
Formal Enforcement of Security Policies: An
Algebraic Approach

Thèse

GUANGYE SUI

Doctorat en Informatique
Philosophiæ doctor (Ph.D.)

Québec, Canada

© GUANGYE SUI , 2015

Résumé

La sécurité des systèmes d’information est l’une des préoccupations les plus importantes du domaine

de la science informatique d’aujourd’hui. Les particuliers et les entreprises sont de plus en plus touchés

par des failles de sécurité et des milliards de dollars ont été perdus en raison de cyberattaques.

Cette thèse présente une approche formelle basée sur la réécriture de programmes permettant d’ap-

pliquer automatiquement des politiques de sécurité sur des programmes non sécuritaires. Pour un

programme P et une politique de sécurité Q, nous générons un autre programme P’ qui respecte une

politique de sécurité Q et qui se comporte comme P, sauf si la politique est sur le point d’être violée.

L’approche présentée utilise l’algèbre EBPA∗0,1 qui est une variante de BPA∗0,1 (Basic Process Al-

gebra) étendue avec des variables, des environnements et des conditions pour formaliser et résoudre

le problème. Le problème de trouver la version sécuritaire P’ à partir de P et de Q se transforme en un

problème de résolution d’un système linéaire pour lequel nous savons déjà comment extraire la solu-

tion par un algorithme polynomial. Cette thèse présente progressivement notre approche en montrant

comment la solution évolue lorsqu’on passe de l’algèbre de BPA∗0,1 à EBPA∗0,1.

iii

Abstract

The security of information systems is one of the most important preoccupations of today’s computer

science field. Individuals and companies are more and more affected by security flaws and billions of

dollars have been lost because of cyber-attacks.

This thesis introduces a formal program-rewriting approach that can automatically enforce security

policies on non-trusted programs. For a program P and a security policy Q, we generate another

program P ′ that respects the security policy Q and behaves like P except when the enforced security

policy is about to be violated.

The presented approach uses the EBPA∗0,1 algebra that is a variant of the BPA (Basic Process Algebra)

algebra extended with variables, environments and conditions to formalize and resolve the problem.

The problem of computing the expected enforced program P ′ is transformed to a problem of resolving

a linear system for which we already know how to extract the solution by a polynomial algorithm. This

thesis presents our approach progressively and shows how the solution evolves when we move from

the BPA∗0,1 algebra to the EBPA∗0,1 algebra.

v

Contents

Résumé iii

Abstract v

Contents vii

List of Tables ix

List of Figures xi

Acknowledgements xiii

1 Introduction 1

Introduction 1
1.1 Motivation and Background . 1
1.2 Problem . 2
1.3 Methodology . 4
1.4 Advantages of our approach . 5
1.5 Organization of the thesis . 8

2 Enforcement Approaches 9
2.1 Static Approaches . 9
2.2 Dynamic approaches . 13
2.3 Program Rewriting . 21
2.4 Enforcing Security Policies Using An Algebraic Approach 22
2.5 Enforcement Ability of Program Rewriting . 30
2.6 Conclusion . 33

3 Classes of Enforceable Security Policies 35
3.1 Introduction . 35
3.2 Security Policy and Property . 35
3.3 Recognizing Safety and Liveness . 37
3.4 Execution Monitor . 41
3.5 More Powerful Monitors . 42
3.6 Further Discussion about Enforcing Abilities 44
3.7 Hyperproperties . 48
3.8 Temporal Logics for Hyperproperties . 51
3.9 Conclusion . 52

vii

4 FASER (Formal and Automatic Security Enforcement by Rewriting) on BPA with
Test 53
4.1 Introduction . 53
4.2 Formal Language to Specify Systems: CBPA∗0,1 54
4.3 A Formal Language to Specify Security Policies (LTL-like logic) 56
4.4 Formalization of the Problem: Link Between Inputs and Output of u 58
4.5 Resolution of the Problem, Find P uQ of Figure 4.1. 61
4.6 Proof of Main Result . 68
4.7 Conclusion . 87

5 FASER (Formal and Automatic Security Enforcement by Rewriting by algebra)
with Environment 89
5.1 Introduction . 89
5.2 A Formal Language to Specify Systems: EBPA∗0,1 91
5.3 A Formal Language to Specify Security Policies (VLTL: LTL with variables) . . 97
5.4 Formalize the Link Between Inputs and Output of u 100
5.5 Resolution of the Problem: Finding P uQ . 105
5.6 Examples . 119
5.7 Proof of the Main Result . 128
5.8 Conclusion . 159

6 FASER (Formal and Automatic Security Enforcement by Rewriting by algebra) 161
6.1 Prototype for BPA∗0,1 . 161
6.2 Prototype for EBPA∗0,1 with the VLTL logic 161
6.3 Conclusion . 162

7 Conclusion and Perspectives 167

Bibliography 169

viii

List of Tables

2.1 Synatax of ACP φ Formula from [43]. 14
2.3 Operational Semantics of ACP φ According to [43]. 17
2.5 Semantics of Lϕ Formula. 17
2.7 Lϕ Translation Function According to [43]. 19
2.9 ACP φ Processes Translation Function According to [43]. 19
2.11 Operational Semantics of BPA∗0,1. 23
2.14 Operational Semantics of EBPA∗0,1. 29

4.1 Definition of the Operator ↓. 55
4.2 Operational Semantics of BPA∗0,1. 55

5.1 Definition of the Operator ↓ . 96
5.2 Operational Semantics of EBPA∗0,1. 97
5.3 C-Like Language Translate Function. 97

ix

List of Figures

1.1 Idea. 3
1.2 Security policy enforcement process with EBPA∗0,1. 5
1.3 Problem of software development approaches. 6
1.4 Different high qualified experts for different aspects. 7
1.5 Separation of requirements. 7
1.6 Integration of different aspects. 8

2.1 Model Checking Verification. 10
2.2 Proof-Carrying Code Steps from [50]. 11
2.3 No Send Action before Check. 13
2.5 Methodology for the Approach in [43]. 14
2.4 Four Steps of SASI. 15
2.6 Statically Enforceable and coRE Policies According to [34]. 21
2.7 IRM Enforcement Process According to [21]. 22
2.8 Statically Enforceable and RW-enforceable According to [34]. 31
2.9 Classes of Security Policies According to [34]. 32

3.1 Example of Buchi Automaton (Baction). 38
3.2 Safe(Baction). 39
3.3 Live(Baction). 40
3.4 Enforcing Power of Edit Automata According to [41]. 44
3.5 Enforcing Power of the three Automata for Non-Uniform Systems According to [41]. 44
3.6 Enforcing Power of Different Automata for Precise Enforcement According to[32, 33]. 47
3.7 Enforcing Power of Different Automata for Effective Enforcement According to [32, 33]. 47
3.8 Relationship Between Renewal Properties, Safety Properties and Liveness Properties

According to [32]. 48
3.9 Classification of Hyperproperties. 51

4.1 Security policy enforcement process with CBPA∗0,1. 54

5.1 Security Policy Enforcement Process. 90
5.2 Approach. 90

6.1 Prototype Input Page. 162
6.2 Prototype Result Page. 163
6.3 Prototype Input Page. 164
6.4 Prototype Result Page. 165
6.5 Prototype Latex File. 165

xi

6.6 Prototype Input Page with algebra. 166

xii

Acknowledgements

I want to express my great appreciation to my supervisor Pr Mohamed Mejri. I feel really blessed to

have a hard-working and talented professor like him. His advises always are important inspirations.

When I feel frustrated, he is always patient and present to encourage me. I believe that the knowledge

and the research method he taught me will be a great treasure for me in the future. I also wish thank

to Professor Hatem Ben Sta from University of Tunis El Manar, who not only provides advises to my

research but also shares wisdom about how to become a good Ph.D student.

Special thanks are due to professors Nadia Tawbi , Béchir Ktari and François Laviolette from Uni-

versité Laval, for their advises about how to improve my thesis made me benefit a lot. I also want

to thank professors Béchir Ktari, Claude-Guy Quimper and Pascal Tesson for their brilliant courses

during my Ph.D.

I and thankful all the members in Laboratoire de Sécurité Informatique (LSI) for their warm support

and companionship, including Etienne Theodore Sadio, He Lei, Maxime Leblanc, Mina Alishahi,

Jaouhar Fattahi, Memel Emmanuel Lathe, Laila Boumlik, Marwa Ziadia, Saeed Abbasi, Ahmed Mo-

hamed El-Marouf, Parvin Ramezani, Khadija Arrachid and Imen Sallem.

I would like to address special thanks to my parents for their unconditional love and support.

xiii

Chapter 1

Introduction

1.1 Motivation and Background

Security is one of the most important preoccupations of today’s information systems. Billions of

dollars have been lost during the last years because of cyber attacks and here are some examples:

• In April 2011, Sony announced in [58] that all PlayStation Network accounts and users’ credit

card information had been accessed by an "unauthorized person". Some investigations state that

this may have affected 70 million Sony customers.

• According to [51], in April 2013, the famous hacktivist group known as Anonymous launched

a massive cyber-attack against Israel, causing, according to the hackers, multi-billion dollar

damage.

• According to [67], beginning from August 31, 2014, a collection of almost 500 private pictures

of various celebrities were posted on the Internet. The images were believed to have been

obtained via a breach of Apple’s cloud services suite iCloud.

• According to [52], health insurer Premera Blue Cross was a victim of a cyber attack in Mars,

2015 that may have exposed medical data and financial information of 11 million customers.

Individuals and companies are more and more affected by security flaws, and financial losses are

not only the possible consequences. Human losses are also possible even for non-military staff (for

example: vehicle and aviation systems).

Formal methods are mathematically-based languages, techniques and tools that can be used during

all the development steps to produce high-quality systems with proved properties. This is essential

for critical systems (nuclear power stations, aircraft control systems, etc.), where design or imple-

mentation errors may engender disastrous consequences. It is a well-known fact that using formal

1

methods is generally difficult and expensive since it requires highly-qualified persons. For that rea-

son, these techniques can be offered only by rich institutions (government, military, etc.). However,

if user-friendly tools that make the enforcement process completely automatic are developed, then

we can cut corresponding costs and make formal methods available for small companies or even for

individuals.

This thesis aims to automatically and formally enforce security policies in some systems. Fortunately,

there are already some fundamental results that allow understanding which security policies can be

enforced and by which mechanism.

In [57], Schneider distinguished the security policies and security properties (safety and liveness) and

showed that only a part of safety properties can be enforced by EM (Execution Monitoring). If a given

security property includes a liveness part, then the execution monitors without the ability to modify

the target program, such as an edit automaton [31], is not appropriate. Fortunately, any property can

be separated into safety and liveness parts as it has been established in [3, 4], otherwise the task of

enforcing security will be harder.

More recent work of Clarkson and Schneider introduces hyperproperties which extend the definition

of security properties, and based on the discussion in [15], they believe that they are powerful enough

to specify all discovered security policies.

Execution Monitoring belongs to the class of dynamic analysis techniques that includes many other

interesting works like [28, 35, 37, 63, 66]. Static analysis [14, 16, 27, 36, 50] approaches, on the

other hand, can be used to significantly decrease the overhead involved by dynamic approaches. For

instance, statical analysis can prove that a program is safe with respect to some properties and avoid

its monitoring.

Recently, program rewriting [18, 29, 43, 59] techniques show their promising future since they gather

advantages of previous techniques. The basic idea is to rewrite an untrusted program statically so that

the new generated version respects some security requirements.

A formal approach was introduced in [24, 48] to automatically enforce security policy on non-trusted

programs. But, it was for a limited language called BPA∗0,1 (an extended version of BPA: Basic

Process Algebra). In this thesis, we want to extend the expressiveness of the language by handling

variables, conditions and environments. This new algebra is called basic process algebra with envi-

ronment and denoted by EBPA∗0,1.

1.2 Problem

To clarify the idea, let us consider the academic example shown by Figure 1.1.

2

P

read(x,y);
write(x);
send(x);
write(y);

Φ1: don’t display negative values
Φ2: don’t send secret values Φ

u

P ′ = P u Φ

read(x,y);
if x ≥ 0 then
write(x);
else

if x isNotSecret then
send(x);
else

if y ≥ 0 then
write(y);
endif

endif
endif

Figure 1.1: Idea.

Given a security policy Φ and a process P , we want to define an operator u that generates a process

P ′ containing the enforcement of Φ on P . P ′ respects Φ, preserves all the good behaviors of P and

it does not introduce any new ones. Generally P ′ is computed by inserting some tests in P at some

critical points so that the security policy will always be respected. The red text in P ′ of Figure 1.1 is

the test inserted to enforce Φ2 and the green one is the test added to enforce the policy Φ1.

A more realistic example related to buffer overflow is given hereafter. Suppose that our program P is

the following:

void main(int argc, char *argv[]){

buffer[10];

strcpy(tampon, argv[1]);

}

Suppose that we have a security policy stating that no buffer overflow should occur. A buffer overflow

takes place when we write in a given memory zone more than what it can support. In our example,

if argv[1] receives more than ten characters, the exceeded characters will be written outside buffer

and can cause serious damages. Normally, if we use a dynamic approach, we should set up another

monitoring program to enforce this security policy. But, thanks to program rewriting, we can add

some checks at critical points of the program statically. One possible solution is as follows:

3

void main(int argc, char *argv[]){

buffer[10];

if(sizeof(argv[1])<=10)

strcpy(tampon, argv[1]);

}

1.3 Methodology

The methodology that we adopt is the following:

• We introduce a new algebra EBPA∗0,1, which takes variables, conditions and environment into

consideration. EBPA∗0,1 is an extension of BPA∗0,1 [9, 10, 48]. Authors in [43] had already

introduced a dynamic approach based on an ACP (algebra for communicating process in [8])

like algebra.

We chooseBPA algebra because the technique that we propose is very efficient for a sequential

language but not for a concurrent one. In fact, our approach needs to explore the execution paths

of the program and this may explode for a concurrent program. However, the technique tries

to minimize the control actions that are involved during the execution of the program. Indeed,

instead of having a monitor that control every action of the program, we use a rewriting approach

to statically insert tests in some critical points of the program so that the security policy will be

enforced. This approach can be applied to some script languages (PHP, PERL, etc.) and can

be combined with other approaches such that [43] to better enforce security for the concurrent

programs.

• We suppose that the program P is given as a process or it can be transformed to a process in

EBPA∗0,1. This process algebra is expressive enough to handle an interesting simplified version

of C-like programs (we will do not take into consideration pointer for example).

• We suppose that the security policy Φ is given as a formula in the LTL (Linear Temporal Logic)

[54]. We know how to translate it into a term in EBPA∗0,1.

• We define an operator u that enforces Φ on P . Basically, the operator "u" transforms the

problem of enforcing Φ on P to a problem of generating a set of equations in EBPA∗0,1 and re-

solving them as shown by Figure 1.2. We already know how to get the solution of the equations

generated by u.

4

Figure 1.2: Security policy enforcement process with EBPA∗0,1.

• We prove that the secure version of the program generated by "u" is sound and complete with

respect to the inputs(the untrusted program and the security policy). The soundness property

states that all traces of the newly generated process respect the security policy and belong to the

set of traces of the original insecure one. The completeness property, or transparency, on the

other hand, states that any trace of the original program that respects the security policy should

be kept in the secure version.

1.4 Advantages of our approach

Our approach significantly benefits from the following three major advantages:

1.4.1 Formal Approach

Formal methods are mathematically-based languages, techniques and tools that can be used during

all the development steps to produce high-quality systems with proved properties. Unlike test-based

approaches, which can only ensure that systems satisfy the requirements for test cases, formal methods

use mathematical proofs to ensure properties of a system. This is essential for critical systems (nuclear

power stations, aircraft control systems, etc.), where design or implementation errors may engender

disastrous consequences.

For our approach, when an end user proposes a program and a security policy, we transfer them into

two processes P and Q in EBPA∗0,1, then we generate a greatest common factor of P and Q, denoted

by P uQ that contains only the traces of P that respect the security policy. Process P uQ behaves like

P except that it stops any execution path whenever a security policy is about to be violated. Finally we

translate the process P uQ to the original language (e.g. C-Like language). The presented approach

uses the EBPA∗0,1 algebra which is a variant of BPA (Basic Process Algebra) extended with variables,

environments and conditions to formalize and resolve the problem.

5

1.4.2 Automatic Approach

The cost of formal approaches can be very expensive. However, if user-friendly tools that make

the enforcement process completely automatic is developed, then we can cut corresponding costs

significantly and remove human interventions that are error prone. For our approach, once an end

user has specified his security policies, we will automatically enforce them with a program rewriting

technique.

1.4.3 Aspect Oriented Approach

Our approach belongs to aspect-oriented paradigm (AOP) [17, 38, 61, 64] which aims to increase

productivity and maintenance by dealing with different aspects separately.

AOP makes systems easier to maintain

Maintenance consumes 80%-90% of the total cost of most systems. With classical development ap-

proaches, such as procedural programming, functional programming, logic programming and object-

oriented programming, each aspect of system’s specification is divided and scattered throughout dif-

ferent slices (module, function, object, etc) that include different aspects in the same time (as shown

in Figure 1.3), this makes systems difficult to generate and maintain. For example, if one experienced

software engineer leave and a new employee want to change one aspect of the system, it will be very

difficult and time-consuming to go through all the modules to find the right codes that deal with a

particular aspect, even with well established documents.

Figure 1.3: Problem of software development approaches.

AOP increase modularity

To increase modularity, software system should imitate other mature industrialize products (houses,

cars, airplanes, etc.), which means separating the system into different aspects and allowing differ-

ent high qualified experts to contribute in their special fields. An example of this idea is shown in

Figure 1.4.

6

Figure 1.4: Different high qualified experts for different aspects.

More specifically, when an end user specifies requirements for a system, aspect-oriented programming

approach will separate them into different aspects (shown in Figure 1.5). Then, each aspect will be

developed by appropriate experts. Finally, the approach will integrate different module related to

different concerns into the final system automatically. The whole process is presented in Figure 1.6

(page 8).

Figure 1.5: Separation of requirements.

AOP languages

Actually, aspect-oriented programming (AOP) is not a new concept, CSS (Cascading Style Sheets) is

an aspect that separate web-page layout from content. But today, it is more established as a paradigm

and there are programming languages supporting it including AspectJ,AspectC + +, Aspect# and

HyperJ .

7

Figure 1.6: Integration of different aspects.

1.5 Organization of the thesis

This thesis is structured as follows:

• In chapter 2, we present three major enforcement approaches and we discuss their enforcement

abilities.

• Chapter 3 gives an overview of important related works.

• Chapter 4 introduces CBPA∗0,1, a process algebra that can be used to specify system together

with their security policies. It also introduces our rewriting technique to enforce security poli-

cies on programs.

• Chapter 5 extends the approach to EBPA∗0,1, which is BPA∗0,1 enriched with conditions, vari-

ables and environments.

• Chapter 6 presents a prototype that we implemented to illustrate our approach.

• Chapter 7 concludes this thesis and discusses some perspectives.

8

Chapter 2

Enforcement Approaches

In this chapter we introduce enforcement mechanisms. State of the art contains three major enforce-

ment mechanisms: static approach, dynamic approach and program rewriting. Based on the works in

[34], we discuss in this chapter different security enforcement approaches (static analysis, dynamic

analysis and program rewriting) and we show that program rewriting can enforce more security poli-

cies than the other two mechanisms.

This chapter is structured as follows:

• In Section 2.1, we introduce static approach and discuss its enforcement ability.

• In Section 2.2, we present dynamic approach and show some examples of it. We also discuss

its enforcement ability and we compare it to the static approach.

• In Section 2.3, we introduce the essence of program rewriting approach and we illustrate it by

an example.

• In Section 2.4, we introduce an approach developed by Mejri and Fujita in [48], which can

solve the security policy enforcement problem by program rewriting. We will also introduce an

interesting extension of it from [30].

• Finally, in Section 2.5, we discuss the enforcement ability of program rewriting approach and

compare it with other approaches.

2.1 Static Approaches

Static approaches aim to check codes before their executions. Generally, they require fewer system

resources, since they are applied before the execution of the program. However, they have their

disadvantages. Since static analysis does not run the program, some security policies that need some

dynamic information can not be enforced by this approach. Examples of static analysis method include

model-checking [14], abstract interpretations [16], proof-carrying code (PCC) [50], type system [23,

9

27] and symbolic execution [36, 39]. In the remaining part of this section, we show some examples

of these approaches and discusses their enforcement ability.

2.1.1 Model Checking

In computer science, Model Checking generally aims to check whether a given model of a system

satisfies its specification. Usually, it involves three major steps:

1. Build a modelM (e.g. Kripke structure [56]) for the system we want to check.

2. Specify a security policy ϕ using some formal language (e.g. Temporal logic).

3. Check whether the security policy is true in the model, i.e:M |= ϕ.

The process of model checking is resumed by Figure 2.2.

Figure 2.1: Model Checking Verification.

The Kripke structure for specifying the model is a variation of nondeterministic automaton. It has

a set of global states, a set of states transition relations and a labeling function to specify which

proposition is true in each state. The temporal logic includes Linear Temporal Logic (LTL) and

Computation Tree Logic (CTL) and it is used to specify properties with time related operators. For

example: "property P will hold eventually" or "property P always hold, until property Q is true". For

the systems modeled by a Kripke structure, as the number of states increase, the complexity of the

analysis increase exponentially, this causes state space explosion [12, 47] problem and it is one of the

major challenges for model checking.

2.1.2 Proof-Carrying Code (PCC)

When people distribute codes remotely, a mechanism is required to build trust between code producers

and code consumers. For example, when agent A wants to send a machine language code L to

agent B, he wants to convince agent B that L respects type safety property. In [50], the author

10

provides a mechanism (Proof-Carrying Code) to address this problem. Cryptography is an alternative

solution, but it highly depends on the credibility of the code producer, but even highly professional

code producers may make mistakes.

Unlike Cryptography, Proof-Carrying code (PCC) allows code consumers to announce their security

policies to the code producers. Code producers will generate a formal security proof to prove that

untrusted code satisfies the security policies and send the code and proof to the code consumer. At

last, consumers will use a proof validator to check the untrusted code with the provided proof. More

specifically, according to [50], the whole process of PCC contain 3 steps as shown by Figure 2.2.

1. Certification: The code producer compiles the source code and generates a proof ensuring that

this code satisfies the code consumer’s security policies. In general, the PCC binary consists of

a native code component and a proof of successful verification.

2. Validation: The code consumer validates the proof part of the PCC binary and loads the native

code component for execution.

3. Execution: Finally, the code consumers can decide to execute the code when it needed, without

validating the proof again. This is because the previous stage already makes sure that the code

satisfies the security policies.

Figure 2.2: Proof-Carrying Code Steps from [50].

11

2.1.3 Enforcement Abilities of Static Approach

In [34], Hamlen, Morrisett and Schneider provided a formal model to discuss the computability classes

of different enforcement mechanisms.

In [34], authors use a Turing Machine (TM) introduced in [42]. TM has finite states and only one tape,

it seems to be an obvious candidate for modeling the untrusted program. However, in [34], authors

state that there are mainly two reasons for using a more powerful mechanism (Program Machine or

PM) instead of TM. Firstly, the PMs’ infinite input tapes provide a method to model infinite length

input strings, while TM can not. Secondly, a TM encodes all its runtime information into one tape,

while a PM separates them into three tapes and distinguishes the information that is available to the

enforcement mechanism from the information that is not. As a PM runs, it exhibits the information to

enforcement mechanisms by writing an encoding form of this information into the trace tape.

In this model, untrusted programs are modeled by a PM, which is a deterministic Turing machine that

controls three infinite tapes:

• An input tape: it contains all the information unavailable to the enforcement mechanism ini-

tially. For example: user inputs, non-deterministic choice outcomes, etc.

• A work tape: it is blank initially and can be accessed by the PM without restriction.

• A write-only trace tape: it records security relevant behavior that can be observed by the en-

forcement mechanism.

Security policies divide the sets of all untrusted programs (modeled by PMs) into those satisfying it

and the others. In the remaining part of this section, the ability of different security policies enforcing

approaches (static analysis, dynamic analysis and program rewriting) will be discussed respectively

using this formal model. We will also introduce enforceable policy classes for different mechanisms.

In [34], it has been stated that a security policy P can be considered as statically enforceable in the

model above, if there exists a Turing machine MP that takes an encoding of the system (a Turing

machine M belonging to PM) as input, and if the system satisfies the security policy P , then MP(M)

accepts it in a finite time; otherwise MP(M) rejects it in a finite time. In other words, if a security

policy P is statically enforceable, then we can find a Turing machine, which can check whether a

given system (specified by M) respect P or not within a finite time.

For example, the security policy stating that "The program should terminate within 10 execution steps"

is a statically enforceable policy. We can use PM M to model the untrusted program and since M can

only read 10 symbols from the input tape within the first 10 steps, then we can find a Turing machine

MP that simulate M with all the possible 10 inputs to see whether it is terminated within 10 steps.

On the other hand, "The program terminates eventually" and "The program will write α eventually"

are not statically enforceable.

12

2.2 Dynamic approaches

The basic idea for dynamic approaches is to write a monitor which runs in parallel with the untrusted

program to enforce a given security property. It can enforce more security properties than static ap-

proaches according to [34], but in most cases, it requires more system resources. Dynamic and static

approaches are often used together. SASI [22] is an example of the dynamic approach which bene-

fits from static analysis to get balanced performance. To enforce security with limited resources, the

author in [63] discussed how to improve the security of Java ME-CLDC related web applications and

characterize dynamic enforcement with constrained memory. In [35], the author worked on devel-

oping a more powerful monitor and stated that a monitor that is allowed to modify its input is more

powerful than one lacking this ability. Other examples of dynamic approaches could be found in

[27, 43, 66]. In the remaining art of this section, we will present some examples for this approach and

discuss their enforcement abilities.

2.2.1 SASI

In [22], authors provide a mechanism to transfer security policies into automata and enforce them on

untrusted programs. An automaton is defined by a set of states, an input alphabet and a transition

relation. A transition corresponds to a legal move of the program and when no transition is possible,

then the program sequence should be rejected. According to [22], these automata are expressive

enough to specify all the security policies that are enforceable by execution monitoring. Figure 2.3

indicates a security policy specified by an automaton.

Figure 2.3: No Send Action before Check.

Merging Security Automaton

SASI has a rewriting system that inserts a new code before every action that accesses memory. This

new code is generated according to the security automaton and ensure that each action satisfies the

security policy. More precisely, the whole process contains four stages:

1. Insert security automata: put a copy of the security automaton before each instruction of the

untrusted program.

2. Evaluate transitions: evaluate all the possible transitions in the automata.

13

3. Simplify automata: remove all the transitions labeled as false.

4. Compile automata: transfer all the remaining security automata into codes that enforce the

security policy. If an automaton has to reject the input, we transfer it into fail to stop the

program sequence.

Example 2.2.1 Suppose we have a program sequence: "Print;Send;Check;" and a security policy

to ensure that there is no send action before check action (described in Figure 2.3). we use four steps

to enforce our security policy as shown by Figure 2.4 (page 15).

2.2.2 Security Enforcement for Concurrent Systems

In [43] authors give an approach that enforces security policies on concurrent systems dynamically.

This approach introduces a modified version of ACP (algebra for communicating process in [8]) to

specify untrusted programs and a modified version of the LTL logic denoted by Lϕ to specify security

policies. Then, this approach uses a function to translate the specified security policies into an ACP φ

process. The methodology is as following:

Figure 2.5: Methodology for the Approach in [43].

Program specification

The syntax of ACP φ is presented in Table 2.1.

Table 2.1: Synatax of ACP φ Formula from [43].

P ::= 1 | δ | a | P1.P2 | P1 + P2 | P1||γP2 | P1bbγP2 | P1|γP2 |
P ∗1P2 | ∂H(P) | τI(P) | ∂ξφ(P)

Here the merge operator ||γ and the communication operator |γ are indexed by a communication

function γ, which is defined as following according to [43].

14

Figure 2.4: Four Steps of SASI.

15

Definition 2.2.2 (Communication function) A communication function is any commutative and as-

sociative function form A×A to A, i,e. γ : A×A → A is a communication function if:

1. ∀a, b ∈ A : γ(a, b) = γ(b, a), and

2. ∀a, b, c ∈ A : γ(γ(a, b), c) = γ(a, γ(b, c))

According to [43], the meanings of operators in Table 2.1 are as following:

• 1 means that the process has finished normally its executions.

• δ means that the process is in a deadlock state.

• Constants a, b, c, ... are called atomic actions.

• P1 + P2 is a choice between two processes P1 and P2.

• P1.P2 is a sequential composition between P1 and P2.

• P ∗1P2 is the process that behaves like P1.(P
∗
1P2) + P2. It is a binary version of the Kleene star

operator [40].

• P1||γP2 is the process that executes P1 and P2 in parallel with the possibility of synchronization

according to the function γ.

• P1bbγP2 is the process that first executes an action in P1 and then run the remaining part of P1

in parallel with P2.

• P1|γP2 is the merge of two processes P1 and P2 with the restriction that the first step is a

communication between P1 and P2.

• ∂H is a restriction operator, where H is a set of actions. The process ∂H(P) can evolve only by

executing actions that are not in H .

• τI is an abstraction operator, where I is any set of atomic actions called internal actions. τI(P)

will abstract all the output actions from P by the silent action τ , if these actions belongs to I .

• ∂ξφ is an enforcement operator, where φ indicate a security policy and ξ is a trace of actions.

∂ξφ(P) is the processes that can evolve only if P can evolve by actions that do not lead to the

violation of the security policy φ.

According to [43], the semantics of ACP φ is as given by Table 2.3 (page 17).

16

Table 2.3: Operational Semantics of ACP φ According to [43].

(R≡) P≡P1 P1
a−→P2 P2≡Q

P
a−→Q

(Ra) 2

a
a−→1

(R.)
P

a−→P ′
P.Q

a−→P ′.Q
(R+) P

a−→P ′
P+Q

a−→P ′

(R∗)
P

a−→P ′
P ∗Q

a−→P ′.(P ∗Q)
(Rd∗)

Q
a−→Q′

P ∗Q
a−→Q′

(Rbbγ) P
a−→P ′

P bbγQ
a−→P ′bbγQ

(R||γ) P
a−→P ′

P ||γQ
a−→P ′||γQ

(RC||γ) P
a−→P ′ Q b−→Q′

P ||γQ
γ(a,b)−→ P ′||γQ′

γ(a, b) 6= δ (R|γ) P
a−→P ′ Q b−→Q′

P |γQ
γ(a,b)−→ P ′||γQ′

γ(a, b) 6= δ

(R∅τ) P
a−→P ′

τI(P)
τ−→τI(P ′)

a ∈ I (Rτ) P
a−→P ′

τI(P)
a−→τI(P)

a /∈ I

(R∂H) P
a−→P ′

∂H(P)
a−→∂H(P ′)

a /∈ H (R
∂ξ∅

) P
a−→P ′

∂ξ∅(P)
a−→∂ξ.a∅ (P ′)

ξ.a|∼ ∅

Security policy specification

In this section we introduce the specification language Lϕ used in [43] to specify linear and temporal

security properties. The syntax of Lϕ is presented by the following BNF grammar:

ϕ1, ϕ2 ::= tt | ff | 1 | a | ϕ1.ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ¬ϕ1 | ϕ∗1ϕ2

According to [43], the semantics of Lϕ is as shown by Table 2.5.

Table 2.5: Semantics of Lϕ Formula.

[[tt]] = T
[[ff]] = ∅
[[1]] = {ε}
[[a]] = {a}
[[ϕ1.ϕ2]] = {ξ1.ξ2|ξ1 ∈ [[ϕ1]] and ξ2 ∈ [[ϕ2]]}
[[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∪ [[ϕ2]]
[[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∩ [[ϕ2]]

[[ϕ∗1ϕ2]] =
{

[[ϕ1]]∗ ∪ {ξ1.ξ2|ξ1 ∈ [[ϕ1]]∗ and ξ2 ∈ [[ϕ2]]}, if [[ϕ2]] 6= ∅
[[ϕ1]]ω, elsewhere

[[¬ϕ1]] = T \[[ϕ1]]

17

Problem Formalization

In [43], authors introduce a new operator ⊗, and state that for a program P and a security policy φ,

P ⊗φ = ∂ξφ(P). Here P ⊗φ is the enforcement result, i.e: only traces that respect the security policy

φ in the program P are kept in P ⊗ φ, and P ⊗ φ will not generate traces that are not originally in the

program P . After that, they tried to find an equivalent version of ∂ξφ(P) that uses classical operators

of the ACP algebras. For that reason, they try to use the merge operator ||γ to setup a monitor which

enforce a security policies on concurrent systems. Their technique is based on the introduction of

synchronization actions (commonly used in synchronization logic).

To better explain their technique, we need the following notations:

• Given a set of actions A, its corresponding synchronization set, denoted by AC is: AC =⋃
a∈A
{ad, af , ad, af}.

• AC(P) returns the set of synchronization actions in the process P .

• For a ∈ AC , ac =
∑

α∈AC\{a}
α.

• AiC is the indexed form of AC , i.e: AiC =
⋃

a∈AC
{ai}

• The set Hi is used to denote the set AiC .

• The set Ii is used to denote the set
⋃

α∈AiC

{α|α}.

• The function γ0 is defined as follows:

γ0(a, a) =

{
a|a, ifa ∈ A ∪AC
δ, else

For a security policy φ, each action a will be replaced by ad.af to capture the start and the end of

the action a. The authors provide a function d|−|e to transfer a security policy specified in Lϕ into a

synchronization ACP φ process as shown by Table 2.7 (page 19).

On the other hand, for a process, each action awill be replaced by ad.a.af . A function d−e that modify

ACP φ processes in this way is given by Table 2.9 (page 19).

Main result

In [43], authors introduce τ−bissimulation and use it to present an equivalence version of ∂ξϕ(P).

Definition 2.2.3 (τ−bissimulation) A binary relation S ⊆ P×P over processes is a τ−bissimulation,

if for all (P,Q) ∈ S we have:

18

Table 2.7: Lϕ Translation Function According to [43].

d| − |e : LaN(φ) × N→ ACP

d|tt|ei = (
∑
α∈A

αid.α
i
f)∗

∑
α∈A

αid.α
i
f + 1

d|ff |ei = δ
d|1|ei = 1
d|δ|ei = δ
d|a|ei = aid.a

i
f

d|φ1.φ2|ei = d|φ1|ei.d|φ2|ei
d|φ1 ∨ φ2|ei = d|φ1|ei + d|φ2|ei
d|φ∗1φ2|ei = d|φ1|e∗i d|φ2|ei
d|¬a|ei = aid

c
.aif

c(
(
∑
α∈A

αid.α
i
f)∗

∑
α∈A

αid.α
i
f + 1

)

Table 2.9: ACP φ Processes Translation Function According to [43].

d−e : ACP φ × N× 2A → ACP φ

d1eHi = 1
dδeHi = δ

daeHi =
{
a, if a ∈ H ∪ {τ}
ad.a.af , Else

dP1.P2eHi = dP1eHi .dP2eHi
dP1 + P2eHi = dP1eHi + dP2eHi
dP ∗1P2eHi = dP1eHi

∗dP2eHi
dP1||γ0P2eHi = dP1eHi ||γ0dP2eHi
dP1bbP2eHi = dP1eHi bbdP2eHi
dP1|P2eHi = dP1eHi |dP2eHi
d∂H′(P)eHi = ∂H′

(
dPeH∪H′i

)
dτI(P)eHi = τI

(
dPeH∪Ii

)
d∂ξ ∧
j∈1..n

ϕj
(P)eHi = d∂ξ ∧

j∈2..n
ϕj
d∂ξϕ1(P)eHi e

H∪H1
i+1

d∂ξϕ(P)eHi = ∂Hi

(
τIi
(
dPeHi ||γ0d|[ϕ]ξ|ei

))
where H1 = AC(d∂ξϕ1(P)eHi)

19

1. If P
a
� P ′ then Q

a
� Q′ and (P ′, Q′) ∈ S and

2. If Q
a
� Q′ then P

a
� P ′ and (Q′, P ′) ∈ S where

a
�= (

τ→)∗
a→ (

τ→)∗.

Definition 2.2.4 ↔τ is defined as the biggest τ−bissimulation:

↔τ = ∪{S : S is a τ−bissimulation}

Finally, an equivalence version of ∂ξϕ(P) is presented as following:

Theorem 2.2.5 (Main Theorem) ∀P ∈ ACP φ, ∀ϕ ∈ LdN(ϕ), and ∀ξ ∈ T , we have:

∂ξϕ(P)↔τ ∂Hi

(
τIi
(
dPeHi ||γ0d|[ϕ]ξ|ei

))
for any i ∈ N

Since P ⊗ φ = ∂ξφ(P), the problem of enforcing a security policy φ on a program P turn to run the

ACP process ∂Hi
(
τIi
(
dPeHi ||γ0d|[ϕ]ξ|ei

))
. So when an end user provides a program P in ACP φ and

a security policy φ in Lϕ, we can use functions d−e and d| − |e to transfer P and φ into ACP process

P ′ and φ′. Then the communication operator ||γ0 will make sure that the process ∂Hi
(
τIi
(
P ′||γ0φ′

))
generates only traces of P that satisfies the security policy φ.

2.2.3 Enforcement Ability of Dynamic Approach

EM Class, defined by [57], specifies a set of security policies that can be enforced by an execution

monitor. In [34], authors reduce the size of EM by giving out more restrictions and introduce the

co-recursively enumerable (coRE) properties.

coRE: A security policy P is coRE when there exists a Turing machine MP that takes an encoding of

the system (a Turing machine M belonging to PM) as input and rejects it in a finite time if the system

does not comply with the security policy; otherwise MP(M) loops forever. In other words, if a given

program does not satisfy the security policy, we can find a Turing machine that rejects this program

within a finite time, otherwise, the Turing machine runs forever.

In [34], Hamlen, Morrisett and Schneider proved that statically enforceable policies are a subset of

coRE and give the example of Pboot: if a system memory has a boot area, then the program should

never write in it.

As shown by Figure 2.6, static analysis can not ensure that a program "never" write in the boot area,

while execution monitoring can enforce Pboot.

The relationship between statically enforceable and coRE policies is shown by Figure 2.6.

20

Figure 2.6: Statically Enforceable and coRE Policies According to [34].

2.3 Program Rewriting

An alternative approach to the two previous ones is program rewriting. The basic idea is to modify,

during a period of time (finite), the untrusted program before its execution so that the new version

respects a given security policy. Generally, it requires fewer system resources than dynamic analysis,

since instead of monitoring the execution of a target program, it changes the code at some "critical

points" to enforce the security policy. Actually in [34], authors showed that rewriting techniques can

enforce some security policies, which static and dynamic approaches can not. Other examples of

program rewriting include [18, 21, 59]. In the remaining part of this chapter, we will show some

examples of this approach and discusses their enforcement abilities.

2.3.1 IRM Enforcement

In [21], authors provide a program rewriting mechanism with inlined reference monitors (IRM). For

an application, a trusted IRM rewriter will merge checking codes into critical points of the program to

enforce security policies. After the rewriting process, the untrusted program will become trusted and

ready to be executed many times without rewriting again. The whole process of IRM enforcement in

[21] is shown in Figure 2.7.

According to [21], the specification of IRM includes the following three parts:

• Security events: Program operations that engender the intervention of the security monitor.

• Security state: Information about previous security events that are used to determine which

security events are allowed to be executed.

21

Figure 2.7: IRM Enforcement Process According to [21].

• Security updates: Programs that enforce security policies according to the information from

security events and security state (e.g block executions, alert for security violations).

2.4 Enforcing Security Policies Using An Algebraic Approach

In this section, we introduce an approach developed by Mejri and Fujita in [48] to enforce security

policies by program rewriting. Our research contributions introduced in the next chapters are based

on this approach and the one work of Ould-Slimane in [30] is also presented.

This section is organized as follows. First, we introduce BPA∗0,1. According to [48], this is used to

specify untrusted programs as well as security policies. Second, we introduce the notion of greatest

common factor (gcf) of two processes and we show how it is used to formalize the problem. Third,

we introduce the algorithm presented in [48] to compute the gcf of two processes P and Q. Finally, we

present some extensions of this approach done by Hakima Ould-Slimane in [30].

2.4.1 BPA∗0,1: A Process Specification Language

In this section, we give the syntax and the semantics of BPA∗0,1 [9, 10, 48], the language that will be

used to specify both the program and the security policy. Secondly, we introduce the notion of trace

equivalence between processes and we give some algebraic properties related to this relation.

Syntax of BPA∗0,1

Suppose that a is an action that ranges over a finite set of actions Σ. the syntax of BPA∗0,1 is defined

by the following BNF-grammar.

x, y ::= 0 | 1 | a | x+ y | x.y | x∗y

Semantics of BPA∗0,1

The semantics is defined by the transition relation→∈ P ×
∑
×P given by Table 2.11.

• ↓ means that a process can end normally: it can be reduced to 1.

• 0 means that the process is in a deadlock state.

• 1 means that the process has finished normally its executions.

22

Table 2.11: Operational Semantics of BPA∗0,1.

(Ra) 2

a
a−→1

(R1) 2
1↓

(R∗r↓)
y↓

(x∗y)↓ (R.↓)
x↓ y↓
(x.y)↓

(R.l)
x↓ y

a−→y′

x.y
a−→y′

(R.r)
x
a−→x′

x.y
a−→x′.y

(R+
l↓)

x↓
(x + y)↓ (R+

r↓)
y↓

(x + y)↓

(R+
l) x

a−→x′
x + y

a−→x′
(R+

r) y
a−→y′

x + y
a−→y′

(R∗l)
x
a−→x′

x∗y
a−→x′.(x∗y)

(R∗r)
y
a−→y′

x∗y
a−→y′

• x+ y is a choice between two processes x and y.

• x.y is a sequential composition between x and y.

• x∗y is the process that behaves like x.(x∗y)+y. It is a binary version of the Kleene star operator

[40].

Trace Based Equivalence

According to the works of [48], we introduce the trace based equivalence in this section. The equiv-

alence relation between different program processes is an interesting topic for our further discussion,

and it is based on the relation�, defined in [48] as following:

2

x
ε
�x

x
τ
� x′ x′

a→ x′′

x
τ.a
� x′′

Based on�, the authors introduced, in [48], the ordering relation vT as following:

Definition 2.4.1 (vT) Let x, x′, y be processes and τ ∈
∑ ∗. We say that x vT y, if x

τ
� x′ then

there exists y′ such that y
τ
� y′

Now we can define trace based equivalence ∼ form vT .

23

Definition 2.4.2 (∼) We say that two processes x and y are trace equivalent and we write x ∼ y, if x

vT y and y vT x.

Hereafter, we give some other useful properties of ∼:

Proposition 2.4.3 Given three processes x, y and z in BPA∗0,1, then the following properties hold.

(B1) x+ (y + z) ∼ (x+ y) + z (B6) 0.x ∼ 0

(B2) x.(y.z) ∼ (x.y).z (B7) x.1 ∼ 1.x ∼ x

(B3) x+ y ∼ y + x (B8) x+ 0 ∼ x

(B4) (x+ y).z ∼ x.z + y.z (B9) x∗y ∼ y + xx∗y

(B5) x.(y + z) ∼ x.y + x.z (B10) x+ x ∼ x

Proof: Directly from the definition of ∼ and vT

2.4.2 Formalization of the Problem

Given a program P and a security policy Φ, the goal of this work is to generate another program P ′

that respects the security policy Φ and generates no more traces than the original program P . More

precisely, we want that the result P ′ respects the two following properties, stated in [48]:

1. Correctness:

• P ′ v P : all the traces of P ′ are traces in P

• P ′ v Φ: all the traces of P ′ respect the security policy.

2. Completeness: If there exists P” such that P” v P and P” v Φ, then P” v P ′. This

properties involves that all the traces in P that respect the security policy are also in P ′.

The definition of the greatest common factor or gcf is given in [48] as following:

Definition 2.4.4 (Greatest Common Factor (gcf)) Let P and Q be two processes. The gcf of P

and Q, denote by P uQ, is a process R such that the following conditions hold:

• R v P

• R v Q

• For all R′ such that R′ v P and R′ v Q, we have R′ v R.

The problem of enforcing a security property Q on a program P turns to find P u Q, the gcf of P

and Q. In the next section, we will introduce an algorithm allowing to compute gcf , but before that,

we recall some useful properties of u given in [48].

24

Proposition 2.4.5 Let P,Q and R be processes, a and b be two different actions. The following prop-

erties hold:

1 u a ∼ 0

P u P ∼ P

P uQ ∼ Q u P

a.P u a.Q ∼ a.(Q u P)

a.P u b.Q ∼ 0.(Q u P) ∼ 0

P u (Q+R) ∼ P uQ+ P uR

if P ∼ P ′then P uQ ∼ P ′ uQ

2.4.3 Resolution of the Problem

Given two processes P and Q, according [48], we introduce a way, based on the notion of derivatives

introduced by Brzozowski in [11], to compute P u Q. The idea is to generate, using the notion of

derivatives, a linear system where its resolution gives P uQ.

Derivatives

In [48], the authors adapt the definition of derivatives introduced by Brzozowski in [11] to fit it with

the notion of trace equivalence.

Definition 2.4.6 The derivative of a process xwith respect to an action a, denoted by ∂a(x), is defined

as following:

∂a(0) = 0

∂a(1) = 0

∂a(a) = 1

∂a(b) = 0

∂a(x
∗y) = ∂a(x).x∗y + ∂a(y)

∂a(x+ y) = ∂a(x) + ∂a(y)

∂a(x.y) = ∂a(x).y + o(x).∂a(y)

Intutively, ∂a(x) = { x′| x a→ x′ }.

25

Definition 2.4.7 The function o(x) : process→ {0, 1}, allows to know whether x ↓ holds or not and

it is defined as follows:

o(0) = 0

o(1) = 1

o(a) = 0

o(x∗y) = o(y)

o(x+ y) = o(x) + o(y)

o(x.y) = o(x).o(y)

x ↓ shows weather the process x can immediately finish as shown by Definition 2.4.1.

Definition 2.4.8 We define the function δ from P to 2
∑

as follows:

δ(0) = ∅

δ(1) = ∅

δ(a) = {a}

δ(x∗y) = δ(x) ∪ δ(y)

δ(x+ y) = δ(x) ∪ δ(y)

δ(x.y) = δ(x) ∪ o(x)⊗ δ(y)

Intuitively, δ(x) = {a| x a→ x′} where ⊗ is defined as following:

⊗ : {0, 1} × 2Σ −→ 2Σ

(0,S) 7→ ∅

(1,S) 7→ S

Two interesting propositions were introduced in [48], which are important for writing the algorithm

allowing to compute the gcf.

Proposition 2.4.9 x ∼ o(x) +
∑

a∈δ(x)

a.∂a(x)

Proposition 2.4.10 x u y ∼ o(x)× o(y) +
∑

a∈δ(x)∩δ(y)

a.(∂a(x) u ∂a(y))

Algorithm

From proposition of 2.4.10 and the properties of ∼, an algorithm allowing to compute P u Q, by

generating a linear system and resolving it, is introduced in [48] as following:

26

Algorithm 1 calculate P uQ in BPA∗0,1 where E = ∅

1: E ←− E ∪ {P uQ ∼ o(P)× o(Q) +
∑

a∈δ(P)∩δ(Q)

a.(∂a(P) u ∂a(Q))}

2: while there exists Pi uQi in the right side of any equation in E that does

not appear (modulo commutativity of u) in the left side on any equation do

E ←− E ∪ {Pi uQi ∼ o(Pi)× o(Qi) +
∑

a∈δ(Pi)∩δ(Qi)
a.(∂a(Pi) u ∂a(Qi))}

end while
3: Return the solution of the linear system E.

The linear system that we obtain at the end has the following form AX + B = X where A is a

constant matrix of size n×n, B is a constant vector of size n and X is a vector of variables of size n.

The solution of this system is X = A∗B, where A∗ is computed as following:

[
a b

c d

]∗
=

[
(a+ bd∗c)∗ (a+ bd∗c)∗bd∗

(d+ ca∗b)∗ca∗ (d+ ca∗b)∗

]

and the result can be inductively generalized for matrices n by n as following, where A is an n− 1 by

n− 1 matrix:

[
A B

C D

]∗
=

[
(A+BD∗C)∗ (A+BD∗C)∗BD∗

(D + CA∗B)∗CA∗ (D + CA∗B)∗

]

These result hold because, under the trace equivalence, BPA∗0,1 is a kind of monodic tree Kleene

algebra [62] with a binary star Kleene operator.

Example

Let P = c.(a.b+ c)∗0 = c.P1 and Q = (c.(a+ (a.b)∗))∗0

27

P uQ = X1 = c.(P1 u (a+ (a.b)∗).Q) = c.X2

X2 = (a.b+ c).P1 u (a+ (a.b)∗).Q)

= a.(b.P1 u (1 + b.(a.b)∗1).Q) + c.(P1 u (a+ (a.b)∗1).Q)

= a.X3 + c.X2

X3 = b.(P1 u (a.b)∗1.Q) = b.X4

X4 = a.(b.P1 u (b.(a.b)∗1).Q) + c.(P1 u (a+ (a.b)∗1).Q)

= a.X5 + c.X2

X5 = b.(P1 u (a.b)∗1.Q) = b.X4

X5 = X3

X4 = a.X3 + c.X2 = X2

X3 = b.X4 = b.X2

X2 = (a.b+ c).X2

X2 = (a.b+ c)∗0

X1 = c.X2 = c.(a.b+ c)∗0

So the greatest common factor (gcf) of P and Q is c.(a.b+ c)ω, where Pω means P ∗0.

2.4.4 An Extension for BPA∗0,1

EBPA∗0,1 introduced in [30] by Ould-Slimane is an extension based on BPA∗0,1. It provides a way

to specify the suspension or the delay of the execution of actions. And based on this new algebra, a

corresponding new algorithm is developed to enforce some interesting security properties. The syntax

and the semantics of EBPA∗0,1 are respectively introduced in the following sections.

Syntax of EBPA∗0,1

Suppose that a is an action that ranges over a finite set of actions σ and two processes x and y. The

syntax of EBPA∗0,1 is defined by the following BNF-grammar.

x, y ::= 0 | 1 | a | a+ | a− | x+ y | x.y | x∗y

This syntax can be used to specify both programs and properties where:

• 0 means that the process is in a deadlock state.

• 1 means that the process has finished normally its executions.

28

• a means that the execution of an action a.

• a− means that the suspension of the execution of an action a.

• a+ means that the execution of previously suspended actions followed by the execution of the

action a.

• x+ y is a choice between two processes x and y.

• x.y is a sequential composition between x and y.

• x∗y is the process that behaves like x.(x∗y)+y. It is a binary version of the Kleene star operator

[40].

Semantics of EBPA∗0,1

The semantics is defined by the transition relation→∈ (P ×Σ)×Σ× (P ×Σ) given by Table 2.14.

• ↓ means that a process can end normally: it can be reduced to 1.

• τ is a sequence of actions, it denotes a history maintained by each process. Rules (Ra
−

), and

(Ra
+

) show how actions can be suppressed and executed later.

Table 2.14: Operational Semantics of EBPA∗0,1.

(Ra) 2

a,τ
a−→1,τ

(R1) 2
1↓

(Ra
+

) 2

a+,τ
τ.a−→1,ε

(Ra
−

) 2

a−,τ
ε−→1,τ.a

(R∗r↓)
Q↓

(P ∗Q)↓ (R.↓)
P↓ Q↓
(P.Q)↓

(R.l)
P,τ

σ−→1,τ ′ Q,τ ′
σ′−→Q′,τ ′′

P.Q,τ
σ.σ′−→Q′,τ ′′

(R.r)
P,τ

σ−→P ′,τ ′

P.Q,τ
σ−→P ′.Q,τ ′

(R+
l↓)

P↓
(P + Q)↓ (R+

r↓)
Q↓

(P + Q)↓

(R+
l) P,τ

σ−→P ′,τ ′

P+Q,τ
σ−→P ′,τ ′

(R+
r) Q,τ

σ−→Q′,τ ′

P+Q,τ
σ−→Q′,τ ′

(R∗l)
P,τ

σ−→P ′,τ ′

P ∗Q,τ
σ−→P ′.(P ∗Q),τ ′

(R∗r)
Q,τ

σ−→Q′,τ ′

P ∗Q,τ
σ−→Q′,τ ′

29

2.4.5 Enforcement Ability

Intuitively, EBPA∗0,1 is more expressive than BPA∗0,1, therefore the new approach developed by

Hakima Ould-Slimane should be able to enforce more security properties than the original one.

2.4.6 Conclusion

In this section, we introduced the algebraic language BPA∗0,1 used in [48] to specify programs and

security properties. Then, we show how it has been used to automatically enforce a security policy

on a program. The enforced program obtained by this approach is correct and complete with respect

to the original one and the security policy. Finally, we give an extension of this approach which was

introduced in [30].

2.5 Enforcement Ability of Program Rewriting

According to [34], a security policy P is RW-enforceable if there exists a computable rewriter func-

tion R : PM → PM such that for all PM ’s M :

• P(R(M)); the transformation of the original program still satisfy P .

• And if the original PM already satisfyP , then the transformed PM is equivalent to the original

one.

2.5.1 Program Rewriting and Static Analysis

In [34], it has been shown that Pboot is an example of properties that are RW-enforceable, but not

statically enforceable. A rewriting function can enforce Pboot by taking PM M as input and returning

a new PMM ′. M ′ works exactly likeM , except that for every step ofM ,M ′ check one step ahead for

every possible input. If an invalid action is detected, M ′ terminate immediately. Intuitively, program

rewriting is more powerful than static analysis and statically enforceable policies should be therefore

a subset of RW-enforceable. But there is a special case, unsatisfied policy (false which reject all

the possible executions), for which the rewriter function R cannot return a system that satisfy it in

this model. We call this policy Punsatisfy. The relationship between RW-enforceable and statically

enforceable policies is shown by Figure 2.8.

2.5.2 Program Rewriting and Execution Monitoring

In [34], Hamlen, Morrisett and Schneider state that there are some policies is RW-enforceable which

are not in coRE. Secret File policy is one of them:

Suppose that inside a file system, there is a file that should be kept secret from untrusted programs.

And the untrusted programs can access to the list of directories that contains the secret file. The

security policy stipulates that the untrusted programs should not know the existence of the secret file.

30

Figure 2.8: Statically Enforceable and RW-enforceable According to [34].

An untrusted program satisfying this policy should behave identically as if the secret file does not

exist in the system.

In [34], authors state that deciding whether a given untrusted program behave equivalently on two

arbitrary inputs is as hard as deciding whether two untrusted programs are equivalent to each other

on all inputs. In [34], untrusted programs are modeled by PM and authors prove that the equivalent

of PMs is not coRE. Thus, secret file policy can not be enforced by execution monitors. Authors

also state another reason for this, an EM can not enforce this policy by parallel simulation of the

untrusted PM on two different inputs, one that includes the secret file and the one that does not. This

is because the EM must detect policy violations within finite time on each computational step of

the untrusted program, but the process of deciding equivalence may take an infinite of time. This is

because executions can be equivalent even if they are not equivalent in each step.

On the other hand, according to [34], program rewriting can enforce this policy, since the program

rewriting function never needs to decide whether the secret policy has been violated or not by the

untrusted program, it only needs to make sure that the changed program satisfy the security policy.

For example, when an untrusted program trying to get a directory list which include the secret file, the

rewriting function can change this list and remove the secret file’s name from it.

2.5.3 More About Execution Monitor Enforceable Policies

Intuitively, RW-enforceable policies should build an upper-bound for execution monitor enforceable

(EM enforceable) policies. But in [34], authors show that there are some policies in coRE (EMorig)

but not in the set of RW-enforceable policies and state that these policies can be enforced by execution

monitors neither. This interesting result indicates that the four requirements defining the set ofEMorig

are limited to specify EM enforceable policies. So in the following, we firstly introduce these policies

in coRE (EMorig) but can not be enforced by program rewriting. Secondly we provide a new formal

31

definition of EM enforceable policies.

We cannot enforce some security policies when we don’t have the ability to alter the target program.

For example, let I be the set of all the possible interventions of the monitor and let PI be the property

stating that all the actions in I are not allowed. This will bring contradiction when a monitor tries to

use actions in I to enforce the security policies. Schneider mention that the monitor can only terminate

the program once it violates the security policy in the definition of class EM. However, if the security

policy states that the program should not terminate, this policy is in EMorig, since it not against the

four requirements defining EMorig, but it can not be enforced by monitors defined by Schneider in

class EM. In [34], authors showed that execution monitors’ abilities are also limited if they can not

modify the program in time to enforce the security policy.

In [34], the set of monitoring enforceable policies is defined as the intersection of coRE and RW-

enforceable. In [34], authors introduce a new term "benevolent" to describe the EM enforceable

policies as following.

P̂ is a predicate over executions. The security policy P induced by P̂ is defined by:

P(M) = (∀σ : σ ∈ XM : P̂(σ))

where XM denotes the set of all possible executions exhibited by the PM M . A PM M satisfies a

security policy P if and only if all the possible executions satisfy the predicate P̂ .

Finally, the relationship between the different security policies and their enforcement mechanism is

resumed by Figure 2.9.

Figure 2.9: Classes of Security Policies According to [34].

32

2.6 Conclusion

This chapter discussed different security enforcement approaches (Statics, Dynamic approach and

Program Rewriting) as well as their advantages and disadvantages. Static approaches aim to check

codes before their executions. Generally, they require fewer system resources, since they are applied

offline. However, they can not enforce some a security policy when a run-time information is needed.

Execution monitoring is an example of the dynamic approach, it is usually used together with static

approaches to get balanced performance. Program rewriting technique adopts the advantage of the

two previous approaches to change the program before its execution to enforce the security policy.

We also introduce the security policies classes that can be enforced by these approaches as explained

in [34].

Furthermore, we highlighted that, in [34], Hamlen, Morrisett and Schneider provide an interesting

way to model different security approaches and use it to discuss the relationship between security

policy classes for different enforcement approaches.

Based on the knowledge of different enforcement approaches, we will discuss the classes of enforce-

able security policies in the next chapter.

33

Chapter 3

Classes of Enforceable Security Policies

3.1 Introduction

In this chapter, based on the works [41, 57], we give, in Section 3.2, the definitions of a security policy

and a security property. In Section 3.3, we discuss a method introduced in [4] about how to separate a

given security property into a liveness and safety parts. We also introduce the safety and the liveness

property in a topology view. In Section 3.4, we talk about the Execution Monitoring (EM) introduced

by [57] and its power. In Section 3.5 and Section 3.6, we discuss how we can enlarge the class of

enforced properties by extending the power of EM. In Section 3.7, we introduce the hyperproperties

which are security policies that are not properties. Finally, we introduce a Temporal Logic for the

hyperproperties in Section 3.8.

3.2 Security Policy and Property

Understanding and formalizing the classes of security policies that we can enforce using a given mech-

anism is a fundamental result for any research related to the enforcement problem. In the following,

we formalize the security policies and the security properties based on the works [41, 57] and we

discuss the differences between them.

3.2.1 Security Policy

In [41], authors formalize a security policy as a predicate P on sets of executions Σ. A set of execu-

tions Σ satisfies a policy P if and only if P (Σ). In another word, security policies stipulate whether a

given set of executions can be accepted or not. According to [57], the most common program policies

can be classified into the following categories:

• Access Control policies: Define what kinds of actions can access to some particular resources

(memory area, file, etc.) of the system.

35

• Availability policies: They state intuitively that whenever a resource is used by a process, it

should be released later.

• Information flow policies, which have been addressed by different works including [13] and

[15], specify requirements related to information that can be learned by the users of a given

system.

3.2.2 Security Property

In [41], authors give a formal definition as following:

A security policy P (Σ) is a property if it can be specified by a predicate of the form:

P (Σ) = ∀σ ∈ Σ.P̂ (σ)

where Σ is a set of executions and P̂ is a predicate computable on individual execution.

Hereafter we adopt the following notions introduced in [4].

A history h for a program should be viewed as an infinite sequence σ = s0s1..., where s0 is the initial

state of the program and each state after that is obtained by the execution of an atomic action on the

previous one. We use σ[..i] to denote the first i states of σ and αβ to denote the concatenation of two

program sequences α and β. All histories could be seen as infinite sequences (for a finite execution,

we simply repeat the final state infinitely).

A property is a set of infinite sequences of program states. We say that a program satisfies a property,

if all program’s histories are in this property. We use P (σ) to denote that the infinite sequence σ is in

the property P . A program satisfies a property P if for each of its history h, we have P (h).

As we can see a security property is a prediction on each execution in the set of histories Σ, while

security policy is a prediction on a set of executions. So based on this definition, security properties

is a subset of security policies.

We deduce also that information flow policies are not always security properties, because they can

link different executions together. Noninterference, as defined by Goguen and Meseguer in [26], is a

special case of information flow policies. It states that actions caused by users at hight security level

should have no effect on the observations of users at low security levels. To enforce this security

policy, we need to compare different users’ execution traces, so it is not a security property.

Service Level Agreement (SLA) discussed in [15] specifies the acceptable performance of a system.

It can be a security policy or a security property. For example, if a policy states: "the average response

time of all executions should be less than 1 second.", it is not a security property, since it needs to

36

record every execution’s response time to get the average result. But, if the policy requires that the

maxim response time is less than 1 second, it becomes a security property.

3.3 Recognizing Safety and Liveness

In [4], Alpern and Schneider provide an interesting way to separate a given property into a safety

and a liveness ones thanks to Buchi automaton. This important work can be used to know whether a

property is enforceable, not enforceable or just partly enforceable by a given enforcement mechanism.

For example, EM can only enforce safety properties and edit automata can enforce some liveness

properties besides safety ones as it will be discussed in following sections.

In the remaining part of this section, we firstly introduce the Buchi automaton. Secondly, we show

how it can be used to specify both safety and liveness properties. Finally, we point out how we can

extract liveness and safety part from a given property.

3.3.1 Buchi Automata

One important method for studying security properties is to represent them as security automata. A

Buchi automaton, which introduced first in [20], is a widely used example to specify these kind of

properties.

A Buchi automaton m, which has finite sates and accepts infinite sequences can be formally defined

as a five-tuple (S,Q,Q0, QF , δ), where:

• S is the alphabet (a set of labels) of m.

• Q is the set of the states of m.

• Q0 ⊆ Q is the set of the start states of m.

• QF ⊆ Q is the set of the accepting states of m.

• δ ∈ (Q× S)→ Q is the transition function of m.

An infinite sequence of states is accepted if it contains accepting state infinitely often. The set of

sequences accepted by the Buchi automaton m are denoted by L(m). And we say that m is reduced if

from every state there is a path to an accepting one. For a given reduced automaton m, if we convert

every state of it into accepting one, then we obtain a closure cl(m) of it.

An example of Buchi automaton is shown by Figure 3.1.

37

Figure 3.1: Example of Buchi Automaton (Baction).

3.3.2 Safety and Liveness Properties

Safety and liveness properties are two important subclasses of security properties. Here, we show that

they can be specified by different forms of Buchi automatons. Also, we introduce the separation of a

given security property into its safety and liveness parts.

Safety

A safety property states that "bad thing" never happens during the entire program execution (it is an

invariant property). Once a finite sequence violates a safety property, we cannot add something to this

sequence to amend this violation. Formal definition according to [3] is as follows:

P is a safety property if and only if:

(∀σ : σ ∈ Sω : ¬P (σ)⇒ (∃i : i ≥ 0 : (∀β : β ∈ Sω : ¬P (σ[..i]β))))

. For example, if a security property states that: "For every ATM machine, a correct PIN number is

required before money withdraw", then once a "bad thing" (using incorrect PIN number to withdraw

money) take place, there is nothing we can add to the program trace to satisfy the security property

again.

Other examples include the deadlock free property which states that a deadlock never happens, the

first-come-first-serve property which states that "incorrect sequences of serving" never happens and

the mutual exclusion property which state that no critical section can be used by more than one pro-

cess.

The closure of a Buchi automaton can be used to specify safety properties. If m is a Buchi automaton

and its closure cl(m) accepts the same language (L(m) = L(cl(m))), then m recognizes a safety

property. This is because cl(m) rejects a sequence only when there is an undefined action ("bad

thing"). It never reject because of failing to enter an accepting state (lack of "good things").

Liveness

A liveness property states that a "good thing" happens during the execution of the program execution

(it captures well-foundedness). From any program state, we can always "do something", so that the

property will be respected. A formal definition of liveness, according to [3], is as follows:

38

P is a liveness property if and only if:

(∀α : α ∈ S∗ : (∃β : β ∈ Sω : P (αβ)))

. For example, if we have the following security property: "In a program C, if some part of a memory

is reserved, it should be released sometime later". If for a finite sequence, a segment of memory is

taken and it is not released, we can always add a "release action" to it and correct the situation.

Other examples include termination property and starvation freedom property.

For a liveness property m, since the cl(m) can reject an input action only when it represents "bad

thing", then cl(m) must accept all the possible input program sequences, i.e: L(cl(m)) = Sω.

3.3.3 Partitioning Safety and Liveness Properties

Some properties are neither safety nor liveness properties, but it can be separated, using Buchi au-

tomaton, into a safety and a liveness parts, as it has been proven in [4].

For a given Buchi automaton m, which specifies a property, we can build a Safe(m) and a Live(m)

automata that represent the safety and liveness parts of m. The closure of m, cl(m) gives Safe(m).

For Live(m), we build the automaton such that L(Live(m)) = L(m) ∪ (Sω − L(cl(m))), i.e:

L(Safe(m)) = L(cl(m))

L(Live(m)) = L(m) ∪ (Sω − L(cl(m)))

L(Safe(m)) ∩ L(Live(m)) = L(m)

The safety part of the Buchi automaton Baction given by Figure 3.1 is shown by Figure 3.2 and it is

obtained by transforming every state into a final one.

Figure 3.2: Safe(Baction).

To build Live(Baction), we add a new accepting trap state ST , so that for every state in Baction is

connected to it by the complementary set of action as shown by Figure 3.3.

39

Figure 3.3: Live(Baction).

3.3.4 Liveness and Safety: Topological View

In [3], Alpern and Schneider introduce another interesting way to specify liveness and safety by the

help of topology. In [7], a topological space is defined as following:

For a set X and element τ (a collection of subsets of X), we say that τ is a topology on X if and only

if τ is closed under arbitrary union and finite intersection.

According to the definition in [7], the sets in τ are called the open sets and their complements in X

are called the closed sets. A dense set in τ intersects every non-empty open set in τ .

In [15], Alpern and Schneider states that the set of finitely observable properties is a topology on Sω.

Finitely observable properties are like the "bad things" in safety properties and we should be able to

decide whether they hold or not within a finite time. So, the sets of finitely observable properties

become open sets. Intuitively, safety properties state "bad things" not happen, which are not finitely

observable and it is the complements of the open sets. In another word, safety properties correspond

to the closed sets. And any finite observation can be extended to be in a dense set and become a "good

thing". So the dense sets correspond to liveness.

Every property P is the intersection of a safety and a liveness property. In [3], Alpern and Schneider

give a proof as following:

Let P be the smallest safety property include P and L be ¬(P − P), then:

L ∩ P = ¬(P − P) ∩ P

= (¬P ∪ P) ∩ P

= (¬P ∩ P) ∪ (P ∩ P)

= (P ∩ P) = P

40

We can prove that L is dense (liveness) by contradiction. If L is not dense, there must be a non-empty

open set O in ¬L. So O is in P − P , then we can deduce that P is in P − O, since the intersection

of two closed sets is closed. So P − O is a safety property, which contradicts the fact that P is the

smallest safety property include P .

For example, the security property stating that some actions of type B will eventually happen, but all

actions in front of them should be of type A has a safety part: all actions in front of a type B action

should have the type A. It also has a liveness part: actions of type B will eventually happen.

3.4 Execution Monitor

In [57], Schneider defined the properties class EM which can be enforced by an execution monitor

that run along with a target program. When the target program wants to execute an action, the monitor

checks it against its own security policy. If there is a violation, the target program will be terminated.

Otherwise, the program continues.

According to [57], there are three major aspects that we should consider when formalizing the defini-

tion of the class EM. First, it should accept or reject an execution by analyzing it separately.

P (Σ) = ∀σ ∈ Σ.P̂ (σ) (1)

Second, the EM cannot make decisions based on the future actions, since this information is unavail-

able for it. So, once the monitor detects a violation of the security policy, it will not allow the program

to continue, even thought there is a possibility that this violation can be remedied in the future. This

is formalized by:

(∀τ ∈ Σ : ¬P̂ (τ)⇒ (∀σ ∈ Σ : ¬P̂ (τσ))) (2)

where Σ is the set of possible executions and τσ denotes the execution τ followed by the execution σ.

Third, any rejection of action by EM must be done after a finite period of time, which means:

(∀σ ∈ Σ : ¬P̂ (σ)⇒ (∃i > 0 : ¬P̂ (σ[..i]))) (3)

where σ is a finite or infinite execution and σ[..i] denote the prefix of σ including its first i steps.

According to the definition of safety property introduced above, security properties that satisfy (1) (2)

and (3) are safety properties. In [57], Schneider notes that safety property can be used as an upper

bound for the class of EM. We should notice that there are some safety properties that can not be

enforced by execution monitors, this is due to the limited power of the EM monitors. For example, if

41

the passage of time is responsible of the violating a security property, the monitor can not do anything

about it, since it cannot control time. The power of execution monitoring can be extended so that it

will be able to deal with a larger class of security property, as it will be discussed in the next section.

3.4.1 Security Automaton for EM

A property in the class EM can be specified by a security automaton. In [57], Schneider defined it as

a deterministic automaton I =< A,Q,Q0, δ > where:

• A is the set of alphabet of I .

• Q is a finite or countably infinite set of states.

• Q0 is the set of initial states and it is the subset of Q.

• δ : Q×A→ Q is a transition function.

We can see that a security automaton don’t have accepting states, it can only reject the input when an

undefined attempt (bad things) is detected. So, similar to the closure of Buchi automaton, it can only

specify safety properties.

For the sake of further discussion, we specify the execution of a security automaton I on a sequence

of program actions σ by labeled operational rules. Let σ, σ′ and σ” be three sequences, q, q′ and q”

be three states, τ be a sequence of actions and ε be an empty sequence of action. As defined in [57],

formal definition of single step semantics is as following:

(σ, q)
τ−→ (σ′, q′):

if σ = aσ′ and δ(a, q) = q′ then (σ, q)
a−→ (σ′, q′)

otherwise (σ, q)
ε−→ (ε, q)

3.5 More Powerful Monitors

In [41], authors discuss the power of different automata within uniform and non-uniform systems.

For a software system S, let A be its set of all actions and Σ be its set of all possible traces. S is an

uniform system if Σ = A∗, while, S is an non-uniform system if Σ ⊂ A∗.

Although, the security automata discussed above can only enforce safety properties, this is not the

limit of all the execution monitors. In [41], Bauer, Ligatti and Walker point out that once the monitor

can modify the program actions, it can enforces security properties beyond safety. The modification

of actions includes suppress, insert and edit. Respectively, we introduce hereafter these three different

types of automata.

42

3.5.1 Insertion Automaton

As defined in [41], insertion automata is a deterministic automaton I =< A,Q, q0, δ, γ > where:

• A is the set of alphabets.

• Q is a finite or countably infinite set of states.

• q0 is the initial state.

• δ : Q×A→ Q is a transition function.

• γ is the function that can insert several actions into the program sequences.

In [41], it has been stated that insertion automata still can enforce only safety properties in uniform

systems, while in non-uniform systems, their power can be extended to some liveness properties. This

is due to the fact that we can access to the assistance of static analysis in non-uniform systems, which

is forbidden in uniform one. For example, lets our liveness property states that: "action α happens

eventually". We can mark the end of all given execution traces firstly. Then, during the execution of

the program, if the monitor encounter an end mark and the action α is still not happened, it simply

inserts the action α.

3.5.2 Suppression Automaton

As defined in [41], suppression automaton is a deterministic automaton I =< A,Q, q0, δ, ω > where:

• A is the set of alphabets.

• Q is a finite or countably infinite set of states.

• q0 is the initial state.

• δ : Q×A→ Q is a transition function.

• ω : A × Q → {−,+} is the partial function that indicate whether or not the action should be

suppressed (-) or emitted (+).

In the uniform systems, the suppression automata still can enforce only safety properties. While in

the non-uniform systems, their power are less than insertion automata. In [41], it has been stated that

suppression automata cannot enforce bounded-availability policies and for every suppression automa-

ton, we can build an insertion automaton that enforces the same property. But, there are some cases

when suppression automata are more suitable to use. For example, if we want to change the original

security policies, a suppression automaton can be more efficient.

43

3.5.3 Edit Automaton

Edit automata is simply the combination of the previous two automatons. Intuitively, edit automaton

is the most powerful enforcement mechanism we discussed so far. But, when considering uniform

system, it can enforce only safety properties.

For non-uniform systems, since an insertion automaton is more powerful than a suppression automa-

ton, the edit automata enforces exactly the same set of properties as the insertion automata. Also, it

builds an upper-bound for any other methods mentioned before. A taxonomy about the relationship

between different security policies discussed in this section is shown in Figure 3.4 and Figure 3.5.

Figure 3.4: Enforcing Power of Edit Automata According to [41].

Figure 3.5: Enforcing Power of the three Automata for Non-Uniform Systems According to [41].

3.6 Further Discussion about Enforcing Abilities

In [32, 33], authors introduce a more elaborate framework to study the enforcement power of different

monitors. To better understand this framework, it is important to clarify the meaning enforcement. In

the remaining part of this section, we first give the formal definitions of three types of enforcement

given in [33]. Then, we use these definitions to discuss the enforcement power of different automata.

44

3.6.1 Three Types of Enforcement

In [33] authors believe that enforcement mechanisms can accomplish their task effectively only when

they respect the following two abstract principles.

• (Soundness) An enforcement mechanism must ensure that all observable outputs obey the prop-

erty in question.

• (Transparency) An enforcement mechanism must preserve the semantics of executions that al-

ready respect the property in question.

The first criterion stipulates that all the bad executions of the program (which do not respect the secu-

rity properties) should not be seen in the output. The second one requires that all the good executions

(which already satisfy the security properties) should remain the same. If an enforcement mechanism

can satisfy the first requirement (Soundness), but not necessarily the second, then this mechanism can

conservatively enforce the property. The formal definition of Conservative Enforcement given in [33]

is as following:

Conservative Enforcement: An automaton A with a starting state q0 conservatively enforces a prop-

erty P̂ on a system with an action set A if and only if ∀σ ∈ A∗ ∃q′, σ′ ∈ A∗, such that:

1. (σ, q0)
σ′

=⇒A (., q′) and

2. P̂ (σ′)

Conservative Enforcement provides a great freedom to automata, for example, one automaton could

just always output an empty stream of actions to enforce any property. This definition of enforcement

can make an automaton seems powerful, but actually is not useful for end users. To solve this problem,

we need to take the second criterion (Transparency) into consideration. In [33], authors give the formal

definition of precise enforcement as following:

Precise Enforcement: An automaton A with a starting state q0 precisely enforces a property P̂ on a

system with an action set A if and only if ∀σ ∈ A∗ ∃q′, σ′ ∈ A∗, such that:

1. (σ, q0)
σ′

=⇒A (., q′),

2. P̂ (σ′) and

3. P̂ (σ)⇒ ∀i ∃q′′. (σ, q0)
σ[..i]
=⇒A (σ[i+ 1..], q′′)

In the definition of precise enforcement, the first two requirement stipulate that Precise Enforcement

is included in Conservative Enforcement, the third requirement stipulates that if a stream of actions of

45

the target program already satisfies the security property, the automaton should output it without any

interruption or change.

The definition of Precise Enforcement does not consider the fact that two action streams can be se-

mantically equivalent, but not necessarily syntactically the same. For example, if we want to write

something on two files, which one we write first should not affect the final result. In [33], authors use

an equivalence relation (∼=) to define semantically equivalent and require that∼= is reflexive, symmetric

and transitive. The formal definition of this equivalence is in [33] as following:

σ ∼= σ′ ⇒ P̂ (σ)⇔ P̂ (σ′)

The above definition stipulates that if one trace satisfies one property, all the equivalent (∼=) traces also

satisfy it. Based on the above definition, authors introduce, in [33], the formal definition of Effective

Enforcement as following:

Effective Enforcement: An automaton A with a starting state q0 effectively enforces a property P̂ on

a system with an action set A if and only if ∀σ ∈ A∗ ∃q′, σ′ ∈ A∗.

1. (σ, q0)
σ′

=⇒A (., q′),

2. P̂ (σ′) and

3. P̂ (σ)⇒ σ ∼= σ′

3.6.2 Enforcement Abilities of Different Automaton

In [32, 33], authors show four types of automata(Truncation Automata, Suppression Automata, In-

sertion Automata, Edit Automata) and discuss their enforcement abilities based on various levels of

enforcement. Here, Truncation Automata are similar to the security automata introduced in Section

3.4.1. For the sake of simplicity, we use the name of automata to identify the set of properties that they

can enforce, For example, editing properties means the set of properties that can be enforced by Edit

Automata. Based on the result of [32, 33], Figure 3.5 is true only at the level of Precise Enforcement.

A taxonomy about the updated result is shown in Figure 3.6 (page 47).

At the level of effective enforcement, a taxonomy about the relationship between different automata

is shown in Figure 3.7 (page 47).

3.6.3 Enforcement Power of Edit Automata

In the definition of Effective Enforcement, if we change the "semantically equivalence" (∼=) by "syn-

tactically equivalence" (=), we obtain a conservative version of Effective Enforcement. The formal

definition of this level of enforcement is introduced in [32] as following:

46

Figure 3.6: Enforcing Power of Different Automata for Precise Enforcement According to[32, 33].

Figure 3.7: Enforcing Power of Different Automata for Effective Enforcement According to [32, 33].

Effective= Enforcement: An automaton A with a starting state q0 effectively= enforces a property P̂

on a system with an action set A if and only if ∀σ ∈ A∗ ∃q′, σ′ ∈ A∗.

1. (σ, q0)
σ′

=⇒A (., q′),

2. P̂ (σ′) and

3. P̂ (σ)⇒ σ = σ′

In [32], the authors discuss the enforcing power of edit automata and concluded that an edit automaton

can effectively= enforce any reasonable infinite renewal property. The formal definition of renewal

property is given in [32] as following:

A property P̂ is an infinite renewal property on a system with action set A if and only if:

∀σ ∈ Aω : P̂ (σ)⇐⇒ {σ′ � σ|P̂ (σ′)} is an infinite set (RENEWAL1)

47

In [32], the authors also give the condition (RENEWAL2) and use it to replace (RENEWAL1) to

get an equivalent definition of renewal property.

∀σ ∈ Aω : P̂ (σ)⇐⇒ (∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂ (τ)) (RENEWAL2)

The relationship between renewal properties, safety properties and liveness properties is shown by

Figure 3.8.

Figure 3.8: Relationship Between Renewal Properties, Safety Properties and Liveness Properties Ac-
cording to [32].

3.7 Hyperproperties

We have already stated that some security policies are not security properties, since they need to

consider the relationship between different traces. Also, some interesting policies (non-interference,

SLA) cannot be specified as properties. In [15], Clarkson and Schneider introduce Hyperproperties to

deal with this problem.

3.7.1 Property and Hyperproperty

A property can be seen as a set of possibly infinite traces. A set T of traces satisfies a property P , if

and only if all the traces of T are in P , i.e: (T ⊆ P).

Suppose for example that we have a boot area in the memory and the security property states that a

writing action should not happen in this area. This property can be formalized by the following set of

traces.

NWB = {t ∈ Sω|∀i ∈ N, noBootAreaWriting(t(i))}

where Sω denotes the set of all infinite traces, N denotes the set of natural numbers and

noBootAreaWriting(t(i)) is a predicate on the ith action of the trace t.

48

A hyperproperty is defined in [15] as a set of sets of infinite traces, or equivalently a set of properties.

Thus, a set T of traces satisfies a hyperproperty H , if and only if T is in H (T ∈ P). In mathematical

logic, a security property corresponds to the first order logic and hyperproperty corresponds to the

second order logic.

Noninterference, as defined by Goguen and Meseguer in [26], is an information flow policy and it

states that commands caused by users at hight security levels should not have effects on the observation

of users at low security levels. In [15], Clarkson and Schneider state that it is a hyperproperty and

formalize it as following:

GMNI = {T ∈ Prop | T ∈ GMSys =⇒
(∀t ∈ T : (∃t′ ∈ T :

evHin(t′) = ε ∧ evL(t) = evL(t′)))}

where Prop is the set of all properties and GMSys is the special requirement made in [26]. We use

ev(t) to denote the input (commands) and output (observations) events of an end user that take place

during the trace t of the system, evL(t) to denote the low level events within ev(t) and evHin(t) to

denote the high level command events within ev(t).

Service Level Agreement (SLA), discussed in [15], specifies the acceptable performance of a system.

For example: "the average response time of all executions should be less than 1." Again this is a

hyperproperty and in [15], it is specified as following:

RT = {T ∈ Prop |mean(
⋃
t∈T respT ime(t)) < 1}

3.7.2 Hypersafety

Just like safety and liveness for properties, there are hypersafety and hyperlivness for hyperproperties.

Hypersafety in [15] is defined as following:

A hyperproperties S is a hypersafety if and only if:

∀T ∈ Prop : T /∈ S =⇒ (∃M ∈ Obs : M ≤ T

∧(∀T ′ ∈ Prop : M ≤ T ′ =⇒ T ′ /∈ S))

where Obs is the set of all finite subsets of the sets of finite traces. If we have T, T ′ ∈ Prop, then we

say that T is a prefix of T ′, denoted by T ≤ T ′, if and only if:

∀t ∈ T : (∃t′ ∈ T ′ : t ≤ t′)

49

Clarkson and Schneider state that the GMNI is an example of hypersafety. The "bad thing" is a pair

of traces (t, t′), where t′ has no high input events and t and t′ have the same low input events but

different low output (observation) events.

k-safety hyperproperty

GMNI is an example where we need to consider two traces for "bad things". In [15], k-safety hyper-

property is a generalized definition in which the "bad thing" never involves more than k traces.

∀T ∈ Prop : T /∈ S =⇒ (∃M ∈ Obs : M ≤ T

∧|M | ≤ k ∧ (∀T ′ ∈ Prop : M ≤ T ′ =⇒ T ′ /∈ S))

KSHP (k) denotes the set of all k-safety hyperproperties. Intuitively, when k = 1, it contains all safety

properties.

SSk is an example of KSHP (k) stated in [15] as follows: Suppose that we have a secret file and we

separate it into k shares, where each one can be displayed by an action. Then, a hyperproperty may

stipulate that for all the executions of the system, all the k shares cannot all be revealed.

3.7.3 Hyperliveness

Hyperliveness is defined in [15] as following:

A hyperproperties L is a hyperliveness if and only if:

∀T ∈ Obs : (∃T ′ ∈ Prop : T ≤ T ′ ∧ T ′ ∈ L)

RT is an example of hyperliveness. The "good thing" is the average response time should be lower than

a finite threshold and we can always add a finite set of quick response traces to meet this requirement.

In [15], authors show that Generalized Noninterference (GNI) introduced by McLean in [46] is another

example of hyperliveness properties. GNI requires that for any traces t1 and t2, a system must contain

an interleaved trace t3 whose high inputs are the same as t1 and his low events are the same as t2. It

is modeled in [15] as following:

GNI = {T ∈ Prop |
(
∀t1, t2 ∈ T : (∃t3 ∈ T : evHin(t3) = evHin(t1)

∧evL(t3) = evL(t2))
)
}

In [15], it states that if we define true = Prop, then it is both hypersafety and hyperliveness. On the

other hand the minimal hyperproperty false = {∅} is a hypersafety, but not a hyperliveness.

50

3.7.4 Partition of Hyperproperties

Like properties, every hyperproperty is the intersection of a hypersafety and a hyperliveness. For

example, considering a system containing secret files and providing service for users holding dif-

ferent security levels. Suppose that our policy specifies both confidential requirements specified by

GMNI and response time requirement specified by RT, then this hyperproperty has a hypersafety and

a hyperliveness parts.

The classification of hyperproperties is shown in Figure 3.9, where HP is the set of all hyperproperties,

SHP is the set of all hypersafety and LHP is the set of all hyperliveness. NWB, GMNI, RT, ture and

false are some examples that we have already introduced before.

Figure 3.9: Classification of Hyperproperties.

3.8 Temporal Logics for Hyperproperties

Since a Hyperpropertie is a set of security properties, standard temporal logics (LTL,CTL and

CTL∗) that can refer only to a single path each time are not suitable for specifying Hyperproper-

ties and in [44], authors introduce two new logics (HyperLTL and HyperCTL∗) to address this

problem.

In [44], authors give a HyperLTL2 prototype model checker based on algorithms for LTL model

checking [25, 55, 65]. HyperLTL2 is a simple version of HyperLTL. Authors also state that the worst-

case running time is exponential but their purpose in building this prototype was a proof-of-concept

for model checking of hyperproperties.

51

3.9 Conclusion

In this chapter, we have introduced the most relevant works related to the classification of security

policies. We highlighted that security properties is a subset of security policies, since security policy

need to consider different program traces, while security property is a predicate on one trace. Safety

and liveness properties have also been introduced and we can extract them from any given property.

Also, we discussed the execution monitors, for the security property class EM, which are monitors

that can only run along with the analysed program and enforce security properties by terminating it

whenever it tries to violate the specified policy. EM is a subset of safety properties, but once it get the

power to change the target programs, then some liveness properties can also be enforced.

Hyperporperties extend the definition of security properties, according to [15], they are powerful

enough to specify all discovered security policies.

To sum up, all the results of this chapter are important for our work. Once a security policy was given

for enforcement, we should know to which class it belongs and choose the appropriate enforcement

method for it. For example, if a part of the security property is liveness, then the execution monitors

without the ability to modify the target program should not be chosen. But what if we can choose

different enforcement approaches for one given security property? In this case, we should understand

well the advantages and disadvantages of different approaches.

52

Chapter 4

FASER (Formal and Automatic Security
Enforcement by Rewriting) on BPA with
Test

4.1 Introduction

Based on the work introduced in [48], we want to make many extensions so we can address a real

programming language together with a rich variety of security policies.

To that end, we started by fixing the main foundation of the approach. Amongst authors, we changed

the definition of the trace equivalence so that we obtain a congruence relation which is a helpful

property. We have also proved all the result related to the correctness and the completeness of the

approach, which was not available within the original work and we implemented a prototype showing

the efficiency of the approach.

This chapter extends the expressiveness of the algebra BPA∗0,1 by adding tests to allow the approach

to enforce security policies on more systems. More specifically, first, we introduced a new algebra

CBPA∗0,1 which extend BPA∗0,1. The untrusted code (program in C-like language for example)

together with the security policy should be first specified as processes in CBPA∗0,1. Secondly, we use

our rewriting algorithm to get a kind of intersection between them as the result of the enforcement

operation. Finally, we translate our result back to the original language. This whole enforcement

process is as shown in Figure 4.1.

4.1.1 Ingredients and Steps to Solve the Problem

To solve the above problem, we need to provide the following ingredients:

• A formal language to specify systems.

• A formal language to specify security policies.

53

Figure 4.1: Security policy enforcement process with CBPA∗0,1.

• Formalization of the problem: link between inputs and output of u.

• Resolution of the problem, i.e: find P uQ shown in Figure 4.1.

In the remaining part of this chapter, we will address the above problems respectively.

4.2 Formal Language to Specify Systems: CBPA∗0,1

To be able to specify more interesting programs and security policies, it is important to endow the

algebra with conditional actions. In this section, we give the syntax and the semantics of CBPA∗0,1,

which is an extension of BPA∗0,1 [9, 10, 48]. We also provide a more user-friendly interface to allow

end-users to write their program in a C− like language that can be translated into CBPA∗0,1 by a

given function.

4.2.1 Syntax of CBPA∗0,1

Let P be the set of processes in BPA∗0,1. Intuitively, CBPA∗0,1 is BPA∗0,1 endowed with an embed-

ded boolean algebra (B,+, .,− , 0, 1), where B ⊆ P . More precisely, let a be an atomic action in A
and c be a condition. The syntax of CBPA∗0,1 is defined by the following BNF-grammar.

x, y ::= 0 | 1 | a | c | x+ y | x.y | x∗y

Informally, the semantics of CBPA∗0,1 is as following:

• 0 means that the process is in a deadlock state.

• 1 means that the process has finished normally its executions.

• c is either 0 or 1.

• x+ y is a choice between two processes x and y.

54

• x.y is a sequential composition between x and y.

• x∗y is the process that behaves like x.(x∗y)+y. It is a binary version of the Kleene star operator

[40].

To reduce the number of parenthesis in CBPA∗0,1 terms, we use the following priority between oper-

ators (from high to low): "∗", ".", "+". Notice also that "." is omitted when there is no ambiguity.

4.2.2 Semantics of CBPA∗0,1

Suppose [[−]]B is an evaluation function from B to {0,1}, we introduce the notation x ↓ to know

whether the process x can immediately terminate with success or not, by the inference rules given in

Table 4.1.

Table 4.1: Definition of the Operator ↓.

(R1) 2
1↓ (Rc) 2

c↓ [[c]]B = 1

(R∗r↓)
y↓

(x∗y)↓ (R.↓)
x↓ y↓
(x.y)↓

(R+
l↓)

x↓
(x + y)↓ (R+

r↓)
y↓

(x + y)↓

Now, the semantics of CBPA∗0,1 can be defined by the transition relation→∈ P × Σ × P given by

Table 4.2.

Table 4.2: Operational Semantics of BPA∗0,1.

(Ra) 2

a
a−→1

(R.l)
x↓ y

a−→y′

x.y
a−→y′

(R.r)
x
a−→x′

x.y
a−→x′y

(R∗l)
x
a−→x′

x∗y
a−→x′.x∗y

(R∗r)
y
a−→y′

x∗y
a−→y′

4.2.3 Handling a C−Like Programming Language

CBPA∗0,1 can be used to specify programs, but formal languages are difficult for many end-users.

In order to provide a more user-friendly interface, we consider the following C-like programming

language:

55

• P::= ;| exit() | a| P;P’ | if (c) {P} else {P’} | while (c) do {P}

| do {P} while (c)

Any program written on this language can be translated to CBPA∗0,1 by the following function:

d−e : C-Like −→ EBPA∗0,1
d; e = 1 dexit()e = 0

dP ;P ′e = dP e.dP ′e dae = a

dif(c) {P} else {P ′}e = c.dP e+ c.dP ′e
dwhile(c) do {P}e = (c.dP e)∗c
do {P}dwhile(c) e = (dP e.c)∗c

4.3 A Formal Language to Specify Security Policies (LTL-like logic)

Suppose that a ranges over a finite set of actions A, then the syntax of the logic is as following:

Φ,Φ1,Φ2 ::= > | ⊥ | 1 | a | ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | XΦ | Φ1UΦ2 | Φ1.Φ2

Let τ be a trace (a sequence of actions) and let τ i be its suffix starting from the action at the ith

position. The semantics of a formula is given by � as follows:

• τ � >, τ 6� ⊥, a � a, ε � 1,

• τ � ¬Φ if τ 6� Φ,

• τ � Φ1 ∨ Φ2 if τ � Φ1 or τ � ∧Φ2

• τ � Φ1 ∧ Φ2 if τ � Φ1 and τ � ∧Φ2

• τ � XΦ if τ1 � XΦ

• τ � Φ1UΦ2 if there exists k such that τk � Φ2 and for all 0 ≤ i < k τ i � Φ1.

• τ � Φ1.Φ2 if there exists τ1 and τ2 such that τ = τ1.τ2, τ1 � Φ1 and τ2 � Φ2.

Any formula Φ in the LTL-like logic can be translated to BPA∗0,1 using following four steps:

56

1. We keep applying the following rules on Φ, until all "¬" operators are in front of atomic actions.

¬⊥ −→ >

¬> −→ ⊥

¬¬Φ −→ Φ

¬(XΦ) −→ X(¬Φ)

¬(Φ1 ∧ Φ2) −→ ¬Φ1 ∨ ¬Φ2

¬(Φ1 ∨ Φ2) −→ ¬Φ1 ∧ ¬Φ2

¬(Φ1UΦ2) −→ (¬Φ1) ∨ (Φ1U¬Φ2)

¬(Φ1.Φ2) −→ (¬Φ1) ∨ (Φ1.¬Φ2)

2. We keep applying the following rules until Φ becomes in a conjunctive normal form (CNF).

X(∧iΦi) −→ ∧i(XΦi)

((∧iΦi)U(∧jΦj)) −→ ∧i ∧j (ΦiUΦj)

(Φ1 ∧ Φ2) ∨ Φ3 −→ (Φ1 ∨ Φ3) ∧ (Φ2 ∨ Φ3)

Φ1 ∨ (Φ2 ∧ Φ3) −→ (Φ1 ∨ Φ1) ∧ (Φ1 ∨ Φ3)

3. The previous steps transform any Φ to a form like ∧ni=1Φi, where each Φi does not contain the

"∧" operator and all the "¬" operators are in front of atomic actions. Now, we translate each Φi

as a process in BPA∗0,1 using the following function:

d−e : LTL −→ BPA∗0,1

d⊥e = 0

d>e = (
∑

a∈A a)∗1

d1e = 1

d¬1e = (
∑

a∈A a)∗(
∑

a∈A a)

dae = a

d¬ae =
∑

ai∈A−{a} ai

dXΦe = (
∑

a∈A a).dΦe
dΦ1 ∨ Φ2e = dΦ1e+ dΦ2e
dΦ1UΦ2e = dΦ1e∗dΦ2e

4. Finally, the enforcement of Φ on a process P becomes as following:

P u Φ = P u ∧ni=1Φi = (P u dΦ1e)... u dΦne

Example 4.3.1 (Transfer LTL-like Language into CBPA∗0,1) Let r, w and s denote the actions

read, write and send respectively. The security policy Φ = (¬(r ∨ w))U((r ∨ w).(¬s)U1) in LTL-

like language states that once the read or the write happens, then the send action will be forbidden.

57

First, we translate Φ into its conjunctive normal form:

Φ = (¬r ∧ ¬w))U((r ∨ w).(¬s)U1)

= (¬r)U((r ∨ w).(¬s)U1) ∧ (¬w)U((r ∨ w).(¬s)U1)

= Φ1 ∧ Φ2

Secondly, we translate Φ1 and Φ2 into BPA∗0,1:

Q1 = dΦ1e = d(¬r)U((r ∨ w).(¬s)U1)e

= (w + s)∗((r + w).(w + r)∗1)

Q2 = dΦ2e = d(¬w)U((r ∨ w).(¬s)U1)e

= (r + s)∗((r + w).(w + r)∗1)

Finally, the enforcement of Φ on a given program P will be obtained by resolving the following

problem:

((P uQ1) uQ2)

4.4 Formalization of the Problem: Link Between Inputs and Output of
u

In the sequel, we formalize the properties of an enforced process. To this end, we need the following

definitions.

4.4.1 Trace Based Equivalence

To compare the behaviors of processes, we use a congruent relation based on traces as introduced in

[24]. A sequence of actions τ is a trace of a process x if there exists another process x′ such that

x
τ
� x′, where the relation� is defined as following:

Definition 4.4.1 (Definition of�)

2

x
ε
�x

x
τ
� x′ x′ a→ x′′

x
τ.a
� x′′

Also, we say that x

�

τ , if there exists x′, such that x
τ
� x′.

Now we can use traces to compare two processes using the following ordering relation.

Definition 4.4.2 (Definition of vT) Let x and y be two processes. We say that x vT y, if for ∀τ ∈
Σ∗, we have:

58

1. if x

�

τ then y

�

τ

2. if x
τ
� 1 then y

τ
� 1.

vT has some important properties.

Proposition 4.4.3 vT is a congruence relation.

Proof: The proof is in Section 4.6, on page 68.

The transitivity of vT is also an interesting property and it will be useful for the proof later.

Proposition 4.4.4 vT is a transitive relation.

Proof: Directly from the definition of vT .

Now we can define the trace based equivalence ∼ form vT above.

Definition 4.4.5 (∼) We say that two processes x and y are trace equivalent and we write x ∼ y, if x

vT y and y vT x.

∼ has the following important property.

Proposition 4.4.6 Trace equivalent (∼) is a congruence relation.

Proof: Directly from the congruence of vT .

Hereafter, we give some other useful properties of ∼:

Proposition 4.4.7 Given three processes x, y and z in CBPA∗0,1, then the following properties hold.

(B1) x+ (y + z) ∼ (x+ y) + z (B7) 0.x ∼ 0

(B2) x.(y.z) ∼ (x.y).z (B8) x.1 ∼ x ∼ 1.x

(B3) x+ y ∼ y + x (B9) x+ 0 ∼ x

(B4) (x+ y).z ∼ x.z + y.z (B10) x∗y ∼ y + xx∗y

(B5) x.(y + z) ∼ x.y + x.z (B11) x+ y vT z ⇒ x vT z, y vT z
(B6) x+ x ∼ x (B12) x.z + y vT z ⇒ x∗y vT z

Proof:
B1 to B11 are directly from the definition of ∼ and vT ,

The proof of B12 is in Section 4.6.2, on page 74.

59

Now based on the definition of trace equivalence, we can discuss the relationship between inputs and

output of our enforcement operator. Given a program P and a security policy Φ, the goal of this work

is to generate another program P ′ that respects the security policy Φ and behaves like P except when

the security policy is going to be violated. More precisely, we want that the result P ′ respects the two

following properties:

1. Correctness:

• P ′ v P : all the traces of P ′ are traces in P .

• P ′ v Φ: all the traces of P ′ respect the security policy.

2. Completeness: If there exists P” such that P” v P and P” v Φ, then P” v P ′. This property

involves that all the traces in P that respect the security policy are also in P ′.

The two previous properties can be stated using the notion of a greatest common factor or gcf defined

as following:

Definition 4.4.8 (Greatest Common Factor (gcf)) Let P and Q be two processes. The gcf of P

and Q, denote by P uQ, is a process R that respects the following three conditions:

• R v P .

• R v Q.

• For all R′ such that R′ v P and R′ v Q, we have R′ v R.

Now, the problem of enforcing a security property Φ on a program P turns to find P uQ. In the next

section, we introduce an algorithm allowing to compute gcf , but before that, we give some useful

properties of u.

Proposition 4.4.9 let P,Q and R be three processes, the following properties hold:

1 u a ∼ 0

P u P ∼ P

P uQ ∼ Q u P

a.P u a.Q ∼ a.(P uQ)

P u (Q+R) ∼ P uQ+ P uR

Proof: directly from the definition of u.

60

4.5 Resolution of the Problem, Find P uQ of Figure 4.1.

Hereafter, we give an algorithm, based on the notion of derivatives, allowing to compute the gcf of

two processes P and Q.

4.5.1 Derivatives in CBPA∗0,1

We adapt the definition of derivatives introduced by Brzozowski in [11] as following:

Definition 4.5.1 (Derivative of a process) The derivative of a process x with respect to an action a,

denote by ∂a(x), is defined as following:

∂ : Σ× P −→ P

∂a(0) = 0

∂a(1) = 0

∂a(c) = 0

∂a(a) = 1

∂a(b) = 0

∂a(x
∗y) = ∂a(x).x∗y + ∂a(y)

∂a(x+ y) = ∂a(x) + ∂a(y)

∂a(x.y) = ∂a(x).y + o(x).∂a(y)

Informally, the derivative of a process with respect to a given action is the remaining part of the process

after the execution of this action, i.e:

∂a(x) =
∑

{x′∈P | x a→x′}

x′

Let ε denotes the empty trace, τ , τ1 and τ2 be trace in Σ∗, T be a set of traces in Σ∗ and P be a set of

processes. The notion of derivatives can be extended to a trace and a set of traces as following:

∂ε(P) = P

∂τ1.τ2(P) = ∂τ1(∂τ2(P))

∂τ (P) =
⋃
P∈P{∂τ (P)}

∂T (P) =
⋃
τ∈T {∂τ (P)}

Some other definitions are also important for our algorithm.

Definition 4.5.2 (Immediate successful termination of a process) The function o(x) allows to know

whether x ↓ holds or not and it is defined as follows:

61

o : P −→ {0, c, 1}

o(0) = 0

o(1) = 1

o(a) = 0

o(c) = c

o(x∗y) = o(y)

o(x+ y) = o(x) + o(y)

o(x.y) = o(x).o(y)

Definition 4.5.3 (Immediate possible actions of a process) The following function δ gives the im-

mediate possible actions of a process:

δ : P −→ 2Σ

δ(0) = ∅
δ(1) = ∅
δ(a) = {a}
δ(c) = ∅

δ(x∗y) = δ(x) ∪ δ(y)

δ(x+ y) = δ(x) ∪ δ(y)

δ(x.y) = δ(x) ∪ o(x)⊗ δ(y)

Intuitively, δ(x) = {a|x a→ x′} where ⊗ is defined as following:

o(x)⊗ {} = {}

o(x)⊗ ({a} ∪ S) = {o(x).a} ∪ o(x)⊗ S

To ensure that δ returns elements in 2Σ, we need to consider that {1.a} = {a} and {0.a} = {}

Definition 4.5.4 (Immediate possible conditions of a process) The following function C gives the

immediate possible conditions of a process:

C(P) := {c|c.a ∈ δ(P)}

Intuitively, C(P) returns the condition part of each element in δ(P).

62

Definition 4.5.5 (Conditional process) The conditional process P given c, denoted by P/c, is de-

fined as following:

/ : Σ× P −→ P

0/c = 0

1/c = 0

a/c = 0

c1/c2 = 0, when c1 6= c2

c/c = 1

(x∗y)/c = (x/c).x∗y + (y/c)

(x+ y)/c = (x/c) + (y/c)

(x.y)/c = (x/c).y + κ(x).(y/c)

where κ is defined as following:

κ : P −→ {0, 1}

κ(0) = 0

κ(1) = 1

κ(a) = 0

κ(c) = 0

κ(x∗y) = κ(y)

κ(x+ y) = κ(x) + κ(y)

κ(x.y) = κ(x).κ(y)

Notice that if the condition is c = c1c2 . . . cn, then P/c = (P/c1)/c2 . . . cn.

The definition of derivative allows us to present the relationship between the intersection of two pro-

cesses and the intersection of their derivatives.

Proposition 4.5.6 Let P be a process in BPA∗0,1, then

P ∼ o(P) +
∑

a∈δ(P)

a.∂a(P)

Proof: The proof is in Section 4.6, on page 81. 2

Proposition 4.5.7 Let P and Q be two processes of BPA∗0,1, then

63

P uQ ∼ o(P)× o(Q) +
∑

a∈δ(P)∩δ(Q)

a.(∂a(P) u ∂a(Q))

Proof: The proof is in Section 4.6, on page 86. 2

For CBPA∗0,1, we update above propositions as following:

Proposition 4.5.8 Let P be a process in CBPA∗0,1, then

P ∼ o(P) +
∑

c∈C(P)

c
∑

a∈δ(P/c)

a ∂a(P/c)

Proof: The proof is similar to the proposition 4.5.6. 2

Proposition 4.5.9 Let P and Q be two processes of BPA∗0,1, then

P uQ = o(P).o(Q) +
∑

(cp, cq) ∈
C(P)× C(Q)

cp cq
∑

a ∈ δ(P/cp)∩
δ(Q/cq)

a(∂a(P/cp) u ∂a(Q/cq))

Proof: The proof is similar to the proposition 4.5.7. 2

4.5.2 Algorithm

Based on Proposition 4.5.9, we write an algorithm allowing to generate a linear system where P uQ
could be extracted form its solution. This algorithm is as following:

Algorithm 1 calculate P uQ in BPA∗0,1

1: E ←− {P uQ = o(P).o(Q)+

∑
(cp, cq) ∈
C(P)× C(Q)

cp cq
∑

a ∈ δ(P/cp)

∩δ(Q/cq)

a(∂a(P/cp) u ∂a(Q/cq))}

2: while there exists Pi uQi in the right side of any equation in E that does

not appear (modulo commutativity of u and ACIT of +) in the left side

on any equation do

E ←− E ∪ {P uQ = o(P).o(Q)+

64

∑
(cp, cq) ∈
C(P)× C(Q)

cp cq
∑

a ∈ δ(P/cp)

∩δ(Q/cq)

a(∂a(P/cp) u ∂a(Q/cq))}

end while
3: Return the solution of the linear system E.

• ACIT of + is an abbreviation of Associativity ((x + y) + z ∼ x + (y + z)), Commutativity

(x + y ∼ y + x), Identity (x + x ∼ x) and Triviality (x + 0 ∼ 0 + x ∼ x, 0.x ∼ 0 and

(1.x ∼ x.1 ∼ x).

• The algorithm terminates since the number of partial derivatives of regular terms x, denoted by

PD(x) and defined as ∂Σ∗(x), is finite as shown by Brzozowski [11].

• The complexity of the algorithm for two inputs P and Q is O(||P || × ||Q||), where ||P || is

the size of P , i.e. the number of elements in Σ ∪ {0, 1} in P . In fact, it was proved in [5]

that the number of partial derivatives of P is smaller than ||P || + 1. Also, since any equation

is the intersection of an element from PD(P) and another from PD(Q), then the number of

equations N is no more than (||P || + 1) × (||Q|| + 1) and their resolutions can be done by

elimination using the Arden’s Lemma [6] less than N times.

• The system generated by the algorithm is linear and has the following form AX + B = X

where A is a constant matrix of size n×n, B is a constant vector of size n and X is a vector of

variables of size n.

• The system can be solved iteratively by using Arden’s Lemma [6]. Also, a generalized version

of Arden Lemma shows that the solution of this system is X = A∗B, where A∗ is computed as

following:[
a b

c d

]∗
=

[
(a+ bd∗c)∗ (a+ bd∗c)∗bd∗

(d+ ca∗b)∗ca∗ (d+ ca∗b)∗

]
and the result can be inductively generalized for matrices n by n as following, where A is an

n− 1 by n− 1 matrix:[
A B

C D

]∗
=

[
(A+BD∗C)∗ (A+BD∗C)∗BD∗

(D + CA∗B)∗CA∗ (D + CA∗B)∗

]
These result holds because, under the trace equivalence, CBPA∗0,1 is a kind of monodic tree

Kleene algebra [62] with a binary version of the Kleene star.

4.5.3 Simple Example

Computing P uQ

• Inputs: P = (c1.a.b
∗d)∗1 and Q = c2.a.d

∗1 + c3.(a.d)∗1

65

• Linear system generation:

P uQ = X1

= {|Proposition 4.5.9 |}

o(P).o(Q)+

∑
(cp, cq) ∈
C(P)× C(Q)

cp cq
∑

a ∈ δ(P/cp)∩
δ(Q/cq)

a(∂a(P/cp) u ∂a(Q/cq))

= {|o(P) = 1 and o(Q) = c3 and C(P) = {c1}
and C(Q) = {c2, c3} |}

1.c3 + c1 c2
∑

a ∈ δ(P/c1) ∩ δ(Q/c2)

a(∂a(P/c1) u ∂a(Q/c2))

+c1 c3
∑

a ∈ δ(P/c1) ∩ δ(Q/c3)

a(∂a(P/c1) u ∂a(Q/c3))

= {|Definition 5.5.1, Definition 4.5.5 |}

c3 + c1 c2.(a.b
∗d.P u a.d∗1) + c1 c3.(a.b

∗d.P u (a.d)∗1)

=

c3 + c1 c2.X2 + c1 c3.X3

The rest of linear system can be generated by repeating the above processes.

X2 = a.(b∗d.P u d∗1) = a.X4

X4 = d.(P u d∗1) = d.X5

X5 = c1.0 = 0

X3 = a.(b∗d.P u d.(a.d)∗1) = a.X6

X6 = d.(P u (a.d)∗1) = d.X7

X7 = c1.(a.b
∗d.P u (a.d)∗1) = c1.X3

• Resolution of the system by using Arden’s Lemma and variable elimination:

X2 = a.d.0

X3 = a.d.c1.X3

X3 = (a.d.c1)∗0

X1 = c3 + c1.c2.X2 + c1.c3.X3

= c3 + c1.c2.a.d.0 + c1.c3.(a.d.c1)∗0

66

• Conclusion:

P uQ = X1 = c3 + c1.c2.a.d.0 + c1.c3.(a.d.c1)∗0.

4.5.4 Example with Program

Let P be the following program:

while(true) {

if(c) {

Link(); Send(); Print();

}

else {

Print(); Send(); Link();

}

}

Let l, s and p denote the actions Link, Send and Print respectively. The program P can be specified

in BPA∗0,1 by the following process:

P = (c.l.s.p+ c.p.s.l)∗0

Suppose that we have a security policy stating that any Send action needs to be preceded by a Link

one. An LTL property specifying this fact is (¬s)U(l.true) and its equivalent CBPA∗0,1 process is

Q = (l+ p)∗l.(l+ p+ s)∗1. More details about transforming LTL formula to CBPA∗0,1 are given in

Section 4.3.

Now, we can compute P uQ using Algorithm 1 as following:

P uQ = X1 = c.l.(s.p.P u (Q+ (l + s+ p)∗1))

+c.p.(s.l.P uQ)

= c.l.X2 + c.p.X3

X2 = s.(p.P u (l + s+ p)∗1)

= s.X4

X3 = 0

X4 = p.(P u (l + s+ p)∗1)

= p.X5

X5 = P

After substitution and simplification, we obtain:

67

P uQ = c.l.s.p.(nc.p.s.l + c.l.s.p)∗0 + c.p.0

If we traduce the result to the C-like language, we obtain:

if(c) {

Link(); Send(); Print();

while(true) {

if(c) {

Link(); Send(); Print();

}

else {

Print(); Send(); Link();

}

}

}

else {

Print();

}

4.6 Proof of Main Result

4.6.1 Proof of Proposition 4.4.3

Proposition 4.4.3: vT is a congruence relation.

Proof:

If x vT x′, then by Definition 4.4.2 (vT):

1. if x ↓ τ then x′ ↓ τ (α)

2. if x
τ
� 1 then x′

τ
� 1 (β)

We need to prove that the vT is congruent for the different operators of CBPA∗0,1.

• x+ y vT x′ + y

if (x+ y) ↓ τ

⇒ {|(R+
l), (R+

r) from Table 4.2 |}

x ↓ τ or y ↓ τ

⇒ {|(α) |}

68

x′ ↓ τ or y ↓ τ

⇒ {|(R+
l), (R+

r) from Table 4.2. |}

(x′ + y) ↓ τ (1)

if x+ y
τ
� 1

⇒ {|(R+
l), (R+

r) from Table 4.2 |}

x
τ
� 1 or y

τ
� 1

⇒ {|(β) |}

x′
τ
� 1 or y

τ
� 1

⇒ {|(R+
l), (R+

r) from Table 4.2. |}

x′ + y
τ
� 1 (2)

From (1), (2) and Definition 4.4.2 (vT), we can say that x+ y vT x′ + y.

• y + x vT y + x′

Same with above.

• x.y vT x′.y

if x.y ↓ τ

⇒ {|(R.l), (R.r) from Table 4.2, Definition 4.4.1 and τ = τ1.τ2|}

x ↓ τ or x
τ1
� 1, y ↓ τ2

⇒ {|(α) |}

x′ ↓ τ or x
τ1
� 1, y ↓ τ2

⇒ {|(β) |}

x′ ↓ τ or x′
τ1
� 1, y ↓ τ2

⇒ {|(R.l), (R.r) from Table 4.2 |}

x′.y ↓ τ or x′.y ↓ (τ1.τ2)

⇒ {|τ = τ1.τ2 |}

x′.y ↓ τ (1)

if x.y
τ
� 1

69

⇒ {|(R.l), (R.r) from Table 4.2, Definition 4.4.1 and τ = τ1.τ2|}

x
τ1
� 1, y

τ2
� 1

⇒ {|(β) |}

x′
τ1
� 1, y

τ2
� 1

⇒ {|(R.l), (R.r) from Table 4.2 and τ = τ1.τ2 |}

x′.y
τ
� 1 (2)

From (1), (2) and Definition 4.4.2 (vT), we can say that x.y vT x′.y.

• y.x vT y.x′

if y.x ↓ τ

⇒ {|(R.l), (R.r) from Table 4.2, Definition 4.4.1 and τ = τ1.τ2|}

y ↓ τ or y
τ1
� 1, x ↓ τ2

⇒ {|(α) |}

y ↓ τ or y
τ1
� 1, x′ ↓ τ2

⇒ {|(R.l), (R.r) from Table 4.2 |}

y.x′ ↓ τ or y.x′ ↓ (τ1.τ2)

⇒ {|τ = τ1.τ2 |}

y.x′ ↓ τ (1)

if y.x
τ
� 1

⇒ {|(R.l), (R.r) from Table 4.2, Definition 4.4.1 and τ = τ1.τ2|}

y
τ1
� 1, x

τ2
� 1

⇒ {|(β) |}

y
τ1
� 1, x′

τ2
� 1

⇒ {|(R.l), (R.r) from Table 4.2 and τ = τ1.τ2 |}

y.x′
τ
� 1 (2)

From (1), (2) and Definition 4.4.2 (vT), we can say that y.x vT y.x′.

70

• x∗y vT x′∗y

if x∗y ↓ τ

⇒ {|(R∗l), (R∗r) from Table 4.2 and Definition 4.4.1 |}

There are only four possibilities:
(a): x ↓ τ
(b): y ↓ τ

(c): τ = τ ′.τ ′′, τ ′ = τ ′1...τ
′
n, for all i, 1 ≤ i ≤ n, x

τ ′i
� 1 and x ↓ τ ′′

(d): τ = τ ′.τ ′′, τ ′ = τ ′1...τ
′
n, for all i, 1 ≤ i ≤ n, x

τ ′i
� 1 and y ↓ τ ′′

For (a):
x ↓ τ

⇒ {|(α) (β)|}

x′ ↓ τ

⇒ {|(R∗l) from Table 4.2 |}
x′∗y ↓ τ

For (b):
y ↓ τ

⇒ {|(R∗r) from Table 4.2 |}
x′∗y ↓ τ

For (c):

τ = τ ′.τ ′′, τ ′ = τ ′1...τ
′
n, for all i, 1 ≤ i ≤ n, x

τ ′i
� 1 and x ↓ τ ′′

⇒ {|(α) (β)|}

x′
τ ′i
� 1 and x′ ↓ τ ′′

⇒ {|(R∗l) from Table 4.2, Definition 4.4.1,
τ = τ ′.τ ′′ and τ ′ = τ ′1...τ

′
n |}

x′∗y ↓ τ
For (d):

τ = τ ′.τ ′′, τ ′ = τ ′1...τ
′
n, for all i, 1 ≤ i ≤ n, x

τ ′i
� 1 and y ↓ τ ′′

⇒ {|(α) (β)|}

x′
τ ′i
� 1 and y ↓ τ ′′

⇒ {|(R∗l), (R∗r) from Table 4.2, Definition 4.4.1,
τ = τ ′.τ ′′ and τ ′ = τ ′1...τ

′
n |}

x′∗y ↓ τ

71

From the discussion of (a), (b), (c) and (d), we can conclude that:
if x∗y ↓ τ , then x′∗y ↓ τ (1)

if x∗y
τ
� 1

⇒ {|(R∗l), (R∗r) from Table 4.2 and Definition 4.4.1 |}

There are only two possibilities:
(a): y

τ
� 1

(b): τ = τ ′.τ ′′, τ ′ = τ ′1...τ
′
n, for all i, 1 ≤ i ≤ n, then x

τ ′i
� 1 and y

τ ′′

� 1

For (a):
y

τ
� 1

⇒ {|(R∗r) from Table 4.2 |}
x′∗y

τ
� 1

For (b):

τ = τ ′.τ ′′, τ ′ = τ ′1...τ
′
n, for all i, 1 ≤ i ≤ n, then x

τ ′i
� 1 and y

τ ′′

� 1

⇒ {|(α) (β)|}

x′
τ ′i
� 1 and y

τ ′′

� 1

⇒ {|(R∗l), (R∗r) from Table 4.2, Definition 4.4.1,
τ = τ ′.τ ′′ and τ ′ = τ ′1...τ

′
n |}

x′∗y
τ
� 1

From the discussion of (a) and (b), we can conclude that:
if x∗y

τ
� 1, then x′∗y

τ
� 1 (2)

From (1), (2) and Definition 4.4.2 (vT), we can say that x∗y vT x′∗y.

• y∗x vT y∗x′

if y∗x ↓ τ

⇒ {|(R∗l), (R∗r) from Table 4.2 and Definition 4.4.1 |}

There are only four possibilities:
(a): x ↓ τ
(b): y ↓ τ

(c): τ = τ ′.τ ′′, τ ′ = τ ′1...τ
′
n, for all i, 1 ≤ i ≤ n, y

τ ′i
� 1 and y ↓ τ ′′

(d): τ = τ ′.τ ′′, τ ′ = τ ′1...τ
′
n, for all i, 1 ≤ i ≤ n, y

τ ′i
� 1 and x ↓ τ ′′

For (a):
x ↓ τ

⇒ {|(α) (β)|}

72

x′ ↓ τ

⇒ {|(R∗r) from Table 4.2 |}
y∗x′ ↓ τ

For (b):
y ↓ τ

⇒ {|(R∗l) from Table 4.2 |}
y∗x′ ↓ τ

For (c):

τ = τ ′.τ ′′, τ ′ = τ ′1...τ
′
n, for all i, 1 ≤ i ≤ n, y

τ ′i
� 1 and y ↓ τ ′′

⇒ {|(R∗l) from Table 4.2, Definition 4.4.1,
τ = τ ′.τ ′′ and τ ′ = τ ′1...τ

′
n |}

y∗x′ ↓ τ
For (d):

τ = τ ′.τ ′′, τ ′ = τ ′1...τ
′
n, for all i, 1 ≤ i ≤ n, y

τ ′i
� 1 and x ↓ τ ′′

⇒ {|(α) (β)|}

y
τ ′i
� 1 and x′ ↓ τ ′′

⇒ {|(R∗l), (R∗r) from Table 4.2, Definition 4.4.1,
τ = τ ′.τ ′′ and τ ′ = τ ′1...τ

′
n |}

y∗x′ ↓ τ

From the discussion of (a), (b), (c) and (d), we can conclude that:
if y∗x ↓ τ , then y∗x′ ↓ τ (1)

if y∗x
τ
� 1

⇒ {|(R∗l), (R∗r) from Table 4.2 and Definition 4.4.1 |}

There are only two possibilities:
(a): x

τ
� 1

(b): τ = τ ′.τ ′′, τ ′ = τ ′1...τ
′
n, for all i, 1 ≤ i ≤ n, then y

τ ′i
� 1 and x

τ ′′

� 1

For (a):
x

τ
� 1

⇒ {|(α) (β)|}

x′
τ ′i
� 1

⇒ {|(R∗r) from Table 4.2 |}
y∗x′

τ
� 1

73

For (b):

τ = τ ′.τ ′′, τ ′ = τ ′1...τ
′
n, for all i, 1 ≤ i ≤ n, then y

τ ′i
� 1 and x

τ ′′

� 1

⇒ {|(α) (β)|}

y
τ ′i
� 1 and x′

τ ′′

� 1

⇒ {|(R∗l), (R∗r) from Table 4.2, Definition 4.4.1,
τ = τ ′.τ ′′ and τ ′ = τ ′1...τ

′
n |}

y∗x′
τ
� 1

From the discussion of (a) and (b), we can conclude that:
if y∗x

τ
� 1, then y∗x′

τ
� 1 (2)

From (1), (2) and Definition 4.4.2 (vT), we can say that y∗x vT y∗x′.

- Conclusion: vT is a congruence relation.

2

4.6.2 Proof of Proposition 4.4.7 B12

Lemma 4.6.1 Let x and y be two processes, τ ,τ1... τn be n + 1 traces, such that τ = τ1...τn and

for all τi, 1 ≤ i ≤ n, we have x
τi
� 1. If x.y vT y, then: there exists yn such that y

τ
� yn and y vT yn

Proof:

The proof is done by induction on "n".

• When n = 1: we have τ = τ1, x
τ1
� 1. x.y vT y, now we need to prove that there exists y1

such that y
τ1
� y1, and y vT y1.

x
τ1
� 1

⇒ {|(R∗l), (R∗r) from Table 4.2 and Definition 4.4.1 |}
x.y

τ1
� y

⇒ {|x.y vT y |}

There exists y1 such that y
τ1
� y1 (α)

Now for y vT y1, assume this is false, then from Definition 4.4.2, either (1) or (2)
below must be true:

(1) ∃τy , such that y ↓ τy , and we can not find y′1 such that y1
τy
� y′1

74

⇒ {|(R.l), (R.r) from Table 4.2, (α)

and x
τ1
� 1 |}

x.y ↓ (τ1.τy), and we can not find y′1 such that y
τ1
� y1

τy
� y′1

⇒ {|Definition 4.4.1 |}

x.y ↓ (τ1.τy), and we can not find y′1 such that y
τ1.τy
� y′1. This contradict the fact that x.y vT y

(2) ∃τy , such that y
τy
� 1, but y1

τy
� 1 is not true

⇒ {|(R.l), (R.r) from Table 4.2, (α)

and x
τ1
� 1 |}

x.y
τ1
� y

τy
� 1, but y

τ1
� y1

τy
� 1 is not true

⇒ {|Definition 4.4.1 |}

x.y
τ1.τy
� 1, but y

τ1.τy
� 1 is not true. This also contradict the fact that x.y vT y.

So y vT y1, since we have already proved (α) then when n = 1, Lemma is true.

• Assume that when n = k, Lemma is true, which means that for k + 1 traces Let τ ,τ1... τk,
such that τ = τ1...τk, for all τi, 1 ≤ i ≤ k x

τi
� 1, if x.y vT y then there exists yk such

that y
τ
� yk and y vT yk+1

Now we need to prove that when n = k + 1, Lemma is also true, so we have k + 1 traces
τ1...τk+1 such that for all 1 ≤ i ≤ k + 1: x

τi
� 1 and x.y vT y.

x
τk+1

� 1

⇒ {|(R.l), (R.r) from Table 4.2 and Definition 4.4.1 |}
x.y

τk+1

� y

⇒ {|x.y vT y |}

y ↓ τk+1

⇒ {|y vT yk |}

There exists yk+1 such that yk
τk+1

� yk+1

⇒ {|y
τ1...τk
� yk and Definition 4.4.1 |}

There exists yk+1 such that y
τ1...τk+1

� yk+1 (β)

Now we want to prove that y vT yk+1. Assume this is false, then from Definition 4.4.2
either (1) or (2) below must be true:

75

(1) ∃τy , such that y ↓ τy , and we can not find y′k+1 such that yk+1

τy
� y′k+1

x
τ1
� 1

⇒ {|(R.l), (R.r) from Table 4.2 |}

x.y
τ1
� y

⇒ {|When n = k, Lemma is true and (k + 1)− 2 + 1 = k |}

x.y
τ1
� y, ∃y′′k+1 y

τ2...τk+1

� y′′k+1 and y vT y′′k+1

⇒ {|Definition 4.4.1 |}

x.y
τ1...τk+1

� y′′k+1 and y vT y′′k+1

⇒ {|y ↓ τy and Definition 4.4.2 |}

x.y
τ1...τk+1

� y′′k+1 and y′′k+1 ↓ τy

⇒ {|Definition 4.4.1 |}

x.y ↓ (τ1...τk+1.τy)

⇒ {|(1) |}

x.y ↓ (τ1...τk+1.τy), and we can not find y′k+1 such that yk+1

τy
� y′k+1

⇒ {|β and Definition 4.4.1 |}

x.y ↓ (τ1...τk+1.τy), and we can not find y′k+1 such that y
τ1...τk+1.τy
� y′k+1.

This contradict the fact that x.y vT y.

(2) ∃τy , such that y
τy
� 1, and yk+1

τy
� 1 is not true.

x
τ1
� 1

⇒ {|(R.l), (R.r) from Table 4.2 |}

x.y
τ1
� y

⇒ {|When n = k, Lemma is true and (k + 1)− 2 + 1 = k |}

x.y
τ1
� y, ∃y′′k+1 y

τ2...τk+1

� y′′k+1 and y vT y′′k+1

⇒ {|Definition 4.4.1 |}

76

x.y
τ1...τk+1

� y′′k+1 and y vT y′′k+1

⇒ {|y
τy
� 1 and Definition 4.4.2 |}

x.y
τ1...τk+1

� y′′k+1 and y′′k+1

τy
� 1

⇒ {|Definition 4.4.1 |}

x.y
τ1...τk+1.τy
� 1

⇒ {|(2) |}

x.y
τ1...τk+1.τy
� 1, and yk+1

τy
� 1 is not true.

⇒ {|y
τ1...τk+1

� yk+1 and Definition 4.4.1 |}

x.y
τ1...τk+1.τy
� 1, and y

τ1...τk+1.τy
� 1 is not true.

This is also contradict the fact that x.y vT y.

So y vT yk+1, since we have already proved (β), then when n = k + 1, Lemma still is true.

-To sum up, for all the nature number n, Lemma is true.

2

Lemma 4.6.2 Let x and y be two processes in BPA∗0,1, then

x.y vT y ⇒ x∗y vT y
Proof: The proof is directly from the definition of vT .

x∗y ↓ τ

⇒ {|(R∗l), (R∗r) from Table 4.2 and Definition 4.4.1 |}

There must exist τ ′′, such that: x ↓ τ ′′ or y ↓ τ ′′. Here τ = τ ′.τ ′′,

τ ′ = τ ′1...τ
′
n, 1 ≤ i ≤ n, x

τ ′i
� 1

⇒ {|(R.l), (R.r) from Table 4.2 |}

There must exist τ ′′, such that: x.y ↓ τ ′′ or y ↓ τ ′′. Here τ = τ ′.τ ′′,

τ ′ = τ ′1...τ
′
n, 1 ≤ i ≤ n, x

τ ′i
� 1

⇒ {|x.y vT y |}

There must exist τ ′′, such that: y ↓ τ ′′ or y ↓ τ ′′. Here τ = τ ′.τ ′′,

τ ′ = τ ′1...τ
′
n, 1 ≤ i ≤ n, x

τ ′i
� 1

77

⇒ {|x.y vT y and Lemma 4.6.1 |}

There must exist τ ′′, such that: y ↓ τ ′′. Here τ = τ ′.τ ′′,

τ ′ = τ ′1...τ
′
n, 1 ≤ i ≤ n, ∃yn such that y

τ ′

� yn y vT yn

⇒ {|Definition 4.4.2 |}

y
τ ′

� yn and yn ↓ τ ′′

⇒ {|Definition 4.4.1 |}

y ↓ τ (1)

if x∗y
τ
� 1

⇒ {|(R∗l), (R∗r) from Table 4.2 and Definition 4.4.1 |}

There must exist τ ′′, such that: y
τ ′′

� 1. Here τ = τ ′.τ ′′,

τ ′ = τ ′1...τ
′
n, 1 ≤ i ≤ n, x

τ ′i
� 1

⇒ {|x.y vT y and Lemma 4.6.1 |}

There must exist τ ′′, such that: y
τ ′′

� 1. Here τ = τ ′.τ ′′,

τ ′ = τ ′1...τ
′
n, 1 ≤ i ≤ n, ∃yn such that y

τ ′

� yn y vT yn

⇒ {|Definition 4.4.2 |}

y
τ ′

� yn and yn
τ ′′

� 1

⇒ {|Definition 4.4.1 |}

y
τ
� 1 (2)

- From definition 4.4.1, (1) and (2), Lemma is true.

2

Proposition 4.4.7 B12: x.z + y vT z⇒ x∗y vT z

Proof:

Now we need to prove that Lemma 4.6.2 is equivalence to Proposition 4.4.7 B12, which is:

x.y vT y⇒ x∗y vT y ⇐⇒ x.z + y vT z⇒ x∗y vT z

78

• =⇒

x.y vT y⇒ x∗y vT y

⇒ {|Let z replace y. |}

x.z vT z⇒ x∗z vT z

⇒ {|x.z + y vT z and Proposition 4.4.7 B11 |}

x.z + y vT z⇒ y vT z

⇒ {|vT is a congruence relationship |}

x.z + y vT z⇒ x∗y vT x∗z

⇒ {|x∗z vT z and vT is a transitive relation |}

x.z + y vT z⇒ x∗y vT z

• ⇐=

x.z + y vT z⇒ x∗y vT z

⇒ {|Let y replace z. |}

x.y + y vT y⇒ x∗y vT y

⇒ {|Proposition 4.4.7 B11 |}

x.y vT y⇒ x∗y vT y

- To sum up Proposition 4.4.7 B12 on page 59 is true.

2

4.6.3 Proof of Proposition 4.5.6

Lemma 4.6.3 Let x and y be two processes in BPA∗0,1, then

y +
∑

a∈δ(x)

a.∂a(x).x∗y ∼ x∗y, when x ∼ o(x) +
∑

a∈δ(x)

a.∂a(x) and o(x) = 1.

Proof:

x∗y

∼ {|x∗y ∼ y + x.x∗y |}

y + x.x∗y

∼ {|x ∼ o(x) +
∑

a∈δ(x)
a.∂a(x) and o(x) = 1 and "∼" is congruence. |}

79

y + (1 +
∑

a∈δ(x)
a.∂a(x)).x∗y

∼ {|(x+ y).z ∼ x.z + y.z and x+ y ∼ y + x |}

y +
∑

a∈δ(x)
a.∂a(x).x∗y +x∗y

Let β = y +
∑

a∈δ(x)
a.∂a(x).x∗y, from above we can have x∗y ∼ β + x∗y ⇒ β vT x∗y,

Now we need to prove x∗y vT β to get x∗y ∼ β.

β = y +
∑

a∈δ(x)
a.∂a(x).x∗y

∼ {|x∗y ∼ y + x.x∗y and ” ∼ ” is congruence. |}

y +
∑

a∈δ(x)
a.∂a(x).(y + x.x∗y)

∼ {|x ∼ o(x) +
∑

a∈δ(x)
a.∂a(x) and o(x) = 1 and ” ∼ ” is congruence. |}

y +
∑

a∈δ(x)
a.∂a(x).(y + (1 +

∑
a∈δ(x)

a.∂a(x)).x∗y)

∼ {|(x+ y).z ∼ x.z + y.z and ” ∼ ” is congruence. |}

y +
∑

a∈δ(x)
a.∂a(x).(y + x∗y +

∑
a∈δ(x)

a.∂a(x).x∗y)

∼ {|x.(y + z) ∼ x.y + x.z and ” ∼ ” is congruence. |}

y +
∑

a∈δ(x)
a.∂a(x).y +

∑
a∈δ(x)

a.∂a(x).x∗y +
∑

a∈δ(x)
a.∂a(x).

∑
a∈δ(x)

a.∂a(x).x∗y

∼ {|x ∼ x+ x and ” ∼ ” is congruence. |}

y + y + y +
∑

a∈δ(x)
a.∂a(x).y+

∑
a∈δ(x)

a.∂a(x).x∗y +
∑

a∈δ(x)
a.∂a(x).x∗y +

∑
a∈δ(x)

a.∂a(x).
∑

a∈δ(x)
a.∂a(x).x∗y

∼ {|x+ y ∼ y + x |}

y +
∑

a∈δ(x)
a.∂a(x).x∗y+

y + y +
∑

a∈δ(x)
a.∂a(x).y +

∑
a∈δ(x)

a.∂a(x).x∗y +
∑

a∈δ(x)
a.∂a(x).

∑
a∈δ(x)

a.∂a(x).x∗y

∼ {|x.z + y.z ∼ (x+ y).z and ” ∼ ” is congruence. |}

y +
∑

a∈δ(x)
a.∂a(x).x∗y+

80

y + (1 +
∑

a∈δ(x)
a.∂a(x)).y + (1 +

∑
a∈δ(x)

a.∂a(x)).
∑

a∈δ(x)
a.∂a(x).x∗y

∼ {|y +
∑

a∈δ(x)
a.∂a(x).x∗y = β and o(x) = 1|}

β + y + (o(x) +
∑

a∈δ(x)
a.∂a(x)).y + (o(x) +

∑
a∈δ(x)

a.∂a(x)).
∑

a∈δ(x)
a.∂a(x).x∗y

∼ {|x ∼ o(x) +
∑

a∈δ(x)
a.∂a(x) and ” ∼ ” is congruence. |}

β + y + x.y + x.
∑

a∈δ(x)
a.∂a(x).x∗y

∼ {|x.y + x.z ∼ x.(y + z) and ” ∼ ” is congruence. |}

β + y + x.(y +
∑

a∈δ(x)
a.∂a(x).x∗y)

∼ {|y +
∑

a∈δ(x)
a.∂a(x).x∗y = β |}

β + y + x.β

Now we have:

β ∼ β + y + x.β

∼ {|x ∼ y + x⇒ y vT x |}

y + x.β vT β

∼ {|B12 : b+ a.x vT x⇒ a∗b vT x |}

x∗y vT β

By the definition of trace equivalence, we conclude that y +
∑

a∈δ(x)
a.∂a(x).x∗y ∼ x∗y, when

x ∼ o(x) +
∑

a∈δ(x)
a.∂a(x) and o(x) = 1.

2

Proposition 4.5.6 Let x be a process in BPA∗0,1, then

x ∼ o(x) +
∑
a∈δ(x)

a.∂a(x)

Proof:

81

From the syntax of BPA∗0,1:

x, y ::= 0 | 1 | a | x+ y | x.y | x∗y

The proof is by structural induction.

• P = 0

o(0) +
∑

a∈δ(0)
a.∂a(0)

= {|o(0) = 0 and δ(0) = ∅|}

0

• P = 1

o(1) +
∑

a∈δ(1)
a.∂a(1)

= {|o(1) = 1 and δ(1) = ∅|}

1

• P = a

o(a) +
∑

b∈δ(a)
b.∂b(a)

= {|o(a) = 0, δ(a) = {a} and ∂a(a) = 1|}

0 + a.1

∼ {|0 + x = x and x.1 ∼ x|}
a

• P = x+ y

o(x+ y) +
∑

a∈δ(x+y)
a.∂a(x+ y)

= {|o(x+ y) = o(x) + o(y), δ(x+ y) = δ(x) ∪ δ(y)
and ∂a(x+ y) = ∂a(x) + ∂a(y)|}

o(x) + o(y) +
∑

a∈δ(x)∪δ(y)
a.(∂a(x) + ∂a(y))

∼ {|Properity of
∑
|}

o(x) + o(y) +
∑

a∈δ(x) and a/∈δ(y)
a.(∂a(x) + ∂a(y)) +

∑
a∈δ(y) and a/∈δ(x)

a.(∂a(x) + ∂a(y))

82

+
∑

a∈δ(x)∩δ(y)
a.(∂a(x) + ∂a(y))

∼ {|Definition 5.5.1, x.(y + z) ∼ x.y + x.z and "∼" is congruence. |}

o(x) + o(y) +
∑

a∈δ(x) and a/∈δ(y)
a.(∂a(x) + 0) +

∑
a∈δ(y) and a/∈δ(x)

a.(0 + ∂a(y))

+
∑

a∈δ(x)∩δ(y)
(a.∂a(x) + a.∂a(y))

∼ {|Properity of
∑
, x+ 0 ∼ x and "∼" is congruence. |}

o(x) + o(y) +
∑

a∈δ(x) and a/∈δ(y)
a.∂a(x) +

∑
a∈δ(y) and a/∈δ(x)

a.∂a(y)

+
∑

a∈δ(x)∩δ(y)
a.∂a(x) +

∑
a∈δ(x)∩δ(y)

a.∂a(y)

∼ {|x+ y ∼ y + x |}

o(x) +
∑

a∈δ(x) and a/∈δ(y)
a.∂a(x) +

∑
a∈δ(x)∩δ(y)

a.∂a(x)

+ o(y) +
∑

a∈δ(y) and a/∈δ(x)
a.∂a(y) +

∑
a∈δ(x)∩δ(y)

a.∂a(y)

∼ {|Property of
∑

and "∼" is congruence.|}

o(x) +
∑

a∈δ(x)
a.∂a(x) + (o(y) +

∑
a∈δ(y)

a.∂a(y))

∼ {|By induction and "∼" is congruence.|}

x+ y

• P = x.y

o(x.y) +
∑

a∈δ(x.y)
a.∂a(x.y)

= {|o(x.y) = o(x)× o(y), δ(x.y) = δ(x) ∪ o(x)⊗ δ(y)
and ∂a(x.y) = ∂a(x).y + o(x)∂a(y)|}

o(x)× o(y) +
∑

a∈(δ(x)∪o(x)⊗δ(y))
a.(∂a(x).y + o(x)∂a(y)) (α)

a) When o(x)= 0
(α)

∼ {|o(x) = 0, 0 + x ∼ x and 0.x ∼ 0
and "∼" is congruence. |}∑

a∈δ(x)
a.∂a(x).y

83

∼ {|o(x) = 0 and 0 + x ∼ x |}

(o(x) +
∑

a∈δ(x)
a.∂a(x)).y

∼ {|By induction. and "∼" is congruence. |}

x.y

b) When o(x)= 1
(α)

∼ {|o(x) = 1, 1.x ∼ x and Definition of ⊗|}

o(y) +
∑

a∈δ(x)∪δ(y)
a.(∂a(x).y + ∂a(y))

∼ {|Property of
∑
|}

o(y) +
∑

a∈δ(x) and a/∈δ(y)
a.(∂a(x).y + ∂a(y)) +

∑
a∈δ(y) and a/∈δ(x)

a.(∂a(x).y + ∂a(y))

+
∑

a∈δ(x)∩δ(y)
a.(∂a(x).y + ∂a(y))

∼ {|Definition 5.5.1 and x.(y + z) ∼ x.y + x.z|}

o(y) +
∑

a∈δ(x) and a/∈δ(y)
a.(∂a(x).y + 0) +

∑
a∈δ(y) and a/∈δ(x)

a.(0.y + ∂a(y))

+
∑

a∈δ(x)∩δ(y)
(a.∂a(x).y + a.∂a(y))

∼ {|Property of
∑
, x+ 0 ∼ x and "∼" is congruence. |}

o(y) +
∑

a∈δ(x) and a/∈δ(y)
a.∂a(x).y +

∑
a∈δ(y) and a/∈δ(x)

a.∂a(y)

+
∑

a∈δ(x)∩δ(y)
a.∂a(x).y +

∑
a∈δ(x)∩δ(y)

a.∂a(y)

∼ {|x+ y ∼ y + x |}

o(y) +
∑

a∈δ(y) and a/∈δ(x)
a.∂a(y) +

∑
a∈δ(x)∩δ(y)

a.∂a(y)

+
∑

a∈δ(x) and a/∈δ(y)
a.∂a(x).y +

∑
a∈δ(x)∩δ(y)

a.∂a(x).y

∼ {|Property of
∑
|}

o(y) +
∑

a∈δ(y)
a.∂a(y) +

∑
a∈δ(x)

a.∂a(x).y

84

∼ {|By induction and "∼" is congruence. |}

y +
∑

a∈δ(x)
a.∂a(x).y

∼ {|x.y + z.y ∼ (x+ z).y |}

(1 +
∑

a∈δ(x)
a.(∂a(x)).y

∼ {|o(x) = 1|}

(o(x) +
∑

a∈δ(x)
a.(∂a(x)).y

∼ {|By induction and "∼" is congruence. |}

x.y

• P = x∗.y

o(x∗.y) +
∑

a∈δ(x∗.y)
a.∂a(x∗.y)

= {|o(x∗.y) = o(y), δ(x∗.y) = δ(x) ∪ δ(y)
and ∂a(x∗.y) = ∂a(x).x∗.y + ∂a(y)|}

o(y) +
∑

a∈δ(x)∪δ(y)
a.(∂a(x).x∗.y + ∂a(y))

∼ {|Definition 5.5.1 , x.(y + z) ∼ x.y + x.z
and A ∪B = (A\B) ∪ (B\A) ∪ (A ∩B) |}

o(y) +
∑

a∈δ(x) and a/∈δ(y)
a.(∂a(x)x∗y + 0) +

∑
a∈δ(y),a/∈δ(x)

a.(0.x∗y + ∂a(y))

+
∑

a∈δ(x)∩δ(y)
(a.∂a(x)x∗y + a.∂a(y))

∼ {|Property of
∑
, x+ 0 ∼ x

0.x ∼ 0 and "∼" is congruence. |}

o(y) +
∑

a∈δ(x) and a/∈δ(y)
a.∂a(x)x∗y +

∑
a∈δ(y) and a/∈δ(x)

a.∂a(y)

+
∑

a∈δ(x)∩δ(y)
a.∂a(x)x∗y +

∑
a∈δ(x)∩δ(y)

a.∂a(y)

∼ {|x+ y ∼ y + x |}

o(y) +
∑

a∈δ(y) and a/∈δ(x)
a.∂a(y) +

∑
a∈δ(x)∩δ(y)

a.∂a(y)

+
∑

a∈δ(x) and a/∈δ(y)
a.∂a(x)x∗y +

∑
a∈δ(x)∩δ(y)

a.∂a(x)x∗y

85

∼ {|Property of
∑
|}

o(y) +
∑

a∈δ(y)
a.∂a(y) +

∑
a∈δ(x)

a.∂a(x)x∗y

∼ {|By induction and "∼" is congruence. |}

y +
∑

a∈δ(x)
a.∂a(x)x∗y (β)

a) When o(x)= 0
(β)

∼ {|o(x) = 0, 0 + x ∼ x and "∼" is congruence. |}

y + (o(x) +
∑

a∈δ(x)
a.∂a(x)).x∗y

∼ {|By induction and "∼" is congruence. |}

y + x.x∗y

∼ {|x∗y ∼ y + x.x∗y |}

x∗y

b) When o(x)= 1
(β)

∼ {|Lemma 4.6.3 on page 79 |}

x∗y

- Conclusion: By structural induction, we conclude that:

x ∼ o(x) +
∑

a∈δ(x)
a.∂a(x)

2

4.6.4 Proof of Proposition 4.5.7

Proposition 4.5.7: Let x and y be two processes in BPA∗0,1, then

x u y ∼ o(x)× o(y) +
∑

a∈δ(x)∩δ(y)

a.(∂a(x) u ∂a(y))

Proof:

86

x u y

∼ {|P ∼ P ′ → P uQ ∼ P ′ uQ and P uQ ∼ Q u P
and Proposition 4.5.6 |}

(o(x) +
∑

a∈δ(x)
a.∂a(x)) u (o(y) +

∑
a∈δ(y)

a.∂a(y))

∼ {|P u (Q+R) ∼ P uQ+ P uR and P uQ ∼ Q u P |}

o(x) u o(y) + o(x) u
∑
a∈δ(y)

a.∂a(y) + o(y) u
∑
a∈δ(x)

a.∂a(x)

︸ ︷︷ ︸
α

+
∑
a∈δ(x)

a.∂a(x) u
∑
a∈δ(y)

a.∂a(y)

︸ ︷︷ ︸
β

1. For α

• When o(x) = o(y) = 0, for P u 0 ∼ 0, we have α ∼ 0 ∼ o(x)× o(y).
• When o(x) = o(y) = 1, o(x)uo(y) ∼ 1, o(x)u

∑
a∈δ(y)

a.∂a(y)+o(y)u
∑

a∈δ(x)
a.∂a(x)

is trace equivalence to 1 or 0. And since 1 + 0 ∼ 1 and 1 + 1 ∼ 1, then α ∼ 1 ∼
o(x)× o(y).

• When o(x) = 1 and o(y) = 0, α = 0 + 1 u
∑

a∈δ(y)
a.∂a(y)+

∑
a∈δ(y)

a.∂a(y) u 0

= 0 + 1u
∑

a∈δ(y)
a.∂a(y)

Form the definition of δ(y), we can see that a ∈ δ(y) can not be 1. We conclude, in
this case that α ∼ 0 + 0 ∼ 0 ∼ o(x)× o(y).

• When o(x) = 0 and o(y) = 1, same with above.

We conclude, α ∼ o(x)× o(y).

2. For β
β
∼ {|a.P u a.Q ∼ a.(P uQ) and a.P u b.Q ∼ 0|}

∑
a∈δ(x)∩δ(y)

a.(∂a(x) u ∂a(y))

- Conclusion: x u y ∼ o(x)× o(y) +
∑

a∈δ(x)∩δ(y)
a.(∂a(x) u ∂a(y)) holds.

2

4.7 Conclusion

This chapter introduced the mathematical foundation of enforcing security policies in CBPA∗01, a

process algebra with test. The approach is based on the resolution of linear systems extracted from

the computation of the intersection between a process capturing a given security property and another

one capturing a sequential program. This intersection is recursively computed based on the notion of

87

derivatives. The generated system could be resolved thanks to the famous Arden’s Lemma. In the

next chapter, we extend the approach to an extended version of CBPA∗01.

88

Chapter 5

FASER (Formal and Automatic Security
Enforcement by Rewriting by algebra)
with Environment

This chapter introduces a formal program-rewriting approach that can automatically enforce secu-

rity policies on untrusted programs. For a program P and a security policy Φ, we generate another

program P ′ that respects the security policy and behaves like P except that it stops any execution

path whenever the enforced security policy is about to be violated. The presented approach uses the

EBPA∗0,1 algebra which is a variant of BPA (Basic Process Algebra) extended with variables, environ-

ments and conditions to formalize and resolve the problem. Finding the expected enforced program

P ′ will turn to resolve a linear system for which we already know how to extract the solution by a

polynomial algorithm.

5.1 Introduction

5.1.1 Methodology

To address the main problem introduced in Section 1.2, we present our methodology as following:

• We introduce a new algebra EBPA∗0,1, which extends the one in [48, 24, 60] by taking variables,

conditions and environment into consideration.

• We suppose that the program P is a given as a process or it can be transformed to a process in

EBPA∗0,1. This process algebra is expressive enough to handle a simplified version of C-like

programs.

• We suppose that the security policy Φ is also given as a process or it can be transformed to a

process in EBPA∗0,1. In [24], authors showed how a formula in LTL logic can be transformed

89

to a process in an algebra like EBPA∗0,1.

• We define an operator u that enforces Φ on P as shown in Figure 5.1.

Figure 5.1: Security Policy Enforcement Process.

• Basically, the operator u transforms the problem of enforcing Φ on P to a problem of generating

a set of equations in EBPA∗0,1 as shown by Figure 5.2. We already know how to get the solution

of the equations generated by u.

Figure 5.2: Approach.

• We prove that the secure version of program generated by u is sound and complete with respect

to the inputs. The soundness states that all the traces of the new generated process respect

the security policy and they belong to the set of traces of the original insecure process. The

completeness property, or transparency, on the other hand, states that any trace of the original

program that respects the security policy should be kept in the secure version.

90

5.1.2 Ingredients and steps to solve the problem

More precisely, to address our problem, we have to follow the steps shown in Figure 5.1 and solve the

following sub problems:

• Define a formal language to specify systems.

• Define a formal language to specify security policies.

• Formalize the link between inputs and output of u.

• Resolve the problem, i.e: find P uQ of Figure 5.2.

5.2 A Formal Language to Specify Systems: EBPA∗0,1

To be able to specify more interesting systems, it is important to endow the algebra with conditions,

variables and environments. This section gives syntax and semantics of EBPA∗0,1. We first give

the definitions of some necessary ingredients like multi-sorted signature, multi-sorted algebra and

environments. After that, we give the syntax and the semantics of EBPA∗0,1, which can be used

to specify both programs and security policies. However since this can be difficult some times, we

provide a more user-friendly interface to allow an end user to write his program in a C− like program

language. This C− like language can be transferred into EBPA∗0,1 by a given function.

5.2.1 Ordered Sorted Algebras

To be able to specify variables with different types (boolean, integer, float, etc.), we introduce an

ordered sorted algebra, which is a special case of Many-Sorted Algebras [2, 53].

Definition 5.2.1 (Multi-Sorted Signature) A signature Ω is a pair 〈S, F 〉, where S is a set of sorts

and F is a set of function symbols such that F is equipped with a mapping type: F 7→ S∗ × S, which

expresses the type of each function symbol. Given a function f ∈ F , we write f : s1 × ... × sn 7→ s

to mean that type(f) = (s1...sn, s).

Here, we use the definition of Many-Sorted Algebras as given in [53].

Definition 5.2.2 (Many Sorted Algebra) Let Ω = 〈S, F 〉 be a multi-sorted signature and X be a

S−sorted set of variables ({Xs}s∈S). We define the TΩ(X) =
⋃
s∈S

TΩ(X)s where TΩ(X)s as the least

set containing:

1. every variable of sort s, i.e., Xs ⊂ TΩ(X)s.

2. every nullary function symbol (constant) c ∈ F with c :7→ s.

91

3. every term f(t1, ..., tn) where f : s1 × ... × sn 7→ s ∈ F and each ti is a term in TΩ(X)si ,

1 ≤ i ≤ n.

To simplify the approach, we assume that the sorts used within the language EBPA∗0,1 form a lattice.

Definition 5.2.3 (Lattice) A partially ordered set (Poset) 〈 S,⊆ 〉 is called a lattice if:

1. ∀s1, s2 ∈ S, there exists a least upper bound or join sjoin ∈ S, such that s1 ⊆ sjoint and

s2 ⊆ sjoint.

2. ∀s1, s2 ∈ S, there exists a greatest lower bound or meet smeet ∈ S, such that smeet ⊆ s1 and

smeet ⊆ s2.

The lowest upper bound and the greatest lower bound of S are denoted by ∪S and ∩S respectively.

In the sequel, we denote LSA as any many-ordered sorted algebra where its sorts form a lattice.

5.2.2 Environment

Here, we define an environment as a mapping from the set of variables to the set of domains.

Definition 5.2.4 (Environment) Let A = TΩ(X) be a LSA on Ω = 〈S, F 〉. A valid environment on

A is a mapping from X −→ S.

If for instance S = {bool, int, f loat}, then e = {x1 7→ bool, x2 7→ bool, x3 7→ int, x4 7→ float} is

an example of environment.

Since 〈 S,⊆ 〉 forms a lattice, we consider that a variable is free in an environment, if its sort is equal

to ∪S.

Definition 5.2.5 (Free variable) We say that a variable x is a free in e ∈ E , if: (x 7→ sx) ∈ e and

sx is the least upper bound of the lattice 〈S,⊆〉. i.e: sx = ∪S

Notice that an environment (a mapping from X to S) is different from a substitution (a mapping

from X to TΩ(X)). We are interested by a particular case of substitutions, called "free substitution",

inspired by [49] and defined as follows:

Definition 5.2.6 (Free Substitution) Let e be an environment. A substitution σ is considered as

free in e (or e-free) if for all x 7→ t in σ, we have x ∈ Fv(e).

92

A substitution σ is considered as an unifier of two terms t1 and t2 if σ(t1) (shortly denoted by t1σ) is

equal to t2σ. An unifier σ of two terms t1 and t2 is called mgu (Most General Unifier) if: ∀σ′ such

that t1σ′ = t2σ
′, there exists σ” such that σ ◦ σ” = σ′. Since variables are sorted, it’s important that

mgu respects the order between sorts, i.e. if x 7→ t belongs to the mgu, then the sort of t should be

smaller or equal to the sort of x. We denote by mgu(t1, t2, e), the mgu of t1 and t2 that respects the

sorts of variables given within e. In Section 5.7, we give an algorithm (inspired by Martelli-Montanari

reduction rules [45]) allowing computing mgu(t1, t2, e) when it exists.

Here we present some useful definition for further discussion. The following definition separates a

substitution on two parts.

Definition 5.2.7 (σ≺ and σ≈) Let σ be a substitution, V be a set of variables and e be an environment.

We divide σ into two parts σV,e≺ and σV,e≈ (or shortly σ≺ and σ≈, when V and e is clear for environment)

as following:

σ = σ≺ ∪ σ≈
σ≈ = {x 7→ t|x is a free variable in e and x /∈ V }

σ≺ = σ − σ≈

Here, we define a function that transforms a substitution to a condition.

Definition 5.2.8 (p−q) Let σ ∈ Γ, we define p−q : Γ→ B as following:

p∅q = 1

p{x 7→ t} ∪ σq = (x == t).pσq

The following operator is used to compute the intersection of two actions.

Definition 5.2.9 (∇e) Let a1, a2 ∈ A, e ∈ E . We define ∇e : A×A → Σ× Γ as following:

a1∇e a2 =

{
{(pσ≺q.a1σ≈, σ≈)}, if σ = mgu(a1, a2, e) exists

{(0, ∅)}, else

Example 5.2.10 Let a1 = a(x, y, z), a2 = a(α, z, 3) and e be an environment such that x, y, z ∈
Nv(e), α ∈ Fv(e). We compute a1∇e a2 as following:

93

a1∇e a2

= {|σ = mgu(a1, a2, e) = {α 7→ x, y 7→ z, z 7→ 3} |}
{(pσ≺q.a1, σ≈)}

= {|α ∈ Fv(e) and σ = σ≈ ∪ σ≺ |}
{(pσ≺q.a1, σ≈)}, σ≈ = {α 7→ x}

= {|σ≺ = σ − σ≈ = {y 7→ z, z 7→ 3} |}
{(p{y 7→ z, z 7→ 3}q.a1, {α 7→ x})}

= {|p{y 7→ z, z 7→ 3}q = (y == z).(z == 3)

and a1 = a(x, y, z) |}
{((y == z).(z == 3).a(x, y, z), {α 7→ x})}

Let 2A be the set of all sets of actions inA, then∇e can be extended to accept sets of actions as input:

Let A1, A2 ∈ 2A, e ∈ E . We define∇e : 2A × 2A → Σ× Γ as following:

({a1} ∪A1)∇e ({a2} ∪A2) =

{(pσ≺q.a1σ≈, σ≈)} ∪A1∇eA2, if σ = mgu(a1, a2, e) exists

A1∇eA2, else

In the remaining part of this paper, we adopt the following notations:

• E : We use EA (or shortly E when A is clear from the context) to denote the set of all valid

environments of A.

• V(e): If e is an environment, V(e) denotes the set of variables in environment e.

• V(t): If t is a term, V(t) denotes the set of variables in t.

• Fv(e): If e is an environment, Fv(e) denotes the set of free variables in e.

• Nv(e): If e is an environment, Nv(e) denotes the set of non-free variables in e (i.e Nv(e) =

V(e)− Fv(e)).

• se(x): If e is an environment, se(x) denotes the sort of the variable x in e.

5.2.3 Syntax of EBPA∗0,1

In the sequel, we define EBPA∗0,1 as an extension ofBPA∗0,1 [9, 10, 48] that allows having conditions,

variables and environment. More precisely:

94

• Let A be a Lattice Sorted Algebra (LSA TΩ(X)).

• Let a, a1 and a2 range over A.

• Let B be defined by the following BNF-grammar.

b, b1, b2 ::= 0 | 1 | a1 == a2 | a1 < a2 | b̄ | b1.b2 | b1 + b2

such that (B,+, .,̄ , 0, 1) is a boolean algebra

• Let c range over B.

• Let e range over E .

The syntax of EBPA∗0,1 (BPA∗0,1 with boolean algebra and variable) is given by the following BNF-

grammar:

P,Q ::= a | c | P +Q | P.Q | P ∗Q | λxP | [P]e

Informally, the semantics of EBPA∗0,1 is as follows:

• a is a process that executes the atomic action a. We used to write a(x1, . . . , xn) to indicate that

x1, . . . , xn are variables in a.

• c is a boolean process that is in a deadlock state if it is evaluated to 0 and finishes normally if it

is evaluated to 1.

• P +Q is a choice between two processes P and Q.

• P.Q is a sequential composition of P and Q.

• P ∗Q is the process that behaves like P.(P ∗Q) + Q. It is a binary version of the Kleene star

operator [40].

• λxP behaves like P except that we limit the scope of the variable x to P . For example, if we

have (λxP).Q, then the variable x in P will be different from any variable x in Q.

• [P]e defines the process P running in the environment e.

To reduce the number of parentheses, we use the following priorities between operators (from high

to low): "[]", "λ", "∗", ".", "+". Also, when there is no ambiguity, "." can be omitted and we use

λ(x.y)P as a shortcut for λxλyP .

The set of processes in EBPA∗0,1 will be denoted by P in the remaining part of this chapter.

95

5.2.4 Semantics of EBPA∗0,1

The operational semantics of EBPA∗0,1 is defined by the transition relation→∈ P ×A×P given by

Table 5.2, where:

• [[−]]B is an evaluation function from B to {0, 1}.

• "↓" is the unary relation on P and it allows knowing whether a process P can immediately

terminate with success or not, defined by the inference rules given in Table 5.1.

Table 5.1: Definition of the Operator ↓ .

(R1) 2
1↓ (R[]e) P↓

[P]e↓

(R∗r↓)
Q↓

(P ∗Q)↓ (R.↓)
P↓ Q↓
(P.Q)↓

(R+
l↓)

P↓
(P + Q)↓ (R+

r↓)
Q↓

(P + Q)↓

(Rc)
[[c(v1...vn)]]B=1

[c(x1...xn)]e↓ (v1...vn) ∈ (se(x1)...se(xn))

• eff : A × E −→ E is a function that updates an environment based on the effect of a given

action. Right now, it is not necessary to have more precision on the function eff .

For rule (R
[]e
a), a process P in an environment e moves according to the moving possibility of process

P and the environment e. For example if P can move to process P ′ by action a(x1...xn) and for

1 ≤ i ≤ n, vi is the value for variable xi in e, then a process P in e ([P]e) moves to process

[P ′]eff(a(v1...vn),e) by action a(v1...vn), here eff(a(v1...vn), e) returns a new environment, which is

the result of applying the effect of the action a(v1...vn) on e.

5.2.5 Handling a C-Like Programming Language

Now, we show how to transform a simplified version of C-like programs into EBPA∗0,1.

We consider the following C-like programming language:

• P::= ;| exit() | a| P;P’ | if (c) {P} else {P’} | while (c) do {P}

| do {P} while (c)

Any program written in this language can be translated to EBPA∗0,1 by a function given in Table 5.3.

96

Table 5.2: Operational Semantics of EBPA∗0,1.

(Ra) 2

a
a−→1

(Rc) 2

c(x1,...,xn)
c(x1,...,xn)
−→ 1

(R.l)
P↓ Q

b−→Q′

P.Q
b−→Q′

(R.r)
P

b−→P ′

P.Q
b−→P ′Q

(R+
l) P

b−→P ′

P+Q
b−→P ′

(R+
r) Q

b−→Q′

P+Q
b−→Q′

(R∗l)
P

b−→P ′

P ∗Q
b−→P ′.P ∗Q

(R∗r)
Q

b−→Q′

P ∗Q
b−→Q′

(Rλ)P [x 7→y]
α−→P ′

λxP
α−→P ′

: y isafreshvariable.

(R
[]e
a) P

a(x1...xn)
−→ P ′

[P]e
a(v1...vn)
−→ [P ′]eff(a(v1...vn),e)

(v1...vn) ∈ (se(x1)...se(xn))

(R
[]e
c)

P
c(x1...xn)
−→ P ′, [c(x1...xn)]e↓, [P ′]e

b−→[Q]e′

[P]e
b−→[Q]e′

Table 5.3: C-Like Language Translate Function.

d−e : C-Like −→ EBPA∗0,1
d; e = 1

dexit()e = 0

dP ;P ′e = dP e.dP ′e
dae = a

dif(c) {P} else {P ′}e = c.dP e+ c.dP ′e
dwhile(c) do {P}e = (c.dP e)∗c
do {P}dwhile(c) e = (dP e.c)∗c

5.3 A Formal Language to Specify Security Policies (VLTL: LTL with
variables)

We have already introduced a LTL-like logic language, now we can extend it to specify security

policies with variables.

97

5.3.1 LTL-Like Logic for Specifying Security Policies

Suppose that a ranges over a finite set of actions A and c ranges over a finite set of conditions C, then

the syntax of VLTL is as following:

Φ,Φ1,Φ2 ::= > | ⊥ | 1 | a | c | ¬Φ | λxΦ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | XΦ | Φ1UΦ2 | Φ1.Φ2

Let τ be a trace and let τ i be its suffix starting from the action at the ith position. The semantics of a

formula is given by � as follows:

• τ � >, τ 6� ⊥, ε � 1,

• a � b if there exists σ such that σ(a) = b,

• c � c′ if there exists σ such that σ(c) ≥ c′,

• τ � ¬Φ if τ 6� Φ,

• τ � λxΦ if τ � Φ[x 7→ y], where y is a fresh variable.

• τ � Φ1 ∨ Φ2 if τ � Φ1 or τ � Φ2

• τ � Φ1 ∧ Φ2 if τ � Φ1 and τ � Φ2

• τ � XΦ if τ1 � Φ

• τ � Φ1UΦ2 if there exist k and σ such that τkσ � Φ2 and for all 0 ≤ i < k τ iσ � Φ1.

• τ � Φ1.Φ2 if there exist τ1, τ2 and σ such that τ = τ1.τ2, τ1σ � Φ1 and τ2σ � Φ2.

Any formula Φ in the LTL-like logic can be translated to EBPA∗0,1 using the following four steps:

1. We keep applying the following rules on Φ, until all "¬" operators are moved in front of atomic

actions or conditions.

¬⊥ −→ > ¬(XΦ) −→ X(¬Φ)

¬> −→ ⊥ ¬(Φ1 ∧ Φ2) −→ ¬Φ1 ∨ ¬Φ2

¬¬Φ −→ Φ ¬(Φ1UΦ2) −→ (¬Φ1) ∨ (Φ1U¬Φ2)

¬λxΦ −→ λx¬Φ ¬(Φ1.Φ2) −→ (¬Φ1) ∨ (Φ1.¬Φ2)

2. We keep applying the following rules until Φ becomes in a conjunctive normal form (CNF).

X(∧iΦi) −→ ∧i(XΦi)

((∧iΦi)U(∧jΦj)) −→ ∧i ∧j (ΦiUΦj)

(Φ1 ∧ Φ2) ∨ Φ3 −→ (Φ1 ∨ Φ3) ∧ (Φ2 ∨ Φ3)

Φ1 ∨ (Φ2 ∧ Φ3) −→ (Φ1 ∨ Φ2) ∧ (Φ1 ∨ Φ3)

98

3. The previous steps transform any Φ to a form like ∧ni=1Φi, where each Φi does not contain the

"∧" operator and all "¬" operators are in front of atomic actions. Here, we use Ap to denote

all the actions in program P . Now, we translate each Φi as a process in EBPA∗0,1 using the

following function:

d−e : LTL −→ EBPA∗0,1
d⊥e = 0 d¬ce = c̄

d>e = (
∑

a∈A a)∗1 dXΦe = (
∑

a∈A a).dΦe
d1e = 1 dλxΦe = λxdΦe
d¬1e = (

∑
a∈A a)∗(

∑
a∈A a) dΦ1 ∨ Φ2e = dΦ1e+ dΦ2e

dae = a dΦ1.Φ2e = dΦ1e.dΦ2e
d¬ae =

∑
ai∈(A/a) ai dΦ1UΦ2e = dΦ1e∗dΦ2e

Here, different from previous chapter, we define A/a : 2A ×A → 2Σ∗ as following:

• ∅/a = ∅

•
(
{x} ∪A

)
/a =

{x} ∪
(
A/a

)
if mgu(x, a) doesn’t exist

{¬pσ≺q.x} ∪
(
A/a

)
if (α, σ) ∈ x∇e a, σ = σ≺ ∪ σ≈ and σ≺ 6= ∅, σ≈ = ∅

A/a else

4. Finally, the enforcement of Φ on a process P becomes as following:

P u Φ = P u ∧ni=1Φi = (P u dΦ1e)... u dΦne

Example 5.3.1 Suppose A = {s(x), s(y), p(x)} we have a security policy Q in VLTL logic as

following:

Q = {[¬s(3)] ∧ ¬[λβ((β > 3).s(β))]}U⊥

Policy Q is written in VLTL logic, we use the above rules to transform it into EBPA∗0,1 as following:

1. Move all ¬ operators of Q in front of atomic actions or conditions.

Q = {[¬s(3)] ∧ ¬[λβ((β > 3).s(β))]}U⊥
= {|¬λxΦ −→ λx¬Φ |}

{[¬s(3)] ∧ λβ[¬((β > 3).s(β))]}U⊥
= {|¬(Φ1.Φ2) −→ (¬Φ1) ∨ (Φ1.¬Φ2) |}

{[¬s(3)] ∧ λβ
(
¬(β > 3) ∨ [(β > 3).¬s(β)]

)
}U⊥

2. Make Q in a conjunctive normal form (CNF)

99

Q = {[¬s(3)] ∧ λβ
(
¬(β > 3) ∨ [(β > 3).¬s(β)]

)
}U⊥

= {|((∧iΦi)U(∧jΦj)) −→ ∧i ∧j (ΦiUΦj) |}(
¬s(3)U⊥

)
∧
(
{λβ

(
¬(β > 3) ∨ [(β > 3).¬s(β)]

)
}U⊥

)
= {|Q1 = [¬s(3)]U⊥ and Q2 = {λβ

(
¬(β > 3) ∨ [(β > 3).¬s(β)]

)
}U⊥ |}

Q1 ∧Q2

3. Use function d−e : VLTL −→ EBPA∗0,1 to transfer Q1 and Q2.

dQ1e = d[¬s(3)]U⊥e
= {|dΦ1UΦ2e = dΦ1e∗dΦ2e|}

d¬s(3)e ∗ d⊥e
= {|d⊥e = 0 |}

d¬s(3)e ∗ 0

= {|d¬ae =
∑

ai∈dA−{a}e ai and A = {s(x), s(y), p(x)} |}
{(x 6= 3).s(x) + (y 6= 3).s(y) + p(x)}∗0
dQ2e = d{λβ

(
¬(β > 3) ∨ [(β > 3).¬s(β)]

)
}U⊥e

= {|dΦ1UΦ2e = dΦ1e∗dΦ2e|}
{dλβ

(
¬(β > 3) ∨ [(β > 3).¬s(β)]

)
e} ∗ d⊥e

= {|d⊥e = 0 |}
{dλβ

(
¬(β > 3) ∨ [(β > 3).¬s(β)]

)
e} ∗ 0

= {|dλxΦe = λxdΦe |}
{λβ

(
d¬(β > 3) ∨ [(β > 3).¬s(β)]e

)
} ∗ 0

= {|dΦ1 ∨ Φ2e = dΦ1e+ dΦ2e and dΦ1.Φ2e = dΦ1e.dΦ2e |}
{λβ

(
d¬(β > 3)e+ [(β > 3).d¬s(β)e]

)
} ∗ 0

= {|d¬ce = c̄ |}
{λβ

(
(β ≤ 3) + [(β > 3).d¬s(β)e]

)
} ∗ 0

= {|d¬ae =
∑

ai∈dA−{a}e ai and A = {s(x), s(y), p(x)} |}
{λβ

(
(β ≤ 3) + [(β > 3).p(x)]

)
} ∗ 0

4. Finally, Q1 and Q2 are transformed into EBPA∗0,1 and the enforcement of Q on a process P

becomes as following:

P ue Q = ((P ue dQ1e) ue dQ2e)

5.4 Formalize the Link Between Inputs and Output of u

5.4.1 Trace Based Equivalence

In this section, we introduce variants of trace-based equivalence that will be used to compare pro-

cesses. We denote by Σ the closure of A ∪ {ε} using the operator "." such that (Σ, ., ε) is a monoid.

100

If τ and τ ′ are in Σ and they are equivalent with respect to the monoid properties (x = ε.x, x = x.ε,

(x.y).z = x.(y.z)), we write τ ' τ ′.

Definition 5.4.1 (Traces of a process) Let x, x′ and x′′ be processes, α be an action or a condition.

An element τ ∈ Σ is a trace for x if there exists a process y such that x
τ
� y, where� is a relation in

P × Σ× P defined as following:

2

x
ε
�x

x
τ
� x′ x′

α→ x′′

x
τ.α
� x′′

The following ordering relation will be used to compare two traces.

Definition 5.4.2 (Trace Ordering (�)) Let τ and τ ′ be traces, a be an action, c be a condition,

x, x1, ..., xn be variables and β be a variable or a constant. We define � as the smallest ordering

relation (transitivity, reflexivity and anti-symmetry) respecting the following properties:

1. If τ ' τ ′, then τ � τ ′.

2. τ.c.τ ′ � τ.τ ′.

3. τ.(x == β).a(x1...x...xn).τ ′ � τ.a(x1...β...xn).τ ′.

We are also interested in comparing traces in a specified environment using the following ordering

relation.

Definition 5.4.3 (Trace Ordering in an Environment e. (ve)) Let τ, τ ′ be traces and e ∈ E . We

define ve as the smallest ordering relation (transitivity, reflexivity and anti-symmetry) respecting the

following properties:

1. If τ � τ ′, then τ ve τ ′.

2. τσ ve τ for any e-free substitution σ.

Now, we extend the definitions of � and ve to processes as follows.

Definition 5.4.4 (Process Ordering. (�)) Let P and Q be two processes. We say that P ≺ Q, if

∀τ ∈ Σ, we have:

1. P

�

τ then ∃τ ′ ∈ Σ, such that:Q

�

τ ′ and τ � τ ′.

101

2. P
τ
� 1 then ∃τ ′ ∈ Σ, such that:Q

τ ′

� 1 and τ � τ ′.

Definition 5.4.5 (Process Ordering in an Environment e ((ve)) Let P and Q be two processes,

e ∈ E . We say that P ve Q, if ∀τ ∈ Σ, we have:

1. P

�

τ then ∃τ ′ ∈ Σ, such that:Q

�

τ ′ and τ ve τ ′.

2. P
τ
� 1 then ∃τ ′ ∈ Σ, such that:Q

τ ′

� 1 and τ ve τ ′.

It is clear from the previous definitions that �⊆ve. Also � has many interesting properties such as

those given by the following proposition.

Proposition 5.4.6 (Some Properties of �) The ordering� is a compatible with the operators (”+”,

”.” and ” ∗ ”), i.e. for any processes P , P ′ and Q, we have:

P � P ′ =⇒

(1) P +Q � P ′ +Q (2) Q+ P � Q+ P ′

(3) P.Q � P ′.Q (4) Q.P � Q.P ′

(5) P ∗Q � P ′∗Q (6) Q∗P � Q∗P ′

Proof: See Section 5.7 (page 135). 2

When a process runs in its environment, it produces closed traces. We use the following definition to

compare processes running in environments.

Definition 5.4.7 (Ordering processes running in environments (v)) LetP andQ be two processes,

ep, eq ∈ E and τ ∈ Σ. We say that [P]ep v [Q]eq, if:

• [P]ep

�

τ then ∃τ ′ ∈ Σ such that [Q]eq

�

τ ′ and τ ' τ ′.

Based on the previous ordering, we define the following equivalence relations:

Definition 5.4.8 (≈) Let P and Q be two processes. We say that P ≈ Q, if P � Q and Q � P .

Definition 5.4.9 (∼e) We say that two processes P and Q are trace-equivalent in e ∈ E , denoted by

P ∼e Q, if P ve Q and Q ve P .

102

Definition 5.4.10 (∼) Let e and e′ be in E . We say that two processes [P]e and [Q]e′ are trace equiv-

alent and we write [P]e′ ∼ [Q]e′ , if [P]e v [Q]e′ and [Q]e′ v [P]e.

The following proposition shows some interesting properties of ≈.

Proposition 5.4.11 ≈ is a congruence relation with respect to operators ("+", "." and " *").

Proof: Directly from Proposition 5.4.6 and Definition 5.4.8. 2

More useful properties of ≈ are given by the following proposition.

Proposition 5.4.12 Given three processes x, y and z, the following properties hold.

(B1) x+ (y + z) ≈ (x+ y) + z (B7) 0.x ≈ 0

(B2) x.(y.z) ≈ (x.y).z (B8) x.1 ≈ x ≈ 1.x

(B3) x+ y ≈ y + x (B9) x+ 0 ≈ x

(B4) (x+ y).z ≈ x.z + y.z (B10) x∗y ≈ y + xx∗y

(B5) x.(y + z) ≈ x.y + x.z (B11) x+ y � z ⇒ x � z, y � z
(B6) x+ x ≈ x (B12) x.z + y � z ⇒ x∗y � z

Proof: similar to the proof of Proposition 4.4.7.

Given a program P and a security policy Φ, the goal of this work is to generate another program P ′

that respects the security policy Φ and preserves the good behaviors of P without introducing new

ones. More precisely and as already stated in [48], P ′ should respect the two following conditions:

1. Correctness:

• P ′ v P : all the traces of P ′ are traces in P .

• P ′ v Φ: all the traces of P ′ respect the security policy.

2. Completeness: If there exists P” such that P” v P and P” v Φ, then P” v P ′. This property

involves that all the traces in P that respect the security policy are also in P ′.

To simplify the presentation, we integrate the two previous conditions in one operator called greatest

common factor with respect to an ordering relation v (denoted gcf(v)) or shortly gcf if v is clear

from the context) defined as follows:

103

Definition 5.4.13 (Greatest Common Factor (gcf(v))) Let P and Q be two processes. The gcf

of P and Q with respect to v, denoted by P u Q, is a process R that respects the following three

conditions:

• R v P .

• R v Q.

• For all R′ such that R′ v P and R′ v Q, we have R′ v R.

Now, the problem of enforcing a security property Q on a program P in an environment e turns to a

problem of finding [P]e u [Q]e.

To simplify the resolution of the problem, we extend the definition of a gcf to two ordering relations

v1 and v2 as follows:

Definition 5.4.14 (gcf(v1,v2)) The gcf(v1,v2) of two processes P and Q is a process R respect-

ing the following conditions:

• R v1 P

• R v2 Q

• For all R′ such that R′ v1 P and R′ v2 Q, we have R′ v1 R.

Definition 5.4.15 (ue) Let e be an environment. We introduce ue as a shortcut for gcf(�,ve) (ue =

gcf(�,ve).

Notice that a gcf is not unique, but they form an equivalence class as shown by the following propo-

sition.

Proposition 5.4.16 If R1 = P ue Q and R2 = P ue Q, then R1 ≈ R2

Proof: From Definition 5.4.15, we have R1 � R2 and R2 � R1 =⇒ R1 ≈ R2. 2

The following theorem gives a main result showing the relationship between ([P]e u [Q]e) and [P ue
Q]e

104

Theorem 5.4.17 Let P and Q be two processes and e ∈ E , then we have:

[P]e u [Q]e ∼ [P ue Q]e

Proof: See Section 5.7 (page 141). 2

This theorem reduce the problem of finding [P]e u [Q]e to computing P ueQ. In the next section, we

propose an algorithm allowing to compute P ue Q, but before that, we give some useful properties of

ue.

Proposition 5.4.18 let P,Q and R be three processes, e ∈ E and a1, a2 ∈ A. The following proper-

ties hold:

0 ue a ≈ 0

P ue P ≈ P

P ue (Q+R) ≈ P ue Q+ P ue R

P ≈ P ′ → P ue Q ≈ P ′ ue Q

a.P ue a.Q ≈ a.(P ue Q)

5.5 Resolution of the Problem: Finding P uQ

In this section, we first introduce the notion of derivatives and we clarify the relationship between

the intersection of two processes and the intersection of their derivatives. Then, we give the main

proposition on which our algorithm for computing P ue Q is based. Finally, we give the algorithm

that implements the operator ue together with some examples.

5.5.1 Linear Systems

Finding P uQ turns to generate and solve linear equations having the following forms:

EP =

X1 = c1 +

∑
a∈A1

∑
σ∈Γ1

aσXi

...

Xn = cn +
∑
a∈A1

∑
σ∈Γn

aσXi

EΥ =

Γ1 = σ1

0 ∪
∑
i∈n

σ1
i ◦ Γi

...

Γn = σn0 ∪
∑
i∈n

σni ◦ Γi

To solveEP we need first to solveEΥ. Since equations ofEΥ are in the closed semiring (Υ,∪, ◦, ∅, {∅})
then the solution of any map x 7→ a◦x∪b is a∗b, where a∗ satisfies a = {∅}∪a∗◦a = {∅}∪a+a◦a∗

Recall that a seminring [19] (S,+, ., 0, 1) is a set S and two operators "+" and "." that respect the

following properties for any a, b, c in S:

105

a+ b = b+ a a.0 = 0.a = 0

a+ (b+ c) = (a+ b) + c a.1 = 1.a = a

a+ 0 = a a.(b+ c) = a.b+ a.c

a.(b.c) = (a.b).c (a+ b).c = a.c+ b.c

EΥ has ”◦” as operator ”.”, ”∪” as operator ”+”, ∅ as 0 and {∅} as 1. It has the form: Y = D◦Y ∪V
where Y is a vector of length n containing sets of variables, D is a constant matrix n× n where each

element is a set of substitutions and V is a vector of length n containing sets of substitutions. The

solution is Y = D∗ ◦ V where D∗ can be computed using the generalized version of the Arden

Lemma since (2Υ, ◦, {∅}) is a monoid. Notice that if D = d (i.e. D is 1 × 1), and V = v then

D∗ ◦V = d∗ ◦v = ({∅}∪d∪d◦d . . .)◦v = v∪d◦v∪d2 ◦v∪ Also, for almost all the examples

of our interest, we have dn = d. In this case d∗ ◦ v = d ◦ v ∪ v

After we get the result of EΥ, we can use it to eliminate all the Γ variables from EP to get a new

linear system E′P . E′P has the following form AX + B = X where A is a constant matrix of size

n× n, B is a constant vector of size n and X is a vector of variables of size n.

The system E′P can be solved iteratively by using Arden’s Lemma [6]. Also, a generalized version

of the Arden Lemma shows that the solution of this system is X = A∗B, where A∗ is computed as

follows:

[
a b

c d

]∗
=

[
(a+ bd∗c)∗ (a+ bd∗c)∗bd∗

(d+ ca∗b)∗ca∗ (d+ ca∗b)∗

]

and the result can be inductively generalized for matrices n by n as follows, where A is a n − 1 by

n− 1 matrix:

[
A B

C D

]∗
=

[
(A+BD∗C)∗ (A+BD∗C)∗BD∗

(D + CA∗B)∗CA∗ (D + CA∗B)∗

]

These results hold because, under the trace equivalence, EBPA∗0,1 is a kind of monodic tree Kleene

algebra [62] with a binary star Kleene operator.

5.5.2 Derivatives in EBPA∗0,1

We adapt the definition of derivatives introduced by Brzozowski in [11] as following:

Definition 5.5.1 (Derivative of a Process) The derivative of a process x with respect to an action a,

denote by ∂a(x), is defined as following:

106

∂ : A×P −→ P

∂a(0) = 0

∂a(1) = 0

∂b1(b2) =

{
1, if b1 = b2

0, else
∂a(x

∗y) = ∂a(x).x∗y + ∂a(y)

∂a(x+ y) = ∂a(x) + ∂a(y)

∂a(x.y) = ∂a(x).y + o(x).∂a(y)

∂a(λxP) = ∂a(P [x 7→ y]) : y is a fresh variable.

Informally, the derivative of a process with respect to a given action is the remaining part of the process

after the execution of this action, i.e:

∂a(x) =
∑

{x′∈P | x a→x′}

x′

Example 5.5.2 Let P = {p(x).s(x) + s(x).p(y)}∗0 and s(x), p(x), p(y) be actions, then we can

compute ∂s(x)P as following:

∂s(x)P = ∂s(x)

(
{p(x).s(x) + s(x).p(y)}∗0

)
= {|∂a(x∗y) = ∂a(x).x∗y + ∂a(y) |}(

∂s(x){p(x).s(x) + s(x).p(y)}
)
.P + ∂s(x)0

= {|∂a(0) = 0 and x+ 0 ≈ x |}(
∂s(x){p(x).s(x) + s(x).p(y)}

)
.P

= {|∂a(x+ y) = ∂a(x) + ∂a(y) |}(
∂s(x)(p(x).s(x)) + ∂s(x)(s(x).p(y))

)
.P

= {|∂a(x.y) = ∂a(x).y + o(x).∂a(y) |}(
(∂s(x)p(x)).s(x) + o(p(x)).∂s(x)s(x) + (∂s(x)s(x)).p(y) + o(s(x)).∂s(x)p(y)

)
.P

= {|o(a) = 0 |}(
(∂s(x)p(x)).s(x) + 0.∂s(x)s(x) + (∂s(x)s(x)).p(y) + 0.∂s(x)p(y)

)
.P

= {|0.x ≈ 0 and x+ 0 ≈ x |}(
(∂s(x)p(x)).s(x) + (∂s(x)s(x)).p(y)

)
.P

= {|if b1 = b2, ∂b1(b2) = 1 ; else ∂b1(b2) = 0 |}(
0.s(x) + 1.p(y)

)
.P

= {|0.x ≈ 0 and 1.x ≈ x |}
p(y).P

107

Let τ , τ1 and τ2 be traces in Σ and T be a subset of Σ. The notion of derivatives can be extended to

traces and sets of traces as following:

∂ε(P) = P

∂τ1.τ2(P) = ∂τ2(∂τ1(P))

∂τ (P) =
⋃
P∈P{∂τ (P)}

∂T (P) =
⋃
τ∈T {∂τ (P)}

Definition 5.5.3 (Immediate Successful Termination of a Process) The function o(x) allows to know

whether x↓ holds or not and it is defined as follows:

o : P −→ {0, c, 1}

o(0) = o(a) = o(c) = 0

o(1) = 1

o(x∗y) = o(y)

o(x+ y) = o(x) + o(y)

o(x.y) = o(x).o(y)

o(λxP) = o(P [x 7→ y]) : y isafreshvariable.

Definition 5.5.4 (Immediate Possible Actions of a Process) The following function δ gives the im-

mediate possible actions of a process:

δ : P −→ P

δ(0) = ∅
δ(1) = ∅
δ(a) = {a}
δ(c) = {c}

δ(x∗y) = δ(x) ∪ δ(y)

δ(x+ y) = δ(x) ∪ δ(y)

δ(x.y) = δ(x) ∪ o(x)⊗ δ(y)

δ(λxP) = δ(P [x 7→ y]) : y isafreshvariable.

Intuitively, δ(x) = {a|x a→ x′} where ⊗ is defined as following:

⊗ : {0, 1} × 2Σ −→ 2Σ

(0, S) 7→ ∅
(1, S) 7→ S

108

Example 5.5.5 Let Q = {p(x) + [λα((α > 3).s(α))]}∗0 and s(α) and p(x) be actions, then we can

compute δ(Q) as following:

δ(Q) = δ
(
{p(x) + [λα((α > 3).s(α))]}∗0

)
= {|δ(x∗y) = δ(x) ∪ δ(y) |}

δ{p(x) + [λα((α > 3).s(α))]} ∪ δ(0)

= {|δ(0) = ∅ |}
δ{p(x) + [λα((α > 3).s(α))]}

= {|δ(x+ y) = δ(x) ∪ δ(y) |}
δ{p(x)} ∪ δ{[λα((α > 3).s(α))]}

= {|δ(a) = {a} |}
δ{λα((α > 3).s(α))} ∪ {p(x)}

= {|δ(λxP) = δ(P [x 7→ y]) : y isafreshvariable. |}
δ{(α1 > 3).s(α1)} ∪ {p(x)}

= {|δ(x.y) = δ(x) ∪ o(x)⊗ δ(y) |}
δ{(α1 > 3)} ∪ o((α1 > 3))⊗ δ{s(α1)} ∪ {p(x)}

= {|δ(c) = {c} |}
o((α1 > 3))⊗ δ{s(α1)} ∪ {p(x), (α1 > 3)}

= {|o(c) = 0 and 0⊗ S = ∅ |}
{p(x), (α1 > 3)}

Here, we define δB(x) = {c|c ∈ δ(x) ∧ c ∈ B} and δA(x) = δ(x)− δB(x)

By the above definitions, we can establish the relationship between a process and its derivatives. This

relationship is important to prove a main result given in the sequel.

Proposition 5.5.6 For a process P , we have: P ≈ o(P) +
∑

α∈δ(P)

α ∂α(P)

Proof: The proof is available in Section 5.7 (Page 145).
2

5.5.3 Main Proposition

Hereafter, we give the main proposition that shows the relationship between the intersection of two

processes and the intersection of their derivatives.

First, we give some useful definition and intermediary results. Before computing the intersection

between two processes, we need to transform them to their guarded form. The notion of guarded

process is defined as following.

109

Definition 5.5.7 (Guarded Process and Guarded Intersection) Let α be an action or a condition,

P and Q be two processes and R and S be processes or intersections. We define a guarded process

and a guarded intersection as following:

• α is a guarded

• α.P is guarded

• P ue Q if P is guarded and Q is guarded

• R+ S is guarded if R is guarded and S is guarded

In the following, we give a rewriting system allowing to transform any intersection between processes

to an equivalent guarded one.

Definition 5.5.8 (Normalization Rules) We denote by NR, the following rewriting system.

• 0.P → 0, 1.P → P

• P + 0→ P, 0 + P → P

• P ue 0→ 0, 0 ue P → 0

• P ue 1→ 1, 1 ue P → 1

• R ue P +Q→ R ue P +R ue Q

• P +Q ue R→ P ue R+Q ue R

• R ue (P +Q).T → R ue P.T +R ue Q.T

• (P +Q).T ue R→ P.T ue R+Q.T ue R

• R ue P ∗Q→ R ue P.(P ∗Q) +R ue Q

• P ∗Q ue R→ P.(P ∗Q) ue R+Q ue R

• R ue P ∗Q.T → R ue P.(P ∗Q).T +R ue Q.T

• P ∗Q.T ue R→ P.(P ∗Q).T ue R+Q.T ue R

• If R is a guarded process, then R ue (λxP)→ R ue P [x 7→ y], y is a fresh variable.

110

• If R is a guarded process, then (λxP) ue R→ P [x 7→ y] ue R, y is a fresh variable.

• If R is a guarded process, then R ue (λxP).Q→ R ue P [x 7→ y].Q, y is a fresh variable.

• If R is a guarded process, then (λxP).Q ue R→ P [x 7→ y].Q ue R, y is a fresh variable.

If R is a process or an intersection, we denote by R⇓ its normal form using the rewriting systemNR.

Proposition 5.5.9 Let R be a process or an intersection. We have:

• R⇓ exists.

• R⇓ is guarded.

Proof: The prof follows from Definitions 5.5.7 and 5.5.8 2

Once, we transform a process to its guarded form, we need to know how to compute α.P ue β.Q,

to generate intersection. To that end, we need first to compute the intersection between α and β and

then compute the intersection between P and Q. However, we need to carefully take care of the

following fact: the intersection between α and β can succeed only under a substitution that needs to

be propagated forward to the intersection of P and Q, and, on the other side, the intersection of P and

Q can succeed only under a substitution that needs to be propagated backward to the intersection of α

and β.

Hereafter, we give some definitions that help us to better formalize the issue of forward and backward

propagation of substitutions.

Definition 5.5.10 • Suppose that Γ1 and Γ2 are sets of substitutions, we define their composition

(◦) as following:

Γ1 ◦ Γ2 =
⋃

σ∈Γ1

⋃
σ′∈Γ2

{σ ◦ σ′}

• Let Υ be the set of substitutions form X → A. We extend the definition of Υ to Υ(X) to

include also unknown or partially known substitutions. More precisely, Υ(X) is the smallest

set respecting the following conditions:

– Υ ⊂ Υ(X)

– z ∈ Υ(X) for any variable z that range over substitutions.

– if σx and σy are in Υ(X) then σx ◦ σy is in Υ(X)

111

Definition 5.5.11 (T) Let e ∈ E , a1, a2 ∈ A, c ∈ B, P and Q be two processes and R and S be

processes or intersections. We inductively define the function T as follows:

T : P −→ 2Υ(X)

T (0) = ∅
T (1) = ∅

T (R+ S) = T (R) ∪ T (S)

T (a1.P ue a2.Q) = {σ} ◦ ΓPueQ if a1∇e a2 = {(a, σ)}
T (c.P ue Q) = ΓPueQ

T (P ue c.Q) = ΓPueQ

Example 5.5.12 Let P,Q be two processes and s(α1), s(α2), s(x), s(y) be actions, then we can

compute T
((

(y > 3).s(x).P ue (α1 > 5).s(α1).Q
)

+
(
s(y).P ue s(α2).Q

))
as following:

T
((

(y > 3).s(x).P ue (α1 > 5).s(α1).Q
)

+
(
s(y).P ue s(α2).Q

))
= {|T (R+ S) = T (R) ∪ T (S) |}

T
(
(y > 3).s(x).P ue (α1 > 5).s(α1).Q

)
∪ T

(
s(y).P ue s(α2).Q

)
= {|T (c.P ue Q) = ΓPueQ |}

Γs(x).Pue (α1>5).s(α1).Q∪ T
(
s(y).P ue s(α2).Q

)
= {|T (a1.P ue a2.Q) = {σ} ◦ ΓPueQ if a1∇e a2 = {(a, σ)} and

s(y)∇e s(α2) = {(s(y), {α2 7→ y})} |}

Γs(x).Pue (α1>5).s(α1).Q ∪ {α2 7→ y} ◦ ΓPueQ

For the sake of clarity, in the remaining part of this chapter, we use the color red and underline

to indicate variables that range over sets of substitutions; the color blue and underline to indicate

variables that range over intersections between processes.

The following proposition gives the relationship between the intersection of two processes in terms of

the intersections between their derivatives for some particular cases.

112

Proposition 5.5.13 For P,Q ∈ P, e ∈ E , a1, a2 ∈ A, c2 ∈ B, if V(a1.P) ⊆ Nv(e), we have:

1)

a1.P ue a2.Q ≈

∑
σ∂ ∈ Γ(PσδueQσδ)

aσ∂ .
(
Pσ∂σδ ue Qσ∂σδ

)
where (a, σδ) ∈ a1∇e a2

Γa1.Puea2.Q = T ((a1.P ue a2.Q)⇓)

2)

a1.P ue c2.Q ≈

∑
σ∂ ∈ Γ(a1PueQ)

c2σ∂ .
(
(a1.P)σ∂ ue Qσ∂

)
Γa1.Puec2.Q = T ((a1.P ue c2.Q)⇓)

For P,Q ∈ P, e ∈ E , a2 ∈ A, c1, c2 ∈ B, if V(c1.P) ⊆ Nv(e), we have:

3)

c1.P ue a2.Q ≈

∑
σ∂ ∈ Γ(Puea2.Q)

c1σ∂ .
(
Pσ∂ ue (a2.Q)σ∂

)
Γc1.Puea2.Q = T ((c1.P ue a2.Q)⇓)

4)

c1.P ue c2.Q ≈

∑
σ∂ ∈ Γ(PueQ)

(c1.c2)σ∂ .
(
Pσ∂ ue Qσ∂

)
Γc1.Puec2.Q = T ((c1.P ue c2.Q)⇓)

Proof: The proof is available in Section 5.7 (Page 147).
2

In a special case when both P and Q do not contain free variables, we can simplify proposition 5.5.13

as follows:

Corollary 5.5.14 For P,Q ∈ P, s ∈ E , a1, a2 ∈ A, c1, c2 ∈ B, V(a1.P) ⊆ Nv(e),V(c1.P) ⊆
Nv(e),V(a2.Q) ⊆ Nv(e),V(c2.Q) ⊆ Nv(e), we have:

1. a1.P ue a2.Q ≈ a.(P ue Qσδ) where (a, σδ) ∈ a1∇e a2.

2. c1.P ue a2.Q ≈ c1.(P ue a2.Q) .

3. a1.P ue c2.Q ≈ c2.
(
(a1.P) ue Q

)
.

4. c1.P ue c2.Q ≈ (c1.c2).
(
P ue Q

)
.

LetEΥ(x1, ..., xn) be a linear system include variables x1, ..., xn, then we introduce our main theorem

as follows:

113

Theorem 5.5.15 Let P,Q ∈ P , e ∈ E and V(P) ⊆ Nv(e), we have the two following equations:

1. X = P ue Q ≈ o(P).o(Q) +
∑

(a, σδ) ∈ δA(P)∇eδA(Q)

∑
σ∂ ∈ ΓX1

aσ∂ .X
′
1+

∑
(c1, a2) ∈
δB(P)× δA(Q)

∑
σ∂ ∈ ΓX2

c1σ∂ .X
′
2+

∑
(a1, c2) ∈
δA(P)× δB(Q)

∑
σ∂ ∈ ΓX3

c2σ∂ .X
′
3+

∑
(c1, c2) ∈
δB(P)× δB(Q)

∑
σ∂ ∈ ΓX4

(c1.c2)σ∂ .X
′
4

X ′1 = (∂a1P)σδσ∂ ue (∂a2Q)σδσ∂ X ′2 = (∂c1P)σ∂ ue (a2.∂a2Q)σ∂

X ′3 = (a1.∂a1P)σ∂ ue (∂c2Q)σ∂ X ′4 = (∂c1P)σ∂ ue (∂c2Q)σ∂

2. ΓX = ΓPueQ = T ((P ue Q)⇓) ∈ EΥ(ΓX1 ,ΓX2 ,ΓX3 ,ΓX4)

X1 = (∂a1P)σδ ue (∂a2Q)σδ X2 = ∂c1P ue a2.∂a2Q

X3 = a1.∂a1P ue ∂c2Q X4 = ∂c1P ue ∂c2Q

Proof: Based on Proposition 5.5.6 and 5.5.13, we can do similar proof with the Proposition
4.5.7. 2

In above theorem, after we expand the right side of the second equation by applying the function T ,

the equation will be in the form of ΓX = d1 ◦ ΓX1 ∪ d2 ◦ ΓX2 ∪ ...∪ v, where d1, d2...v are constants

(sets of substitutions) and ΓX ,ΓX1 ... are variables (if X = P ue Q then we say: ΓX = ΓPueQ).

If we apply the above theorem on the new generated variables of the right side of each equation

recursively until we can not find new variables, we will get two linear systems as discussed in Section

5.5.1.

To simplify the presentation of the algorithm, we introduce the following definitions.

Definition 5.5.16 (First Order Intersection) Let P,Q ∈ P , a1, a2 ∈ A, c1, c2 ∈ B and e ∈ E , we

define function I : P → P as following:

• I(P +Q) = I(P) + I(Q)

• I(a1.P ue a2.Q) =
∑

σ∂ ∈ Γ(PσδueQσδ)

aσ∂ .
(
Pσ∂σδ ue Qσ∂σδ

)
where (a, σδ) ∈ a1∇e a2

114

• I(c1.P ue a2.Q) =
∑

σ∂ ∈ Γ(Puea2.Q)

c1σ∂ .
(
Pσ∂ ue (a2.Q)σ∂

)
• I(a1.P ue c2.Q) =

∑
σ∂ ∈ Γ(a1PueQ)

c2σ∂ .
(
(a1.P)σ∂ ue Qσ∂

)

• I(c1.P ue c2.Q) =
∑

σ∂ ∈ Γ(PueQ)

(c1.c2)σ∂ .
(
Pσ∂ ue Qσ∂

)

Definition 5.5.17 ((P ue Q)�) We denote by (P ue Q)� the normal form of P ue Q and define it as

follows.

(P ue Q)�= I((P ue Q) ⇓)

By the help of above definitions, we can simplify Theorem 5.5.15 as following:

Theorem 5.5.18 Let P and Q be two processes and e ∈ E , if V(P) ⊆ Nv(e) then we have:

1. P ue Q ≈ (P ue Q)�

2. ΓPueQ = T ((P ue Q)⇓)

Proof: Based on proposition 5.5.6 and 5.5.13. we can do a similar proof with Proposition 4.5.7.
2

5.5.4 Algorithm

Based on Theorem 5.5.18, we write an algorithm allowing generating a linear system where P ue Q
could be extracted from its solutions. This algorithm is as follows:

Algorithm 1 Let X and Y be two EBPA∗0,1 processes, e ∈ E , and V(X) ⊆ Nv(e) calculate X u Y , where

G = φ, E = φ, S = {(X,Y)}

1: DO
Get one element s = (P,Q) from S.

Remove s from S.

E ←− E ∪ {e←−
(
P ue Q ≈ (P ue Q)�

)
}

G←− G ∪ {g ←−
(
ΓPueQ = T ((P ue Q)⇓)

)
}

For each Pi ue Qiσ∂ in the right side of e,

115

If Pi ue Qi does not appear (modulo commutativity of ue and ACIT of +) in the left side

of any equation in E

Do S = S ∪ (Pi, Qi) ;

End If
End For each

WHILE (S 6= φ)

2: Solve equations in G to get all the values of Γ.

3: Substitute all Γ in E.

4: While there exists Pi ue Qi in the right side of any equation in E that does not appear

(modulo commutativity of ue) in the left side on any equation do
E ←− E ∪ {e←− Pi uQi ≈ (Pi ue Qi)�}

End While
5: Return the solution of the linear system E.

• ACIT of + is an abbreviation of Associativity ((x + y) + z ≈ x + (y + z)), Commutativity

(x + y ≈ y + x), Identity (x + x ≈ x) and Triviality (x + 0 ≈ 0 + x ≈ x, 0.x ≈ 0 and

(1.x ≈ x.1 ≈ x).

• The algorithm terminates since the number of partial derivatives of regular terms x, denoted by

PD(x) and defined as ∂Σ∞(x), is finite as shown by Brzozowski [11].

• The complexity of the algorithm for given inputs P and Q is O(||P || × ||Q||), where ||P || is

the size of P , i.e. the number of elements in Σ ∪ {0, 1} in P . In fact, it was proved in [5]

that the number of partial derivatives of P is smaller than ||P || + 1. Also, since any equation

is the intersection of an element from PD(P) and another from PD(Q), then the number of

equations N is no more than (||P || + 1) × (||Q|| + 1) and their resolutions can be done by

elimination using Arden’s Lemma [6] fewer than N times.

• The system E and G generated by the algorithm are linear systems. They can be solved by

using the method we discussed in Section 5.5.1.

Using the previous algorithm, we can present some examples of intersections using our approach.

5.5.5 Simple Example of Intersection between Processes

Suppose that we have e ∈ E , Fv(e) = {α, β, γ} and Nv(e) = {x, y, z} and two processes P and Q

as following:

P = [((y > 3).s(x).s(y)] + [!(y > 3).s(y)]

116

Q = λ[(α)][(α > 5).s(α)]∗0

Now, we can compute P ue Q, where G = φ, E = φ and S = {(P,Q)}

• Step 1: Generate E and G:

X1 = P ue Q

≈ {|Proposition 5.5.18 |}

(P ue Q)�

≈ {|R ue P ∗Q ≈ R ue P.(P ∗Q) +R ue Q |}

P ue λ(α)[(α > 5).s(α)].Q+ P ue 0

≈ {|P ue 0 ≈ 0 and P + 0 ≈ P |}

P ue λ(α)[(α > 5).s(α)].Q

≈ {|P +Q ue R ≈ P ue R+Q ue R |}

(y > 3).s(x).s(y) ue λ(α)[(α > 5).s(α)].Q+!(y > 3).s(y) ue λ(α)[(α > 5).s(α)].Q

≈ {|R ue (λxP).Q ≈ R ue P [x 7→ y].Q, y is a fresh variable. |}

(y > 3).s(x).s(y) ue (α10 > 5).s(α10).Q+!(y > 3).s(y) ue (α11 > 5).s(α11).Q

≈ {|c1.P ue c2.Q ≈
∑

σ∂ ∈ Γ(PueQ)

(c1.c2)σ∂ .
(
Pσ∂ ue Qσ∂

)
|}

∑
σ∂ ∈ Γs(x).s(y)ues(α10).Q

[(y > 3).(α10 > 5)]σ∂ .[s(x).s(y) ue (s(α10).Q)σ∂]+

∑
σ∂ ∈ Γs(y)ues(α11).Q

[!(y > 3).(α11 > 5)]σ∂ .[s(y) ue (s(α11).Q)σ∂]

Here ΓPueQ = ΓX1 , Γs(x).s(y)ues(α10).Q = ΓX2

and Γs(y)ues(α11).Q = ΓX3 :

X1 = P ue Q

117

≈
∑

σ∂ ∈ ΓX2

[(y > 3).(α10 > 5)]σ∂ .[s(x).s(y) ue (s(α10).Q)σ∂]+

∑
σ∂ ∈ ΓX3

[!(y > 3).(α11 > 5)]σ∂ .[s(y) ue (s(α11).Q)σ∂] (e1)

ΓX1 = T ((P ue Q)⇓) = ΓX2 ∪ ΓX3 (g1)

X3 = s(y) ue s(α11).Q

≈ {|Simplification |}
s(y) (e3)

ΓX3 = {{α11 7→ y}} (g3)

Here Γs(y)ueQ = ΓX4 ,

X2 = s(x).s(y) ue s(α10).Q

≈ {|Simplification |}

∑
σ∂ ∈ ΓX4

s(x).[s(y) ue Qσ∂] (e2)

ΓX2 = {{α10 7→ x}} ◦ ΓX4 (g2)

Here Γs(y)ue(s(α40).Q) = ΓX5 ,

X4 = s(y) ue Q

≈ {|Simplification |}

∑
σ∂ ∈ ΓX5

[(α40 > 5)]σ∂ .[s(y) ue (s(α40).Q)σ∂] (e4)

ΓX4 = ΓX5 (g4)

X5 = s(y) ue s(α40).Q

≈ {|Simplification |}
s(y) (e5)

ΓX5 = {{α40 7→ y}} (g5)

We have E = {e1, e2, e3, e4, e5}, G = {g1, g2, g3, g4, g5}

• Step 2: Solve G to get all the values of Γ.

ΓX4 = ΓX5 = {{α40 7→ y}}

118

ΓX2 = {α10 7→ x}} ◦ ΓX4 = {{α10 7→ x, α40 7→ y}} = {σ2}

ΓX3 = {{α11 7→ y}} = {σ3}

• Step 3: Now, we substitute Γ in the equation set E.

X1 = P ue Q

≈
∑

σ∂ ∈ ΓX2

[(y > 3).(α10 > 5)]σ∂ .[s(x).s(y) ue (s(α10).Q)σ∂]+

∑
σ∂ ∈ ΓX3

[!(y > 3).(α11 > 5)]σ∂ .[s(y) ue (s(α11).Q)σ∂] (e1)

≈ (y > 3).(x > 5).[s(x).s(y) ue (s(x).Q)σ2]+!(y > 3).(y > 5).[s(y) ue (s(y).Q)σ3]

≈ (y > 3).(x > 5).X ′2+!(y > 3).(y > 5).X ′3

• Step 4: Since there are new intersections X ′2, X
′
3, we can generate new equations in E.

X ′2 = [s(x).s(y) ue s(x).Qσ2] = s(x).[s(y) ue Qσ2] = s(x).X ′4

X ′3 = s(y)

X ′4 = s(y) ue Qσ2 ≈ [s(y) ue ((α40 > 5)s(α40).Q)σ2]

= [s(y) ue (y > 5).s(y).Qσ2] = (y > 5).[s(y) ue s(y).Qσ2] = (y > 5).X ′5

X ′5 = s(y) ue s(y).Qσ2 ≈ s(y)

• Step 5: Solve the equations set E by using Arden’s Lemma and variable substitution:

X ′4 ≈ (y > 5).X ′5 ≈ (y > 5).s(y)

X ′2 ≈ s(x).X ′4 ≈ s(x).(y > 5).s(y)

X1 ≈ (y > 3).(x > 5).X ′2+!(y > 3).(y > 5).X ′3

≈ (y > 3).(x > 5).s(x).(y > 5).s(y)+!(y > 3).(y > 5).s(y)

5.6 Examples

With our theoretical foundation, now we can present examples with more interesting programming

language and security policies specified in VLTL.

5.6.1 Example for a C-Like Language:

Suppose we have e ∈ E , Fv(e) = {α, β} and Nv(e) = {x, y}.

119

Let P be the following program:

while (x<8)

{

if(y>5)

{ print(x); send(y); }

s(x);

}

Let s and p denote the actions send and print respectively. By using the transfer function introduced

in Section 5.2.5, The program P can be specified in EBPA∗0,1 by the following process:

P = {((x < 8).[(y > 5).p(x).s(y)+!(y > 5).1].s(x)} ∗ (!(x < 8).1)

Suppose that we have a security policy Q stating that we can send only values that are bigger than 3.

Q can be specified in the VLTL logic as following:

Q = {[¬s(β)] ∨ [λα((α > 3).s(α))]}U⊥

Here, as defined in 5.2.3, we use λx to define the available scope of variables. By using the rules of

Section 5.3 in page 97, security policies Q can be rewrote into EBPA∗0,1 as following:

Q = {p(x) + [λα((α > 3).s(α))]} ∗ 0

Now, we can compute P ue Q, where G = φ, E = φ, E′ = φ and S = {(P,Q)}

• Inputs:

P = {(x < 8).[(y > 5).p(x).s(y)+!(y > 5).1].s(x)} ∗ (!(x < 8).1)

Q = {p(x) + [λα((α > 3).s(α))]}∗0

• Step 1: Generate E and G.

X1 = P ue Q

≈ {|Proposition 5.5.18 |}

(P ue Q)�

Let’s transform P ue Q using the rules in Definition 5.5.8

X1 = P ue Q

120

≈ {|rules in Definition 5.5.8 |}

(x < 8).[(y > 5).p(x).s(y)+!(y > 5).1].s(x).P ue p(x).Q+

(x < 8).[(y > 5).p(x).s(y)+!(y > 5).1].s(x).P ue (α11 > 3).s(α11).Q

≈ {|c1.P ue a2.Q ≈ c1.(P ue a2.Q) |}

(x < 8).{[(y > 5).p(x).s(y)+!(y > 5).1].s(x).P ue p(x).Q}+
(x < 8).[(y > 5).p(x).s(y)+!(y > 5).1].s(x).P ue (α11 > 3).s(α11).Q

≈ {|c1.P ue c2.Q ≈
∑

σ∂ ∈ Γ(PueQ)

(c1.c2)σ∂ .
(
Pσ∂ ue Qσ∂

)
|}

(x < 8).{[(y > 5).p(x).s(y)+!(y > 5).1].s(x).P ue p(x).Q}+∑
σ∂ ∈ ΓX3

[(x < 8).(α11 > 3)]σ∂ .

{[(y > 5).p(x).s(y)+!(y > 5).1].s(x).P ue (s(α11).Q)σ∂} (e1)

Here: ΓX1 = ΓX2 ∪ ΓX3 (g1)

The rest of the linear system can be generated by repeating the above process.

X2 = {[(y > 5).p(x).s(y)+!(y > 5).1].s(x).P ue p(x).Q}
≈ (y > 5).[p(x).s(y).s(x).P ue p(x).Q]+!(y > 5).[s(x).P ue p(x).Q]

≈ (y > 5).X4+!(y > 5).X5 (e2)

Here: ΓX2 = ΓX4 ∪ ΓX5 (g2)

X3 = {[(y > 5).p(x).s(y)+!(y > 5).1].s(x).P ue s(α11).Q}
≈ (y > 5).[p(x).s(y).s(x).P ue s(α11).Q]+!(y > 5).[s(x).P ue s(α11).Q]

≈ (y > 5).X6+!(y > 5).X7 (e3)

Here: ΓX3 = ΓX6 ∪ ΓX7 (g3)

X4 = p(x).[s(y).s(x).P ue Q] ≈ p(x).X8 (e4)

Here: ΓX4 = ΓX8 (g4)

X5 = 0 (e5)

Here: ΓX5 = ∅ (g5)

X6 = 0 (e6)

Here: ΓX6 = ∅ (g6)

X7 = s(x).[P ue Q] = s(x).X1 (e7)

Here: ΓX7 = {{α11 7→ x}} ◦ ΓX1 (g7)

X8 =
∑

σ∂ ∈ ΓX9

(α80 > 3)σ∂ .[s(y).s(x).P ue (s(α80).Q)σ∂] (e8)

121

Here: ΓX8 = ΓX9 (g8)

X9 = s(y).[s(x).P ue Q] = s(y).X10 (e9)

Here: ΓX9 = {{α80 7→ y}} ◦ ΓX10 (g9)

X10 =
∑

σ∂ ∈ ΓX11

(α100 > 3)σ∂ .[s(x).P ue (s(α100).Q)σ∂] (e10)

Here: ΓX10 = ΓX11 (g10)

X11 = s(x).[P ue Q] = s(x).X1 (e11)

Here: ΓX11 = {{α100 7→ x}} ◦ ΓX1 (g11)

We have E = {e1, ..., e11}, G = {g1, ..., g11}

• Step 2: Solve G to get all the values of Γ.

Here: ΓX10 = ΓX11 = {{α100 7→ x}} ◦ ΓX1

ΓX8 = ΓX9 = {{α80 7→ y}} ◦ ΓX10 = {{α80 7→ y, α100 7→ x}} ◦ ΓX1

ΓX2 = ΓX4 ∪ ΓX5 = ΓX4 = ΓX8 = {{α80 7→ y, α100 7→ x}} ◦ ΓX1

ΓX3 = ΓX6 ∪ ΓX7 = ΓX7 = {{α11 7→ x}} ◦ ΓX1

ΓX1 = ΓX2 ∪ ΓX3 = {{α80 7→ y, α100 7→ x}} ◦ ΓX1 ∪ {{α11 7→ x}} ◦ ΓX1

= {{α80 7→ y, α100 7→ x}{α11 7→ x}} ◦ ΓX1

ΓX1 = {{α80 7→ y, α100 7→ x}{α11 7→ x}}

ΓX2 = {{α11 7→ x, α80 7→ y, α100 7→ x}}

ΓX3 = {{α11 7→ x, α80 7→ y, α100 7→ x}}
Let σ = {α11 7→ x, α80 7→ y, α100 7→ x}

• Step 3: Now we can substitute Γ in E.

X1 = P ue Q ≈ (P ue Q)�

≈ (x < 8).{[(y > 5).p(x).s(y)+!(y > 5).1].s(x).P ue p(x).Q}+∑
σ∂ ∈ ΓX3

[(x < 8).(α11 > 3)]σ∂ .{[(y > 5).p(x).s(y)+!(y > 5).1].s(x).P ue (s(α11).Q)σ∂}

≈ (x < 8).{[(y > 5).p(x).s(y)+!(y > 5).1].s(x).P ue p(x).Q}
+(x < 8).(x > 3).{[(y > 5).p(x).s(y)+!(y > 5).1].s(x).P ue s(x).Qσ}

≈ (x < 8).X2 + (x < 8).(x > 3).X ′3

X2 ≈ (y > 3).X4+!(y > 3).X5

X4 ≈ p(x).X8

122

X5 ≈ 0

X8 =
∑

σ∂ ∈ ΓX9

(α80 > 3)σ∂ .[s(y).s(x).P ue (s(α80).Q)σ∂]

≈ (y > 3).[s(y).s(x).P ue s(y).Qσ] ≈ (y > 3).X ′9

• Step 4: Since there are new intersections X ′3, X
′
9, we can generate new equations in E.

X ′3 ≈ [(y > 5).p(x).s(y)+!(y > 5).1].s(x).P ue s(x).Qσ

≈ (y > 5).[p(x).s(y).s(x).P ue s(x).Qσ]+!(y > 5).[s(x).P ue s(x).Qσ]

≈ (y > 5).X ′6+!(y > 5).X ′7

X ′6 = 0

X ′7 = s(x).
(
P ue Q

)
= s(x).X1

X ′9 = s(y).[s(x).P ue Qσ] = s(y).X ′10

X ′10 = s(x).P ue Qσ = s(x).P ue ((α100 > 3).s(α100).Q)σ

= s(x).P ue (x > 3).s(x).Qσ = (x > 3).[s(x).P ue s(x).Qσ]

= (x > 3).X ′11

X ′11 = s(x).X1

• Step 5: Solve the equation set E by using Arden’s Lemma and variable substitutions:

X ′10 ≈ (x > 3).X ′11 ≈ (x > 3).s(x).X1

X ′9 ≈ s(y).X ′10 ≈ s(y).(x > 3).s(x).X1

X8 ≈ (y > 3).X ′9 ≈ (y > 3).s(y).(x > 3).s(x).X1

X2 ≈ (y > 5).X4+!(y > 5).X5 ≈ (y > 5).X4 + 0 ≈ (y > 5).p(x)X8

≈ (y > 5).p(x).(y > 3).s(y).(x > 3).s(x).X1

X ′3 ≈ (y > 5).X ′6+!(y > 5).X ′7 ≈ 0+!(y > 5).X ′7

≈ !(y > 5).s(x).X1

X1 ≈ (x < 8).X2 + (x < 8).(x > 3).X ′3

≈ (x < 8).(y > 5).p(x).(y > 3).s(y).(x > 3).s(x).X1 + (x < 8).(x > 3).!(y > 5).s(x).X1

≈ {(x < 8).(y > 5).p(x).(y > 3).s(y).(x > 3).s(x).+ (x < 8).(x > 3).!(y > 5).s(x)}∗0
≈ {(x < 8).[(y > 5)

(
p(x)(y > 3)s(y)(x > 3)s(x)

)
+!(y > 5).

(
(x > 3).s(x)

)
]}∗{!(x < 8).0}

≈ {(x < 8).[(y > 5).
(
p(x).[(y > 3).s(y)+!(y > 3).0].

[(x > 3).s(x)+!(x > 3).0]
)
+!(y > 5).

(
(x > 3).s(x)+!(x > 3).0

)
]}∗{!(x < 8).0}

123

• Result:

while (x<8)

{

if(y>5)

{

print(x);

if(y>3) send(y); else exit();

if(x>3) send(x); else exit();

}

else

{ if(x>3) send(x); else exit(); }

}

5.6.2 More Complicated Policies

Suppose that a is an action and Q is a security policy, we can use the following VLTL formula to

specify where the policy Q should be enforced in a program according to the position of a.

¬aUa.Q : Q holds after action a

QUa.> : Q holds before action a

¬aUa.QUb.> : Q holds between action a and b

5.6.3 Example with More Complicated Policies

Now we present an example to enforce a more complex security property.

Suppose that we have e ∈ E , Fv(e) = {α, β} and Nv(e) = {x, y}. Let P be the following program:

send(x);

while(x>6)

{

link (x); send (y);

}

Let s and l denote the actions send and link respectively. By using the transformation function intro-

duced in 5.2.5, the program P can be specified in EBPA∗0,1 by the following process:

P = s(x).{(x > 6).[l(x).s(y)]}∗0

124

Suppose that we have a security policy Q stating that after a link action, we can send only values that

are smaller than 7. Q can be specified in VLTL as following:

Q = [¬l(α)]Ul(α).{[(¬s(α)) ∨ [λβ((β < 7).s(β))]]U⊥}

Q can be transformed to EBPA∗0,1 as following:

Q = [s(x) + s(y)]∗l(α).{[l(x) + λβ
(
(β < 7).s(β)

)
]∗0}

Now, we can compute P ue Q, where G = φ, E = φ and S = {(P,Q)}

• Inputs:

P = s(x).{(x > 6).[l(x).s(y)]}∗0 = s(x).P1

Q = [s(x) + s(y)]∗l(α).{[l(x) + λβ((β < 7).s(β))]∗0}

• Step 1: Generates E and G:

X1 = P ue Q ≈ s(x).(P1 ue Q) = s(x).X2 (e1)

Here: ΓX1 = ΓX2 (g1)

X2 = P1 ue Q
≈ (x > 6).

(
l(x).s(y).P1uel(α).{[l(x) + λβ((β < 7).s(β))]∗0}

)
+(x > 6).

(
l(x).s(y).P1 ue s(x).Q

)
+ (x > 6).

(
l(x).s(y).P1 ue s(y).Q

)
= (x > 6).X3 + (x > 6).X4 + (x > 6).X5 (e2)

Here: ΓX2 = ΓX3 ∪ ΓX4 ∪ ΓX5 (g2)

X3 = l(x).s(y).P1uel(α).{[l(x) + λβ((β < 7).s(β))]∗0}
≈ l(x).

(
s(y).P1ue{[l(x) + λβ((β < 7).s(β))]∗0}

)
= l(x).X6 (e3)

Here: ΓX3 = {{α 7→ x}} ◦ ΓX6 (g3)

X4 = 0 (e4)

Here: ΓX4 = ∅ (g4)

X5 = 0 (e5)

Here: ΓX5 = ∅ (g5)

Let Q′ = [l(x) + λβ((β < 7).s(β))]∗0

125

X6 = s(y).P1ue{[l(x) + λβ((β < 7).s(β))]∗0}

=
∑

σ∂ ∈ ΓX6

[(β60 < 7)]σ∂ .[s(y).P1 ue (s(β60).Q′)σ∂] (e6)

Here: ΓX6 = ΓX7 (g6)

X7 = s(y).P1 ue s(β60).Q′ ≈ s(y).(P1 ue Q′) (e7)

Here: ΓX7 = {{β60 7→ y}} ◦ ΓX8 (g7)

X8 = P1 ue Q′

≈ (x > 6).
(
l(x).s(y).P1 ue l(x).Q′

)
+

∑
σ∂ ∈ ΓX10

[(x > 6).(β81 < 7)]σ∂ .[l(x).s(y).P1 ue (s(β81).Q′)σ∂] (e8)

Here: ΓX8 = ΓX9 ∪ ΓX10 (g8)

X9 = l(x).s(y).P1 ue l(x).Q′ ≈ l(x).
(
s(y).P1 ue Q′

)
≈ l(x).X6 (e9)

Here: ΓX9 = ΓX6 (g9)

X10 = 0 (e10)

Here: ΓX10 = ∅ (g10)

We have E = {e1, ..., e10}, G = {g1, ..., g10}.

• Step 2: Solve the equation set G to get all the values of Γ.

Here:

ΓX8 = ΓX9 ∪ ΓX10 = ΓX9 = ΓX6

ΓX7 = {{β60 7→ y}} ◦ ΓX8 = {{β60 7→ y}} ◦ ΓX6

ΓX6 = ΓX7 = {{β60 7→ y}} ◦ ΓX6

ΓX6 = {{β60 7→ y}} = {σ}

ΓX2 = ΓX3 == {{α 7→ x, β60 7→ y}}

• Step 3: Now, we can substitute Γ in E.

X1 = s(x).X2

X2 ≈ (x > 6).
(
l(x).s(y).P1uel(α).{[l(x) + λβ((β < 7).s(β))]∗0}

)
+(x > 6).

(
l(x).s(y).P1 ue s(x).Q

)
+ (x > 6).

(
l(x).s(y).P1 ue s(y).Q

)
= (x > 6).X3 + (x > 6).X4 + (x > 6).X5

X3 = l(x).X6

126

X4 = 0

X5 = 0

Q′ = [l(x) + λβ((β < 7).s(β))]∗0

X6 =
∑

σ∂ ∈ ΓX6

[(β60 < 7)]σ∂ .[s(y).P1 ue (s(β60).Q′)σ∂] ≈ (y < 7).[s(y).P1 ue s(y).Q′σ]

≈ (y < 7).X ′7

• Step 4: Since there is a new intersection X ′7, we can generate new equations in E.

X ′7 ≈ s(y).[P1 ue Q′σ] = s(y).X ′8

X ′8 ≈ P1 ue Q′σ ≈ (x > 6).l(x).s(y).P1 ue l(x).Q′σ

+(x > 6).l(x).s(y).P1 ue ((β81 < 7)s(β81).Q′)σ

≈ (x > 6).[l(x).s(y).P1 ue l(x).Q′σ] + 0

≈ (x > 6).X ′9

X ′9 ≈ l(x).s(y).P1 ue l(x).Q′σ ≈ l(x).[s(y).P1 ue Q′σ] = l(x).X6

• Step 5: Solve the equation set E by using Arden’s Lemma and variable elimination:

X2 ≈ (x > 6).X3 + (x > 6).X4 + (x > 6).X5

≈ (x > 6).X3 + (x > 6).0 + (x > 6).0

≈ (x > 6).X3 ≈ (x > 6).l(x).X6

X1 ≈ s(x).X2 ≈ s(x).(x > 6).l(x).X6

X6 ≈ (y < 7).X ′7

≈ (y < 7).s(y).X ′8

≈ (y < 7).s(y).(x > 6)X ′9

≈ (y < 7).s(y).(x > 6).l(x).X6

X6 ≈ {(y < 7).s(x).(x > 6).l(x)}∗0

X1 ≈ s(x).(x > 6).l(x).{(y < 7).s(y).(x > 6).l(x)}∗0
≈ s(x).[(x > 6).l(x)+!(x > 6).0].{(y < 7).s(y).[(x > 6).l(x)+!(x > 6).0]}∗{!(y < 7).0}

• Result:

send(x);

127

if (x >6) link(x); else exit();

while (y <7)

{

send(y);

if(x>6); link(x); else exit();

}

5.7 Proof of the Main Result

5.7.1 MGU Under Constraints

To define the intersection of two terms, we need the most general unifier. Two terms a and b over Σ∗

are unifiable, if there exists a substitution σ : X → Σ∗ such that aσ = bσ, where aσ denotes σ(a).

The most general unifier between a and b is denoted by mgu(a, b). We also say that a substitution

σ = {x1 7→ t1, ..., xn 7→ tn} is a good mapping if and only if ti are terms and xi are distinct variables.

In the rest of this paper we will use Γ to denote the set of all substitutions.

Since we need to consider mgu in a given environment e and separate all variables into free and

non-free ones, the classic mgu algorithm may generate results that we do not want. For example:

Let g(x, f(x)) and g(α, β) be two terms, where x is non-free variable and α, β are free variables.

By using the previous algorithm, we generate two substitutions: σ1 = {α 7→ x, β 7→ f(x)} or

σ2 = {x 7→ α, β 7→ f(α)}. But σ1 is acceptable while σ2 is not, because σ2 substitute a non free

variable by a free one. We introduce a new algorithm for finding mgu(a1, a2) in e ∈ E , which is

denoted by mgu(a1, a2, e). This algorithm is inspired by Martelli-Montanari reduction rules [45].

Algorithm For a1, a2 ∈ A and e ∈ E , let V = V(a1) ∪ V(a2), then we compute the mgu(a1, a2, e)

as following.

1. E = {a1 = a2}

2. Apply following rewriting rules on E, until we reach a normal form.

• Decompose:

E ∪ {f(s1, ..., sn) = f(t1, ..., tn)} −→ E ∪ {s1 = t1, ..., sn = tn}

• Delete: E ∪ {t = t} −→ E

• Substitute Sorted Variables (SSV):

E ∪ {x = t} −→ {x = t} ∪ E{x 7→ t}, if x ∈ V , t ∈ V and se(t) ⊆ se(x).

128

• Variable Term Substitute (VTS):

E ∪ {x = t} −→ {x = t} ∪ E{x 7→ t}, if x ∈ V, t /∈ V and x /∈ V(t)

• Reverse:

E ∪ {t = x} −→ {x = t} ∪ E, if:

– x ∈ V, t /∈ V OR

– x ∈ V, t ∈ V, se(t) ⊆ se(x)

• Occur Check (OC):

E ∪ {x = t} −→⊥ (fail), if x ∈ V , x ∈ V(t).

• Clash:

E ∪ {f(s1, ..., sn) = g(t1, ..., tn)} −→⊥. if f and g are different.

Here, we introduce two examples using the above algorithm.

Example 5.7.1 Let e ∈ E , Fv(e) = {α, β} and Nv(e) = {x, y, z}. We calculate the mgu of a1 =

f(h(x), g(y, z)) and a2 = f(α, g(3, β)) in the environment e using the above algorithm.

E = {f(h(x), g(y, z)) = f(α, g(3, β))}
=> {|Decompose |}

{h(x) = α, g(y, z) = g(3, β))}
=> {|Decompose |}

{h(x) = α, y = 3, z = β)}
=> {|Reverse |}

{α = h(x), y = 3, β = z)}
=> {|VTS |}

{α = h(x), y = 3, β = z)}
=> {|VTS |}

{α = h(x), y = 3, β = z)}
=> {|SSV |}

{α = h(x), y = 3, β = z)}

129

Conclusion: returns σ = {α 7→ h(x), y 7→ 3, β 7→ z}

Example 5.7.2 Let e ∈ E , Fv(e) = {α} and Nv(e) = {x, y}. We calculate the mgu of a1 =

f(x, y, g(h(x))) and a2 = f(4, α, g(α)) in e using the above algorithm.

E = {f(x, y, g(h(x))) = f(4, α, g(α))}
=> {|Decompose |}

{x = 4, y = α, g(h(x)) = g(α)}
=> {|Decompose |}

{x = 4, y = α, h(x) = α}
=> {|Reverse |}

{x = 4, α = y, α = h(x)}
=> {|VTS |}

{x = 4, α = y, α = h(4)}
=> {|SSV |}

{x = 4, α = y, y = h(4)}
=> {|VTS |}

{x = 4, α = y, y = h(4)}

Conclusion: returns σ = {x 7→ 4, α 7→ y, y 7→ h(4)}

5.7.2 Proof of Theorem 5.4.17

Lemma 5.7.3 For two processes P and Q, e ∈ E , we have:

P ve Q =⇒ [P]e v [Q]e

Proof:

To prove [P]e v [Q]e, we need to prove that:

∀τe ∈ Σ∗, if [P]e

�

τe then ∃τ ′e ∈ Σ∗, such that:[Q]e

�

τ ′e and τe ' τ ′e.

Let τe ∈ Σ∗, and [P]e

�

τe

⇒ {|Definition 5.4.1 |}

∃[Ran]en ∈ P such that: [P]e
τe
� [Ran]en

130

⇒ {|Based on Rules (R
[]e
a) and (R

[]e
c) in Table 5.2, when a process runs in an environment, it

generates closed traces (no variables) without conditions.

Let τe = a1(v1a1, ..., v
n
a1)...an(v1an, ..., v

n
an) (viai...v

n
ai) ∈ (si(x1)...si(xn)) for 1 ≤ i ≤ n

and s1 = effa1(e), s2 = effa2(s1) ...sn = effan(sn−1) |}

[P]e
a1(v

1
a1,...,v

n
a1)−→ [P1]e1...

an(v
1
an,...,v

n
an)−→ [Pn]en

⇒ {|(R[]e
a) and (R

[]e
c) in Table 5.2 |}

For each step
(
[Pi]ei

ai(v
1
ai,...,v

n
ai)−→ [Pi+1]e(i+1)

)
of [P]e, there is a corresponding step for process P .

Let τ = c1(x1...xn).a1(x1...xn)...cn(x1...xn).an(x1...xn), where each ci(x1...xn) ∈ B, we have:

P
c1(x1...xn)
−→ Pc1 [c1(x1...xn)]e↓

Pc1

a1(x1...xn)
−→ P1

[Pc1
]e

a1(v1a1...v
n
a1)

−→ [P1]e1

[P]e
a1(v1a1...v

n
a1)

−→ [P1]e1

...

Pn−1
cn(x1...xn)
−→ Pcn [cn(x1...xn)]en−1

↓ Pcn
an(x1...xn)
−→ Pn

[Pcn]en−1

an(v1a1...v
n
a1)

−→ [Pn]en

[Pn−1]en−1

an(v1a1...v
n
a1)

−→ [Pn]en

(α)

⇒ {|Definition 5.4.1 |}

P
τ
� Pn, where τ = c1(x1...xn).a1(x1...xn)...cn(x1...xn) .an(x1...xn)

⇒ {|Definition 5.4.5 (ve) and P ve Q |}

∃τ ′ ∈ Σ∗ such that Q

�

τ ′ and τ ve τ ′

⇒ {|Definition 5.4.3 |}

There are different possibilities for τ ′:

(1) From the reflexivity of Definition 5.4.3, we have τ ve τ ′, when τ = τ ′. So we have:

τ ′ = τ = c1(x1...xn).a1(x1...xn)...cn(x1...xn).an(x1...xn)

Q

�

τ ′

⇒ {|Definition 5.4.1 |}

∃Qn ∈ P such that: Q
τ ′

� Qn

⇒ {|(R[]e
a) and (R

[]e
c) in Table 5.2 |}

Now, we can find a trace for [Q]e, for a1(v1a1, ..., v
n
a1)...an(v1an, ..., v

n
an), we still have s1 =

effa1(e), ...sn = effan(sn−1) and (viai...v
n
ai) ∈ (si(x1)...si(xn)) for 1 ≤ i ≤ n

131

Q
c1(x1...xn)
−→ Qc1 [c1(x1...xn)]e↓

Qc1

a1(x1...xn)
−→ Q1

[Qc1]e
a1(v1a1...v

n
a1)

−→ [Q1]e1

[Q]e
a1(v1a1...v

n
a1)

−→ [Q1]e1

...

Qn−1
cn(x1...xn)
−→ Qcn [cn(x1...xn)]en−1

↓ Qcn
an(x1...xn)
−→ Qn

[Qcn]en−1

an(v1a1...v
n
a1)

−→ [Qn]en

[Qn−1]en−1

an(v1a1...v
n
a1)

−→ [Qn]en

⇒ {|Definition 5.4.1 and let τ ′e = a1(v1a1...v
n
a1)...an(v1an...v

n
an) |}

[Q]e
τ ′e
� [Qn]en

⇒ {|[P]e

�

τe |}

∀τe ∈ Σ∗, if [P]e

�

τe, then ∃τ ′e ∈ Σ∗, such that [Q]e
�

τ ′e and τe ' τ ′e

⇒ {|Definition 5.4.7 |}

[P]e v [Q]e

(2) From Definition 5.4.3, we can get a trace τ ′, τ ve τ ′, by removing all the conditions from τ . Here
let τ ′ = τ̂ = a1(x1...xn).a2(x1...xn)....an(x1...xn). This will not restrict the result.

Q

�

τ ′

⇒ {|Definition 5.4.1 |}

∃Qn ∈ P such that: Q
τ ′

� Qn

⇒ {|(R[]e
a) and (R

[]e
c) in Table 5.2 |}

Q
a1(x1,...,xn)
−→ Qa1

[Q]e
a1(v1a1,...,v

n
a1)

−→ [Qa1]e1

Qa1
a2(x1,...,xn)
−→ Qa2

[Qa1]e1
a2(v1a2,...,v

n
a2)

−→ [Qa2]e2

... Qa(n−1)

an(x1,...,xn)
−→ Qn

[Qa(n−1)]en−1

an(v1an,...,v
n
an)

−→ [Qn]en

⇒ {|Definition 5.4.1 and let τ ′e = a1(v1a1...v
n
a1)... an(v1an...v

n
an) |}

[Q]e
τ ′e
� [Qn]en

⇒ {|[P]e

�

τe |}

∀τe ∈ Σ∗, if [P]e

�

τe, then ∃τ ′e ∈ Σ∗, such that [Q]e

�

τ ′e and τe ' τ ′e

⇒ {|Definition 5.4.7 |}

[P]e v [Q]e

(3) From Definition 5.4.3, there may exist τ ′, such that τ ve τ ′, and τ = τ ′σe≈, for a sorted substitution
σe≈ = {y1 7→ x1, ..., yn 7→ xn}. Then:

132

τ ′ = c1(y1...yn).a1(y1...yn)...cn(y1...yn).an(y1...yn)

Q

�

τ ′

⇒ {|Definition 5.4.1 |}

∃Qn ∈ P such that: Q
τ ′

� Qn

⇒ {|(R[]e
a) and (R

[]e
c) in Table 5.2 |}

When τ ′ = c1(y1...yn).a1(y1...yn)...cn(y1...yn). an(y1...yn), since the domain of yi is the top level
domain (see Definition 5.2.6) and τ = τ ′σe≈, the variables in ci(y1...yn) and ai(y1...yn) can take
the same value with ci(x1...xn) and ai(x1...xn) in s.

Q
c1(y1...yn)
−→ Qc1 [c1(y1...yn)]e↓

Qc1

a1(y1...yn)
−→ Q1

[Qc1
]e

a1(v1a1...v
n
a1)

−→ [Q1]e1

[Q]e
a1(v1a1...v

n
a1)

−→ [Q1]e1

...

Qn−1
cn(y1...yn)
−→ Qcn [cn(y1...yn)]en−1

↓ Qcn
an(y1...yn)
−→ Qn

[Qcn]en−1

an(v1a1...v
n
a1)

−→ [Qn]en

[Qn−1]en−1

an(v1a1...v
n
a1)

−→ [Qn]en

⇒ {|Definition 5.4.1 and let τ ′e = a1(v1a1...v
n
a1)...an(v1an...v

n
an) |}

[Q]e
τ ′e
� [Qn]en

⇒ {|[P]e

�

τe |}

∀τe ∈ Σ∗, if [P]e

�

τe, then ∃τ ′e ∈ Σ∗, such that [Q]e

�

τ ′e and τe ' τ ′e

⇒ {|Definition 5.4.7 |}

[P]e v [Q]e

(4) From Definition 5.4.3, there may exists τ ′, such that τ ve τ ′, and τ ′ has different actions from τ .
So we randomly pick up an action ak(x1...xn) in τ and we suppose that it is the only changed
action in τ ′, (this will not restrict the result).

Suppose that α is a variable or a constant and ck.ak = c′k(x1...xn) .(xm == α).ak(x1...xm...xn) in τ ,
then τ ′ = c1(x1...xn).a1(x1...xn)...c′k(x1...xn).ak(x1...xm−1, α, xm+1...xn)...cn(x1...xn).an(x1...xn)

Q

�

τ ′

⇒ {|Definition 5.4.1 |}

∃Qn ∈ P such that: Q
τ ′

� Qn

⇒ {|(R[]e
a) and (R

[]e
c) in Table 5.2 |}

From (α), we know that if ak(x1...xm...xn) is executed in environment sk−1, it will be

133

ak(v1ak...v
m
ak...v

n
ak), so ak’s xm in environment sk−1 is vmak. Since [ck]ek−1

↓ and ck = c′k.(xm == α),
we have [c′k.(xm == α)]ek−1

↓, which means that the value of α is vmak in environment sk−1.

τ = c1(x1...xn).a1(x1...xn)...c′k(x1...xn).(x == α). ak(x1...xm−1, xm, xm+1...xn)...an(x1...xn),
and τ ′ = c1(x1...xn).a1(x1...xn)...c′k(x1...xn).ak(x1...xm−1, α, xm+1...xn)...an(x1...xn).

Q
c1(x1...xn)
−→ Qc1 [c1(x1...xn)]e↓

Qc1

a1(x1...xn)
−→ Q1

[Qc1
]e

a1(v1a1...v
n
a1)

−→ [Q1]e1

[Q]e
a1(v1a1...v

n
a1)

−→ [Q1]e1

...

,

(
Qk−1

c′k(x1...xn)
−→ Qck′ , [c′k(x1...xn)]ek−1

↓,
Q
ck′

ak(x1...xm−1,α,xm+1...xn)
−→ Qk

[Q
ck′]ek−1

ak(v1
ak
...vm

ak
...vn

ak
)

−→ [Qk]ek

)
[Qk−1]ek−1

ak(v1
ak
...vm

ak
...vn

ak
)

−→ [Qk]ek

...

Qn−1
cn(x1...xn)
−→ Qcn [cn(x1...xn)]en−1

↓ Qcn
an(x1...xn)
−→ Qn

[Qcn]en−1

an(v1a1...v
n
a1)

−→ [Qn]en

[Qn−1]en−1

an(v1a1...v
n
a1)

−→ [Qn]en

⇒ {|Definition 5.4.1 |}

when the value of α is vmak in environment sk−1. We have τ ′e = a1(v1a1, ..., v
n
a1)... ak(v1ak...v

m
ak...v

n
ak)

...an(v1an...v
n
an). such that: [Q]e

τ ′e
� [Qn]eqn

⇒ {|[P]e

�

τe, τe = τ ′e |}

∀τe ∈ Σ∗, if [P]e

�

τe, then ∃τ ′e ∈ Σ∗, such that [Q]e

�

τ ′e and τe ' τ ′e

⇒ {|Definition 5.4.7 |}

[P]e v [Q]e

(∗) Based on the transitivity of ve, we can always find τ ′e, τe ' τ ′e,

such that: [Q]e
τ ′e
� [Qn]en

⇒ {|[P]e

�

τe, τe = τ ′e |}

∀τe ∈ Σ∗, if [P]e

�

τe, then ∃τ ′e ∈ Σ∗, such that [Q]e

�

τ ′e and τe ' τ ′e

⇒ {|Definition 5.4.7 |}

[P]e v [Q]e

2

Lemma 5.7.4 For two processes P and Q, e ∈ E , we have: P � Q =⇒ [P]e v [Q]e

Proof:

134

Since �⊆ve, we have: P � Q =⇒ P ve Q =⇒ [P]e v [Q]e 2

The relation � has also an interesting property given hereafter.

Lemma 5.7.5 In Σ∗, the relation � is congruent for the operator ".". i,e. for all τ , τ ′ and τ ′′ in Σ,

we have:

τ � τ ′ =⇒

• τ.τ ′′ � τ ′.τ ′′

• τ ′′.τ � τ ′′.τ ′

Proof: Directly from Definition 5.4.2. 2

Proposition 5.4.6: [Properties of �]

The ordering � is congruent for the operators (” + ”, ”.” and ” ∗ ”), i,e: for any processes P , P ′ and

Q, we have:

P � P ′ =⇒

(1) P +Q � P ′ +Q (2) Q+ P � Q+ P ′

(3) P.Q � P ′.Q (4) Q.P � Q.P ′

(5) P ∗Q � P ′∗Q (6) Q∗P � Q∗P ′

Proof:

2

If P � P ′, then by Definition 5.4.4 (�):

1. if P

�

τ then ∃τ ′ ∈ Σ∗, such that:P ′

�

τ ′ and τ � τ ′. (α)

2. if P
τ
� 1 then ∃τ ′ ∈ Σ∗, such that:P ′

τ ′

� 1 and τ � τ ′. (β)

The proof is by structural induction when P � P ′.

135

• P +Q � P ′ +Q

if (P +Q)

�

τ

⇒ {|(R+
l), (R+

r) from Table 5.2 |}
P

�

τ or Q

�

τ

⇒ {|(α) |}

∃τ ′ ∈ Σ∗, such that: P ′

�

τ ′ and τ � τ ′ or Q

�

τ

⇒ {|(R+
l), (R+

r) from Table 5.2 |}

∃τ ′ ∈ Σ∗ such that: (P ′ +Q)

�

τ ′ and τ � τ ′ or ∃τ ∈ Σ∗, such that: (P ′ +Q)

�

τ and τ � τ (1)

if P +Q
τ
� 1

⇒ {|(R+
l), (R+

r) from Table 5.2 |}

P
τ
� 1 or Q

τ
� 1

⇒ {|(β) |}

∃τ ′ ∈ Σ∗, such that: P ′
τ ′

� 1 and τ � τ ′ or Q
τ
� 1

⇒ {|(R+
l), (R+

r) from Table 5.2 |}

∃τ ′ ∈ Σ∗, such that: (P ′ +Q)τ ′�1 and τ � τ ′ or ∃τ ∈ Σ∗,

such that: (P ′ +Q)τ�1 and τ � τ (2)

From (1), (2) and Definition 5.4.4 (�), we can say P +Q � P ′ +Q.

• Q+ P � Q+ P ′

Same with above.

• P.Q � P ′.Q

if P.Q

�

τ

136

⇒ {|(R.l), (R.r) from Table 5.2, Definition 5.4.1 and τ = τ1.τ2|}

P

�

τ or P
τ1
� 1, Q

�

τ2

⇒ {|(α) |}

∃τ ′ ∈ Σ∗, such that: P ′

�

τ ′ and τ � τ ′ or P
τ1
� 1, Q

�

τ2

⇒ {|(β) |}

∃τ ′ ∈ Σ∗ such that: P ′

�

τ ′ and τ � τ ′ or ∃τ ′1 ∈ Σ∗ such that: P ′
τ ′1
� 1 and τ1 � τ ′1, Q

�

τ2

⇒ {|(R.l), (R.r) from Table 5.2 |}

P ′.Q

�

τ ′ or P ′.Q

�

(τ ′1.τ2)

⇒ {|τ = τ1.τ2 and Lemma 5.7.5|}

P ′.Q

�

τ ′, τ � τ ′ or P ′.Q
�

(τ ′1.τ2), τ = τ1.τ2 � τ ′1.τ2 (1)

if P.Q
τ
� 1

⇒ {|(R.l), (R.r) from Table 5.2, Definition 5.4.1 and τ = τ1.τ2|}

P
τ1
� 1, Q

τ2
� 1

⇒ {|(β) |}

∃τ ′1 ∈ Σ∗ such that: P ′
τ ′1
� 1 and τ1 � τ ′1 , Q

τ2
� 1

⇒ {|(R.l), (R.r) from Table 5.2 and τ = τ1.τ2 |}

∃τ2 ∈ Σ∗ such that: P ′.Q
τ ′1.τ2
� 1 and τ = τ1.τ2 � τ ′1.τ2 (2)

From (1), (2) and Definition 5.4.4 (�), we can say P.Q � P ′.Q.

• Q.P vT Q.P ′

137

if Q.P ↓ τ

⇒ {|(R.l), (R.r) from Table 5.2, Definition 5.4.1 and τ = τ1.τ2|}

Q ↓ τ or Q
τ1
� 1, P ↓ τ2

⇒ {|(α) |}

Q ↓ τ or Q
τ1
� 1, ∃τ ′2 ∈ Σ∗, P ′ ↓ τ ′2, τ2 � τ ′2

⇒ {|(R.l), (R.r) from Table 5.2 |}

Q.P ′ ↓ τ or ∃τ1.τ
′
2 ∈ Σ∗, Q.P ′ ↓ (τ1.τ

′
2)

⇒ {|τ = τ1.τ2 and Lemma 5.7.5 |}

Q.P ′ ↓ τ , τ � τ or ∃τ1.τ
′
2 ∈ Σ∗, Q.P ′ ↓ (τ1.τ

′
2), τ = τ1.τ2 � τ1.τ

′
2 (1)

if Q.P
τ
� 1

⇒ {|(R.l), (R.r) from Table 5.2, Definition 5.4.1 and τ = τ1.τ2|}

Q
τ1
� 1, P

τ2
� 1

⇒ {|(β) |}

Q
τ1
� 1, ∃τ ′2 ∈ Σ∗, such that: P ′

τ ′2
� 1 and τ2 � τ ′2

⇒ {|(R.l), (R.r) from Table 5.2 and τ = τ1.τ2 |}

∃τ1.τ
′
2 ∈ Σ∗, such that Q.P ′

τ1.τ ′2
� 1 and τ = τ1.τ2 � τ1.τ

′ (2)

From (1), (2) and Definition 5.4.4 (�), we can say Q.P � Q.P ′.

• P ∗Q � P ′∗Q

let τ be a trace and P ∗Q

�

τ , if Q

�

τ , we have P ′∗Q

�

τ and τ � τ

otherwise if Q

�

τ is not true.

138

⇒ {|(R.l), (R.r) from Table 5.2, Definition 5.4.1 and

let τ = τ1.τ2, τ1 = τ1
1 ...τ

n
1 , 1 ≤ i ≤ n. |}

P
τ i1
� 1 P

�

τ2 or P
τ i1
� 1 Q

�

τ2.

⇒ {|(α) |}

∃τ ′2 ∈ Σ∗ such that: P
τ i1
� 1 P ′

�

τ ′2, τ2 � τ ′2 or P
τ i1
� 1 Q

�

τ2

⇒ {|(β) |}

∃τ ′2 ∈ Σ∗, τ ′i1 ∈ Σ∗ such that: P ′
τ ′i1
� 1 P ′

�

τ ′2, τ2 � τ ′2, τ i1 � τ ′i1

or ∃τ ′i1 ∈ Σ∗ such that: P ′
τ ′i1
� 1 Q

�

τ2 τ
i
1 � τ ′i1

⇒ {|(R.l), (R.r) from Table 5.2 and let τ ′1 = τ ′11 ...τ
′n
1 |}

P ′∗Q

�

τ ′1.τ
′
2 or P ′∗Q

�

(τ ′1.τ2)

⇒ {|τ = τ1.τ2 and Lemma 5.7.5|}

P ′∗Q

�

τ ′1.τ
′
2, τ = τ1.τ2 � τ ′1.τ ′2 or P ′∗Q

�

(τ ′1.τ2), τ = τ1.τ2 � τ ′1.τ2 (1)

let τ be a trace and P ∗Q
τ
� 1, if Q

τ
� 1, we have P ′∗Q

τ
� 1 and τ � τ

otherwise if Q
τ
� 1 is not true.

⇒ {|(R.l), (R.r) from Table 5.2, Definition 5.4.1 and

Let τ = τ1.τ2, τ1 = τ1
1 ...τ

n
1 , 1 ≤ i ≤ n. |}

P
τ i1
� 1, Q

τ2
� 1.

⇒ {|(β) |}

∃, τ ′i1 ∈ Σ∗, such that: P ′
τ ′i1
� 1 Q

τ2
� 1 τ i1 � τ ′i1

⇒ {|(R.l), (R.r) from Table 5.2 and let τ ′1 = τ ′11 ...τ
′n
1 |}

139

P ′∗Q
τ ′1.τ2
� 1

⇒ {|τ = τ1.τ2 and Lemma 5.7.5|}

P ′∗Q
τ ′1.τ2
� 1, τ = τ1.τ2 � τ ′1.τ2 (2)

From (1), (2) and Definition 5.4.4 (�), we can say P ∗Q � P ′∗Q.

• Q∗P � Q∗P ′

let τ be a trace and Q∗P

�

τ ,

if P

�

τ

⇒ {|(α) |}

∃τ ′ ∈ Σ∗ such that: P ′

�

τ ′, τ � τ ′

⇒ {|(R.l), (R.r) from Table 5.2 |}

Q∗P ′

�

τ ′, τ � τ ′

else if P
�

τ is not true.

⇒ {|(R.l), (R.r) from Table 5.2, Definition 5.4.1 and let τ = τ1.τ2, τ1 = τ1
1 ...τ

n
1 , 1 ≤ i ≤ n. |}

Q
τ i1
� 1 Q

�

τ2 or Q
τ i1
� 1 P

�

τ2.

⇒ {|(α) |}

Q
τ i1
� 1 Q

�

τ2 or ∃τ ′2 ∈ Σ∗, such that: Q
τ i1
� 1 P ′

�

τ ′2, τ2 � τ ′2

⇒ {|(R.l), (R.r) from Table 5.2 |}

Q∗P ′

�

τ1.τ2 or Q∗P ′

�

(τ1.τ
′
2)

⇒ {|τ = τ1.τ2 and Lemma 5.7.5|}

140

Q∗P ′

�

τ1.τ2, τ1.τ2 � τ or Q∗P ′

�

τ1.τ
′
2, τ = τ1.τ2 � τ1.τ

′
2 (1)

let τ be a trace and Q∗P
τ
� 1, if P

τ
� 1

⇒ {|(β) |}

∃τ ′ ∈ Σ∗, such that: P ′
τ ′

� 1, τ � τ ′

⇒ {|(R.l), (R.r) from Table 5.2 |}

Q∗P ′
τ ′

� 1, τ � τ ′

else if P
τ
� 1 is not true.

⇒ {|(R.l), (R.r) from Table 5.2, Definition 5.4.1 and let τ = τ1.τ2, τ1 = τ1
1 ...τ

n
1 , 1 ≤ i ≤ n. |}

Q
τ i1
� 1, P

τ2
� 1.

⇒ {|(β) |}

∃, τ ′2 ∈ Σ∗ such that: Q
τ i1
� 1 P ′

τ ′2
� 1 τ2 � τ ′2

⇒ {|(R.l), (R.r) from Table 5.2 and τ1 = τ1
1 ...τ

n
1 |}

Q∗P ′
τ1.τ ′2
� 1

⇒ {|τ = τ1.τ2 and Lemma 5.7.5|}

Q∗P ′
τ1.τ ′2
� 1, τ = τ1.τ2 � τ1.τ

′
2 (2)

From (1), (2) and Definition 5.4.4 (�), we can say that Q∗P � Q∗P ′.

Conclusion: � is a congruent relationship with respect to operation "+", "." and "*".

Theorem 5.4.17: Let P and Q be two processes and s be an environment, then we have:

[P]e u [Q]e ∼ [P ue Q]e

.

141

Proof:

Based on the definition of gcf , we need to prove that the three following statements are true.

1. [P ue Q]e v [P]e,

2. [P ue Q]e v [Q]e and

3. For all [R′]e′ such that [R′]e′ v [P]e and [R′]e′ v [Q]e, we have [R′]e′ v [P ue Q]e.

(1) Definition 5.4.13
⇒

P ue Q � P

⇒ {|Lemma 5.7.4 |}
[P ue Q]e v [P]e

(2) Definition 5.4.13
⇒

P ue Q ve Q

⇒ {|Lemma 5.7.3 |}

[P ue Q]e v [Q]e

(3) Let τrs′ ∈ Σ∗ and [R′]′e

�

τrs′

⇒ {|Definition 5.4.1 |}

∃[R′n]e′n ∈ P such that: [R′]e′
τrs′
� [R′n]e′n

⇒ {|Based on Rules (R
[]e
a) and (R

[]e
c) in Table 5.2, when a process run in an environment, it

generates closed traces (no variables) without conditions.

Let τrs′ = a1(v1a1...v
n
a1)...an(v1an...v

n
an), (viai...v

n
ai) ∈ (si(x1)...si(xn) for 1 ≤ i ≤ n |}

[R′]e′
a1(v

1
a1...v

n
a1)...an(v

1
an...v

n
an)

� [R′n]e′n

⇒ {|Definition 5.4.7 (v) and [R′]e′ v [P]e |}

∃τps ∈ Σ∗, such that [P]e

�

τps and τrs′ ' τps

⇒ {|Definition 5.4.1 |}

∃Pn ∈ P and sn ∈ E such that [P]e
τps
� [Pn]en

⇒ {|Let τps = a1(v1a1...v
n
a1)...ak(v1ak ...v

n
ak

) This will not make the proof lose its generality. |}

[P]e
a1(v

1
a1...v

n
a1)...ak(v

1
ak
...vnak

)

� [Pn]en

⇒ {|(R[]e
a), (R

[]e
c) in Table 5.2 and let si = eff(ai, si−1) |}

For each step
(
[Pi]ei

ai(v
1
ai,...,v

n
ai)−→ [Pi+1]e(i+1)

)
of [P]e, there is a corresponding step for process P .

142

Let τp = cp1(x1p...x
n
p).a1(x1p...x

n
p)...cpn(x1p...x

n
p).an(x1p...x

n
p), where each cpi(x1p...x

n
p) ∈ B, we have:

P
cp1(x1p...x

n
p)

−→ Pc1 [cp1(x
1
p...x

n
p)]e↓

Pc1

a1(x1p...x
n
p)

−→ P1

[Pc1
]e
a1(v1a1...v

n
a1)

−→ [P1]e1

[P]e
a1(v1a1...v

n
a1)

−→ [P1]e1

...

Pn−1

cpn(x1p...x
n
p)

−→ Pcn [cpn(x
1
p...x

n
p)]en−1

↓ Pcn

an(x1p...x
n
p)

−→ Pn

[Pcn]en−1

an(v1a1...v
n
a1)

−→ [Pn]en

[Pn−1]en−1

an(v1a1...v
n
a1)

−→ [Pn]en

γ

⇒ {|Definition 5.4.1 |}

P
τp
� Pn (α)

Same as above process, we can prove that: Q
τq
� Qn, τq = cq1(x1q...x

n
q).a1(x1q...x

n
q)...cqn(x1q...x

n
q)

.an(x1q...x
n
q), where each cqi(x1q...x

n
q) ∈ B (β)

(∗) Here, we want to build a process Rx, such that Rx � P and Rx ve Q. Let Rx = cp1(x1p, ..., x
n
p).

cq1(x1q, ..., x
n
q).(x1p == x1q ∧ ... ∧ xnp == xnq).a1(x1p, ..., x

n
p)...cpn(x1p, ..., x

n
p).

cqn(x1q, ..., x
n
q).(x1p == x1q ∧ ... ∧ xnp == xnq).an(x1p, ..., x

n
p).0

Let τ = cp1(x1p, ..., x
n
p).cq1(x1q, ..., x

n
q).(x1p == x1q ∧ ... ∧ xnp == xnq).a1(x1p, ..., x

n
p)

...cpn(x1p, ..., x
n
p).cqn(x1q, ..., x

n
q).(x1p == x1q ∧ ... ∧ xnp == xnq).an(x1p, ..., x

n
p)

we have: Rx
τ
� 0

⇒ {|(α) and Definition 5.4.2’s rule 2 |}

∃τp ∈ Σ∗ such that: P
τp
� Pck+1

and τ � τp

⇒ {|∀τ ′, such that Rx

�

τ ′, τ ′ must be a prefix of τ . So we can always find a prefix of τp,
which is τ ′p, such that: τ ′ � τ ′p |}

if Rx

�

τ ′ then ∃τ ′p ∈ Σ∗ such that P

�

τ ′p and τ ′ � τ ′p,

⇒ {|There is no trace τ such that Rx
τ
� 1 |}

if Rx

�

τ ′ then ∃τ ′p ∈ Σ∗ such that P

�

τ ′p and τ ′ � τ ′p,

if Rx
τ
� 1 then ∃τ ′ ∈ Σ∗, τ � τ ′ such that P

τ ′

� 1.

⇒ {|Definition 5.4.5 |}

Rx � P

Based on Definition 5.4.3 and by repeating the above process, we have Rx ve Q

⇒ {|Definition 5.4.13 and Rx � P |}

Rx � P ue Q

⇒ {|Lemma 5.7.4 |}

143

[Rx]e v [P ue Q]e (η)

Rx
τ
� 0

⇒ {|(R[]e
a), (R

[]e
c) in Table 5.2 Since the trace τ has the same actions as the trace τp and the

sequence of these actions are also the same. So, if in the environment e, each
action’s variables can have same values as in (γ), and since they have the same values, they
have the same effects on environments, so we still have eff(a, si−1) = si.
Because the environments are same as in (γ), cpi and cqi could also be true.|}

For τ = cp1(x1p...x
n
p).cq1(x1q...x

n
q).(x1p == x1q ∧ ... ∧ xnp == xnq).a1(x1p...x

n
p)...cpn(x1p...x

n
p).

cqn(x1q...x
n
q).(x1p == x1q ∧ ... ∧ xnp == xnq).an(x1p...x

n
p)(

Rx
cp1(x

1
p...x

n
p)−→ Rcp1 , [cp1(x1p...x

n
p)]e↓, Rcp1

cq1(x
1
q...x

n
q)−→ Rcq1 , [cq1(x1q...x

n
q)]e↓, Rcq1

(x1
p==x1

q∧...∧x
n
p==xnq)−→ Rc1 ,

[[(v1a1==v1a1
∧...∧vna1

==vna1
)]]B=true, via1

∈s(xip), via1
∈s(xiq)

[(x1p==x1q∧...∧x
n
p==xnq)]e↓

Rc1

a1(x1p,...,x
n
p)

−→ Rx1

[Rc1
]e

a1(v1a1,...,v
n
a1)

−→ [Rx1]e1

)
[Rx]e

a1(v1a1,...,v
n
a1)

−→ [Rx1]e1

......(
Rx(n−1)

cpn(x
1
p...x

n
p)−→ Rcpn , [cpn(x1p...x

n
p)]en−1

↓, Rcpn
cqn(x

1
q...x

n
q)−→ Rcqn , [cqn(x1q...x

n
q)]en−1

↓, Rcqn
(x1
p==x1

q∧...∧x
n
p==xnq)−→ Rcn ,

[[v1an==v1an
...vnan

==vnan
]]B=true, vian

∈sn−1(xip), v
i
an
∈sn−1(xiq)

[(x1p==x1q∧...∧x
n
p==xnq)]en−1

↓
Rcn

an(x1p,...,x
n
p)

−→ 0

[Rcn]en−1

an(v1a1,...,v
n
a1)

−→ [0]en

)
[Rx(n−1)]en−1

an(v1a1,...,v
n
a1)

−→ [0]en

⇒ {|Definition 5.4.1 and let τxs = a1(v1a1...v
n
a1)...an(v1an...v

n
an) |}

[Rx]e
τxs=a1(v

1
a1...v

n
a1)...an(v

1
an...v

n
an)

� [0]′e

⇒ {|(η) ([Rx]e ve [P ue Q]e) and Definition 5.4.7 |}

∃τus ∈ Σ∗ such that:[P ue Q]e

�

τus and τxs ' τus.

⇒ {|τrs′ = a1(v1a1...v
n
a1)...an(v1an ...v

n
an) |}

∃τus ∈ Σ∗ such that: [P ue Q]e

�

τus and τrs′ ' τxs ' τus,

⇒ {|We choose τrs′ arbitrarily |}

∀τrs′ ∈ Σ∗, if [R′]′e

�

τrs′ then ∃τus ∈ Σ∗ such that: [P uQ]e

�

τus and τrs′ ' τus.

⇒ {|Definition 5.4.7 |}

[R′]′e v [P uQ]e

- Conclusion Theorem 5.4.17 is true.
2

144

Lemma 5.7.6 Let P and Q be two processes, e ∈ E , τ , τp and τq ∈ Σ∗, then if V(P) ⊆ Nv(e),

P

�

τp, Q

�

τq, τ � τp and τ ve τq, then ∃τpq ∈ Σ∗ such that (P ue Q)

�

τpq and τ � τpq.

Proof:

Let R be a process and R = τ.0

⇒ {|P

�

τp, τ � τp |}

∀τ ∈ Σ∗, if R

�

τ then ∃τ ′ ∈ Σ∗, such that:P ′

�

τ ′ and τ � τ ′ .

⇒ {|There is no trace τ , such that R
τ
� 1 |}

∀τ , if R
τ
� 1 then ∃τ ′ ∈ Σ∗, such that:P

τ ′

� 1 and τ � τ ′ .

⇒ {|Definition 5.4.4 |}

R � P

⇒ {|We can prove that R ve Q by repeating the above steps. |}

R � P,R ve Q

⇒ {|Definition 5.4.15 |}

R � P ue Q

⇒ {|Definition 5.4.5 and R

�

τ |}

∃τpq ∈ Σ∗, (P ue Q)

�

τpq and τ � τpq

2

5.7.3 Proof for Proposition 5.5.6

Proposition 5.5.6: P ≈ o(P) +
∑

α∈δ(P)

α ∂α(P)

Proof:

The proof is by structural induction on the process ofCBPA∗0,1
(

0 | 1 | a | c | P+Q | P.Q | P ∗Q | λxP
)

.
Since ≈ is a congruence relationship for BPA∗0,1 and CBPA∗0,1 add only conditions, then we
need only to upgrade the proof of Proposition 4.5.6 in page 63 to conditions induction.

When P = c :

o(c) +
∑

α∈δ(c)
α ∂α(c)

145

= {|o(c) = 0 and δ(c) = {c}|}
0 +

∑
α∈{c}

α ∂α(c)

=
0 + c.∂c(c)

= {|∂c(c) = 1|}
0 + c.1

= {|P.1 ≈ P and 0 + P ≈ P |}
c

2

5.7.4 Proof for Proposition 5.5.13

Lemma 5.7.7 ∀τ, τ ′, τ1 and τ2 ∈ Σ∗, σ ∈ Γ, we have:

• τ.τ ′ ve τ1.τ2 and τ � τ1σ =⇒ τ ′ ve τ2σ.

• τ.τ ′ ve τ1.τ2 and τ ′ � τ2σ =⇒ τ ve τ1σ.

• τ � τ ′ and τ1 ve τ2 =⇒ τ.τ1 ve τ ′.τ2

Proof: Directly from Definition 5.4.3 and Definition 5.4.2. 2

Lemma 5.7.8 Let a1, a2 ∈ A and e ∈ E , such that a1∇e a2 = {(α, σ)}. Then:

• α ≈ a1 ue a2

• α � a1

• α � a2σ

• α ve a2

Proof:

Directly from definition of 5.2.9.

2

146

Proposition 5.5.13:

For P,Q ∈ P, e ∈ E , a1, a2 ∈ A, c2 ∈ B, if V(c1.P) ⊆ Nv(e), we have:

a)

a1.P ue a2.Q ≈

∑
σ∂ ∈ Γ(Pσδ,Qσδ)

aσ∂ .
(
Pσ∂σδ ue Qσ∂σδ

)
where (a, σδ) ∈ a1∇e a2

Γa1.P,a2.Q = T (Γ, (a1.P ue a2.Q)⇓)

b)

a1.P ue c2.Q ≈

∑
σ∂ ∈ Γ(a1P,Q)

c2σ∂ .
(
(a1.P)σ∂ ue Qσ∂

)
Γa1.Puec2.Q = T (Γ, (a1.P ue c2.Q)⇓)

For P,Q ∈ P, e ∈ E , a2 ∈ A, c1, c2 ∈ B, if V(c1.P) ⊆ Nv(e), we have:

c)

c1.P ue a2.Q ≈

∑
σ∂ ∈ Γ(P,a2.Q)

c1σ∂ .
(
Pσ∂ ue (a2.Q)σ∂

)
Γc1.Puea2.Q = T (Γ, (c1.P ue a2.Q)⇓)

d)

c1.P ue c2.Q ≈

∑
σ∂ ∈ Γ(P,Q)

(c1.c2)σ∂ .
(
Pσ∂ ue Qσ∂

)
Γc1.Puec2.Q = T (Γ, (c1.P ue c2.Q)⇓)

Proof:

In a), for each variable Γ(P,Q), we let Γ(P,Q) = T (Γ, (P ue Q)⇓).
Suppose R =

∑
σ∂ ∈ Γ(Pσδ,Qσδ)

aσ∂ .
(
Pσ∂σδ ue Qσ∂σδ

)
, where (a, σδ) ∈ a1∇e a2

based on the definition of gcfe, we need to prove that the three following statements are true.

1. R � a1.P ,

2. R ve a2.Q and

3. For all R′ such that R′ � a1.P and R′ ve a2.Q, we have R′ � R.

(1) To prove that R � a1.P , we need to prove the following.

∀τ ∈ Σ∗, if R

�

τ then ∃τ ′ ∈ Σ∗ such that:a1.P

�

τ ′ and τ � τ ′. (1a)

∀τ ∈ Σ∗, if R
τ
� 1 then ∃τ ′ ∈ Σ∗ such that:a1.P

τ ′

� 1 and τ � τ ′. (1b)

For (1a), let τ be a trace and R

�

τ

⇒ {|R =
∑

σ∂ ∈ Γ(Pσδ,Qσδ)

aσ∂ .
(
Pσ∂σδ ue Qσ∂σδ

)
where (a, σδ) ∈ a1∇e a2 |}

147

(∑
σ∂ ∈ Γ(Pσδ,Qσδ)

aσ∂ .
(
Pσ∂σδ ue Qσ∂σδ

)) �

τ

⇒ {|(R+
l), (R+

r) from Table 5.2. |}

∃σ∂ ∈ Γ(Pσδ,Qσδ), such that:[aσ∂ .
(
Pσ∂σδ ue Qσ∂σδ

)
]

�

τ

(α1) When τ = aσ∂

⇒ {|Let τ ′ = a1 (a, σδ) ∈ a1∇e a2 and Lemma 5.7.8 |}

a1.P

�

τ ′ and a � τ ′

⇒ {|σ∂ ∈ Γ(Pσδ,Qσδ),V(a1.P) ⊆ Nv(e)⇒ σ∂ will not affect a |}

a1.P

�

τ ′ and τ = aσ∂ � τ ′

(α2) When τ 6= aσ∂

⇒ {|Let τ = aσ∂ .τ1,
(∑

σ∂ ∈ Γ(Pσδ,Qσδ)

aσ∂ .
(
Pσ∂σδ ue Qσ∂σδ

)) �

τ

and (R.l), (R.r) from Table 5.2 |}

(Pσ∂σδ ue Qσ∂σδ)

�

τ1

⇒ {|(Pσ∂σδ ue Qσ∂σδ) � Pσ∂σδ and Definition 5.4.4 |}

∃τp ∈ Σ∗, such that: Pσ∂σδ

�

τp and τ1 � τp

⇒ {|V(a1.P) ⊆ Nv(e)⇒ σ∂σδ will not affect P |}

P
�

τp and τ1 � τp

⇒ {|aσ∂ � a1 and Proposition 5.4.6 |}

τ = c2σ∂ .τ1 � a1.τp

⇒ {|a1.P

�

a1.τp |}

∃τ ′ = a1.τp, such that: a1.P

�

τ ′ and τ � τ ′

(α1), (α2)
⇒

∀τ ∈ Σ∗, if R

�

τ then ∃τ ′ ∈ Σ∗, such that:a1.P

�

τ ′ and τ � τ ′. (1a)

We can prove (1b) by repeating the above steps.

(1a) and (1b)⇒ (1) is true:

(2) To prove R ve a2.Q, we need to prove the following:

148

∀τ ∈ Σ∗, if R

�

τ then ∃τ ′ ∈ Σ∗, | a2.Q

�

τ ′ and τ ve τ ′. (2a)

∀τ ∈ Σ∗, if R
τ
� 1 then ∃τ ′ ∈ Σ∗, | a2.Q

τ ′

� 1 and τ ve τ ′. (2b)

For (2a), let τ be a trace and R

�

τ

⇒ {|R =
∑

σ∂ ∈ Γ(Pσδ,Qσδ)

aσ∂ .
(
Pσ∂σδ ue Qσ∂σδ

)
where (a, σδ) ∈ a1∇e a2 |}

(∑
σ∂ ∈ Γ(Pσδ,Qσδ)

aσ∂ .
(
Pσ∂σδ ue Qσ∂σδ

)) �

τ

⇒ {|(R+
l), (R+

r) from Table 5.2 |}

∃σ∂ ∈ Γ(Pσδ,Qσδ), such that: [aσ∂ .
(
Pσ∂σδ ue Qσ∂σδ

)
]

�

τ

(α1) When τ = aσ∂

⇒ {|Let τ ′ = a2 and Lemma 5.7.8 |}

a2.Q

�

τ ′ and a ve τ ′

⇒ {|σ∂ substitutes only free variables to non free ones|}

a2.Q

�

τ ′ and aσ∂ ve a ve τ ′

(α2) When τ 6= aσ∂

⇒ {|Let τ = aσ∂ .τ1 and
(∑

σ∂ ∈ Γ(Pσδ,Qσδ)

aσ∂ .
(
Pσ∂σδ ue Qσ∂σδ

)) �

τ ,

(R.l), (R.r) from Table 5.2 |}

Pσ∂σδ ue Qσ∂σδ

�

τ1

⇒ {|(Pσ∂σδ ue Qσ∂σδ) ve Qσ∂σδ and Definition 5.4.5 |}

∃τq ∈ Σ∗, such that: Q

�

τq, Qσ∂σδ

�

τqσ∂σδ and τ1 ve τqσ∂σδ

⇒ {|σ∂ is a sorted substitution |}

and τ1 ve τqσ∂σδ ve τqσδ

⇒ {|(a, σδ) ∈ a1∇e a2 and Lemma 5.7.8 |}

a � a2σδ

⇒ {|τ1 ve τqσδ and Lemma 5.7.7 |}

a.τ1 ve a2σδ.τqσδ

149

⇒ {|σδ is a sorted substitution |}

a.τ1 ve a2τq

⇒ {|Let τ ′ = a2.τq and Definition 5.4.5 |}

∃τ ′ ∈ Σ∗, such that: a2.Q

�

τ ′ and τ = a.τ1 ve a2.τq = τ ′

(α1), (α2)
⇒

∀τ ∈ Σ∗, if R

�

τ then ∃τ ′ ∈ Σ∗, such that:a2.Q

�

τ ′

and τ ve τ ′. (2a)

We can prove (2b) by repeating the above steps.

(2a) and (2b)⇒ (2) is true:

(3) For all R′ such that R′ � a1.P and R′ ve a2.Q, we have R′ � R. To prove R′ � R,
we need to prove the following:

if R′

�

τ then ∃τ ′ ∈ Σ∗, such that: R
�

τ ′ and τ � τ ′. (3a)

if R′
τ
� 1 then ∃τ ′ ∈ Σ∗, such that:R

τ ′

� 1 and τ � τ ′. (3b)

For (3a), let τ be a trace and R′

�

τ

⇒ {|R′ � a1.P , R′ ve a2.Q and Definition 5.4.5 |}

∃τp ∈ Σ∗, such that: a1.P

�

a1.τp P

�

τp and τ � a1.τp
∃τq ∈ Σ∗, such that: a2.Q

�

a2.τq Q

�

τqand τ ve a2.τq

⇒ {|let τ = τ ′.τ ′′, τ ′ � a1 τ ′′ � τp and τ ′ ve a2, τ ′′ ve τq |}

a1.P

�

a1.τp and τ ′.τ ′′ � a1.τp, τ ′ � a1
a2.Q

�

a2.τq and τ ′.τ ′′ ve a2.τq , τ ′ ve a2

⇒ {|(a, σδ) ∈ a1∇e a2, a ≈ a1 ue a2,
and Lemma 5.7.6 |}

a1.P

�

a1.τp and τ ′.τ ′′ � a1.τp, τ ′ � a
a2.Q

�

a2.τq and τ ′.τ ′′ ve a2.τq , τ ′ � a

⇒
τ ′ � a

⇒ {|V(a1.P) ⊆ Nv(e)⇒ σ∂ will not affect a |}

τ ′ � a.σ∂

⇒ {|(a, σδ) ∈ a1∇e a2, Lemma 5.7.8 and Lemma 5.7.5 |}

τ ′ � a.σ∂ , a � a2σδ

150

⇒
τ ′ � a.σ∂ , aσ∂ � a2σ∂σδ

⇒ {|Lemma 5.7.5 |}

τ ′ � a2σ∂σδ

⇒ {|τ = τ ′.τ ′′ ve a2.τq , τ ′′ ve τq , and Lemma 5.7.7 |}

τ ′′ ve τqσ∂σδ

⇒ {|τ ′′ � τp
and V(a1.P) ⊆ Nv(e)⇒ σ∂σδ will not affect τp |}

τ ′′ ve τqσ∂σδ , τ ′′ � σ∂σδ

⇒ {|Pσ∂σδ

�

τpσ∂σδ, Qσ∂σδ

�

τqσ∂σδ and Lemma 5.7.6 |}

∃τpq ∈ Σ∗, such that:
(
Pσ∂σδ ue Qσ∂σδ

) �
τpq , τ ′′ � τpq

⇒ {|τ ′ � a.σ∂ and Lemma 5.7.5 |}

τ ′.τ ′′ � a.σ∂ .τpq

⇒

if R′

�

τ, τ = τ ′τ ′′ then ∃a.σ∂ .τpq ∈ Σ∗, such that:R

�

a.σ∂ .τpq and τ = τ ′τ ′′ � a.σ∂ .τpq . (3a)

We can prove (3b) by repeating the above steps.

(3a) and (3b)⇒ (3) is true.
(1), (2) and (3)⇒ (a) is true

In b), for each variable Γ(P,Q), we let Γ(P,Q) = T (Γ, (P ue Q)⇓). Suppose
R =

∑
σ∂ ∈ Γ(a1P,Q)

c2σ∂ .
(
(a1.P)σ∂ ue Qσ∂

)
based on the definition of gcfe, we need to prove that

the following three statements.

1. R � a1.P ,

2. R ve c2.Q and

3. For all R′ such that R′ � a1.P and R′ ve c2.Q, we have R′ � R.

(1) To prove R � a1.P , we need to prove the following:

∀τ ∈ Σ∗, if R

�

τ then ∃τ ′ ∈ Σ∗, such that:a1.P

�

τ ′ and τ � τ ′. (1a)

∀τ ∈ Σ∗, if R
τ
� 1 then ∃τ ′ ∈ Σ∗, such that:a1.P

τ ′

� 1 and τ � τ ′. (1b)

For (1a), let τ be a trace and R

�

τ

⇒ {|R =
∑

σ∂ ∈ Γ(a1P,Q)

c2σ∂ .
(
(a1.P)σ∂ ue Qσ∂

)
|}

151

(∑
σ∂ ∈ Γ(a1P,Q)

c2σ∂ .
(
(a1.P)σ∂ ue Qσ∂

)) �

τ

⇒ {|(R+
l), (R+

r) from Table 5.2 |}

∃σ∂ ∈ Γ(a1P,Q), such that:[c2σ∂ .
(
(a1.P)σ∂ ue Qσ∂

)
]

�

τ

(α1) When τ = c2σ∂

⇒ {|Let τ ′ = ε and Lemma 5.7.8 |}

a1.P

�

τ ′ and τ � τ ′

(α2) When τ 6= c2σ∂

⇒ {|Let τ = c2σ∂ .τ1, [c2σ∂ .
(
(a1.P)σ∂ ue Qσ∂

)
]

�
τ and (R.l), (R.r) from Table 5.2 |}(

(a1.P)σ∂ ue Qσ∂
) �

τ1

⇒ {|
(
(a1.P)σ∂ ue Qσ∂

)
� (a1.P)σ∂ and Definition 5.4.4 |}

∃τp ∈ Σ∗, such that: (a1.P)σ∂
�

(a1.τp)σ∂ and τ1 � (a1.τp)σ∂

⇒ {|V(a1.P) ⊆ Nv(e)⇒ σ∂ will not affect a1.τp |}

τ1 � a1.τp

⇒ {|Rule 2 of Definition 5.4.2 |}

τ = c2σ∂ .τ1 � a1.τp

⇒ {|Let τ ′ = a1.τp and Definition 5.4.5 |}

∃τ ′ ∈ Σ∗ such that: a1.P

�

τ ′ and τ = c2σ∂ .τ1 � τ ′

(α1), (α2)
⇒

∀τ ∈ Σ∗, if R

�

τ then ∃τ ′ ∈ Σ∗, such that: a1.P

�

τ ′ and τ � τ ′. (1a)

We can prove (1b) by repeating the above steps.

(1a) and (1b)⇒ (1) is true:

(2) To prove R ve c2.Q, we need to prove the following:

∀τ ∈ Σ∗, if R

�

τ then ∃τ ′ ∈ Σ∗, such that:c2.Q

�

τ ′ and τ ve τ ′. (2a)

∀τ ∈ Σ∗, if R
τ
� 1 then ∃τ ′ ∈ Σ∗, such that:c2.Q

τ ′

� 1 and τ ve τ ′. (2b)

For (2a), let τ be a trace and R

�

τ

152

⇒ {|R =
∑

σ∂ ∈ Γ(a1P,Q)

c2σ∂ .
(
(a1.P)σ∂ ue Qσ∂

)
|}

(∑
σ∂ ∈ Γ(a1P,Q)

c2σ∂ .
(
(a1.P)σ∂ ue Qσ∂

)) �

τ

⇒ {|(R+
l), (R+

r) from Table 5.2 |}

∃σ∂ ∈ Γ(a1P,Q), such that:[c2σ∂ .
(
(a1.P)σ∂ ue Qσ∂

)
]

�

τ

(α1) When τ = c2σ∂

⇒ {|Let τ ′ = c2 and σ∂ is a sorted substitution |}

c2.Q

�

τ ′ and τ ve τ ′

(α2) When τ 6= c2σ∂

⇒ {|Let τ = c2σ∂ .τ1, [c2σ∂ .
(
(a1.P)σ∂ ue Qσ∂

)
]

�

τ and (R.l), (R.r) from Table 5.2 |}(
(a1.P)σ∂ ue Qσ∂

) �

τ1

⇒ {|
(
(a1.P)σ∂ ue Qσ∂

)
ve Qσ∂ and Definition 5.4.5 |}

∃τq ∈ Σ∗, such that: Qσ∂

�

τqσ∂ , Q

�

τq and τ1 ve τqσ∂

⇒ {|σ∂ ∈ Γea1.P,Q =⇒ τ1 � τqσ∂ |}

∃τq ∈ Σ∗, such that: Qσ∂

�

τqσ∂ and τ1 � τqσ∂

⇒ {|Lemma 5.7.5 |}

c2σ∂ .τ1 � c2σ∂ .τqσ∂

⇒ {|σ∂ is a sorted substitution |}

c2σ∂ .τ1 ve c2.τq

⇒ {|Let τ ′ = c2.τq and Definition 5.4.5 |}

∃τ ′ ∈ Σ∗, such that: c2.Q

�

τ ′ and τ = c2σ∂ .τ1 ve τ ′

(α1), (α2)
⇒

∀τ ∈ Σ∗, if R

�

τ then ∃τ ′ ∈ Σ∗, such that:c2.Q

�

τ ′ and τ ve τ ′. (2a)

We can prove (2b) by repeating the above steps.

(2a) and (2b)⇒ (2) is true.

(3) For all R′ such that R′ � a1.P and R′ ve c2.Q, we have R′ � R. To prove R′ � R,

153

we need to prove the following:

∀τ ∈ Σ∗, if R′

�

τ then ∃τ ′ ∈ Σ∗, such that:R

�

τ ′ and τ � τ ′. (3a)

∀τ ∈ Σ∗, if R′
τ
� 1 then ∃τ ′ ∈ Σ∗, such that:R

τ ′

� 1 and τ � τ ′. (3b)

For (3a), let τ be a trace and R′

�

τ

⇒ {|R′ � a1.P , R′ ve c2.Q and Definition 5.4.5 |}

∃τp ∈ Σ∗, such that: a1.P

�

a1.τp P

�

τp and τ � a1.τp
∃τq ∈ Σ∗, such that: c2.Q

�

c2.τq Q

�

τqand τ ve c2.τq

⇒ {|let τ = τ ′.τ ′′, τ ′ � ε τ ′′ � a1.τp and τ ′ ve c2, τ ′′ ve τq |}

a1.P

�

a1.τp and τ ′.τ ′′ � a1.τp, τ ′ � ε, τ ′′ � a1.τp
c2.Q

�

c2.τq and τ ′.τ ′′ ve c2.τq , τ ′ ve c2, τ ′′ ve τq

⇒ {|a1.P

�

a1.τp, Q

�

τq and let τpq be a trace, (a1.P ue Q)

�

τpq and Lemma 5.7.6 |}

τ ′′ � τpq

⇒ {|σ∂ ∈ Γe(a1.P,Q) and Q
�

τq |}

τ ′′ � τpq � τqσ∂

⇒ {|Transitivity of � |}

τ ′′ � τqσ∂ (β)

⇒ {|�⊆ve |}

τ ′′ ve τqσ∂

⇒ {|τ ′′ � a1.τp and V(a1.P) ⊆ Nv(e)⇒ σ∂ will not affect a1.τp |}

τ ′′ ve τqσ∂ , τ ′′ � (a1.τp)σ∂

⇒ {|(a1.P)σ∂

�

(a1.τp)σ∂ , Qσ∂

�

τqσ∂ ,
let τ ′pq , be a trace

(
(a1.P)σ∂ ue Qσ∂

) �

τ ′pq and Lemma 5.7.6 |}

τ ′′ � τ ′pq (γ)

(β) : τ ′′ � τqσ∂

⇒ {|τ = τ ′.τ ′′ ve c2.τq and Lemma 5.7.7 |}

τ ′ ve c2σ∂

⇒ {|c2σ∂ should contain only non free variables, otherwise we can consider it as ε |}

τ ′ � c2σ∂

⇒ {|(γ) : τ ′′ � τ ′pq and Lemma 5.7.5 |}

154

τ ′.τ ′′ � c2σ∂ .τ ′pq

⇒ {|Let τ ′r = c2σ∂ .τ
′
pq ,
(
(a1.P)σ∂ ue Qσ∂

) �

τ ′pq and R =
∑

σ∂ ∈ Γ(a1P,Q)

c2σ∂ .
(
(a1.P)σ∂ ue Qσ∂

)
|}

τ = τ ′.τ ′′ � τ ′r and R

�

τ ′r

if R′

�

τ then ∃τ ′r, such that: R

�

τ ′r and τ � τ ′r. (3a)

For (3b), we can prove it by repeating the above steps.

(3a) and (3b)⇒ (3) is true.
(1), (2) and (3)⇒ (b) is true

In c), for each variable Γ(P,Q), we let Γ(P,Q) = T (Γ, (P ue Q)⇓).
Suppose R =

∑
σ∂ ∈ Γ(P,a2.Q)

c1σ∂ .
(
Pσ∂ ue (a2.Q)σ∂

)
based on the definition of gcfe, we need to prove that the three following statements are true.

1. R � c1.P .

2. R ve a2.Q and

3. For all R′ such that R′ � c1.P and R′ ve a2.Q, we have R′ � R.

(1) To prove R � c1.P , we need to prove the following:

∀τ ∈ Σ∗, if R

�

τ then ∃τ ′ ∈ Σ∗, such that:c1.P

�

τ ′ and τ � τ ′. (1a)

∀τ ∈ Σ∗, if R
τ
� 1 then ∃τ ′ ∈ Σ∗, such that:c1.P

τ ′

� 1 and τ � τ ′. (1b)

For (1a), let τ be a trace and R

�

τ

⇒ {|R =
∑

σ∂ ∈ Γ(P,a2.Q)

c1σ∂ .
(
Pσ∂ ue (a2.Q)σ∂

)
|}

(∑
σ∂ ∈ Γ(P,a2.Q)

c1σ∂ .
(
Pσ∂ ue (a2.Q)σ∂

)) �

τ

⇒ {|(R+
l), (R+

r) from Table 5.2 |}

∃σ∂ ∈ Γ(P,a2.Q), such that:[c1σ∂ .
(
Pσ∂ ue (a2.Q)σ∂

)
]

�

τ

(α1) When τ = c1σ∂

⇒ {|Let τ ′ = c1, σ∂ ∈ Γ(P,a2.Q), V(c1.P) ⊆ Nv(e)⇒ σ∂ will not affect c1 |}

c1.P

�

τ ′ and τ � τ ′

(α2) When τ 6= c1σ∂

155

⇒ {|Let τ = c1σ∂ .τ1, [c1σ∂ .
(
Pσ∂ ue (a2.Q)σ∂

)
]

�

τ and (R.l), (R.r) from Table 5.2 |}(
Pσ∂ ue (a2.Q)σ∂

) �

τ1

⇒ {|
(
Pσ∂ ue (a2.Q)σ∂

)
� Pσ∂ and Definition 5.4.4 |}

∃τp ∈ Σ∗, such that: Pσ∂

�

τpσ∂ and τ1 � τpσ∂

⇒ {|V(c1.P) ⊆ Nv(e)⇒ σ∂ will not affect τp |}

τ1 � τp

⇒ {|Rule 2 of Definition 5.4.2 |}

τ = c1σ∂ .τ1 � c1.τp

⇒ {|Let τ ′ = c1.τp and Definition 5.4.5 |}

∃τ ′ ∈ Σ∗, such that: c1.P

�

τ ′ and τ = c1σ∂ .τ1 ≺ τ ′

(α1), (α2)
⇒

∀τ ∈ Σ∗, if R

�

τ then ∃τ ′ ∈ Σ∗, such that:a1.P

�

τ ′ and τ � τ ′. (1a)

We can prove (1b) by repeating the above steps.

(1a) and (1b)⇒ (1) is true:

(2) To prove R ve a2.Q, we need to prove the following:

∀τ ∈ Σ∗, if R

�

τ then ∃τ ′ ∈ Σ∗, such that:a2.Q

�

τ ′ and τ ve τ ′. (2a)

∀τ ∈ Σ∗, if R
τ
� 1 then ∃τ ′ ∈ Σ∗, such that:a2.Q

τ ′

� 1 and τ ve τ ′. (2b)

For (2a), let τ be a trace and R

�

τ .

⇒ {|R =
∑

σ∂ ∈ Γ(P,a2.Q)

c1σ∂ .
(
Pσ∂ ue (a2.Q)σ∂

)
|}

(∑
σ∂ ∈ Γ(P,a2.Q)

c1σ∂ .
(
Pσ∂ ue (a2.Q)σ∂

)) �

τ

⇒ {|(R+
l), (R+

r) from Table 5.2 |}

∃σ∂ ∈ Γ(P,a2.Q), such that:[c1σ∂ .
(
Pσ∂ ue (a2.Q)σ∂

)
]

�

τ

(α1) When τ = c1σ∂

⇒ {|Let τ ′ = ε |}

a2.Q

�

τ ′ and τ � τ ′

156

(α2) When τ 6= c1σ∂

⇒ {|Let τ = c1σ∂ .τ1, [c1σ∂ .
(
Pσ∂ ue (a2.Q)σ∂

)
]

�

τ and (R.l), (R.r) from Table 5.2 |}(
Pσ∂ ue (a2.Q)σ∂

) �

τ1

⇒ {|
(
Pσ∂ ue (a2.Q)σ∂

)
ve (a2.Q)σ∂ and Definition 5.4.5 |}

∃τq ∈ Σ∗, such that: (a2.Q)σ∂

�

(a2.τq)σ∂ , Q

�

τq and τ1 ve (a2.τq)σ∂

⇒ {|σ∂ ∈ Γ(P,a2.Q) =⇒ τ1 � a2.τq |}

∃τq ∈ Σ∗, such that: (a2.Q)σ∂

�

(a2.τq)σ∂ and τ1 � a2.τq

⇒ {|Lemma 5.7.5 |}

c1σ∂ .τ1 � a2.τq

⇒ {|Let τ ′ = a2.τq and Definition 5.4.5 |}

∃τ ′ ∈ Σ∗, such that: a2.Q

�

τ ′ and τ = c1σ∂ .τ1 ve τ ′

(α1), (α2)
⇒

∀τ ∈ Σ∗, if R
�

τ then ∃τ ′ ∈ Σ∗, such that:a2.Q

�

τ ′ and τ ve τ ′. (2a)

We can prove (2b) by repeating the above steps.

(2a) and (2b)⇒ (2) is true.

(3) For all R′ such that R′ � c1.P and R′ ve a2.Q, we have R′ � R. To prove R′ � R,
we need to prove the following:

∀τ ∈ Σ∗, if R′

�

τ then ∃τ ′ ∈ Σ∗, such that:R

�

τ ′ and τ � τ ′. (3a)

∀τ ∈ Σ∗, if R′
τ
� 1 then ∃τ ′ ∈ Σ∗, such that:R

τ ′

� 1 and τ � τ ′. (3b)

For (3a), let τ be a trace and R′

�

τ

⇒ {|R′ � c1.P , R′ ve a2.Q and Definition 5.4.5 |}

∃τp ∈ Σ∗, such that: c1.P

�

c1.τp P

�

τp and τ � c1.τp
∃τq ∈ Σ∗, such that: a2.Q

�

a2.τq Q

�

τqand τ ve a2.τq

⇒ {|let τ = τ ′.τ ′′, τ ′ � c1 τ ′′ � τp and τ ′ ve ε, τ ′′ ve a2.τq |}

c1.P

�

c1.τp and τ ′.τ ′′ � c1.τp, τ ′ � c1, τ ′′ � τp
a2.Q

�

a2.τq and τ ′.τ ′′ ve a2.τq , τ ′ ve ε, τ ′′ ve a2.τq

⇒ {|P

�

τp, a2.Q

�

(a2.τq), let τpq be a trace such that (P ue a2.Q)

�

τpq and Lemma 5.7.6 |}

τ ′′ � τpq

157

⇒ {|σ∂ ∈ Γ(P,a2.Q) and (a2.Q)

�

(a2.τq) |}

τ ′′ � τpq � (a2.τq)σ∂

⇒ {|Transitivity of � |}

τ ′′ � (a2.τq)σ∂ (β)

⇒ {|�⊆ve |}

τ ′′ ve (a2.τq)σ∂

⇒ {|τ ′′ � τp and V(c1.P) ⊆ Nv(e)⇒ σ∂ will not affect τp |}

τ ′′ � (a2.τq)σ∂ , τ ′′ � τpσ∂

⇒ {|Pσ∂

�

τpσ∂ , (a2.Q)σ∂

�

(a2.τq)σ∂ , let τ ′pq be a trace such that
(
Pσ∂ ue (a2.Q)σ∂

) �

τ ′pq
and Lemma 5.7.6 |}

τ ′′ � τ ′pq (γ)

τ ′ � c1

⇒ {|V(c1.P) ⊆ Nv(e)⇒ σ∂ will not affect c1 |}

τ ′ � c1σ∂

⇒ {|(γ) : τ ′′ � τ ′pq and Lemma 5.7.5 |}

τ ′.τ ′′ � c1σ∂ .τ ′pq

⇒ {|Let τ ′r = c1σ∂ .τ
′
pq ,
(
Pσ∂ ue (a2.Q)σ∂

) �

τ ′pq and
R =

∑
σ∂ ∈ Γ(P,a2.Q)

c1σ∂ .
(
Pσ∂ ue (a2.Q)σ∂

)
|}

τ = τ ′.τ ′′ � τ ′r and R

�

τ ′r

if R′

�

τ then ∃τ ′r, such that R

�

τ ′r and τ � τ ′r. (3a)

For (3b), we can prove it by repeating the above steps.

(3a) and (3b)⇒ (3) is true.
(1), (2) and (3)⇒ (c) is true

(d) The proof is similar to (b) and (c).

2

158

5.8 Conclusion

This chapter presents a formal and automatic approach that enforces security policies on untrusted

programs. We targeted security policies written in the VLTL logic and programs specified on a C-Like

programming language. Security policies and programs are transformed to processes in EBPA∗0,1, a

rich process algebra that handle tests, variables and environments. Then, we explain why our main

problem can be turned into computing the intersection between processes. After that, we give an

algorithm that computes the expected intersection by resolving linear systems.

159

Chapter 6

FASER (Formal and Automatic Security
Enforcement by Rewriting by algebra)

6.1 Prototype for BPA∗0,1

We have developed a prototype that implements the algorithm that enforce policy on processes in

BPA∗0,1. As shown by Figure 6.1, in the input page, users can write down a program P and a security

policyQ according to ourBPA∗0,1 syntax. Some examples are also shown in this page. After clicking

the "go" button, the gcf of P and Q will be computed according to our algorithm and this will be

displayed in the result page as shown by Figure 6.2. The linear system we generated during the

algorithm will also be displayed in this result page. The prototype is programmed using Java and JSP.

And we choose Tomcat 7.0 for web-server, since it is also a web application.

6.2 Prototype for EBPA∗0,1 with the VLTL logic

We developed, using JAVA and JSP, a prototype that implement our approach for EBPA∗0,1 with the

VLTL logic. It is a web application and available online at [1]. We call this prototype FASER (Formal

and Automatic Security Enforcement by Rewriting).

As shown in Figure 6.3, the prototype allows users to input programs in C-Like language and secu-

rity policies using the VLTL logic. After clicking the "OK" button, the enforcement result and the

intermediate calculus are shown like in Figure 6.4.

Also, this prototype allows users to generate a latex file containing the enforcement, including detailed

steps, by clicking on Save Result in Latex File button as shown in Figure 6.5.

Programs can also be specified using the EBPA∗0,1 algebra. as shown in Figure 6.6.

161

Figure 6.1: Prototype Input Page.

6.3 Conclusion

This chapter gives a short overview about FASER, the prototype that implement our approach. It is

developed in Java and has a web interface. It allows end users to input their process either in BPA∗0,1,

EBPA∗0,1 or C-Like language, their security policies in either BPA∗0,1, EBPA∗0,1 or the VLTL logic

and shows the results together with the details of the intermediary steps in a text format or in a latex

format.

162

Figure 6.2: Prototype Result Page.

163

Figure 6.3: Prototype Input Page.

164

Figure 6.4: Prototype Result Page.

Figure 6.5: Prototype Latex File.

165

Figure 6.6: Prototype Input Page with algebra.

166

Chapter 7

Conclusion and Perspectives

Nowadays, millions of computer are used to improve the quality of our lives, but the vast majority of

them are threatened by security breaches. Financial losses are not only the possible security attacks

consequences, human losses are also possible even for non-military staff (for example: vehicle, avia-

tion systems). Therefore, we proposed a formal and automatic approach to enforce security policies

on sequential programs based on rewriting technique. More specifically, given a program P and a

security policy Q, we generated an intersection program P ′ that respects the security policy and be-

haves like P except that it stops any execution path whenever the enforced security policy is about

to be violated. Aspect Orient Programming (AOP) also is a very important feature for our approach,

it allows the end users to significantly reduce the maintenance cost and increase the modularity of

systems.

Since our approach proposes an enforcement approach for security policies, it is important to under-

stand which security policies can be enforced and by which mechanism. Therefore, based on some

well-established fundamental results, we discuss the enforcement techniques and the classes of en-

forceable security policies in the state of art.

The goal of this thesis is to extend the work presented in [48] so that we can address more interesting

security policies and interesting real programming languages. To this end, we started by understanding

the technique presented in [48] and improving its foundation. For that reason we did, as mentioned

in the chapter 5, the proof of all the stated properties, something that does not exist in the original

work. Then, we update the definition of the trace-based equivalence so that it becomes a congruence

relation, an important feature that allows us to analysis system in a modular way. Also, we extended

BPA∗0,1 algebra to CBPA∗0,1 such that we can specify programs and policies with conditions. With

this more expressive algebra, we update our approach accordingly.

To make our approach more expressive so that it can handle a real programming language, we ex-

tended our algebra to EBPA∗0,1, which takes variables, environment and conditions into consideration.

We also adapt our algorithm to address these new problems.

167

Finally, we introduce FASER, the prototype that implement our approach. It is developed in Java and

is a web application.

As future work, we are interested by the following directions:

1. Equational Unification: In the current work, when we compose two actions a and b to com-

pute their most general unifier (mgu), we do not consider any theory. For example, x = x+ 2

and x = x + 1 + 1 do not have a common mgu if we do not consider a theory containing an

equation like 1 + 1 = 2. In the future works, we want to have more flexibility when computing

mgu by considering some theories.

2. Program Edition: Another interesting feature that we are willing to investigate is to have the

possibility to modify the program behaviour when some actions are found or missing. Within

the current version of the approach, we can only stop the program or limit the execution of

some actions by some inserted conditions. But, it is not possible to substitute some part of

the analysed program by another. More precisely, within the current version, the result of

a.P u b.Q is mgu(a, b).(P u Q) which involve that a.P u a.Q is a.(P u Q). But we cannot

specify that a.P u a.Q will be c.(P uQ) which is very useful behaviour to enforce some web

application security policies, such that SQL injection. To handle this kind of edition we can

consider each action of a security policy as a tuple (b,Q′, Q”) and when we make the intersec-

tion a.P u (b,Q′, Q”).Q, the result isQ′.(P uQ) ifmgu(a, b) exist andQ”.(P uQ) otherwise.

By adding program edition into our approach, it enhancing our ability to solve more challenging

security issues.

3. PSL: PSL (Property Specification Language) is a standard language accepted by industry to

specify temporal properties of systems. In this part, we will try to extract an appropriate sub-

language of PSL to specify properties that will be enforced by our techniques.

4. Prototype Improvement: We will apply the approach to more useful languages such as PHP

to enforce web security policies. We will also address the amelioration of the prototype to bring

it to professional level.

168

Bibliography

[1] Faser official website. Oct, 2014. http://web_security.fsg.ulaval.ca:8080/

enf/enforce-cbpa-program.jsp.

[2] A. B. Romanowska A. Mućka and J. D. H. Smith. Many-sorted and single-sorted algebras.

Algebra universalis, 69, Issue 2, pp 171-190, 2013.

[3] B. Alpern and Schneider F. Defining liveness. Inf Proc Lett, 1985.

[4] B. Alpern and Schneider F. Recognizing saftey and liveness. Distributed Computing, pages

2:117–126, 1987.

[5] V. Antimirov. Partial derivatives of regular expressions and finite automata constructions. pages

155:291–319, 1995.

[6] D. N. ARDEN. Delayed logic and finite state machines. pages 1–35., U. of Michigan Press,

1960.

[7] M. A. Armstrong. Basic topology. Springer, ISBN 0-387-90839-0, 1983.

[8] J.C.M. Baeten. A brief history of process algebra. volume 335 (2–3), page 131–146, 2005.

[9] J. A. Bergstra and J. W. Klop. Fixed point semantics in process algebras. Report IW 206 ,

Mathematisch Centrum, 1982.

[10] J. A. Bergstra and J. W. Klop. The algebra of recursively defined processes and the algebra of

regular processes. Proceedings of the 11th Colloquium on Automata, Languages and Program-

ming, pages 82–94, 1984.

[11] J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.

[12] J. Somesh L. Yuan C. Edmund, G. Orna and V. Helmut. Counterexample-guided abstraction

refinement. volume 1855: 154, 2000.

[13] A. Chudnov and D. A. Naumann. Information flow monitor inlining. pages 200–214, July 17-19,

2010.

169

http://web_security.fsg.ulaval.ca:8080/enf/enforce-cbpa-program.jsp
http://web_security.fsg.ulaval.ca:8080/enf/enforce-cbpa-program.jsp

[14] E. M. Clarke and B. H. Schlingloff. Model checking. Handbook of Automated Reasoning, pages

1635–1790, 2001.

[15] M. R. Clarkson and Schneider F. Hyperproperties. Journal of Computer Security - 7th Interna-

tional Workshop on Issues in the Theory of Security (WITS’07), 18(Issue 6), September, 2010.

[16] P. Cousot. Program analysis: the abstract interpretation perspective. ACM Comput. Surv, page

165, 1996.

[17] M. Nouh V. Lima M. Debbabi L. Wang M. Pourzandi D. Mouheb, C. Talhi. Aspect-oriented

modeling for representing and integrating security concerns in uml. pages 197–213, 2010.

[18] P. Deutsch and C. Grant. A flexible measurement tool for software systems. Information Pro-

cessing 71, Proceedings of the IFIP Congress, 1, 1971.

[19] S. Dolan. Fun with semirings: a functional pearl on the abuse of linear algebra. ACM SIGPLAN

Notices - ICFP ’13, 48 Issue 9 Pages 101-110, September 2013.

[20] S. Eilenberg. Automata, languages and machines. volume Vol A. Academic Press, 1974.

[21] U. Erlingsson and F. Schneider. Irm enforcement of java stack inspection. pages 246–255,

Oakland, California, 2000.

[22] U. Erlingsson and F. B. Schneider. Sasi enforcement of security policies: a retrospective. In

Proceedings of the 1999 workshop on New security paradigms, pages 87–95. ACM Press, 2000.

[23] K. Crary G. Morrisett, D. Walker and N. Glew. From system f to typed assembly language.

volume 21(3): 527-568, 1999.

[24] M. Mejri G. Sui and H. Ben Sta. Faser (formal and automatic security enforcement by rewrit-

ing): An algebraic approach. Computational Intelligence for Security and Defence Applications

(CISDA), 2012.

[25] P. Gastin and D. Oddoux. Fast ltl to büchi automata translation. pages 53–65, July 2001.

[26] J. A. Goguen and J. Meseguer. Security policies and security models. pages 11–20, Apr, 1982.

[27] D. Grossman and J. G. Morrisett. Scalable certification for typed assembly language. TIC ’00:

Third International Workshop on Types in Compilation, pages 117–146, 2001.

[28] R. Khoury H. Chabot and N. Tawbi. Extending the enforcement power of truncation monitors

using static analysis. Computers & Security, 30(4): 194-207, 2011.

[29] M. Mejri H. Ould-Slimane and K. Adi. Using edit automata for rewriting-based security en-

forcement. DBSec, pages 175–190, 2009.

170

[30] M. Mejri H. Ould-Slimane and K. Adi. Enforcing more than safety properties by program

rewriting: Algebraic foundations. Edinburgh, UK, 2010, 2010.

[31] L. Bauer J. Ligatti and D. Walker. Edit automata: enforceable mechanisms for run-time security

policies. Int. J. Inf. Secur, (2-16):2:117–126, 2005.

[32] L. Bauer et D. Walker J. Ligatti. Enforcing non-safety security policies with program monitors.

volume 3679 of Lecture Notes in Computer Science, pages 355-373, 2005.

[33] L. Bauer et D. Walker J. Ligatti. Edit automata: Enforcement mechanisms for run-time security

policies. volume 4(1-2):2-16, 26 Oct 2004.

[34] G. Morrisett K. Hamlen and F. Schneider. Computability classes for enforcement mechanisms.

pages 175–205. ACM, January, 2006.

[35] R. Khoury. Enforcing security policies with monitors. Ph.D. thesis, Université Laval, 2011.

[36] R. Khoury. Symbolic analysis of assembly traces: Lessons learned and perspectives. Montreal,

Qc, Canada, March 2015.

[37] R. Khoury and N. Tawbi. Corrective enforcement of security policies. Formal Aspects in Security

and Trust, pages 176–190, 2010.

[38] Mendhekar. A Maeda. C Lopes. C Loingtier. J. M Kiczales. G, Lamping. J and Irwin. J. Aspect-

oriented programming. volume LNCS 1241: 220–242. doi:10.1007/BFb0053381. ISBN 3-540-

63089-9. CiteSeerX: 10.1.1.115.8660, 1997.

[39] J. C. King. Symbolic execution and program testing. volume 19, no. 7, page 385–394, 1976.

[40] S. C. Kleene. Representation of events in nerve nets and finite automata. pages 3–41, Princeton

University Press, 1956.

[41] J. Ligatti L. Bauer and D. Walker. More enforceable security policies. Copenhagen, Denmark,

July 2002.

[42] Turing. A. M. On computable numbers, with an application to the entscheidungsproblem. vol-

ume 42. series 2. 230–265, 1936.

[43] M. Mejri M. Langar and K. Adi. Formal enforcement of security policies on concurrent systems.

J. Symb. Comput, 46(9): 997-1016, 2011.

[44] M. Koleini K. K. Micinski M. N. Rabe M. R. Clarkson, B. Finkbeiner and C. Sánchez. Temporal

logics for hyperproperties. pages 265–284, April, 2014.

[45] A. Martelli and U. Montanari. An efficient unification algorithm. volume 4 Issue 2, pages

258–282, NY, USA, April 1982. ACM New York.

171

[46] J. McLean. A general theory of composition for a class of "possibilistic" properties. pages

53–67., 1996.

[47] K. L. McMillan. Symbolic model checking. ISBN 0-7923-9380-5, 1992.

[48] M. Mejri and H. Fujita. Enforcing security policies using algebraic approach. SoMeT, pages

84–98, 2008.

[49] J. Meseguer and J. A. Goguen. Order-sorted unifications. volume 8, Issue 4, Pages 383–413,

October 1989.

[50] G. Necula. Proof-carring code. Proc. ofPOPL’97, pages 106–119, 1997.

[51] Online News. Anonymous launches massive cyber assault on israel. April, 2013. http:

//rt.com/news/opisrael-anonymous-final-warning-448.

[52] Online News. Premera blue cross breached, medical information ex-

posed. Mar, 2015. http://www.reuters.com/article/2015/03/17/

us-cyberattack-premera-idUSKBN0MD2FF20150317.

[53] A. Pardo. Many-sorted algebras. Grupo de Métodos Formales Instituto de Computación Facul-

tad de Ingenierá.

[54] A . Pnueli. The temporal logic of programs. FOCS, Proc. 18th IEEE Symp, pages 46–57, 1977.

[55] M. Y. Vardi R. Gerth, D. Peled and P. Wolper. Simple on-the-fly automatic verification of linear

temporal logic. pages 3–18, June 1995.

[56] K. Saul. An efficient unification algorithm. volume 16: 83-94, 1963.

[57] F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1), 2000. 30–50.

[58] R. Shane. Millions of internet users hit by massive sony playstation data theft. Technical report,

London: Telegraph, 2011-04-29.

[59] C. Small. Misfit: A tool for constructing safe extensible c++ systems. the 3rd USENIX Confer-

ence on Object-Oriented Technologies and Systems (COOTS), pages 175–184, 1997.

[60] G. Sui and M. Mejri. Faser (formal and automatic security enforcement by rewriting) by bpa

algebra with test. International Journal of Grid and Utility Computing (IJGUC), 2013.

[61] J. Bacon T. Pasquier and B. Shand. Flowr. aspect oriented programming for information flow

control in ruby. pages 37–48, New York, NY, USA, ISBN: 978-1-4503-2772-5, 2014.

[62] T. Takai and H. Furusawa. Monodic tree kleene algebra. In Renate A. Schmidt, editor, RelMiCS,

volume 4136 of Lecture Notes in Computer Science, pages 402–416. Springer, 2006.

172

http://rt.com/news/opisrael-anonymous-final-warning-448
http://rt.com/news/opisrael-anonymous-final-warning-448
http://www.reuters.com/article/2015/03/17/us-cyberattack-premera-idUSKBN0MD2FF20150317
http://www.reuters.com/article/2015/03/17/us-cyberattack-premera-idUSKBN0MD2FF20150317

[63] C. Talhi. Memory constrained security enforcement. Ph.D. thesis, Université Laval, Avril 2007.

[64] R. Toledo and E. Tanter. Secure and modular access control with aspects. pages 157–170, AOSD

’13„ NY, USA, 2013. ACM New York.

[65] M. Y. Vardi. Simple on-the-fly automatic verification of linear temporal logic. pages 238–266,

Aug. 1996.

[66] D. Walker. A type system for expressive security policies. POPL ’00: Proceedings of the 27th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 254–267,

2000.

[67] wikipedia. 2014 celebrity photo leaks. Oct, 2014. http://en.wikipedia.org/wiki/

2014_celebrity_photo_leaks#cite_note-Sunderland-4.

173

http://en.wikipedia.org/wiki/2014_celebrity_photo_leaks#cite_note-Sunderland-4
http://en.wikipedia.org/wiki/2014_celebrity_photo_leaks#cite_note-Sunderland-4

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Introduction
	Motivation and Background
	Problem
	Methodology
	Advantages of our approach
	Organization of the thesis

	Enforcement Approaches
	Static Approaches
	Dynamic approaches
	Program Rewriting
	Enforcing Security Policies Using An Algebraic Approach
	Enforcement Ability of Program Rewriting
	Conclusion

	Classes of Enforceable Security Policies
	Introduction
	Security Policy and Property
	Recognizing Safety and Liveness
	Execution Monitor
	More Powerful Monitors
	Further Discussion about Enforcing Abilities
	Hyperproperties
	Temporal Logics for Hyperproperties
	Conclusion

	FASER (Formal and Automatic Security Enforcement by Rewriting) on BPA with Test
	Introduction
	Formal Language to Specify Systems: CBPA0,1*
	A Formal Language to Specify Security Policies (LTL-like logic)
	Formalization of the Problem: Link Between Inputs and Output of
	Resolution of the Problem, Find P Q of Figure 4.1.
	Proof of Main Result
	Conclusion

	FASER (Formal and Automatic Security Enforcement by Rewriting by algebra) with Environment
	Introduction
	A Formal Language to Specify Systems: EBPA0,1*
	A Formal Language to Specify Security Policies (VLTL: LTL with variables)
	Formalize the Link Between Inputs and Output of
	Resolution of the Problem: Finding P Q
	Examples
	Proof of the Main Result
	Conclusion

	FASER (Formal and Automatic Security Enforcement by Rewriting by algebra)
	Prototype for BPA*0,1
	Prototype for EBPA*0,1 with the VLTL logic
	Conclusion

	Conclusion and Perspectives
	Bibliography

