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It is well documented that sleep contributes to memory

consolidation and it is also accepted that long-term synaptic

plasticity plays a critical role in memory formation. The

mechanisms of this sleep-dependent memory formation are

unclear. Two main hypotheses are proposed. According to the

first one, synapses are potentiated during wake; and during

sleep they are scaled back to become available for the learning

tasks in the next day. The other hypothesis is that sleep slow

oscillations potentiate synapses that were depressed due to

persistent activities during the previous day and that

potentiation provides physiological basis for memory

consolidation. The objective of this review is to group

information on whether cortical synapses are up-scaled or

down-scaled during sleep. We conclude that the majority of

cortical synapses are up-regulated by sleep slow oscillation.
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Introduction: neuronal activities during sleep
and wake states
During Non-Rapid Eye Movement sleep (NREM, also

referred to as slow-wave sleep—SWS) the EEG/LFP

activity is dominated by spindles and slow waves,

while during Rapid Eye Movement (REM) sleep and

waking state it is dominated by activated patterns (low-

amplitude, high-frequency activities) [1]. Intracellular

recordings in anesthetized cats demonstrated that

depth-positive/surface negative components of LFP are

associated with hyperpolarization and silence of

cortical neurons, while cortical neurons are depolarized

and fire spikes during depth-negative/surface positive

components of LFP [2]. Identical relation of LFP and
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intracellular activities was reported during SWS (Figure 1)

[3–5].

Waking state and REM sleep are characterized by

persistent active states in cortical neurons (Figure 1a)

that show continuous synaptic, both excitatory and inhib-

itory, activities [3,4,6]. It is important to mention that

spontaneous or evoked active states in non-anesthetized

preparations are dominated by inhibition and spontane-

ous firing occurs upon a decrease of inhibitory tone [7,8].

Because of a domination of inhibitory activities, a large

subset of cortical neurons during waking state display

synaptic activities, but they are relatively hyperpolarized

and do not fire or rarely fire action potentials [7,9��]. Even

neurons with high spontaneous firing rates decrease their

firing frequency upon the onset of behavioral tasks [10�].
Intracellular patch-clamp and sharp electrode recordings

from various cortical areas of non-anesthetized rats

confirmed that large membrane potential fluctuations

of cortical neurons were present only when field potential

showed large amplitude activities [11], meaning during

either sleep or drowsiness. Similar results were also found

in V1 cortical area of mice [8,12].

Whole-cell recordings from somatosensory cortex of

non-anesthetized mice complicated this picture. It

appears that in non-anesthetized, potentially awake mice,

the membrane potential of barrel cortex neurons from

superficial layers continuously oscillate between depolar-

ized and hyperpolarized voltages (apparently not states,

because they are too short) in quiet wake and it becomes

persistently depolarized when sensory-motor activities

are present [13,14]. It is important to mention that these

membrane potential oscillations with a frequency of

3–5 Hz in potentially awake mice were highly correlated

with LFP, meaning that large amplitude membrane

potential oscillations were present when large amplitude

LFP oscillations were present too [14]. The

interpretation of these results is a matter of discussion.

First, it is unclear how to identify states of vigilance in

head-restrained mice as their cortical states are unstable

and continuously vary from slow oscillatory to activated

pattern [15,16,17��]. Second, due to the technical chal-

lenge, usually cells are patched under light isoflurane

anesthesia and recorded throughout recovery from that

anesthesia; therefore it is unclear whether some remain-

ing effects of the anesthetic influence these recordings.

Third, this type of oscillatory activity in mice could be

related to well-known rhythmic wake activities like alpha

or mu rhythms [18–21]. It is well accepted that spike and

wave seizures in rodents occur at a frequency of 6–8 Hz,

but in humans their main frequency is 3 Hz [22–24]. It is
www.sciencedirect.com
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Sleep–wake activities and long-term plasticity. (a) An example of local field potential (LFP) and intracellular recordings during slow-wave sleep

(SWS, red) and its transition to waking state (blue). Yellow background shows examples of active states, green background shows examples of

silent states. (b) Upper panel shows LFP and intracellular activities of a neuron with relatively low firing rates during active cortical states.

Synapses formed by such a neuron can potentially induce long-term depression (LTD, lower panel). (c) Upper panel shows LFP and intracellular

activities of a neuron with relatively high firing rates during active cortical states. Synapses formed by such a neuron can potentially induce long-

term potentiation (LTP, lower panel).
also possible that somatosensory mu rhythm (10–16 Hz)

recorded in immobile subjects or occipital alpha rhythms

(7–12 Hz) recorded in subjects with closed eyes could be

present in mice with different frequencies. The fourth

possibility is that mice just lack sufficient number of

connections between neurons enabling the maintenance

of persistent active states [25–28]. We proposed long time

ago that a given number of connections between neurons

is needed to maintain regular activity [29] and overall the

activity is reduced in reduced cortical preparations
www.sciencedirect.com 
[29,30]. It appears that due to reduced intracortical con-

nectivity patterns, it is very difficult to induce regular

patterns of activities in slices from rodents and such states

are easily recorded in cortical slices obtained from carni-

vores that exhibit richer intracortical connectivity [31].

Activity of cortical neurons during REM sleep shows

species-dependent differences. In cats, fast spiking

(normally parvalbumin-containing [32]) neurons increase

firing exclusively during eye movements, which causes a

decrease in firing in other neuronal types [4]. By contrast,
Current Opinion in Neurobiology 2017, 44:116–126
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calcium imaging in mice revealed that parvalbumin-con-

taining neurons increase their activity throughout REM

sleep episodes, which causes overall decrease in activity

of other neurons [33]. An overall decrease in firing rates

during REM sleep was also observed in the CA1 region of

hippocampus [34].

Can slow waves, characterized by a silent followed by an

active network state, be generated during well-defined

behavioral waking? Yes. Slow-wave activity during wak-

ing state can be present in epileptic animals or patients

[35,36]. Such slow-wave activity is likely generated due to

epilepsy-related deafferentation (brain trauma, tumor,

etc.). Another possibility is sleep deprivation [37] in which

the excitatory drive is likely reduced. Indeed, cortical

slow-wave activity is replaced by activated pattern upon

thalamic activation [38,39] and at least the neurons in

mice thalamic VPM nucleus do not fire many spikes

during waking state outside whisker movement episodes

[40], thus, they lack a thalamic tonic activation during

quiet wakefulness. Based on all above, we conclude that

during waking state the membrane potential of the

majority of cortical neuron does not show major fluctua-

tions and that during slow-wave sleep the membrane

potential fluctuates between depolarizing and hyperpo-

larizing states.

Long-term synaptic plasticity
Long-term potentiation (LTP) was discovered by Lømo

in 1966 (first publication dated 1973 [41]) and is the long-

lasting improvement in communication between two

neurons. Later, the opposite phenomenon, the long-term

depression (LTD) was found [42]. A typical experimental

stimulation paradigm to induce long-term plasticity is the

tetanic stimulation of presynaptic fibers with a train of

100 Hz for 1 s, which induces LTP. LTD can be induced

either by low-frequency stimulations (homosynaptic

LTD) or as a result of inactivity in synapses formed on

a neuron that have active synapses (heterosynaptic

LTD). For a long time the long-term synaptic plasticity

was considered as a basis of memory formation [43],

although hippocampal GluR-A-dependent LTP was

not essential for spatial learning in water maze [44]. A

recent study demonstrated however a causal link of long-

term plasticity in amygdala-dependent fear learning:

LTD conditioning—inactivated memory and LTP con-

ditioning reactivated memory [45��].

It was proposed that sleep oscillations induce a down-

regulation of synaptic excitability [46,47]. During SWS

the dominant frequency of activity is around 1 Hz and

some neurons fire on average one spike with this fre-

quency (Figure 1b). Such a frequency of stimulation

normally triggers LTD. However, the other neurons fire

high-frequency spike trains during active states of cortical

slow oscillation and these trains are repeated with a

frequency of about 1 Hz (Figure 1c). This pattern of
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spontaneous firing is normally associated with LTP.

Therefore the net synaptic modification induced by sleep

slow oscillations remains unclear.

Neuronal plasticity and sleep–wake cycle
Neuronal plasticity is the ability of neurons to modify

their responses to incoming inputs. It can be subdivided

to plasticity in the expression of intrinsic neuronal cur-

rents and to synaptic plasticity: short-term and long-term.

Different experiments evaluated network/neuronal

responsiveness during sleep–wake cycle [3,48–51], but

the interpretation of these results was mostly ascribed to

synaptic changes. It appears that SWS potentiates the

overall cortical excitability as synaptically driven field

potential and intracellular responses increase after a

period of SWS [52] (Figure 2).

State-dependent changes in neuronal plasticity can be

attributed to at least three factors. First, changes in

neuromodulatory activities that directly affect multiple

neuronal channels and thus intrinsic excitability

[53�,54–57], second, state-dependent changes in gene

expression [58–61] which at the end alter the content

of different channels and thus the intrinsic neuronal

excitability; third, the presence of hyperpolarizing peri-

ods of neuronal activities, which can affect voltage and

time-dependent intrinsic neuronal currents.

Short-term synaptic plasticity

A vast majority of studies is focused on synaptic mod-

ifications associated with state-dependent changes. Dur-

ing waking state, cortical neurons fire with relatively

steady rates [62]. Consistent presynaptic firing induces

steady-state synaptic plasticity, which is normally

expressed as steady-state synaptic depression [63]. In

an active network, overall short-term synaptic dynamics

are reduced [64,65]. The main feature of SWS is synchro-

nized neuronal silence occurring over large cortical terri-

tories [5,66–70]. A brief silence in steady-state presynap-

tic firing immediately recovers synapses from steady-state

synaptic depression [63,71]. Therefore, it is highly likely

that silent states of sleep can reduce or eliminate steady-

state synaptic plasticity induced by waking state. The

other important mechanism that could mediate sleep-

induced short-term facilitation is the presynaptic neuron

hyperpolarization-induced facilitation of postsynaptic

response due to the recovery from inactivation of Na+

channels controlling action potential amplitude in the

axon [72��]. Indeed, during silent states of the slow

oscillation, cortical neurons are hyperpolarized by 5–

15 mV [73]. In transition to active state, layer five pyra-

midal cells are depolarized and fire action potential within

just a few milliseconds [5]. Combined with the highest

levels of extracellular Ca2+ at this period of time [74,75],

the elicited EPSPs should be of higher amplitude as

compared to the mean EPSPs produced during any other

network state. The fact that extracellular Ca2+
www.sciencedirect.com
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Figure 2
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Slow-wave sleep induces long-term potentiation. (a) Sleep and wake states in a cat. (b) Intracellular activities of cortical neuron from

somatosensory area in wake – SWS – wake during stimulation of ascending medial lemniscus pathway. (c) Dynamics of first depth-negative

component of somatosensory evoked potential during wake. Left part corresponds to wake before sleep, empty part corresponds to SWS during

which the stimulation was not applied and right part corresponds to wake after SWS. (d) Typical examples of intracellular responses during wake

– SWS – wake states. (e) Artistic representation of typical intracellular voltage responses during wake – SWS – wake states.
concentration is lower in wake as compared to sleep [76��]
implies lower synaptic release probability during wake.

Long-term plasticity

A popular hypothesis suggests that waking state is asso-

ciated with up-regulation of cortical synapses, which are

then down-regulated during SWS [46,77�]. Initially, this

hypothesis was based on the fact that multiple genes

involved in synaptic plasticity were up-regulated during

wake, after sleep deprivation [58,78]. However, the time

between gene expression, protein synthesis, transport

and membrane insertion takes usually hours; therefore,

the real effects of wake-dependent gene expression

should be sensed more during sleep. The current

support for this hypothesis (current name—synaptic
www.sciencedirect.com 
homeostasis hypothesis (SHY)) is based on three

lines of evidences: molecular, electrophysiological, and

structural [77�]. However, the currently available

evidences cannot provide a full support for the hypoth-

esis, and therefore are not well accepted by all

[79,80��,81].

(1) Molecular evidence supporting SHY. Levels of GluA1-

containing AMPARs are 30–40% higher after wake-

fulness than after sleep in rats [51]. This finding was

further strengthened by the demonstration that this

increase depends on the immediate early gene

Homer1a, which controls AMPA-type glutamate

receptors and which is itself controlled by noradrena-

line and adenosine [82�].
Current Opinion in Neurobiology 2017, 44:116–126
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Opposite evidences. High levels of GluA1-containing

AMPARs does not necessarily support SHY because

of the following reasons. (a) The levels of acetylcholine

are high during waking state and high levels of

acetylcholine decrease fast (AMPA-dependent) intracor-

tical synaptic currents/potentials [52,83]. Therefore,

if any up-regulation of AMPA receptors occurs, this is

likely due to homeostatic mechanisms as a response to

acetylcholine-induced depression of synaptic efficacy. (b)

It is unclear to what extent AMPA receptor up-regulation

alone is responsible for long-term synaptic changes.

Sleep-dependent memory consolidation requires coacti-

vation of both AMPA and NMDA receptors [84]. (c) The

sleep-dependent synaptic strengthening occurs via

NMDA receptors, CaMKII, and ERK and PKA activity

[85]. Sleep also promote protein synthesis (translation,

not transcription) of key plasticity related molecules ARC
and BDNF [86]. Lastly, mGluR5 receptor, a receptor that

is implicated in learning and memory is up-regulated at

the beginning of sleep phase in rats [87�]. Thus, available

molecular evidences do not support SHY.

(2) A list of electrophysiological evidences presented to support
SHY [77�] do not support SHY at all. To support sleep-

dependent downscaling of the synaptic response, four

types of the experimental evidences are listed. (a)

The first negative component of the response evoked

by transcallosal electrical stimulation increases with

time spent awake and decreases with time spent

asleep [51]. The slope of the early (monosynaptic)

response evoked by electrical stimulation is a classical

measure of synaptic strength when only presynaptic

fibers are activated. The interpretation of results with

transcallosal stimulation, however, is complex. First,

electrical stimulation of grey matter excites primarily

axons, but not cell bodies [88,89]. Second, the first

component of field potential response induced by

callosal stimulation is a reflection of antidromic spike

firing, but not synaptic responses [90]. Therefore, this

experiment demonstrates that either the axonal excit-

ability is reduced during sleep or that during sleep the

antidromic spikes are less ready to invade the soma of

cortical neurons. Indeed, during SWS, cortical neu-

rons oscillate between depolarizing and hyperpolar-

izing states. Somatic hyperpolarization readily blocks

somatodendritic component or even the initial com-

ponent of antidromic spike leaving unaffected only

the medullated (M) component (usually just 1–5 mV)

of a full antidromic spike [91,92]. Therefore, the first

negative component of transcallosal evoked field

potential response does not provide information on

synaptic processes. (b) The slope of the early

response evoked in frontal cortex by transcranial

magnetic stimulation (TMS) increases progressively

in the course of 18 hours of continuous wake and

returns to baseline levels after one night of recovery
Current Opinion in Neurobiology 2017, 44:116–126 
sleep [93]. It is well accepted that TMS directly

excites primarily axons, but not neuronal bodies

[94]. Therefore, as in the case of antidromic spikes,

a sleep-dependent reduction of earliest phases of

TMS-induced evoked potential can be explained

by a reduced axonal excitability. (c) In the third type

of experiment supporting SHY, patch-clamp record-

ings of miniature Excitatory Post-Synaptic Currents

(mEPSCs) were performed from layer 2–3 pyramidal

cells in cortical slices obtained from animals

experiencing a long period of control (mainly waking

state), sleep, or sleep deprivation. As authors report,

the frequency of mEPSCs was different in these

conditions: high after wake, higher after sleep depri-

vation, and lower after sleep [95]. The available

results are confusing. First of all, the frequency of

mEPSC provides information on presynaptic release;

therefore, the explanation cannot be coupled with

results on changes in postsynaptic GluA1-containing

AMPARs. In different sets of experiments, the fre-

quency of mEPSCs in two control groups was

1.69 � 0.21 Hz; and 2.31 � 0.40 Hz, which is about

40% difference in two similar experiments. The

frequency of mEPSCs after sleep deprivation was

5.71 � 1.09 Hz or 2.44 � 0.48 Hz in two different

experiments, which is about a double of difference.

The frequency of mEPSCs after sleep deprivation in

one of experiments was 2.44 � 0.48 Hz, which was

similar to the frequency of miniature EPSPs in

another control experiment (2.31 � 0.40 Hz). There-

fore, most of the provided electrophysiological evi-

dences do not actually support SHY. (d) The firing of

cortical neurons progressively increases during wake

and decreases during sleep [70]. This appears to be

only partially true as this rule can be applied to

neurons with relatively high firing rates and neurons

with low firing rates, constituting the majority of

cortical neurons [96], increase their firing throughout

sleep episode [9��].

Other studies demonstrate that SWS increases synaptic

efficacy. Somatosensory evoked potential induced by

ascending prethalamic stimulation (medial lemniscus)

was increased after a period of SWS as compared to

pre-sleep waking period (Figure 2c). This field potential

response increase was mediated by an increase in the

amplitude of intracellularly recorded EPSPs in the major-

ity of investigated neurons pointing to a sleep-dependent

increase in synaptic efficacy [52] (Figure 2d,e). An in vitro
investigation demonstrated that using a natural pattern of

synaptic stimulation accompanied with neuronal hyper-

polarization that reflects (models) silent phases of the

slow oscillation was sufficient to induce this postsynaptic

long-term facilitation that is Ca2+-, AMPA-, and NMDA-

dependent [52]. Several studies propose/demonstrate

that grouping of ripples/spindles by sleep slow-wave

activities plays a critical role in sleep-dependent memory
www.sciencedirect.com
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consolidation [97–101]. The high extracellular Ca2+ levels

during sleep [76��] and in particular at the transition from

silent to active states of slow waves [74,75] as well as

higher amplitude of spikes elicited at hyperpolarized

voltages [72��,102] in addition to higher release probabil-

ity implies higher Ca2+ entry in a postsynaptic neurons

and thus an increase in LTP.

Further studies demonstrated that V1 response potentia-

tion, which is associated with a shift in orientation pref-

erence, occurs only after sleep suggesting that sleep

promotes cortical synaptic potentiation [80��,103]. In

addition to direct long-term synaptic facilitation, this

sleep-dependent increase in activity during following

waking state can be controlled by synaptic disinhibition

[104]. Therefore, physiological evidences demonstrate

multiple mechanisms of SWS induced synaptic up-regu-

lation, but not down-regulation in neocortex.

In chemical synapses, it is obvious that presynaptic firing

is the only mechanism that initiates synaptic release and

thus triggers all further processes responsible for synaptic

plasticity. However, a role of overall firing rates in the

maintenance of synaptic homeostasis is a matter of dis-

cussion. First, it was shown that neuronal firing rates

progressively increase during wake and decrease during

sleep [70]. However, the opposite is true for the majority

of neurons with low firing rates [9��], and neocortical

neurons usually show low firing rates [96]. It appears that

the overall state-dependent changes in neuronal firing do

not contribute to sleep homeostasis [105�,106�,107], but

homeostasis in firing rates is promoted exclusively by

waking state [108��], therefore these results are incom-

patible with a general down-scaling of synapses during

sleep. Thus, available electrophysiological evidences do

not support SHY.

(3) Structural evidence supporting SHY. “In adolescent

1-month-old mice, spines form and disappear at all

times, but spine gain prevails during wake, resulting

in a net increase in spine density, while spine loss is

larger during sleep, resulting in a net spine decrease”

[109]. The same study shows that spine turnover is

not impacted by sleep and wake in adult mice. Again,

1-month-old mice small and medium size axon-spine

interface decreases during sleep [110�]. The mecha-

nisms of these changes are unclear, but might be

related to a larger extracellular space volume during

sleep as compared to wake [76��,111]. One-month-old

mice roughly correspond to the end of childhood and

beginning of adolescence. There are several issues

that have to be taken into consideration here. First,

the learning abilities are not lost in adolescence and at

later ages: if spines contribute to learning, their

change must be seen after learning episodes. Second,

the transition from childhood to adolescence is
www.sciencedirect.com 
associated with infantile amnesia in human and ani-

mals [112,113]. In 9–11 years old children sleep did

not play a role in memory consolidation in at least

some declarative memory tasks [114]. It is suggested

that protracted postnatal development of key brain

regions important for memory interferes with stable

long-term memory storage [115]. Therefore, the

spine plasticity in 1-month old mice might be the

mechanisms of forgetting and not learning. Third, an

electron microscopy study demonstrates a decrease in

the density of excitatory synapses after wake period

and its increase after sleep period [116�]. Fourth, a

recent study, conducted on adult (3-month old) mice,

demonstrated sleep-dependent, branch-specific for-

mation of spines after learning [117��]. Therefore,

structural evidences demonstrate that sleep-depen-

dent spine elimination coincides with period of infan-

tile amnesia and that sleep-dependent learning is

associated with an increase in excitatory synapse

density and branch-specific formation of spines.

Overall, all three lines of evidences: molecular,

electrophysiological, and structural point to sleep-

dependent increase in synaptic efficacy, but not

sleep-dependent down-regulation of synapses as sug-

gested by SHY.

Conclusion
Several recent publications suggest that slow-wave sleep

is self-organizing, default state of cortical network

[67,118,119]. Therefore, the state of plasticity during

SWS can be considered as reference level of synaptic

efficacy. The maximal synaptic efficacy during slow oscil-

lation occurs during silent states of cortical network.

Because of reduced release probability and cortical shunt-

ing, the efficacy of synaptic responses is reduced in active

states [74,75,120]. These short-term network dynamics

are accompanied or lead to an increase in multiple molec-

ular factors contributing to long-term plasticity

and increase branch-specific spine/synapse formation

(Figure 3). Upon waking up, when network is persistently

active the synaptic efficacy appears to be low (Figure 3),

but the synaptic failure rates are low too, possibly due to

high levels of GluA1 receptors. We suggest that during

wake the transmission of information in cortical network

occurs at nearly linear fashion and that waking state is

associated with steady-state synaptic dynamics, relatively

low in amplitude, but highly reliable and not much

‘plastic’ synaptic state. Because the membrane potential

of neurons is relatively depolarized (a few millivolts

below threshold) the overall network responsiveness dur-

ing waking state is high as small amplitude synaptic

events can easily lead to action potential generation.

Synchronous silent states of SWS reduce/remove

steady-state synaptic plasticity, that overall increases

synaptic responsiveness (Figure 3), however, the network

responsiveness depends on the exact phase of the slow

oscillatory cycle [49,121,122].
Current Opinion in Neurobiology 2017, 44:116–126
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Figure 3
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Overall cortical plasticity during wake and slow-wave sleep (see details in text).
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This is a very important study using two-photon microscopy in head-
restrained mice to image dendritic trees and to measure the spine
formation before and after a learning task. Results show a sleep-depen-
dent, branch-specific spine formation following a learning task. Different
motor learning task induced spine formation on different dendritic
branches.
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