-1 and the hypothesis 〉

true

9. x Gu y = u2x G ¬u2y

⇐⇒ 〈 by (3.23) 〉

u2x = u2(u2x G ¬u2y) ∧ ¬u2y = ¬u2(u2x G ¬u2y)

⇐⇒ 〈 by Corollary 3.21-4 and Boolean algebra 〉

u2x = u2x G >2y ∧ ¬u2y = >2x G ¬u2y

⇐⇒ 〈 by (3.6) and Corollary 3.21-3 〉

true

10. Suppose ppx2y = ppy2x.
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x G y = y G x

⇐⇒ 〈 by Proposition 3.20-17 and (3.24) 〉

ppx2(x G y) = ppx2(y Gppy x) ∧ ¬ppx2(x G y) = ¬ppx2(y G x)

⇐⇒ 〈 by Proposition 3.20-8 and Corollaries 3.21-4, 3.21-7 and 3.21-8

〉
ppx2x = ppx2y Gppy ppx2x ∧ ¬ppx2y = ¬ppx2y G ¬ppx2x

⇐⇒ 〈 by Propositions 3.14-7 and 3.14-17 〉

x = ppx2y Gppy x ∧ ¬ppx2y = ¬ppx2y G >
⇐⇒ 〈 by Corollary 3.21-3 〉

x = ppx2y Gppy x ∧ true

⇐⇒ 〈 by the hypothesis 〉

x = ppy2x Gppy x

⇐⇒ 〈 by Propositions 3.20-3 and 3.20-13 〉

true

11. x G x

= 〈 by (3.24) 〉

x Gppx x

= 〈 by Proposition 3.20-13 〉

x

12. true

⇐⇒ 〈 by (3.14) 〉

y E >
=⇒ 〈 by Proposition 3.20-15 〉

x Gppx y E x Gppx >
⇐⇒ 〈 by (3.24) and Propositions 3.20-5 and 3.14-7 〉

x G y E x

13. x G (y G z) = (x G y) G z

⇐⇒ 〈 by (3.24) 〉

x Gppx (y G z) = (x Gppx y) G z

⇐⇒ 〈 by (3.23) and Proposition 3.14-7 〉
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x = ppx2((x Gppx y) G z) ∧ ¬ppx2(y G z) = ¬ppx2((x Gppx y) G z)

⇐⇒ 〈 by Corollaries 3.21-7 and 3.21-4, Proposition 3.20-20, (3.24)

and Boolean algebra 〉
x = ppx2(x Gppx y) ∧ ¬ppx2y G ¬ppx2z = ¬ppx2(x Gppx y) G ¬ppx2z

⇐⇒ 〈 by Propositions 3.20-1 and 3.14-7 〉

true

14. (x H y) G (x H z) = x H (y G z)

⇐⇒ 〈 by (3.24), (3.21) and Proposition 3.14-3 〉

(x H y) Gppx2ppy (x H z) = x H (y G z)

⇐⇒ 〈 by (3.23), Proposition 3.14-11 and De Morgan 〉

x H y = ppx2ppy2(x H (y G z)) ∧
(¬ppx G ¬ppy)2(x H z) = (¬ppx G ¬ppy)2(x H (y G z))

⇐⇒ 〈 by (3.8), Corollary 3.21-7 and Propositions 3.14-11 and 3.14-7

〉
true ∧ (¬ppx G ¬ppy)2(x H z) = (¬ppx G ¬ppy)2(x H (y G z))

⇐⇒ 〈 by Propositions 3.14-7 and 3.14-20, and Boolean algebra 〉

¬ppy2(x H z) = ¬ppy2(x H (y G z))

⇐⇒ 〈 by (3.8) and Corollary 3.21-8 〉

true

15. x G (y H z)

= 〈 by (3.24) 〉

x Gppx (y H z)

= 〈 by Proposition 3.20-9 〉

(x Gppx y) H (x Gppx z)

= 〈 by (3.24) 〉

(x G y) H (x G z)

16. pp(x G y)

= 〈 by (3.24) 〉

pp(x Gppx y)

= 〈 by Proposition 3.20-20 〉

ppx Gppx ppy
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= 〈 by Proposition 3.14-1 and (3.24) 〉

ppx G ppy

17. Suppose ppx2ppy = >, hence ¬ppx2ppy = ppy by Boolean algebra.

(x G y)2z

= 〈 by (3.24) 〉

(x Gppx y)2z

= 〈 by Proposition 3.20-7 〉

x2z Gppx y2z

= 〈 by Corollary 3.21-9, Proposition 3.14-7 and the hypothesis 〉

x2z G y2z

18. Suppose x2z = x and y2z = y.

(x Gt y)2z

= 〈 by Proposition 3.20-7 〉

x2z Gt y2z

= 〈 by the hypothesis 〉

x Gt y

(x G y)2z

= 〈 by (3.24) 〉

(x Gppx y)2z

= 〈 see the previous derivation 〉

x Gppx y

= 〈 by (3.24) 〉

x G y

19. We prove Corollary 3.21-19 by induction.

Basis case n = 2. For any t1 and t2 such that t1 G t2 = 1 and t12t2 = >, t2 = ¬t1
by Boolean algebra. Thus, Proposition 3.20-16 gives

x E y ⇐⇒ t12x E t12y ∧ t22x E t22y .
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Induction hypothesis. Suppose that for any t1, t2, ..., tn−1 such that t1 G t2 G ... G

tn−1 = 1 and t1, t2, ..., tn−1 are pairwise disjoint,

x E y ⇐⇒ t12x E t12y ∧ t22x E t22y ∧ ... ∧ tn−12x E tn−12y .

Suppose now that t1 G t2 G ...G tn = 1 and t1, t2, ..., tn are pairwise disjoint. Then

(t1 G t2) G t3 G ... G tn = 1 and (t1 G t2), t3, ..., tn are pairwise disjoint by Boolean

algebra.

x E y

⇐⇒ 〈 by the induction hypothesis 〉

(t1 G t2)2x E (t1 G t2)2y ∧ t32x E t32y ∧ ... ∧ tn2x E tn2y

⇐⇒ 〈 by Proposition 3.20-16, the hypothesis and Boolean algebra 〉

t12x E t12y ∧ t22x E t22y ∧ ... ∧ tn2x E tn2y

2

By Corollary 3.21-14 and (3.2), (xG y) H z = (xH z) G (y H z). However, (xH y) G z =

(xGz)H(yGz) is false in general. Take the relations x = {(0, 0)}, y = {} and z = {(0, 1)}
as a counter-example.

Furthermore, the equality (x G y)2z = x2z G y2z is also false in general (com-

pare with Proposition 3.20-7). Take the relations x = {(0, 0), (0, 1), (1, 0), (1, 1)},
y = {(0, 1), (1, 1)} and z = {(1, 1)} as a counter-example. This counter-example

shows that the hypothesis of Corollary 3.21-17 is welcome. Another way of getting

(x G y)2z = x2z G y2z is to focus on tests, as in Corollary 3.21-5.

In order to demonstrate a refinement x E y for x, y ∈ A, rather than deriving it

directly, it is sometimes easier to break it in more refinements t12x E t12y, t22x E t22y,

..., tn2x E tn2y. This can be done under suitable hypotheses thanks to Corollary 3.21-

19. This case analysis with many tests is going to be used several times in the proof of

Theorem 4.31.

There is a trivial and very useful contraction of Proposition 3.14-21 and Corol-

lary 3.21-10 which reads

ppx2ppy = > =⇒ x G y = y G x . (3.25)

By Corollary 3.21-12, x G y E x. In general, x G y E y does not hold. Take the

relations x = {(0, 0)} and y = {(0, 1)} as a counter-example. However it is true under
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suitable hypotheses. The following lemma presents hypotheses that help manipulating

G operators involved in different refinements.

Lemma 3.22. Let A be a DAD-G•. The following properties are true for all x, y, z ∈ A.

1. y E z =⇒ x G y E x G z

2. x E y =⇒ x E y G x

3. x E y ∧ ppx = ppy =⇒ x G z E y G z

4. x E y ∧ ppx2ppz = > =⇒ x G z E y G z

5. pp(x G y) = ppz ∧ x = ppx2z ∧ y = ppy2z =⇒ x G y = z

6. x E y G z ⇐⇒ x E y ∧ x E ¬ppy2z

7. ppx2ppy = ppw2ppz = > =⇒ (w G x) H (y G z) = (w H y) G (x H z)

Proof :

1. This follows from (3.24) and Proposition 3.20-15.

2. Suppose x E y

y G x

= 〈 by Corollary 3.21-2 〉

y G ¬ppy2x

= 〈 by Proposition 3.14-9 and Boolean algebra,

ppy2pp(¬ppy2x) = >,

then apply (3.25) 〉
¬ppy2x G y

= 〈 by Proposition 3.14-7 〉

¬ppy2x G ppy2y

F 〈 by the hypothesis and Lemma 3.22-1 〉

¬ppy2x G ppy2x

= 〈 by Corollary 3.21-6 〉

x
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3. This follows from (3.24) and Proposition 3.20-14.

4. Assume ppx2ppz = >.

x G z E y G z

⇐⇒ 〈 by Proposition 3.20-16 〉

ppx2(x G z) E ppx2(y G z) ∧ ¬ppx2(x G z) E ¬ppx2(y G z)

⇐⇒ 〈 by Corollaries 3.21-7, 3.21-8 and 3.21-4, and Proposition

3.14-7 〉
ppx2x E ppx2y G ppx2ppz2z ∧ ¬ppx2ppz2z E ¬ppx2ppy2y G ¬ppx2ppz2z

⇐⇒ 〈 by the hypothesis, Boolean algebra, (3.6), Corollary 3.21-3

and Proposition 3.14-7 〉
ppx2x E ppx2y ∧ z E ¬ppx2y G z

⇐= 〈 by Proposition 3.14-8, Boolean algebra, (3.6) and Corollary

3.21-3 〉
x E y

5. Assume x = ppx2z, y = ppy2z and pp(x G y) = ppz. Hence,

¬ppx2ppy = ¬ppx2ppz (3.26)

by Corollary 3.21-16 and Boolean algebra.

x G y = z

⇐⇒ 〈 by (3.24) 〉

x Gppx y = z

⇐⇒ 〈 by (3.23) and Proposition 3.14-7 〉

x = ppx2z ∧ ¬ppx2y = ¬ppx2z

⇐⇒ 〈 by the hypothesis 〉

true ∧ ¬ppx2ppy2z = ¬ppx2z

⇐⇒ 〈 by Proposition 3.14-7 and (3.26) 〉

true

6. x E y G z

⇐⇒ 〈 by (3.24) 〉

x E y Gppy z

⇐⇒ 〈 by Propositions 3.20-18 and 3.14-7 〉

x E y ∧ x E ¬ppy2z
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7. Assume ppx2ppy = > and ppw2ppz = >.

(w G x) H (y G z)

= 〈 by Corollary 3.21-14 〉

((w G x) H y) G ((w G x) H z)

= 〈 by (3.2) and Corollary 3.21-14 〉

(w H y) G (x H y) G (w H z) G (x H z)

= 〈 by Proposition 3.14-11, the hypothesis, (3.6) and

Corollary 3.21-3 〉
(w H y) G (x H z)

2

Propositions 3.20-21 and 3.14-7 with Definition 3.24 imply that xGy is the infimum

of x and ¬ppx2y with respect to E.



Chapter 4

Definition of Angelic Operators in

DAD

As mentioned at the beginning of Section 3.4, we are looking for a downward link —

refer to Figure 1.4— from DAD-G• to KAD for any model of KAD. The idea is to define

angelic operators in the context of DAD-G• and then demonstrate that the elements of

a DAD-G• together with those angelic operators form a KAD. This is exactly what is

done in this chapter.

In Sections 4.1, 4.2 and 4.3, we respectively define angelic non-deterministic choice

+D, angelic sequential composition ·D and angelic finite iteration ∗D . In Section 4.2,

we also define decomposable elements. These are indispensable for the definition of the

·D operator. In Section 4.4, we demonstrate many properties about decomposable ele-

ments. Finally, in Section 4.5, we demonstrate that the elements of a DAD-G• together

with those angelic operators form a KAD. This last result of the chapter is one of the

most important of this thesis. Indeed, it is the second step toward the desired duality

(refer to Section 1.3).

We add a subscript D to the angelic operators defined here, to denote that they are

defined by demonic expressions.
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4.1 Angelic Refinement and Angelic Choice

We start with the angelic partial order ≤D. It is easy to see that this definition is the

demonic version of Definition 2.9.

Definition 4.1 (Angelic refinement). Let A be a DAD-G• and take x, y ∈ A. We say

that x≤D y when

ppy E ppx , (4.1)

x E ppx2y . (4.2)

Proposition 4.3 below states that ≤D is a partial order. Moreover, it gives a formula

using demonic operators for the angelic supremum with respect to this partial order.

In order to demonstrate this proposition, we need the following lemma.

Lemma 4.2. Let A be a DAD-G•. The function

f : A× A −→ A

(x, y) 7→ (x H y) G ¬ppy2x G ¬ppx2y

satisfies the following four properties for all x, y, z ∈ A. Note that f is well defined by

Corollary 3.21-13.

1. ppf(x, y) = ppx G ppy

2. f(x, x) = x

3. f(x, y) = f(y, x)

4. f(x, f(y, z)) = f(f(x, y), z)

Proof :

1. ppf(x, y)

= 〈 by definition of f 〉

pp((x H y) G ¬ppy2x G ¬ppx2y)

= 〈 by Corollary 3.21-16 〉

pp(x H y) G pp(¬ppy2x) G pp(¬ppx2y)
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= 〈 by (3.21) and Propositions 3.14-3 and 3.14-9 〉

ppx2ppy G ¬ppy2ppx G ¬ppx2ppy

= 〈 by Boolean algebra 〉

ppx G ppy

2. f(x, x)

= 〈 by definition of f 〉

(x H x) G ¬ppx2x G ¬ppx2x

= 〈 by Proposition 3.14-17 〉

(x H x) G > G >
= 〈 by Corollary 3.21-3 and (3.3) 〉

x

3. f(x, y)

= 〈 by definition of f 〉

(x H y) G ¬ppy2x G ¬ppx2y

= 〈 by Proposition 3.14-9 and Boolean algebra,

pp(¬ppy2x)2pp(¬ppx2y) = ¬ppy2ppx2¬ppx2ppy = >,

then apply (3.2) and (3.25) 〉
(y H x) G ¬ppx2y G ¬ppy2x

= 〈 by definition of f 〉

f(y, x)

4. Here is the derivation. It repeatedly invokes (3.25). Using (3.21), Boolean algebra

and Proposition 3.14-9, it is easy to check that the operands of the various G

operators are pairwise disjoint, so that the condition ppx2ppy = > of (3.25) is

satisfied. This is what allows permuting the operands.

f(x, f(y, z))

= 〈 by definition of f and Lemma 4.2-1 〉

(x H ((y H z) G ¬ppz2y G ¬ppy2z))G

¬(ppy G ppz)2x G ¬ppx2((y H z) G ¬ppz2y G ¬ppy2z)

= 〈 by Corollaries 3.21-14 and 3.21-4, and Boolean algebra 〉

(x H y H z) G (x H ¬ppz2y) G (x H ¬ppy2z) G

¬ppy2¬ppz2x G ¬ppx2(y H z) G ¬ppx2¬ppz2y G ¬ppx2¬ppy2z
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= 〈 by Proposition 3.14-20 and (3.25) 〉

(x H y H z) G ¬ppz2(x H y) G ¬ppy2(x H z) G ¬ppx2(y H z) G

¬ppy2¬ppz2x G ¬ppx2¬ppz2y G ¬ppx2¬ppy2z

= 〈 by (3.2), (3.21), Proposition 3.14-9, (3.25) and Boolean algebra

〉
(z H x H y) G ¬ppy2(z H x) G ¬ppx2(z H y) G ¬ppz2(x H y) G

¬ppx2¬ppy2z G ¬ppz2¬ppy2x G ¬ppz2¬ppx2y

= 〈 by Proposition 3.14-20 and (3.25) 〉

(z H x H y) G (z H ¬ppy2x) G (z H ¬ppx2y) G ¬ppx2¬ppy2z G

¬ppz2(x H y) G ¬ppz2¬ppy2x G ¬ppz2¬ppx2y

= 〈 by Corollaries 3.21-14 and 3.21-4, and Boolean algebra 〉

(z H ((x H y) G ¬ppy2x G ¬ppx2y)) G ¬(ppx G ppy)2z G

¬ppz2((x H y) G ¬ppy2x G ¬ppx2y)

= 〈 by definition of f and Lemma 4.2-1 〉

f(z, f(x, y))

= 〈 by Lemma 4.2-3 〉

f(f(x, y), z)

2

Proposition 4.3 (Angelic choice). The angelic refinement of Definition 4.1 satisfies

the following three properties.

1. For all x, >≤D x.

2. For all x, y,

x≤D y ⇐⇒ f(x, y) = y ,

where f is the function defined in Lemma 4.2.

3. ≤D is a partial order. Letting x+D y denote the supremum of x and y with respect

to ≤D, we have

x+D y = f(x, y) .

Proof :



Chapter 4. Definition of Angelic Operators in DAD 78

1. From (3.14) and Proposition 3.14-8, we have ppx E pp>. Also, from Proposition

3.14-1 and (3.6), pp>2x = >, so > E pp>2x. These two refinements are those from

Definition 4.1, so >≤D x.

2. f(x, y) = y

⇐⇒ 〈 by Propositions 3.20-17, 3.14-7 and 3.14-17 〉

ppy2f(x, y) = y ∧ ¬ppy2f(x, y) = >
⇐⇒ 〈 by Proposition 3.20-17 and (3.6) 〉

ppx2ppy2f(x, y) = ppx2y ∧ ppx2¬ppy2f(x, y) = > ∧
¬ppx2ppy2f(x, y) = ¬ppx2y ∧ ¬ppx2¬ppy2f(x, y) = >

⇐⇒ 〈 by definition of f , Corollaries 3.21-4 and 3.21-3, Propositions

3.14-7, 3.14-17 and 3.14-11, Boolean algebra and (3.6) 〉
ppx2ppy2(x H y) = ppx2y ∧ ¬ppy2x = > ∧ ¬ppx2y = ¬ppx2y ∧ > = >

⇐⇒ 〈 by Proposition 3.14-11 and Boolean algebra 〉

ppx2(x H y) = ppx2y ∧ ¬ppy2x = >
⇐⇒ 〈 by Propositions 3.14-20, 3.14-7, 3.14-19 and 3.14-9 〉

x H ppx2y = ppx2y ∧ ¬ppy2ppx = >
⇐⇒ 〈 by Proposition 3.14-16 〉

x H ppx2y = ppx2y ∧ ppy E ppx

⇐⇒ 〈 by (3.11) and Definition 4.1 〉

x≤D y

3. It follows from the previous point of the present proposition and by the fact that

f is reflexive, symmetric and transitive (see Lemma 4.2). 2

Proposition 4.3 and Lemma 4.2 show that ≤D and +D do what we expect them to

do and the following corollary is a direct consequence of these results.

Corollary 4.4. Let A be a DAD-G•. For all x, y, z ∈ A,

1. x+D y = (x H y) G ¬ppy2x G ¬ppx2y,

2. ≤D is a partial order and x+D y = y ⇐⇒ x≤D y,

3. pp(x+D y) = ppx G ppy,

4. (x+D y) +D z = x+D (y +D z),
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5. x+D y = y +D x,

6. x+D x = x,

7. >+D x = x+D > = x.

Remark 4.5. Note that for all s, t ∈ test(A),

s≤D t ⇐⇒ t E s

by Definition 4.1, Proposition 3.14-1 and Boolean algebra. This equivalence is the

demonic version of the one of Remark 2.11.

Remark 4.6. Since the domains of x H y, ¬ppx2y and ¬ppy2x are pairwise disjoint by

(3.21) and Proposition 3.14-9, the three terms in the definition of f (see Lemma 4.2)

commute. In the next sections and chapters, we will use any of the following equalities

by refering to Corollary 4.4-1.

x+D y = (x H y) G ¬ppy2x G ¬ppx2y

x+D y = (x H y) G ¬ppx2y G ¬ppy2x

x+D y = ¬ppy2x G ¬ppx2y G (x H y)

x+D y = ¬ppy2x G (x H y) G ¬ppx2y

x+D y = ¬ppx2y G ¬ppy2x G (x H y)

x+D y = ¬ppx2y G (x H y) G ¬ppy2x

Other major properties of +D will be presented in Section 4.5.

4.2 Angelic Composition and Demonic Decomposi-

tion

We now turn to the definition of angelic composition. But things are not as simple as

for ≤D or +D. The difficulty is due to the asymmetry between left and right caused by

the difference between Proposition 3.20-7 and 3.20-8, and by the absence of a codomain

operator for “testing” the right-hand side of elements as can be done with the domain

operator on the left. Consider the relations

Q = {(0, 0), (0, 1), (1, 2), (2, 3)} ,

R = {(0, 0), (2, 2)} .
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The angelic composition of Q and R is Q · R = {(0, 0), (1, 2)}, while their demonic

composition is Q2R = {(1, 2)}. There is no way to express Q ·R only in terms of Q2R.

What we could try to do is to decompose Q as follows using the conditional operator:

Q = Q2ppR G Q2¬ppR G (Q1 H Q2) ,

where Q1 = {(0, 0)} and Q2 = {(0, 1)}. Note that Q2ppR = {(1, 2)} and Q2¬ppR =

{(2, 3)}, so that the domains of the three operands of G are disjoint. The effect of G is

then just union. With these relations, it is possible to express the angelic composition

as Q ·R = Q2RGQ12R. Now, it is possible to extract Q1 HQ2 from Q, since Q1 HQ2 =

¬pp(Q2ppR)2¬pp(Q2¬ppR)2Q. The problem is that it is not possible to extract Q1 from

Q1 HQ2. On the one hand, Q1 and Q2 have the same domain; on the other hand, there

is no test t such that Q1 = (Q1 H Q2)2t. This is what leads to the following definition.

Definition 4.7 (Decomposition). Let A be a DAD-G• and take t ∈ test(A). An element

x ∈ A is said to be t-decomposable if and only if there are unique elements xt and x¬t
such that

x = x2t G x2¬t G (xt H x¬t) , (4.3)

pp(xt) = pp(x¬t) = ¬pp(x2t)2¬pp(x2¬t)2ppx , (4.4)

xt = xt2t , (4.5)

x¬t = x¬t2¬t . (4.6)

Moreover, x is said to be decomposable if and only if it is t-decomposable for all t ∈
test(A).

Remark 4.8. The domains pp(x2t), pp(x2¬t) and pp(xt) (or pp(x¬t)) obtained by decom-

posing x as in Definition 4.7 are pairwise disjoint. That pp(xt) and pp(x¬t) are disjoint

from pp(x2t) and pp(x2¬t) is obvious from (4.4). By Lemma 3.17-4, pp(x2t) and pp(x2¬t)
are disjoint as well. This disjointness is often used in applications of (3.25) and Corol-

lary 3.21-17.

Moreover,

ppx = pp(x2t) G pp(x2¬t) G pp(xt) , (4.7)

since

pp(x2t) G pp(x2¬t) G pp(xt)

= 〈 by (4.4) 〉

pp(x2t) G pp(x2¬t) G ¬pp(x2t)2¬pp(x2¬t)2ppx
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= 〈 by Boolean algebra 〉

pp(x2t) G pp(x2¬t) G ppx

= 〈 by Proposition 3.14-18 and Boolean algebra 〉

ppx .

Then from Corollary 3.21-16, Boolean algebra and Remark 4.8, it is easy to see that

pp(x2t G xt) = ¬pp(x2¬t)2ppx , (4.8)

ppx E pp(x2t G xt) , (4.9)

¬ppx2xt = > . (4.10)

Remark 4.9. Any element x ∈ A is 1-decomposable and >-decomposable. Indeed,

x1 = x> = >

by (4.4), Boolean algebra, (3.6) and Propositions 3.14-1 and 3.14-19.

Looking at Definition 4.7, many questions arise. Before defining angelic composition,

we answer them.

• Are demonic tests all decomposable?

Indeed they are, the t-decomposition of a test s is

s = s2t G s2¬t G (> H >) (4.11)

by (4.4), Boolean algebra and Propositions 3.14-1 and 3.14-19.

• Is there a DAD-G• containing an element that is not decomposable?

The following example presents such a scenario.

Example 4.10. For this example, we consider the following nine relations defined

on S2 = {1, 2}.

> =

(
0 0

0 0

)
s =

(
1 0

0 0

)
t =

(
0 0

0 1

)
1 =

(
1 0

0 1

)

a =

(
1 0

1 1

)
b =

(
1 1

0 1

)
c =

(
1 1

1 1

)
d =

(
1 1

0 0

)
e =

(
0 0

1 1

)



Chapter 4. Definition of Angelic Operators in DAD 82

>

��
��

��
�

>>
>>

>>
>>

d

��
��

��
��

??
??

??
??

e

��
��

��
��

==
==

==
==

s

==
==

==
==

c

��
��

��
��

??
??

??
??

t

��
��

��
��

a

??
??

??
?? b

��
��

��
��

1

Figure 4.1: Hasse diagram of Example 4.10.

Take A = {>, s, t, 1, a, b, c, d, e}, test(A) = {>, s, t, 1} and the demonic operators

defined by the following tables, omitting G•.

H > s t 1 a b c d e

> > > > > > > > > >
s > s > s s d d d >
t > > t t e t e > e

1 > s t 1 a b c d e

a > s e a a c c d e

b > d t b c b c d e

c > d e c c c c d e

d > d > d d d d d >
e > > e e e e e > e

2 > s t 1 a b c d e

> > > > > > > > > >
s > s > s s d d d >
t > > t t e t e > e

1 > s t 1 a b c d e

a > s > a a c c d >
b > > t b c b c > e

c > > > c c c c > >
d > > > d d d d > >
e > > > e e e e > >

×

> >
s s

t t

1 1

a a

b b

c c

d >
e >

pp

> >
s s

t t

1 1

a 1

b 1

c 1

d s

e t

¬
> 1

s t

t s

1 >

The demonic refinement ordering corresponding to H is represented in the semi-

lattice of Figure 4.1. It is easy to convince oneself that it is a DAD-G•. Look

at Figure 2.3. The present example is simply a subalgebra of that figure. The
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elements a, b, c, d and e are not decomposable. For instance, to decompose c with

respect to s would require the existence of the relations

f =

(
1 0

1 0

)
and g =

(
0 1

0 1

)
,

which are not there.

• Let t be a demonic test. May an element of a DAD-G• have more than one t-

decomposition? In other words, is it relevant to ask for uniqueness in Definition

4.7?

Example 4.12 is one where there is an element with nine different t-decomposi-

tions. This example is constructed from the general structure introduced in the

following lemma.

Lemma 4.11. Let (A, test(A),H, 2, ×,>, 1,¬,G, pp ,G•) be a DAD-G•. Consider

E = {(x, t) : A× test(A) | ppx E t} and T = {(t, t) : test(A)× test(A)} and define

the following operations for elements of E, where x, y ∈ A and s, t, u ∈ test(A).

(x, s)⊕ (y, t) = (x H y, s H t)

(x, s)� (y, t) = (x2y, pp(s2x2t))

(x, s)~ = (x×, pp(x×2s))

(s, s) = (¬s,¬s)
(s, s) e (t, t) = (s G t, s G t)

pp(x, s) = (ppx, ppx)

(x, s) e(u,u) (y, t) = (x Gu y, s Gu t)

Then (E, T,⊕,�, ~, (>,>), (1, 1), ,e, pp,e•) is a DAD-e• and the partial order

related to ⊕ satisfies

(x, s) E (y, t) ⇐⇒ x E y ∧ s E t .

Proof : The proof of Lemma 4.11 contains no new idea and is ten pages long.

Therefore, it is postponed to Appendix A. 2

Here is a DAD-G• where the t-decomposition of x is not unique.

Example 4.12. Take the structure constructed in Lemma 4.11 with relations on

the set S2 = {1, 2} as carrier set A. Take the following relations

> =

(
0 0

0 0

)
s =

(
1 0

0 0

)
t =

(
0 0

0 1

)
1 =

(
1 0

0 1

)
f =

(
1 0

1 0

)
g =

(
0 1

0 1

)
c =

(
1 1

1 1

)
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and define C = (>,>). Then (c,>) admits nine different (s, s)-decompositions.

(c,>) = C e C e ((f,>)⊕ (g,>)) (4.12)

(c,>) = C e C e ((f, s)⊕ (g, t)) (4.13)

(c,>) = C e C e ((f, t)⊕ (g, s)) (4.14)

(c,>) = C e C e ((f, s)⊕ (g,>)) (4.15)

(c,>) = C e C e ((f, t)⊕ (g,>)) (4.16)

(c,>) = C e C e ((f,>)⊕ (g, s)) (4.17)

(c,>) = C e C e ((f,>)⊕ (g, t)) (4.18)

(c,>) = C e C e ((f, 1)⊕ (g,>)) (4.19)

(c,>) = C e C e ((f,>)⊕ (g, 1)) (4.20)

Lemma 4.11 is going to be used in Section 6.1 in order to give a possible semantics

for DAD-G• containing nondecomposable elements.

• Do the decomposable elements of a DAD-G• A together with the demonic opera-

tors form a subalgebra of A?

The answer is no and here is a counter-example. Go back to Example 4.12. It is

easy to see that the elements (f, s) and (g, t) are (s, s)-decomposable, because

(f, s) = (f, s) e C e (C ⊕ C)

(g, t) = C e (g, t) e (C ⊕ C)

since

(f, s) = (f, s)� (s, s)

(g, t) = (g, t)� (s, s) .

For the same reason, (f, s) and (g, t) are (t, t)-decomposable. Also, (f, s) and (g, t)

are (1, 1)-decomposable and C-decomposable by Remark 4.9. Therefore, (f, s) and

(g, t) are decomposable.

However, (f, s) ⊕ (g, t) has two possible (s, s)-decompositions (see (4.13) and

(4.14)):

(f, s)⊕ (g, t) = (c,>) = C e C e ((f, s)⊕ (g, t))

(f, s)⊕ (g, t) = (c,>) = C e C e ((f, t)⊕ (g, s)) .

So (f, s)⊕ (g, t) is not decomposable, while (f, s) and (g, t) are.

• Therefore, are there maximal subalgebras of decomposable elements?

Fortunately, the answer is yes. It is the subject of the following proposition.
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Proposition 4.13 (Maximal subalgebra of decomposable elements). Let A be a

DAD-G•. There is a maximal subalgebra (not necessarily unique) of decomposable

elements containing test(A).

The proof of Proposition 4.13 involves Zorn’s Lemma (which is equivalent to the

axiom of choice, see [Jec73]) and here is how it reads.

Lemma 4.14 (Zorn’s Lemma). Every non-empty partially ordered set in which

every chain has an upper bound contains at least one maximal element.

Now let us prove Proposition 4.13. To ease the presentation of the proof, we make

no distinction between a DAD-G• and its carrier set.

Proof : Consider

E = {I : ℘(A) | test(A) ⊆ I ∧ I is a subalgebra of decomposable elements} .

Since all tests are decomposable (see (4.11)), test(A) ∈ E so E is not empty.

Trivially, E is partially ordered by inclusion.

Let C ⊆ E be a chain. We will demonstrate that

IC =
⋃
I∈C

I

is an upper bound for C. Then, by Zorn’s Lemma, the proof is done.

Take x, y, t ∈ IC . There are I ′, I ′′, I ′′′ ∈ C such that x ∈ I ′, y ∈ I ′′ and t ∈ I ′′′.

Without loss of generality, I ′ ⊆ I ′′ ⊆ I ′′′ so x, y, t ∈ I ′′′. Then, since I ′′′ is a

subalgebra of decomposable elements, xH y, x2y, x× and xGt y are decomposable

and belong to I ′′′ and thus to IC . Since, for all I ∈ C, test(A) ⊆ I, then test(A) ⊆
IC . Therefore, IC is an upper bound for C. 2

That proposition brings back confidence in the concept of decomposition. Indeed,

considering any DAD-G• A, Proposition 4.13 guarantees that there is a part of A
containing test(A) that is a subalgebra of decomposable elements. If A is itself

a subalgebra of decomposable elements containing test(A), then we say that A is

an algebra of decomposable elements.

Definition 4.15 (Algebra of decomposable elements). A DAD-G• A is an algebra

of decomposable elements if x is decomposable for all x ∈ A.

In Section 4.4, we will consider algebras of decomposable elements and study

many of their properties. In Section 4.5, we will show that the elements of an

algebra of decomposable elements together with the angelic operators defined

in Sections 4.1, 4.2 and 4.3 form a KAD. In Chapter 5, we will demonstrate

that this result of Section 4.5 can only be valid within algebras of decomposable

elements. We will also demonstrate that all KAD-based DAD-G•s are algebras of

decomposable elements.
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We are now ready to define angelic composition.

Definition 4.16 (Angelic composition). Let x and y be elements of a DAD-G• such

that x is ppy-decomposable. The angelic composition x ·D y is defined by

x ·D y = x2y G xppy2y .

Proposition 4.17. Let x, y, z be elements of a DAD-G• A. Then

1. 1 ·D x = x ·D 1 = x,

2. > ·D x = x ·D > = >,

3. t ·D x = t2x,

4. ppy = 1 =⇒ x ·D y = x2y.

5. If x is ppy-decomposable, then pp(x ·D y) = ppx2¬pp(x2¬ppy).

6. If x is ppy-decomposable and pp(y ·D z)-decomposable, y is ppz-decomposable and x ·D y
is ppz-decomposable, then pp(x ·D (y ·D z)) = pp((x ·D y) ·D z).

7. If x is ppy-decomposable, then x ·D y = (x2ppy G xppy)2y.

The hypotheses of Propositions 4.17-5, 4.17-6 and 4.17-7 ensure that each angelic

composition involved is well defined. There is no need for such assumptions for Propo-

sitions 4.17-1, 4.17-2, 4.17-3 and 4.17-4 since all tests are decomposable by (4.11) and

any element is 1-decomposable and >-decomposable by Remark 4.9.

These comments illustrate how careful one must be when dealing with angelic com-

position. However, in further sections, when decomposition is involved, we will suppose

that A is an algebra of decomposable elements. Therefore, all angelic compositions will

be well defined.

Proof :

1. 1 ·D x
= 〈 by Definition 4.16 〉

12x G 1ppx2x

= 〈 by (4.11) 〉

12x G >2x
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= 〈 by (3.7), (3.6) and Corollary 3.21-3 〉

x

= 〈 by (3.7) and Corollary 3.21-3 〉

x21 G >21

= 〈 by Remark 4.9 and Proposition 3.14-1 〉

x21 G xpp121

= 〈 by Definition 4.16 〉

x ·D 1

2. > ·D x
= 〈 by Definition 4.16 〉

>2x G >ppx2x

= 〈 by (4.11) 〉

>2x G >2x

= 〈 by (3.6) and Corollary 3.21-11 〉

>
= 〈 by (3.6) and Corollary 3.21-11 〉

x2> G >2>
= 〈 by Remark 4.9 and Proposition 3.14-1 〉

x2> G xpp>2>
= 〈 by Definition 4.16 〉

x ·D >

3. t ·D x
= 〈 by Definition 4.16 〉

t2x G tppx2x

= 〈 by (4.11) 〉

t2x G >2x

= 〈 by (3.6) and Corollary 3.21-3 〉

t2x

4. Suppose ppy = 1

x ·D y
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= 〈 by Definition 4.16, the hypothesis and Remark 4.9 〉

x2y G x12y

= 〈 by Remark 4.9 〉

x2y G >2y

= 〈 by (3.6) and Corollary 3.21-3 〉

x2y

5. Suppose x is ppy-decomposable.

pp(x ·D y)
= 〈 by Definition 4.16, Corollary 3.21-16 and (3.20) 〉

pp(x2ppy) G pp(xppy2ppy)

= 〈 by (4.5) with x, t := x, ppy 〉

pp(x2ppy) G pp(xppy)

= 〈 by (4.4) with x, t := x, ppy 〉

pp(x2ppy) G ¬pp(x2ppy)2¬pp(x2¬ppy)2ppx

= 〈 by Boolean algebra 〉

pp(x2ppy) G ¬pp(x2¬ppy)2ppx

= 〈 by Boolean algebra, Lemma 3.17-5 and Proposition 3.14-18,

¬pp(x2¬ppy)2ppx E pp(x2ppy) ⇐⇒
¬pp(x2¬ppy) E pp(x2ppy) ∧ ppx E pp(x2ppy) ⇐⇒ true,

then apply Boolean algebra 〉
ppx2¬pp(x2¬ppy)

6. Suppose x is ppy-decomposable and pp(y ·D z)-decomposable, y is ppz-decomposable

and x ·D y is ppz-decomposable.

pp(x ·D (y ·D z))
= 〈 by Proposition 4.17-5 〉

ppx2¬pp(x2¬(ppy2¬pp(y2¬ppz)))

= 〈 by De Morgan 〉

ppx2¬pp(x2(¬ppy G pp(y2¬ppz)))

= 〈 by (4.3) with x, t := x, ppy 〉

ppx2¬pp((x2ppy G x2¬ppy G (xppy H x¬ppy))2(¬ppy G pp(y2¬ppz)))
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= 〈 by Corollary 3.21-17 and Remark 4.8 〉

ppx2¬pp(x2ppy2(¬ppy G pp(y2¬ppz)) G x2¬ppy2(¬ppy G pp(y2¬ppz)) G

(xppy H x¬ppy)2(¬ppy G pp(y2¬ppz)))

= 〈 by Corollaries 3.21-8 and 3.21-7, and Boolean algebra 〉

ppx2¬pp(x2ppy2pp(y2¬ppz) G x2¬ppy G (xppy H x¬ppy)2(¬ppy G pp(y2¬ppz)))

= 〈 by Proposition 3.14-18 and Boolean algebra 〉

ppx2¬pp(x2pp(y2¬ppz) G x2¬ppy G (xppy H x¬ppy)2(¬ppy G pp(y2¬ppz)))

= 〈 by Corollary 3.21-16 and (3.20) 〉

ppx2¬pp(x2y2¬ppz G x2¬ppy G (xppy H x¬ppy)2(¬ppy G pp(y2¬ppz)))

= 〈 by (4.5) with x, t := x, ppy, (4.6) with x, t := x, ppy and (3.9) 〉

ppx2¬pp(x2y2¬ppz G x2¬ppy G

(xppy2ppy2(¬ppy G pp(y2¬ppz)) H x¬ppy2¬ppy2(¬ppy G pp(y2¬ppz))))

= 〈 by Corollaries 3.21-8 and 3.21-7, and Boolean algebra 〉

ppx2¬pp(x2y2¬ppz G x2¬ppy G (xppy2ppy2pp(y2¬ppz) H x¬ppy2¬ppy))

= 〈 by Proposition 3.14-18 and (4.6) with x, t := x, ppy 〉

ppx2¬pp(x2y2¬ppz G x2¬ppy G (xppy2pp(y2¬ppz) H x¬ppy))

= 〈 by Corollary 3.21-16 and (3.21) 〉

ppx2¬(pp(x2y2¬ppz) G pp(x2¬ppy) G (pp(xppy2pp(y2¬ppz)) H pp(x¬ppy)))

= 〈 by (4.4) with x, t := x, ppy and Proposition 3.14-18,

pp(x¬ppy) = pp(xppy) E pp(xppy2pp(y2¬ppz)) 〉
ppx2¬(pp(x2y2¬ppz) G pp(x2¬ppy) G pp(xppy2pp(y2¬ppz)))

= 〈 by Boolean algebra and (3.20) 〉

ppx2¬pp(x2¬ppy)2¬pp(x2y2¬ppz)2¬pp(xppy2y2¬ppz)

= 〈 by Boolean algebra and Corollary 3.21-16 〉

ppx2¬pp(x2¬ppy)2¬pp(x2y2¬ppz G xppy2y2¬ppz)

= 〈 by Corollary 3.21-17 and Remark 4.8 〉

ppx2¬pp(x2¬ppy)2¬pp((x2y G xppy2y)2¬ppz)

= 〈 by Proposition 4.17-5 and Definition 4.16 〉

pp((x ·D y) ·D z)

7. Suppose x is ppy-decomposable.

x ·D y
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= 〈 by Definition 4.16 〉

x2y G xppy2y

= 〈 by Proposition 3.14-7 〉

x2ppy2y G xppy2y

= 〈 by Remark 4.8 and Corollary 3.21-17 〉

(x2ppy G xppy)2y

2

Knowing the main result we are looking for (refer to Section 1.3), one would expect

us to demonstrate the associativity of ·D and its distributivity over +D. We postpone

these demonstrations and many others until Section 4.5 since we need more properties

about decomposition before being able to get these results. These properties about

decomposition are gathered in Section 4.4.

Remark 4.18. By Definition 2.8 and Proposition 2.13-4,

p(x 2A y) = px · ¬p(x · ¬py) .

Comparing this expression with the one given in Proposition 4.17-5, namely

pp(x ·D y) = ppx2¬pp(x2¬ppy) ,

reveals a nice duality.

4.3 Kleene Star

The last angelic operator that we define here is the angelic iteration operator that

corresponds to the Kleene star.

Definition 4.19 (Angelic iteration operator). Let x be an element of a DAD-G•. The

angelic iteration operator ∗D is defined by

x∗D = (x G 1)× .

The following laws are technical results needed in Section 4.5.

Lemma 4.20. Let A be a DAD-G•. The following laws hold for all x, y ∈ A.
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1. pp(x∗D) = pp((x G 1)×) = 1

2. pp(1 H x2(x G 1)×) = ppx

3. ppy E pp((x G 1)×2y)

Proof :

1. pp(x G 1)

= 〈 by Corollary 3.21-16 〉

ppx G pp1

= 〈 by Proposition 3.14-1 and Boolean algebra 〉

1

So pp(x∗D) = pp((x G 1)×) = 1 by Definition 4.19 and Proposition 3.14-22.

2. pp(1 H x2(x G 1)×)

= 〈 by (3.21), Proposition 3.14-1 and (3.20) 〉

1 H pp(x2pp((x G 1)×))

= 〈 by Boolean algebra, Lemma 4.20-1 and (3.7) 〉

ppx

3. By (3.7) and Proposition 3.3-1, ppy = pp(12y) E pp((x G 1)×2y). 2

Major results about the ∗D operator will be presented in Section 4.5. As for the ·D
operator, the proof of these results requires many properties about decomposition that

are presented in Section 4.4.

4.4 Crucial Identities

In this section, we present many properties about t-decomposition. Without them,

it would be highly difficult, if not impossible, to demonstrate the main theorem of

Section 4.5 stating that, under a suitable hypothesis, the definition of +D, ·D and ∗D

lead to angelic operators that satisfy the laws of KAD. We already mentioned in the

introduction of Chapter 4 that this theorem is one of the most important of this thesis.

The suitable hypothesis previously mentioned is that the algebraAmust be an algebra of
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decomposable elements. In Chapter 5, it will be shown that this hypothesis is necessary

and sufficient.

We spread the results among three theorems and several intermediate results. The-

orems 4.23, 4.27 and 4.29 respectively give algebraic expressions for (xHy)t, (x2y)t and

(x Gu y)t. The other results of the section are meant to facilitate the demonstration

of Theorems 4.23, 4.27 and 4.29, and to help for the demonstration of the results of

Section 4.5. Note that we do not give any algebraic expression for (x×)t since it is not

necessary for the demonstrations to come. Also, we did not find any compact expression

for it.

In this section, the proofs involve new ideas and illustrate how the theory developped

until now can be used. Although the results are easy to understand, some proofs are long

while others are subtle. For these reasons, at first reading, one might just concentrate

on results rather than verify all the details of each demonstration.

Let us present a general scheme of argumentation that will be used throughout this

section. As mentioned previously, this section deals with t-decomposition. Therefore,

Definition 4.7 is involved in many derivations. Let A be a DAD-G• and take x ∈ A and

t ∈ test(A). Suppose we have to demonstrate y = xt and z = x¬t for some y, z ∈ A.

According to Definition 4.7, we have to establish

x = x2t G x2¬t G (y H z) ,

ppy = ppz = ¬pp(x2t)2¬pp(x2¬t)2ppx ,

y = y2t ,

z = z2¬t .

In such a situation (Proposition 4.22-4 for example), we will say that we have to show

that y and z satisfy (4.3), (4.4), (4.5) and (4.6). Once we have established these previ-

ous four equalities, we can conclude that y = xt and z = x¬t since the t-decomposition

of x is unique (see Definition 4.7).

Remark 4.21. If we succeed in proving that y and z satisfy (4.4), there is a way to

simplify the proof that y and z satisfy (4.3). Indeed, suppose y and z satisfy (4.4).

x = x2t G x2¬t G (y H z)

⇐⇒ 〈 by Proposition 3.20-17 and Corollary 3.21-4 〉

pp(xt)2x = pp(xt)2x2t G pp(xt)2x2¬t G pp(xt)2(y H z) ∧
¬pp(xt)2x = ¬pp(xt)2x2t G ¬pp(xt)2x2¬t G ¬pp(xt)2(y H z)
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⇐⇒ 〈 by Proposition 3.14-7, the hypothesis, (3.8), Remark 4.8 and (3.6)

〉
pp(xt)2x = > G > G (y H z) ∧ ¬pp(xt)2x = ¬pp(xt)2x2t G ¬pp(xt)2x2¬t G >

⇐⇒ 〈 by Corollary 3.21-3 〉

pp(xt)2x = y H z ∧ ¬pp(xt)2x = ¬pp(xt)2x2t G ¬pp(xt)2x2¬t
⇐⇒ 〈 by Proposition 3.14-7, (4.4), De Morgan and Boolean algebra 〉

pp(xt)2x = y H z ∧ (pp(x2t) G pp(x2¬t))2x = x2t G x2¬t
⇐⇒ 〈 by Lemma 3.17-4, Corollary 3.21-17 and (3.19) 〉

pp(xt)2x = y H z

At some places (Proposition 4.25 for example), when we need to show that y and z

satisfy (4.3), we will rather work on pp(xt)2x = y H z.

The following laws are useful in what comes next.

Proposition 4.22. If A is an algebra of decomposable elements, then the following

equalities are valid for all x, y, z ∈ A and all s, t ∈ test(A).

1. x2(y G z) = x2y G x2¬ppy2z G (xppy2y H x¬ppy2z)

2. pp(xt)2x = xt H x¬t

3. pp(xt)2x2t = >

4. (x2s)t = pp(x2s)2xt

5. (s2x)t = s2xt

6. pp(x2s)2xt2s = pp(x2s)2xt

7. (xs)t2s = (xs)t

8. pp(xs2t) = pp(xs)2pp(x2(¬s G t))

9. pp(xs2t) = ¬pp(x2s2t)2¬pp(x2¬s)2pp(x2(¬s G t))

10. pp((xs)t) = ¬pp(x2(¬s G t))2¬pp(x2(¬s G ¬t))2¬pp(x2s)2ppx

Proof :
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1. x2(y G z)

= 〈 by (4.3) with x, t := x, ppy 〉

(x2ppy G x2¬ppy G (xppy H x¬ppy))2(y G z)

= 〈 by Remark 4.8, Corollary 3.21-17 and (3.9) 〉

x2ppy2(y G z) G x2¬ppy2(y G z) G (xppy2(y G z) H x¬ppy2(y G z))

= 〈 by Corollaries 3.21-7 and 3.21-8, (4.5) with x, t := x, ppy,
(4.6) with x, t := x, ppy and Proposition 3.14-7 〉

x2y G x2¬ppy2z G (xppy2y H x¬ppy2z)

2. pp(xt)2x

= 〈 by (4.3) 〉

pp(xt)2(x2t G x2¬t G (xt H x¬t))

= 〈 by Corollary 3.21-4, Proposition 3.14-7, Remark 4.8, Boolean

algebra and (3.6) 〉
(> G > G pp(xt)2(xt H x¬t))

= 〈 by Corollary 3.21-3 〉

pp(xt)2(xt H x¬t)

= 〈 by Propositions 3.14-20 and 3.14-7 〉

xt H x¬t

3. This is direct from Proposition 3.14-7, Remark 4.8, Boolean algebra and (3.6).

4. We have to show that pp(x2s)2xt and pp(x2s)2x¬t satisfy (4.3), (4.4), (4.5) and (4.6)

with x, t := x2s, t (see Definition 4.7).

(4.5) and (4.6) are easily obtained from (4.5) and (4.6) with x, t := x, t.

Here is the proof for (4.4). First note that

pp(pp(x2s)2xt)

= 〈 by Proposition 3.14-9 〉

pp(x2s)2pp(xt)

= 〈 by (4.4) 〉

pp(x2s)2pp(x¬t)

= 〈 by Proposition 3.14-9 〉

pp(pp(x2s)2x¬t) .

And here is the main derivation.
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pp(pp(x2s)2xt)

= 〈 by Proposition 3.14-9 and (4.4) 〉

pp(x2s)2¬pp(x2t)2¬pp(x2¬t)2ppx

= 〈 by Boolean algebra and Lemma 3.17-1 〉

¬pp(x2t)2¬pp(x2¬t)2pp(x2s)

= 〈 by Boolean algebra 〉

(¬pp(x2s) G ¬pp(x2t))2(¬pp(x2s) G ¬pp(x2¬t))2pp(x2s)

= 〈 by De Morgan 〉

¬(pp(x2s)2pp(x2t))2¬(pp(x2s)2pp(x2¬t))2pp(x2s)

= 〈 by Proposition 3.14-12 〉

¬pp(x2s2t)2¬pp(x2s2¬t)2pp(x2s)

= 〈 by (4.4) with x, t := x2s, t 〉

pp((x2s)t)

Finally, we conclude with the proof of (4.3).

true

=⇒ 〈 by (4.3) 〉

x = x2t G x2¬t G (xt H x¬t)

=⇒ 〈 by Corollary 3.21-4 and (3.8) 〉

pp(x2s)2x = pp(x2s)2x2t G pp(x2s)2x2¬t G (pp(x2s)2xt H pp(x2s)2x¬t)

⇐⇒ 〈 by (3.19) 〉

x2s = x2s2t G x2s2¬t G (pp(x2s)2xt H pp(x2s)2x¬t)

5. We have to show that s2xt and s2x¬t satisfy (4.3), (4.4), (4.5) and (4.6) with

x, t := s2x, t (see Definition 4.7).

(4.5) and (4.6) are easily obtained from (4.5) and (4.6) with x, t := x, t.

Here is the proof for (4.4). First note that

pp(s2xt)

= 〈 by Proposition 3.14-9 〉

s2pp(xt)

= 〈 by (4.4) 〉



Chapter 4. Definition of Angelic Operators in DAD 96

s2pp(x¬t)

= 〈 by Proposition 3.14-9 〉

pp(s2x¬t) .

And here is the main derivation.

pp(s2xt)

= 〈 by Proposition 3.14-9 〉

s2pp(xt)

= 〈 by (4.4) 〉

s2¬pp(x2t)2¬pp(x2¬t)2ppx

= 〈 by Boolean algebra 〉

(¬s G ¬pp(x2t))2(¬s G ¬pp(x2¬t))2s2ppx

= 〈 by De Morgan 〉

¬(s2pp(x2t))2¬(s2pp(x2¬t))2s2ppx

= 〈 by Proposition 3.14-9 〉

¬pp(s2x2t)2¬pp(s2x2¬t)2pp(s2x)

= 〈 by (4.4) with x, t := s2x, t 〉

pp((s2x)t)

Finally, we conclude with the proof of (4.3).

true

=⇒ 〈 by (4.3) 〉

x = x2t G x2¬t G (xt H x¬t)

=⇒ 〈 by Corollary 3.21-4 and (3.8) 〉

s2x = s2x2t G s2x2¬t G (s2xt H s2x¬t)

6. If we demonstrate that pp(x2s)2xt2s = (x2s)t, then we are finished thanks to

Proposition 4.22-4.

Hence, we have to show that pp(x2s)2xt2s and pp(x2s)2x¬t2s satisfy (4.3), (4.4),

(4.5) and (4.6) with x, t := x2s, t (see Definition 4.7).

(4.5) and (4.6) are easily obtained from (4.5), (4.6) with x, t := x, t and Boolean

algebra.

Here is the proof of (4.3).
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true

=⇒ 〈 by (4.3) with x, t := x2s, t 〉

x2s = x2s2t G x2s2¬t G ((x2s)t H (x2s)¬t)

=⇒ 〈 by Corollary 3.21-17, Remark 4.8 and (3.9) 〉

x2s2s = x2s2t2s G x2s2¬t2s G ((x2s)t2s H (x2s)¬t2s)

=⇒ 〈 by Boolean algebra 〉

x2s = x2s2t G x2s2¬t G ((x2s)t2s H (x2s)¬t2s)

=⇒ 〈 by Proposition 4.22-4 〉

x2s = x2s2t G x2s2¬t G (pp(x2s)2xt2s H pp(x2s)2x¬t2s)

Finally, we conclude with the proof of (4.4).

true

=⇒ 〈 see the last derivation 〉

x2s = x2s2t G x2s2¬t G (pp(x2s)2xt2s H pp(x2s)2x¬t2s)

=⇒ 〈 by Proposition 3.14-7, Remark 4.8, Corollary 3.21-4, Boolean

algebra and (3.6) 〉
pp((x2s)t)2x2s = > G > G pp((x2s)t)2(pp(x2s)2xt2s H pp(x2s)2x¬t2s)

⇐⇒ 〈 by Corollary 3.21-3 〉

pp((x2s)t)2x2s = pp((x2s)t)2(pp(x2s)2xt2s H pp(x2s)2x¬t2s)

=⇒ 〈 by Propositions 3.14-9 and 3.14-3, and (3.21) 〉

pp((x2s)t)2pp(x2s) = pp((x2s)t)2pp(pp(x2s)2xt2s)2pp(pp(x2s)2x¬t2s)

=⇒ 〈 by (4.4) with x, t := x2s, t and Boolean algebra 〉

pp((x2s)t) = pp((x2s)t)2pp(pp(x2s)2xt2s)2pp(pp(x2s)2x¬t2s)

=⇒ 〈 by Boolean algebra 〉

pp(pp(x2s)2xt2s)2pp(pp(x2s)2x¬t2s) E pp((x2s)t)

We note that last refinement

pp(pp(x2s)2xt2s)2pp(pp(x2s)2x¬t2s) E pp((x2s)t) . (4.21)

The following derivation will establish pp(pp(x2s)2xt2s) = pp((x2s)t).

pp(pp(x2s)2xt2s)
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E 〈 by Boolean algebra 〉

pp(pp(x2s)2xt2s)2pp(pp(x2s)2x¬t2s)

E 〈 by (4.21) 〉

pp((x2s)t)

E 〈 by Proposition 3.14-18 〉

pp((x2s)t2s)

= 〈 by Proposition 4.22-4 〉

pp(pp(x2s)2xt2s)

Since, in the proof of (4.4), t may be replaced by ¬t and ¬t may be replaced by

t without affecting the refinements, the proof is complete.

7. We have to show that (xs)t2s and (xs)¬t2s satisfy (4.3), (4.4), (4.5) and (4.6) with

x, t := xs, t (see Definition 4.7).

(4.5) and (4.6) are easily obtained from (4.5), (4.6) with x, t := xs, t and Boolean

algebra.

Here is the proof for (4.3).

true

=⇒ 〈 by (4.3) with x, t := xs, t 〉

xs = xs2t G xs2¬t G ((xs)t H (xs)¬t)

=⇒ 〈 by Corollary 3.21-17, Remark 4.8 and (3.9) 〉

xs2s = xs2t2s G xs2¬t2s G ((xs)t2s H (xs)¬t2s)

⇐⇒ 〈 by (4.5) with x, t := x, s and Boolean algebra 〉

xs = xs2t G xs2¬t G ((xs)t2s H (xs)¬t2s)

Finally, we conclude with the proof of (4.4).

true

=⇒ 〈 see the last derivation 〉

xs = xs2t G xs2¬t G ((xs)t2s H (xs)¬t2s)

=⇒ 〈 by Proposition 3.14-7, Remark 4.8, Corollary 3.21-4, Boolean

algebra and (3.6) 〉
pp((xs)t)2xs = > G > G pp((xs)t)2((xs)t2s H (xs)¬t2s)
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⇐⇒ 〈 by Corollary 3.21-3 〉

pp((xs)t)2xs = pp((xs)t)2((xs)t2s H (xs)¬t2s)

=⇒ 〈 by Propositions 3.14-9 and 3.14-3, and (3.21) 〉

pp((xs)t)2pp(xs) = pp((xs)t)2pp((xs)t2s)2pp((xs)¬t2s)

⇐⇒ 〈 by (4.4) with x, t := xs, t and Boolean algebra 〉

pp((xs)t) = pp((xs)t)2pp((xs)t2s)2pp((xs)¬t2s)

=⇒ 〈 by Boolean algebra 〉

pp((xs)t2s)2pp((xs)¬t2s) E pp((xs)t)

We note this last refinement

pp((xs)t2s)2pp((xs)¬t2s) E pp((xs)t) . (4.22)

The following derivation will establish pp((xs)t2s) = pp((xs)t).

pp((xs)t2s)

E 〈 by Boolean algebra 〉

pp((xs)t2s)2pp((xs)¬t2s)

E 〈 by (4.22) 〉

pp((xs)t)

E 〈 by Proposition 3.14-18 〉

pp((xs)t2s)

Since, in the proof of (4.4), t may be replaced by ¬t and ¬t may be replaced by

t without affecting the refinements, the proof is complete.

8. pp(xs)2pp(x2(¬s G t))

= 〈 by Proposition 3.14-9 〉

pp(pp(xs)2x2(¬s G t))

= 〈 by Proposition 4.22-2 〉

pp((xs H x¬s)2(¬s G t))

= 〈 by (4.5) and (4.6) with x, t := x, s 〉

pp((xs2s H x¬s2¬s)2(¬s G t))

= 〈 by (3.9) and Boolean algebra 〉
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pp(xs2s2t H x¬s2¬s)
= 〈 by (4.5) and (4.6) with x, t := x, s 〉

pp(xs2t H x¬s)

= 〈 by (3.21) and Proposition 3.14-3 〉

pp(xs2t)2pp(x¬s)

= 〈 by (4.4) with x, t := x, s 〉

pp(xs2t)2pp(xs)

= 〈 by Proposition 3.14-18 and Boolean algebra 〉

pp(xs2t)

9. ¬pp(x2s2t)2¬pp(x2¬s)2pp(x2(¬s G t))

= 〈 by Boolean algebra 〉

¬pp(x2(¬s G t)2s)2¬pp(x2(¬s G t)2¬s)2pp(x2(¬s G t))

= 〈 by (4.4) with x, t := x2(¬s G t), s 〉

pp((x2(¬s G t))s)

= 〈 by Proposition 4.22-4 〉

pp(pp(x2(¬s G t))2xs)

= 〈 by Proposition 3.14-9 and Boolean algebra 〉

pp(xs)2pp(x2(¬s G t))

= 〈 by Proposition 4.22-8 〉

pp(xs2t)

10. pp((xs)t)

= 〈 by (4.4) with x, t := xs, t 〉

¬pp(xs2t)2¬pp(xs2¬t)2pp(xs)

= 〈 by Proposition 4.22-8 〉

¬(pp(xs)2pp(x2(¬s G t)))2¬(pp(xs)2pp(x2(¬s G ¬t)))2pp(xs)

= 〈 by De Morgan 〉

(¬pp(xs) G ¬pp(x2(¬s G t)))2(¬pp(xs) G ¬pp(x2(¬s G ¬t)))2pp(xs)

= 〈 by Boolean algebra 〉

¬pp(x2(¬s G t))2¬pp(x2(¬s G ¬t))2pp(xs)

= 〈 by (4.4) with x, t := x, s 〉
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¬pp(x2(¬s G t))2¬pp(x2(¬s G ¬t))2¬pp(x2s)2¬pp(x2¬s)2ppx

= 〈 by Lemma 3.17-6 and Boolean algebra 〉

¬pp(x2(¬s G t))2¬pp(x2(¬s G ¬t))2¬pp(x2s)2ppx

2

Theorem 4.23. Suppose A is an algebra of decomposable elements. The following

equality is valid for all x, y ∈ A and all t ∈ test(A).

(x H y)t = pp(y2¬t)2x2t G pp(y2¬t)2xt G (x2t H yt) G

pp(x2¬t)2y2t G pp(x2¬t)2yt G (xt H y2t) G (xt H yt)

Proof : We use the notation

Lt = pp(y2¬t)2x2t G pp(y2¬t)2xt G (x2t H yt) G

pp(x2¬t)2y2t G pp(x2¬t)2yt G (xt H y2t) G (xt H yt) .

Substituting ¬t for t, we find

L¬t = pp(y2t)2x2¬t G pp(y2t)2x¬t G (x2¬t H y¬t) G

pp(x2t)2y2¬t G pp(x2t)2y¬t G (x¬t H y2¬t) G (x¬t H y¬t) .

Hence, we have to establish Lt = (x H y)t. In order to do so, we have to show that Lt
and L¬t satisfy (4.3), (4.4), (4.5) and (4.6) with x, t := x H y, t (see Definition 4.7).

(4.5) and (4.6) follow from (3.9), (4.5), (4.6), (4.5) with x, t := y, t, (4.6) with

x, t := y, t, Boolean algebra and Corollary 3.21-18.

Here is the proof of (4.4). Note that

pp(Lt) = pp(y2¬t)2pp(x2t) G pp(y2¬t)2pp(xt) G pp(x2t)2pp(yt) G

pp(x2¬t)2pp(y2t) G pp(x2¬t)2pp(yt) G pp(xt)2pp(y2t) G pp(xt)2pp(yt)

pp(L¬t) = pp(y2t)2pp(x2¬t) G pp(y2t)2pp(x¬t) G pp(x2¬t)2pp(y¬t) G

pp(x2t)2pp(y2¬t) G pp(x2t)2pp(y¬t) G pp(x¬t)2pp(y2¬t) G pp(x¬t)2pp(y¬t) .

by Corollary 3.21-16, (3.21), and Propositions 3.14-3 and 3.14-9. Also, we have pp(Lt) =

pp(L¬t) by Boolean algebra, (4.4) and (4.4) with x, t := y, t.

pp(Lt)

= 〈 just established 〉

pp(y2¬t)2pp(x2t) G pp(y2¬t)2pp(xt) G pp(x2t)2pp(yt) G
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pp(x2¬t)2pp(y2t) G pp(x2¬t)2pp(yt) G pp(xt)2pp(y2t) G pp(xt)2pp(yt)

= 〈 by Boolean algebra 〉

pp(xt)2pp(y2t) G pp(xt)2pp(yt) G pp(xt)2pp(y2¬t) G

pp(x2t)2pp(yt) G pp(xt)2pp(yt) G pp(x2¬t)2pp(yt) G

pp(x2¬t)2pp(y2t) G pp(x2¬t)2pp(yt) G

pp(x2t)2pp(y2¬t) G pp(xt)2pp(y2¬t)
= 〈 by Boolean algebra, Lemmas 3.17-5 and 3.17-1, (4.4) and (4.4) with

x, t := y, t 〉
(pp(y2t) G ¬pp(y2t))2pp(xt)2¬pp(y2¬t)2ppy G pp(xt)2pp(y2¬t) G

(pp(x2t) G ¬pp(x2t))2¬pp(x2¬t)2ppx2pp(yt) G pp(x2¬t)2ppx2pp(yt) G

(pp(y2t) G ¬pp(y2t))2pp(x2¬t)2¬pp(y2¬t)2ppy G

(pp(x2t) G ¬pp(x2t))2¬pp(x2¬t)2ppx2pp(y2¬t)
= 〈 by Boolean algebra 〉

pp(xt)2¬pp(y2¬t)2ppy G pp(xt)2pp(y2¬t) G

¬pp(x2¬t)2ppx2pp(yt) G pp(x2¬t)2ppx2pp(yt) G

pp(x2¬t)2¬pp(y2¬t)2ppy G pp(xt)2¬pp(y2¬t)2ppy G

¬pp(x2¬t)2ppx2pp(y2¬t) G ¬pp(x2¬t)2ppx2pp(yt)

= 〈 by Boolean algebra, Lemmas 3.17-1 and 3.17-5, (4.4) and (4.4) with

x, t := y, t 〉
(pp(y2¬t) G ¬pp(y2¬t))2pp(xt)2ppy G

(pp(x2¬t) G ¬pp(x2¬t))2ppx2pp(yt) G

(pp(x2¬t) G ¬pp(x2¬t))2¬pp(x2t)2ppx2¬pp(y2¬t)2ppy G

(pp(y2¬t) G ¬pp(y2¬t))2¬pp(x2¬t)2ppx2¬pp(y2t)2ppy

= 〈 by Boolean algebra 〉

pp(xt)2ppy G ppx2pp(yt) G

¬pp(x2t)2ppx2¬pp(y2¬t)2ppy G ¬pp(x2¬t)2ppx2¬pp(y2t)2ppy

= 〈 by Boolean algebra, (4.4) and (4.4) with x, t := y, t 〉

¬pp(x2t)2¬pp(x2¬t)2ppx2ppy G ppx2¬pp(y2t)2¬pp(y2¬t)2ppy G

¬pp(x2t)2ppx2¬pp(y2¬t)2ppy G ¬pp(x2¬t)2ppx2¬pp(y2t)2ppy

= 〈 by Boolean algebra 〉

(¬pp(x2t) G ¬pp(y2t))2(¬pp(x2¬t) G ¬pp(y2¬t))2ppx2ppy

= 〈 by De Morgan and Proposition 3.14-3 〉

¬(pp(x2t) H pp(y2t))2¬(pp(x2¬t) H pp(y2¬t))2(ppx H ppy)
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= 〈 by (3.21) and (3.9) 〉

¬pp((x H y)2t)2¬pp((x H y)2¬t)2pp(x H y)

We just established

pp(Lt) = pp(L¬t) = pp((x H y)t) . (4.23)

Also, from (4.4) with x, t := x H y, t and the last three equalities of this derivation, one

finds

pp((x H y)t) = ¬pp(x2t)2¬pp(x2¬t)2ppx2ppy G ¬pp(x2¬t)2ppx2¬pp(y2t)2ppy G

ppx2¬pp(y2t)2¬pp(y2¬t)2ppy G ppx2¬pp(x2t)2¬pp(y2¬t)2ppy . (4.24)

To finish the demonstration, it remains to show that Lt and L¬t satisfy (4.3). The

following derivation repeatedly invokes Lemma 3.22-7. Using Proposition 3.14-9, (3.21),

Corollary 3.21-16, Remark 4.8 and Boolean algebra, it is easy to check that the appro-

priate pairs of operands of the various H and G operators are disjoint, so that the

condition ppx2ppy = ppw2ppz = > of Lemma 3.22-7 is satisfied.

x H y

= 〈 by (3.2), (4.3) and (4.3) with x, t := y, t 〉

(y2t G y2¬t G (yt H y¬t)) H (x2t G x2¬t G (xt H x¬t))

= 〈 by Corollary 3.21-14 and (3.2) 〉

(x2t H (y2t G y2¬t G (yt H y¬t))) G

(x2¬t H (y2t G y2¬t G (yt H y¬t))) G

((xt H x¬t) H (y2t G y2¬t G (yt H y¬t)))

= 〈 by Corollary 3.21-14 and (3.2) 〉

(x2t H y2t) G (x2t H y2¬t) G (x2t H yt H y¬t) G

(y2t H x2¬t) G (x2¬t H y2¬t) G (yt H x2¬t H y¬t) G

(xt H y2t H x¬t) G (xt H x¬t H y2¬t) G (xt H yt H x¬t H y¬t)

= 〈 by (3.21), Remark 4.8 and Boolean algebra,

the domains of x2t H y2¬t, x2t H yt H y¬t, y2t H x2¬t
and x2¬t H y2¬t are pairwise disjoint,

then apply (3.25) and (3.9) 〉
(x H y)2t G (x H y)2¬t G (x2t H y2¬t) G
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(x2t H yt H y¬t) G (y2t H x2¬t) G (yt H x2¬t H y¬t) G

(xt H y2t H x¬t) G (xt H x¬t H y2¬t) G (xt H yt H x¬t H y¬t)

= 〈 by (3.21), Remark 4.8 and Boolean algebra,

the domains of x2t H yt H y¬t, y2t H x2¬t, x2¬t H yt H y¬t,

xt H x¬t H y2t and xt H x¬t H y2¬t are pairwise disjoint,

then apply (3.25) 〉
(x H y)2t G (x H y)2¬t G (x2t H y2¬t) G

(xt H x¬t H y2¬t) G (x2t H yt H y¬t) G (y2t H x2¬t) G

(yt H x2¬t H y¬t) G (xt H y2t H x¬t) G (xt H yt H x¬t H y¬t)

= 〈 by Propositions 3.14-7 and 3.14-20, and (3.2) 〉

(x H y)2t G (x H y)2¬t G

(pp(y2¬t)2x2t H pp(x2t)2y2¬t) G (pp(y2¬t)2xt H x¬t H y2¬t) G

(x2t H yt H pp(x2t)2y¬t) G (pp(x2¬t)2y2t H pp(y2t)2x2¬t) G

(pp(x2¬t)2yt H x2¬t H y¬t) G (xt H y2t H pp(y2t)2x¬t) G

(xt H yt H x¬t H y¬t)

= 〈 by Lemma 3.22-7 〉

(x H y)2t G (x H y)2¬t G

((pp(y2¬t)2x2t G pp(y2¬t)2xt) H (pp(x2t)2y2¬t G x¬t H y2¬t)) G

(x2t H yt H pp(x2t)2y¬t) G (pp(x2¬t)2y2t H pp(y2t)2x2¬t) G

(pp(x2¬t)2yt H x2¬t H y¬t) G (xt H y2t H pp(y2t)2x¬t) G

(xt H yt H x¬t H y¬t)

= 〈 by Lemma 3.22-7 〉

(x H y)2t G (x H y)2¬t G

((pp(y2¬t)2x2t G pp(y2¬t)2xt G (x2t H yt)) H

(pp(x2t)2y2¬t G x¬t H y2¬t G pp(x2t)2y¬t) G

(pp(x2¬t)2y2t H pp(y2t)2x2¬t) G (pp(x2¬t)2yt H x2¬t H y¬t) G

(xt H y2t H pp(y2t)2x¬t) G (xt H yt H x¬t H y¬t)

= 〈 by Lemma 3.22-7 〉

(x H y)2t G (x H y)2¬t G

((pp(y2¬t)2x2t G pp(y2¬t)2xt G (x2t H yt) G pp(x2¬t)2y2t) H

(pp(x2t)2y2¬t G x¬t H y2¬t G pp(x2t)2y¬t G pp(y2t)2x2¬t) G

(pp(x2¬t)2yt H x2¬t H y¬t) G (xt H y2t H pp(y2t)2x¬t) G

(xt H yt H x¬t H y¬t)
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= 〈 by Lemma 3.22-7 〉

(x H y)2t G (x H y)2¬t G

((pp(y2¬t)2x2t G pp(y2¬t)2xt G (x2t H yt) G pp(x2¬t)2y2t G pp(x2¬t)2yt) H

(pp(x2t)2y2¬t G x¬t H y2¬t G pp(x2t)2y¬t G pp(y2t)2x2¬t G (x2¬t H y¬t)) G

(xt H y2t H pp(y2t)2x¬t) G (xt H yt H x¬t H y¬t)

= 〈 by Lemma 3.22-7 〉

(x H y)2t G (x H y)2¬t G

((pp(y2¬t)2x2t G pp(y2¬t)2xt G (x2t H yt) G

pp(x2¬t)2y2t G pp(x2¬t)2yt G (xt H y2t)) H

(pp(x2t)2y2¬t G x¬t H y2¬t G pp(x2t)2y¬t G

pp(y2t)2x2¬t G (x2¬t H y¬t) G pp(y2t)2x¬t) G

(xt H yt H x¬t H y¬t)

= 〈 by Lemma 3.22-7 〉

(x H y)2t G (x H y)2¬t G

((pp(y2¬t)2x2t G pp(y2¬t)2xt G (x2t H yt) G

pp(x2¬t)2y2t G pp(x2¬t)2yt G (xt H y2t) G (xt H yt)) H

(pp(x2t)2y2¬t G x¬t H y2¬t G pp(x2t)2y¬t G

pp(y2t)2x2¬t G (x2¬t H y¬t) G pp(y2t)2x¬t G (x¬t H y¬t))

= 〈 by Proposition 3.14-9, (3.21), Lemma 3.17-4, Remark 4.8

and Boolean algebra,

the domains of pp(x2t)2y2¬t, x¬t H y2¬t, pp(x2t)2y¬t,

pp(y2t)2x2¬t, x2¬tHy¬t, pp(y2t)2x¬t and x¬tHy¬t are pairwise disjoint,

then apply (3.25) 〉
(x H y)2t G (x H y)2¬t G (Lt H L¬t)

2

Corollary 4.24. Suppose A is an algebra of decomposable elements. Then, for all

x, y ∈ A and all t ∈ test(A),

(x H y)t = pp(y2¬t)2x2t G pp(y2¬t)2xt G (x2t H yt) G

pp(x2¬t)2y2t G pp(x2¬t)2yt G (xt H y2t) G (xt H yt)

and any of the seven operands of the G operators can be permuted with another.

Proof : The equality is the one of Theorem 4.23.
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By Propositions 3.14-9 and 3.14-3, (3.21), Lemma 3.17-4, Remark 4.8 and Boolean

algebra, the domains of the seven operands of the G operators are pairwise disjoint.

Then apply (3.25). 2

Proposition 4.25. Suppose A is an algebra of decomposable elements. The following

equalities are valid for all x ∈ A and all s, t ∈ test(A).

1. xsGt = ¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs)

2. xs2t = pp(x2s)2xt G (xs)t G xs2t

One might understand Proposition 4.25-1 intuitively by noting that

xsGt = ¬pp(x2(s+D t)) ·D (xs +D xt)

by Corollary 4.4-1, Proposition 4.17-3 and Boolean algebra.

Proof : Part 1 of the proposition is an expression for xsGt, but what is the correspond-

ing expression for x¬(sGt)? Actually, x¬(sGt) = x¬s2¬t by Boolean algebra and part 2 of

the proposition gives an expression for that. So in order to demonstrate the proposition,

we need to work on both parts at the same time. These expressions must satisfy (4.3),

(4.4), (4.5) and (4.6) with x, t := x, s G t (see Definition 4.7).

For these reasons, the demonstration is divided in five steps. We show that the

candidate for xsGt

¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs)

satisfies (4.5) and (4.4) with x, t := x, s G t, then we show that the candidate for x¬s2¬t

pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t

satisfies (4.6) and (4.4) with x, t := x, s G t and we conclude with the demonstration

that

¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs)

and

pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t

satisfy (4.3) with x, t := x, s G t.

1. We begin with the proof that

¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs)

satisfies (4.5) with x, t := x, s G t. Firstly we have
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(xs H xt)2(s G t)

= 〈 by (3.9) 〉

xs2(s G t) H xt2(s G t)

= 〈 by (4.5) with x, t := x, s and (4.5) 〉

xs2s2(s G t) H xt2t2(s G t)

= 〈 by Boolean algebra, (4.5) with x, t := x, s and (4.5) 〉

xs H xt ,

secondly

¬pp(xs)2xt2(s G t)

= 〈 by (4.5) 〉

¬pp(xs)2xt2t2(s G t)

= 〈 by Boolean algebra and (4.5) 〉

¬pp(xs)2xt

and finally

¬pp(xt)2xs2(s G t)

= 〈 by (4.5) with x, t := x, s 〉

¬pp(xt)2xs2s2(s G t)

= 〈 by Boolean algebra and (4.5) with x, t := x, s 〉

¬pp(xt)2xs .

Hence

((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs)2(s G t) = (xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs

by Corollary 3.21-18, so

¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs)2(s G t)

= ¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs)

and (4.5) is established.

2. Now we show that

¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs)

satisfies (4.4) with x, t := x, s G t.
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pp(¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs))

= 〈 by Corollary 4.4-1 〉

pp(¬pp(x2(s G t))2(xs +D xt))

= 〈 by Proposition 3.14-9 and Corollary 4.4-3 〉

¬pp(x2(s G t))2(pp(xs) G pp(xt))

= 〈 by Boolean algebra, (4.4) with x, t := x, s and (4.4) 〉

¬pp(x2(s G t))2¬pp(x2s)2¬pp(x2¬s)2ppx G

¬pp(x2(s G t))2¬pp(x2t)2¬pp(x2¬t)2ppx

= 〈 by Lemma 3.17-6 and Boolean algebra 〉

¬pp(x2(s G t))2¬pp(x2¬s)2ppx G ¬pp(x2(s G t))2¬pp(x2¬t)2ppx

= 〈 by Boolean algebra 〉

¬pp(x2(s G t))2ppx2(¬pp(x2¬s) G ¬pp(x2¬t))
= 〈 by De Morgan 〉

¬pp(x2(s G t))2ppx2¬(pp(x2¬s)2pp(x2¬t))
= 〈 by Proposition 3.14-12 〉

¬pp(x2(s G t))2ppx2¬pp(x2¬s2¬t)
= 〈 by De Morgan and Boolean algebra 〉

¬pp(x2(s G t))2¬pp(x2¬(s G t))2ppx

3. Here comes the proof that

pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t

satisfies (4.6) with x, t := x, s G t. Firstly we have

pp(x2¬s)2x¬t2¬s2¬t
= 〈 by Proposition 4.22-6 〉

pp(x2¬s)2x¬t2¬t
= 〈 by (4.6) 〉

pp(x2¬s)2x¬t ,

secondly

(x¬s)¬t2¬s2¬t
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= 〈 by Proposition 4.22-7 〉

(x¬s)¬t2¬t
= 〈 by (4.6) with x, t := x¬s, t 〉

(x¬s)¬t

and finally

x¬s2¬t2¬s2¬t
= 〈 by (4.6) with x, t := x, s and Boolean algebra 〉

x¬s2¬t .

Hence

(pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t)2¬s2¬t = pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t

by Corollary 3.21-18, so (4.6) is established.

4. Now we show that

pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t

satisfies (4.4) with x, t := x, s G t. We want to establish

pp(pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t) = ¬pp(x2(s G t))2¬pp(x2¬(s G t))2ppx

but we will rather work to demonstrate

¬pp(pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t) = ¬(¬pp(x2(s G t))2¬pp(x2¬s2¬t)2ppx) ,

which is equivalent by Boolean algebra and De Morgan.

¬pp(pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t)
= 〈 by Corollary 3.21-16 〉

¬(pp(pp(x2¬s)2x¬t) G pp((x¬s)¬t) G pp(x¬s2¬t))
= 〈 by Proposition 3.14-9 〉

¬(pp(x2¬s)2pp(x¬t) G pp((x¬s)¬t) G pp(x¬s2¬t))
= 〈 by (4.4) and (4.4) with x, t := x¬s, t 〉

¬(pp(x2¬s)2¬pp(x2¬t)2¬pp(x2t)2ppx G

¬pp(x¬s2¬t)2¬pp(x¬s2t)2pp(x¬s) G pp(x¬s2¬t))
= 〈 by Boolean algebra 〉
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¬(pp(x2¬s)2¬pp(x2¬t)2¬pp(x2t)2ppx G ¬pp(x¬s2t)2pp(x¬s) G pp(x¬s2¬t))
= 〈 by Lemmas 3.17-5 and 3.17-1, and Boolean algebra 〉

¬(pp(x2¬s)2¬pp(x2¬t)2¬pp(x2t)2ppx G ¬pp(x¬s2t)2pp(x¬s))

= 〈 by Boolean algebra, Lemma 3.17-1 and (4.4) with x, t := x, s

〉
¬(pp(x2¬s)2¬pp(x2¬t)2¬pp(x2t) G ¬pp(x¬s2t)2¬pp(x2¬s)2¬pp(x2s)2ppx)

= 〈 by De Morgan 〉

(¬pp(x2¬s) G pp(x2¬t) G pp(x2t))2(pp(x¬s2t) G pp(x2¬s) G pp(x2s) G ¬ppx)

= 〈 by Boolean algebra and Lemmas 3.17-5, 3.17-3 and 3.17-2 〉

¬pp(x2¬s)2pp(x¬s2t) G pp(x2s) G ¬ppx G

pp(x2¬t)2pp(x¬s2t) G pp(x2¬s)2pp(x2¬t) G pp(x2s)2pp(x2¬t) G

pp(x2t)2pp(x¬s2t) G pp(x2¬s)2pp(x2t) G pp(x2s)2pp(x2t)

= 〈 by Propositions 3.14-9 and 3.14-12 〉

pp(¬pp(x2¬s)2x¬s2t) G pp(x2s) G ¬ppx G

pp(pp(x2¬t)2x¬s2t) G pp(x2¬s2¬t) G pp(x2¬t)2pp(x2s) G

pp(x2t)2pp(x¬s2t) G pp(x2¬s2t) G pp(x2t)2pp(x2s)

= 〈 by Propositions 3.14-7, 4.22-6 and 3.14-1, (4.4) with

x, t := x, s, Boolean algebra and (3.6) 〉
pp(x¬s2t) G pp(x2s) G ¬ppx G

pp(x2¬s2¬t) G pp(x2¬t)2pp(x2s) G

pp(x2t)2pp(x¬s2t) G pp(x2¬s2t) G pp(x2t)2pp(x2s)

= 〈 by Boolean algebra 〉

pp(x¬s2t) G pp(x2s) G ¬ppx G pp(x2¬s2¬t) G pp(x2¬s2t)

= 〈 by Proposition 4.22-8, Lemma 3.17-1 and (4.4) with x, t := x, s

〉
¬pp(x2¬s)2¬pp(x2s)2pp(x2(s G t)) G pp(x2s) G ¬ppx G pp(x2¬s2¬t) G pp(x2¬s2t)

= 〈 by Proposition 3.14-12 and Boolean algebra 〉

¬pp(x2¬s)2¬pp(x2s)2pp(x2(s G t)) G pp(x2s)2pp(x2(s G t)) G ¬ppx G

pp(x2¬s2¬t) G pp(x2¬s)2pp(x2(s G t))

= 〈 by Boolean algebra 〉

(¬pp(x2¬s)2¬pp(x2s) G pp(x2s) G pp(x2¬s))2pp(x2(s G t)) G ¬ppx G pp(x2¬s2¬t)
= 〈 by Boolean algebra 〉

pp(x2(s G t)) G ¬ppx G pp(x2¬s2¬t)
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= 〈 by De Morgan and Boolean algebra 〉

¬(¬pp(x2(s G t))2¬pp(x2¬s2¬t)2ppx)

5. It remains to demonstrate that the two candidates

¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs)

and

pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t

satisfy (4.3). To be more precise, we need to demonstrate that

x = x2(s G t) G x2(¬s2¬t) G

(¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs) H

(pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t)) .

Thanks to Remark 4.21, it is sufficient to work on

pp(xsGt)2x = ¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs) H

(pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t) .

Before working on this equality, we first work on each side of it.

pp(xsGt)2x

= 〈 by (4.4) with x, t := x, s G t, Proposition 3.14-7 and Boolean

algebra 〉
¬pp(x2(s G t))2¬pp(x2¬s2¬t)2x

= 〈 by Proposition 3.14-12 and De Morgan 〉

¬pp(x2(s G t))2(¬pp(x2¬s) G ¬pp(x2¬t))2x

We note

L = ¬pp(x2(s G t))2(¬pp(x2¬s) G ¬pp(x2¬t))2x .

¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs) H

(pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t)
= 〈 by (4.4) with x, t := x, s, (4.4), Proposition 3.14-7 and Boolean

algebra 〉
¬pp(x2(s G t))2((xs H xt) G ¬(¬pp(x2s)2¬pp(x2¬s)2ppx)2ppx2xt G
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¬(¬pp(x2t)2¬pp(x2¬t)2ppx)2ppx2xs) H

(pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t)
= 〈 by De Morgan 〉

¬pp(x2(s G t))2((xs H xt) G (pp(x2s) G pp(x2¬s) G ¬ppx)2ppx2xt G

(pp(x2t) G pp(x2¬t) G ¬ppx)2ppx2xs) H

(pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t)
= 〈 by Lemmas 3.17-6 and 3.17-1, (3.8), Corollary 3.21-4 and

Boolean algebra 〉
(¬pp(x2(s G t))2(xs H xt) G ¬pp(x2(s G t))2pp(x2¬s)2xt G

¬pp(x2(s G t))2pp(x2¬t)2xs) H

(pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t)
= 〈 by Proposition 3.14-20 〉

¬pp(x2(s G t))2(((xs H xt) G pp(x2¬s)2xt G pp(x2¬t)2xs) H

(pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t))

We note

R = ¬pp(x2(s G t))2(((xs H xt) G pp(x2¬s)2xt G pp(x2¬t)2xs) H

(pp(x2¬s)2x¬t G (x¬s)¬t G x¬s2¬t))

and we are looking for L = R. By Proposition 3.20-17,

L = R ⇐⇒ pp(x2¬s)2L = pp(x2¬s)2R ∧ ¬pp(x2¬s)2L = ¬pp(x2¬s)2R .

The derivation of pp(x2¬s)2L = pp(x2¬s)2R is straightforward.

pp(x2¬s)2L

= 〈 by Boolean algebra 〉

pp(x2¬s)2¬pp(x2(s G t))2¬pp(x2¬t)2x

= 〈 by Lemma 3.17-6, Proposition 3.14-7 and Boolean algebra 〉

pp(x2¬s)2¬pp(x2(s G t))2¬pp(x2t)2¬pp(x2¬t)2ppx2x

= 〈 by (4.4), Proposition 4.22-2, Boolean algebra and (3.8) 〉

¬pp(x2(s G t))2(pp(x2¬s)2xt H pp(x2¬s)2x¬t)

= 〈 by Propositions 3.14-7 and 4.22-10, Lemma 3.17-6, Boolean

algebra, (3.6) and Corollary 3.21-3 〉
¬pp(x2(s G t))2(pp(x2¬s)2xt H (pp(x2¬s)2x¬t G pp(x2¬s)2(x¬s)¬t))
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= 〈 by Propositions 3.14-7 and 3.14-20, (4.4) with x, t := x, s,

Boolean algebra, (3.6) and Corollary 3.21-3 〉
¬pp(x2(s G t))2

((pp(x2¬s)2(xs H xt) G pp(x2¬s)2xt G pp(x2¬s)2pp(x2¬t)2xs) H

(pp(x2¬s)2x¬t G pp(x2¬s)2(x¬s)¬t G pp(x2¬s)2x¬s2¬t))
= 〈 by Boolean algebra, Corollary 3.21-4 and (3.8) 〉

pp(x2¬s)2R

To derive ¬pp(x2¬s)2L = ¬pp(x2¬s)2R, we use Proposition 3.20-17 with t :=

pp(x2¬t). Therefore, we will derive the following two equalities.

pp(x2¬t)2¬pp(x2¬s)2L = pp(x2¬t)2¬pp(x2¬s)2R (4.25)

¬pp(x2¬t)2¬pp(x2¬s)2L = ¬pp(x2¬t)2¬pp(x2¬s)2R (4.26)

It will conclude the proof.

Before working on (4.25) and (4.26), first note the following two useful laws.

¬pp(x2¬s)2¬pp(x2(s G t))2ppx = ¬pp(x2(s G t))2pp(xs) (4.27)

ppx2R = R (4.28)

(4.27) follows from Lemma 3.17-6, Boolean algebra and (4.4) with x, t := x, s.

(4.28) follows Propositions 3.14-20 and 3.14-7, (4.4) and Boolean algebra.

Proof of (4.25).

pp(x2¬t)2¬pp(x2¬s)2L

= 〈 by Boolean algebra 〉

¬pp(x2¬s)2¬pp(x2(s G t))2pp(x2¬t)2x

= 〈 by Propositions 3.14-7 and 4.22-2, Boolean algebra, (4.27) and

(3.8) 〉
¬pp(x2(s G t))2pp(xs)2(pp(x2¬t)2xs H pp(x2¬t)2x¬s)

= 〈 by Propositions 3.14-7, 4.22-10 and 4.22-6, Lemma 3.17-6,

Boolean algebra, (3.6) and Corollary 3.21-3 〉
¬pp(x2(s G t))2pp(xs)2(pp(x2¬t)2xs H (pp(x2¬t)2(x¬s)¬t G pp(x2¬t)2x¬s2¬t))

= 〈 by Propositions 3.14-7 and 3.14-20, (4.4), Boolean algebra,

(3.6) and Corollary 3.21-3 〉
¬pp(x2(s G t))2pp(xs)2

((pp(x2¬t)2(xs H xt) G pp(x2¬t)2pp(x2¬s)2xt G pp(x2¬t)2xs) H
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(pp(x2¬t)2pp(x2¬s)2x¬t G pp(x2¬t)2(x¬s)¬t G pp(x2¬t)2x¬s2¬t))
= 〈 by Boolean algebra, Corollary 3.21-4 and (3.8) 〉

¬pp(x2(s G t))2pp(xs)2pp(x2¬t)2R

= 〈 by Boolean algebra, (4.27) and (4.28) 〉

pp(x2¬t)2¬pp(x2¬s)2R

Proof of (4.26).

¬pp(x2¬t)2¬pp(x2¬s)2L

= 〈 by (4.27) and Boolean algebra 〉

¬pp(x2(s G t))2pp(xs)2pp(xt)2x

= 〈 by (3.15), Proposition 4.22-2 and Boolean algebra,

pp(xt)2xs E pp(xt)2(xs H x¬s) = pp(xt)2pp(xs)2x = pp(xs)2(xt H x¬t),

then apply Proposition 4.22-2 and (3.11) 〉
¬pp(x2(s G t))2(pp(xs)2(xt H x¬t) H pp(xt)2xs)

= 〈 by Propositions 3.14-7 and 3.14-20, and (3.2) 〉

¬pp(x2(s G t))2(xs H xt H pp(xs)2x¬t)

= 〈 by Propositions 4.22-5 and 4.22-2 〉

¬pp(x2(s G t))2(xs H xt H (xs H x¬s)¬t)

= 〈 by Corollary 4.24 〉

¬pp(x2(s G t))2

(xs H xt H

(pp(x¬s2t)2xs2¬t G pp(x¬s2t)2(xs)¬t G pp(xs2t)2(x¬s)¬t G

(xs2¬t H (x¬s)¬t) G ((xs)¬t H (x¬s)¬t) G pp(xs2t)2x¬s2¬t G

((xs)¬t H x¬s2¬t)))
= 〈 by (3.8), Corollaries 3.21-4 and 3.21-3, Proposition 4.22-9,

Boolean algebra, (3.6) and (3.4) 〉
¬pp(x2(s G t))2

(xs H xt H (pp(xs2t)2(x¬s)¬t G (xs2¬t H (x¬s)¬t) G ((xs)¬t H (x¬s)¬t) G

pp(xs2t)2x¬s2¬t G ((xs)¬t H x¬s2¬t)))
= 〈 by (3.2) and Corollary 3.21-14 〉

¬pp(x2(s G t))2

(xt H ((xs H pp(xs2t)2(x¬s)¬t) G (xs H xs2¬t H (x¬s)¬t) G

(xs H (xs)¬t H (x¬s)¬t) G (xs H pp(xs2t)2x¬s2¬t) G
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(xs H (xs)¬t H x¬s2¬t)))
= 〈 by Lemma 3.7-1, (3.11) and Propositions 3.14-7 and 3.14-20 〉

¬pp(x2(s G t))2

(xt H ((pp(xs2t)2xs H (x¬s)¬t) G (xs2¬t H (x¬s)¬t) G

(pp((xs)¬t)2xs H (xs)¬t H (x¬s)¬t) G (pp(xs2t)2xs H x¬s2¬t) G

(pp((xs)¬t)2xs H (xs)¬t H x¬s2¬t)))
= 〈 by (3.19), Proposition 4.22-2, (3.2) and (3.3) 〉

¬pp(x2(s G t))2

(xt H ((xs2t H (x¬s)¬t) G (xs2¬t H (x¬s)¬t) G

((xs)t H (xs)¬t H (x¬s)¬t) G (xs2t H x¬s2¬t) G

((xs)t H (xs)¬t H x¬s2¬t)))
= 〈 by Proposition 4.22-6, Boolean algebra and (3.6),

pp(xt)2xs2¬t = pp(xt)2xs2t2¬t = pp(xt)2xs2> = >,

then apply (3.4) and Corollary 3.21-3 〉
¬pp(x2(s G t))2

(xt H ((xs2t H (x¬s)¬t) G (xs2¬t H (x¬s)¬t) G

((xs)t H (xs)¬t H (x¬s)¬t) G (xs2t H x¬s2¬t) G

(pp(xt)2xs2¬t H x¬s2¬t) G ((xs)t H (xs)¬t H x¬s2¬t)))
= 〈 by Proposition 3.14-20 and Corollary 3.21-4 〉

¬pp(x2(s G t))2

(xt H ((xs2t H (x¬s)¬t) G (xs2¬t H (x¬s)¬t) G

((xs)t H (xs)¬t H (x¬s)¬t) G (xs2t H x¬s2¬t) G

(xs2¬t H x¬s2¬t) G ((xs)t H (xs)¬t H x¬s2¬t)))
= 〈 by (3.2) and Corollary 3.21-14 〉

¬pp(x2(s G t))2(xt H (((xs2t G xs2¬t G ((xs)t H (xs)¬t)) H (x¬s)¬t) G

((xs2t G xs2¬t G ((xs)t H (xs)¬t)) H x¬s2¬t))
= 〈 by (4.3) with x, t := xs, t 〉

¬pp(x2(s G t))2(xt H ((xs H (x¬s)¬t) G (xs H x¬s2¬t)))
= 〈 by Corollary 3.21-14, (3.2) and Propositions 3.14-7 and 3.14-20

〉
¬pp(x2(s G t))2pp(xs)2pp(xt)2(xs H xt H ((x¬s)¬t G x¬s2¬t))

= 〈 by (3.8), Corollaries 3.21-4 and 3.21-3, Remark 4.8 and (3.6)

〉
¬pp(x2(s G t))2pp(xs)2pp(xt)2R



Chapter 4. Definition of Angelic Operators in DAD 116

= 〈 by (4.27) and (4.28) 〉

¬pp(x2¬t)2¬pp(x2¬s)2R

This completes the demonstration. 2

Corollary 4.26. Suppose A is an algebra of decomposable elements. The following

equalities are valid for all x, y, z ∈ A and all r, s, t ∈ test(A).

1. t E s =⇒ (x2s)t = (x2s)¬t = >

2. pp(x2(s G t))2pp(xs)2pp(xt)2x = pp(x2(s G t))2(xs H xt)

3. pp(x2¬s)2xsGt = pp(x2¬s)2xt

4. s2t = > =⇒ xsGt2t E pp(xsGt2t)2xrGt

5. t E s =⇒ (x2s H y2¬s)t = pp(y2¬t)2x2s G (x2s H (y2¬s)t)

6. t E s =⇒ (xs H x¬s)t = pp(x¬s2¬t)2xs G (xs H (x¬s)t)

7. s E t =⇒ (x2s H y2¬s)t = pp(y2¬s)2x2t G pp(y2¬s)2(x2s)t

8. s E t =⇒ (xs H x¬s)t = xs2t G (xs)t

9. (x2t H y2¬t)t = pp(y2¬t)2x2t

10. x2t E y2t H z2¬t ⇐⇒ x2t E pp(z2¬t)2y2t

Proof :

1. Assume t E s. By (4.4) with x, t := x2s, t, the assumption and Boolean algebra,

pp((x2s)¬t) = pp((x2s)t) F ¬pp(x2s2t)2pp(x2s) = ¬pp(x2s)2pp(x2s) = >. Thus, by

Proposition 3.14-19, (x2s)¬t = (x2s)t = >.

2. First, we derive an intermediate result.

pp(x2(s G t))2pp(xs)2xt

= 〈 by Proposition 4.22-5 〉

(pp(x2(s G t))2pp(xs)2x)t

= 〈 by Boolean algebra and (3.19) 〉
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(pp(xs)2x2(s G t))t

= 〈 by Proposition 4.22-2 〉

((xs H x¬s)2(s G t))t

= 〈 by (3.9), (4.5) with x, t := x, s, (4.6) with x, t := x, s and

Boolean algebra 〉
(xs H x¬s2t)t

= 〈 by Theorem 4.23 〉

pp(x¬s2t2¬t)2xs2t G pp(x¬s2t2¬t)2(xs)t G (xs2t H (x¬s2t)t) G

pp(xs2¬t)2x¬s2t2t G pp(xs2¬t)2(x¬s2t)t G ((xs)t H x¬s2t2t) G

((xs)t H (x¬s2t)t)

= 〈 by Boolean algebra, (3.6), Proposition 3.14-1, (3.4) and

Corollary 4.26-1 〉
> G > G > G pp(xs2¬t)2x¬s2t G > G ((xs)t H x¬s2t) G >

= 〈 by Corollaries 3.21-3 and 3.21-15 〉

(pp(xs2¬t)2x¬s2t G (xs)t) H (pp(xs2¬t)2x¬s2t G x¬s2t)

= 〈 by (3.7), Corollary 3.21-5 and Boolean algebra 〉

(pp(xs2¬t)2x¬s2t G (xs)t) H x¬s2t

F 〈 by (3.15) 〉

x¬s2t

We note

x¬s2t E pp(x2(s G t))2pp(xs)2xt . (4.29)

And now the main proof.

pp(x2(s G t))2pp(xs)2pp(xt)2x

= 〈 by (3.3) 〉

pp(x2(s G t))2pp(xs)2pp(xt)2(x H x)

= 〈 by Boolean algebra and Proposition 3.14-20 〉

pp(x2(s G t))2pp(xs)2pp(xt)2(pp(xs)2x H pp(xt)2x)

= 〈 by Proposition 4.22-2 〉

pp(x2(s G t))2pp(xs)2pp(xt)2(xs H x¬s H xt H x¬t)

= 〈 by Boolean algebra and Proposition 3.14-20 〉
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pp(x2(s G t))2(pp(xt)2xs H pp(x2(s G t))2x¬s H pp(xs)2xt H pp(x2(s G t))2x¬t)

= 〈 by Proposition 4.22-6, (4.6) with x, t := x, s and (4.6) 〉

pp(x2(s G t))2(pp(xt)2xs H pp(x2(s G t))2x¬s2¬s2(s G t) H

pp(xs)2xt H pp(x2(s G t))2x¬t2¬t2(s G t))

= 〈 by Boolean algebra, (4.6) and Proposition 3.14-20 〉

pp(x2(s G t))2pp(xt)2xs H x¬s2t H pp(x2(s G t))2pp(xs)2xt H x¬t2s

= 〈 by (4.29) and (3.11) 〉

pp(x2(s G t))2pp(xt)2xs H pp(x2(s G t))2pp(xs)2xt

= 〈 by (3.8) and Propositions 3.14-20 and 3.14-11 〉

pp(x2(s G t))2(xs H xt)

3. pp(x2¬s)2xsGt

= 〈 by Proposition 4.22-4 〉

(x2¬s)sGt

= 〈 by Proposition 4.25-1 〉

¬pp(x2¬s2(s G t))2(((x2¬s)s H (x2¬s)t) G ¬pp((x2¬s)s)2(x2¬s)t G

¬pp((x2¬s)t)2(x2¬s)s)
= 〈 by (4.4) with x, t := x2¬s, s, Propositions 3.14-7 and 3.14-1,

Boolean algebra, (3.6) and (3.7) 〉
¬pp(x2¬s2t)2((> H (x2¬s)t) G (x2¬s)t G >)

= 〈 by (3.4) and Corollary 3.21-3 〉

¬pp(x2¬s2t)2(x2¬s)t
= 〈 by (4.4) with x, t := x2¬s, t, Proposition 3.14-7 and Boolean

algebra 〉
(x2¬s)t

= 〈 by Proposition 4.22-4 〉

pp(x2¬s)2xt

4. Assume s2t = >.

pp(xsGt2t)2xrGt

= 〈 by Proposition 4.25-1 〉

pp(¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs)2t)2

¬pp(x2(r G t))2((xr H xt) G ¬pp(xr)2xt G ¬pp(xt)2xr)
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= 〈 by (3.21), Boolean algebra and Propositions 3.14-9 and 3.14-3,

the domains of xs H xt, ¬pp(xs)2xt and ¬pp(xt)2xs
are pairwise disjoint,

then apply Corollary 3.21-17 and (3.9) 〉
pp(¬pp(x2(s G t))2((xs2t H xt2t) G ¬pp(xs)2xt2t G ¬pp(xt)2xs2t))2

¬pp(x2(r G t))2((xr H xt) G ¬pp(xr)2xt G ¬pp(xt)2xr)

= 〈 by (4.5) with x, t := x, s, (4.5), the hypothesis, (3.4), (3.6)

and Corollary 3.21-3 〉
pp(¬pp(x2(s G t))2¬pp(xs)2xt)2

¬pp(x2(r G t))2((xr H xt) G ¬pp(xr)2xt G ¬pp(xt)2xr)

F 〈 by Proposition 3.14-9 and Lemma 3.7-1 〉

¬pp(x2(s G t))2¬pp(xs)2pp(xt)2((xr H xt) G ¬pp(xr)2xt G ¬pp(xt)2xr)

= 〈 by Corollaries 3.21-4 and 3.21-3, Boolean algebra and (3.6) 〉

¬pp(x2(s G t))2¬pp(xs)2pp(xt)2((xr H xt) G ¬pp(xr)2xt)

F 〈 by (3.15) and Propositions 3.14-20 and 3.14-7,

pp(xr)2xt E xr H pp(xr)2xt = xr H xt,

by (3.21) and Propositions 3.14-3 and 3.14-9,

pp(pp(xr)2xt) = pp(xr H xt),

then apply Lemma 3.22-3 〉
¬pp(x2(s G t))2¬pp(xs)2pp(xt)2(pp(xr)2xt G ¬pp(xr)2xt)

= 〈 by Corollary 3.21-6 and Proposition 3.14-7 〉

¬pp(x2(s G t))2¬pp(xs)2xt

= 〈 by (4.5) with x, t := x, s, (4.5), the hypothesis, (3.4), (3.6)

and Corollary 3.21-3 〉
¬pp(x2(s G t))2((xs2t H xt2t) G ¬pp(xs)2xt2t G ¬pp(xt)2xs2t)

= 〈 by (3.21), Boolean algebra and Propositions 3.14-9 and 3.14-3,

the domains of xs H xt, ¬pp(xs)2xt and ¬pp(xt)2xs
are pairwise disjoint,

then apply Corollary 3.21-17 and (3.9) 〉
¬pp(x2(s G t))2((xs H xt) G ¬pp(xs)2xt G ¬pp(xt)2xs)2t

= 〈 by Proposition 4.25-1 〉

xsGt2t

5. Assume t E s.

(x2s H y2¬s)t
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= 〈 by Theorem 4.23, the hypothesis and Boolean algebra 〉

pp(y2¬t)2x2s G pp(y2¬t)2(x2s)t G (x2s H (y2¬s)t) G

pp(x2>)2y2¬s2t G pp(x2>)2(y2¬s)t G ((x2s)t H y2¬s2t) G

((x2s)t H (y2¬s)t)
= 〈 by (3.6), Proposition 3.14-19 and Corollary 3.21-3 〉

pp(y2¬t)2x2s G pp(y2¬t)2(x2s)t G (x2s H (y2¬s)t) G

((x2s)t H y2¬s2t) G ((x2s)t H (y2¬s)t)
= 〈 by Corollaries 4.26-1 and 3.21-3, (3.6) and (3.4) 〉

pp(y2¬t)2x2s G (x2s H (y2¬s)t)

6. Assume t E s.

(xs H x¬s)t

= 〈 by (4.5) with x, t := x, s and (4.6) with x, t := x, s 〉

(xs2s H x¬s2¬s)t
= 〈 by Corollary 4.26-5, (4.5) with x, t := x, s, (4.6) with

x, t := x, s, the hypothesis and Boolean algebra 〉
pp(x¬s2¬t)2xs G (xs H (x¬s)t)

7. Assume s E t, then ¬t E ¬s by Boolean algebra.

(x2s H y2¬s)t
= 〈 by Theorem 4.23, the hypothesis and Boolean algebra 〉

pp(y2¬s)2x2t G pp(y2¬s)2(x2s)t G (x2t H (y2¬s)t) G

pp(x2s2¬t)2y2> G pp(x2s2¬t)2(y2¬s)t G ((x2s)t H y2>) G

((x2s)t H (y2¬s)t)
= 〈 by (3.6), (3.4) and Corollary 3.21-3 〉

pp(y2¬s)2x2t G pp(y2¬s)2(x2s)t G (x2t H (y2¬s)t) G

pp(x2s2¬t)2(y2¬s)t G ((x2s)t H (y2¬s)t)
= 〈 by Corollaries 4.26-1 and 3.21-3, (3.4) and (3.6) 〉

pp(y2¬s)2x2t G pp(y2¬s)2(x2s)t

8. Assume s E t.
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(xs H x¬s)t

= 〈 by (4.5) with x, t := x, s and (4.6) with x, t := x, s 〉

(xs2s H x¬s2¬s)t
= 〈 by Corollary 4.26-7, (4.5) with x, t := x, s, (4.6) with

x, t := x, s, the hypothesis and Boolean algebra 〉
pp(x¬s)2xs2t G pp(x¬s)2(xs)t

= 〈 by Proposition 3.14-7, (4.4) with x, t := x, s, (4.4) with

x, t := xs, t and Boolean algebra 〉
xs2t G (xs)t

9. (x2t H y2¬t)t
= 〈 by Corollary 4.26-5 〉

pp(y2¬t)2x2t G (x2t H (y2¬t)t)
= 〈 by Corollaries 4.26-1 and 3.21-3, and (3.4) 〉

pp(y2¬t)2x2t

10. x2t E y2t H z2¬t
⇐⇒ 〈 by (3.11) 〉

x2t H y2t H z2¬t = y2t H z2¬t
=⇒ 〈 by Leibniz 〉

(x2t H y2t H z2¬t)t = (y2t H z2¬t)t
⇐⇒ 〈 by (3.9) and Corollary 4.26-9 〉

pp(z2¬t)2(x2t H y2t) = pp(z2¬t)2y2t

⇐⇒ 〈 by (3.8) and (3.11) 〉

pp(z2¬t)2x2t E pp(z2¬t)2y2t

⇐⇒ 〈 by Proposition 3.14-6 〉

x2t E pp(z2¬t)2y2t

=⇒ 〈 by Propositions 3.14-20 and 3.14-7 〉

x2t E y2t H z2¬t

2

Theorem 4.27. Suppose A is an algebra of decomposable elements. The following

equality is valid for all x, y ∈ A and all t ∈ test(A).

(x2y)t = pp((x2y)t)2(x2(y2t G yt) G xpp(y2tGyt)2(y2t G yt))
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Remark 4.28. One might understand Theorem 4.27 intuitively by noting that

pp((x2y)t)2(x2(y2t G yt) G xpp(y2tGyt)2(y2t G yt)) = pp((x2y)t) ·D (x ·D (y ·D t))

by Proposition 4.17-3, (4.5) with x, t := y, t and Definition 4.16.

Proof : Since pp((x2y)t) = ¬pp(x2y2t)2¬pp(x2y2¬t)2pp(x2y) according to (4.4) with

x, t := x2y, t, we will rather demonstrate

(x2y)t = ¬pp(x2y2t)2¬pp(x2y2¬t)2pp(x2y)2(x2(y2t G yt) G xpp(y2tGyt)2(y2t G yt)) .

In this proof, the following abbreviations are used.

A := ¬pp(x2y2t)2¬pp(x2y2¬t)2pp(x2y)

B := x2(y2t G yt) G xpp(y2tGyt)2(y2t G yt)

C := x2(y2t G yt) G x¬pp(y2tGyt)2y2¬t
D := x2(y2¬t G y¬t) G xpp(y2¬tGy¬t)2(y2¬t G y¬t)

E := x2(y2¬t G y¬t) G x¬pp(y2¬tGy¬t)2y2t

Hence, we have to show (x2y)t = A2B. By symmetry, (x2y)¬t = A2D. Therefore, we

verify that A2B and A2D satisfy (4.4), (4.5), (4.6) and (4.3) with x, t := x2y, t (see

definition 4.7), in this order.

1. Proof of (4.4). We have to show pp(A2B) = pp(A2D) = A. We begin by showing

ppB E A.

ppB E A

⇐⇒ 〈 by Corollary 3.21-16, (3.20) and (4.5) with x, t := x, pp(y2tGyt)

〉
pp(x2(y2t G yt)) G pp(xpp(y2tGyt)) E ¬pp(x2y2t)2¬pp(x2y2¬t)2pp(x2y)

⇐⇒ 〈 by Boolean algebra 〉

pp(x2(y2t G yt)) G pp(x2y2t) G pp(x2y2¬t) E pp(x2y)2¬pp(xpp(y2tGyt))

⇐⇒ 〈 by Corollary 3.21-12 and Proposition 3.14-8,

true =⇒ y2t G yt E y2t =⇒ x2(y2t G yt) E x2y2t

=⇒ pp(x2(y2t G yt)) E pp(x2y2t),

then apply Boolean algebra and (4.4) with x, t := x, pp(y2tGyt)

〉
pp(x2(y2t G yt)) G pp(x2y2¬t)
E pp(x2y)2¬(¬pp(x2pp(y2t G yt))2¬pp(x2¬pp(y2t G yt))2ppx)
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⇐⇒ 〈 by De Morgan, Boolean algebra and (3.20) 〉

pp(x2(y2t G yt)) G pp(x2y2¬t)
E pp(x2ppy)2pp(x2pp(y2t G yt)) G pp(x2y)2pp(x2¬pp(y2t G yt)) G pp(x2y)2¬ppx

⇐⇒ 〈 by Propositions 3.14-9 and 3.14-7, (3.19), Corollaries 3.21-4

and 3.21-3, (4.4) with x, t := y, t and Boolean algebra 〉
pp(x2(y2t G yt)) G pp(x2y2¬t)
E pp(x2(y2t G yt)) G pp(x2y)2pp(x2¬pp(y2t G yt))

⇐= 〈 by Lemma 3.22-1 〉

pp(x2y2¬t) E pp(x2y)2pp(x2¬pp(y2t G yt))

⇐⇒ 〈 by Proposition 3.14-9 and (3.20) 〉

pp(x2y2¬t) E pp(pp(x2ppy)2x2¬pp(y2t G yt))

⇐⇒ 〈 by (3.19), (4.8) and De Morgan 〉

pp(x2y2¬t) E pp(x2ppy2(pp(y2¬t) G ¬ppy))

⇐⇒ 〈 by Boolean algebra 〉

pp(x2y2¬t) E pp(x2ppy2pp(y2¬t))
⇐⇒ 〈 Proposition 3.14-18, Boolean algebra and (3.20) 〉

true

Using this result with t := ¬t yields ppD E A. Hence, also Proposition 3.14-9 and

Boolean algebra,

pp(A2B) = A2ppB = A = A2ppD = pp(A2D) .

2. Proof of (4.5).

A2B2t

= 〈 by (3.24) 〉

A2

(
x2(y2t Gpp(y2t) yt) Gpp(x2(y2tGyt)) xpp(y2tGyt)2(y2t Gpp(y2t) yt)

)
2t

= 〈 by Proposition 3.20-7, Boolean algebra and (4.4) with

x, t := y, t 〉
A2

(
x2(y2t Gpp(y2t) yt) Gpp(x2(y2tGyt)) xpp(y2tGyt)2(y2t Gpp(y2t) yt)

)
= 〈 by (3.24) 〉

A2B

3. Proof of (4.6). This follows from the proof of (4.5) with the substitution t := ¬t.
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4. Proof of (4.3). We have to show

x2y = x2y2t G x2y2¬t G (A2B H A2D) .

It is sufficient to show that

pp((x2y)t)2x2y = A2B H A2D

by Remark 4.21.

So here is the proof of

A2x2y = A2(B H D) .

A2x2y

= 〈 by (4.3) with x, t := y, t 〉

A2x2(y2t G y2¬t G (yt H y¬t))

= 〈 by Corollary 3.21-15 and (3.8) 〉

A2(x2(y2t G y2¬t G yt) H x2(y2t G y2¬t G y¬t))

= 〈 by Remark 4.8, (3.25), Proposition 4.22-1 twice:

(1) with x, y, z := x, y2t G yt, y2¬t,
(2) with x, y, z := x, y2¬t G y¬t, y2t,

and Boolean algebra 〉
A2

(
(x2(y2t G yt) G x2y2¬t G

(xpp(y2tGyt)2(y2t G yt) H x¬pp(y2tGyt)2y2¬t)) H

(x2(y2¬t G y¬t) G x2y2t G

(xpp(y2¬tGy¬t)2(y2¬t G y¬t) H x¬pp(y2¬tGy¬t)2y2t)
)

= 〈 by (3.8), Corollary 3.21-4, Propositions 3.14-7 and 3.14-17,

and Corollary 3.21-3 〉
A2

(
(x2(y2t G yt) G

(xpp(y2tGyt)2(y2t G yt) H x¬pp(y2tGyt)2y2¬t)) H

(x2(y2¬t G y¬t) G

(xpp(y2¬tGy¬t)2(y2¬t G y¬t) H x¬pp(y2¬tGy¬t)2y2t)
)

= 〈 by Corollary 3.21-15 〉

A2

(
(x2(y2t G yt) G xpp(y2tGyt)2(y2t G yt)) H

(x2(y2t G yt) G x¬pp(y2tGyt)2y2¬t) H



Chapter 4. Definition of Angelic Operators in DAD 125

(x2(y2¬t G y¬t) G xpp(y2¬tGy¬t)2(y2¬t G y¬t)) H

(x2(y2¬t G y¬t) G x¬pp(y2¬tGy¬t)2y2t)
)

= 〈 by the definitions of A, B, C, D and E 〉

A2(B H C H D H E)

We have to show that the last expression is equal to A2(B H D).

A2(B H C H D H E) = A2(B H D)

⇐= 〈 by (3.8) and (3.11) 〉

A2C E A2(B H D) ∧ A2E E A2(B H D)

⇐⇒ 〈 since the second conjunct follows from the first by symmetry,

using the substitution t := ¬t 〉
A2C E A2(B H D)

⇐⇒ 〈 by Proposition 3.14-6 〉

C E A2(B H D)

⇐= 〈 by Lemma 3.7-1 〉

C E pp(x2y)2(B H D)

⇐⇒ 〈 by Proposition 3.14-20 〉

C E B H pp(x2y)2D

⇐⇒ 〈 by Proposition 3.20-16 〉

pp(x2(y2t G yt))2C E pp(x2(y2t G yt))2(B H pp(x2y)2D) ∧
¬pp(x2(y2t G yt))2C E ¬pp(x2(y2t G yt))2(B H pp(x2y)2D)

⇐⇒ 〈 by Corollaries 3.21-7 and 3.21-8, Proposition 3.14-7, (4.4) with

x, t := x, pp(y2t G yt) and Boolean algebra 〉
x2(y2t G yt) E pp(x2(y2t G yt))2(B H pp(x2y)2D) ∧
x¬pp(y2tGyt)2y2¬t E ¬pp(x2(y2t G yt))2(B H pp(x2y)2D)

⇐⇒ 〈 by (3.8), Corollary 3.21-7 and Proposition 3.14-7 〉

x2(y2t G yt) E x2(y2t G yt) H pp(x2(y2t G yt))2pp(x2y)2D) ∧
x¬pp(y2tGyt)2y2¬t E ¬pp(x2(y2t G yt))2(B H pp(x2y)2D)

⇐⇒ 〈 by (3.15) 〉

x¬pp(y2tGyt)2y2¬t E ¬pp(x2(y2t G yt))2(B H pp(x2y)2D)

The proof of the last refinement follows.
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¬pp(x2(y2t G yt))2(B H pp(x2y)2D)

= 〈 by (3.8), Corollary 3.21-8, Proposition 3.14-7, (4.4) with

x, t := x, pp(y2t G yt) and Boolean algebra 〉
xpp(y2tGyt)2(y2t G yt) H ¬pp(x2(y2t G yt))2pp(x2y)2D

= 〈 by Propositions 3.14-7 and 3.14-20, (3.20) and (4.5) with

x, t := x, pp(y2t G yt) 〉
xpp(y2tGyt)2(y2t G yt) H pp(xpp(y2tGyt))2¬pp(x2(y2t G yt))2pp(x2y)2D

F 〈 by (3.15) 〉

pp(xpp(y2tGyt))2¬pp(x2(y2t G yt))2pp(x2y)2D

= 〈 by (3.20), (4.4) with x, t := x, pp(y2t G yt) and Boolean algebra

〉
pp(xpp(y2tGyt))2pp(x2y)2D

= 〈 by the definition of D 〉

pp(xpp(y2tGyt))2pp(x2y)2(x2(y2¬t G y¬t) G xpp(y2¬tGy¬t)2(y2¬t G y¬t))

= 〈 by Corollary 3.21-4, (3.19) and (3.20) 〉

pp(xpp(y2tGyt))2(x2ppy2(y2¬t G y¬t) G pp(x2y)2xpp(y2¬tGy¬t)2(y2¬t G y¬t))

= 〈 by Proposition 3.14-7, (4.9) and Boolean algebra 〉

pp(xpp(y2tGyt))2(x2(y2¬t G y¬t) G pp(x2y)2xpp(y2¬tGy¬t)2(y2¬t G y¬t))

= 〈 by Corollary 3.21-4 and Proposition 3.14-9 〉

pp(xpp(y2tGyt))2x2(y2¬t G y¬t) G

pp(pp(xpp(y2tGyt))2x2y)2xpp(y2¬tGy¬t)2(y2¬t G y¬t)

= 〈 by Proposition 4.22-2 〉

pp(xpp(y2tGyt))2x2(y2¬t G y¬t) G

pp((xpp(y2tGyt) H x¬pp(y2tGyt))2y)2xpp(y2¬tGy¬t)2(y2¬t G y¬t)

F 〈 by (3.15) and Proposition 3.14-8,

x¬pp(y2tGyt) E xpp(y2tGyt) H x¬pp(y2tGyt)

=⇒ x¬pp(y2tGyt)2y E (xpp(y2tGyt) H x¬pp(y2tGyt))2y

=⇒ pp(x¬pp(y2tGyt)2y) E pp((xpp(y2tGyt) H x¬pp(y2tGyt))2y),

then apply Lemma 3.22-1 〉
pp(xpp(y2tGyt))2x2(y2¬t G y¬t) G

pp(x¬pp(y2tGyt)2y)2xpp(y2¬tGy¬t)2(y2¬t G y¬t)

= 〈 by Proposition 3.14-9, (3.20), (4.4) with x, t := x, pp(y2¬tGy¬t),

Remark 4.8 and Boolean algebra,

the domains of the two operands of the main G are disjoint,

then apply (3.25) 〉
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pp(x¬pp(y2tGyt)2y)2xpp(y2¬tGy¬t)2(y2¬t G y¬t) G

pp(xpp(y2tGyt))2x2(y2¬t G y¬t)

= 〈 by Proposition 4.22-2 〉

pp(x¬pp(y2tGyt)2y)2xpp(y2¬tGy¬t)2(y2¬t G y¬t) G

(xpp(y2tGyt) H x¬pp(y2tGyt))2(y2¬t G y¬t)

F 〈 by (3.15) and Lemma 3.22-1 〉

pp(x¬pp(y2tGyt)2y)2xpp(y2¬tGy¬t)2(y2¬t G y¬t) G

x¬pp(y2tGyt)2(y2¬t G y¬t)

= 〈 by (4.6) with x, t := x, pp(y2t G yt), (4.8) and De Morgan 〉

pp(xpp(y2¬t)G¬ppy2(pp(y2¬t) G ¬ppy)2y)2xpp(y2¬tGy¬t)2(y2¬t G y¬t) G

x¬pp(y2tGyt)2(pp(y2¬t) G ¬ppy)2(y2¬t G y¬t)

= 〈 by Corollaries 3.21-5 and 3.21-3, (3.19) and Proposition

3.14-17 〉
pp(xpp(y2¬t)G¬ppy2y2¬t)2xpp(y2¬tGy¬t)2(y2¬t G y¬t) G

x¬pp(y2tGyt)2(pp(y2¬t) G ¬ppy)2(y2¬t G y¬t)

= 〈 by Corollaries 3.21-5, 3.21-4 and 3.21-3, Propositions 3.14-7

and 3.14-17, (4.4) with x, t := y, t, (3.6) and Boolean algebra

〉
pp(xpp(y2¬t)G¬ppy2y2¬t)2xpp(y2¬tGy¬t)2(y2¬t G y¬t) G x¬pp(y2tGyt)2y2¬t

F 〈 It is shown immediately after this derivation that

x¬pp(y2tGyt)2y2¬t refines the first operand of the main G.

The result then follows from Lemma 3.22-2. 〉
x¬pp(y2tGyt)2y2¬t

Thus, all what remains to do is prove the assertion in the justification of the last

equality.

pp(xpp(y2¬t)G¬ppy2y2¬t)2xpp(y2¬tGy¬t)2(y2¬t G y¬t)

F 〈 by Lemma 3.17-2, ¬ppy2pp(y2¬t) = >,

then by Boolean algebra

and Corollary 4.26-4 with r, s, t := pp(y¬t),¬ppy, pp(y2¬t),
xpp(y2¬t)G¬ppy2pp(y2¬t)
= x¬ppyGpp(y2¬t)2pp(y2¬t)
E pp(x¬ppyGpp(y2¬t)2pp(y2¬t))2xpp(y¬t)Gpp(y2¬t)

= pp(xpp(y2¬t)G¬ppy2pp(y2¬t))2xpp(y¬t)Gpp(y2¬t),

then apply Corollary 3.21-16 and (3.20) 〉
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xpp(y2¬t)G¬ppy2pp(y2¬t)2(y2¬t G y¬t)

= 〈 by (4.8), De Morgan, Corollaries 3.21-4 and 3.21-3,

Proposition 3.14-7, (4.4) with x, t := y, t, Boolean algebra and

(3.6) 〉
x¬pp(y2tGyt)2y2¬t

2

Theorem 4.29. Suppose A is an algebra of decomposable elements. The following

equality is valid for all x, y ∈ A and all t, u ∈ test(A).

(x Gu y)t = xt Gu yt

Proof : We have to show that xt Gu yt and x¬t Gu y¬t satisfy (4.3), (4.4), (4.5) and

(4.6) with x, t := x Gu y, t (see Definition 4.7).

With (4.5), (4.6), (4.5) with x, t := y, t, (4.6) with x, t := y, t and Corollary 3.21-18,

one gets (4.5) and (4.6).

Let us work now on (4.3). We have to demonstrate that

x Gu y = (x Gu y)2t G (x Gu y)2¬t G ((xt Gu yt) H (x¬t Gu y¬t)) .

This equality can be established by comparing the two members with the tests u and

¬u and invoking Proposition 3.20-17.

Case u

u2(x Gu y)

= 〈 by Proposition 3.20-1 〉

u2x

= 〈 by (4.3) 〉

u2(x2t G x2¬t G (xt H x¬t))

= 〈 by Corollary 3.21-4 and (3.8) 〉

u2x2t G u2x2¬t G (u2xt H u2x¬t)

= 〈 by Proposition 3.20-1 〉

u2(x Gu y)2t G u2(x Gu y)2¬t G (u2(xt Gu yt) H u2(x¬t Gu y¬t))

= 〈 by Corollary 3.21-4 and (3.8) 〉

u2((x Gu y)2t G (x Gu y)2¬t G ((xt Gu yt) H (x¬t Gu y¬t)))
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Case ¬u

¬u2(x Gu y)

= 〈 by Proposition 3.20-1 〉

¬u2y

= 〈 by (4.3) with x, t := y, t 〉

¬u2(y2t G y2¬t G (yt H y¬t))

= 〈 by Corollary 3.21-4 and (3.8) 〉

¬u2y2t G ¬u2y2¬t G (¬u2yt H ¬u2y¬t)

= 〈 by Proposition 3.20-1 〉

¬u2(x Gu y)2t G ¬u2(x Gu y)2¬t G (¬u2(xt Gu yt) H ¬u2(x¬t Gu y¬t))

= 〈 by Corollary 3.21-4 and (3.8) 〉

¬u2((x Gu y)2t G (x Gu y)2¬t G ((xt Gu yt) H (x¬t Gu y¬t)))

It remains to derive (4.4). First note that

pp(xt Gu yt)

= 〈 by Proposition 3.20-20 〉

pp(xt) Gu pp(yt)

= 〈 by (4.4) and (4.4) with x, t := y, t 〉

pp(x¬t) Gu pp(y¬t)

= 〈 by Proposition 3.20-20 〉

pp(x¬t Gu y¬t) .

And here is the main derivation.

¬pp((x Gu y)2t)2¬pp((x Gu y)2¬t)2pp(x Gu y)

= 〈 by Propositions 3.20-7 and 3.20-20 〉

¬(pp(x2t) Gu pp(y2t))2¬(pp(x2¬t) Gu pp(y2¬t))2(ppx Gu ppy)

= 〈 by Proposition 3.20-12 〉
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¬(u2pp(x2t) G ¬u2pp(y2t))2¬(u2pp(x2¬t) G ¬u2pp(y2¬t))2(u2ppx G ¬u2ppy)

= 〈 by De Morgan 〉

(¬u G ¬pp(x2t))2(u G ¬pp(y2t))2

(¬u G ¬pp(x2¬t))2(u G ¬pp(y2¬t))2(u2ppx G ¬u2ppy)

= 〈 by Boolean algebra 〉

(¬u G u2¬pp(x2t))2(u G ¬u2¬pp(y2t))2

(¬u G u2¬pp(x2¬t))2(u G ¬u2¬pp(y2¬t))2(u2ppx G ¬u2ppy)

= 〈 by Boolean algebra 〉

u2¬pp(x2t)2¬pp(x2¬t)2ppx G ¬u2¬pp(y2t)2¬pp(y2¬t)2ppy

= 〈 by Proposition 3.20-12, (4.4) and (4.4) with x, t := y, t 〉

pp(xt) Gu pp(yt)

= 〈 by Proposition 3.20-20 〉

pp(xt Gu yt)

2

Corollary 4.30. Suppose A is an algebra of decomposable elements. The following

equalities are valid for all x, y ∈ A and all r, s, t ∈ test(A).

1. (x G y)t = xt G ¬ppx2yt

2. ppx2ppy = > =⇒ (x G y)t = xt G yt

3. r E t E s =⇒ pp(xr2s)2xt = xr2s

Proof :

1. (x G y)t

= 〈 by (3.24) 〉

(x Gppx y)t

= 〈 by Theorem 4.29 〉

xt Gppx yt

= 〈 by Corollary 3.21-9, Proposition 3.14-7, (4.4) and Boolean

algebra 〉
xt G ¬ppx2yt
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2. Suppose ppx2ppy = >.

(x G y)t

= 〈 by Corollary 4.30-1 〉

xt G ¬ppx2yt

= 〈 by Proposition 3.14-7, (4.4) with x, t := y, t, the hypothesis

and Boolean algebra 〉
xt G yt

3. First, we derive an intermediate result. Assume r E t.

xt

= 〈 by (4.3) with x, t := x, r 〉

(x2r G x2¬r G (xr H x¬r))t

= 〈 by Corollaries 4.30-1, 3.21-4 and 3.21-13 〉

(x2r)t G ¬pp(x2r)2(x2¬r)t G ¬pp(x2r)2¬pp(x2¬r)2(xr H x¬r)t

= 〈 by Propositions 3.14-7 and 3.14-3, (4.4) with x, t := x2¬r, t,
(4.4) with x, t := xr H x¬r, t, (4.4) with x, t := x, r, Lemma

3.17-5, (3.21) and Boolean algebra 〉
(x2r)t G (x2¬r)t G (xr H x¬r)t

= 〈 by Proposition 3.14-7, (4.4) with x, t := x2¬r, t, Boolean

algebra and Theorem 4.23 〉
(x2r)t G ¬pp(x2¬r2¬t)2pp(x2¬r)2(x2¬r)t G pp(x¬r2¬t)2xr2t G

pp(x¬r2¬t)2(xr)t G (xr2t H (x¬r)t) G pp(xr2¬t)2x¬r2t G

pp(xr2¬t)2(x¬r)t G ((xr)t H x¬r2t) G ((xr)t H (x¬r)t)

= 〈 by the hypothesis and Boolean algebra,

¬r2¬t = ¬r,
then by (4.6) with x, t := x, r,

x¬r2¬t = x¬r2¬r2¬t = x¬r2¬r = x¬r 〉
(x2r)t G ¬pp(x2¬r)2pp(x2¬r)2(x2¬r)t G pp(x¬r)2xr2t G

pp(x¬r)2(xr)t G (xr2t H (x¬r)t) G pp(xr2¬t)2x¬r2t G

pp(xr2¬t)2(x¬r)t G ((xr)t H x¬r2t) G ((xr)t H (x¬r)t)
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= 〈 by (4.6) with x, t := x, r, the hypothesis, Boolean algebra

and (3.6),

x¬r2t = x¬r2¬r2t = >;

by Proposition 4.22-7, (4.5) with x, t := x¬r, t, the hypothesis,

Boolean algebra and (3.6)

(x¬r)t = (x¬r)t2¬r = (x¬r)t2t2¬r = >;

apply Boolean algebra too 〉
(x2r)t G >2(x2¬r)t G pp(x¬r)2xr2t G

pp(x¬r)2(xr)t G (xr2t H >) G pp(xr2¬t)2> G

pp(xr2¬t)2> G ((xr)t H >) G ((xr)t H >)

= 〈 Boolean algebra, (3.6), (3.4) and Corollary 3.21-3 〉

(x2r)t G pp(x¬r)2xr2t G pp(x¬r)2(xr)t

= 〈 by (4.4) with x, t := x, r, (4.4) with x, t := xr, t, Proposition

3.14-7 and Boolean algebra 〉
(x2r)t G xr2t G (xr)t

So r E t =⇒ xt = (x2r)t G xr2t G (xr)t.

And now the main proof. Assume r E t E s.

pp(xr2s)2xt

= 〈 by the hypothesis and the intermediate result above 〉

pp(xr2s)2((x2r)t G xr2t G (xr)t)

= 〈 by Corollary 3.21-4 〉

pp(xr2s)2(x2r)t G pp(xr2s)2xr2t G pp(xr2s)2(xr)t

= 〈 by the hypothesis, (4.4) with x, t := xr, t, Proposition 3.14-8

and Boolean algebra,

true =⇒ t E s =⇒ xr2t E xr2s =⇒ pp(xr2t) E pp(xr2s)

=⇒ pp(xr2t)2¬pp(xr2t) E pp(xr2s)2pp(xr)t
=⇒ pp(xr2s)2pp(xr)t = > 〉

pp(xr2s)2(x2r)t G pp(xr2s)2xr2t G >
= 〈 by (4.4) with x, t := x, r, by (4.4) with x, t := x2r, t,

Propositions 3.14-7 and 3.14-9, Boolean algebra and (3.6),

pp(xr2s)2(x2r)t = pp(¬pp(x2r)2xr2s)2pp(x2r)2(x2r)t
= ¬pp(x2r)2pp(xr2s)2pp(x2r)2(x2r)t = >2(x2r)t = > 〉

> G pp(xr2s)2xr2t G >
= 〈 by Corollary 3.21-3, (3.19), the hypothesis and Boolean

algebra 〉
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xr2s

2

4.5 A Framework for KAD Within DAD-G•

In this section, we present three theorems. Theorems 4.31, 4.32 and 4.33 respectively

state that, under suitable hypotheses, the elements of a DAD-G• together with the

angelic operators form a KA, a KAT and a KAD. They make up a downward link from

DAD-G• to KAD for any model of KAD —refer to Figure 1.4. These theorems are the

demonic versions of Theorems 2.20, 2.21, 2.22 and 2.23.

We give the same advices as at the beginning of Section 4.4. Firstly, in order to

demonstrate Theorems 4.31, 4.32 and 4.33, we need the algebra A to be an algebra of

decomposable elements. In Chapter 5, it will be shown that this hypothesis is necessary

and sufficient. Secondly, although the results are easy to understand, some proofs

are long while others are subtle. For these reasons, at first reading, one might just

concentrate on results rather than verify all the details of each demonstration.

Here is the first theorem of the section.

Theorem 4.31. Suppose A is an algebra of decomposable elements. For all x, y, z ∈ A,

the following laws are true, hence (A,+D, ·D, ∗D ,>, 1) is a KA.

1. (x+D y) +D z = x+D (y +D z)

2. x+D y = y +D x

3. x+D x = x

4. >+D x = x

5. (x ·D y) ·D z = x ·D (y ·D z)

6. > ·D x = x ·D > = >

7. 1 ·D x = x ·D 1 = x

8. x ·D (y + z) = x ·D y +D x ·D z

9. (x+D y) ·D z = x ·D z +D y ·D z
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10. x∗D = x∗D ·D x+D 1

11. x≤D y ⇐⇒ x+D y = y

12. x ·D z +D y ≤D z =⇒ x∗D ·D y ≤D z

13. z ·D x+D y ≤D z =⇒ y ·D x∗D ≤D z

Proof :

1. This is direct from Corollary 4.4-4.

2. This is firect from Corollary 4.4-5.

3. This is direct from Corollary 4.4-6.

4. This is direct from Corollary 4.4-7.

5. (x ·D y) ·D z = x ·D (y ·D z)
⇐⇒ 〈 by Proposition 4.17-7 〉

((x ·D y)2ppz G (x ·D y)ppz)2z = (x2pp(y ·D z) G xpp(y·Dz))2(y ·D z)
⇐⇒ 〈 by Proposition 4.17-7 〉

((x ·D y)2ppz G (x ·D y)ppz)2z = (x2pp(y ·D z) G xpp(y·Dz))2(y2ppz G yppz)2z

⇐= 〈 by Leibniz 〉

(x ·D y)2ppz G (x ·D y)ppz = (x2pp(y ·D z) G xpp(y·Dz))2(y2ppz G yppz)

⇐⇒ 〈 by Proposition 4.17-5 〉

(x ·D y)2ppz G (x ·D y)ppz = (x2ppy2¬pp(y2¬ppz) G xppy2¬pp(y2¬ppz))2(y2ppz G yppz)

Since in the last formula z appears only as ppz, it suffices to show (x ·D y) ·D t =

x ·D (y ·D t) for an arbitrary test t.

(x ·D y) ·D t
= 〈 by Definition 4.16 and Proposition 3.14-1 〉

(x2y G xppy2y)2t G (x2y G xppy2y)t2t

= 〈 by (4.5) with x, t := x2y G xppy2y, t 〉

(x2y G xppy2y)2t G (x2y G xppy2y)t

= 〈 by (3.20), (4.4) with x, t := x, ppy, Remark 4.8

and Boolean algebra,

pp(x2y)2pp(xppy2y) = pp(x2y)2pp(xppy2ppy) = pp(x2y)2pp(xppy) = >,

then apply Corollaries 3.21-17 and 4.30-1 〉
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x2y2t G xppy2y2t G (x2y)t G ¬pp(x2y)2(xppy2y)t

= 〈 by (4.4) with x, t := xppy2y, t, (4.4) with x, t := x, ppy, (3.20),

(4.5) with x, t := x, ppy, Proposition 3.14-7 and Boolean algebra

〉
x2y2t G xppy2y2t G (x2y)t G (xppy2y)t

Hence, by Proposition 4.17-6,

pp(x2y2t G xppy2y2t G (x2y)t G (xppy2y)t) = pp(x ·D (y ·D t)) .

Thus, by Lemma 3.22-5, it suffices to prove

x2y2t = pp(x2y2t)2(x ·D (y ·D t)) (4.30)

xppy2y2t = pp(xppy2y2t)2(x ·D (y ·D t)) (4.31)

(x2y)t = pp((x2y)t)2(x ·D (y ·D t)) (4.32)

(xppy2y)t = pp((xppy2y)t)2(x ·D (y ·D t)) (4.33)

to show

x2y2t G xppy2y2t G (x2y)t G (xppy2y)t = x ·D (y ·D t) ,

which completes the proof of associativity of ·D.

(a) Proof of (4.30).

pp(x2y2t)2(x ·D (y ·D t))
= 〈 by Definition 4.16, Proposition 3.14-1 and (4.5) with

x, t := y, t 〉
pp(x2y2t)2(x2(y2t G yt) G xpp(y2tGyt)2(y2t G yt))

= 〈 by Corollary 3.21-4 〉

pp(x2y2t)2x2(y2t G yt) G pp(x2y2t)2xpp(y2tGyt)2(y2t G yt)

= 〈 by (3.20), Proposition 3.14-7, (4.4) with

x, t := x, pp(y2t G yt), Boolean algebra and (3.19) 〉
x2pp(y2t)2(y2t G yt) G pp(x2y2t)2¬pp(x2(y2t G yt))2xpp(y2tGyt)2(y2t G yt)

= 〈 by Corollary 3.21-12, Proposition 3.14-8

and Boolean algebra,

true =⇒ y2t G yt E y2t =⇒ x2(y2t G yt) E x2y2t

=⇒ pp(x2(y2t G yt)) E pp(x2y2t)

=⇒ pp(x2y2t)2¬pp(x2(y2t G yt)) = >;

apply Corollary 3.21-4 too 〉
x2(pp(y2t)2y2t G pp(y2t)2yt) G >2xpp(y2tGyt)2(y2t G yt)
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= 〈 by Proposition 3.14-7, Remark 4.8, Boolean algebra, (3.6)

and Corollary 3.21-3 〉
x2y2t

(b) Proof of (4.31). First, we derive an intermediate result.

pp(pp(xppy2y2t)2x2(y2t G yt))

= 〈 by Proposition 3.14-9 〉

pp(xppy2y2t)2pp(x2(y2t G yt))

F 〈 by (4.9) and Proposition 3.14-8,

true =⇒ ppy E pp(y2t G yt) =⇒ x2ppy E x2pp(y2t G yt)

=⇒ pp(x2ppy) E pp(x2pp(y2t G yt)),

then apply (3.20) and Proposition 3.14-18 〉
pp(xppy)2pp(x2ppy)

F 〈 by (4.4) with x, t := x, ppy and Boolean algebra 〉

¬pp(x2ppy)2pp(x2ppy)

= 〈 by Boolean algebra 〉

>

And now the main proof.

pp(xppy2y2t)2(x ·D (y ·D t))
= 〈 by Definition 4.16, Proposition 3.14-1 and (4.5) with

x, t := y, t 〉
pp(xppy2y2t)2(x2(y2t G yt) G xpp(y2tGyt)2(y2t G yt))

= 〈 by Corollary 3.21-4 〉

pp(xppy2y2t)2x2(y2t G yt) G pp(xppy2y2t)2xpp(y2tGyt)2(y2t G yt)

= 〈 by the intermediate result above, Proposition 3.14-19 and

(3.20) 〉
> G pp(xppy2pp(y2t))2xpp(y2tGyt)2(y2t G yt)

= 〈 by (4.9), Corollary 3.21-16 and Boolean algebra,

ppy E pp(y2t G yt) E pp(y2t),

then apply Corollaries 3.21-3 and 4.30-3 with

r, s, t := ppy, pp(y2t), pp(y2t G yt) 〉
xppy2pp(y2t)2(y2t G yt)

= 〈 by Corollary 3.21-4 〉

xppy2(pp(y2t)2y2t G pp(y2t)2yt)
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= 〈 by Proposition 3.14-7, Remark 4.8 and (3.6) 〉

xppy2(y2t G >)

= 〈 by Corollary 3.21-3 〉

xppy2y2t

(c) Proof of (4.32).

pp((x2y)t)2(x ·D (y ·D t))
= 〈 by Definition 4.16, Proposition 3.14-1 and (4.5) with

x, t := y, t 〉
pp((x2y)t)2(x2(y2t G yt) G xpp(y2tGyt)2(y2t G yt))

= 〈 by Theorem 4.27 〉

(x2y)t

(d) Proof of (4.33). Again, we start with intermediate results.

pp(pp(xppy2y)t2x2(y2t G yt))

= 〈 by Proposition 3.14-9 〉

pp((xppy2y)t)2pp(x2(y2t G yt))

F 〈 by (4.9) and Proposition 3.14-8,

true =⇒ ppy E pp(y2t G yt) =⇒ x2ppy E x2pp(y2t G yt))

=⇒ pp(x2ppy) E pp(x2pp(y2t G yt))),

then apply (3.20) 〉
pp((xppy2y)t)2pp(x2ppy)

F 〈 by (4.4) with x, t := xppy2y, t and Boolean algebra 〉

pp(xppy2y)2pp(x2ppy)

= 〈 by (3.20) and (4.5) with x, t := x, ppy 〉

pp(xppy)2pp(x2ppy)

F 〈 by (4.4) with x, t := x, ppy and Boolean algebra 〉

¬pp(x2ppy)2pp(x2ppy)

= 〈 by Boolean algebra 〉

>

Proposition 3.14-19 then yields

pp(xppy2y)t2x2(y2t G yt) = > . (4.34)
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Looking at the previous derivation from the third step down to the last, we

also get

pp(xppy2y)t2pp(x2ppy) = > . (4.35)

There is a similar proof for

pp(xppy2y)t2pp(x2¬ppy) = > . (4.36)

And here is the main proof.

pp((xppy2y)t)2(x ·D (y ·D t))
= 〈 by Definition 4.16, Proposition 3.14-1 and (4.5) with

x, t := y, t 〉
pp((xppy2y)t)2(x2(y2t G yt) G xpp(y2tGyt)2(y2t G yt))

= 〈 by Corollary 3.21-4 〉

pp((xppy2y)t)2x2(y2t G yt) G pp((xppy2y)t)2xpp(y2tGyt)2(y2t G yt)

= 〈 by (4.34) and (4.3) with x, t := x, ppy 〉

> G pp((xppy2y)t)2(x2ppy G x2¬ppy G (xppy H x¬ppy))pp(y2tGyt)2(y2t G yt)

= 〈 by Corollaries 3.21-3, 3.21-13, 4.30-1 and 3.21-4 〉

pp((xppy2y)t)2((x2ppy)pp(y2tGyt) G ¬pp(x2ppy)2(x2¬ppy)pp(y2tGyt) G

¬pp(x2ppy)2¬pp(x2¬ppy)2(xppy H x¬ppy)pp(y2tGyt))2(y2t G yt)

= 〈 by Propositions 3.14-7 and 3.14-3, (4.4) with

x, t := x2¬ppy, pp(y2t G yt), (4.4) with

x, t := xppy H x¬ppy, pp(y2t G yt), (4.4) with x, t := x, ppy,
Lemma 3.17-5, (3.21) and Boolean algebra 〉

pp((xppy2y)t)2((x2ppy)pp(y2tGyt) G (x2¬ppy)pp(y2tGyt) G (xppy H x¬ppy)pp(y2tGyt))2

(y2t G yt)

= 〈 by Corollary 3.21-4, Proposition 3.14-7, (4.4) with

x, t := x2ppy, pp(y2tGyt), (4.4) with x, t := x2¬ppy, pp(y2tGyt)

and Boolean algebra 〉(
pp((xppy2y)t)2pp(x2ppy)2(x2ppy)pp(y2tGyt) G

pp((xppy2y)t)2pp(x2¬ppy)2(x2¬ppy)pp(y2tGyt) G

pp((xppy2y)t)2(xppy H x¬ppy)pp(y2tGyt)

)
2(y2t G yt)

= 〈 by (4.35), (4.36), (3.6) and Corollary 3.21-3 〉

pp((xppy2y)t)2(xppy H x¬ppy)pp(y2tGyt)2(y2t G yt)

= 〈 by Theorem 4.23 〉

pp((xppy2y)t)2

(
pp(x¬ppy2¬pp(y2t G yt))2xppy2pp(y2t G yt) G
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pp(x¬ppy2¬pp(y2t G yt))2(xppy)pp(y2tGyt) G

(xppy2pp(y2t G yt) H (x¬ppy)pp(y2tGyt)) G

pp(xppy2¬pp(y2t G yt))2x¬ppy2pp(y2t G yt) G

pp(xppy2¬pp(y2t G yt))2(x¬ppy)pp(y2tGyt) G

((xppy)pp(y2tGyt) H x¬ppy2pp(y2t G yt)) G

((xppy)pp(y2tGyt) H (x¬ppy)pp(y2tGyt))
)

2(y2t G yt)

= 〈 by (4.9) and Boolean algebra,

¬pp(y2t G yt) E ¬ppy,
then apply (4.6) with x, t := x, ppy and Corollary 4.26-1 〉

pp((xppy2y)t)2

(
pp(x¬ppy)2xppy2pp(y2t G yt) G pp(x¬ppy)2(xppy)pp(y2tGyt) G

(xppy2pp(y2t G yt) H >) G pp(xppy2¬pp(y2t G yt))2x¬ppy2> G

pp(xppy2¬pp(y2t G yt))2> G ((xppy)pp(y2tGyt) H >) G

((xppy)pp(y2tGyt) H >)
)

2(y2t G yt)

= 〈 by (4.4) with x, t := x, ppy, (3.4), (3.6) and Corollary

3.21-3 〉
pp((xppy2y)t)2(pp(xppy)2xppy2pp(y2t G yt) G pp(xppy)2(xppy)pp(y2tGyt))2(y2t G yt)

= 〈 by Proposition 3.14-7, (4.4) with x, t := xppy, pp(y2t G yt)

and Boolean algebra 〉
pp((xppy2y)t)2(xppy2pp(y2t G yt) G (xppy)pp(y2tGyt))2(y2t G yt)

= 〈 by (4.4) and Boolean algebra,

pp(xppy2pp(y2t G yt))2pp((xppy)pp(y2tGyt)) = >,

then apply Corollary 3.21-17 and Proposition 3.14-7 〉
pp((xppy2y)t)2(xppy2(y2t G yt) G (xppy)pp(y2tGyt)2(y2t G yt))

= 〈 by Theorem 4.27 〉

(xppy2y)t

6. This is direct from Proposition 4.17-2.

7. This is direct from Proposition 4.17-1.

8. First, we prove pp(x ·D (y +D z)) = pp(x ·D y +D x ·D z).

pp(x ·D (y +D z))

= 〈 by Proposition 4.17-5 〉

ppx2¬pp(x2¬pp(y +D z))

= 〈 by Corollary 4.4-3 〉
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ppx2¬pp(x2¬(ppy G ppz))

= 〈 by De Morgan 〉

ppx2¬pp(x2¬ppy2¬ppz)

= 〈 by Proposition 3.14-12 〉

ppx2¬(pp(x2¬ppy)2pp(x2¬ppz))

= 〈 by De Morgan 〉

ppx2(¬pp(x2¬ppy) G ¬pp(x2¬ppz))

= 〈 by Boolean algebra 〉

ppx2¬pp(x2¬ppy) G ppx2¬pp(x2¬ppz)

= 〈 by Proposition 4.17-5 〉

pp(x ·D y) G pp(x ·D z)
= 〈 by Corollary 4.4-3 〉

pp(x ·D y +D x ·D z)

Now,

x ·D y +D x ·D z
= 〈 by Corollary 4.4-1 〉

¬pp(x ·D z)2(x ·D y) G ¬pp(x ·D y)2(x ·D z) G ((x ·D y) H (x ·D z))
= 〈 by Definition 4.16 〉

¬pp(x ·D z)2(x ·D y) G ¬pp(x ·D y)2(x ·D z) G

((x2y G xppy2y) H (x2z G xppz2z))

= 〈 by Corollary 3.21-14 〉

¬pp(x ·D z)2(x ·D y) G ¬pp(x ·D y)2(x ·D z) G

(x2y H x2z) G (x2y H xppz2z) G (xppy2y H x2z) G (xppy2y H xppz2z) .

Because pp(x ·D (y +D z)) = pp(x ·D y +D x ·D z), it thus suffices, by Lemma 3.22-5, to

prove the following six equations.

pp(¬pp(x ·D z)2(x ·D y))2(x ·D (y +D z)) = ¬pp(x ·D z)2(x ·D y) (4.37)

pp(¬pp(x ·D y)2(x ·D z))2(x ·D (y +D z)) = ¬pp(x ·D y)2(x ·D z) (4.38)

pp(x2y H x2z)2(x ·D (y +D z)) = x2y H x2z (4.39)

pp(x2y H xppz2z)2(x ·D (y +D z)) = x2y H xppz2z (4.40)

pp(xppy2y H x2z)2(x ·D (y +D z)) = xppy2y H x2z (4.41)

pp(xppy2y H xppz2z)2(x ·D (y +D z)) = xppy2y H xppz2z (4.42)
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Because H and +D are commutative (by (3.2) and Corollary 4.4-5), equations

(4.37) and (4.38) are symmetric in y and z, and similarly for (4.40) and (4.41).

Thus, we only need to prove (4.37), (4.39), (4.40) and (4.42).

(a) Proof of (4.37). Since

pp(¬pp(x ·D z)2(x ·D y))2(x ·D (y +D z)) = ¬pp(x ·D z)2(x ·D y)
⇐⇒ 〈 by Propositions 3.14-9 and 3.14-7 〉

¬pp(x ·D z)2pp(x ·D y)2(x ·D (y +D z)) = ¬pp(x ·D z)2pp(x ·D y)2(x ·D y)
⇐= 〈 by Boolean algebra and Leibniz 〉

¬pp(x ·D z)2(x ·D (y +D z)) = ¬pp(x ·D z)2(x ·D y) ,

we only prove the last equation.

¬pp(x ·D z)2(x ·D (y +D z))

= 〈 by Proposition 4.17-7 〉

¬pp(x ·D z)2(x2pp(y +D z) G xpp(y+Dz))2(y +D z)

= 〈 by Proposition 4.17-5, Corollary 4.4-3 and De Morgan 〉

(¬ppx G pp(x2¬ppz))2(x2(ppy G ppz) G xppyGppz)2(y +D z)

= 〈 by Corollary 3.21-5 〉

¬ppx2(x2(ppy G ppz) G xppyGppz)2(y +D z) G

pp(x2¬ppz)2(x2(ppy G ppz) G xppyGppz)2(y +D z)

= 〈 by Proposition 3.14-7, (4.9), Boolean algebra, (3.6) and

Corollary 3.21-3 〉
pp(x2¬ppz)2(x2(ppy G ppz) G xppyGppz)2(y +D z)

= 〈 by Corollary 3.21-4 〉

(pp(x2¬ppz)2x2(ppy G ppz) G pp(x2¬ppz)2xppyGppz)2(y +D z)

= 〈 by (3.19), Boolean algebra and Corollary 4.26-3 〉

(x2¬ppz2(ppy G ppz) G pp(x2¬ppz)2xppy)2(y +D z)

= 〈 by Boolean algebra and Proposition 4.22-6 〉

(x2ppy2¬ppz G pp(x2¬ppz)2xppy2¬ppz)2(y +D z)

= 〈 by Remark 4.8, Proposition 3.14-9 and Boolean algebra,

pp(x2ppy)2pp(pp(x2¬ppz)2xppy) = pp(x2¬ppz)2pp(x2ppy)2pp(xppy) = >
then apply Corollaries 3.21-17 and 4.4-1 〉

(x2ppy G pp(x2¬ppz)2xppy)2¬ppz2(¬ppz2y G ¬ppy2z G (y H z))
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= 〈 by Corollaries 3.21-4 and 3.21-3, Propositions 3.14-17 and

3.14-11, Boolean algebra and (3.6) 〉
(x2ppy G pp(x2¬ppz)2xppy)2¬ppz2y

= 〈 by Remark 4.8, Proposition 3.14-9 and Boolean algebra,

pp(x2ppy)2pp(pp(x2¬ppz)2xppy) = pp(x2¬ppz)2pp(x2ppy)2pp(xppy) = >,

then apply Corollary 3.21-17 and Boolean algebra 〉
x2¬ppz2ppy2y G pp(x2¬ppz)2xppy2¬ppz2y

= 〈 by (3.19) and Propositions 3.14-7 and 4.22-6 〉

pp(x2¬ppz)2x2y G pp(x2¬ppz)2xppy2y

= 〈 by Corollary 3.21-4 〉

pp(x2¬ppz)2(x2y G xppy2y)

= 〈 by Corollaries 3.21-4 and 3.21-3, Proposition 3.14-7, (4.4)

with x, t := x, ppy, Boolean algebra and (3.6) 〉
¬ppx2(x2y G xppy2y) G pp(x2¬ppz)2(x2y G xppy2y)

= 〈 by Corollary 3.21-5 〉

(¬ppx G pp(x2¬ppz))2(x2y G xppy2y)

= 〈 by De Morgan, Proposition 4.17-5 and Definition 4.16 〉

¬pp(x ·D z)2(x ·D y)

(b) Proof of (4.39).

pp(x2y H x2z)2(x ·D (y +D z))

= 〈 by (3.21), (3.20), Proposition 3.14-3 and Definition 4.16

〉
pp(x2ppy)2pp(x2ppz)2(x2(y +D z) G xpp(y+Dz)2(y +D z))

= 〈 by Corollary 3.21-4 〉

pp(x2ppy)2pp(x2ppz)2x2(y +D z) G pp(x2ppy)2pp(x2ppz)2xpp(y+Dz)2(y +D z)

= 〈 by (4.4) with x, t := x, pp(y +D z), Corollary 4.4-3,

Lemma 3.17-6 and Boolean algebra,

pp(x2ppz)2pp(xpp(y+Dz))

F pp(x2ppz)2¬pp(x2pp(y +D z)) = pp(x2ppz)2¬pp(x2(ppy G ppz))
F pp(x2ppz)2¬pp(x2ppz) = >,

then apply (3.19) twice, Corollary 4.4-1 and Proposition

3.14-7 〉
x2ppy2ppz2(¬ppz2y G ¬ppy2z G (y H z)) G pp(x2ppy)2>2xpp(y+Dz)2(y +D z)

= 〈 by Corollaries 3.21-4 and 3.21-3, Boolean algebra and

(3.6) 〉
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x2ppy2ppz2(y H z)

= 〈 by Proposition 3.14-11 and (3.8) 〉

x2y H x2z

(c) Proof of (4.40).

pp(x2y H xppz2z)2(x ·D (y +D z))

= 〈 by (3.21), (3.20), Proposition 3.14-3, Definition 4.16 and

Boolean algebra 〉
pp(xppz2ppz)2pp(x2ppy)2(x2(y +D z) G xpp(y+Dz)2(y +D z))

= 〈 by (4.5) with x, t := x, ppz and Corollaries 3.21-4 and

4.4-3 〉
pp(xppz)2(pp(x2ppy)2x2(y +D z) G pp(x2ppy)2xppyGppz2(y +D z))

= 〈 by (4.4) with x, t := x, pp(y +D z), Corollary 4.4-3,

Lemma 3.17-6 and Boolean algebra,

pp(x2ppz)2pp(xpp(y+Dz))

F pp(x2ppz)2¬pp(x2pp(y +D z)) = pp(x2ppz)2¬pp(x2(ppy G ppz))
F pp(x2ppz)2¬pp(x2ppz) = >,

then apply (3.19) twice, Corollary 4.4-1 and Proposition

3.14-7 〉
pp(xppz)2(x2ppy2(y +D z) G >2(y +D z))

= 〈 by Corollary 4.4-1, (3.6) and Corollary 3.21-3 〉

pp(xppz)2x2ppy2(¬ppz2y G ¬ppy2z G (y H z))

= 〈 by Corollaries 3.21-4 and 3.21-3, Boolean algebra,

Propositions 3.14-7 and 3.14-11, and (3.6) 〉
pp(xppz)2x2(¬ppz2y G (y H z))

= 〈 by Proposition 4.22-2 〉

(xppz H x¬ppz)2(¬ppz2y G (y H z))

= 〈 by (3.9), (4.5) with x, t := x, ppz and (4.6) with x, t := x, ppz
〉

xppz2ppz2(¬ppz2y G (y H z)) H x¬ppz2¬ppz2(¬ppz2y G (y H z))

= 〈 by Corollaries 3.21-4 and 3.21-3, Proposition 3.14-11,

Boolean algebra, (3.6) and (4.6) with x, t := x, ppz 〉
xppz2(y H z) H x¬ppz2y

= 〈 by (3.8) and (3.9) 〉

(xppz H x¬ppz)2y H xppz2z

= 〈 by Proposition 4.22-2 〉
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pp(xppz)2x2y H xppz2z

= 〈 by Propositions 3.14-20 and 3.14-7 〉

x2y H xppz2z

(d) Proof of (4.42). The proof uses the following abbreviations.

r := ppy2ppz

s := ppy2¬ppz

t := ¬ppy2ppz

A := ¬pp(x2y)2(pp(xr)2pp(xs)2(xr2z H xs2y) G ¬pp(xr)2xs2y G ¬pp(xs)2xr2z)

B := ¬pp(x2y)2¬pp(x2z)2(
(pp(xr)2pp(xs)2(xr2y H xs2y) G ¬pp(xr)2xs2y G ¬pp(xs)2xr2y) H

(pp(xr)2pp(xt)2(xr2z H xt2z) G ¬pp(xr)2xt2z G ¬pp(xt)2xr2z)
)

Before getting to the main proof, we need some intermediate results. The

first one is A = xppy2(¬ppz2y G ppy2z).

xppy2(¬ppz2y G ppy2z)

= 〈 by Boolean algebra 〉

xrGs2(¬ppz2y G ppy2z)

= 〈 by Proposition 4.25-1 〉

¬pp(x2(r G s))2((xr H xs) G ¬pp(xr)2xs G ¬pp(xs)2xr)2(¬ppz2y G ppy2z)

= 〈 by Boolean algebra, (3.20) and Proposition 3.14-11 〉

¬pp(x2y)2(pp(xr)2pp(xs)2(xr H xs) G ¬pp(xr)2xs G ¬pp(xs)2xr)2

(¬ppz2y G ppy2z)

= 〈 by Proposition 3.14-9 and Boolean algebra,

the domains of pp(xr)2pp(xs)2(xr H xs), ¬pp(xr)2xs
and ¬pp(xs)2xr are pairwise disjoint,

then apply Corollary 3.21-17, (3.9), (4.5) with x, t := x, r

and (4.5) with x, t := x, s 〉
¬pp(x2y)2(pp(xr)2pp(xs)2(xr2r2(¬ppz2y G ppy2z) H

xs2s2(¬ppz2y G ppy2z)) G

¬pp(xr)2xs2s2(¬ppz2y G ppy2z) G

¬pp(xs)2xr2r2(¬ppz2y G ppy2z))

= 〈 by Corollaries 3.21-4 and 3.21-3, Boolean algebra, (3.6),

Proposition 3.14-17, (4.5) with x, t := x, r and (4.5) with

x, t := x, s 〉
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A

The second one is B = xppy2y H xppz2z.

xppy2y H xppz2z

= 〈 by Boolean algebra 〉

xrGs2y H xrGt2z

= 〈 by Proposition 4.25-1 〉

¬pp(x2(r G s))2((xr H xs) G ¬pp(xr)2xs G ¬pp(xs)2xr)2y H

¬pp(x2(r G t))2((xr H xt) G ¬pp(xr)2xt G ¬pp(xt)2xr)2z

= 〈 by Proposition 3.14-9 and Boolean algebra,

the domains of (xr H xs), ¬pp(xr)2xs and ¬pp(xs)2xr
are pairwise disjoint and the domains of (xr H xt),

¬pp(xr)2xt and ¬pp(xt)2xr are pairwise disjoint,

then apply Corollary 3.21-17, Propositions 3.14-11 and

3.14-20, (3.9) and Boolean algebra 〉
B

Next, we show

xppy2(¬ppz2y G ppy2z) E xppy2y H xppz2z. (4.43)

By the previous two derivations, this is equivalent to A E B. This will be

shown by using case analysis (Corollary 3.21-19) with the four disjoint tests

pp(xr)2pp(xs), pp(xr)2¬pp(xs), ¬pp(xr)2pp(xs) and ¬pp(xr)2¬pp(xs), which satisfy

pp(xr)2pp(xs) G pp(xr)2¬pp(xs) G ¬pp(xr)2pp(xs) G ¬pp(xr)2¬pp(xs) = 1

by Boolean algebra.

i. Test pp(xr)2pp(xs).

pp(xr)2pp(xs)2B

= 〈 by Boolean algebra, (3.8), Corollaries 3.21-4 and

3.21-3, and (3.6) 〉
pp(xr)2pp(xs)2¬pp(x2y)2¬pp(x2z)2

(xr2y H xs2y H (pp(xr)2pp(xt)2(xr2z H xt2z) G ¬pp(xt)2xr2z))
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F 〈 by Propositions 3.14-9 and 3.14-3, (3.21), (3.20),

(4.5), the definition of t and Boolean algebra,

pp(pp(xr)2pp(xt)2(xr2z H xt2z))

= pp(xr)2pp(xt)2pp(xr2z H xt2z)

= pp(xr)2pp(xt)2pp(xr2z)2pp(xt2z)

= pp(xr)2pp(xt)2pp(xr2z)2pp(xt2ppz)
= pp(xr)2pp(xt)2pp(xr2z)

= pp(pp(xr)2pp(xt)2xr2z),

then apply (3.15) and Lemmas 3.22-3 and 3.7-1 〉
pp(xr)2pp(xs)2¬pp(x2y)2

(xs2y H (pp(xr)2pp(xt)2xr2z G ¬pp(xt)2xr2z))

= 〈 by Boolean algebra, Proposition 3.14-7, Corollary

3.21-6 and (3.2) 〉
pp(xr)2pp(xs)2¬pp(x2y)2(xr2z H xs2y)

= 〈 by Boolean algebra, Corollaries 3.21-4 and 3.21-3,

and (3.6) 〉
pp(xr)2pp(xs)2A

ii. Test pp(xr)2¬pp(xs).

pp(xr)2¬pp(xs)2B

= 〈 by Boolean algebra, (3.8), Corollaries 3.21-4 and

3.21-3, and (3.6) 〉
pp(xr)2¬pp(xs)2¬pp(x2y)2¬pp(x2z)2

(¬pp(xs)2xr2y H (pp(xr)2pp(xt)2(xr2z H xt2z) G ¬pp(xt)2xr2z))

F 〈 by Propositions 3.14-9 and 3.14-3, (3.21), (3.20),

(4.5), the definition of t and Boolean algebra,

pp(pp(xr)2pp(xt)2(xr2z H xt2z))

= pp(xr)2pp(xt)2pp(xr2z H xt2z)

= pp(xr)2pp(xt)2pp(xr2z)2pp(xt2z)

= pp(xr)2pp(xt)2pp(xr2z)2pp(xt2ppz)
= pp(xr)2pp(xt)2pp(xr2z)

= pp(pp(xr)2pp(xt)2xr2z),

then apply (3.15) and Lemmas 3.22-3 and 3.7-1 〉
pp(xr)2¬pp(xs)2¬pp(x2y)2(pp(xr)2pp(xt)2xr2z G ¬pp(xt)2xr2z)

= 〈 by Boolean algebra, Proposition 3.14-7 and Corollary

3.21-6 〉
pp(xr)2¬pp(xs)2¬pp(x2y)2xr2z

= 〈 by Boolean algebra, Corollaries 3.21-4 and 3.21-3,

and (3.6) 〉
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pp(xr)2¬pp(xs)2A

iii. Test ¬pp(xr)2pp(xs).

¬pp(xr)2pp(xs)2B

= 〈 by Boolean algebra, (3.8), Corollaries 3.21-4 and

3.21-3, Proposition 3.14-17 and (3.6) 〉
¬pp(xr)2pp(xs)2¬pp(x2y)2¬pp(x2z)2(¬pp(xr)2xs2y H ¬pp(xr)2xt2z)

F 〈 by Lemma 3.7-1, (3.15) and Boolean algebra 〉

¬pp(xr)2pp(xs)2¬pp(x2y)2xs2y

= 〈 by Boolean algebra, Corollaries 3.21-4 and 3.21-3,

and (3.6) 〉
¬pp(xr)2pp(xs)2A

iv. Test ¬pp(xr)2¬pp(xs).

¬pp(xr)2¬pp(xs)2B

= 〈 by Boolean algebra, (3.8), Corollaries 3.21-4 and

3.21-3, Proposition 3.14-17, (3.6) and (3.4) 〉
>

F 〈 by (3.14) 〉

¬pp(xr)2¬pp(xs)2A

And, finally, the main proof.

pp(xppy2y H xppz2z)2(x ·D (y +D z))

= 〈 by (3.21), (3.20), Proposition 3.14-3 and Definition 4.16

〉
pp(xppy2ppy)2pp(xppz2ppz)2(x2(y +D z) G xpp(y+Dz)2(y +D z))

= 〈 by (4.5) with x, t := x, ppy, (4.5) with x, t := x, ppz and

Corollary 4.4-3 〉
pp(xppy)2pp(xppz)2(x2(y +D z) G xppyGppz2(y +D z))

= 〈 by Corollary 3.21-4, Propositions 3.14-7 and 4.25-1, and

(3.20) 〉
pp(xppy)2pp(xppz)2pp(x2pp(y +D z))2x2(y +D z) G

pp(xppy)2pp(xppz)2¬pp(x2(ppy G ppz))2

((xppy H xppz) G ¬pp(xppy)2xppz G ¬pp(xppz)2xppy)2(y +D z)

= 〈 by Corollaries 4.4-3 and 3.21-4, Proposition 3.14-11 and

Boolean algebra 〉
pp(xppy)2pp(xppz)2pp(x2(ppy G ppz))2x2(y +D z) G
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¬pp(x2(ppy G ppz))2((xppy H xppz) G >2xppz G >2xppy)2(y +D z)

= 〈 by Corollaries 4.26-2 and 3.21-3, and (3.6) 〉

pp(x2(ppy G ppz))2(xppy H xppz)2(y +D z) G

¬pp(x2(ppy G ppz))2(xppy H xppz)2(y +D z)

= 〈 by Corollary 3.21-6 〉

(xppy H xppz)2(y +D z)

= 〈 by (4.5) with x, t := x, ppy, by (4.5) with x, t := x, ppz and

Corollary 4.4-1 〉
(xppy2ppy H xppz2ppz)2(¬ppz2y G ¬ppy2z G (y H z))

= 〈 by (3.8), (3.6), Propositions 3.14-7 and 3.14-11,

Corollaries 3.21-4 and 3.21-3, and Boolean algebra 〉
xppy2(¬ppz2y G (y H z)) H xppz2(¬ppy2z G (y H z))

= 〈 by Propositions 3.14-7 and 3.14-20, and Corollary 3.21-15

〉
xppy2((¬ppz2y G ppz2y) H (¬ppz2y G ppy2z)) H

xppz2((¬ppy2z G ppy2z) H (¬ppy2z G ppz2y))

= 〈 by Corollary 3.21-6 and (3.8) 〉

xppy2y H xppy2(¬ppz2y G ppy2z) H xppz2z H xppz2(¬ppy2z G ppz2y)

= 〈 by (4.43) once as is, once with y, z := z, y, and (3.11) 〉

xppy2y H xppz2z

9. (x+D y) ·D z
= 〈 by Corollary 4.4-1 and Definition 4.16 〉

((x H y) G ¬ppx2y G ¬ppy2x)2z G ((x H y) G ¬ppx2y G ¬ppy2x)ppz2z

= 〈 by Corollaries 3.21-13, 4.30-1 and 3.21-4 〉

((x H y) G ¬ppx2y G ¬ppy2x)2z G

((x H y)ppz G ¬pp(x H y)2(¬ppx2y)ppz G ¬pp(x H y)2¬pp(¬ppx2y)2(¬ppy2x)ppz)2z

= 〈 by (3.21), Propositions 3.14-3 and 3.14-9, De Morgan and

Boolean algebra 〉
((x H y) G ¬ppx2y G ¬ppy2x)2z G

((x H y)ppz G (¬ppx G ¬ppy)2(¬ppx2y)ppz G ¬ppy2(¬ppy2x)ppz)2z

= 〈 by Proposition 4.22-5 and Boolean algebra 〉

((x H y) G ¬ppx2y G ¬ppy2x)2z G ((x H y)ppz G ¬ppx2yppz G ¬ppy2xppz)2z
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= 〈 by (3.21), Propositions 3.14-3 and 3.14-9,

and Boolean algebra,

the domains of x H y, ¬ppx2y and ¬ppy2x are pairwise disjoint;

by (3.21), Propositions 3.14-3 and 3.14-9,

(4.4) with x, t := x H y, ppz and Boolean algebra,

the domains of (x H y)ppz, ¬ppx2yppz and ¬ppy2xppz

are pairwise disjoint;

then apply Corollary 3.21-17 〉
(x H y)2z G ¬ppx2y2z G ¬ppy2x2z G (x H y)ppz2z G ¬ppx2yppz2z G ¬ppy2xppz2z

= 〈 by Theorem 4.23 and (3.9) 〉

(x2z H y2z) G ¬ppx2y2z G ¬ppy2x2z G

(pp(y2¬ppz)2x2ppz G pp(y2¬ppz)2xppz G (x2ppz H yppz) G

pp(x2¬ppz)2y2ppz G pp(x2¬ppz)2yppz G (xppz H y2ppz) G (xppz H yppz))2z G

¬ppx2yppz2z G ¬ppy2xppz2z

= 〈 by (3.21), Propositions 3.14-3 and 3.14-9,

Remark 4.8, Lemma 3.17-4 and Boolean algebra,

the domains of pp(y2¬t)2x2t, pp(y2¬t)2xt, (x2t H yt),

pp(x2¬t)2y2t, pp(x2¬t)2yt, (xt H y2t) and (xt H yt)

are pairwise disjoint,

then apply Corollary 3.21-17, (3.9) and Proposition 3.14-7 〉
(x2z H y2z) G ¬ppx2y2z G ¬ppy2x2z G

pp(y2¬ppz)2x2z G pp(y2¬ppz)2xppz2z G (x2z H yppz2z) G

pp(x2¬ppz)2y2z G pp(x2¬ppz)2yppz2z G (xppz2z H y2z) G (xppz2z H yppz2z) G

¬ppx2yppz2z G ¬ppy2xppz2z

= 〈 by (3.21), (3.20), Propositions 3.14-3 and 3.14-9,

Lemmas 3.17-2 and 3.17-4, Remark 4.8, (4.5) with x, t := x, ppz,
(4.5) with x, t := y, ppz and Boolean algebra,

the domains of the twelve operands of the eleven G are

pairwise disjoint,

then apply (3.25) 〉
(x2z H y2z) G (x2z H yppz2z) G (xppz2z H y2z) G (xppz2z H yppz2z) G

¬ppx2y2z G ¬ppx2yppz2z G pp(x2¬ppz)2y2z G pp(x2¬ppz)2yppz2z G

¬ppy2x2z G ¬ppy2xppz2z G pp(y2¬ppz)2x2z G pp(y2¬ppz)2xppz2z

= 〈 by Corollaries 3.21-14, 3.21-4 and 3.21-5, and (3.2) 〉

((x2z G xppz2z) H (y2z G yppz2z)) G (¬ppx G pp(x2¬ppz))2(y2z G yppz2z) G

(¬ppy G pp(y2¬ppz))2(x2z G xppz2z)
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= 〈 by Definition 4.16 〉

((x ·D z) H (y ·D z)) G (¬ppx G pp(x2¬ppz))2(y ·D z) G

(¬ppy G pp(y2¬ppz))2(x ·D z)
= 〈 by Proposition 4.17-5 and De Morgan 〉

((x ·D z) H (y ·D z)) G ¬pp(x ·D z)2(y ·D z) G ¬pp(y ·D z)2(x ·D z)
= 〈 by Corollary 4.4-1 〉

x ·D z +D y ·D z

10. We work on x∗D = 1 +D x ·D x∗D since this is equivalent (see remark 2.2).

x∗D = 1 +D x ·D x∗D

⇐⇒ 〈 by Definition 4.19, Lemma 4.20-1 and Proposition 4.17-4 〉

(x G 1)× = 1 +D x2(x G 1)×

⇐⇒ 〈 by Corollary 4.4-1 〉

(x G 1)× = (1 H x2(x G 1)×) G ¬pp12x2(x G 1)× G ¬pp(x2(x G 1)×)21

⇐⇒ 〈 by Proposition 3.14-1 and Boolean algebra 〉

(x G 1)× = (1 H x2(x G 1)×) G >2x2(x G 1)× G ¬pp(x2(x G 1)×)

⇐⇒ 〈 by (3.6), Corollary 3.21-3 and (3.20) 〉

(x G 1)× = (1 H x2(x G 1)×) G ¬pp(x2pp((x G 1)×))

⇐⇒ 〈 by Lemma 4.20-1 and (3.7) 〉

(x G 1)× = (1 H x2(x G 1)×) G ¬ppx

Therefore, it is sufficient to show

ppx2(x G 1)× = ppx2((1 H x2(x G 1)×) G ¬ppx)

and

¬ppx2(x G 1)× = ¬ppx2((1 H x2(x G 1)×) G ¬ppx)

by Proposition 3.20-17.

Case ppx

ppx2(x G 1)×

= 〈 by (3.2) and (3.16) 〉

ppx2(1 H (x G 1)2(x G 1)×)

= 〈 by Proposition 3.14-20 〉
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ppx2(1 H ppx2(x G 1)2(x G 1)×)

= 〈 by Corollary 3.21-7 and Proposition 3.14-7 〉

ppx2(1 H x2(x G 1)×)

= 〈 by Corollaries 3.21-4 and 3.21-3, and Boolean algebra 〉

ppx2((1 H x2(x G 1)×) G ¬ppx)

Case ¬ppx

¬ppx2(x G 1)× = ¬ppx2((1 H x2(x G 1)×) G ¬ppx)

⇐⇒ 〈 by Lemma 4.20-2, Corollary 3.21-8 and Boolean algebra 〉

¬ppx2(x G 1)× = ¬ppx

Since 1 E (x G 1)× by (3.16) and (3.15), it follows that ¬ppx E ¬ppx2(x G 1)×. Here

is the proof of ¬ppx2(x G 1)× E ¬ppx.

¬ppx2(x G 1)× E ¬ppx

⇐= 〈 by (3.13) 〉

¬ppx2(x G 1) H ¬ppx E ¬ppx

⇐⇒ 〈 by Corollary 3.21-8 and Boolean algebra 〉

true

11. This is direct from Corollary 4.4-2.

12. The proof of Theorem 4.31-12 is thirty pages long. Go to page 181 for the proof

of Theorem 4.31-13.

If we demonstrate

x ·D z ≤D z =⇒ x∗D ·D z ≤D z (4.44)

then we are done as shown in the following derivation.

x ·D z +D y ≤D z
⇐⇒ 〈 by Corollary 4.4-2 〉

x ·D z ≤D z ∧ y ≤D z
=⇒ 〈 by (4.44) 〉

x∗D ·D z ≤D z ∧ y ≤D z
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=⇒ 〈 by Theorems 4.31-11 and 4.31-8,

y ≤D z =⇒ y +D z = z =⇒ x∗D ·D y +D x
∗D ·D z = x∗D ·D z

=⇒ x∗D ·D y ≤D x∗D ·D z,
then apply Corollary 4.4-2 〉

x∗D ·D y ≤D z

So here is the beginning of the proof of (4.44).

First, we show

x·Dz≤Dz ⇐⇒ ppz E ppx2¬pp(x2¬ppz) ∧ x2z E pp(x2z)2z ∧ xppz2z E pp(xppz)2z . (4.45)

x ·D z ≤D z
⇐⇒ 〈 by Definition 4.1 〉

ppz E pp(x ·D z) ∧ x ·D z E pp(x ·D z)2z

⇐⇒ 〈 by Proposition 4.17-5, Definition 4.16 and Corollary 3.21-16 〉

ppz E ppx2¬pp(x2¬ppz) ∧ x2z G xppz2z E (pp(x2z) G pp(xppz2z))2z

⇐⇒ 〈 by Proposition 3.20-16 and Boolean algebra 〉

ppz E ppx2¬pp(x2¬ppz) ∧ pp(x2z)2(x2z G xppz2z) E pp(x2z)2z ∧
¬pp(x2z)2(x2z G xppz2z) E ¬pp(x2z)2pp(xppz2z)2z

⇐⇒ 〈 by Corollaries 3.21-7 and 3.21-8, Propositions 3.14-7 and

3.14-9, (4.5) with x, t := x, ppz and Boolean algebra 〉
ppz E ppx2¬pp(x2¬ppz) ∧ x2z E pp(x2z)2z ∧ xppz2z E pp(xppz)2z

Suppose x ·D z ≤D z. By (4.45),

ppz E ppx2¬pp(x2¬ppz) (4.46)

x2z E pp(x2z)2z (4.47)

xppz2z E pp(xppz)2z (4.48)

all hold.

We have to show x∗D ·D z ≤D z. By (4.45) with x := x∗D and Definition 4.19, this

means that we have to prove the following equations.

ppz E pp(x G 1)×2¬pp((x G 1)×2¬ppz) (4.49)

(x G 1)×2z E pp((x G 1)×2z)2z (4.50)

((x G 1)×)ppz2z E pp(((x G 1)×)ppz)2z (4.51)

Before embarking in these proofs, we need the following intermediate results. Note

that the proofs of all the subsequent identities depend directly or indirectly on
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(4.46). Therefore, the following results depend on the context and this is why

they are not stated in an independent proposition.

x = ppz2x G ¬ppz2x2¬ppz (4.52)

x2ppz = ppz2x2ppz (4.53)

¬ppz2x = ¬ppz2x2¬ppz (4.54)

¬ppz2(x G 1) = ¬ppz2(x G 1)2¬ppz (4.55)

xppz = ppz2xppz and x¬ppz = ppz2x¬ppz (4.56)

pp((x G 1)×2¬ppz) = ¬ppz (4.57)

¬pp((x G 1)×2¬ppz) = ppz (4.58)

¬ppz2(x G 1)× = (x G 1)×2¬ppz (4.59)

¬ppx2(x G 1)× = ¬ppx (4.60)

¬ppz2((x G 1)×)¬ppz = > (4.61)

¬ppx2((x G 1)×)¬ppz = > (4.62)

pp(((x G 1)×)¬ppz) = ¬pp((x G 1)×2ppz)2ppz (4.63)

((x G 1)×)¬ppz = ppz2((x G 1)×)¬ppz (4.64)

(x2(x G 1)×)¬ppz = ppz2(x2(x G 1)×)¬ppz (4.65)

((x G 1)×)¬ppz = ppx2((x G 1)×)¬ppz (4.66)

(a) Proof of (4.52).

x

= 〈 by (4.46) and Boolean algebra,

ppz G pp(x2¬ppz) E ppx,
then apply Proposition 3.14-7 and Boolean algebra 〉

(ppz G pp(x2¬ppz))2x

= 〈 by Boolean algebra 〉

(ppz G ¬ppz2pp(x2¬ppz))2x

= 〈 Corollary 3.21-5 〉

ppz2x G ¬ppz2pp(x2¬ppz)2x

= 〈 by (3.19) 〉

ppz2x G ¬ppz2x2¬ppz

(b) Proof of (4.53).

true

⇐⇒ 〈 by (4.52) 〉
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x = ppz2x G ¬ppz2x2¬ppz

=⇒ 〈 by Proposition 3.14-9 and Boolean algebra,

pp(ppz2x)2pp(¬ppz2x2¬ppz) = ppz2ppx2¬ppz2pp(x2¬ppz) = >,

then apply Corollary 3.21-17 〉
x2ppz = ppz2x2ppz G ¬ppz2x2¬ppz2ppz

⇐⇒ 〈 by Boolean algebra, (3.6) and Corollary 3.21-3 〉

x2ppz = ppz2x2ppz

(c) Proof of (4.54). This follows from (4.52), Corollaries 3.21-4 and 3.21-3,

Boolean algebra and (3.6).

(d) Proof of (4.55).

¬ppz2(x G 1)

= 〈 by Corollary 3.21-4 and Boolean algebra 〉

¬ppz2x G ¬ppz

= 〈 by (4.54), Corollary 3.21-2, Proposition 3.14-9, De

Morgan and Boolean algebra 〉
¬ppz2x2¬ppz G ¬ppz2¬ppx2¬ppz

= 〈 by Propositions 3.14-9 and 3.14-1, and Boolean algebra,

pp(¬ppz2x)2pp(¬ppz2¬ppx) = ¬ppz2ppx2¬ppz2¬ppx = >,

then apply Corollary 3.21-17 〉
(¬ppz2x G ¬ppz2¬ppx)2¬ppz

= 〈 by Corollaries 3.21-4 and 3.21-2, and Boolean algebra 〉

¬ppz2(x G 1)2¬ppz

(e) Proof of (4.56).

xppz

= 〈 by (4.52) 〉

(ppz2x G ¬ppz2x2¬ppz)ppz

= 〈 by Corollary 4.30-1 〉

(ppz2x)ppz G ¬pp(ppz2x)2(¬ppz2x2¬ppz)ppz

= 〈 by Proposition 4.22-5, Corollaries 4.26-1 and 3.21-3, and

(3.6) 〉
ppz2xppz

The proof of x¬ppz = ppz2x¬ppz is similar.



Chapter 4. Definition of Angelic Operators in DAD 155

(f) Proof of (4.57). By Lemma 4.20-3 and Proposition 3.14-1, ¬ppz E pp((x G

1)×2¬ppz). The proof of the other refinement follows.

pp((x G 1)×2¬ppz) E ¬ppz

⇐= 〈 by (3.22) 〉

pp((x G 1)2¬ppz) E ¬ppz

⇐⇒ 〈 by Corollaries 3.21-2 and 3.21-17 〉

pp(x2¬ppz G ¬ppx2¬ppz) E ¬ppz

⇐⇒ 〈 by Corollary 3.21-16 and Proposition 3.14-1 〉

pp(x2¬ppz) G ¬ppx2¬ppz E ¬ppz

⇐⇒ 〈 by De Morgan and Boolean algebra 〉

pp(x2¬ppz) E ¬ppz2(ppx G ppz)

⇐⇒ 〈 by Boolean algebra 〉

ppz E ppx2¬pp(x2¬ppz)

⇐⇒ 〈 by (4.46) 〉

true

(g) Proof of (4.58). This is direct from (4.57) by Boolean algebra.

(h) Proof of (4.59). By (4.57) and Proposition 3.14-7, ¬ppz2(xG1)× = (xG1)×2¬ppz
is equivalent to ¬ppz2(x G 1)× = ¬ppz2(x G 1)×2¬ppz. We prove the latter.

The refinement ¬ppz2(x G 1)× E ¬ppz2(x G 1)×2¬ppz follows from Lemma 3.7-1.

The other refinement is proved as follows.

¬ppz2(x G 1)×2¬ppz E ¬ppz2(x G 1)×

⇐⇒ 〈 by Proposition 3.14-6 〉

(x G 1)×2¬ppz E ¬ppz2(x G 1)×

⇐= 〈 by (3.12) 〉

(x G 1)2¬ppz2(x G 1)× H ¬ppz E ¬ppz2(x G 1)×

⇐= 〈 by Proposition 3.3-1 〉

(x G 1)2¬ppz2(x G 1)× E ¬ppz2(x G 1)2(x G 1)×

⇐⇒ 〈 by (4.55) and Proposition 3.14-6 〉

true

(i) Proof of (4.60). We prove ¬ppx2(x G 1)× E ¬ppx first.
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¬ppx2(x G 1)× E ¬ppx

⇐= 〈 by (3.18) 〉

¬ppx2(x G 1) E ¬ppx

⇐⇒ 〈 by Corollary 3.21-4 and (3.7) 〉

¬ppx2x G ¬ppx E ¬ppx

⇐⇒ 〈 by Proposition 3.14-17 and Corollary 3.21-3 〉

true

The refinement F follows from Lemma 3.7-6.

(j) Proof of (4.61).

¬ppz2((x G 1)×)¬ppz

= 〈 by Proposition 4.22-5 〉

(¬ppz2(x G 1)×)¬ppz

= 〈 by (4.59) 〉

((x G 1)×2¬ppz)¬ppz

= 〈 by Corollary 4.26-1 〉

>

(k) Proof of (4.62).

¬ppx2((x G 1)×)¬ppz

= 〈 by Proposition 4.22-5 〉

(¬ppx2(x G 1)×)¬ppz

= 〈 by (4.60) 〉

(¬ppx)¬ppz

= 〈 by (4.11) 〉

>

(l) Proof of (4.63).

pp(((x G 1)×)¬ppz)

= 〈 by (4.4) with x, t := (x G 1)×, ppz 〉

¬pp((x G 1)×2ppz)2¬pp((x G 1)×2¬ppz)2pp(x G 1)×

= 〈 by (4.58) and Lemma 4.20-1 〉

¬pp((x G 1)×2ppz)2ppz
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(m) Proof of (4.64).

((x G 1)×)¬ppz

= 〈 by (3.7) and Boolean algebra 〉

(ppz G ¬ppz)2((x G 1)×)¬ppz

= 〈 by Corollaries 3.21-17 and 3.21-3, and (4.61) 〉

ppz2((x G 1)×)¬ppz

(n) Proof of (4.65). First, one has ¬ppz2x2(x G 1)× = ¬ppz2x2(x G 1)×2¬ppz by

(4.54) and (4.59). Then ¬ppz2(x2(x G 1)×)¬ppz = > is shown like for (4.61).

Finally, the desired result is shown like (4.64).

(o) Proof of (4.66). This proof is similar to the one of (4.64).

And now back to the proof of (4.49), (4.50) and (4.51).

Proof of (4.49).

pp(x G 1)×2¬pp((x G 1)×2¬ppz)

= 〈 by (4.58) 〉

pp(x G 1)×2ppz

= 〈 by Lemma 4.20-1 and Boolean algebra 〉

ppz

Proof of (4.50).

(x G 1)×2z E pp((x G 1)×2z)2z

⇐= 〈 by (3.12) 〉

(x G 1)2pp((x G 1)×2z)2z H z E pp((x G 1)×2z)2z

⇐⇒ 〈 by Propositions 3.14-7, 3.3-1 and 3.14-8, and (3.7),

z = ppz2z = pp(12z)2z E pp((x G 1)×2z)2z 〉
(x G 1)2pp((x G 1)×2z)2z E pp((x G 1)×2z)2z

⇐⇒ 〈 by (3.19) 〉

pp((x G 1)2pp((x G 1)×2z))2(x G 1)2z E pp((x G 1)×2z)2z

⇐⇒ 〈 by (3.20) 〉

pp((x G 1)2(x G 1)×2z)2(x G 1)2z E pp((x G 1)×2z)2z

⇐= 〈 by Proposition 3.3-1 〉
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pp((x G 1)×2z)2(x G 1)2z E pp((x G 1)×2z)2z

⇐⇒ 〈 by Proposition 3.14-6 〉

(x G 1)2z E pp((x G 1)×2z)2z

⇐= 〈 by Proposition 3.3-2 〉

(x G 1)2z E pp((x G 1)2z)2z

⇐⇒ 〈 by Corollary 3.21-2, Boolean algebra and (4.52) 〉

(ppz2x G ¬ppz2x2¬ppz G ¬ppx)2z E pp((ppz2x G ¬ppz2x2¬ppz G ¬ppx)2z)2z

⇐⇒ 〈 by Propositions 3.14-9 and 3.14-1, Boolean algebra

and Lemma 3.17-2,

pp(ppz2x)2pp(¬ppz2x2¬ppz) = ppz2ppx2¬ppz2pp(x2¬ppz) = >,

pp(ppz2x)2¬ppx = ppz2ppx2¬ppx = >
and pp(¬ppz2x2¬ppz)2¬ppx = ¬ppz2pp(x2¬ppz)2¬ppx = >,

then apply Corollaries 3.21-17 and 3.21-3, Proposition 3.14-17

and (3.6) 〉
ppz2x2z G ¬ppx2z E pp(ppz2x2z G ¬ppx2z)2z

⇐⇒ 〈 by Corollary 3.21-16 and Proposition 3.14-9 〉

ppz2x2z G ¬ppx2z E (ppz2pp(x2z) G ¬ppx2ppz)2z

⇐⇒ 〈 by Propositions 3.20-16, 3.14-7 and 3.14-9, Corollaries 3.21-4

and 3.21-3, Boolean algebra and (3.6) 〉
ppz2x2z E ppz2pp(x2z)2z ∧ ¬ppx2z E ¬ppx2ppz2z

⇐⇒ 〈 by Propositions 3.14-6 and 3.14-7, and Boolean algebra 〉

x2z E pp(x2z)2z

⇐⇒ 〈 by (4.47) 〉

true

Proof of (4.51). Let

B = x2ppz G xppz G pp(x2¬ppz) G ¬ppx, (4.67)

A = pp(((x G 1)×)ppz)2B× and (4.68)

C = (x G 1)×2ppz. (4.69)

By (4.4) with x, t := (x G 1)×, ppz, (4.69), (4.58) and Lemma 4.20-1,

A = ¬ppC2ppz2B×. (4.70)

Before proving (4.51), we will prove that the following properties hold for all

x, z, t.

B2ppz = ppz2B (4.71)
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ppB = 1 (4.72)

ppA = pp(((x G 1)×)ppz) (4.73)

¬ppx2B = ¬ppx2B× = ¬ppx2(x G 1) = ¬ppx2(x G 1)× = ¬ppx (4.74)

pp(x2t)2B = pp(x2t)2(x2ppz2t G xppz2t G pp(x2¬ppz)) (4.75)

A = A2ppz (4.76)

pp(x2ppC)2A = > (4.77)

C E ppC2B× (4.78)

((x G 1)×)¬ppz = ppz2x2(x G 1)×2¬ppz G (x2(x G 1)×)¬ppz (4.79)

ppx2¬pp(x2¬ppz)2B = x2ppz G xppz (4.80)

ppx2¬pp(x2¬ppz)2A F (x2ppz G xppz)2B× (4.81)

pp(A H ((x G 1)×)¬ppz) = pp(((x G 1)×)ppz) (4.82)

pp(((x G 1)×)ppz)2(x G 1)× E A H ((x G 1)×)¬ppz (4.83)

((x G 1)×)ppz E A (4.84)

(a) Proof of (4.71).

B2ppz

= 〈 by (4.67) 〉

(x2ppz G xppz G pp(x2¬ppz) G ¬ppx)2ppz

= 〈 by Remark 4.8, Boolean algebra and Corollary 3.21-17 〉

x2ppz G xppz2ppz G pp(x2¬ppz)2ppz G ¬ppx2ppz

= 〈 by Boolean algebra, (4.53), (4.5) with x, t := x, ppz and

(4.56) 〉
ppz2x2ppz G ppz2xppz G ppz2pp(x2¬ppz) G ppz2¬ppx

= 〈 by Corollary 3.21-4 and (4.67) 〉

ppz2B

(b) Proof of (4.72).

ppB

= 〈 by (4.67) 〉

pp(x2ppz G xppz G pp(x2¬ppz) G ¬ppx)

= 〈 by Corollary 3.21-16 and Proposition 3.14-1 〉

pp(x2ppz) G pp(xppz) G pp(x2¬ppz) G ¬ppx

= 〈 by Remark 4.8 and Boolean algebra 〉
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ppx G ¬ppx

= 〈 by Boolean algebra 〉

1

(c) Proof of (4.73).

ppA

= 〈 by (4.68) and Proposition 3.14-9 〉

pp(((x G 1)×)ppz)2pp(B×)

= 〈 by (4.72) and Proposition 3.14-22,

true ⇐⇒ ppB = 1 =⇒ pp(B×) = 1,

then apply (3.7) 〉
pp(((x G 1)×)ppz)

(d) Proof of (4.74). The equalities ¬ppx2(x G 1) = ¬ppx2(x G 1)× = ¬ppx follow

from Corollaries 3.21-4 and 3.21-3, Proposition 3.14-17, Boolean algebra and

(4.60).

Here is the derivation for ¬ppx2B = ¬ppx.

¬ppx2B

= 〈 by (4.67) 〉

¬ppx2(x2ppz G xppz G pp(x2¬ppz) G ¬ppx)

= 〈 by Corollaries 3.21-4 and 3.21-3, Proposition 3.14-17 and

Boolean algebra 〉
¬ppx2xppz G ¬ppx2pp(x2¬ppz) G ¬ppx

= 〈 by (4.10), Lemma 3.17-2 and Corollary 3.21-3 〉

¬ppx

The refinement ¬ppx E ¬ppx2B× follows from Lemma 3.7-6 and here is the

derivation for ¬ppx2B× E ¬ppx.

¬ppx2B× E ¬ppx

⇐= 〈 by (3.13) 〉

¬ppx2B H ¬ppx E ¬ppx

⇐⇒ 〈 see the previous derivation 〉

true

(e) Proof of (4.75).
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pp(x2t)2B

= 〈 by (4.67) 〉

pp(x2t)2(x2ppz G xppz G pp(x2¬ppz) G ¬ppx)

= 〈 by Boolean algebra and Corollary 3.21-4 〉

pp(x2t)2(pp(x2t)2x2ppz G pp(x2t)2xppz G pp(x2t)2pp(x2¬ppz) G pp(x2t)2¬ppx)

= 〈 by (3.19), Proposition 4.22-6, Lemma 3.17-2 and Boolean

algebra 〉
pp(x2t)2(x2ppz2t G pp(x2t)2xppz2t G pp(x2t)2pp(x2¬ppz) G >)

= 〈 by Corollaries 3.21-3 and 3.21-4 〉

pp(x2t)2(x2ppz2t G xppz2t G pp(x2¬ppz))

(f) Proof of (4.76). We only need to show A2ppz E A, since the other refinement

follows from Lemma 3.7-1.

A2ppz E A

⇐= 〈 by (4.70) 〉

ppz2B×
2ppz E ppz2B×

⇐⇒ 〈 by Proposition 3.14-6 〉

B×
2ppz E ppz2B×

⇐= 〈 by Proposition 3.3-3 〉

B2ppz E ppz2B

⇐⇒ 〈 by (4.71) 〉

true

(g) Proof of (4.77).

pp(x2ppC)2A

= 〈 by (4.70), (4.69) and (3.20) 〉

pp(x2C)2¬pp((x G 1)×2ppz)2ppz2B×

= 〈 by (3.16), (3.9), (3.21) and Proposition 3.14-1 〉

pp(x2C)2¬(pp((x G 1)2(x G 1)×2ppz) H ppz)2ppz2B×

= 〈 by Boolean algebra 〉

pp(x2C)2¬pp((x G 1)2(x G 1)×2ppz)2ppz2B×

F 〈 by (4.69) and Corollary 3.21-12 〉

pp(x2C)2¬pp(x2C)2ppz2B×
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= 〈 by Boolean algebra and (3.6) 〉

>

(h) Proof of (4.78).

C E ppC2B×

⇐= 〈 by (4.69) and (3.12) 〉

(x G 1)2ppC2B× H ppz E ppC2B×

⇐⇒ 〈 by (3.7), Propositions 3.14-1 and 3.3-1, and (4.69),

ppz = pp(12ppz)21 E pp((x G 1)×2ppz)2B× = ppC2B× 〉
(x G 1)2ppC2B× E ppC2B×

⇐⇒ 〈 by (3.7), Proposition 3.3-1, (3.20) and (4.69),

ppz = pp(12z) E pp((x G 1)×2z) = pp((x G 1)×2ppz) = ppC,

then apply Boolean algebra 〉
(x G 1)2ppC2ppz2B× E ppC2B×

⇐= 〈 by Proposition 3.3-2, (3.20) and (4.69),

pp((x G 1)2z) E pp((x G 1)×2z) = ppC,

then apply (3.19), (3.20), Proposition 3.3-1 and Boolean

algebra 〉
pp((x G 1)2C)2(x G 1)2ppz2B× E ppC2pp((x G 1)2ppz)2B2B×

⇐⇒ 〈 by Proposition 3.14-6 〉

ppC2pp((x G 1)2C)2(x G 1)2ppz2B× E ppC2pp((x G 1)2ppz)2B2B×

⇐⇒ 〈 by (4.69) and Proposition 3.3-1,

pp((x G 1)2C) = pp((x G 1)2(x G 1)×2ppz)
E pp((x G 1)×2ppz) = ppC,

then apply Boolean algebra 〉
ppC2(x G 1)2ppz2B× E ppC2pp((x G 1)2ppz)2B2B×

⇐= 〈 〉

(x G 1)2ppz E pp((x G 1)2ppz)2B

⇐⇒ 〈 by Corollaries 3.21-2, 3.21-17 and 3.21-16, and Boolean

algebra 〉
x2ppz G ¬ppx2ppz E (pp(x2ppz) G ¬ppx2ppz)2B

⇐⇒ 〈 by (4.67) and Corollary 3.21-4 〉

x2ppz G ¬ppx2ppz E (pp(x2ppz) G ¬ppx2ppz)2x2ppz G

(pp(x2ppz) G ¬ppx2ppz)2xppz G

(pp(x2ppz) G ¬ppx2ppz)2pp(x2¬ppz)
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(pp(x2ppz) G ¬ppx2ppz)2¬ppx

⇐⇒ 〈 by Proposition 3.14-7, Boolean algebra, Lemmas 3.17-2

and 3.17-4, and Corollary 3.21-3 〉
x2ppz G ¬ppx2ppz E x2ppz G (pp(x2ppz) G ¬ppx2ppz)2xppz G ¬ppx2ppz

⇐⇒ 〈 by Proposition 3.14-7, Boolean algebra, Remark 4.8, (3.6)

and Corollary 3.21-3 〉
true

(i) Proof of (4.79).

((x G 1)×)¬ppz

= 〈 by (4.64), (4.66) and (3.16) 〉

ppx2ppz2((x G 1)2(x G 1)× H 1)¬ppz

= 〈 by Theorem 4.23, Boolean algebra and Proposition 3.14-1

〉
ppx2ppz2

(
ppz2(x G 1)2(x G 1)×2¬ppz G ppz2((x G 1)2(x G 1)×)¬ppz G

((x G 1)2(x G 1)×2¬ppz H 1¬ppz) G

pp((x G 1)2(x G 1)×2ppz)2¬ppz G

pp((x G 1)2(x G 1)×2ppz)21¬ppz G

(((x G 1)2(x G 1)×)¬ppz H ¬ppz) G

(((x G 1)2(x G 1)×)¬ppz H 1¬ppz)
)

= 〈 by (4.11), Corollaries 3.21-4 and 3.21-3, (3.8), Boolean

algebra and (3.4) 〉
ppx2(ppz2(x G 1)2(x G 1)×2¬ppz G ppz2((x G 1)2(x G 1)×)¬ppz)

= 〈 by Corollaries 3.21-4 and 3.21-7, Boolean algebra,

Propositions 4.22-5 and 3.14-7, and (4.65) 〉
ppz2x2(x G 1)×2¬ppz G (x2(x G 1)×)¬ppz

(j) Proof of (4.80).

ppx2¬pp(x2¬ppz)2B

= 〈 by (4.8), Boolean algebra, Corollary 3.21-16 and (4.67) 〉

(pp(x2ppz) G pp(xppz))2(x2ppz G xppz G pp(x2¬ppz) G ¬ppx)

= 〈 by Remark 4.8 and Corollary 3.21-17 and (3.25) 〉

pp(x2ppz)2(x2ppz G xppz G pp(x2¬ppz) G ¬ppx) G

pp(xppz)2(xppz G x2ppz G pp(x2¬ppz) G ¬ppx)
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= 〈 by Corollary 3.21-7 and Proposition 3.14-7 〉

x2ppz G xppz

(k) Proof of (4.81).

(x2ppz G xppz)2B×

= 〈 by (4.80) 〉

ppx2¬pp(x2¬ppz)2B2B×

E 〈 by Proposition 3.3-1, Lemma 3.7-1 and (4.68) 〉

ppx2¬pp(x2¬ppz)2A

(l) Proof of (4.82).

pp(A H ((x G 1)×)¬ppz)

= 〈 by (3.21) and (4.73) 〉

pp(((x G 1)×)ppz) H pp(((x G 1)×)¬ppz)

= 〈 by (4.4) with x, t := (x G 1)×, ppz and Boolean algebra 〉

pp(((x G 1)×)ppz)

(m) Proof of (4.83).

pp(((x G 1)×)ppz)2(x G 1)× E A H ((x G 1)×)¬ppz

⇐= 〈 by (3.13) 〉

(A H ((x G 1)×)¬ppz)2(x G 1) H pp(((x G 1)×)ppz) E A H ((x G 1)×)¬ppz

⇐⇒ 〈 by (3.7), Proposition 3.3-1 and (4.68),

pp(((x G 1)×)ppz) = pp(((x G 1)×)ppz)21

E pp(((x G 1)×)ppz)2B× = A 〉
(A H ((x G 1)×)¬ppz)2(x G 1) E A H ((x G 1)×)¬ppz

⇐= 〈 by (3.9), (3.15) and (3.3) 〉

A2(x G 1) E A H ((x G 1)×)¬ppz ∧
((x G 1)×)¬ppz2(x G 1) E ((x G 1)×)¬ppz

⇐⇒ 〈 by (4.6) with x, t := (x G 1)×, ppz and (4.55) 〉

A2(x G 1) E A H ((x G 1)×)¬ppz ∧
((x G 1)×)¬ppz2(x G 1)2¬ppz E ((x G 1)×)¬ppz

⇐⇒ 〈 by (4.5) with x, t := (x G 1)×, ppz, (4.6) with

x, t := (x G 1)×, ppz, (4.4) with x, t := (x G 1)×, ppz,
Propositions 4.22-2 and 3.14-7, and Corollary 4.26-10 〉
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A2(x G 1) E A H ((x G 1)×)¬ppz ∧
((x G 1)×)¬ppz2(x G 1)2¬ppz E pp((x G 1)×)ppz2(x G 1)×

⇐= 〈 by (4.6) with x, t := (x G 1)×, ppz, (4.55) and Proposition

3.3-1 〉
A2(x G 1) E A H ((x G 1)×)¬ppz ∧
((x G 1)×)¬ppz2(x G 1) E pp((x G 1)×)ppz2(x G 1)×2(x G 1)

⇐= 〈 by (4.68), (4.82) and Proposition 3.14-7 〉

pp(((x G 1)×)ppz)2B×
2(x G 1) E pp(((x G 1)×)ppz)2(A H ((x G 1)×)¬ppz) ∧

((x G 1)×)¬ppz E pp(((x G 1)×)ppz)2(x G 1)×

⇐⇒ 〈 by Propositions 3.14-6, 3.14-7 and 4.22-2, (3.15) and

(4.82) 〉
B×

2(x G 1) E A H ((x G 1)×)¬ppz

⇐= 〈 by Corollary 3.21-12 〉

B×
2(x G 1) E (A H ((x G 1)×)¬ppz) G C

⇐= 〈 by (3.12) 〉

B2((A H ((x G 1)×)¬ppz) G C) H (x G 1) E (A H ((x G 1)×)¬ppz) G C

⇐⇒ 〈 By (4.69), (4.82), Remark 4.8 and Boolean algebra,

the domains of A H ((x G 1)×)¬ppz and C are disjoint

and thus, by Proposition 3.14-7 and Boolean Algebra,

¬pp(A H ((x G 1)×)¬ppz)2C = C,

then apply Lemma 3.22-6 〉
B2((A H ((x G 1)×)¬ppz) G C) H (x G 1) E A H ((x G 1)×)¬ppz ∧
B2((A H ((x G 1)×)¬ppz) G C) H (x G 1) E C

⇐= 〈 By (4.69), (4.82), Remark 4.8 and Boolean algebra,

the domains of A H ((x G 1)×)¬ppz and C are disjoint,

then apply (3.25), Corollaries 3.21-15 and 3.21-12, (3.8)

and (3.3) 〉
B2(C G A) E A ∧
B2(C G ((x G 1)×)¬ppz) E A H ((x G 1)×)¬ppz ∧
x G 1 E A H ((x G 1)×)¬ppz ∧
B2C E C ∧
x G 1 E C

⇐⇒ 〈 by (4.73), (4.69) and Remark 4.8,

the domains of A and C are disjoint

and the domains of ((x G 1)×)¬ppz and C are disjoint,

then apply (3.25) 〉
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B2(A G C) E A ∧
B2(((x G 1)×)¬ppz G C) E A H ((x G 1)×)¬ppz ∧
x G 1 E A H ((x G 1)×)¬ppz ∧
B2C E C ∧
x G 1 E C

Thus, we have to prove the five following properties in order to terminate

the demonstration of (4.83).

B2(A G C) E A (4.85)

B2(((x G 1)×)¬ppz G C) E A H ((x G 1)×)¬ppz (4.86)

x G 1 E A H ((x G 1)×)¬ppz (4.87)

B2C E C (4.88)

x G 1 E C (4.89)

These proofs frequently use case analysis (Corollary 3.21-19) based on ap-

propriate tests. To be appropriate will mean that the tests must be disjoint

and cover ppx, i.e., their meet must refine ppx. Indeed, the test ¬ppx can be

ignored, since all five properties hold for this case. This is easily seen by the

following.

Firstly,

¬ppx2A

= 〈 by (4.68) 〉

¬ppx2pp(((x G 1)×)¬ppz)2B×

= 〈 by Propositions 3.14-9 and 3.14-19, (4.62) and (3.6) 〉

>

so the right part of (4.85), (4.86) and (4.87) is > in the presence of ¬ppx,
making them true when restricted to the test ¬ppx.

Secondly, ¬ppx2B2C = ¬ppx2C by (4.74), so (4.88) is true when restricted to

the test ¬ppx.

Finally,

¬ppx2(x G 1)

= 〈 by Corollary 3.21-8 and Boolean algebra 〉

¬ppx

E 〈 by Boolean algebra 〉
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¬ppx2ppz

= 〈 by (4.60) and (4.69) 〉

¬ppx2C

so (4.89) is true when restricted to the test ¬ppx.

Here we go with the proof of the five aforementioned properties.

i. Proof of (4.85).

B2(A G C)

E 〈 by (4.78) and Lemma 3.22-1 〉

B2(A G ppC2B×)

= 〈 by (4.69), Lemma 3.7-6 and Propositions 3.14-8

and 3.14-1,

true ⇐⇒ ppz E C =⇒ ppz E ppC,

then apply (4.70) and Boolean algebra 〉
B2(¬ppC2ppz2B× G ppC2ppz2B×)

= 〈 by Corollary 3.21-6 〉

B2ppz2B×

= 〈 by (4.71) 〉

ppz2B2B×

E 〈 by Proposition 3.3-1, Lemma 3.7-1 and (4.70) 〉

A

ii. Proof of (4.86). We use case analysis with the following tests

pp(x2¬ppz), pp(x2ppC), pp(x2¬ppC)2¬pp(x2¬ppz), pp(xppC)2¬pp(x2¬ppz) .

They are disjoint by (4.69), (4.59), Boolean algebra, Lemma 3.17-4 and

Remark 4.8. They cover ppx by Remark 4.8 and Boolean algebra.

A. Test pp(x2¬ppz).

pp(x2¬ppz)2B2(((x G 1)×)¬ppz G C)

E 〈 by Corollary 3.21-12 〉

pp(x2¬ppz)2B2((x G 1)×)¬ppz

= 〈 by (4.67) and Corollary 3.21-4 〉

(pp(x2¬ppz)2x2ppz G pp(x2¬ppz)2xppz G

pp(x2¬ppz)2pp(x2¬ppz) G pp(x2¬ppz)2¬ppx)2((x G 1)×)¬ppz

= 〈 by Propositions 3.14-7 and 3.14-9, Remark 4.8,

Boolean algebra, (3.6) and Corollary 3.21-3 〉
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pp(x2¬ppz)2((x G 1)×)¬ppz

E 〈 by (3.15) 〉

pp(x2¬ppz)2(A H ((x G 1)×)¬ppz)

B. Test pp(x2ppC).

pp(x2ppC)2B2(((x G 1)×)¬ppz G C)

E 〈 by (3.14) 〉

>
= 〈 by (4.77) 〉

pp(x2ppC)2A

E 〈 by (3.15) 〉

pp(x2ppC)2(A H ((x G 1)×)¬ppz)

C. Test pp(x2¬ppC)2¬pp(x2¬ppz).

pp(x2¬ppC)2¬pp(x2¬ppz)2(A H ((x G 1)×)¬ppz)

F 〈 by (3.15) 〉

pp(x2¬ppC)2¬pp(x2¬ppz)2((x G 1)×)¬ppz

= 〈 by (4.79) 〉

pp(x2¬ppC)2¬pp(x2¬ppz)2(ppz2x2(x G 1)×2¬ppz G

(x2(x G 1)×)¬ppz)

= 〈 by Corollary 3.21-4, Boolean algebra, (4.59) and

Proposition 4.22-5 〉
pp(x2¬ppC)2(ppz2¬pp(x2¬ppz)2x2¬ppz2(x G 1)× G

(¬pp(x2¬ppz)2x2(x G 1)×)¬ppz)

= 〈 by Propositions 3.14-17 and 4.22-5, (3.6) and

Corollary 3.21-3 〉
(pp(x2¬ppC)2¬pp(x2¬ppz)2x2(x G 1)×)¬ppz

= 〈 by Boolean algebra and (3.19) 〉

(¬pp(x2¬ppz)2x2¬ppC2(x G 1)×)¬ppz

= 〈 by (4.3) with x, t := x, ppz, Proposition 3.14-7,

Corollaries 3.21-4 and 3.21-3, Lemma 3.17-5 and

Remark 4.8 〉
((x2ppz G (xppz H x¬ppz))2¬ppC2(x G 1)×)¬ppz
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= 〈 by Remark 4.8, (3.21), Proposition 3.14-3

and Boolean algebra,

the domains of x2ppz and xppz H x¬ppz are disjoint,

then apply Corollary 3.21-17 and Propositions

3.14-7 and 3.14-20 〉
(x2ppz2¬ppC2(x G 1)× G pp(xppz)2(xppz H x¬ppz)2¬ppC2(x G 1)×)¬ppz

= 〈 by Proposition 3.14-18, Boolean algebra,

Lemma 4.20-1, (3.20) and (4.4) with x, t := x, ppz,
true ⇐⇒ pp(x2ppz) E pp(x2ppz2¬ppC)

⇐⇒ ¬pp(x2ppz2¬ppC) E ¬pp(x2ppz)
⇐⇒ ¬pp(x2ppz2¬ppC2(x G 1)×) E pp(xppz)

⇐⇒ ¬pp(x2ppz2¬ppC2(x G 1)×)2pp(xppz) = pp(xppz),

then apply Corollary 4.30-1 and Propositions

4.22-5, 3.14-7 and 3.14-20 〉
(x2ppz2¬ppC2(x G 1)×)¬ppz G ((xppz H x¬ppz)2¬ppC2(x G 1)×)¬ppz

= 〈 by (4.69), Lemma 3.7-6 and Propositions 3.14-8

and 3.14-1,

ppz E ppC,

then apply (3.9), (4.5) with x, t := x, ppz, (4.6)

with x, t := x, ppz and Boolean algebra 〉
(x2ppz2¬ppC2(x G 1)×)¬ppz G

(xppz2ppz2¬ppC2(x G 1)× H x¬ppz2¬ppz2(x G 1)×)¬ppz

= 〈 by (4.69), (4.63), Proposition 4.22-2, (3.8),

Boolean algebra and (4.59) 〉
(x2((x G 1)×)ppz H x2((x G 1)×)¬ppz)¬ppz G

(xppz2((x G 1)×)ppz H xppz2((x G 1)×)¬ppz H x¬ppz2(x G 1)×2¬ppz)¬ppz

= 〈 by (3.2), (4.5) with x, t := (xG 1)×, ppz, (4.6) with

x, t := (xG1)×, ppz, Boolean algebra and Corollary

4.26-9 〉
pp(x2((x G 1)×)ppz)2x2((x G 1)×)¬ppz G

pp(xppz2((x G 1)×)ppz)2(xppz2((x G 1)×)¬ppz H x¬ppz2(x G 1)×2¬ppz)

= 〈 by Propositions 3.14-20 and 3.14-7, (3.20), (3.19)

and (4.4) with x, t := (x G 1)×, ppz 〉
x2((x G 1)×)¬ppz G (xppz2((x G 1)×)¬ppz H x¬ppz2(x G 1)×2¬ppz)

F 〈 by Lemma 3.22-1 〉

x2((x G 1)×)¬ppz G xppz2((x G 1)×)¬ppz

= 〈 by (4.64), Remark 4.8 and Corollary 3.21-17 〉
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(x2ppz G xppz)2((x G 1)×)¬ppz

F 〈 by (4.80) and Corollary 3.21-12 〉

ppx2¬pp(x2¬ppz)2B2(((x G 1)×)¬ppz G C)

We have shown

ppx2¬pp(x2¬ppz)2B2(((x G 1)×)¬ppz G C)

E pp(x2¬ppC)2¬pp(x2¬ppz)2(A H ((x G 1)×)¬ppz) .

By Proposition 3.14-6 and Lemma 3.17-1, this is equivalent to

pp(x2¬ppC)2¬pp(x2¬ppz)2B2(((x G 1)×)¬ppz G C)

E pp(x2¬ppC)2¬pp(x2¬ppz)2(A H ((x G 1)×)¬ppz)

which corresponds to (4.86) restricted to the test

pp(x2¬ppC)2¬pp(x2¬ppz) .

D. Test pp(xppC)2¬pp(x2¬ppz).
Firstly, we show

xppC 2C E pp(xppC)2¬pp(x2¬ppz)2A . (4.90)

pp(xppC)2¬pp(x2¬ppz)2A

= 〈 by (4.4) with x, t := x, ppC and Boolean algebra 〉

pp(xppC)2ppx2¬pp(x2¬ppz)2A

F 〈 by (4.81) 〉

pp(xppC)2(x2ppz G xppz)2B×

= 〈 by Corollary 3.21-9, (4.4) with x, t := x, ppz,
Proposition 3.14-7 and Boolean algebra 〉

pp(xppC)2(x2ppz Gpp(x2ppz) xppz)2B×

= 〈 by Propositions 3.20-8 and 4.22-5 〉

(pp(xppC)2x2ppz Gpp(x2ppz) (pp(xppC)2x)ppz)2B×

F 〈 by Propositions 4.22-2 and 3.20-14, and (3.15) 〉

(xppC 2ppz Gpp(x2ppz) (xppC H x¬ppC)ppz)2B×

= 〈 by Lemma 3.7-6 and (4.69),

ppz E (x G 1)×2ppz = ppC,

then apply (4.5) with x, t := x, ppz, (4.6) with

x, t := x, ppz, Corollary 4.26-5 and Boolean

algebra 〉
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(
xppC Gpp(x2ppz) (pp(x¬ppC 2¬ppz)2xppC G (xppC H (x¬ppC)ppz))

)
2B×

= 〈 by (4.4) with x, t := x¬ppC , ppz
and Boolean algebra,

¬pp(x¬ppC 2¬ppz)2pp(x¬ppC)ppz = pp(x¬ppC)ppz,

then apply Propositions 3.14-7 and 3.14-20, and

Corollary 3.21-9 〉(
xppC Gpp(x2ppz) (xppC Gpp(x¬ppC 2¬ppz) (xppC H (x¬ppC)ppz))

)
2B×

F 〈 by (3.15) and Proposition 3.20-15 〉

(xppC Gpp(x2ppz) (xppC Gpp(x¬ppC 2¬ppz) xppC))2B×

= 〈 by Proposition 3.20-13 〉

xppC 2B×

F 〈 by (4.5) with x, t := x, ppC and (4.78) 〉

xppC 2C

Secondly, we prove

pp(x¬ppC 2ppz2((x G 1)×)¬ppz)2

pp(x¬ppC 2¬ppz2(x G 1)× G (x¬ppC)ppz2((x G 1)×)¬ppz) = > . (4.91)

pp(x¬ppC 2ppz2((x G 1)×)¬ppz)2

pp(x¬ppC 2¬ppz2(x G 1)× G (x¬ppC)ppz2((x G 1)×)¬ppz)

F 〈 by Proposition 3.14-18 and Corollary 3.21-16 〉

pp(x¬ppC 2ppz)2(pp(x¬ppC 2¬ppz2(x G 1)×) G pp((x¬ppC)ppz2((x G 1)×)¬ppz))

F 〈 by Proposition 3.14-18 〉

pp(x¬ppC 2ppz)2(pp(x¬ppC 2¬ppz) G pp((x¬ppC)ppz))

= 〈 by Remark 4.8 and Boolean algebra 〉

>
Thirdly, we prove

x¬ppC 2ppz2((x G 1)×)¬ppz G (x¬ppC)ppz2((x G 1)×)¬ppz G

x¬ppC 2¬ppz2(x G 1)× (4.92)

E pp(xppC)2¬pp(x2¬ppz)2((x G 1)×)¬ppz

using (4.91).

pp(xppC)2¬pp(x2¬ppz)2((x G 1)×)¬ppz

= 〈 by (4.79) and (4.59) 〉
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pp(xppC)2¬pp(x2¬ppz)2(ppz2x2¬ppz2(x G 1)× G (x2(x G 1)×)¬ppz)

= 〈 by Corollary 3.21-4 and Proposition 4.22-5 〉

pp(xppC)2¬pp(x2¬ppz)2ppz2x2¬ppz2(x G 1)× G

(pp(xppC)2¬pp(x2¬ppz)2x2(x G 1)×)¬ppz

= 〈 by Boolean algebra, Proposition 3.14-17, (3.6) and

Corollary 3.21-3 〉
(pp(xppC)2¬pp(x2¬ppz)2x2(x G 1)×)¬ppz

= 〈 by (4.3) with x, t := x, ppz, Propositions 3.14-7,

3.14-17 and 3.14-20, Corollaries 3.21-4 and 3.21-3,

Lemma 3.17-5, (4.4) with x, t := x, ppz and Boolean

algebra 〉
(pp(xppC)2(x2ppz G (xppz H x¬ppz))2(x G 1)×)¬ppz

= 〈 by Remark 4.8,

the domains of x2ppz and xppz H x¬ppz are disjoint,

then apply Corollaries 3.21-4, 3.21-17 and 4.30-2 〉
(pp(xppC)2x2ppz2(x G 1)×)¬ppz G (pp(xppC)2(xppz H x¬ppz)2(x G 1)×)¬ppz

= 〈 by (3.8) and Propositions 4.22-5 and 4.22-2 〉

((xppC H x¬ppC)2ppz2(x G 1)×)¬ppz G(
((xppC H x¬ppC)ppz H (xppC H x¬ppC)¬ppz)2(x G 1)×

)
¬ppz

= 〈 by Lemma 3.7-6 and (4.69),

ppz E (x G 1)×2ppz = ppC,

then apply (3.9), (3.2), (4.5) with x, t := x, ppC,

Boolean algebra and Corollaries 4.26-6 and 4.26-8 〉
(xppC 2(x G 1)× H x¬ppC 2ppz2(x G 1)×)¬ppz G((

(pp(x¬ppC 2¬ppz)2xppC G (xppC H (x¬ppC)ppz)) H

(x¬ppC 2¬ppz G (x¬ppC)¬ppz)
)

2(x G 1)×
)
¬ppz

= 〈 by (3.21), Remark 4.8 and Boolean algebra,

the domains of xppC H (x¬ppC)ppz and x¬ppC 2¬ppz
are disjoint

and the domains of pp(x¬ppC 2¬ppz)2xppC and (x¬ppC)¬ppz

are disjoint,

then apply Lemma 3.22-7 〉
(xppC 2(x G 1)× H x¬ppC 2ppz2(x G 1)×)¬ppz G((

(pp(x¬ppC 2¬ppz)2xppC H x¬ppC 2¬ppz) G

(xppC H (x¬ppC)ppz H (x¬ppC)¬ppz)
)

2(x G 1)×
)
¬ppz
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= 〈 by (3.21), Proposition 3.14-9 and Remark 4.8,

the domains of pp(x¬ppC 2¬ppz)2xppC H x¬ppC 2¬ppz
and xppC H (x¬ppC)ppz H (x¬ppC)¬ppz

are disjoint,

then apply Corollary 3.21-17 and (3.9) 〉
(xppC 2(x G 1)× H x¬ppC 2ppz2(x G 1)×)¬ppz G(
(pp(x¬ppC 2¬ppz)2xppC 2(x G 1)× H x¬ppC 2¬ppz2(x G 1)×) G

(xppC 2(x G 1)× H (x¬ppC)ppz2(x G 1)× H (x¬ppC)¬ppz2(x G 1)×)
)
¬ppz

= 〈 by Propositions 3.14-20, 3.14-9 and 3.14-7,

(4.4) with x, t := x¬ppC , ppz and Boolean algebra,

the domains of

pp(x¬ppC 2¬ppz)2xppC 2(x G 1)× H x¬ppC 2¬ppz2(x G 1)×

and

xppC 2(x G 1)× H (x¬ppC)ppz2(x G 1)× H (x¬ppC)¬ppz2(x G 1)×

are disjoint,

then apply Corollary 4.30-2 〉
(xppC 2(x G 1)× H x¬ppC 2ppz2(x G 1)×)¬ppz G

(pp(x¬ppC 2¬ppz)2xppC 2(x G 1)× H x¬ppC 2¬ppz2(x G 1)×)¬ppz G

(xppC 2(x G 1)× H (x¬ppC)ppz2(x G 1)× H (x¬ppC)¬ppz2(x G 1)×)¬ppz

= 〈 by (4.5) with x, t := x, ppC, (4.6) with x, t := x, ppC
and Proposition 4.22-7 〉

(xppC 2ppC2(x G 1)× H x¬ppC 2¬ppC2ppz2(x G 1)×)¬ppz G

(pp(x¬ppC 2¬ppz)2xppC 2ppC2(x G 1)× H x¬ppC 2¬ppz2(x G 1)×)¬ppz G

(xppC 2ppC2(x G 1)× H (x¬ppC)ppz2¬ppC2ppz2(x G 1)× H

(x¬ppC)¬ppz2¬ppz2(x G 1)×)¬ppz

= 〈 by (4.69), (3.19), (4.63), (4.59) and (4.4) with

x, t := (x G 1)×, ppz 〉
(xppC 2(x G 1)×2ppz H x¬ppC 2pp(((x G 1)×)ppz)2(x G 1)×)¬ppz G

(pp(x¬ppC 2¬ppz)2xppC 2(x G 1)×2ppz H x¬ppC 2(x G 1)×2¬ppz)¬ppz G

(xppC 2(x G 1)×2ppz H (x¬ppC)ppz2pp(((x G 1)×)ppz)2(x G 1)× H

(x¬ppC)¬ppz2(x G 1)×2¬ppz)¬ppz

= 〈 by Proposition 4.22-2 and (3.8) 〉

(xppC 2(x G 1)×2ppz H x¬ppC 2((x G 1)×)ppz H x¬ppC 2((x G 1)×)¬ppz)¬ppz G

(pp(x¬ppC 2¬ppz)2xppC 2(x G 1)×2ppz H x¬ppC 2(x G 1)×2¬ppz)¬ppz G

(xppC 2(x G 1)×2ppz H (x¬ppC)ppz2((x G 1)×)ppz H

(x¬ppC)ppz2((x G 1)×)¬ppz H (x¬ppC)¬ppz2(x G 1)×2¬ppz)¬ppz
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= 〈 by (3.2), (4.5) with x, t := (x G 1)×, ppz, (4.6) with

x, t := (x G 1)×, ppz, (3.9) and Corollary 4.26-9 〉
pp(xppC 2(x G 1)×2ppz H x¬ppC 2((x G 1)×)ppz)2x¬ppC 2((x G 1)×)¬ppz G

pp(pp(x¬ppC 2¬ppz)2xppC 2(x G 1)×2ppz)2x¬ppC 2(x G 1)×2¬ppz G

pp(xppC 2(x G 1)×2ppz H (x¬ppC)ppz2((x G 1)×)ppz)2

((x¬ppC)ppz2((x G 1)×)¬ppz H (x¬ppC)¬ppz2(x G 1)×2¬ppz)

F 〈 by (4.59), (4.64), (3.15) and Lemmas 3.7-1 and 3.22-1

〉
pp(xppC 2(x G 1)×2ppz H x¬ppC 2((x G 1)×)ppz)2x¬ppC 2ppz2((x G 1)×)¬ppz G

pp(pp(x¬ppC 2¬ppz)2xppC 2(x G 1)×2ppz)2x¬ppC 2¬ppz2(x G 1)× G

(x¬ppC)ppz2((x G 1)×)¬ppz

F 〈 by Lemma 3.7-1,

x¬ppC 2¬ppz2(x G 1)×

E pp(pp(x¬ppC 2¬ppz)2xppC 2(xG1)×2ppz)2x¬ppC 2¬ppz2(xG1)×,

then apply Lemma 3.22-1 〉
pp(xppC 2(x G 1)×2ppz H x¬ppC 2((x G 1)×)ppz)2x¬ppC 2ppz2((x G 1)×)¬ppz G

x¬ppC 2¬ppz2(x G 1)× G (x¬ppC)ppz2((x G 1)×)¬ppz

F 〈 by Lemma 3.7-1,

x¬ppC 2ppz2((x G 1)×)¬ppz

E pp(xppC 2(x G 1)×2ppz H x¬ppC 2((x G 1)×)ppz)2

x¬ppC 2ppz2((x G 1)×)¬ppz;

by Proposition 3.14-9, (4.91) and Boolean algebra,

the domains of

pp(xppC 2(x G 1)×2ppz H x¬ppC 2((x G 1)×)ppz)2

x¬ppC 2ppz2((x G 1)×)¬ppz

and

x¬ppC 2¬ppz2(x G 1)× G (x¬ppC)ppz2((x G 1)×)¬ppz

are disjoint;

then apply and Lemma 3.22-4 〉
x¬ppC 2ppz2((x G 1)×)¬ppz G x¬ppC 2¬ppz2(x G 1)× G

(x¬ppC)ppz2((x G 1)×)¬ppz

= 〈 by Propositions 3.14-7 and 3.14-9, Boolean algebra

and Remark 4.8,

the domains of x¬ppC 2¬ppz2(x G 1)×

and (x¬ppC)ppz2((x G 1)×)¬ppz

are disjoint,

then apply (3.25) 〉
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x¬ppC 2ppz2((x G 1)×)¬ppz G (x¬ppC)ppz2((x G 1)×)¬ppz G

x¬ppC 2¬ppz2(x G 1)×

Finally, we use (4.90) and (4.92) in the proof of (4.86) restricted to the

test

pp(xppC)2¬pp(x2¬ppz) .

pp(xppC)2¬pp(x2¬ppz)2(A H ((x G 1)×)¬ppz)

F 〈 by (3.8), (4.90) and (4.92) 〉

xppC 2C H (x¬ppC 2ppz2((x G 1)×)¬ppz G

(x¬ppC)ppz2((x G 1)×)¬ppz G x¬ppC 2¬ppz2(x G 1)×)

= 〈 by Corollary 3.21-14 〉

(xppC 2C H x¬ppC 2ppz2((x G 1)×)¬ppz) G

(xppC 2C H (x¬ppC)ppz2((x G 1)×)¬ppz) G

(xppC 2C H x¬ppC 2¬ppz2(x G 1)×)

F 〈 by Propositions 3.14-7 and 3.14-20, (3.15) and

Lemma 3.22-1 〉
(xppC 2C H x¬ppC 2ppz2((x G 1)×)¬ppz) G

(xppC 2C H (x¬ppC)ppz2((x G 1)×)¬ppz) G pp(x¬ppC 2¬ppz)2xppC 2C

= 〈 by (4.69), (4.63) and Boolean algebra,

ppC2pp(((x G 1)×)¬ppz) = >,

then apply (4.5) with x, t := x, ppC, (3.9),

Corollaries 3.21-4 and 3.21-3, Propositions 3.14-7

and 4.22-7, Boolean algebra and (3.6) 〉
(xppC H x¬ppC 2ppz)2(C G ((x G 1)×)¬ppz) G

(xppC H (x¬ppC)ppz)2(C G ((x G 1)×)¬ppz) G

pp(x¬ppC 2¬ppz)2xppC 2(C G ((x G 1)×)¬ppz)

= 〈 by Proposition 3.14-11, Remark 4.8 and Corollary

3.21-17 〉
((xppC H x¬ppC 2ppz) G (xppC H (x¬ppC)ppz) G pp(x¬ppC 2¬ppz)2xppC)2

(C G ((x G 1)×)¬ppz)

= 〈 by (3.21), Propositions 3.14-3 and 3.14-9,

and Remark 4.8,

pp(xppC H (x¬ppC)ppz)2pp(pp(x¬ppC 2¬ppz)2xppC) = >
and ppC2pp(((x G 1)×)¬ppz) = >,

then apply (3.25) 〉
((xppC H x¬ppC 2ppz) G pp(x¬ppC 2¬ppz)2xppC G (xppC H (x¬ppC)ppz))2
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(((x G 1)×)¬ppz G C)

= 〈 by Lemma 3.7-6 and (4.69),

ppz E (x G 1)×2ppz = ppC,

then apply (4.5) with x, t := x, ppC, Boolean algebra

and Corollary 4.26-6 〉
((xppC 2ppz H x¬ppC 2ppz) G (xppC H x¬ppC)ppz)2(((x G 1)×)¬ppz G C)

= 〈 by (3.9), Propositions 4.22-2 and 4.22-5, and

Corollary 3.21-4 〉
pp(xppC)2(x2ppz G xppz)2(((x G 1)×)¬ppz G C)

= 〈 by (4.4) with x, t := x, ppC and Boolean algebra,

ppx E pp(xppC),

then apply (4.80) and Boolean algebra 〉
pp(xppC)2¬pp(x2¬ppz)2B2(((x G 1)×)¬ppz G C)

iii. Proof of (4.87). We use case analysis with the following tests

pp(x2ppz), pp(x2¬ppz), pp(xppz) .

They are disjoint by Remark 4.8. They cover ppx by Remark 4.8 and

Boolean algebra.

A. Test pp(x2ppz).

pp(x2ppz)2(x G 1)

= 〈 by Proposition 3.14-18, Corollary 3.21-7 and

(3.19) 〉
x2ppz

= 〈 by (4.67), Corollaries 3.21-4 and 3.21-3,

Proposition 3.14-7, Boolean algebra, Remark 4.8,

Lemma 3.17-2 and (3.6) 〉
pp(x2ppz)2B

E 〈 by Boolean algebra and Proposition 3.3-2 〉

pp(x2ppz)2¬ppC2ppz2B×

= 〈 by (4.70) 〉

pp(x2ppz)2A

E 〈 by (3.15) 〉

pp(x2ppz)2(A H ((x G 1)×)¬ppz)

B. Test pp(x2¬ppz).

pp(x2¬ppz)2(A H ((x G 1)×)¬ppz)

F 〈 by (3.15) 〉
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pp(x2¬ppz)2((x G 1)×)¬ppz

= 〈 by (4.79) 〉

pp(x2¬ppz)2(ppz2x2(x G 1)×2¬ppz G (x2(x G 1)×)¬ppz)

= 〈 by Corollary 3.21-4, Boolean algebra and

Proposition 4.22-5 〉
ppz2pp(x2¬ppz)2x2(x G 1)×2¬ppz G (pp(x2¬ppz)2x2(x G 1)×)¬ppz

= 〈 by (3.19) 〉

ppz2x2¬ppz2(x G 1)×2¬ppz G (x2¬ppz2(x G 1)×)¬ppz

= 〈 by (4.59) and Boolean algebra 〉

ppz2x2¬ppz2(x G 1)× G (x2(x G 1)×2¬ppz)¬ppz

= 〈 by Corollaries 4.26-1 and 3.21-3 〉

ppz2x2¬ppz2(x G 1)×

F 〈 by Lemmas 3.7-1 and 3.7-6 〉

x2¬ppz

= 〈 by Proposition 3.14-18, Corollary 3.21-7 and

(3.19) 〉
pp(x2¬ppz)2(x G 1)

C. Test pp(xppz).

pp(xppz)2(x G 1) E pp(xppz)2(A H ((x G 1)×)¬ppz)

⇐⇒ 〈 by (4.4) with x, t := x, ppz, Boolean algebra and

Corollary 3.21-7 〉
pp(xppz)2x E pp(xppz)2(A H ((x G 1)×)¬ppz)

⇐⇒ 〈 by Proposition 4.22-2 and (3.8) 〉

xppz H x¬ppz E pp(xppz)2A H pp(xppz)2((x G 1)×)¬ppz)

⇐= 〈 〉

xppz E pp(xppz)2A ∧ x¬ppz E pp(xppz)2((x G 1)×)¬ppz

We show the two conditions of the last formula separately. The proof

of xppz E pp(xppz)2A goes as follows.

xppz

= 〈 by (4.67), Corollaries 3.21-4 and 3.21-3,

Proposition 3.14-7, Remark 4.8, Boolean algebra

and (3.6) 〉
pp(xppz)2B

E 〈 by Proposition 3.3-2 〉
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pp(xppz)2B×

E 〈 by (4.68) and Lemma 3.7-1 〉

pp(xppz)2A

And here is the proof of x¬ppz E pp(xppz)2((x G 1)×)¬ppz.

pp(xppz)2((x G 1)×)¬ppz

= 〈 by (4.79), Corollary 3.21-4 and Proposition

4.22-5 〉
pp(xppz)2ppz2x2(x G 1)×2¬ppz G (pp(xppz)2x2(x G 1)×)¬ppz

= 〈 by Boolean algebra, (4.59) and Proposition

4.22-2 〉
ppz2(xppz H x¬ppz)2¬ppz2(x G 1)× G ((xppz H x¬ppz)2(x G 1)×)¬ppz

= 〈 by (3.9), (4.5) with x, t := x, ppz, Boolean algebra

and (3.6) 〉
ppz2(> H x¬ppz2¬ppz)2(x G 1)× G ((xppz H x¬ppz)2(x G 1)×)¬ppz

= 〈 by (3.4), (3.6), Corollary 3.21-3 and (3.9) 〉

(xppz2(x G 1)× H x¬ppz2(x G 1)×)¬ppz

= 〈 by (4.6) with x, t := x, ppz and (4.59) 〉

(xppz2(x G 1)× H x¬ppz2(x G 1)×2¬ppz)¬ppz

= 〈 by Theorem 4.23 and Boolean algebra 〉

pp(x¬ppz2(x G 1)×2¬ppz2ppz)2xppz2(x G 1)×2¬ppz G

pp(x¬ppz2(x G 1)×2¬ppz2ppz)2(xppz2(x G 1)×)¬ppz G

(xppz2(x G 1)×2¬ppz H (x¬ppz2(x G 1)×2¬ppz)¬ppz) G

pp(xppz2(x G 1)×2ppz)2x¬ppz2(x G 1)×2¬ppz G

pp(xppz2(x G 1)×2ppz)2(x¬ppz2(x G 1)×2¬ppz)¬ppz G

((xppz2(x G 1)×)¬ppz H x¬ppz2(x G 1)×2¬ppz) G

((xppz2(x G 1)×)¬ppz H (x¬ppz2(x G 1)×2¬ppz)¬ppz)

= 〈 by Boolean algebra, (3.6), Proposition 3.14-19,

Corollary 4.26-1 and (3.4) 〉
> G > G > G pp(xppz2(x G 1)×2ppz)2x¬ppz2(x G 1)×2¬ppz G

> G ((xppz2(x G 1)×)¬ppz H x¬ppz2(x G 1)×2¬ppz) G >
F 〈 by Corollary 3.21-3, (3.15) and Lemma 3.22-1 〉

pp(xppz2(x G 1)×2ppz)2x¬ppz2(x G 1)×2¬ppz G x¬ppz2(x G 1)×2¬ppz



Chapter 4. Definition of Angelic Operators in DAD 179

F 〈 by Lemma 3.7-1,

x¬ppz2(x G 1)× E x¬ppz2(x G 1)×2¬ppz,
then apply Lemma 3.22-2, (4.59) and (4.6) with

x, t := x, ppz 〉
x¬ppz2(x G 1)×

= 〈 by Proposition 3.3-1 and (3.7) 〉

x¬ppz

iv. Proof of (4.88). We use case analysis with the following tests

pp(x2ppz), pp(x2¬ppz), pp(xppz) .

They are disjoint by Remark 4.8. They cover ppx by Remark 4.8.

A. Test pp(x2ppz).

pp(x2ppz)2B2C

= 〈 by (4.67), Corollaries 3.21-4 and 3.21-3,

Proposition 3.14-7, Boolean algebra, Remark 4.8,

Lemma 3.17-2 and (3.6) 〉
x2ppz2C

= 〈 by Proposition 3.14-18, Corollary 3.21-7, (3.19)

and (4.69) 〉
pp(x2ppz)2(x G 1)2(x G 1)×2ppz

E 〈 by Proposition 3.3-1 〉

pp(x2ppz)2(x G 1)×2ppz

= 〈 by (4.69) 〉

pp(x2ppz)2C

B. Test pp(x2¬ppz). Using (4.67), Corollaries 3.21-4 and 3.21-3, Proposi-

tion 3.14-7, Boolean algebra, Remark 4.8, Lemma 3.17-2 and (3.6)

yields

pp(x2¬ppz)2B = pp(x2¬ppz) ,

so that pp(x2¬ppz)2B2C = pp(x2¬ppz)2C.

C. Test pp(xppz).

pp(xppz)2B2C

= 〈 by (4.67), Corollaries 3.21-4 and 3.21-3,

Proposition 3.14-7, Boolean algebra, Remark 4.8,

Lemma 3.17-2 and (3.6) 〉
xppz2C
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E 〈 by (3.15) 〉

(xppz H x¬ppz)2C

= 〈 by (4.4) with x, t := x, ppz, Boolean algebra,

Proposition 4.22-2, Corollary 3.21-7 and (4.69) 〉
pp(xppz)2(x G 1)2(x G 1)×2ppz

E 〈 by Proposition 3.3-1 〉

pp(xppz)2(x G 1)×2ppz

= 〈 by (4.69) 〉

pp(xppz)2C

v. Proof of (4.89). By Proposition 3.3-2, Boolean algebra and (4.69),

x G 1 = (x G 1)21 E (x G 1)×2ppz = C .

(n) Proof of (4.84).

true

⇐⇒ 〈 by (4.83) 〉

pp((x G 1)×)ppz2(x G 1)× E A H ((x G 1)×)¬ppz

=⇒ 〈 by Proposition 4.22-2 and (3.15) 〉

((x G 1)×)ppz E A H ((x G 1)×)¬ppz

⇐⇒ 〈 by (4.5) with x, t := (x G 1)×, ppz, (4.6) with

x, t := (x G 1)×, ppz and (4.76) 〉
((x G 1)×)ppz2ppz E A2ppz H ((x G 1)×)¬ppz2¬ppz

⇐⇒ 〈 by Corollary 4.26-10 〉

((x G 1)×)ppz2ppz E pp(((x G 1)×)¬ppz2¬ppz)2A2ppz

⇐⇒ 〈 by (4.5) with x, t := (x G 1)×, ppz, (4.6) with

x, t := (x G 1)×, ppz and (4.76) 〉
((x G 1)×)ppz E pp((x G 1)×)ppz2A

⇐⇒ 〈 by (4.68) and Boolean algebra 〉

((x G 1)×)ppz E A

And, finally, back to the proof of (4.51).

((x G 1)×)ppz2z E pp(((x G 1)×)ppz)2z

⇐= 〈 by (4.84) 〉

A2z E pp(((x G 1)×)ppz)2z
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⇐⇒ 〈 by (4.68) 〉

pp((x G 1)×)ppz2B×
2z E pp(((x G 1)×)ppz)2z

⇐= 〈 〉

B×
2z E z

⇐= 〈 by (3.12) 〉

B2z H z E z

⇐⇒ 〈 by (4.67) 〉

(x2ppz G xppz G pp(x2¬ppz) G ¬ppx)2z E z

⇐⇒ 〈 by Remark 4.8 and Proposition 3.14-1,

the domains of x2ppz, xppz, pp(x2¬ppz) and ¬ppx
are pairwise disjoint,

then apply Corollary 3.21-17 and Proposition 3.14-7 〉
x2z G xppz2z G pp(x2¬ppz)2z G ¬ppx2z E z

⇐⇒ 〈 by Remark 4.8,

the tests pp(x2z), pp(xppz), pp(x2¬ppz) and ¬ppx
are pairwise disjoint;

by Remark 4.8 and Boolean algebra,

pp(x2z) G pp(xppz) G pp(x2¬ppz) G ¬ppx = 1;

then apply Corollaries 3.21-19, 3.21-4 and 3.21-3, Proposition

3.14-7, Remark 4.8, Boolean algebra and (3.6) 〉
x2z E pp(x2z)2z ∧ xppz2z E pp(xppz)2z ∧
pp(x2¬ppz)2z E pp(x2¬ppz)2z ∧ ¬ppx2z E ¬ppx2z

⇐⇒ 〈 by (4.47) and (4.48) 〉

true

13. According to Definition 4.1, we need to obtain

z ·D x+D y ≤D z =⇒ ppz E pp(y ·D x∗D) (4.93)

and

z ·D x+D y ≤D z =⇒ y ·D x∗D E pp(y ·D x∗D)2z (4.94)

in order to show y ·D x∗D ≤D z from z ·D x+D y ≤D z.

We begin with the proof of (4.93).

z ·D x+D y ≤D z
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⇐⇒ 〈 by Remark 4.5 〉

ppz E pp(z ·D x+D y)

⇐⇒ 〈 by Corollary 4.4-3 〉

ppz E pp(z ·D x) G ppy

=⇒ 〈 by Boolean algebra 〉

ppz E ppy

⇐⇒ 〈 by (3.20), Lemma 4.20-1 and (3.7) 〉

ppz E pp(y2(x G 1)×)

⇐⇒ 〈 by Lemma 4.20-1 and Proposition 4.17-4 〉

ppz E pp(y ·D (x G 1)×)

⇐⇒ 〈 by Definition 4.19 〉

ppz E pp(y ·D x∗D)

And now we work on (4.94). The following two derivations will be helpful.

z ·D x+D y ≤D z
=⇒ 〈 by Definition 4.1 〉

z ·D x+D y E pp(z ·D x+D y)2z

⇐⇒ 〈 by Corollary 4.4-3 and Proposition 4.17-5 〉

z ·D x+D y E (ppz2¬pp(z2¬ppx) G ppy)2z

⇐⇒ 〈 by Boolean algebra 〉

z ·D x+D y E ppy2z

⇐⇒ 〈 by Corollary 4.4-1 〉

((z ·D x) H y) G ¬pp(z ·D x)2y G ¬ppy2(z ·D x) E ppy2z

⇐⇒ 〈 by Definition 4.16, Proposition 4.17-5 and De Morgan 〉

((z2x G zppx2x) H y) G (¬ppz G pp(z2¬ppx))2y G ¬ppy2(z2x G zppx2x) E ppy2z

⇐⇒ 〈 by Propositions 3.14-9, 3.14-6 and 3.14-7 〉

ppy2ppz2(((z2x G zppx2x) H y) G (¬ppz G pp(z2¬ppx))2y G ¬ppy2(z2x G zppx2x))

E ppy2z

⇐⇒ 〈 by Corollaries 3.21-4 and 3.21-3, Propositions 3.14-20 and

3.14-7, (4.4) with x, t := z, ppx, Boolean algebra, Lemma 3.17-1

and (3.6) 〉
((z2x G zppx2x) H y) G pp(z2¬ppx)2y E ppy2z
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y ·D x∗D E pp(y ·D x∗D)2z

⇐⇒ 〈 by Definition 4.19, Lemma 4.20-1 and Proposition 4.17-4 〉

y2(x G 1)× E pp(y2(x G 1)×)2z

⇐⇒ 〈 by (3.20), Lemma 4.20-1 and (3.7) 〉

y2(x G 1)× E ppy2z

⇐= 〈 by (3.13) 〉

ppy2z2(x G 1) H y E ppy2z

⇐⇒ 〈 by Propositions 3.14-7 and 3.14-20 〉

z2(x G 1) H y E ppy2z

The previous two derivations teach us that it is sufficient to work on

((z2x G zppx2x) H y) G pp(z2¬ppx)2y E ppy2z =⇒ z2(x G 1) H y E ppy2z . (4.95)

It will be shown by using case analysis (Corollary 3.21-19) with the tests ¬ppz,
pp(z2ppx), pp(z2¬ppx) and pp(zppx). By Remark 4.8 and Boolean algebra, these tests are

disjoint and they satisfy

¬ppz G pp(z2ppx) G pp(z2¬ppx) G pp(zppx) = 1 .

Case ¬ppz

¬ppz2(z2(x G 1) H y) E ¬ppz2ppy2z

⇐⇒ 〈 Boolean algebra and Proposition 3.14-17 〉

¬ppz2(z2(x G 1) H y) E >
⇐⇒ 〈 by (3.14) 〉

true

⇐= 〈 〉

((z2x G zppx2x) H y) G pp(z2¬ppx)2y E ppy2z

Case pp(z2ppx)

pp(z2ppx)2(z2(x G 1) H y) E pp(z2ppx)2ppy2z

⇐⇒ 〈 by Proposition 3.14-20 and (3.19) 〉

z2ppx2(x G 1) H y E pp(z2ppx)2ppy2z

⇐⇒ 〈 by Corollary 3.21-7 and Proposition 3.14-7 〉
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z2x H y E pp(z2ppx)2ppy2z

⇐⇒ 〈 by Proposition 3.14-7, Remark 4.8, Boolean algebra, (3.6) and

Corollary 3.21-3 〉
((z2x G pp(z2ppx)2zppx2x) H y) G pp(z2ppx)2pp(z2¬ppx)2y E pp(z2ppx)2ppy2z

⇐⇒ 〈 by Propositions 3.14-7 and 3.14-20, (3.20) and Corollary 3.21-4

〉
pp(z2ppx)2(((z2x G zppx2x) H y) G pp(z2¬ppx)2y) E pp(z2ppx)2ppy2z

⇐= 〈 〉

((z2x G zppx2x) H y) G pp(z2¬ppx)2y E ppy2z

Case pp(z2¬ppx)

pp(z2¬ppx)2(z2(x G 1) H y) E pp(z2¬ppx)2ppy2z

⇐⇒ 〈 by (3.8), (3.19) and Boolean algebra 〉

z2¬ppx2(x G 1) H pp(z2¬ppx)2y E ppy2z2¬ppx

⇐⇒ 〈 by Corollary 3.21-8 and Boolean algebra 〉

ppy2z2¬ppx H pp(z2¬ppx)2y E ppy2z2¬ppx

⇐⇒ 〈 by (3.15), (3.3), (3.19) and Boolean algebra 〉

pp(z2¬ppx)2y E pp(z2¬ppx)2ppy2z

⇐⇒ 〈 by Proposition 3.14-7, Remark 4.8, Boolean algebra, (3.6),

Corollary 3.21-3 and (3.4) 〉
((pp(z2¬ppx)2z2x G pp(z2¬ppx)2zppx2x) H y) G pp(z2¬ppx)2y E pp(z2¬ppx)2ppy2z

⇐⇒ 〈 by Corollary 3.21-4, Proposition 3.14-20 and Boolean algebra

〉
pp(z2¬ppx)2(((z2x G zppx2x) H y) G pp(z2¬ppx)2y) E pp(z2¬ppx)2ppy2z

⇐= 〈 〉

((z2x G zppx2x) H y) G pp(z2¬ppx)2y E ppy2z

Case pp(zppx)

pp(zppx)2(z2(x G 1) H y) E pp(zppx)2ppy2z

⇐⇒ 〈 by Propositions 3.14-20 and 4.22-2, and Boolean algebra 〉

(zppx H z¬ppx)2(x G 1) H y E ppy2(zppx H z¬ppx)

⇐⇒ 〈 by (3.9), Propositions 3.14-7 and 3.14-20, and (3.8) 〉

zppx2(x G 1) H ppy2z¬ppx2(x G 1) H y E ppy2zppx H ppy2z¬ppx
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⇐⇒ 〈 by (4.5) with x, t := z, ppx, (4.6) with x, t := z, ppx, Corollaries

3.21-7 and 3.21-8, Proposition 3.14-7 and Boolean algebra 〉
zppx2x H ppy2z¬ppx H y E ppy2zppx H ppy2z¬ppx

⇐⇒ 〈 by (3.3), (3.2) and (3.15) 〉

zppx2x H y E ppy2zppx H ppy2z¬ppx

⇐⇒ 〈 by (3.8), Proposition 4.22-2 and Boolean algebra 〉

zppx2x H y E pp(zppx)2ppy2z

⇐⇒ 〈 by Proposition 3.14-7, (3.20), Remark 4.8, Boolean algebra,

(3.6) and Corollary 3.21-3 〉
((pp(zppx)2z2x G pp(zppx)2zppx2x) H y) G pp(zppx)2pp(z2¬ppx)2y E pp(zppx)2ppy2z

⇐⇒ 〈 by Corollary 3.21-4 and Proposition 3.14-20 〉

pp(zppx)2(((z2x G zppx2x) H y) G pp(z2¬ppx)2y) E pp(zppx)2ppy2z

⇐= 〈 〉

((z2x G zppx2x) H y) G pp(z2¬ppx)2y E ppy2z

2

Theorem 4.32. Suppose A is an algebra of decomposable elements. Then (test(A),

+D, ·D,¬,>, 1) is a Boolean algebra, hence (A, test(A),+D, ·D, ∗D ,>, 1,¬) is a KAT.

Proof : We show that for all s, t ∈ test(A),

s E t ⇐⇒ t≤D s (4.96)

s H t = s ·D t (4.97)

s G t = s+D t . (4.98)

Therefore, since (test(A),H,G,¬, 1,>) is a Boolean algebra, then so is (test(A),+D, ·D,
¬,>, 1) by Corollary 4.4.

(4.96) is true by Remark 4.5.

Proof of (4.97)

s H t

= 〈 by Proposition 3.14-3 〉

s2t
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= 〈 by Proposition 4.17-3 〉

s ·D t

Proof of (4.98)

s G t

= 〈 by Boolean algebra 〉

(s H t) G ¬t2s G ¬s2t

= 〈 by Corollary 4.4-1 〉

s+D t

2

Theorem 4.33. Suppose A is an algebra of decomposable elements. The following

inequalities are valid for all x, y ∈ A and all t ∈ test(A), hence (A, test(A),+D, ·D, ∗D ,>,
1,¬, pp) is KAD.

1. x≤D ppx ·D x

2. pp(t ·D x)≤D t

3. pp(x ·D ppy)≤D pp(x ·D y)

Proof :

1. x

≤D 〈 by Corollary 4.4-2 〉

x

= 〈 by Proposition 3.14-7 〉

ppx2x

= 〈 by Proposition 4.17-3 〉

ppx ·D x
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2. pp(t ·D x)
= 〈 by Proposition 4.17-3 〉

pp(t2x)

= 〈 by Proposition 3.14-9 〉

t2ppx

≤D 〈 by Boolean Algebra and Theorem 4.32 〉

t

3. Since ≤D is a partial order (see Corollary 4.4-2), it is sufficient to prove equality

instead of ≤D.

pp(x ·D y)
= 〈 by Proposition 4.17-5 〉

ppx2¬pp(x2¬ppy)

= 〈 by Propositions 3.14-1 and 4.17-5 〉

pp(x ·D ppy)

2



Chapter 5

A Duality Between KADs and

Algebras of Decomposable Elements

We are now ready for the ultimate goal of this text (refer to item 8 of Section 1.3). We

will establish an algebraic connection between the bottom part and the upper part of

the lattice of Figure 1.4 for any model of KAD.

In Section 5.1, having Figure 1.5 in mind, we are going to define a function F from

the set of all KADs to the set of all algebras of decomposable elements. Symmetrically,

we are going to define a function G from the set of all algebras of decomposable ele-

ments to the set of all KADs. Then, we will demonstrate that F(K) is an algebra of

decomposable elements for each KAD K. Also, we will demonstrate that G ◦ F is the

identity on K.

In Section 5.2, we will demonstrate that G(A) is a KAD for each algebra of decom-

posable elements A. Also, we will demonstrate that F ◦ G is the identity on A.

This chapter is the third and last step toward the desired duality (refer to Sec-

tion 1.3).

5.1 From KAD to DAD-G• and Back

In this section, we introduce two transformations between the angelic and demonic

worlds that will be studied all along this chapter. Then, we present a few useful lemmas
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and we finish with the main theorem of this section.

Definition 5.1. Let F denote the transformation that sends any KAD K = (K,

test(K),+, ·, ∗, 0, 1,¬, p ) to

(K, test(K),HA, 2A,
×A , 0, 1,¬,GA, p ,GA•) ,

where HA, 2A, ×A, GA and GA• are the operators defined in Proposition 2.10 and Defini-

tions 2.12, 2.14, 2.17 and 2.18 respectively.

Similarly, let G denote the transformation that sends any algebra of decomposable

elements A = (A, test(A),H, 2, ×,>, 1,¬D,G, pp,G•) to

(A, test(A),+D, ·D, ∗D ,>, 1,¬D, pp) ,

where +D, ·D, ∗D and ¬D are the operators defined in Corollary 4.4-1, and Defini-

tions 4.16, 4.19 and 3.4 respectively (since no special notation was introduced in Defini-

tion 3.4 to distinguish DAT’s negation from KAT’s negation, we have added a subscript

D to ¬ in order to avoid confusion in Theorem 5.5).

By this definition, the transformations F and G transport the domain operator and

the negation operator unchanged between the angelic and demonic worlds. Indeed, it

turns out that px = ppx and ¬t = ¬Dt are the right transformations.

Having defined F and G, we can now state a crucial theorem. But before doing

that, we need to introduce the following three lemmas.

Lemma 5.2. Let K be a KAD. For all x ∈ K and all t ∈ test(K),

x = x 2A t ⇐⇒ x = x · t .

Proof :

x 2A t = x

⇐⇒ 〈 by Definition 2.12 〉

(x→ t) · x · t = x

⇐⇒ 〈 by Proposition 2.7-4 〉

(x→ t) · x · t · t = x · t ∧ (x→ t) · x · t · ¬t = x · ¬t
⇐⇒ 〈 by Definition 2.8, Proposition 2.7-10, Boolean algebra and (2.6) 〉



Chapter 5. A Duality Between KADs and Algebras of Decomposable Elements 190

¬p(x · ¬t) · x · t · t = x · t ∧ 0 = x · ¬t
⇐⇒ 〈 substituting 0 for x · ¬t in ¬p(x · ¬t), by Proposition 2.7-10, (2.6)

and Boolean algebra 〉
x · t · t = x · t ∧ x · t · ¬t = x · ¬t

⇐⇒ 〈 by Proposition 2.7-4 〉

x · t = x

2

Lemma 5.3. Let A,A′ be algebras of decomposable elements. Let φ : A → A′ be a

homomorphism. Then

φ(x G y) = φ(x) G φ(y)

for all x, y ∈ A.

Proof :

φ(x G y)

= 〈 by (3.24) 〉

φ(x Gppx y)

= 〈 since φ is a homomorphism 〉

φ(x) Gpp(φ(x)) φ(y)

= 〈 by (3.24) 〉

φ(x) G φ(y)

2

Lemma 5.4. Let A,A′ be algebras of decomposable elements. Let φ : A → A′ be a

homomorphism. Then

φ(xt) = φ(x)φ(t)

for all x ∈ A and all t ∈ test(A).

Proof : We have to show that φ(xt) and φ (x¬t) satisfy (4.3), (4.4), (4.5) and (4.6)

with x, t := φ(x), φ(t).

Proof of (4.3)
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φ(x)2φ(t) G φ(x)2¬φ(t) G (φ(xt) H φ(x¬t))

= 〈 since φ is a homomorphism and by Lemma 5.3 〉

φ(x2t G x2¬t G (xt H x¬t))

= 〈 by (4.3) 〉

φ(x)

Proof of (4.4)

pp(φ(xt))

= 〈 since φ is a homomorphism 〉

φ(pp(xt))

= 〈 by (4.4) 〉

φ(¬pp(x2t))2¬pp(x2¬t)2ppx)

= 〈 since φ is a homomorphism 〉

¬pp(φ(x)2φ(t))2¬pp(φ(x)2¬φ(t))2pp(φ(x))

The derivation is similar for pp(φ(x¬t)) = ¬pp(φ(x)2φ(t))2¬pp(φ(x)2¬φ(t))2pp(φ(x)).

Proof of (4.5).

φ(xt)2φ(t)

= 〈 since φ is a homomorphism 〉

φ(xt2t)

= 〈 by (4.5) 〉

φ(xt)

The derivation is similar for (4.6). 2

Theorem 5.5. Let K be a KAD and let F and G be the transformations introduced in

Definition 5.1.

1. F(K) is a DAD-G•.
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2. All elements of F(K) are decomposable and, for all x ∈ K and all t ∈ test(K),

xt = p(x · ¬t) · x · t ,
x¬t = p(x · t) · x · ¬t .

Hence, F(K) is an algebra of decomposable elements.

3. G ◦F is the identity on K. In other words, the algebra (K, test(K),+D, ·D, ∗D , 0, 1,
¬, p ) derived from the algebra of decomposable elements F(K) is equal to K (only

the symbols denoting the operators differ).

4. Let K′ be a KAD. If ψ : K → K′ is a homomorphism, then ψ is also a homo-

morphism from F(K) to F(K′). Thus, if K 4 K′, then F(K) 4 F(K′) (where 4
denotes substructure).

Proof :

1. This is direct from Theorem 2.23.

2. Let x be any element of K and t be any test. We have to show

x = x 2A t GA x 2A ¬t GA (xt HA x¬t) ,

where xt and x¬t have the unique solution given in the statement. Also we have

to verify that these solutions satisfy (4.4), (4.5) and (4.6). Remark 4.8 shows that

px can be split in three disjoint parts, namely p(x 2A t), p(x 2A ¬t) and p(xt). Thus,

by Proposition 3.20-17, the above equality holds if and only if the following four

equalities also do.

¬px 2A x = ¬px 2A (x 2A t GA x 2A ¬t GA (xt HA x¬t))

p(x 2A t) 2A x = p(x 2A t) 2A (x 2A t GA x 2A ¬t GA (xt HA x¬t))

p(x 2A ¬t) 2A x = p(x 2A ¬t) 2A (x 2A t GA x 2A ¬t GA (xt HA x¬t))

p(xt) 2A x = p(xt) 2A (x 2A t GA x 2A ¬t GA (xt HA x¬t))

Using Propositions 3.14-17 and 3.14-11, Corollary 3.21-4, (4.4), Boolean algebra

and (3.6), the first equality reduces to > = >. The second one follows from Corol-

lary 3.21-7, Proposition 3.14-7 and (3.19), and the third one from Remark 4.8,

(3.25), Corollary 3.21-7, Proposition 3.14-7 and (3.19). The following derivation

is about the fourth equality and constructs the unique expressions for xt and x¬t,

assuming that xt and x¬t satisfy (4.4), (4.5) and (4.6). Uniqueness is due to the

sequence of equivalences.
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p(xt) 2A x = p(xt) 2A (x 2A t GA x 2A ¬t GA (xt HA x¬t))

⇐⇒ 〈 by Corollary 3.21-8, (4.4) and Boolean algebra 〉

p(xt) 2A x = p(xt) 2A (x 2A ¬t GA (xt HA x¬t))

⇐⇒ 〈 by Corollary 3.21-8, (4.4) and Boolean algebra 〉

p(xt) 2A x = p(xt) 2A (xt HA x¬t)

⇐⇒ 〈 by Proposition 2.13-2 〉

p(xt) · x = p(xt) · (xt HA x¬t)

⇐⇒ 〈 by Proposition 2.10, (4.4) and Boolean algebra 〉

p(xt) · x = p(xt) · (xt + x¬t)

⇐⇒ 〈 by (2.8), Proposition 2.7-6 and (4.4) 〉

p(xt) · x = xt + x¬t

⇐⇒ 〈 by Proposition 2.7-4 〉

p(xt) · x · t = (xt + x¬t) · t ∧ p(xt) · x · ¬t = (xt + x¬t) · ¬t
⇐⇒ 〈 by (4.5), (4.6) and Lemma 5.2 〉

p(xt) · x · t = (xt · t+ x¬t · ¬t) · t ∧ p(xt) · x · ¬t = (xt · t+ x¬t · ¬t) · ¬t
⇐⇒ 〈 by (2.9), Boolean algebra, (2.6) and (2.4) 〉

p(xt) · x · t = xt · t ∧ p(xt) · x · ¬t = x¬t · ¬t
⇐⇒ 〈 by (4.5), (4.6) and Lemma 5.2 〉

p(xt) · x · t = xt ∧ p(xt) · x · ¬t = x¬t

⇐⇒ 〈 by (4.4), Propositions 2.13-4 and 2.7-6, and De Morgan 〉

(¬(x→ t) + ¬px) · (¬(x→ ¬t) + ¬px) · x · t = xt ∧
(¬(x→ t) + ¬px) · (¬(x→ ¬t) + ¬px) · x · ¬t = x¬t

⇐⇒ 〈 by Boolean algebra, (2.9), Proposition 2.7-9 and (2.4) 〉

xt = ¬(x→ t) · ¬(x→ ¬t) · x · t ∧
x¬t = ¬(x→ t) · ¬(x→ ¬t) · x · ¬t

⇐⇒ 〈 by Definition 2.8, Boolean algebra and Propositions 2.7-6 and

2.7-10 〉
xt = p(x · ¬t) · x · t ∧ x¬t = p(x · t) · x · ¬t

By Theorem 5.5-1 and since all elements of F(K) are decomposable, then F(K)

is an algebra of decomposable elements.

3. To show the third part of the theorem, it suffices to prove x+y = x+Dy, x·y = x·Dy
and x∗ = x∗D for x, y ∈ K, since ¬ and p are unchanged either by F or G.
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(a) Firstly, we show that x ≤ y ⇐⇒ x≤D y.

x≤D y
⇐⇒ 〈 by Definition 4.1 〉

py EA px ∧ x EA px 2A y

⇐⇒ 〈 by Remark 2.11 and Definition 2.9 〉

px ≤ py ∧ p(px 2A y) ≤ px ∧ p(px 2A y) · x ≤ px 2A y

⇐⇒ 〈 by Proposition 2.13-2 〉

px ≤ py ∧ p(px · y) ≤ px ∧ p(px · y) · x ≤ px · y
⇐⇒ 〈 by Proposition 2.7-11 and Boolean algebra 〉

px ≤ py ∧ px · py · x ≤ px · y
⇐⇒ 〈 since px ≤ py and by Boolean algebra 〉

px ≤ py ∧ px · x ≤ px · y
⇐⇒ 〈 by Proposition 2.7-14 for ⇐=,

and by Proposition 2.7-6 for =⇒ since px · x ≤ px · y ≤ y

〉
x ≤ y

So x+ y = x+D y by (2.11) and Corollary 4.4-2.

(b) x ·D y
= 〈 by Proposition 4.17-7 〉

(x 2A py GA xpy) 2A y

= 〈 by (3.24), Definition 2.18 and Proposition 2.13-2 〉

(p(x 2A py) 2A x 2A py + ¬p(x 2A py) 2A xpy) 2A y

= 〈 by Propositions 3.14-7 and 3.14-1, (4.4) with x, t := x, py
and Boolean algebra 〉

(x 2A py + xpy) 2A y

= 〈 by Definition 2.12, Proposition 2.7-10 and Theorem 5.5-2

〉
((x→ py) · x · py + p(x · ¬py) · x · py) 2A y

= 〈 by Definition 2.8, Proposition 2.7-10, (2.9), Boolean

algebra and (2.7) 〉
(x · py) 2A y

= 〈 by Definition 2.12 and Proposition 2.7-6 〉

(x · py → y) · x · y
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= 〈 by Definition 2.8, Boolean algebra, (2.6), Proposition

2.7-10 and (2.7) 〉
x · y

(c) x∗D

= 〈 by Theorem 4.31 and Remark 2.2 〉

µ≤D
(y :: y ·D x+D 1)

= 〈 by the previous two derivations 〉

µ≤(y :: y · x+ 1)

= 〈 by Remark 2.2 〉

x∗

4. If ψ : K → K′ is a homomorphism, then

ψ(x+ y) = ψ(x) + ψ(y) , (5.1)

ψ(x · y) = ψ(x) · ψ(y) , (5.2)

ψ(x∗) = (ψ(x))∗ , (5.3)

ψ(0) = 0′ , (5.4)

ψ(1) = 1′ , (5.5)

ψ(¬t) = ¬(ψ(t)) , (5.6)

ψ(px) = p(ψ(x)) . (5.7)

We need to derive

ψ(x HA y) = ψ(x) HA ψ(y) , (5.8)

ψ(x 2A y) = ψ(x) 2A ψ(y) , (5.9)

ψ(x×A) = (ψ(x))×A , (5.10)

ψ(0) = 0′ , (5.11)

ψ(1) = 1′ , (5.12)

ψ(¬t) = ¬(ψ(t)) , (5.13)

ψ(px) = p(ψ(x)) , (5.14)

ψ(x GAt y) = ψ(x) GAψ(t) ψ(y) . (5.15)

(a) Proof of (5.8).

ψ(x HA y)

= 〈 by Proposition 2.10 〉

ψ(px · py · (x+ y))



Chapter 5. A Duality Between KADs and Algebras of Decomposable Elements 196

= 〈 by (5.2), (5.1) and (5.7) 〉

p(ψ(x)) · p(ψ(y)) · (ψ(x) + ψ(y))

= 〈 by Proposition 2.10 〉

ψ(x) HA ψ(y)

(b) Proof of (5.9).

ψ(x 2A y)

= 〈 by Definitions 2.12 and 2.8 〉

ψ(¬p(x · ¬py) · x · y)
= 〈 by (5.2), (5.6) and (5.7) 〉

¬p(ψ(x) · ¬p(ψ(y))) · ψ(x) · ψ(y)

= 〈 by Definitions 2.8 and 2.12 〉

ψ(x) 2A ψ(y)

(c) Proof of (5.10).

ψ(x×A)

= 〈 by Definition 2.14 〉

ψ(x∗ 2A px)

= 〈 by the previous derivation, (5.3) and (5.7) 〉

(ψ(x))∗ 2A p(ψ(x)))

= 〈 by Definition 2.14 〉

ψ(x)×A

(d) Proof of (5.11). This is direct from (5.4).

(e) Proof of (5.12). This is direct from (5.5).

(f) Proof of (5.13). This is direct from (5.6).

(g) Proof of (5.14). This is direct from (5.7).

(h) Proof of (5.15).

ψ(x GAt y)

= 〈 by Definition 2.18 〉

ψ(t · x+ ¬t · y)
= 〈 by (5.1), (5.2) and (5.6) 〉
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ψ(t) · ψ(x) + ¬(ψ(t)) · ψ(y)

= 〈 by Definition 2.18 〉

ψ(x) GAψ(t) ψ(y)

2

5.2 From DAD-G• to KAD and Back

This section is the dual version of Section 5.1. Essentially, we derive similar results but

starting with algebra of decomposable elements instead of KAD. Its main content is

the following theorem.

Theorem 5.6. Let A be an algebra of decomposable elements and let F and G be the

transformations introduced in Definition 5.1.

1. G(A) is a KAD.

2. F ◦G is the identity on A. In other words, the algebra (A, test(A),HA, 2A,
×A ,>, 1,

¬D,GA, pp) derived from the KAD G(A) is equal to A (only the symbols denoting

the operators differ).

3. Let A′ be an algebra of decomposable elements. If φ : A → A′ is a homomorphism,

then φ is also a homomorphism from G(A) to G(A′). Thus, if A 4 A′, then

G(A) 4 G(A′) (where 4 denotes substructure).

Proof :

1. This is direct from Theorem 4.33.

2. To show the second part of the theorem, it suffices to prove x H y = x HA y,

x2y = x 2A y, x
× = x×A and x Gt y = x GAt y since ¬D and pp are unchanged either

by G or F .

(a) Firstly, we show that x E y ⇐⇒ x EA y.

x EA y

⇐⇒ 〈 by Definition 2.9 〉

ppy ≤D ppx ∧ ppy ·D x≤D y
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⇐⇒ 〈 by Remark 4.5 and Definition 4.1 〉

ppx E ppy ∧ ppy E pp(ppy ·D x) ∧ ppy ·D x E pp(ppy ·D x)2y

⇐⇒ 〈 by Proposition 4.17-3 〉

ppx E ppy ∧ ppy E pp(ppy2x) ∧ ppy2x E pp(ppy2x)2y

⇐⇒ 〈 by Proposition 3.14-9 and Boolean algebra 〉

ppx E ppy ∧ ppy2x E ppy2ppx2y

⇐⇒ 〈 since ppx E ppy and by Boolean algebra 〉

ppx E ppy ∧ ppy2x E ppy2y

⇐⇒ 〈 by Proposition 3.14-8 for ⇐=,

and by Proposition 3.14-7 for =⇒ since, by Lemma 3.7-1,

x E ppy2x E ppy2y 〉
x E y

So x H y = x HA y by (3.11) and Proposition 2.10.

(b) x 2A y

= 〈 by Definitions 2.12 and 2.8 〉

¬Dpp(x ·D ¬Dppy) ·D x ·D y
= 〈 by Propositions 4.17-5 and 4.17-3, Boolean algebra, De

Morgan and Definition 4.16 〉
(¬Dppx G pp(x2ppy))2(x2y G xppy2y)

= 〈 by Corollary 3.21-5 and (3.20) 〉

¬Dppx2(x2y G xppy2y) G pp(x2y)2(x2y G xppy2y)

= 〈 by Corollary 3.21-4, Proposition 3.14-7, Boolean algebra,

(3.20) and Remark 4.8 〉
(>2x2y G >2xppy2y) G (x2y G >2xppy2y)

= 〈 by (3.6) and Corollary 3.21-3 〉

x2y

(c) x×A

= 〈 by Theorem 2.20 and Remark 3.2 〉

µEA
(y :: y 2A x HA 1)

= 〈 by the previous two derivations 〉

µE(y :: y2x H 1)

= 〈 by Remark 3.2 〉
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x×

(d) x GAt y

= 〈 by Definition 2.18 〉

t ·D x+D ¬Dt ·D y
= 〈 by Proposition 4.17-3 〉

t2x+D ¬Dt2y

= 〈 by Corollary 4.4-1 〉

(t2x H ¬Dt2y) G ¬Dpp(t2x)2¬Dt2y G ¬Dpp(¬Dt2y)2t2x

= 〈 by Boolean algebra, Propositions 3.14-11 and 3.14-9, and

De Morgan 〉
>2(t2x H ¬Dt2y) G (¬Dt G ¬Dppx)2¬Dt2y G (t G ¬Dppy)2t2x

= 〈 by (3.6), Corollary 3.21-3 and Boolean algebra 〉

¬Dt2y G t2x

= 〈 by Boolean algebra, Corollary 3.21-9 and Proposition

3.20-2 〉
x Gt y

3. If φ : A → A′ is a homomorphism, then

φ(x H y) = φ(x) H φ(y) , (5.16)

φ(x2y) = φ(x)2φ(y) , (5.17)

φ(x×) = (φ(x))× , (5.18)

φ(>) = >′ , (5.19)

φ(1) = 1′ , (5.20)

φ(¬Dt) = ¬D(φ(t)) , (5.21)

φ(ppx) = pp(φ(x)) , (5.22)

φ(x Gt y) = φ(x) Gφ(t) φ(y) . (5.23)

We need to derive

φ(x+D y) = φ(x) +D φ(y) , (5.24)

φ(x ·D y) = φ(x) ·D φ(y) , (5.25)

φ(x∗D) = (φ(x))∗D , (5.26)

φ(>) = >′ , (5.27)

φ(1) = 1′ , (5.28)

φ(¬Dt) = ¬D(φ(t)) , (5.29)

φ(ppx) = pp(φ(x)) . (5.30)
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(a) Proof of (5.24).

φ(x+D y)

= 〈 by Corollary 4.4-1 〉

φ((x H y) G ¬Dppy2x G ¬Dppx2y)

= 〈 by Lemma 5.3, (5.16), (5.17), (5.21) and (5.22) 〉

(φ(x) H φ(y)) G ¬Dpp(φ(y))2φ(x) G ¬Dpp(φ(x))2φ(y)

= 〈 by Corollary 4.4-1 〉

φ(x) +D φ(y)

(b) Proof of (5.25).

φ(x ·D y)
= 〈 by Definition 4.16 〉

φ(x2y G xppy2y)

= 〈 by Lemmas 5.3 and 5.4, (5.17) and (5.22) 〉

φ(x)2φ(y) G φ(x)pp(φ(y))2φ(y)

= 〈 by Definition 4.16 〉

φ(x) ·D φ(y)

(c) Proof of (5.26).

φ(x∗D)

= 〈 by Definition 4.19 〉

φ((x G 1)×)

= 〈 by (5.18), Lemma 5.3 and (5.20) 〉

(φ(x) G 1′)×

= 〈 by Definition 4.19 〉

φ(x)∗D

(d) Proof of (5.27). This is direct from (5.19).

(e) Proof of (5.28). This is direct from (5.20).

(f) Proof of (5.29). This is direct from (5.21).

(g) Proof of (5.30). This is direct from (5.22). 2

We easily deduce the following Galois connection from Theorems 5.5 and 5.6.
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Corollary 5.7. Let K be a KAD, A be an algebra of decomposable elements and let

F and G be the transformations introduced in Definition 5.1. Then

F(K) 4 A ⇐⇒ K 4 G(A) .

Theorem 5.5, Theorem 5.6 and Corollary 5.7 together with their proof show why it

is necessary and sufficient to work with algebras of decomposable elements in order to

establish the desired duality.



Chapter 6

Algebras of Ordered Pairs

Thanks to Theorems 2.20, 2.21, 2.22 and 2.23, one can use Lemma 4.11 to construct

models of DAD-G• from models of KAD-based DAD-G•. Lemma 4.11 can also be used to

construct models of DAD-G• from other models of DAD-G•. These models are algebras

of ordered pairs. It turns out that pair-based representations have been used numerous

times in program semantics, such as in [BZ86, Doo94, HMS06, MS05, Par83], to cite just

a few. In this chapter, we deal with algebras of ordered pairs related to our problems

of algebraic connections between the different parts of the lattice of Figure 1.4.

In Section 6.1, thanks to Lemma 4.11, we present a semantics of programs that might

help understand DAD-G•. In Section 6.2, we present a result from [DD06c, DD08b] that

establishes an algebraic connection between the bottom part of the lattice and the whole

lattice of Figure 1.4.

These two sections talk about algebras of ordered pairs in two different contexts that

are close to our subject. One is related to semantics and the other to transformation.

This is a short chapter that displays several informations that are relevant to this thesis

but that did not fit the exact goals of the previous chapters.

6.1 DAD-G• and Program Semantics

The main results of Section 2.5, Section 4.5 and Chapter 5 are about algebras of decom-

posable elements. Any algebra of decomposable elements is isomorphic to a KAD-based

DAD-G• and vice versa. A legitimate question would be: what about nondecomposable
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>

1

Figure 6.1: Hasse diagram of Example 6.1.

elements? According to Definition 4.7, there are two ways for an element not to be

decomposable. It can either admit multiple decompositions or it can admit no decom-

position at all. How can we deal with all those elements in the realm of programs?

There is the beginning of an answer in Lemma 4.11. As we explained in Exam-

ple 4.12, this lemma enables to construct models of DAD-G• containing elements with

multiple decompositions.

Actually, it can also give birth to algebras of decomposable elements. Indeed, look

at the following example.

Example 6.1. Take A = test(A) = {>, 1}. The operators defined by the following

tables, omitting G•, make (A, test(A),H, 2, ×,>, 1,¬,G, pp,G•) a DAD-G•.

H > 1

> > >
1 > 1

2 > 1

> > >
1 > 1

×

> >
1 1

¬
> 1

1 >

pp

> >
1 1

The refinement ordering corresponding to H is represented in the lattice of Figure 6.1.

Then, using Lemma 4.11, one gets a DAD-G• with E = {(1, 1), (1,>), (>,>)} and

T = {(1, 1), (>,>)}. Since the only tests are 1 = (1, 1) and C = (>,>), and since all

elements of a DAD-G• are 1-decomposable and C-decomposable by Remark 4.9, then

we have an algebra of decomposable elements.

We do not know whether there is a way to construct models of DAD-G• containing

elements that admit no decomposition using Lemma 4.11. However, we propose the

following interpretation for these algebras of ordered pairs. Let A be a DAD-G• and

take x ∈ A and s ∈ test(A). An ordered pair (x, s) (with ppx E s) in such an algebra

created by Lemma 4.11 may be thought of as a program via the following semantics.

• For those states in s, we know that the program terminates successfully and it

behaves like s2x.

• For those states in ppx but not in s (read ¬s2ppx), we do not know how the program

behaves with respect to termination. If ever the program terminates successfully,

it behaves like ¬s2x.
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• For those states outside ppx (read ¬ppx), there is at least one possibility of unsuc-

cessful termination for the program x. The program may also terminate, but the

semantics is demonic and considers that the program has no output.

Therefore, for a test (s, s),

• for those states in s, we know that the program s terminates successfully and it

behaves like s.

• There are no such states that are in s but not in s.

• For those states outside s, there is at least one possibility of unsuccessful termi-

nation for the program s.

The elements having the form (x, ppx) and the tests are the only elements for which there

is no doubt.

This semantics agrees perfectly with the definitions of the operators ⊕, �, ~, ,

e, p and e• of Lemma 4.11. Further investigation needs to be done about Lemma 4.11,

Examples 4.10, 4.12 and 6.1, and this semantics (see Section 7.1).

At first sight, the semantics we just presented is not that far from the relational

semantics studied by Parnas [Par83]. However, they are different. In his paper, he

studies an algebra of ordered pairs (R,C), where R is a relation and C ⊆ pR. C is

called a competence set and it does not have the same interpretation as the tests in

the ordered pairs of Lemma 4.11. Indeed, look at Table 6.1 (taken from [Par83]) that

gives a summary of the semantics of an ordered pair (R,C) representing a program P in

Parnas’ algebra. Note that in this table, x and y do not stand for relations, but rather

for states.

Let us point out two differences between the algebra of ordered pairs of Lemma 4.11

and Parnas’ algebra. Those differences can be understood without explaining in detail

the work of Parnas. Firstly, Parnas supposes a complete knowledge of the programs rep-

resented by the ordered pairs. The semantics proposed with the algebra of Lemma 4.11

only supposes partial information (when the program is in those states in ¬s2ppx). Sec-

ondly, Parnas’ point of view is both angelic and demonic, while ours is exclusively

demonic. Indeed, look at the definition of composition of ordered pairs. According to

Parnas’ algebra,

(R1, C1) ◦ (R2, C2) = (R1 ·R2, p(C12R12C2)) ,
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Behavior of Competence pR R

program P set C

P terminates when Includes x Includes x Includes (x, y) if P might

started in x terminate in y when

started in x

P sometimes Does not Includes x Includes (x, y) if P might

terminates when include x terminate in y when

started in x started in x

P never terminates Does not Does not No pairs of the

when started in x include x include x form (x, y)

P never terminates Empty Empty Empty

P is never guaranteed Empty Nonempty Includes (x, y) if P might

to terminate terminate in y when

but may started in x

Table 6.1: Semantics of the algebra of ordered pairs of Parnas [Par83].
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where · is the usual (angelic) composition of relations and 2 is the standard demonic

composition of relations. But, according to Lemma 4.11,

(x, s)� (y, t) = (x2y, pp(s2x2t)) .

6.2 Another Algebraic Connection

In this section, we cite an important result from [DD06c, DD08b] stating that, under

suitable hypotheses, there is an algebraic connection between the bottom part of the

lattice and the whole lattice of Figure 1.4 (Theorem 6.7). It is a quick presentation but

it is so closely related to this thesis that it cannot be eluded. See [DD06c, DD08b] for

demonstrations.

The suitable hypotheses mentioned above are related to the following operator.

Definition 6.2 (Divergence operator). Let K be a KAD and take x ∈ K. The diver-

gence of x [DMS06a], noted Ox, is axiomatised by

Ox ≤ p(x · Ox)
t ≤ p(x · t) =⇒ t ≤ Ox

for all t ∈ test(K).

The divergence of x is a test that characterizes those states from which x might

iterate indefinitely. One can demonstrate that Ox = ν(t : test(K) : p(x · t)). In order to

illustrate this new operator, let us calculate the divergence operator for some relations

defined over S3 = {1, 2, 3}. Take x = {(1, 2), (2, 1), (2, 2), (3, 3)}, y = {(1, 2)} and

z = {(1, 1)}. Then Ox = {(1, 1), (2, 2), (3, 3)}, Oy = {} and Oz = {(1, 1)}. Given a

KAD, we do not know whether Ox exists for all elements x. However, when needed,

we will suppose its existence.

We mentioned in the introduction (Chapter 1) that demonic refinement algebra with

enabledness (DRAe) [Sol07, SvW06] is an algebraic structure that has the positively

conjunctive predicate transformers as its intended model. Moreover, it is an algebraic

description of the whole lattice of Figure 1.4 [DD06c, DD08b]. The following definitions

are going to lead to DRAe (Definition 6.4). We skip many details, but what the reader

ought to keep in mind is that DRAe is an algebraic foundation for the whole lattice of

Figure 1.4.
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Definition 6.3 (Demonic refinement algebra). A demonic refinement algebra (DRA)

is a structure D = (D,+, ·, ∗, ω, 0, 1) such that the following properties are satisfied for

all x, y, z ∈ D.

x+ (y + z) = (x+ y) + z (6.1)

x+ y = y + x (6.2)

x+ x = x (6.3)

0 + x = x (6.4)

x · (y · z) = (x · y) · z (6.5)

0 · x = 0 (6.6)

1 · x = x · 1 = x (6.7)

x · (y + z) = x · y + x · z (6.8)

(x+ y) · z = x · z + y · z (6.9)

x∗ = x∗ · x+ 1 (6.10)

xω = xω · x+ 1 (6.11)

xω = x∗ + xω · 0 (6.12)

There is a partial order ≤ induced by + such that for all x, y ∈ D,

x ≤ y ⇐⇒ x+ y = y . (6.13)

The next two properties are also satisfied for all x, y, z ∈ D.

x · z + y ≤ z =⇒ x∗ · y ≤ z (6.14)

z · x+ y ≤ z =⇒ y · x∗ ≤ z (6.15)

z ≤ x · z + y =⇒ z ≤ xω · y (6.16)

As in KA or in DA, it is easy to verify that ≤ is a partial order. However, there are

two major differences between DRA and KA. Firstly, there is an additional operator in

DRA, namely ω. Secondly, the laws of DRA do not ask for x·0 = 0. If we compare DRA

to DA, again there is this extra operator ω in DRA. Also, DA does not contain any 0

element. However, as for DA, DRA admits a top element. Indeed, the top element is

> = 1ω .

One can show that in DRA, > · x = > for all x ∈ D, but that there exists x ∈ D such

that x · > 6= > (unlike in DA). Indeed, 0 · > = 0 6= >.

We now define a concept close to that of tests. Let D be a DRA. An element t ∈ D
that has a complement ¬t satisfying

t · ¬t = ¬t · t = 0 and t+ ¬t = 1
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is called a guard . Let guard(D) be the set of guards of D. Then (guard(D),+, ·,¬, 0, 1)

is a Boolean algebra.

Then we are ready to define DRAe. It includes the enabledness operator that re-

minds of the domain operator of KAD and DAD.

Definition 6.4 (Demonic refinement algebra with enabledness). A demonic refinement

algebra with enabledness (DRAe) is a structure D = (D, guard(D),+, ·, ∗, ω, 0, 1,¬, p )

such that (D,+, ·, ∗, ω, 0, 1) is a DRA, guard(D) is the set of guards and the enabledness

operator p : D → guard(D) satisfies the following axioms for all x ∈ D and all t ∈
guard(D).

px · x = x ,

p(t · x) ≤ t ,

p(x · y) = p(x · py) ,

px · > = x · > .

The following proposition explains how one can always find a KAD at the bottom

of a DRAe, like in the lattice of Figure 1.4. Moreover, this KAD has two important

properties.

Proposition 6.5. Let D be a DRAe and consider KD = {x : D | x · 0 = 0}. Then

(KD, guard(D),+, ·, ∗, 0, 1,¬, p ) is a KAD where Ox exists for all x ∈ KD. Also, for all

x, y, z ∈ KD,

Ox = p(xω · 0) and Ox = 0 ∧ z ≤ x · z + y =⇒ z ≤ x∗ · y .

So the structure of Figure 1.4 is not a coincidence.

Lastly, here is the algebra of ordered pairs that is behind the promised algebraic

connection.

Lemma 6.6. Let K be a KAD such that

Ox exists for all x ∈ K and Ox = 0 ∧ z ≤ x · z + y =⇒ z ≤ x∗ · y . (6.17)

Consider E = {(x, t) : K × test(K) | t ·x = 0} and T = {(t, 0) : test(K)× test(K)} and

define the following operations for elements of E, where x, y ∈ K and s, t ∈ test(K).

(x, s)⊕ (y, t) = (¬(s+ t) · (x+ y), s+ t)

(x, s)� (y, t) = (¬p(x · t) · x · y, s+ p(x · t))
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(x, s)~ = (¬p(x∗ · t) · x∗, p(x∗ · t))
(x, s)ω̃ = (¬p(x∗ · t) · ¬Ox · x∗, p(x∗ · t) + Ox)

¬(t, 0) = (¬t, 0)

p(x, s) = (px+ t, 0)

Then (E, T,⊕,�, ~, ω̃, (0, 0), (1, 0),¬, p ) is a DRAe and the partial order E related to

⊕ satisfies

(x, s) E (y, t) ⇐⇒ s ≤ t ∧ ¬t · x ≤ y .

And here is the algebraic connection.

Theorem 6.7.

1. Every DRAe is isomorphic to an algebra of ordered pairs as in Lemma 6.6. The

isomorphism is given by

φ(x) = (¬p(x · 0) · x, p(x · 0)) ,

with inverse

ψ((x, s)) = x+ s · > .

2. Every KAD K satisfying (6.17) can be embedded in a DRAe D in such a way that

DK (see Proposition 6.5) is the image of K by the embedding.

In conclusion, thanks to Theorems 5.5 and 5.6, one can freely travel between KADs

and DAD-G•s, as long as the DAD-G•s are algebras of decomposable elements. Also,

thanks to Theorem 6.7, one can freely travel between KADs and DRAes, as long as the

KADs satisfy (6.17). We summarize these transformations in the lattice of Figure 6.2

which is a more complete version of the lattice of Figure 1.4. In this lattice, we use the

following notations.

0 =

(
0 0

0 0

)
s =

(
1 0

0 0

)
t =

(
0 0

0 1

)
1 =

(
1 0

0 1

)

a =

(
1 0

1 1

)
b =

(
1 1

0 1

)
c =

(
1 1

1 1

)
d =

(
1 1

0 0

)

e =

(
0 0

1 1

)
f =

(
1 0

1 0

)
g =

(
0 1

0 1

)
h =

(
0 1

0 0

)

i =

(
0 0

1 0

)
j =

(
0 1

1 0

)
k =

(
0 1

1 1

)
l =

(
1 1

1 0

)
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over S2 (Figure 2.3)
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Figure 6.2: Lattice of the DRAe of positively conjunctive predicate transformers over

S2, a synthesis of the semilattices of Figures 2.1 and 2.3.
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The conjunctive predicate transformer f corresponding to a pair (x, t) is given by

f(s) = ¬t · ¬p(x · ¬s). In words, a transition by x is guaranteed to reach a state in s if

the initial state cannot lead to nontermination (¬t) and it is not possible for x to reach

a state that is not in s (¬p(x · ¬s)).

The predicate transformers for all pairs follow. The entry for line (k, 0) and column

t, for instance, is s because f(t) = ¬0 · ¬p(k · ¬t) = s.

0 s t 1

(0, 1) 0 0 0 0

(e, s) 0 0 0 t

(d, t) 0 0 0 s

(i, s) 0 t 0 t

(t, s) 0 0 t t

(c, 0) 0 0 0 1

(s, t) 0 s 0 s

(h, t) 0 0 s s

(0, s) t t t t

0 s t 1

(l, 0) 0 t 0 1

(b, 0) 0 0 t 1

(a, 0) 0 s 0 1

(k, 0) 0 0 s 1

(0, t) s s s s

(d, 0) t t t 1

(f, 0) 0 1 0 1

(j, 0) 0 t s 1

0 s t 1

(1, 0) 0 s t 1

(g, 0) 0 0 1 1

(e, 0) s s s 1

(s, 0) t 1 t 1

(h, 0) t t 1 1

(i, 0) s 1 s 1

(t, 0) s s 1 1

(0, 0) 1 1 1 1



Chapter 7

Conclusion

At the very beginning of this research, when we first got aware of Figure 1.4, we were

trying to answer two questions.

1. If we define demonic operators from the (angelic) operators of KAD and then

forget the angelic ones, what kind of algebraic structure do we get?

2. We can define demonic operators from the angelic ones. Is it possible to do the

opposite?

The goal of the first question was to get a better understanding of some of the algebraic

structures that exist in the landscape of the semantics of programs. The goal of the

second question (that is, somehow, also related to the first one) was to compare in an

algebraic way angelic semantics and demonic semantics. Our work led us to a new

algebraic structure that we call “demonic algebra with domain and t-conditional”.

Why did we have to define a new algebraic structure in order to understand other

algebraic structures that already exist? The lattice of Figure 1.4 (see also Figure 6.2)

that has been cited so many times hides a strong algebraic activity. There was an

algebraic foundation for the lower part (KAD) and for the whole lattice (DRAe), but

there was no algebraic foundation for the upper part. Once this upper part has been

given structure, then we were able to look for algebraic connections. Those connections

are described in Theorems 5.5, 5.6 and 6.7.

What we get if we define demonic operators from the (angelic) operators of KAD

and then forget the angelic ones turned out to be way more complicated than expected.
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What we first planned to be a gentle algebraic structure that we would have called1

“Demonic Kleene Algebra” turned out to be a deep algebraic object that is an algebra

of what we call decomposable elements. If one thinks about some complicated proofs

like the one of Theorem 4.31-12 that is thirty pages long, one might ask whether algebra

of decomposable elements is manageable enough to work with. What makes algebra of

decomposable elements powerful is not how easy it is to prove some of its properties. It

is rather its duality with KAD. Now that we have established an algebraic connection,

we can easily go from one world to the other. Let us say a demonic problem is easier to

solve in the angelic world. Then use G (from Definition 5.1) to get in a better context

for the resolution of the problem and translate back the answer with F (also from

Definition 5.1). In other words, we get the best of both worlds.

7.1 Open Questions

The passage between the lower part and the upper part of the lattice of Figure 1.4 is

not the only one that exists. Theorem 6.7 tells us that there is a connection with the

whole lattice too. Now, relations, predicate transformers, KAs, DRAes and DAD-G• are

intimately related. However, this work does not only reveal the beauties of that now-

famous lattice, it also raises many questions. We have gathered some open problems

related to this field of research in this final section.

Firstly, we know that the canonical models (i.e. the free algebras) of algebras of

decomposable elements are the same as for KAD-based DAD-G•. Indeed, these two

structures are isomorphic by Theorems 5.5 and 5.6. Once the problem is solved for KAD,

it is solved for the algebra of decomposable elements. Indeed, noteM a canonical model

of KAD. Then F(M) is a canonical model of the algebra of decomposable elements.

Now, think about it as a decidability problem. Suppose we have an algorithm for

deciding equalities in KAD. Let A be an algebra of decomposable elements. Let us say

we want to know if x = y is true (x = y being an equality in A). Then here is an

algorithm giving the answer.

1. In x = y, replace respectively the operators H, 2, ×, ¬, pp and G• by HA, 2A, ×A , ¬,

p and GA•. The equality is now an expression in G(A).

2. In the equality obtained at the previous step, translate every operators using

1We kept the name “Demonic Kleene Algebra” for the title of this thesis because it says in three
words what we did in two hundred and twenty-nine pages.
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K
ψ //

F

��

K′

F

��
A

φ //

G

OO

A′

G

OO

Figure 7.1: Commutative diagram for Theorems 5.5 and 5.6.

Proposition 2.10 and Definitions 2.12, 2.14 and 2.18. The equality is now an

expression in G(A) written exclusively with angelic operators.

3. Apply the algorithm for KAD.

We now ask what are the canonical models for DA, DAT, DAD and DAD-G• (without

the restriction to decomposable elements)? And what about decidability?

We algebraically linked KADs, DRAes and DAD-G•. Would it be possible to estab-

lish links with other structures? Since we want to put together angelic and demonic

semantics, it would be interesting to find a link with multirelations [MCR04, MCR07,

Rew03] that basically mix those semantics. Moreover, links between predicate trans-

formers and multirelations have already been pointed out [RB06]. Thinking about

other algebraic structures, why would not there be a link with probabilistic algebraic

structures for semantics of programs? Among other aspects, the resemblance between

the probabilistic choice operator p⊕ from [MH08, MS08a, MS08b] and the operator G•

needs to be studied.

There is also the category theory point of view. We can rewrite Theorems 5.5 and 5.6

with the commutative diagram of Figure 7.1. What more can we learn from category

theory?

Finally, the discussion of Section 6.1 must be completed. On the one hand, what is

the difference between elements that admit no decomposition and elements that admit

multiple decompositions? On the other hand, we need to clarify how the semantics

suggested can be used in practice.
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Appendix A

Demonstration of Lemma 4.11

In this appendix, we demonstrate Lemma 4.11. We first recall its terms.

Lemma 4.11. Let (A, test(A),H, 2, ×,>, 1,¬,G, pp ,G•) be a DAD-G•. Consider E =

{(x, t) : A×test(A) | ppx E t} and T = {(t, t) : test(A)×test(A)} and define the following

operations for elements of E, where x, y ∈ A and s, t, u ∈ test(A).

(x, s)⊕ (y, t) = (x H y, s H t)

(x, s)� (y, t) = (x2y, pp(s2x2t))

(x, s)~ = (x×, pp(x×2s))

(s, s) = (¬s,¬s)
(s, s) e (t, t) = (s G t, s G t)

pp(x, s) = (ppx, ppx)

(x, s) e(u,u) (y, t) = (x Gu y, s Gu t)

Then (E, T,⊕,�, ~, (>,>), (1, 1), ,e, pp,e•) is a DAD-e• and the partial order

related to ⊕ satisfies

(x, s) E (y, t) ⇐⇒ x E y ∧ s E t . (A.1)

Proof : We first show that E is closed under ⊕, �, ~ and e• and that T is closed

under ⊕, � and e (T is trivially closed under and it is clear that the type of pp is

pp : E → T .)

• E is closed under ⊕.
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We have to show that pp(x H y) E s H t. This follows directly from (3.21) and

Boolean algebra, since (x, s), (y, t) ∈ E.

• E is closed under �.

We have to show that pp(x2y) E pp(s2x2t).

true

=⇒ 〈 by the hypothesis 〉

ppy E t

=⇒ 〈 by Proposition 3.14-8 and (3.20) 〉

pp(x2y) E pp(x2t)

=⇒ 〈 by Boolean algebra and Proposition 3.14-9 〉

pp(x2y) E pp(s2x2t)

• E is closed under ~.

We have to show that pp(x×) E pp(x×2s). This follows directly from Proposi-

tion 3.14-18.

• T is closed under ⊕.

Since (s, s)⊕ (t, t) = (s H t, s H t) by definition of ⊕, then (s, s)⊕ (t, t) ∈ T .

• T is closed under �.

(s, s)� (t, t)

= 〈 by definition of � 〉

(s2t, pp(s2s2t))

= 〈 by Boolean algebra and Proposition 3.14-1 〉

(s2t, s2t)

So (s, s)� (t, t) ∈ T

• T is closed under e.

Since (s, s) e (t, t) = (s G t, s G t) by definition of e, then (s, s) e (t, t) ∈ T .

• E is closed under e•.

We have to show that pp(xGuy) E sGut. This follows directly from Proposition 3.20-

20, since (x, s), (y, t) ∈ E.
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So we know that the operators ⊕, �, ~, , e, pp and e• are well defined.

We immediately derive (A.1). It will be used later on. The proof uses (3.11), which

holds for ⊕ only if (3.1), (3.2) and (3.3) also hold for ⊕. It is shown below that they

do hold, and the proof does not use (A.1).

(x, s) E (y, t)

⇐⇒ 〈 by (3.11) 〉

(x, s)⊕ (y, t) = (y, t)

⇐⇒ 〈 by definition of ⊕ 〉

(x H y, s H t) = (y, t)

⇐⇒ 〈 〉

x H y = y ∧ s H t = t

⇐⇒ 〈 by (3.11) 〉

x E y ∧ s E t

Then we show that ⊕, � and ~ satisfy the axioms of a DA. Take (x, s), (y, t), (z, u) ∈
E.

• Axiom (3.1)

By definition of ⊕, it follows directly from (3.1).

• Axiom (3.2)

By definition of ⊕, it follows directly from (3.2).

• Axiom (3.3)

By definition of ⊕, it follows directly from (3.3).

• Axiom (3.4)

By definition of ⊕, it follows directly from (3.4)

• Axiom (3.5)

(x, s)� ((y, t)� (z, u))

= 〈 by definition of � 〉
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(x, s)� (y2z, pp(t2y2u))

= 〈 by definition of � 〉

(x2(y2z), pp(s2x2pp(t2y2u)))

= 〈 by (3.20) 〉

(x2y2z, pp(s2x2t2y2u))

= 〈 by (3.19) and Proposition 3.14-9 〉

(x2y2z, pp(pp(s2x2t)2x2y2u))

= 〈 by definition of � 〉

(x2y, pp(s2x2t))� (z, u)

= 〈 by definition of � 〉

((x, s)� (y, t))� (z, u)

• Axiom (3.6)

(>,>)� (x, s)

= 〈 by definition of � 〉

(>2x, pp(>2>2s))

= 〈 by (3.6) and Proposition 3.14-1 〉

(>,>)

= 〈 by (3.6) and Proposition 3.14-1 〉

(x2>, pp(s2x2>))

= 〈 by definition of � 〉

(x, s)� (>,>)

• Axiom (3.7)

(1, 1)� (x, s)

= 〈 by definition of � 〉

(12x, pp(1212s))

= 〈 by (3.7) and Proposition 3.14-1 〉

(x, s)

= 〈 by (3.7) 〉

(x21, pp(s2x21))
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= 〈 by definition of � 〉

(x, s)� (1, 1)

• Axiom (3.8)

(x, s)� ((y, t)⊕ (z, u))

= 〈 by definition of ⊕ 〉

(x, s)� (y H z, t H u)

= 〈 by definition of � 〉

(x2(y H z), pp(s2x2(t H u)))

= 〈 by (3.8) and (3.21) 〉

(x2y H x2z, pp(s2x2t) H pp(s2x2u))

= 〈 by definition of ⊕ 〉

(x2y, pp(s2x2t))⊕ (x2z, pp(s2x2u))

= 〈 by definition of � 〉

(x, s)� (y, t)⊕ (x, s)� (z, u)

• Axiom (3.9)

((x, s)⊕ (y, t))� (z, u)

= 〈 by definition of ⊕ 〉

(x H y, s H t)� (z, u)

= 〈 by definition of � 〉

((x H y)2z, pp((s H t)2(x H y)2u))

= 〈 by (3.9), Proposition 3.14-3, (3.8) and (3.21) 〉

(x2z H y2z, pp(s2t2x2u) H pp(s2t2y2u))

= 〈 by Proposition 3.14-9 and Boolean algebra 〉

(x2z H y2z, pp(s2x2u) H pp(t2y2u))

= 〈 by definition of ⊕ 〉

(x2z, pp(s2x2u))⊕ (y2z, pp(t2y2u))

= 〈 by definition of � 〉

(x, s)� (z, u)⊕ (y, t)� (z, u)



Appendix A. Demonstration of Lemma 4.11 225

• Axiom (3.10)

(x, s)~ � (x, s)⊕ (1, 1)

= 〈 by definition of ~ 〉

(x×, pp(x×2s))� (x, s)⊕ (1, 1)

= 〈 by definition of � 〉

(x×2x, pp(pp(x×2s)2x×2s))⊕ (1, 1)

= 〈 by definition of ⊕ 〉

(x×2x H 1, pp(pp(x×2s)2x×2s) H 1)

= 〈 by (3.10), Proposition 3.14-7 and Boolean algebra 〉

(x×, pp(x×2s))

= 〈 by definition of ~ 〉

(x, s)~

Rather than demonstrate (3.12) and (3.13), we work on Laws (3.17) and (3.18)

which are equivalent (see Remark 3.2).

• Law (3.17)

(x, s)� (z, u) E (z, u)

⇐⇒ 〈 by definition of � 〉

(x2z, pp(s2x2u)) E (z, u)

⇐⇒ 〈 by (A.1) 〉

x2z E z ∧ pp(s2x2u) E u

⇐⇒ 〈 by Proposition 3.14-9 and Boolean algebra 〉

x2z E z ∧ s E u ∧ pp(x2u) E u

=⇒ 〈 by (3.17) and (3.22) 〉

x×2z E z ∧ s E u ∧ pp(x×2u) E u

=⇒ 〈 by Proposition 3.14-8 〉

x×2z E z ∧ pp(x×2s) E pp(x×2u) ∧ pp(x×2u) E u

=⇒ 〈 by Boolean algebra and Proposition 3.14-9 〉

x×2z E z ∧ pp(pp(x×2s)2x×2u) E u
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⇐⇒ 〈 by (A.1) 〉

(x×2z, pp(pp(x×2s)2x×2u)) E (z, u)

⇐⇒ 〈 by definition of � 〉

(x×, pp(x×2s))� (z, u) E (z, u)

⇐⇒ 〈 by definition of ~ 〉

(x, s)~ � (z, u) E (z, u)

• Law (3.18)

(z, u)� (x, s) E (z, u)

⇐⇒ 〈 by definition of � 〉

(z2x, pp(u2z2s)) E (z, u)

⇐⇒ 〈 by (A.1) 〉

z2x E z ∧ pp(u2z2s) E u

⇐⇒ 〈 by Proposition 3.14-9 and Boolean algebra 〉

z2x E z ∧ pp(z2s) E u

=⇒ 〈 by (3.18) 〉

z2x× E z ∧ pp(z2s) E u

⇐⇒ 〈 by Proposition 3.14-8 〉

z2x× E z ∧ pp(z2x×2s) E pp(z2s) ∧ pp(z2s) E u

=⇒ 〈 by (3.20) 〉

z2x× E z ∧ pp(z2pp(x×2s)) E u

⇐⇒ 〈 by Boolean algebra and Proposition 3.14-9 〉

z2x× E z ∧ pp(u2z2pp(x×2s)) E u

⇐⇒ 〈 by (A.1) 〉

(z2x×, pp(u2z2pp(x×2s))) E (z, u)

⇐⇒ 〈 by definition of � 〉

(z, u)� (x×, pp(x×2s)) E (z, u)

⇐⇒ 〈 by definition of ~ 〉

(z, u)� (x, s)~ E (z, u)

The fact that (T,⊕,e, , (1, 1), (>,>)) is a Boolean algebra directly follows from
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the fact that (test(A),H,G,¬, 1,>) is a Boolean algebra. So (E, T,⊕,�, (>,>), (1, 1),

,e) is a DAT.

Then we show that pp satisfies all the axioms of a DAD. Take (x, s), (y, t) ∈ E and

(u, u) ∈ T .

• Axiom (3.19)

pp((x, s)� (u, u))� (x, s)

= 〈 by definition of � 〉

pp(x2u, pp(s2x2u))� (x, s)

= 〈 by definition of pp 〉

(pp(x2u), pp(x2u))� (x, s)

= 〈 by definition of � 〉

(pp(x2u)2x, pp(pp(x2u)2pp(x2u)2s))

= 〈 by (3.19), Boolean algebra and (3.20) 〉

(x2u, pp(s2x2u))

= 〈 by definition of � 〉

(x, s)� (u, u)

• Axiom (3.20)

pp((x, s)� (y, t))

= 〈 by definition of � 〉

pp(x2y, pp(s2x2t))

= 〈 by definition of pp 〉

(pp(x2y), pp(x2y))

= 〈 by (3.20) 〉

(pp(x2ppy), pp(x2ppy))

= 〈 by definition of pp 〉

pp(x2ppy, pp(s2x2ppy))

= 〈 by definition of � 〉

pp((x, s)� (ppy, ppy))
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= 〈 by definition of pp 〉

pp((x, s)� pp(y, t))

• Axiom (3.21)

pp((x, s)⊕ (y, t))

= 〈 by definition of ⊕ 〉

pp(x H y, s H t)

= 〈 by definition of pp 〉

(pp(x H y), pp(x H y))

= 〈 by (3.21) 〉

(ppx H ppy, ppx H ppy)

= 〈 by definition of ⊕ 〉

(ppx, ppx)⊕ (ppy, ppy)

= 〈 by definition of pp 〉

pp(x, s)⊕ pp(y, t)

• Axiom (3.22)

pp((x, s)� (u, u)) E (u, u)

⇐⇒ 〈 by definition of � 〉

pp(x2u, pp(s2x2u)) E (u, u)

⇐⇒ 〈 by definition of pp 〉

(pp(x2u), pp(x2u)) E (u, u)

⇐⇒ 〈 by (A.1) 〉

pp(x2u) E u

=⇒ 〈 by (3.22) 〉

pp(x×2u) E u

⇐⇒ 〈 by (A.1) 〉

(pp(x×2u), pp(x×2u)) E (u, u)

⇐⇒ 〈 by definition of pp 〉

pp(x×2u, pp(pp(x×2s)2x×2u)) E (u, u)

⇐⇒ 〈 by definition of � 〉
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pp((x×, pp(x×2s))� (u, u)) E (u, u)

⇐⇒ 〈 by definition of ~ 〉

pp((x, s)~ � (u, u)) E (u, u)

Then we show that e• satisfies (3.23) so (E, T,⊕,�, ~, (>,>), (1, 1), ,e, pp,e•)
is a DAD-e•. Take (x, s), (y, t), (z, u) ∈ E and (v, v) ∈ T .

(x, s) e(v,v) (y, t) = (z, u)

⇐⇒ 〈 by definition of e• 〉

(x Gv y, s Gv t) = (z, u)

⇐⇒ 〈 〉

x Gv y = z ∧ s Gv t = u

⇐⇒ 〈 by (3.23) 〉

v2x = v2z ∧ ¬v2y = ¬v2z ∧ v2s = v2u ∧ ¬v2t = ¬v2u

⇐⇒ 〈 by Boolean algebra and Proposition 3.14-1 〉

v2x = v2z ∧ ¬v2y = ¬v2z ∧ pp(v2v2s) = pp(v2v2u) ∧
pp(¬v2¬v2t) = pp(¬v2¬v2u)

⇐⇒ 〈 〉

(v2x, pp(v2v2s)) = (v2z, pp(v2v2u)) ∧
(¬v2y, pp(¬v2¬v2t)) = (¬v2z, pp(¬v2¬v2u))

⇐⇒ 〈 by definition of � 〉

(v, v)� (x, s) = (v, v)� (z, u) ∧ (¬v,¬v)� (y, t) = (¬v,¬v)� (z, u)

⇐⇒ 〈 by definition of 〉

(v, v)� (x, s) = (v, v)� (z, u) ∧ (v, v)� (y, t) = (v, v)� (z, u)

2
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