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Abstract

Marginal structural models allow estimating the causal effect of a time-varying expo-
sure on an outcome in the presence of time-dependent confounding. The parameters
of marginal structural models can be estimated utilizing an inverse probability of
treatment weight estimator under certain assumptions. One of these assumptions is
that the proposed causal model relating the outcome to exposure history is correctly
specified. However, in practice, the true model is unknown. We propose a test that
employs the observed data to attempt validating the assumption that the model is
correctly specified. The performance of the proposed test is investigated with a simu-
lation study. We illustrate our approach by estimating the effect of repeated exposure
to psychosocial stressors at work on ambulatory blood pressure in a large cohort of
white-collar workers in Quebec City (Canada). Code examples in SAS and R are
provided to facilitate the implementation of the test.
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1 INTRODUCTION

Marginal structural models (MSMs) are a class of causal models that are becoming increasingly popular for the estimation

of causal effects when one deals with time varying exposures in the presence of time-dependent confounding.1 The causal

parameters are often estimated using an inverse probability of treatment weight (IPTW) estimator.2 When using this estimator,

the analyst must specify an outcomemodel that relates the outcome to the exposure history, as well as a weighting model relating

the exposure at each time point to previous potential confounders. This estimator is unbiased under the assumptions of absence

of i) unmeasured confounders and ii) misspecification of both the weighting model and the outcome model.

The specification of the structural outcomemodel, that links the outcome to the exposure history, has been the subject of much

methodological work during the last few years. For instance, it has been observed that biased inferences may be obtained when

the model considers only a part of the exposure history.3 It has also been suggested that employing a marginal stabilized weight

0Abbreviations:MSMs, Marginal structural models; IPTW, Inverse probability of treatmeant weight; ABP, Ambulatory blood pressure
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IPTW estimator may provide some robustness to misspecifications in this instance.3,4 Platt et al have proposed an information

criterion for MSMs (QICw) inspired by Akaike’s information criterion to help in selecting a best fitting model among a set of

candidate specifications for the structural outcome model.5 However, the performance of the QICw is mitigated in so far as, in

some cases, the QICw selects the true model with a relatively small probability in simulation studies.5,6 Based on the QICw,

Taguri and Matsuyuka have presented a correctedQICw (cQICw) which also compares different models based on the value of

the criterion.6 The ability of this cQICw in selecting the correct specification was also variable in simulation studies.6 More

recently, Baba et al proposed a CP criterion.7 In simulations, CP was observed to perform generally better than the cQICw.7

The QICw, cQICw and CP are all comparative criteria. That is, their role is to help in selecting the most appropriate spec-

ification when substantive knowledge does not allow to pinpoint a single specific functional form for relating the outcome to

the exposure history. Opposingly, an absolute criterion would help in determining if a given specification is appropriate or not.

Such an absolute criterion would be most pertinent when prior knowledge suggests that a particular specification is appropriate.

An absolute criterion could also prove useful as a complement to comparative criteria.7 In fact, if the true specification is not

among the set of candidate models, comparative criteria will inevitably fail to identify the correct model. As such, it might be

interesting to test if the specification chosen with comparative criteria is correct. Unfortunately, there currently exists no absolute

criterion to validate a proposed specification of a marginal structural model.

In this paper, we thus introduce aWald-type test that seeks to detect when the proposed specification of the structural outcome

model is incorrect. The paper is structured as follows. In the second section, we introduce the concepts that underlie MSMs and

present the notation. Section 3 introduces our test for the correct specification of the outcome model. In Section 4, we present

a simulation study that investigates the empirical properties of our test. Section 5 presents an application of our new test in

which we investigate the effect of psychosocial stressors at work on ambulatory systolic and diastolic blood pressure. Finally, in

Section 6, we conclude with a discussion.

2 MSMS AND NOTATION

Marginal structural models model the expectation of the potential outcome as a function of the exposure history.1 We consider

a follow-up study with T time points and n individuals sampled from a population. For individual i (i = 1,… , n), let Yi be the

outcome at the end of the follow-up (at time T ), Xt,i be the exposure at time t and Lt,i be the other measured risk factors of Y

at time t (t = 1,… , T − 1). We define X̄t,i = (X1, X2,… , Xt) as the individual i’s exposure history with L̄t,i defined similarly.

As a notational shortcut, we denote X̄T−1,i as X̄i. The potential outcome Y x̄ is defined as the value that Y would have taken if

the exposure history had been x̄. Thus, the marginal structural model can be represented as E(Y x̄) = f (x̄) where f (x̄) denotes

a function of the exposure history. For instance, f (x̄) could be: f (x̄) = �0 + �1x1 +… ,+�T−1xT−1 or f (x̄) = �0 + �1
∑T−1
t=1 xt.
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According to the first function, the outcome depends on all the exposure history additively, while the outcome depends linearly

on the total amount of exposure in the latter. The causal parameters of interest in MSMs are contrasts between the counterfactual

expectations of the outcome according to different exposure history, such as E(Y x̄) vs E(Y x̄′) for x̄ ≠ x̄′. The parameters of

interest are thus a direct function of the parameters � of the MSM. For the sake of simplicity, we henceforth consider binary

exposures, that is Xt,i = 1 if subject i is exposed at time t and Xt,i = 0 otherwise.

Parameters of MSMs are often estimated using IPTW estimators.2 More precisely, the parameters of MSMs are estimated

with the estimated parameters of the weighted linear model for E(Y |X̄ = x̄) = f ∗(x̄), where f ∗(x̄) is assumed to be exactly

the same function as f (x̄) and the weights are given by the inverse probability of the observed exposure history conditionally

on covariates and prior exposures. The weights create a pseudo-population in which, at each time point, exposed (Xt = 1) and

unexposed (Xt = 0) subjects are similar to each other. Many types of weights can be considered, including standard weights

(w), stabilized weights (sw) and marginal stabilized weights (swm). Formally, these different weights for subject i are defined

as follows:

wi =
T−1
∏

t=1

1
P (Xt = xt,i|X̄t−1 = x̄t−1,i, L̄t = l̄t,i)

swi =
T−1
∏

t=1

P (Xt = xt,i|X̄t−1 = x̄t−1,i)

P (Xt = xt,i|X̄t−1 = x̄t−1,i, L̄t = l̄t,i)

swmi =
T−1
∏

t=1

P (Xt = xt,i)

P (Xt = xt,i|X̄t−1 = x̄t−1,i, L̄t = l̄t,i)
.

Remark that all weights share the same denominator, only the numerator of the weights varies according to the type of weights.

In fact, it has been shown that the numerator of the weights might be any function of X̄T−1 without affecting the consistency of

the estimator, that is, as the sample size increases to infinity, the estimate converges to the parameter in probability under the

sequential exchangeability and positivity assumptions.1 The sequential exchangeability assumption entails that

Y x̄
∐

X̄t|X̄t−1, L̄t,

where
∐

denotes statistical independence, whereas the positivity assumption involves that

P (Xt = xt|X̄t−1 = x̄t−1, L̄t = l̄t) > 0 for all x̄t, l̄t where P (L̄t = l̄t) ≠ 0.

The covariates L̄ are thus chosen to satisfy these conditions.

Furthermore, it was shown that when a saturated MSM is fitted, the estimates of the causal parameters are the same regardless

of the type of weights employed, but when an unsaturated model is considered, the estimates produced by the stabilized weights

are different from those yielded by the standard weights.1 The latter are more variable, but the difference is only due to sampling

variability under the hypothesis that the model is correctly specified.1 It is possible to further reduce the variance of the IPTW
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estimator by also conditioning on baseline covariates (L1) in the numerator of the weights.2 However, the outcome model of

the MSM then needs to be modified to also condition on these covariates.2 Such types of stabilized weights are thus not further

considered in the current paper.

In addition to the sequential exchangeability assumption, another key assumption for unbiasedly estimating the causal contrasts

E(Y x̄) vs E(Y x̄′) is the correct specification of the outcome model. That is, the function f ∗(x̄) used for relating the observed

outcome to the exposure history needs to be the same as the function truly linking the counterfactual outcomes to the exposure

history, f (x̄), or to include it as a particular case. In the remainder of this paper, we will say that the outcome model is correctly

specified if this is the case and misspecified otherwise. For example, if the true structural outcome model is E(Y x̄) = �0 +

�1
∑T−1
t=1 xt, then the outcome models E(Y |X̄) = �0 + �1

∑T−1
t=1 xt and E(Y |X̄) = �0 +

∑T−1
t=1 �txt would both be correctly

specified. In contrast, an incorrect specification could be E(Y |X̄) = �0 + �11

(

T
∑

t=1
Xt > 0

)

, where 1 is the usual indicator

function that takes the value 1 if its argument is true and 0 otherwise.

3 A TEST FOR THE CORRECT SPECIFICATION OF THE OUTCOMEMODEL

MSMs provide, under certain assumptions, unbiased estimators of the causal effect of an exposure history. To ensure that the

estimates obtained are unbiased, one should validate these assumptions. As previously mentioned, one of the assumptions of

MSMs is that the outcome model is correctly specified. However, it is very difficult to know if the model is correctly specified or

not since, so far, there is no formal way to test the validity of this assumption. Comparative criteria, such as QICw, cQICw or

Cp can be used to select a best-fitting specification among a set of candidates,5,6,7 but there is no guarantee that the model chosen

employing such criteria is correctly specified. For instance, a correct specification is impossible to find using these criteria if

none of the model in the candidate set is correctly specified. We thus propose a statistical test that seeks to detect if the proposed

specification of the outcome model is incorrect.

As was mentioned in the previous section, the parameters of MSMs can be estimated using various types of weights. When

an unsaturated model is considered and the outcome model is correctly specified, the estimates may differ depending on the type

of weights used, but the difference is only due to sampling variability.1 However, if the model is misspecified, the estimators

may not converge to the same values.8 We utilize these properties of the IPTW estimator in devising a Wald-type test for the

correct specification of the outcome model. That is, we want to test whether the differences observed between the estimates of

the parameters using different weights can be attributed to random fluctuations. In such a case, the data are in line with the null

hypothesis that the model is correctly specified. Otherwise, the data suggest that the model is incorrectly specified.

We provide details for comparing estimates obtained utilizing standard weights w and those produced by stabilized weights

sw, but the same procedure can be used to compare estimates obtained with any two types of weights. The test is defined as
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follows

H0 ∶ �w = �sw vsH1 ∶ �w ≠ �sw,

where �k denotes the vector of the parameters (without the intercept) estimated by using the weight k = (w, sw). More precisely,

�k denotes the true parameter toward which the estimator based on weights k converges when sample size grows.

Under H0, �̂ = �̂w − �̂sw has a normal limit distribution with mean 0, thus D = �̂V̂ ar(�̂)−1�̂′ ∼ �2m asymptotically, where

m denotes the dimension of �. Indeed, D is a sum of the square of m standard normal variables. We thus propose using D as a

statistic for testing if the outcome model is correctly specified. The limit normal distribution of �̂ follows from the fact that the

IPTW estimator of the parameters of MSMs is a regular asymptotically linear estimator.9 The proof is provided in the Appendix.

To calculate our test statistic, we need to estimate the covariance matrix of �̂. We propose two alternative estimators. As is

typical for Wald-type tests, for both estimators, the covariance matrix is estimated at the estimated parameter values and not at

the values of the parameters under the null.We first propose a non-parametric bootstrap estimator. More precisely, n observations

are sampled with replacement from the original data, B times. In each sample, the weights sw and w are first estimated. Then

the parameters of the MSM are estimated employing the weights w and sw, and �̂ is computed. The covariance matrix is

finally estimated by computing the empirical covariance matrix based on the B bootstrap estimates of �. As a second estimator,

we consider using the so-called sandwich estimator of a generalized estimating equation (GEE) regression. To implement this

option, we first build an augmented dataset where each subject appears twice, once with weights w and once with weights sw,

with an additional categorical variable indicating the type of weights. Using the GEE estimator, we then estimate the parameters

of a weighted regression model for the observed outcome according to the observed exposure history, including a term for

the type of weights and interaction terms between the observed exposure history and the type of weights. For example, if the

postulated structural outcome model is E(Y x̄) = �0 + �1
∑T−1
t=1 xt, we would fit the following weighted regression model on the

augmented dataset E(Y |X̄) = �0+�1
∑T−1
t=1 xt+�2type+ �type×

∑T
t=1 xt. The parameters associated with the interaction terms

in this model encode the difference in the estimates obtained using both types of weights. As such, the estimated covariance

matrix of the estimator of these parameters can be used for performing our test. An independence working covariance matrix is

chosen for the GEE estimator to mimic the situation where the IPTW estimators based on both weights are used independently.

We note that it is also possible to devise a test based on comparing the estimates from all three types of weights. The hypotheses

are then

H0 ∶ �w = �sw = �swm vsH1 ∶ �w ≠ �sw and/or �w ≠ �swm and/or �sw ≠ �swm.

The test statistic has the same form as previously described, with �̂ = (�̂w−�̂sw, �̂w−�̂swm)⊤. Remark that including �̂sw−�̂swm

in �̂ would be redundant since �̂sw − �̂swm = (�̂w − �̂swm) − (�̂w − �̂sw). Both estimators of the covariance matrix are obtained
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as previously described, but creating an augmented dataset with three rows (one for each type of weights) instead of two for

computing the sandwich estimator.

4 SIMULATION STUDY

4.1 Description of the simulation study

In this section, we detail our simulation study which includes four scenarios. This simulation study aims to evaluate the capacity

of our test described in Section 3 to detect a misspecified model with different sample sizes. We compare the performance of

the test according to different combinations of weights and estimator of the covariance matrix. We also investigate if truncating

the weights at their 99.5tℎ percentile impacts the performance of our test. The estimators of the causal parameter based on

truncated weights have been observed to be less variable than those based on untruncated weights.10 As such, we had initially

hypothesized that truncating weights might improve performance.

Scenario 1

This scenario is taken from Talbot et al.3 The relationships between the variables are as follows

L1 ∼ (0, 1),

P (X1 = 1) = expit(0.5L1)

L′1 = X1 + L1 + "L′1

L2 = 0.5X1 + "L2

P (X2 = 1) = expit(0.5X1 + 0.5L′1 + 0.5L2)

Y = X2 + 0.5L1 + L2 + "Y ,

where expit(a) = ea

1+ea
, "L1 , "L′1 , "L2 , "Y are (0, 1) independent random variables. In this scenario, the standard, stabilized and

marginal stabilized weights are defined as

wi =
1

P (X1 = x1,i|L1 = l1,i)
× 1
P (X2 = x2,i|X1 = x1,i, L1 = l1,i, L′1 = l

′
1,i, L2 = l2,i)

swi =
P (X1 = x1,i)

P (X1 = x1,i|L1 = l1,i)
×

P (X2 = x2,i|X1 = x1,i)
P (X2 = x2,i|X1 = x1,i, L1 = l1,i, L′1 = l

′
1,i, L2 = L2,i)

swmi =
P (X1 = x1,i)

P (X1 = x1,i|L1 = l1,i)
×

P (X2 = x2,i)
P (X2 = x2,i|X1 = x1,i, L1 = l1,i, L′1 = l

′
1,i, L2 = l2,i)

.
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Scenario 2

This scenario is inspired by the ones considered by Platt et al.5:

L1 ∼ (10, 1)

P (X1 = 1) = expit(−2.6 + 0.25L1)

L2 ∼ (L1 +X1, 1)

P (X2 = 1) = expit(−2.6 + 0.25L2 + 0.1X1)

L3 ∼ (L2, 1)

P (X3 = 1) = expit(−2.6 + 0.25L3 + 0.1X2)

L4 ∼ (L3 + 2X3, 1)

P (X4 = 1) = expit(−2.6 + 0.25L4 + 0.1X3)

Y ∼ (L4 + 3X4, 1),

The different type of weights are defined as follows

wi =
1

P (X1 = x1,i|L1 = l1,i)
× 1
P (X2 = x2,i|X1 = x1,i, L1 = l1,i, L2 = l2,i)

× 1
P (X3 = x3,i|X2 = x2,i, X1 = x1,i, L1 = l1,i, L2 = l2,i, L3 = l3,i)

× 1
P (X4 = x4,i|X3 = x3,i, X2 = x2,i, X1 = x1,i, L1 = l1,i, L2 = l2,i, L3 = l3,i, L4 = l4,i)

swi =
P (X1 = x1,i)

P (X1 = x1,i|L1 = l1,i)
×

P (X2 = x2,i|X1 = x1,i)
P (X2 = x2,i|X1 = x1,i, L1 = l1,i, L2 = l2,i)

×
P (X3 = x3,i|X2 = x2,i, X1 = x1,i)

P (X3 = x3,i|X2 = x2,i, X1 = x1,i, L1 = l1,i, L2 = l2,i, L3 = l3,i)

×
P (X4 = x4,i|X3 = x3,i, X2 = x2,i, X1 = x1,i)

P (X4 = x4,i|X3 = x3,i, X2 = x2,i, X1 = x1,i, L1 = l1,i, L2 = l2,i, L3 = l3,i, L4 = l4,i)

swmi =
P (X1 = x1,i)

P (X1 = x1,i|L1 = l1,i)
×

P (X2 = x2,i)
P (X2 = x2,i|X1 = x1,i, L1 = l1,i, L2 = l2,i)

×
P (X3 = x3,i)

P (X3 = x3,i|X2 = x2,i, X1 = x1,i, L1 = l1,i, L2 = l2,i, L3 = l3,i)

×
P (X4 = x4,i)

P (X4 = x4,i|X3 = x3,i, X2 = x2,i, X1 = x1,i, L1 = l1,i, L2 = l2,i, L3 = l3,i, L4 = l4,i)
.

Scenario 3

Scenario 3 is the same as Scenario 2, but with different parameter values. The variables are generated as follows

L1 ∼ (10, 1)
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P (X1 = 1) = expit(−2.6 + 0.25L1)

L2 ∼ (L1, 1)

P (X2 = 1) = expit(−2.6 + 0.25L2 + 0.1X1)

L3 ∼ (L2, 1)

P (X3 = 1) = expit(−2.6 + 0.25L3 + 0.1X2)

L4 ∼ (L3, 1)

P (X4 = 1) = expit(−2.6 + 0.25L4 + 0.1X3)

Y ∼ (L4 +X4, 1).

The weights are defined as in Scenario 2.

Scenario 4

The objective of Scenario 4 is to investigate the performance of the test when the weighting models are incorrect. The equations

used to generate the data are similar to those of Scenario 2, but include non linear terms.

L1 ∼ (10, 1)

P (X1 = 1) = expit(−2.6 + 0.25L1 − 0.1(L1 − 10)2)

L2 ∼ (L1 +X1, 1)

P (X2 = 1) = expit(−2.6 + 0.25L2 + 0.1X1 − 0.1(L2 − 10)2 − 0.05X1(L2 − 10))

L3 ∼ (L2, 1)

P (X3 = 1) = expit(−2.6 + 0.25L3 + 0.1X2 − 0.1(L3 − 10)2 − 0.05X2(L3 − 10))

L4 ∼ (L3 + 2X3, 1)

P (X4 = 1) = expit(−2.6 + 0.25L4 + 0.1X3 − 0.1(L4 − 10)2 − 0.05X3(L4 − 10))

Y ∼ (L4 + 3X4, 1)

The weights are defined as in Scenario 2.
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4.2 Analysis of the simulation

For each of the scenarios described above, we generated 1000 datasets of size n = 200, n = 500, n = 1000 and n = 5000. We

considered the four following specifications of the MSM

E(Y x̄) = �0 + �1
T−1
∑

t=1
Xt

E(Y x̄) = �0 + �TXT−1

E(Y x̄) = �0 + 1

(T−1
∑

t=1
Xt > 0

)

E(Y x̄) = �0 +
T−1
∑

t=1
�tXt,

where T = 3 in Scenario 1 and T = 5 in Scenarios 2, 3 and 4. In the following, these models will be designated respec-

tively as the cumulative, the current, the indicator and the full model. They are examples of specifications encountered in the

literature.1,11,12,13

For each model, we estimated the MSMs’ parameters using the three different forms of weights described above and the

probabilities forming these weights were estimated employing main effects logistic regression models. As such, the weighting

models are misspecified for Scenario 4. We then applied 16 variations of our test described in Section 3. These variations are

obtained by considering all possible comparisons of the weighted estimates (w vs sw,w vs swm, swm vs sw,w vs sw vs swm),

estimator of the covariance matrix (bootstrap or sandwich) and untruncated or truncated weights. The bootstrap was performed

with B = 1000 resamples using the function boot from the R package boot.14 Then, for each combination of scenario, sample

size, MSM specification and variation of the correct specification test, we calculated the proportion of p-values smaller than 5%

across the 1000 generated datasets; that is, the proportion of the time the test leads to reject the null hypothesis that the model

is correctly specified. When the MSM is correctly specified, this proportion should be around 5%. We have also computed the

proportion of the time each specification was chosen according to QICw and cQICw. Note that in the case of longitudinal

MSMs, cQICw is equivalent to CP if the weights are treated as known.7

As in many previous simulations of MSMs, the data generating equations were constructed to avoid non-collapsibility so that

the correct specification of the outcome model can be determined easily. To capture the correct specification of a model, we

proceeded by substitution. For example, in Scenario 1 we have:

Y = X2 + 0.5L′1 + L2 + "Y

= X2 + 0.5(X1 + L1 + "L′1 + 0.5X1 + "L2 + "Y

= X2 +X1 + "∗Y
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where "∗Y = 0.5L1 + 0.5"L′1 + "L2 + "Y . In this case, both the full and cumulative models are thus correctly specified. For

Scenarios 2 and 4, only the full model is correctly specified. The current and the full models are correctly specified in Scenario 3.

4.3 Simulation results

Contrary to our initial expectation, our proposed Wald test performed poorly when truncated weights were utilized. Indeed,

rejection rates much higher than the nominal 5% rate were observed in many situations. To lighten the text, those results are

thus presented as a supplementary online material and only results based on untruncacted weights are discussed below.

The results for Scenario 1 are summarized in Table 1 . The null hypothesis is rejected less than or close to 5% of the time for

both the full and the cumulative models, which are the correctly specified models. For the indicator model, the rejection rates

are high for most tests, even with a sample size of n = 200. Only the tests based on comparing w and swm offer a relatively

poor performance when the sample size is 200. The tests using the sandwich estimator of the covariance matrix outperform

their counterpart based on the bootstrap estimator. In particular the tests swm vs sw and w vs sw vs swm using the sandwich

estimator have the best performance. Similar results are observed for the current model. The main difference is that the tests

comparing w and swm yield rejection rates smaller or equal to 5% for all sample sizes. This situation can be explained by the

fact that unbiased estimation of the MSM’s parameter can be obtained by using either standard weights or marginal stabilized

weights in such a misspecified structural model.3 We have investigated the performance of tests using the sandwich estimator

when an exchangeable working covariance structure is considered instead of the independence structure in this scenario. This

resulted in poorer performance of the tests; rejection rates were sometimes much larger than 5% for correctly specified models

and were generally lower than those reported in Table 1 for misspecified models (results not presented). Results of information

criteria for all scenarios are presented in Table 5 . In Scenario 1, information criteria almost always select correctly specified

models. cQICw∕Cp could be argued to perform better since it has a larger propensity to select the simplest of the two correctly

specified model (the cumulative model). However, it also selects slightly more often misspecified models for sample sizes of

n = 200 and n = 500.

The results pertaining to Scenario 2 are presented in Table 2 . For the misspecified cumulative model, all tests reject the null

hypothesis that the model is correctly specified in less than or close to 5% of the replications for a sample size of n = 200 when

the bootstrap estimator of the covariance matrix is used. Rejection rates are moderate when the sandwich estimator is used.

Similarly, rejection rates are small or moderate for sample sizes of n = 500 or n = 1000, whichever estimator is used for the

covariance matrix. At n = 5000, large rejection rates are obtained, except for tests comparing weightsw and swm. As expected,

the rejection rates are inferior to 5% for all sample sizes and tests for the full model, which is correctly specified when the

bootstrap estimator is used. When the sandwich estimator is used, rejection rates tend to slightly, but noticeably, exceed the 5%

threshold at the smaller sample sizes. The deviation from the nominal level is most important for the test w vs sw vs swm. For
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the indicator model, at n = 200, the power to detect that the model is misspecified is small to moderate when using the bootstrap

estimator and is large when the sandwich estimator is used. For larger sample sizes, the rejection rates are large for all tests,

whichever covariance matrix estimator is used. The most powerful test is the one based on w vs sw vs swm using the sandwich

estimator (93.9% rejection rate). Similar results are obtained for the current model. The main difference is, as in Scenario 1, that

the rejection rates are lower or close to 5% for the tests comparing standard weights and marginal stabilized weights. Once again,

both standard weights and marginal stabilized weights produce unbiased estimators of the MSM’s parameter despite the model

being misspecified. Comparative criteriaQICw and cQICw always select the correctly specified full model at all sample sizes.

Table 3 presents the results of Scenario 3. Concerning the cumulative model, which is misspecified, the proportion of

rejection is smaller than or close to 5% for all tests and all sample sizes when considering the bootstrap estimator. When the

sandwich estimator is used, the rejection rates are between 10% and 15%, except for the testw vs swmwhich has a rejection rate

close to 5%. For the full model, as expected, the proportion of rejection of the null hypothesis that the model is correctly specified

is always under or close to 5% when using the bootstrap estimator. When the sandwich estimator is used, the rejection rate tends

to slightly exceed the nominal rate (up to 10.3% instead of 5%), especially at the smaller sample sizes. For the misspecified

indicator model, rejection rates are inferior to 5% for all tests when using the bootstrap estimator at n = 200, n = 500 and

n = 1000. At n = 5000 the rejection rates are small to moderate. When using the sandwich estimator, rejection rates are small to

moderate for sample sizes n = 200, n = 500 and n = 1000, and are generally large for a sample size of n = 5000. Considering

the current model, the rejection rate is under or close to 5% for all tests based, as expected since this model is correctly specified.

The information criteria almost always select correctly specified models. However, they tend to favor the full model over the

simpler current model. As in Scenario 1, cQICw∕Cp has a greater tendency to select the simplest of the two correctly specified

model, but also selects more often misspecified models at n = 200.

Results of Scenario 4 are presented in Table 4 . Recall that this scenario is almost the same as Scenario 2, but is meant to

investigate the performance of our test under misspecification of the weighting model. First, most versions of the test tend to

reject correctly specified models much more often than the 5% nominal rate. Only the test comparing swm and sw using the

bootstrap estimator has acceptable rejection rates for correctly specified models, although the rejection rate gets close to 10%

in some instances at n = 5000. Rejection rates of incorrectly specified models follow a pattern similar to those observed in

Scenario 2, but are generally larger. As in Scenario 2, information criteria always select the correctly specified model.

The results of Scenario 1, 2 and 3 indicate that the rejection rates of correctly specified models for tests using the bootstrap

estimator are often much lower than the expected nominal rate of 5%, especially for small sample sizes. Tests based on the

sandwich estimator seem to behave more appropriately, but rejection rates that are noticeably lower or larger than 5% are also

observed for smaller sample sizes. A possible explanation for this phenomenon is that the distribution of the difference in

estimates would not be normally distributed for small n, and the test would thus not follow the expected chi-square distribution
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under the null. Normal QQ-plots of the differences in the estimated parameters between standard weights and stabilized weights

for the full model in Scenario 2 are depicted in Figure 1 .We can notice deviations from the normal distribution in the tails which

vanish as sample size increases. Similar results are obtained for the other estimates of correctly specified models (not presented).

Departure from the normality distribution thus at least partly explains why rejection rates of correctly specified models do not

correspond to their nominal rate. Another plausible explanation would be the incorrect estimation of the covariance matrix. For

instance, it is known that the sandwich estimator may not work well for small sample sizes (for example, see reference15). The

plausibility of this explanation is reinforced by the fact that variations in rejection rates are observed between tests using the

bootstrap estimator of the covariance matrix and their counterpart based on the sandwich estimator.

TABLE 1 Rejection rates of tests at � = 0.05 for the correct specification of the outcome model by postulated specification for
Scenario 1, in percentage

Bootstrap variance estimator Sandwich variance estimator
Specification Test n=200 n=500 n=1000 n=5000 n=200 n=500 n=1000 n=5000

Cumulative

w vs sw 0.4 1.0 2.6 4.3 2.3 4.1 4.6 4.2
w vs swm 0.7 1.4 2.8 4.4 5.2 5.8 5.3 5.2
swm vs sw 0.3 1.1 3.0 4.9 2.6 3.9 4.7 5.5

w vs sw vs swm 0.1 0.2 0.5 2.3 1.9 1.8 2.0 1.9

Full

w vs sw 0.4 0.9 0.7 1.2 2.5 2.3 1.4 1.2
w vs swm 0.4 1.0 0.8 1.3 2.7 1.9 1.3 1.5
swm vs sw 0.1 0.3 0.6 1.3 2.6 2.8 2.2 1.8

w vs sw vs swm 0.0 0.1 0.0 1.0 1.4 0.6 0.2 0.6

Indicator

w vs sw 64.1 90.5 98.9 100 70.8 89.8 98.6 100
w vs swm 17.9 42.4 66.2 99.8 35.2 49.8 68.7 99.7
swm vs sw 71.1 97.6 99.8 100 85.9 97.6 99.8 100

w vs sw vs swm 57.0 97.5 100 100 86.5 98.9 100 100

Current

w vs sw 64.1 98.5 99.9 100 84.0 98.9 99.9 100
w vs swm 0.0 0.0 0.0 0.0 6.7 6.8 5.2 5.1
swm vs sw 70.4 98.8 99.9 100 86.8 99.2 99.9 100

w vs sw vs swm 45.9 97.9 99.8 100 90.4 99.7 100 100

w = standard weights, sw = stabilized weights, swm = marginal stabilized weights. Models in bold are correctly specified.

5 APPLICATION

In this section, data from a 5-year longitudinal cohort study of white-collar workers in Quebec City (Canada) are used to illustrate

the method that we developed. More precisely, we applied our test to MSMs aimed at estimating the causal effect of repeated

exposure to psychosocial stressors at work on ambulatory blood pressure (ABP) at the end of follow-up.
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TABLE 2 Rejection rates of tests at � = 0.05 for the correct specification of the outcome model by postulated specification for
Scenario 2

Bootstrap variance estimator Sandwich variance estimator
Specification Test n=200 n=500 n=1000 n=5000 n=200 n=500 n=1000 n=5000

Cumulative

w vs sw 1.8 7.4 13.8 59.0 15.1 21.6 29.6 74.9
w vs swm 0.5 0.9 4.4 22.8 5.9 6.6 9.4 24.4
swm vs sw 3.5 12.8 25.4 85.1 22.3 36.2 48.9 93.0

w vs sw vs swm 1.3 8.1 18.8 79.9 19.6 29.6 43.6 91.3

Full

w vs sw 0.3 0.0 0.9 2.8 7.4 6.1 5.9 5.1
w vs swm 0.0 0.0 0.6 2.2 7.3 5.3 5.2 5.2
swm vs sw 0.1 0.0 1.0 2.1 7.4 5.6 5.6 4.4

w vs sw vs swm 0.0 0.0 0.4 1.5 9.9 6.5 6.0 5.4

Indicator

w vs sw 52.4 95.0 99.9 100 90.5 99.7 100 100
w vs swm 33.3 72.1 95.4 100 87.4 98.2 99.9 100
swm vs sw 20.6 83.1 99.5 100 59.6 93.7 99.9 100

w vs sw vs swm 38.4 94.4 100 100 93.9 99.9 100 100

Current

w vs sw 45.4 96.6 100 100 89.5 99.5 100 100
w vs swm 0.0 0.2 0.3 2.2 6.2 5.8 5.4 4.8
swm vs sw 56.1 97.7 100 100 93.2 99.9 100 100

w vs sw vs swm 35.2 93.9 100 100 91.7 99.7 100 100

w = standard weights, sw = stabilized weights, swm = marginal stabilized weights. Models in bold are correctly specified.

TABLE 3 Rejection rates of tests at � = 0.05 for the correct specification of the outcome model by postulated specification for
Scenario 3

Bootstrap variance estimator Sandwich variance estimator
Specification Test n=200 n=500 n=1000 n=5000 n=200 n=500 n=1000 n=5000

Cumulative

w vs sw 0.5 0.8 2.0 5.3 10.0 11.6 11.6 12.3
w vs swm 0.0 0.2 0.2 1.6 6.2 6.0 5.5 5.4
swm vs sw 0.9 1.2 2.1 5.4 12.3 15.0 16.0 15.0

w vs sw vs swm 0.2 0.1 0.5 3.5 11.8 13.1 14.9 13.7

Full

w vs sw 0.0 0.0 0.2 0.2 8.7 6.5 6.1 5.0
w vs swm 0.0 0.0 0.0 0.0 7.5 6.4 5.9 5.5
swm vs sw 0.0 0.0 0.0 0.2 6.7 4.7 4.7 3.9

w vs sw vs swm 0.0 0.0 0.0 0.0 10.3 6.7 7.0 5.8

Indicator

w vs sw 0.3 1.0 1.5 4.0 12.9 18.8 26.0 37.4
w vs swm 1.0 3.0 4.4 19.2 22.8 39.2 49.9 73.1
swm vs sw 0.1 0.3 2.4 52.7 7.8 11.2 18.3 64.9

w vs sw vs swm 0.4 1.3 3.9 49.4 23.7 37.6 50.7 86.0

Current

w vs sw 0.0 0.1 0.6 1.7 3.6 4.0 3.7 2.9
w vs swm 0.1 0.1 0.3 2.0 6.1 6.4 5.6 5.9
swm vs sw 0.0 0.1 0.5 2.5 3.5 3.7 4.4 2.6

w vs sw vs swm 0.0 0.0 0.2 1.3 5.2 5.0 4.6 3.8

w = standard weights, sw = stabilized weights, swm = marginal stabilized weights. Models in bold are correctly specified.
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TABLE 4 Rejection rates of tests at � = 0.05 for the correct specification of the outcome model by postulated specification for
Scenario 4

Bootstrap variance estimator Sandwich variance estimator
Specification Test n=200 n=500 n=1000 n=5000 n=200 n=500 n=1000 n=5000

Cumulative

w vs sw 5.0 16.6 36.1 97.4 22.7 36.2 55.3 99.4
w vs swm 15.7 57.9 90.2 100 29.5 62.7 90.4 100
swm vs sw 2.4 10.4 19.3 85.2 39.2 61.9 78.6 99.3

w vs sw vs swm 9.7 49.8 86.8 100 50.6 82.0 96.7 100

Full

w vs sw 2.2 41.6 94.6 100 32.9 74.3 98.2 100
w vs swm 5.0 52.0 96.4 100 37.2 76.3 97.9 100
swm vs sw 0.0 0.0 0.1 1.8 8.7 13.0 21.1 50.8

w vs sw vs swm 0.2 15.1 83.5 100 30.4 66.3 95.6 100

Indicator

w vs sw 71.3 99.0 100 100 96.8 99.9 100 100
w vs swm 91.3 99.9 100 100 99.4 100 100 100
swm vs sw 1.3 9.2 38.7 99.6 22.2 55.0 85.8 100

w vs sw vs swm 81.4 99.8 100 100 99.1 99.9 100 100

Current

w vs sw 5.5 21.2 42.4 97.9 41.7 64.9 84.4 100
w vs swm 8.4 50.6 92.6 100 38.0 74.1 96.6 100
swm vs sw 1.0 4.7 4.6 9.8 43.1 62.3 65.7 75.6

w vs sw vs swm 4.2 36.9 85.1 100 60.1 88.0 98.5 100

w = standard weights, sw = stabilized weights, swm = marginal stabilized weights. Models in bold are correctly specified.

The aim of the original study was to examine the effect of psychosocial stressors at work on health. Workers completed self-

administered questionnaires on work characteristics and wore oscillometric devices to assess ABP at baseline (2000-2004),

3-year follow-up (2004-2006) and 5-year follow-up (2006-2009). Systolic and diastolic ABP (in mm Hg) were assessed using

validated protocols (see Trudel et al16 for more details). ABP measures from the 5-year follow-up were used. Psychosocial

stressors at work, as defined according to the Effort-reward imbalance (ERI) model, were assessed at all three time-points by a

validated self-report instrument.17 As recommended, a ratio of efforts to rewards greater than 1 was dichotomized as exposure

to ERI.17 Different repeated exposure patterns were merged together when they were expected to have a similar effect on ABP.

Workers were thus classified into five categories of repeated ERI exposure: never exposed (0, 0, 0), intermittent exposure (0, 1, 0

or 1, 0, 1), exposure that ceased over follow-up (1, 0, 0 or 1, 1, 0), exposure onset (0, 1, 1 or 0, 0, 1) or chronic exposure (1, 1, 1).

The sample used included individuals that participated at all three follow-ups, had ABP measurements at the last follow-up,

had adequately completed the ERI measurement at all three follow-ups, had no missing values on covariates, were not pregnant

at the last follow-up and worked at least 21 hours per week (in order to prevent potential misclassification due to insufficient

exposure). The final sample was composed of 1576 workers with 925 women and 651 men. Potential confounders included

gender, age at baseline, education (less than college, college completed, university completed), family history of cardiovascu-

lar disease, smoking status (current smoker or not), alcohol consumption (< 1 drink/week, 1-5 drinks/week, ≥ 6 drinks/week),
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TABLE 5 Selection probabilities of information criteria by postulated specification and scenario, in percentage

Scenario Specification Criterion n=200 n=500 n=1000 n=5000

Scenario 1

Cumulative QICw 60.8 64.0 65.6 64.5
cQICw∕CP 68.0 72.5 74.4 72.5

Full QICw 35.2 35.5 34.3 35.5
cQICw∕CP 27.1 26.7 25.5 27.5

Indicator QICw 3.8 0.5 0.1 0.0
cQICw∕CP 4.4 0.8 0.1 0.0

Current QICw 0.2 0.0 0.0 0.0
cQICw∕CP 0.5 0.0 0.0 0.0

Scenario 2

Cumulative QICw 0.0 0.0 0.0 0.0
cQICw∕CP 0.0 0.0 0.0 0.0

Full QICw 100 100 100 100
cQICw∕CP 100 100 100 100

Indicator QICw 0.0 0.0 0.0 0.0
cQICw∕CP 0.0 0.0 0.0 0.0

Current QICw 0.0 0.0 0.0 0.0
cQICw∕CP 0.0 0.0 0.0 0.0

Scenario 3

Cumulative QICw 0.0 0.0 0.0 0.0
cQICw∕CP 0.2 0.0 0.0 0.0

Full QICw 71.4 71.5 73.5 71.1
cQICw∕CP 59.9 59.6 60.3 57.9

Indicator QICw 2.0 0.0 0.0 0.0
cQICw∕CP 3.1 0.0 0.0 0.0

Current QICw 26.6 28.5 26.5 28.9
cQICw∕CP 36.8 40.4 39.7 42.1

Scenario 4

Cumulative QICw 0.0 0.0 0.0 0.0
cQICw∕CP 0.0 0.0 0.0 0.0

Full QICw 100 100 100 100
cQICw∕CP 100 100 100 100

Indicator QICw 0.0 0.0 0.0 0.0
cQICw∕CP 0.0 0.0 0.0 0.0

Current QICw 0.0 0.0 0.0 0.0
cQICw∕CP 0.0 0.0 0.0 0.0

Models in bold are correctly specified.

sedentary lifestyle (physical activity < 1/week or ≥ 1/week), body mass index (< 25, 25-26.9, ≥ 27 kg/m2) and taking medi-

cation for hypertension. These covariates were selected a priori because they are factors affecting blood pressure,18,19 and are

also potentially associated with ERI exposure.20 The three first covariates were not time-varying, but all others were.

We identified being in possible presence of time-dependent confounding. In fact, in addition to being potential confounders,

some of the selected covariates were also possibly affected by exposure to psychosocial stressors at work21. MSMswere therefore

an appropriate approach for estimating the effect of repeated exposure to ERI onABP. The proposed outcomemodel specification

was E(Y x̄) = �0 + �1IE + �2EC + �3EO + �4CE, where Y is the ABP at the end of follow-up and IE, EC , EO and CE
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FIGURE 1 Normal QQ-plots of the differences in the estimated parameters between standard weights and stabilized weights
for the full model in Scenario 2.

are indicators that the repeated ERI exposure corresponded to the intermittent exposure, exposure cessation, exposure onset and

chronic exposure, respectively. The never exposed workers (0,0,0) were used as the reference category.

To test if the postulated model was correctly specified, we compared estimates obtained with untruncated weights w, sw and

swm and using the sandwich estimator of the covariance matrix. The weights were estimated using the predicted probabilities of

main effects logistic regression models. We provide example code in SAS and R for performing this test as online supplementary

material. Separate models were considered for both systolic blood pressure and diastolic blood pressure. The null hypothesis

that the outcome model was correctly specified was not rejected for both models, with respective p-values of 0.30 and 0.92.

Since the null hypothesis was not rejected, we estimated the causal effect of the repeated ERI exposure on both the systolic

and diastolic blood pressure using the stabilized weights with a robust estimator of the variance. Analyses were repeated after
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stratifying for sex, since sex-specific relationships between psychosocial stressors at work and cardiovascular health have been

documented.22 Again, the null hypothesis that the outcome model was correctly specified was not rejected (all p > 0.71).

Table 6 presents the p-values of the tests for the correct specification of the postulated outcome model as well as the causal

effect estimates. Repeated ERI exposure was not significantly associated with systolic ABP neither when considering all par-

ticipants nor when considering women and men separately. However, statistically significant associations were observed with

diastolic ABP. Among all participants, chronic and intermittent ERI exposure were respectively associated with diastolic ABP

measurements that were 1.80 mm Hg (95%CI=0.33-3.27) and 1.31 mm Hg (95%CI=0.04-2.59) higher compared to never

exposed workers. This association seemed to be mostly driven by an effect among women participants. Indeed, diastolic ABP

was 1.99 mmHg (95% CI=0.23-3.75) higher in women with chronic ERI exposure and 1.88 mmHg (95% CI=0.23-3.52) higher

in women with intermittent ERI exposure compared to women that had never been exposed. Effect estimates were closer to zero

among men and none were statistically significant at p = 0.05. Given the width of the confidence intervals, these results should

be interpreted as inconclusive rather than as evidence for an absence of an effect.

TABLE 6 P-values of the tests for the model correct specification and estimated causal effect on ambulatory blood pressure (in
mm Hg) of the repeated exposure to effort-reward imbalance as compared to never exposed workers with their 95% confidence
interval

Ambulatory Systolic Blood Pressure Ambulatory Diastolic Blood Pressure
P-value1 Estimate2 95% CI P-value1 Estimate2 95% CI

All participants

Intermittent exposure

0.30

1.49 -0.33 3.31

0.92

1.31 0.04 2.59
Exposure cessation 1.12 -0.48 2.70 0.59 -0.51 1.69

Exposure onset 0.19 -1.49 1.88 0.24 -0.99 1.47
Chronic exposure 1.64 -0.32 3.59 1.80 0.33 3.27

Women

Intermittent exposure

0.71

1.50 -0.95 3.95

0.94

1.88 0.23 3.52
Exposure cessation 1.74 -0.26 3.74 1.12 -0.35 2.59

Exposure onset 0.90 -1.39 3.19 1.00 -0.69 2.68
Chronic exposure 1.77 -0.85 4.38 1.99 0.23 3.75

Men

Intermittent exposure

0.80

1.74 -0.52 4.00

1.00

0.70 -1.40 2.80
Exposure cessation 0.87 -1.72 3.46 0.07 -1.68 1.81

Exposure onset -0.33 -2.95 2.29 -0.74 -2.83 1.36
Chronic exposure 1.47 -1.41 4.35 1.14 -1.29 3.58

1P-value for the test that the model is correctly specified
2The reference category is never exposed workers
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6 DISCUSSION

The correct specification of the structural outcome model is one of the hypotheses that needs to be satisfied for estimating the

causal effect of an exposure history using MSMs. The existing comparative criteria and the new test we have introduced in this

paper are complementary tools to help analysts in specifying their MSMs. The formers are most useful when many candidate

specifications are plausible, while the latter may be helpful to validate either an a priori specification or the specification chosen

using comparative criteria.

The performance of different versions of our test was investigated and compared in a simulation study. Considering these

results, we first recommend that our test should not be performed utilizing truncated weights. In fact, tests based on truncated

weights have been observed to reject correctly specified models much more often than expected. We also recommend not using

versions comparing standard weights with marginal stabilized weights, since the comparison of such weights is unable to detect

when the current model is incorrectly specified. This is because both of these weights yield unbiased estimators of the parameters

of the MSM under some types of misspecifications.3,4 If the goal of the analysis is to compare outcomes according to the full

exposure history, that is to compare E(Y x̄) vs E(Y x̄′), then biased comparisons would be obtained using either weights when

the model is misspecified, despite the parameter of the MSM being unbiasedly estimated. We note that if the goal is instead to

compare outcomes according to only part of the exposure history, then considering history-restricted marginal structural models

would be preferable.23

The results of Scenario 4 indicate that all versions of the test reject correctly specified models more often than the nominal

rate when the weighting model is misspecified. Although this is not the expected behavior for the test, we do not see this feature

as undesirable. Indeed, this means that significant results can be interpreted as evidence that something is wrong with how the

parameters of the MSM were estimated. Since the misspecification of either the weighting model or of the outcome model

can yield biased estimators, significant results for the test should invite analysts to revise their models. To reduce the risk of

misspecifying the weighting model, machine learning approaches such as the Super Learner can be considered.24

When the weighting model is correctly specified, the test that had the best general performance (rejection rate close to 5%

when the model is correctly specified and among the largest rejection rates when the model is misspecified) is the one based on

comparing estimates produced by untruncated standard weights, stabilized weights and marginal stabilized weights, employing

a sandwich estimator for the covariance matrix. We have provided an example of SAS and R code for implementing this version

of the test as an online supplementary material to facilitate its application. This version of the test was able to detect misspecified

models in ≥ 86% of replications even at a small sample size of n = 200 in Scenario 1. In Scenario 2, the rejection rate of two

out of three misspecified model was also large (≥ 91%) at a sample size of n = 200. Although rejection rates were moderate

for smaller sample sizes for the misspecified cumulative model in this scenario, high rejection rates were obtained at n = 5000.
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Despite being the best performing test, its absolute performance was admittedly somewhat disappointing in Scenario 3. Another

limitation of this version of the test is that it tends to reject correctly specified models slightly too often for smaller sample sizes.

When analyzing small data, one might thus prefer using another version of the test, although there is no clear second best version

in our opinion.

To better understand the results we have observed in Scenario 3, we have simulated a very large sample of size n = 1, 000, 000

and have observed that the parameter estimates were very similar for the misspecified models, regardless of the type of weights

considered. As such, although the estimators can converge to different values depending on the type of weights when the model

is misspecified, this may not always be the case. And even when there is a difference, it might be small. In such situations, the

test we have introduced will inevitably have poor performance. This indicates that the results of our test shall appropriately be

used as evidence against a given specification of the outcome model, but not as evidence in favor of its correct specification.

However, this limitation needs not prevent the use of the test. Other tests share the same limitations and are still routinely used

in practice. For instance, the Chi-Square test for Structural Equation Models is largely used for evaluating the model fit while it

has a number of limitations similar to our test’s limitations.25

In our application for estimating the effect of repeated exposure to psychosocial stressors at work on blood pressure, we used

the test identified as the best among those investigated. The test did not provide evidence that the a priori chosen specification was

incorrect. Overall, the results we obtained provide support that repeated exposure to psychosocial stressors at work negatively

affect diastolic blood pressure in women. Associations observed with chronic and intermittent exposure were particularly large.

These results, along with those of previous studies,26,27 thus suggest that implementing interventions and policies to sustainably

reduce psychosocial stressors at work may help improve blood pressure, and thus have a beneficial effect on cardiovascular

health.

Finally, our empirical investigation of the performance of our test based on a simulation study has limitations. First, only four

scenarios were considered. These scenarios have allowed us to make important observations concerning the performance of the

different versions of our test and to recommend that the test be performed comparing untruncated standard weights, stabilized

weights and marginal stabilized weights, using a sandwich estimator for the covariance matrix. Further research is nevertheless

warranted to investigate the behavior of the test in other situations. For instance, investigation of the performance of the test

when considering repeated measuresMSMs or marginal structural Coxmodels could be conducted. Additional efforts could also

be devoted to better understanding situations in which our proposed Wald test has low or no power to detect misspecifications.

Such investigations, however, are outside the scope of the current paper.
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APPENDIX

In this section, we provide a proof of the asymptotic normal distribution of the estimator of the difference in parameters estimated

with different weights based on the property that estimators of the parameters are regular and asymptotically linear (RAL).

Proof. An estimator Ψ̂ of an m-dimensional parameter Ψ is RAL if

√

n
(

Ψ̂ − Ψ
)

= 1
√

n

n
∑

i=1
� i + op(1),

where � is the influence function of the estimator Ψ̂, E[� ] = 0, V ar[� ] is finite and nonsingular, op(1) is a term that

converges in probability to zero as n goes to infinity, and Ψ̂ meets some mild regularity condition.28 Such estimators have a

normal limit distribution.28

Since both �̂sw and �̂w are regular and asymptotically linear,9 we can write

√

n
(

�̂ − �
)

=
√

n
(

�̂w − �w
)

−
√

n
(

�̂sw − �sw
)

= 1
√

n

n
∑

i=1
��

w

i + op(1) −
1
√

n

n
∑

i=1
��

sw

i − op(1)

= 1
√

n

n
∑

i=1
��i + op(1),

where ��i = �
�w
i − ��

sw

i is the influence function of the estimator �̂.

To demonstrate that �̂ is an RAL, it remains to show that E[��] = 0 and that V ar[��] is finite and nonsingular. This directly

follows from the fact that the influence functions ��w and ��sw are both elements of the Hilbert space  of m-dimensional

functions with mean 0 and finite and non-singular variances, with covariance inner product.28 Because Hilbert spaces are linear

spaces, any linear combination of its elements is also an element of the Hilbert space. Thus, �̂ is an RAL estimator and it has a

normal limit distribution. Note that even if even if the regularity conditions necessary for the estimator to be an RAL would not

hold, the limit distribution of an asymptotically linear estimator is also normal.28
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