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Abstract

We discuss the conditions that are necessary for a given banded matrix to have a banded inverse.

Although a generic requirement is known from previous studies, we tend to focus on the ranks of

the block matrices that are present in the banded matrix. We consider mainly the two factor 2-by-
2 block matrix and the three factor 2-by-2 block matrix cases. We prove that the ranks of the

blocks in the larger banded matrix need to necessarily conform to a particular order. We show

that for other orders, the banded matrix in question may not even be invertible.

We are then concerned with the factorization of the banded matrix into simpler factors. Simpler
factors that we consider are those that are purely block diagonal. We show how we can obtain
the different factors and develop algorithms and codes to solve for them. We do this for the two
factor 2-by-2 and the three factor 2-by-2 matrices. We perform this factorization on both the

Toeplitz and non-Toeplitz case for the two factor case, while we do it only for the Toeplitz case
in the three factor case.

We then look at extending our results when the banded matrix has elements at its corners. We
show that this case is not very different from the ones analyzed before. We end our discussion
with the solution for the factors of the circulant case. Appendix A deals with a conjecture about
the minimum possible rank of a permutation matrix. Appendices B & C deal with some of the
miscellaneous properties that we obtain for larger block matrices and from extending some of the
previous work done by Strang in this field.

Thesis Supervisor: Gilbert Strang
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Chapter 1

Introduction

1.1 Banded Matrices

Matrices are an integral part in the effective working of many of the modem day technologies.

The compression of pictures and the prediction of flow over a model fighter aircraft under

extremely complicated maneuvers are two examples. In the first case, we make use of the fast

Fourier transform that is extremely effective in dealing with very large systems of matrices [1].

In the second case we construct extremely large matrices that need to be inverted quickly, in

order to get the solution vector such as the velocity of the aircraft and also other control

parameters.

In general, inverting a matrix is a memory intensive and operation intensive process. There are a

lot of algorithms that are used to compute the inverse of a matrix and consequently to solve for a

linear system of equations. We have the common Gaussian elimination method, the LU

decomposition and so on. The Gaussian elimination is of complexity O(n 3 )[2] where n is the

size of the square matrix. Please note that the number of operations quoted is for the situation

where the matrices are full.



The vast majority of matrices that occur in nature are generally sparse. However, there is no

guarantee that a sparse matrix will have a sparse inverse. In general this is not the case. A sparse

matrix can have an inverse that is full which in turn can increase the overhead when computing

solutions to linear equations. However, there are certain conditions under which a sparse matrix

will also have a sparse inverse. It is this kind of scenario that we are interested in.

The simplest possible case of a sparse matrix having a sparse inverse is when the matrix under

consideration is purely diagonal. In this case the inverse is simply the inverse of each of the

elements on the diagonal. We then move on to the scenario where there are non-zero elements in

positions apart from the main diagonal. However we restrict the non-zero elements to a small

band on either side of the main diagonal, as described in [1]. For the time being we shall

consider a matrix that has elements only next to the main diagonal - we call this type of matrix a

tri-diagonal matrix. A typical tri-diagonal matrix would be the ID Laplacian finite-difference

matrix (K).

2 -1 0 0 0 0- 6 5 4 3 2 1
-1 2 -1 0 0 0 5 10 8 6 4 2

K= 0 -1 2 -1 0 0 1 4 8  12  9 6 3
0 0 -1 2 -1 0 7 3 6 9 12 8 4
0 0 0 -1 2 -1 2 4 6 8 10 5
0 0 0 0 -1 2- -1 2 3 4 5 6-

While K is indeed banded, its inverse is unfortunately not. In fact we can later try to examine the

conditions under which a tri-diagonal matrix's inverse will also be banded.

There are cases when banded matrices also produce banded inverses. These are the cases we are

interested in. A typical example of a banded matrix having a banded inverse is shown next



-12 7 20 0 0 0-
60 7 20 0 0 0
0 82 12 7 20 0
0 410 60 7 20 0
0 0 0 82 12 7

-0 0 0 410 60 7-

-1/48 1/48 0 0 0 0

-15/1556 3/1556 -5/1556 5/1556 0 0
_7 _ 205/3112 -41/3112 7/6224 -7/6224 0 0

0 0 -15/1556 3/1556 -5/1556 5/1556
0 0 205/3112 -41/3112 7/6224 -7/6224
0 0 0 0 5/28 -1/28

Why are we so interested in banded matrices and their inverses? Why take the time and effort to

figure out under what conditions the banded matrix will have a banded inverse also? The reason

is that if the inverse is also banded, then the speed of the linear transformation performed on an

input vector will also be very fast. By being banded we also reduce the memory requirement

when dealing with large systems. Computing inverses both ways will be extremely fast.

We wish to make another point here - while we are definitely interested in finding out under

what conditions we can get banded inverses, we are also very interested in trying to figure out if

we can factorize the banded matrices into much simpler factors. Ideally we are looking to get

them as block diagonal matrices for which the inverse can be obtained very easily. However we

will also look at some of the other cases where the elements are present on the minor diagonal

and try to figure out if we can extend our methods.

In this work we look at both the forward and reverse directions. In the forward direction, we take

the product of simple factors and then examine the structure of the product matrix. We do this to

gain a better understanding of what exactly is present in the final product and how it comes

about. Once we are done with the forward problem, we try to go in the reverse direction in order

to see if we can solve for the individual factors. Please note that the factors we get may not be
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the exact same individual factors that were used to construct the product in the first place.

However, the product of the factors that we obtain matches the given matrix to within machine

precision.

As far as possible we will be looking at both the Toeplitz as well as the non-Toeplitz case. For

completeness sake, we furnish here examples of both cases (K=Toeplitz and M=Non-Toeplitz;

the repeated elements in the Toeplitz case are highlighted in different colors):

2-1 0 0 0 0 0 0 2 -1 0 0 0 0 0 0
1E 2 -1 0 0 0 0 0 11 3 -9 0 0 0 0 0

0 in 2 -1 0 0 0 0 0 1 4 -7 0 0 0 0
K= 0  i 2 -1 0 0 0 M= 0  0 13 5 -10 0 0 0

0 0 0 ;ll 2 -1 0 0 ' 0 0 0 43 6 4 0 0
0 0 0 C lINl 2 -1 0 0 0 0 0 -25 7 1 0
0 0 0 0 0 3illl 1 -1 0 0 0 0 0 1 8 6
0 0 0 0 0 1 1 2 0 0 0 0 0 0 3 9

We will first look at the case where we have only two factors F1 and F2. Each of these is a block

diagonal matrix that has full rank 2-by-2 matrices on the diagonal. We will then move on to the

case where there are three factors F1, F2 and F3. F1 and F3 will share the same structure and all

three will be made up of 2-by-2 blocks. For this particular case, we will only consider the

Toeplitz form for F1, F2 and F3. In each of the cases, we will also look to obtain the factors. We

then move on to the case with three factors G1, G2 and G3, each of which is made up of 3-by-3

blocks. We will however, not be looking at formulae for the different factors because of the

complexity of the problem in the three factor 3-by-3 block case. We will also study the effect of

having extra non-zero elements that are far away from the centre - the cyclic/circulant cases.

Finally, we will also look at the means to solve for them using the codes that we developed for

the non-cyclic cases.



The entire work has been done using MATLAB R2008a. The source codes used in this thesis can

be obtained by email from sven.mit(agmail.com

1.2 Notation With Determinants

Consider first a banded matrix that has two block matrices on every two rows. Let us call these

block matrices R and S. Previous studies have shown that for banded matrices, the inverse is also

banded only if the following holds [1]:

det(M) = monomial, M = R + Sz, z = arbitrary variable

Let us look closely at the two matrices R and S. Let

R and S =[s S21

We then have for M:

M= r1+s1z r2 +s 2 z
tr3 +s 3z r4 +s 4zI

which then leads to

det(M) = + Siz
r2 + s2Z- (r1 + siz)(r4 + s4z) - (r2 + s2z)(r3 + s3z)r4 + s4z

It can be seen that the highest degree in the product is z2. The different terms can be written as:

det(M) = (rir4 - r2 r3) + (sir4 - s2r3 + s3 r2 - s4ri)z + (s1s4 - s2 s3)z 2

This can be re-ordered as follows:

det(M) = det(R) + (det(P) + det(Q))z + (det(S))z 2



Where

P = and Q =[r' r2]

Essentially P and Q are matrices that embody the combination principle (n)

We then have:

constant term = det(R) coefficient of z 2 = det(S) coefficient of z = det(P) + det(Q)

This method of writing the coefficients of the powers of z in the form of determinants makes it

easier to understand which terms vanish and which terms remain. It also opens up the possibility

of exploring if there is more than one combination that can ensure that makes the matrix

invertible and if so is it banded. The proofs for some of these cases are shown later for which the

determinant notation is made use of extensively.

The case that was illustrated was the rather simple case with only two blocks, each of which is a

2-by-2 block. In order to prove the effectiveness of this notation, we look at two other cases -

one when we have three 2-by-2 blocks instead ofjust two (and consequently, three factors) and

the other is when we have three 3-by-3 blocks.

Let us first consider the case of three 2-by-2 blocks. Let us denote the blocks by R1, S1 and TI:

R1 = r. r42 S1 = [1 S] T1 = (tl t4

M1 = R1 + Siz + Tiz 2

M - [r1 + siz + tz 2 r2 + s2z + t2z2
tr3 +s 3 z+t 3z 2 r4 +s 4z+t 4z

2]



The order of the determinant of M in this case would be 4 (since z2.z2 =z 4). The determinant

itself would be:

det(M1 ) = (r1 + s1z + tiz2 )(r 4 + s4 z + t4 z 2 ) - (r2 + s 2z + t2z 2)(r 3 + s 3z + t3z 2)

det(M1 ) = (rir4 - r2r3 ) + (r1s4 - r2s 3 + r4 s1 - r3s 2)z + (sis4 - s 2s 3 + r1t4 - r2 t3 + r4 t1 - r3t 2)z 2

+ (s1 t 4 - s 2 t 3 + s 4 t1 - s 3 t 2 )z 3 + (tlt4 - t 2 t 3 )z 4

Which can once again be written as:

det(M1 ) = det(R1 ) + (det(P1 ) + det(Q1))z + (det(S1 ) + det(U1 ) + det(V1 ))z 2

+ (det(W1) + det(X1))z 3 + (det(T1))z 4

Where:

_, [r r2

S 3 S4

U = [r1 r2
Wit3 t4

W, 1 2]

Q1 rS1  S2 ]-
T3  r4

rt1 t2
Ir3  74

X1  t t2IS3 S4 1

Now, we can extend it to the case for the 3-by-3 blocks. Let us denote the blocks as R2, S2 and

T2, where R2 , S2 and T2 are given as:

r2  31
rs r6
T8 r9

S 1

S2 = S4

S7

2  3 1

Sg Sg

t=

T2 = t4

.t7

t 2  t31
r5  t6
t8 t9

M2 = R 2 + (S2)z + (T2 )z 2

r1 +s 1 z+tiz2 r2 +s 2z+t 2z 2 r3 +s 3z+t 3z 2

M2 = r4 +s 4z+t 4z 2 rs+s 5z+tz 2 r6 +sz+tz 2

rY7 +s 7z+tz 2 r8 +s 8 z+t 8 z2 rg+sz+tqz2

r,
R2 = r4

r7



The highest power in the determinant of M2 is 6. The coefficients of the various terms are given

by

det(M2) =det(R2)+ (det(P2) + det(Q2) + det(U2))z

+ (det(V2) + det(W2) + det(X2 ) + det(Y2) + det(Z2) + det(A 2))z2

+ (det(S2) + det(B2) + det(C2) + det(D2) + det(E2) + det(F2) + det(G2))z 3

+ (det(H2) + det(12 ) + det(J2) + det(K2) + det(L2) + det(N2 ))z'

+ (det(0 2) + det(AA 2) + det(AB2))z 5 + (det(T2))z 6

Where:

1  2  3  r r2  T3 11 S S2  S3
p2 = 4  T5 r6  Q2 = 4 s5  S6 U2  r4  -5  T6

S7 S8 S9  r7  T8  r9  r7 r8  T9

r1 r2  T31  r1  r2  T3  t1  t 2  t31
v2  r4 i5 r6  W2 = t4  t5  t 6  X2 = i4  r5  r 6

t7  t8  t9  7 r8  r9 -i- 7 T8  T9

r1  r 2  r3  [S S2 3 [1 S2 3
Y2 = S4  S5  S6  Z2= r4  T5  T6 A2= S4  SS S6

S7  S8 S9  [7 S8 S9 - V7  r8  r9

i 1  r2  r3 C r1 S2 S31 1- T2  r3
B2 S4 Ss 2 = T6ir4  -s T6 D2 = t4 ts t6

t7 8  t9 t 7  t 8  t9 S7  S8 S9

S1  S2 S3 ft1  t 2  t3 1t t 2  t31
E2 t4 t F2 = S4  S5 S6  G2 = [ 4  T5  r 6

7 T i -9 7  i-8  T9  S7  S8 S9

ri i 2  i- 1t1 t2  t3 1 t1 t 2  t31
H2 = t 4  t5  t6 2 [ 4  -5  i 6  12= t 4  t5  t 6

Lt7  t8  t9 - t7  t8  t9  Y7  T8  T9 j

Sr S2  S3  S 32 S3  t t2  t31
K2= S4 Ss S6  L2 = t4  ts t6  N2 = S4  S5 S6

t7 t8 t9 S7 38 S9 S7 S8 S9



S 1 S2  S3 1 1  t 2  t3  t1  t 2  t31
0 2 = t 4  tS t 6  AA 2 = t 4  t 5  t 6  AB 2 = s4 s5 S6

t 7 t 8 t9  s7  s8  sI t 7  t 8  t 9

Naturally, this can be extended to any number of matrices of any order. We can see a particular

order in each of the matrices - the entries of any one row come from the same row of the

matrices R2 , S2 and T2. For example, in AA2, the last row comes from the last row of the matrix

S2, while the first two rows come from the first two rows of T2 .

This notation is very powerful and its power will be seen when we attempt to prove a couple of

results involving the ranks of the block matrices.



18



Chapter 2

Banded Matrices - Two factors with 2-by-

2 blocks

2.1 Toeplitz Case

Let us assume that there are two matrices F1 and F2 and each of them is made up of constantly

repeating 2-by-2 blocks. The matrix F1 has blocks only on its diagonal, while the matrix F2 has

its elements shifted one down and one to the right. We then take the product of F1 and F2. The

resulting matrix is found to have two blocks per row. The structures of the matrices F1, F2 and

the product F12 are shown next:

[-a0
F1 = 0

0
0

all a12]
a21 a22

-k
0
0

F2 = 0
0
-0

b = [bn b12]
[bz1 bzz21

fl = bn,



F _

-kan
ka2n

0
0
0
0
0
0
0

-0

a12bn
a22bn

0
0
0
0
0

0

a12bz

a22bn

0
0
0
0
0

0

0
0

a22bn

0
0
0
0

0
0

a12 b1

anlb22

0
0
0
0

0
0
0
0

a22bn

0
0

0
0
0
0

a22bn

anlbzz

0
0

0
0
0
0
0
0

a22bn

anlbu
anlbn

0
0
0
0
0
0

a12 b1

anb22

0
0
0
0
0
0
0
0

a22b11

We see that the ranks of the repeated matrices in the product are both of rank one. The rank-one

matrices are obtained from the product of a column vector with a row vector. We show now that

in order to have exactly two matrices for every two rows in the product and have a banded

inverse, the ranks of each of them necessarily need to be unity.

Let the two matrices present in the product be R and S. Let the elements of the matrices be:

LT3 r4 US3 S4

Construct M as usual:

M = R +Sz

This then leads to:

constant term = det(R) coefficient of z2 = det(S) coefficient of z = det(P) + det(Q)

Q = r and P =[r r2]

Case i: rank(R)= 2, rank(S) = 2: Not possible

In this case,

coefficient of z2 = det(S) # 0constant term = det(R ) # 0,



=* det(M) = atleast (constant + azz) # monomial

Hence the case of (2, 2) (the first is the rank of R and the second is the rank of S) would

definitely not yield a banded inverse.

Case ii: rank(R) = 1, rank(S) = 2: Not possible

The next option would be to look at the case when one rank is 1 and the other rank is 2. Let us

assume for simplicity that the rank of R is one and the rank of S is two. We are currently looking

at the ordered pair (1, 2) of the ranks. This then leads to:

constant term = det(R) = 0, coefficient of z2 = det(S) # 0

Clearly, if we want the inverse of the banded matrix to be banded, we need that the coefficient of

z be zero. (We already have a non-zero term in the coefficient of z2 , as S is of full rank):

coefficient of z = 0 = det(P) + det(Q)

The matrix R is of rank one. So, we can re-write the elements of R as:

r2 = pri, r3 = kri -> r4 = kpri

So then we have:

Q = [Si S2 ] and P = r pr 1ikri kpri S3 S4

det(P) = r1 s4 - pr1 s 3, det(Q) = kprisi - kris2

det(P) + det(Q) = ris4 - pr1 s 3 + kprisi - kris2 = 0

ri definitely cannot be zero. So we can cancel it from all the terms in the equation. We then get:

S4 - ps 3 + kps1 - ks 2 = 0

21



S4 - ks 2 = p(s3 - ks1)

Now in the big matrix we have the matrices R and S side-by-side. Using the first row of R to

perform elimination leads to:

-xI
x2

H = 0
0
0

-0

Si

S3

r1

kr1
0
0

S2

S4

pri
kpr1

0
0

0
0

S3

r1
kri

0
0
S2

S4

pri
kpri

0-
0
0
0
Si

s3-

0
0
Si

(s3- ksi)
r
0

0
0
Si

(s3 - ksi)
r1
0

0
0
Si

(s3 - ksi)
0
0

0
0
S2

(s4 - ks2)
pr1
0

0
0

S2

p(s3 - ksi)
pri
0

0
0

S 2

p(s3 - ksi)
0
0

0 0
0 0

S1 S2

(s3 -ksi) p(s3 -ksi)
0 0
0 0

0
0
0
0
Si

(s3 - ksi)-

0
0
0
0

Si

(S 3 - ksi).

0
0
0
0
Si

(s3 - ksi).

0-
0
0
0
Si

0-

S2

S4

pri
0
0
0

s2

S4

pri
0
0
0

S2

S4
0
0
0
0

-xi
x2
0

0
.0

-oj

x2
0

0
.0

-x1
x 2
0
0
0

L0

-x1
x2

Hiv = 0
0
0
-0



Clearly we see that there is a zero row in Hi, This means that any matrix that is made up of R

and S with ranks 1 and 2 respectively (or vice-versa) will not be invertible (if we impose that the

matrix have a banded inverse also)

By a similar argument, we can prove that the same holds (i.e. the matrix will not be invertible) if

R is of full rank and S has rank one.

Case iii: rank(R) = 1, rank(S) = 1: Possible

We write R and S as:

R r1  pr1 1R=kr1 kpr1] and S= s1 qs 1

Is1 1ys1

Then we have:

constant term = det(R) = 0, coeff icient of z2 = det(S) = 0

coefficient of z = det(P) + det(Q)

ri pri ]and Q = [s qsi 1
[is lys1 ] kr1 kpr1

det(P) = D1 Pr1 = ris1 (lq - 1p), det(Q) = = risi(kp - kq)

det(P) + det(Q) = r1s1 (1q - 1p) + r1s1 (kp - kq) = r1s1 (1 - k)(q - p)

Now, we need to take care to ensure that the coefficient of z is not zero. For this, examine where

it does become zero.

coefficient of z = 0 = r1s1 (1 - k)(q - p) = 0

Clearly, si and ri are not zero. The other possibilities are:



1 = k or q = p

Consider first that 1 = k:

_x1
x2
0

mat-0
0

L-0

qsi
qs1

pri
Ipr1
0
0

0
0

qs1

lqs1

pri
Ipr1

-x1
x 2
0
0
0

-L0

There are a couple of zero rows which make the matrix singular.

the case when p=q.

-x1
x2
0

mat =0
0
.0

si

Is1
ri

kr1
0
0

psi
lps1

pri
kpr1

0
0

0
0

Si

Is1

kr1

0
0

psi
lps1

pri
kpri

0- -x1
0 X2
0 0
0 0
Si 0

ks1 .0

Si

Is1
r1

kr1
0
0

A similar argument applies for

0
0

Si

Is1
r1
kr1

0
0
0
0
Si

ks.1 -

Thus as long as the ratios of the two matrices R and S are not the same then, the coefficient of z

is non-zero and in that case it is possible to get an banded inverse matrix.

It can be shown that as long as the two conditions are not met, the reduced row echelon form of

the big matrix is the identity matrix. This implies that the matrix indeed is of full rank. And by

construction, it satisfies the conditions necessary to have a banded inverse.

x1
x 2
0

mat= 0
0
0

Si

Is1

r1
kr1

0
0

qsi
lqs1

pri
kpr1

0
0

0
0

Si

Is1
r1

kr1

0
0

qsi
lqs1

pri
kpr1

0
0
0
0
Si

Is1

=> rref (mat) =>

qsi
qs1

pri
0
0
0

0
0

qsi
0

pri
0

0-
0
0
0
Si
0-



Remark: Please note that if there exist factors F1 and F2 that upon multiplication give matrices R

and S, then we would have:

R = -ab21 anb22 k = and p =
[a21 b21  a21 b22J al b21

- a12b11  a12b121 ~ 22  b12
S = a22 b a22 b1 2  1 - and q =

S12 a12

So if we have

i) l = k it means:

a21  a22

a11  a12

a 22 a11 - a12a 21 = 0

But:a= => a det(a) = a22a11 - a12 a21

=> det(a) = 0

This would mean that the matrix F1 is not invertible in the first place. But we are looking for

factors F, and F2 such that they are invertible. Hence we would need to ensure that I should not

be the same as k

ii) p = q means:

b12 = b22b - bub = 0
bl, b2l

=> det(b) = 0

In this case, F2 would be non-invertible and we would be stuck with the same scenario as in i).

Thus we need to ensure that both 1 does not equal k and p does not equal q.

Next we look at the solution process for the Toeplitz case.
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2.2 Solution Process: Toeplitz Case

We now look at the solution process for obtaining the 2-by-2 blocks in the factors, for both the

Toeplitz and the non-Toeplitz case. We will first consider the Toeplitz case and then extend the

same to the non-Toeplitz case. Let us call the two factors as F1 and F2. Now we need to obtain

the blocks that are present in each of F1 and F2.

Denote the two rank one matrices in the product as 'x' and 'y'; we call the first two elements of

the first column of F12 as the vector 'w'. Also, let us call the first and second columns of the

matrix a to be a, and a2 . We call the rows of the matrix 'b' to be r' and r2. Then we have the

following relations:

a =r2 = x, air1 = y, kai = w, a2 buj = yi

where y = [Li 2L2]

To solve this set of equations, we need to set some of the entries of the matrices 'a' and 'b'. The

simplest would be to set 'b1 1' to 1 and choose a random value for the variable 'k'. We then get:

W
ai = and a2 = Y1

(i.e.) the second column of the matrix a is the same as the first column of the matrix 'y' in the

product.

Now that the vectors a, and a2 are completely known, these can be used in order to solve for the

other unknowns - r' and r2. This is accomplished as follows:

air2 = x



Multiply both sides with a'

(aj'ai)r2 = a1 'x

(ai'x)
r2 =(a'a)

Similarly

(a2 'y)
= (a 2 'a2)

We can check for consistency in our solutions by looking at the solution for ri. We had set 'bII'

to be 1. Since r' = [bl 1 b12], we need that the first entry of r be 1. We have:

= (a2 '[Y1 Y2])
(a 2 'a2)

But we have, a 2 = Y1

S= [(y1'yi) (y1'y2)]
(y1-y1) (y1'y1)]

=r [ (1'Y2)]

We see that the first element of r1 is indeed 1 and hence the solution we have obtained is

consistent.

The blocks 'a' and 'b' can now be written as

a = [ai a2], b =

The factor 'k' would go into the matrix F2 as was seen in its structure. The method mentioned

here is exactly the one that is used by the code written to compute the factors.

- =(a 2'a2) (a2'Y2)

(a2'a2)



So far we have discussed the methods we use when the shift in position is in the second factor F2 .

However, it is quite possible that the shift is not in F2 but instead is in F1. Let us call the new

factors as fi and f2. In this case, a simple tweaking of the code solver2_2x2 is all that is needed.

Instead of using the product f12 and solving for the two factors, we solve for the product

F3 4 = f'2

The structure of F34 will be the same as F 12 that we worked with previously. We can then use the

same code to solve for F3 and F4 (for the product F34 ). Then we have

F34 = F3 F4 and F34 = f'2

f 12 = F34' = (F3 F4 )' = F4'F3'

-> f12 = flf =F 4'F3'

=> fi = F4 ' and f2 = F3 '

Thus we have solved for the factors in a slightly different case by a simple transformation.

2.3 Sample Problem: Toeplitz Case

Let us now apply the solution technique we have just discussed and apply it to the well-known

four wavelet coefficients presented by Daubechies [3]. We compare the results obtained with

those stated by Strang [4]. We write the problem out in the same way as it has been done in [4].

01
01W2

The solution we obtain from the codes that were written is:

W =W1
0
.0

W, _[1+V 3 3 +V-3
I 1 - Vr3 - 3 + 3,A

W2 _ [3 - V- 1 - ,IJ
2-3 +V3 -1 - 3



k, 0 0 0] 0.5221 -0.3014 0 0]

F1  0 1 2.4286 0 F = 2.7321 4.7321 0 0

F 0 -0.2679 9.0636 0 , 2 0 0 0.5221 ---
0 0 0 0 0

The solution obtained by Strang [4] is:

k2 0 0 0- [k 2  0 0 0'

B = 0 1 + \ -1 + N 0 10 2.7321 0.7321 0
0 1 - 3 1 + V 0 0 -0.7321 2.7321 0

-0 0 0 -. 0 0 0

V -1 0 0] =1.7321 -1 0 0~

C _1 V- 0 0 _ 1 1.7321 0 0

0 0 --- 0 0 1.7321 ---

-0 0 1 -- . 0 0 1 -.

Clearly, it can be seen that the factors obtained from the two different methods are not

equivalent. This does not mean that one of the results is wrong and the other is right. It simply

means that the factors are non-unique. Depending on which variables are given values, the

individual factors in themselves will change. However, the product remains the same and hence

the product of the inverses is the same as the inverse of the matrix W. This is what is necessary

and hence this is all that is of concern.

2.4 Non-Toeplitz Case

The major difference in this case is that the blocks on the diagonal are varying. In such a case,

we need to determine each of the blocks in each of the factors. The properties concerning the

ranks of the matrices in the product F 12 are exactly the same as the Toeplitz case. The matrices in

the product should be singular. The argument for the Toeplitz case is valid for the non-Toeplitz

case also, when the blocks are no longer constant along the diagonals of the two factors F1 and



F2. We shall now look at solving the interesting problem of finding out all the different blocks on

the diagonals of each of the factors.

2.5 Solution Process: Non-Toeplitz Case

For the time being we shall assume that the shift is in the second factor F2 and the product is F12.

(Solving for the case where F1 has the shift is the same as the one in the Toeplitz case - we

simply solve using the transpose instead of the original product F 12). The structures for F1 and F2

are shown next along with the structure F12.

-a a1 2  0 0 0 0- -k 0 0 0 0 0
a2 1 a2 2  0 0 0 0 0 bn b12  0 0 0

F= 0 0 An A12  0 0 F = 0 b2 b22 0 0 0
1  0 0 A21 A2 2  0 0 , 2 = 0  0 0 B11  B12  0

0 0 0 0 an an 0 0 0 B21 B22  0
0 0 0 0 al an- .0 0 0 0 0 in.

anlk a12bnj a1 2 b1 2  0 0 0 -

a2lk a22bnj a22 b12  0 0 0

F 0 Anjb 2n Anjb 22 A12B11 A12 B12  0
F ~ 0 A21b2 j A21b22 A22B11 A22 B12  0

0 0 0 anB21  anlB2 2 al2fll
. 0 0 0 a2 jB21  a2 lB22 a 22flln-

Define vector 'w' that consists of the first two elements of the first column of the matrix F 12 .

Similarly, we define vector's' to consist of the last two elements of the last column of F 12. The

matrices that are to the right side of the diagonal element are denoted by 'xi' and the matrices to

the left of the diagonal element are denoted as 'yi'. Thus the matrix x starts from the first row

while the matrix y1 begins only from the third row.

W = ak= ak, S = 2 11 = a2fl1nab azb - z [ A1

X1=[a 12b11  al 2 bl 2 ] 1 2 = A12B11 A12 B12 1 and so on ...
= a22j 1 a22b121'~ [A22B, 1 'A2 2 B1 2j



-Anlb2l Ab 22  [ B21  anB22 and so on ...
S[A 21b2  A21b 2 , aBI an d s Bz

In a bid to reduce the number of unknowns, we set the first element of every matrix to be 1 and

solve for the rest of the elements of that matrix. By doing this essentially we end up with a

situation where for each of the xi, the first column is the same as the -second column of each of

the blocks in F1. Similarly, in each of the yi, the first row is the same as the second row of each

of the blocks in F2. This can be understood better by looking it as:

pjqj = xi, where pi is known => solve for qj

ulv' = yi, where vi is known => solve f or ui

Once this is understood, the solution process becomes straightforward and is given by:

pjq1 = x.

(pj'pj)q = (pj'xi)

, (p 1 'xi)

= (p'pj)

And in a similar manner, we have:

(yivj)
U; = (v;'v;)

In order to get the element k that is present in the matrix F 1, we simply use:

w1  W2
k = - and a21 = -

all k

Similarly the second column of the last block of F1 is given as: g2 = s



Now we have all the blocks and hence we can construct the big matrices F1 and F2 using these

smaller blocks.

2.6 Tri-diagonal Matrices

We will now try to apply what we have derived so far to tri-diagonal matrices. Let us consider a

generic tri-diagonal matrix. We then have

-ci d, 0
b1 C2 d2
0 b2 C3
0 0 b3
0 0 0
0 0 0
0 0 0

.0 0 0

R2= 10 2= sd5  0C6 d6J

Define:

Mi = R1 + Siz : det(M1 ) = det(R1 ) + (det(P1) + det(Q1))z + (det(S1 ))z 2

det(M1 ) = b2b3 + (b2d4 + b3 d3 - c4 c3)z + (d3 d4 )z 2

Need: det(R1 ) = 0 and det(S1) = 0

=> det(R1 ) = b2b3 = 0 and det(S1 ) = d3 d 4 = 0

=* b2= 0 or b3 = 0 and d3 = 0 or d 4 = 0,

Similarly we get:

R 0=2 C],

b2 = 0,

b- = 0,
b3 = 0,

b3 = 0,

d = 0

4 0
d3 = 0
d4 = 0

S1 = ,3 0



b4 = 0, ds = 0

b4 = 0 or bs = 0 and ds = 0 or d 6 = 0, d=O
bs = 0, d69 = 0

We thus have a total of 16 possible conditions based on what we have derived so far that states

that the tri-diagonal matrix K would have a banded inverse. However, studies done on tri-

diagonal matrices [5] impose the requirement that for a banded inverse, there can be no two

consecutive non-zero entries. This strict requirement is part of the 16 possible conditions. Thus

we find that what we have developed is actually a weaker statement, because the general

statement did not begin with blocks R1 and S1.
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Chapter 3

Banded Matrices - Three factors with 2-

by-2 blocks

3.1 Toeplitz Case

So far we have analyzed the case where there are only two 2-by-2 blocks in the product. In this

chapter we take the next step which would be to increase that number to three. We would then

have three factors F1, F2 and F3. For the time being, we shall concentrate on the case where F2

has a shift in its elements. Please note that throughout this section, the structure of F3 is the same

as F1.

For the case of F123, it was seen that the ranks of the three matrices (R, S and T) in the product

were one, two and one (when F12 3 is obtained from the product of factors). Once again like the

case for the two block case, this can be proved. The proof is what is discussed next. There are six

potential cases that need to be considered: (1,1,1), (1,2,1), (1,1,2), (2,1,2), (2,2,1) and (2,2,2).

The other scenarios are simply different ways of looking at the above 6 cases.

Let us now define the matrices R, S and T that we will be using in the proofs:



T =ti t2

Construct

M = R +Sz+Tz2

In the current scenario, the highest power in the determinant will be z4. The coefficients of the

different terms are given by:

constant term = det(R) coefficient of z 4 = det(T) coefficient of z = det(P) + det(Q)

coefficient of z 2 = det(S) + det(U) + det(V) c

Where:

P = [r1 r2] _ [S1 S2]Is3 S4 T3 r41

V [t t2] w S1 S2 ]
T3 r41 tt3 t4

oefficient of z 3 = det(W) + det(X)

U Ir1  r2
Lt3 t4]

X = t1 t2
ts3 S41

We have six cases to examine, out of which only two cases succeed. However, if we are looking to be

able to factorize the banded matrix, then there is only one case that works (case vi).

Case i: Ranks are (2, 2, 2)

In this case it is obvious that there will be two non-zero terms in the determinant - the constant

term and the coefficient of z4 . As a result, the resulting inverse will not be banded (because the

determinant is not a monomial)

Case ii: Ranks are (1, 1, 1)

In this case it is pretty clear to see that the constant term and the coefficient of z4 will both

vanish. We now re-write R, S and T as:

r r
2] S = S1 S2]Ir3 r4 IS3 S4



r2= pr1, r3 = kri, r4 = kpri

s2= qsi, S3 = is1 , s4 = lqsi

t2 = ut1 , t 3 = mt 1 , t 4 = mut1

R ri pri
R kr 1 kpr 1J

Ssi qs 1
LIs1 lqs1]

T nt utI
(mt1 mut1]

Then we have:

det(P) = i -ris I = rlsl(q - p),

det(U) = 1 t =r 1 t 1m(u - p), det(V) = kr1

det(W) = m t1 = s1t1m(u - q),

kpr

det(X) = tk ut,

risik(p - q)

= r1 t 1 k(p - u)

= s1 t1l(q - u)

Which then leads to:

constant term = det(R) = 0 coefficient of z4 = det(T) = 0

coefficient of z = det(P) + det(Q) = r1 s1 (q - p)(l - k)

coeff icient of z3 = det(W) + det(X) = s1 t1 (u - q)(I - m)

coefficient of z 2 = det(S) + det(U) + det(V) = r1t1 (p - u)(k - m)

If this is to be banded, then exactly one of the terms should be non-zero. Assume that the

coefficient of z is non-zero. Then we need:

coefficient of z 2 = r1ti(p - u)(k - m) = 0

coefficient of z 3 = siti(u - q)(l - m) = 0

det(Q) = , q



Which implies:

p = u or k = m, u = q or I = m

There are 4 sub-cases which would need to be considered

i) p=u and u=q=*p=q

=* coefficient of z 2 = r1 t 1 (p - u)(k - m) = 0

-> coefficient of z3 = s1 t1 (u - q)(1 - m) = 0

=> coefficient of z = r1 s1 (q - p)(I - k) = 0

This means that for this particular scenario, the matrix is not invertible. Thus this case is

unfavorable.

ii) k=m and I=m =>l=k

=> coefficient of z2 = r1 t 1 (p - u)(k - m) = 0

=> coeff icient of z 3 = s1 t1 (u - q)(1 - m) = 0

=> coefficient of z = r1 s1 (q - p)(l - k) = 0

The matrix is not invertible. As a result having k = m and 1 = m is not favorable.

iii) p=u and l=m

Please note that x = SX] is an arbitrary matrix of rank either one or two. Ideally,

x would come from the end effects and be of full rank.
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The matrix has a zero column which can be clearly seen. Thus it is not of full rank. Hence

p = u and 1 = m also does not allow the big matrix to be invertible.

iv) u=q and k=m

xI
X3

r1

kr1
0
0
0
0

x2
x4
pri

kpr1
0
0
0
0

x2
x4
pr1

kpr1
0
0
0
0

mt1
Si
Is1
r1

kr1
0
0

t1
kt 1
Si
Is1
ri

kr1
0
0

ut 1

mut1
qsi
lqs1

pri
kpr1

0
0

qt1
kqt1
qs1

qs1

pri
kpr1

0
0

0
0
ti

mt 1
Si
Is1
ri

kr1

0
0
t1

-kt1
Si
Is1
r1

kr1

0
0

uti

mut1
qs1
qs1

pri
kpr1

0
0

qt1
kqt1

qsl
Iqs1

pri
kpr1

0
0
0
0
ti

mt 1
Si
Is1

0
0
0
0
tl

kt1
Si

I1

x1  x2  t1  0 0 0
x3  x4  kt 1  0 0 0
ri pri si 0 t1  0

kr1  kpr1  Is1  0 kt 1  0
0 0 r1  (p - q)r si 0
0 0 kr1  k(p - q)r1  Is1  0
0 0 0 0 r, (p - q)r
0 0 0 0 kr1 k(p - q)r1

0-
0
0
0

uti

mut1
qsi
lys1

0
0
0
0

qtj
kqt1

qsi
qsj

0
0
0
0
ti

kt1
Si
Is,

The last column is a zero column meaning that the matrix is singular. Hence u = q and k = m

also does not allow the big matrix to be invertible.

Let us now look at the other two scenarios - where the coefficient of z2 and z3 are respectively

non-zero. Each of these scenarios results in:



Coefficient of z is non-zero:

coefficient of z 3 = siti(u - q)(l - m) # 0

coefficient of zz = r1tj(p - u)(k - m) = 0

coefficient of z = r1s1 (q - p)(1 - k) = 0

=> u = p or k = m, q = p or 1 = k

The cases for z3 that we need to consider are very similar to what we did for z. Thus we can

expect that the matrix will not be invertible if we have only the coefficient of z3 to be non-zero.

Coefficient of z2 is non-zero:

coefficient of zz = r1t1 (p - u)(k - m) # 0

coefficient of z = ris,(q - p)(1 - k) = 0

coefficient of z 3 = sitl(u - q)(1 - m) = 0

=>q =pork =l, u = q or 1 = m

The situation where the coefficient of z2 is non-zero has one particular case that ensures that the

matrix has a banded inverse. This is the case where p = q and 1 = m. However, although this

case gives a banded inverse, the matrix cannot be decomposed into factors. We show very

quickly why this is so:

S = ps1  [ anbz2 c11 + a 2 buc21  anb22 c1 2 + a 2 buc22 ]
s-s1 l ps1 Laubzzcu+ a2 2bujc2 j a2 b22 c12 + a22 bujc22

det(S) = 0 = (anb22c11 + a12 bujc21)(a2 b2 2c1 2 + a22 buc 22)

- (a2 b22 c11 + a2 2bujc2 1)(anb22 c12 + a 2 bulc22 ) = 0

41



=> (det(a))bujb22 (det(c)) = 0

=> det(a) = 0 or det(c) = 0 or bujb 2 2 = 0

In each of the cases, the factors will not be invertible. Thus although this case is invertible and

produces a banded inverse, it cannot be factorized. Hence for our purposes of being

factorizable, it is not useful.

Case iii: Ranks are (1, 1, 2)

The constant term vanishes in this particular case. We now re-write R, S and T as:

2= pri, r3 = kri, r4 = kpri

S2= qsi, s 3 = Is1, s4 = lqsi

R = r[k pr

Then we have:

det(P) = Ii i I = r1s1l(q - p), det(Q) = = r1 syk(p - q)

det(U) = t i = r1 (t 4 - pts), det(V) = k kri = kr1 (pt1 - t 2 )

det(W) = t q = S1(t4- qt3), det(X-) = t2 =s 1 (qt 1 - t 2 )

Which then leads to:

constant term = det(R) = 0 coefficient of z4 = det(T) # 0

coefficient of z = det(P) + det(Q) = r1 s1(q - p)(I - k)

S=s1 qs1 t1 t21
Lis,1qls11 It3 t4]



coefficient of z 3 = det(W) + det(X) = s1 [(t 4 - it 2 ) + q(1t1 - t3 )]

coefficient of z 2 = det(S) + det(U) + det(V) = r1 [(t 4 - kt 2 ) + p(kt1 - t 3 )]

Because det(T) # 0, we need that the other coefficients all disappear. This then leads to:

coefficient of z = det(P) + det(Q) = r 1 s1 (q - p)(1 - k) = 0

=* q = p or 1 = k

coefficient of z 3 = det(W) + det(X) = s1 [(t 4 - it2 ) + q(1t 1 - t3 )] = 0

= (t 4 - It2 ) = q(t3 - it1 )

coeff icient of z 2 = det(S) + det(U) + det(V) = r1 [(t 4 - kt 2 ) + p(kt 1 - t 3 )] = 0

=> I(t4 - ktz) = p(t - kt1i) t

-> (k - 0~tz = (q - p)t3 + (kp - ql)t1

Ifq =p

= (k - i)t2 = (k - I)pt1

= tz = pt1

Now: (t 4 - it2) = q(t3 - lt1)

=> (t4 - plt1 ) = q(t 3 - it1)

=> (t 4 - pit1 ) = p(t 3 -1t 1 ),(-: p = q)

= (t 4 - plt1 ) = (pt 3 - plt1 ), => t 4 = pt 3



T T - [ti Pt]

= rank(T) = 1

Which violates the fact that we have T to be of full rank.

If I = k

-> 0 = (q - p)t3 + (p -q)t 1

= t = lt 1

Now: (t4 - It 2 ) = q(t 3 - It 1 )

=> 4t4 - 1tz2) = q(1t1 - 1t1)

=> (t 4 - It 2 ) = 0, => t 4 = It 2

= T =[ t2 ]

=> rank(T) = 1

Which violates the fact that we have T to be of full rank. So this case is not useful in terms of

being able to get a banded matrix.

Case iv: Ranks are (1, 2, 2)

Once again the constant term vanishes in this case. We now re-write R as:

r2 = pri, r3 = kri, r4 = kpri

r pr1 1
[kr1 kpr1j

1 S2 T = [t1 t2]
[ss S4 Lt3 t4



Then we have:

det(P) = ri= r1(s4 - ps3),

det(U) = P' r1(t4 - pt3),

det(Q) =k kpr1

det(V) = k 1 ktr1

= kr 1 (ps 1 - S2)

= kr1 (pt 1 - t 2 )

det(W) = = s1t4 - s2t3, det(X) = t = s4 t1 - s3t2

Which then leads to:

constant term = det(R) = 0 coefficient of z 4 = det(T) # 0

coeff icient of z = det(P) + det(Q) = r1 (s 4 - ps3 ) + kr1 (ps1 - s2 )

coefficient of z 3 = det(W) + det(X) = s 1 t 4 - s 2 t3 + s 4 t1 - s3 t 2

coefficient of z 2 = det(S) + det(U) + det(V) = r1 (t 4 - pt 3 ) + kr1 (pt1 - t 2 ) + (s1 s 4 - s 2 s 3 )

Need:

coefficient of z = r1 (s4 - ps 3) + kri(psi - s 2 ) = 0

=> (s4 - ps3) + k(psi - s 2) = 0

=> (S4 - ks 2) = p(s3 - ksi)

=> S4 = pS3 + ks 2 - pksi

coefficient of z2 = r1 (t 4 - pt3 ) + kr1 (pt1 - t 2 ) + (sis 4 - s 2 s 3 ) = 0

coefficient of z 3 = s1t4 - s 2 t 3 + s4ti - s 3 t 2 = 0

We then have in the big matrix (we look at the matrix from the middle rows to the end):



r1 pri si
kr1 kpr1  s3
0 0 r1

0 0 kri
0 0 0
0 0 0

r1 pri si S2

0 0 s3 -ks 1 s4 -ks 2 t
0 0 r1 pri
0 0 0 0 s
0 0 0 0
0 0 0 0

r1 pr1  S1  S2

0 0 s 3 - ks1  p(s 3 - ks1 ) t
0 0 r1 pri
0 0 0 0
0 0 0 0
0 0 0 0

x1 = (t 3 - kt1 ) - s7 1s1

ti
- kt 1

Si

- ks1

ri
0

t1

3 - kt 1

0
r
0

t2 0 0
t4 -kt 2  0 0

S2 ti t2

s4 -ks 2 t3 -kt 1 t4 -kt 2
pri Si S2
0 s3 -ksi s4 -ks 2

t2
t4- kt 2

S2
0

pri
0

0 0
0 0
t1 t 2

x1 X2

S3 - ksi p(s 3 - ksi)

X2 = (t 4 - kt 2 ) - ( ;1 k) s 2

ri pri  si S2 ti t2
0 0 s3 - ks1  p(s3 - ks1 ) t3 - kt1 t4 - kt2
0 0 r1 pr1  s1 S2
0 0 0 0 0 0
0 0 0 0 r1 pri
0 0 0 0 0 0

Now: x 2 - pxI = (t 4 - kt 2 ) - (s -ks1 s 2 - p ((t 3 - kt 1 ) - (s -ks1) 

1
x 2 - px 1 = 4 - kt 2 ) - (s 3 - ksi)s2 ) - (rip(t3 - kt 1 ) - p(s 3 - ksi)si)]

1
m x 2 - px 1 = -((t4 - kt 2 ) - (s 3 - ksi)s2 ) - (rip(t3 - kt 1 ) - (S4 - ks 2 )si)]r1

S2 tl t2  0 0

S4  t3  t 4  0 0
pri Si S2 t 1  t 2
kpri S3 S4  t 3  t 4

0 r1  pri Si S2
0 kri kpri S3 S4

0 0
0 0
t1 t 2 - pt 1
xl x2 -px1
S3 s 2 -psi

ss-ks1 0



1
->x - px1 = - [(r 1 (t4 - pt3 ) + rik(pti - tz) - s3 s2 + ksis2 + s4 si - ksis2 )]

1
X2 - pX1 = - [(s 4s1 - s 3 s 2 + r1 (t 4 - pt 3 ) + r1k(pt1

T1
- t2))]

1
X2 - px 1 = -[coeff icient of z 2 ]

But we need the coefficient of z 2 = 0

= x 2 - px 1 = 0

ri
0
0

=>0

pri si !21

0 s3 - ks, p(s 3 - ks1 )
0 r1 pri

0 0 0
0 0 0

r1  pri si S2
0 0 s3 -ksi p(s3 -ksi)
0 0 ri
0 0 0
0 0 0
0 0 0

pri
0
0
0

t3 - kt1 t4 - kt 2

0
0

t 2 - Pt1
0

ri pri Si S2 - ps 1
0 0 s3 -ksi 0

tj t2 0 0

t3 -kt, t4 -kt 2  0 0
si S2  ti t 2 - pt 1

0 0 x1  0
ri pri s1  s2 - ps 1
0 0 0 0

The matrix thus has a zero row making it singular and hence of no further interest.

Case v: Ranks are (2, 1. 2)

In this case we have both R and T to be of full rank. As a result,

M = R + Sz + Tz 2

constant term = det(R) # 0 coefficient of z4 = det(T) # 0

Hence the inverse in this case is not going to be banded owing to the fact that det(M) is not a

monomial.



Case vi: Ranks are (1, 2, 1)

In this case we have both R and T to be of rank-I while S is of full rank. We then have:

2= pri, r3 = kri, r4 = kpri

tz = Ut 1, t 3 = mt 1 , t 4 = mut1

Lkr1 kpr1 s S1 S2 T [=t1  ut 1[s3 S4 Lmt1 mut1]

Then we have:

det(P) = s Prl 1 (s4 - ps 3), det(Q) =k kprI = kri(psi - s2 )

det(U) = it ut i = r 1 tim(u - p),

det(W) = 1 muti = mt 1 (us1 - S2),

det(V) = ut1

det(X) = t t1

= kr1 t1 (p - u)

= t1 (s4 - us 3 )

Which then leads to:

constant term = det(R) = 0 coefficient of z4 = det(T) = 0

coefficient of z = det(P) + det(Q) = r1 (s4 - pS3) + kri(ps, - s 2 )

coefficient of z3 = det(W) + det(X) = t1 (s4 - us3 ) + mt 1 (us1 - s 2 )

coefficient of z 2 = det(S) + det(U) + det(V) = (s1 s 4 - s 2 s3) + r1 t 1 (m - k)(u - p)

Let us assume that the coefficient of z is the only non-zero entry. Then we need that the

coefficient of z2 and z3 both be zero.

coefficient of z 3 = 0 = det(W) + det(X) = t1 (s4 - us3 ) + mt 1 (us 1 - s 2 )



=> (s4 - us 3 ) + m(us1 - s2) = 0

=> (s4 - ms 2 ) = u(s3 - Msi)

-= S4 = MS2 + US 3 - MUS1

coefficient of z 2 = det(S) + det(U) + det(V) = (sis4 - s2s3) + riti(m - k)(u - p)

(s1 s 4 - s 2 s 3 ) + riti(m - k)(u - p) = 0

(s 1 (ns 2 + us3 - mus1 ) - s2 s3) + riti(m - k)(u - p) = 0

(ms 2s1 + us 3s 1 - mus 1
2 - s2s3) + riti(m - k)(u - p) = 0

mis 1 (s 2 - usi) + s 3 (us1 - s2 ) + riti(m - k)(u - p) = 0

(s 2 - us) (ims 1 - s 3 ) + riti(m - k)(u - p) = 0

Looking at the big matrix (we look from the middle of the matrix to the end) leads to:

S2

S4

pri
kpri

0
0

ti
mt1

S3

kr1

uti

mut1

S2

S4

pri
kpri

tl 0

mt1  0
Si S2 - USi

S 3 m(s 2 - usi)
ri (p - u)r1

kri k(p - u)r

0
0

(s2 - usi)
(m - k)(s 2 - usi)

(p - u)r
0

0
0
ti

mti
Si

S3

0
0
ti

int1

S 3

0
0

(m - k)

0
0

uti

muti

S2

S4

0
0
0
0

S2 - us 1

m(s 2 - usi)

0
0
0

tl 0

ri
kr1

0
0
0
0

r1
kr1

0
0
0
0

pri
kpr1

0
0
0
0

S2

S4

pri
kpri

0
0

t1
mt1

S3 - ksi

r
0

pri
kpr1

0
0
0
0

S2

S4

pri
0
0
0

ri
kr1

0
0
0
0

pri
kpr1

0
0
0
0

si (S 2 - us 1 )

S3 - ksi (m - k)(s 2 - usi)



ri pri Si S2
kr1 kpr1 S3 S4

0 0 ri

0 0 0

pri

0

0 0 0 0

0 0 0 0

ri pri Si S2
cri kpri s3  S4

0 0 ri pr1

mt, 0

s3 - ksi 0
si(m - k)

S3 - ksi (m - k)(s 2 - usi)

(p - u)r1

ti
mt,

Mis1 - S3

(m -k)
0 0 0 0 s3 - ksi (m - k)(s 2 - us)

0 0 0 0 ri

0 0 0 0 0

(p - u)r

0

(m- k)ti 0

s3 - ksi 0
si- ( m - k)

S3- ksi (m - k)(s 2 - usi)

0 0
0 0
0 0

(m - k)ti 0
MS 1 - S3 0
(m -k)

0 (m - k)(s 2 - us)

ri pri si S2 ti

kri kpri S3

0 0 ri pri

mti
MS 1 - S 3

(m-k)
0 0 0 0 s3 - ksi (m - k)(s 2 - us)

0 0 0 0 ri (p - u)r

0 0 0 0

0
0

0

0
ms 1 - S3 t_________

(m - k) (S2 - USD(
0

0
0

0

0

0

(m - k)(s 2 - usi)

ti (p- 0
(s 2 - us)(

(ms 1 - s3)(s2 - us,) + (m - k)(u - p)riti

(m - k)(s 2 - usi)

But

coefficient of z 2 = (sis4 - S2S3) + ritl(m - k)(u - p) = 0

= (S2 - us) (ms 1 - s 3 ) + riti(m - k)(u - p) = 0

- i - (p - u)r 1 = (ms 1 - s3)(S2 - us,) + (m - k)(u - p)riti = 0
(S2 - usi)

(ms 1 - s 3)
(m - k)

(ms 1 - s 3)
(m -k)



ti 0
mt, 0

mS1 - S3 0
(m - k)

S3 - ksi (m - k)(s2 - us 1 )

ri (p - u)r1
0 0

0 0
0 0
0 0
0 0
0 0
0 (m - k)(s 2 - us)

In which there is a column of zeros. Hence it is not possible to get an invertible banded matrix

such that the only non-zero term in the determinant comes from the 'z' term for the (1, 2, 1)

case.

By symmetry, we can say that the same holds true for the z3 term.

Finally we assume that the coefficient of z2 is the only non-zero entry. Then we need that the

coefficient of z and z3 both be zero

coefficient of z3 = 0 = det(W) + det(X) = t 1 (s4 -us 3 ) + mt 1 (us1 - S2)

= t1 (s 4 - us 3) + mt 1 (us1 - s 2) = 0

= (s4 - ms 2) = u(s 3 - ms1 )

* S4 = MS2 + US3 - MuS1

coefficient of z = 0 = det(P) + det(Q) = r1 (s4 - ps 3 ) + kr1 (ps1 - s2 )

=> r1 (s4 - ps 3) + kri(psi - s 2 ) = 0

= (s4 - ks 2) = p(s 3 - ks1 )

=e S4 = ks2 + pS3 - pksi

:- ms 2 + us3 - mus1 = ks2 + pS3 - pksi

(u - p)s3 = (k - m)s 2 + (mu - kp)si
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'ri
kr

0

0
0
0

pri
kpri

0

0
0
0

S2

S 4

pri

0
0
0



If (u - p) = 0, (k - m) = 0

=S4 = ks 2 + ps 3 - pks, = s4 = ms 2 +us 3 -mus1

=> coefficient of z3 = coefficient of z = 0

coefficient of z 2 = (sis4 - s 2 s 3 ) + ritl(m - k)(u - p) = (sis4 - s 2 s 3 ) = det(S)

x1

x3

mat = r1
kr,
0
0

t1

kt,

i Si1

(s3 - ksi)
r
0

t1

kt,
Si

(s3 - ksi)
r
0

x2

x4
pri
kpr,

0
0

t1
kt,
Si

S3

r,
kr1

pt1
kpt,

S 2

(s4 - ks 2)
pri
0

pt1
kpt1

S2

p(s3 - ksi)

pri
0

pt1
kpt,

S 2

S4

pri
kpr,

0
0
ti

0
Si

(s 3 - ksi)

0
0
tl

0
Si

(s3 - ksi)

0-
0

pti
k pt,

S2

S4 -

0
0

Pti
0

S2

(s4 - ks 2 )-

0
0

pt,
0
S2

p(s 3 - ksi).

-x1 x2  t
x3  x4  kt,
r1  pri si
0 0 (s3 -ksi)
0 0 ri

.0 0 0

0
0

(s2 - ps)
0
0
0

0 0
0 0
ti 0
0 0

si (S2 - psi)

(s3 -ksi) 0

This situation is indeed invertible and the inverse is banded.

x1
x3
ri

0
0

-0

x1
x3
ri

0
0

-0

x4

pr
0
0
0

x2

x4
pri
0
0
0

-> rref (mat) =



If (u-p) = 0,(k -m) # 0

=> 0 = (k- m)s 2 + p(m - k)si

=> S2 Psi

= s4 = ks 2 + pS3 - pksi => s 4 = ps 3

S Psi rank(S) = 1

If (u - p) # 0

s3 =
(k - m)s 2 + (mu - kp)s 1

(u - p)

coefficient of z 2 = det(S) + det(U) + det(V) = (sis4 - s 2 s 3 ) + ritl(m - k)(u - p)

=> sis 4 - s 2s 3 = s 1 (ms 2 + us3 - musi) - s 2s 3

=> sis 4 - s 2s 3 = (ms1 - s 3 )(s 2 - us1 )

e (sis4 - s 2 s 3 ) + riti(m - k)(u - p) = (ms 1 - s 3)(s 2 - usi) + rit1 (m - k)(u - p)

1 r (mn - k)(s 2 - Psi)
(ms 1 - s 3 ) = ms 1 - (u- p) [(k -m)s2 + (mu - kp)s1 ] = (u - P)

(ms1 - s 3 )(s 2 - us1 ) =
(m - k)(s 2 - psi)(s 2 - us1)

(u - p)

We then have:

(ms 1 - s3)(s2 - usi) + rit1 (m - k)(u - p)
(m - k)(s 2 - psi)(s 2 - us) +

(u - p)
ti(m - k)(u - p)

(2 - ) +-rusi)(ms 1 - s3)(s2 - us 1) + ritl(m - k)(u - p) = (m - k) (S2 - + ri t i(u - p)



Let us examine when this is zero:

(ms 1 - S3)(S2- usi) + riti(m - k)(u - p) = 0

- p) = 0

=~(m-)=0or[ (s2 - psi)(s2 - usi)=> (m - k) = 0 or ( (+ r
I (u - p)

ti(u - P) = 0

- (m - k) = 0 or [(s2 - ps1)(s2 - us,) + riti(u - p) 2 ] = 0

(S2 - ps1)(s2 - us1)=> m = k or- ( 1 (-
2  = t1

1lU p)2

Let m = k:

(S4 - kS2) = p(s3 - ksi), (s4 - ms2 ) = u(s3 - msi)

(m k)s2 = (p - u)s3 + (mu - pk)si

=> 0 = (p - u)s3 + k(u - p)si

-> 0 = (p - u)(s3 - ksi)

-> (S3 - ksi) = 0, -: we assume (p - u) # 0

=> S3 = ks1

If s3 = ksi =

S4 = ks2 + pS3 - kps1 => S4 = ks2 + kps1 - kps1 = ks2

=> S = rakS) = s

-* rank(S) = 1

-> (m - k) (2-P1S SO+ riti(u
(u - p)



But the case we are dealing with has rank(S) = 2. Thus it is a contradiction if m=k and

s3=ksi

For the other possibility, it can only be opined that the matrix will be invertible as long as

(s2 - ps 1)(s 2 - usi)
- #*ti

r1(u - p)2

Essentially we can show that the reduced row echelon form for the big matrix with the current

rank order is the identity matrix which means that there are no zero rows or columns (as long as

the above condition holds and the conditions on the coefficients of z and z3 hold).

x2
x4
Pr1

kpr1

0
0

t1

mt1

S3

ri
kri

ut1

muti
S2
S4

pri
kpri

0
0
tl

mt1
Si

S3

0 - -1
0 0

Ut1  =: rref (mat) =
mut1

S2 0
S4 -0

This proves that the matrix in question is invertible under certain conditions.

Remark: Another way to look at it is to assume that the current matrix is obtained from the

product of F1, F2 and F3 having block diagonal matrices a, b and c respectively. In that case:

R = ri Pr1  = [a11 b2lc2 , allb21 c22 l 1> r = a11 b21 c21 ,Lkr 1 kpr1 [a 2 lb2 lc 2 , a2 jb 2 1 c 2 2

C22
P C21

k a2all

S1 s2 1 [anb22cu + a 2buc21  an1b22c12 + a12buc22 1 rs1 = [anb 22c11 + a12 b11 C2 1 ]
S = (s3 S4 j- Lab 22c11 + a22bulc2 , a2nb 22cu + a22bu1 c22j I [S2 La1 b22c12 + a12bu1 c22j

T = t1  uti 1_ a12b12 c 1  al2 bnc 12] -> ti = a1 bUca,
-mt 1 mut1 a22b12c a22b12c1 j

C1 2U -
C11

a22

a12

m=k = a= det(a) = 0,
a12 a11

p = u => = * det(c) = 0
C2 1 C11

-x 1

x3

mat = r

0
.0



Which would not be acceptable because each of the factors is invertible and that means that each

of matrices a, b and c are invertible.

Now consider:

(S2 - ps)(S2 - us) = tl

rL(u - p)2 1

LHS :=-(S2 -psi)(s2 - usi)

r1(u - p)2

(s2 - psi) = - (aCb22) det(c), (s2 - us,) =
(a12bn) det(c)

C11

c1 2  c22  det(c) 2 det(c) 2

(uC- p) C-- -- => (u - p) =
C11 C21 C11 C21 C12

(S2 - psi)(s2 - us,) a12 (ac n) (det(c))2

r(u - p)2 fdet (c))

an b21c21sg-cs
1 c 2)

a lb2 lC21 (det1c21

RHS:= t1 = a12b12cu

-a12bbub22cu
= 1b> b21 = a12b12cu1 -* bulb22 = b12b21

b21

det(b) = 0

But this would again mean that one of the factors would not be invertible which is not what we

want.

Remark: So far we have only dealt with the scenario where F2 has the shift in its elements. In

order to be complete, we need to look at the scenario where F1 and F3 have the shifts instead. In

this situation too, we get results very similar to what we have already discussed. The ordered sets

56

a12bjjb22cu1

b21



of ranks - (2, 2, 2), (2, 1, 2), (1, 1, 2), (1, 2, 2) - for the matrices R, S and T yield singular

matrices. The lone exceptions are the cases (1, 1, 1) and (1, 2, 1). The former cannot be

factorized and both lead to banded inverses only when the coefficient of z2 is not zero.

3.2 Solution Process: Toeplitz Case

Now that we are done with proving that the ranks for the three factor case need to necessarily be

(1, 2, 1) (in order to be able to factorize the matrix), we proceed to solve for the factors. There

are two cases to consider here - one when there is only one matrix that has been shifted (F2 only)

and the other case when two of the matrices have shifts (F1 and F3). Please note that we can't

have both F1 and F2 to have a shift at the same time. We are trying to get three matrices in the

product and that is possible only if no two consecutive matrices have the same structure.

Otherwise, it would simply result in a degenerate case and we can only solve for two factors

instead of three. (If F1 and F2 both have shifts, then they both have the same structure which

means that the product will have the same structure. Hence F 12 can be replaced by a single matrix

with only one block in it and thus we would be able to solve only for (F12) and F3. We will not

get three matrices in the product and hence we cannot get three factors)

First let us consider the case when only F2 has a shift. For this situation, the structures of F1, F2

and F3 are shown. The structure of the product is also shown.

all a12  0 0 0 0 0 0
a21 a 22  0 0 0 0 0 0
0 0 all a12  0 0 0 0
0 0 a2 1 a2 2  0 0 0 0
0 0 0 0 all a12  0 0
0 0 0 0 a21  a22  0 0
0 0 0 0 0 0 all a12
0 0 0 0 0 0 a21 a22



aj1kcuj + a12 bujc2 j
a2jkcuj + a22bujc2 1

0
0
0
0

0

0

a12 b12C11
a22bu2cn

"' anb22 cu + a 2 buIc21
a2jb22 cu + a22 bujc21

anlbulc2

anlbulc2

k
0
0
0
0
0
0
0

C21

0
0
0
0
0

.0

0
bn
b2l
0
0
0
0
0

C12

C2 2
0
0
0
0
0
0

0
b12

b22
0
0
0
0
0

0
0

C1 1

C21

0
0
0
0

0
0
0

bn
by

0
0
0

0
0

C12

C2 2

0
0
0
0

ankcu + a12 bujc22

a2lkcu + a22bujc22

0
0
0
0

0

0

a22 bj 2 C12

anjb22cu + a12 bujc22
a2nb 22cu + a2 2b uc2 2

anlbuc22

alb2,c22

0
0
0

b12

b22
0
0
0

0
0
0
0

C11

C21
0
0

0
0
0
0
0

bn
bn

0

0
0
0
0

C12

C22
0
0

0
0
0
0
0

b12

b22
0

0
0
0
0
0
0

C1 1

C21

0-
0
0
0
0
0

C12

C22 -

anjb22cu + a 2 bujc2 1
an2 b22 cn + a 22bu1c2 1

a,,b 2 lC2 1

0

0
0
0
00

a22bu2cn

anjb22 cu + an2 buIc2 1
a2 b22cu + a22bujc2 1

a,2 b,2 C12

a22b 2cn2
anlb2 2c1 + a12 buc22
an2 b22cu + a22 buc2 2

a,,b 2 lc22
0
0

0
0
0
0

a22 b12 C12

anlb22c1 + a12 buc22
a2nb 22cu + a22 bujc22-

It can be seen from the structure of the product that once again, we would need to set some

values to be able to solve for the remaining values. Although there is no hard and fast rule as to

which values should be set, the best combination was found when the values of all, b1 , b21 and

cn were all set to unity. Using these values, the other variables can be solved for.

F123



Before we start solving for the different entries of the matrices 'a', 'b' and 'c', let us label the

matrices that are present in the product. We consider first only the blocks that are repeated in the

product. Starting from left to right, we label the first 2-by-2 matrix as R (F123(3:4,1:2)), the

second 2-by-2 matrix as S and the final 2-by-2 matrix as T. Please note that the ranks of the

matrices R, S and T need to be 1, 2 and 1 in order to be able factorize the matrix. Denote the 2-

by-2 matrix starting at the position (1, 1) as w.

R a11 b21c21  anlb2 lC22  = a11b22c11 + a12 b11c21  a11 b22c12 + a12b11c22
1a21b2 c21  a2 ,b21c22  1a21b22c11 + a22 b11 c21  a21 b22c12 + a22 b11c22]

al2bl 2c11  a1 2 b1 2 c1 2 1 [ a11kc11 + a1 2 b1 1c2 1  a1 1 kc1 2 + a1 2 b1 1 c2 2

- a22 b1 2c1  a2 2 b1 2 c12  w a21kc11 + a2 2 b1 1 c2 1  a2 1 kc1 2 + a2 2 b1 1 c2 2 I

Now, we are ready to solve for the entries of the matrices 'a', 'b' and 'c'. In this case doing an

element-wise comparison in each of R, S and T helps to get the remaining values. From this, we

have:

cl = R11, c22 = R12 , a21 = R21/R 11 and c12 = T12Tu

Please note that we haven't solved for all the elements yet. It is prudent to stop at this juncture

and to mention that some of the elements (b2 2 and a2 2) that we solve for will yield two different

solutions when solved by two different methods. If F123 can indeed be broken up into different

factors, then the two methods would yield an identical result. So what we can do is to actually

get the values of some of the variables such that the two methods always yield the same solution.

In essence, we make what is expected as what is required and solve from there. If we do this it

leads to

a12 = [S11 - {(T21S11 - T11S21)/(T 21 - Tnan))]|c2



b12= Tn/a1

b22 = [S21 - c2ja12 (T2 )/(Tn1))]/a 21

a2 2 = (Tu/Tn)an

And

k = w1n - S + b2 2

Now we have all the elements needed in order to get the matrices 'a', 'b' and 'c' which are

present in the factors.

Moving on, we now consider solving for the case when both F1 and F3 have shifts and there is no

shift in F2. The structure of the product F123 is shown next:

- kbu1 m kb12 C11
anlb2lm anjb22c11 + a 2 buc21
a2lb2lm a2 jb2 2c11 + a22 bc 2 1

0 anlb2uc 21
0 abucn

kb12c12
anjb22c12 + a12 bujc22
a2nb 22c12 + a22bujc22

anlb2 lc22

a22b1 2c11
anjb22 cuj + a 2 buIc21
a2nb 22c11 + a22bujc21

0

anb2 2c12 + a12 buc22
a2 b22 c12 + a22 bujc22

anb22c11 + a12 buc21
a2 b22c11 + a22 buc21

0
a12buca
a22 b12c1 2

anb22c12 + a1 2 buc22
a2 b22 c12 + a22 bujc 22

Once again, we label the different matrices and vectors that we would need. We denote as 'g' the

first element of the product F123, as 'h' the last element of F123, 's' the vector of non-zero

elements in the first row excluding the first element, 'w' the vector of non-zero elements in the

F123 =

0
0
0

a12 buc
a22 buc
anjb22c11 .

ajnbucn



first column in the first column excluding the first element, 'y' the matrix to the immediate right

of the vector w, 'z' the matrix to the right of the matrix y, 'x' the matrix just below matrix y.

In this case we set b11, c11, b21 and m to be unity. The initial equations that we have are:

a1bulr = x, a2b 2r = z, a1b22r; + a2bulr = y

kbl2r; = s, a1b21m = w, kbulm = g, anlb2 2c11 = h

Using the values we set leads us to

ai'x kzs'
a1 =w, r2 = , , k=g, a2 =--, b22 =h,aa 1  SS

a (y - a2 r2  (s(1))
- b22 (ai'ai) ' k(r1(1))

Now we have all the entries of each of the matrices 'a', 'b' and 'c' in order to be able to get the

factors F1, F2 and F3 along with the multipliers for the shifts - k and m.

3.3 Sample Problem: Toeplitz Case

In the two 2-by-2 factors case, we tested our code against the available factorization for the four

Daubechies wavelet coefficients. Now, we take it to a higher level. We test it and look for factors

for the six Daubechies wavelet coefficients. Unlike the previous case where we could compare it

with the solution obtained by Strang, we do not have a formal set of factors to compare against.

Our only way of ensuring that the factors are indeed correct would probably be to multiply the

factors and to get the norm of the error between the original matrix and the product that we have

just formed.



The six Daubechies coefficients [6] that we use are the following:

R =4
S= Z 10

N12 10

1+V10+ 5+2VT6)

iV1 - 5+2V T)

- 2Vi0+2 5+2V16)

-2Vi1-2 5+2Vi1)

VZ( 5+V0+3 5+2V15)

5+2410)

S 1-2v6

-V2 10 - 24i

-2 5+24Th) j
+2 +2/id

ri (5
T- 5~'

+Vid- 3 5+2Tid)

+Vid+3 5+2V A)

+VFi- 5+24id)

.+V 0+ 5+2T 1)

This then yields the following three factors -

15

F1 = 10.1059
0

.0

0.0578 0 01
-0.5461 0 0

0 1 -- '
0

0 0 01
1 -47.2820 0
1 14.1005 01'
0 0

- 1

F3 = 10.6455
0
0

-0.4123 0 01
25.8205 0 0

0 1 ---
0

For completeness sake we also furnish the norm of the error between the original matrix with R,

S and T as blocks and the product of F1, F2 and F3.

norm(error) = 2.8377e - 014 = O(round - off error)

Thus we can say that the factors that we obtained are correct to round off errors.

Z 2

Z 2



Chapter 4

Banded Matrices - Three factors with 3-

by-3 blocks

In this chapter, we will look at the results of the products of three matrices G1, G2 and G3. All the

three matrices are made up of 3-by-3 blocks. G1 has no shift, G2 has elements that are shifted one

down and one to the right and G3 is further shifted one down and one to the right with respect to

G2. The typical structure of the three matrices is shown next

all a12 a13  0 0 0 0 0 0
a12 a22 a23  0 0 0 0 0 0
a13 a32 a33  0 0 0 0 0 0

0 0 0 all a12 a13  0 0 0
G1 = 0 0 0 a21 a22 a 23  0 0 0

0 0 0 a31 a32 a33  0 0 0
0 0 0 0 0 0 all a12 a13
0 0 0 0 0 0 a21  a22 a23
0 0 0 0 0 0 a31 a32 a33



k 0
0 bn,
0 b2 l
0 b31

G2 = 0 0
0 0
0 0
0 0
.0 0

m 0
0 n
0 0
0 0

G3 = 0 0
0 0
0 0
0 0

.0 0

W1 U,
W2 U2
W3 U3
0 V1

G123 = 0 V2

0 V3
0 0
0 0
0 0

0
b12

b22
b32
0
0
0
0
0

0
0

Cu1

C21

C3 1

0
0
0
0

xi
X21
X31
Yn i

Yu 1

z'2l

Z21
Z31

0
b13

b23

b33
0
0
0
0
0

0
0

C12

C2 2

C3 2
0
0
0
0

X12
X22
X32
Yu 2

Y22

Y3 2

Z12
Z22
Z32

0
0
0
0

bn
by

b31
0
0

0
0

C1 3

C2 3

C3 3

0
0
0
0

X1 3

X23
X33
y 3
Y23
Y33
Z13
Z23
Z33

0
0
0
0

b12

b22
b32
0
0

0
0
0
0
0

Cul

C21

C3 1

0

0
0
0

Xi'
X21
X31
Yi i
Y2
Y3 1

b
b
b

0
0
0
0
0

c2
-3
0

0 0
0 0
0 0
0 0
'3 0
23 0
33 0
0 bl,
0 b2l

0
0
0
0
0

2 C1 3

2 C2 3

2 C3 3

0

0
0
0

X12 X
X22 X
X32 X

Y2 2 Y

Y3 2

X11 X12  X13] Y 1 yl2 Y1 3 1
X = X2  X22  X23 , Y = Y2 1  Y22 Y23

X31 X32 X33] Y3 1 Y32 p33-

-Xn= (a, 2 bl + al3 b2 2 )cu + (a 2 bl + al3 b2 3)c2 1

X12= (a 2 bu + al3 b2 2 )cu + (al2 bl + an3 b23)c2 2

X1 = (a 2 bl + al3 b2 2 )cl + (a 2 bl + al3 b23)c23
X2 = (a22bu + a23 b2 2)cul + (a2 2 bl3 + a23b23)c 2 1

X22 = (a 22 bn2 + a 23 b22)c 2 + (a22bl 3 + a23b23)c22

X23 = (a22 bl2 + a 23 b22)cl 3 + (a22 bl3 + a23b23 )c 23
X31 = (a 32 bl2 + a 33 b2 2 )cul + (a32bl + a33b23)c2 1

X32 = (a 32 bl2 + a33b22)cI2 + (a3 2 bl3 + a33 b2 3)c22
X 33 = (a3 2 bl2 + a33b22)cl 3 + (a32bl + a33b23)c23

Yu= (anlb32 cn + anlb3 3c2 1 ) + (al2 bnl + al3 b2 l)c 31

Yu = (anlb32cu + anlb33c22) + (a 2 bu + a 3 b2 l)c 32
Yu = (anlb32c1 + anlb33c23 ) + (a 2bnl + al3 b2 l)c 33
Y2= (a2 lb 32cu + a2nb 33c21) + (a22bnl + a23b2l)c 31
Y2 = (a2nb 32cl2 + a2nb 33c22) + (a22 bu + a23 b2 l)c 32
Y2 = (a2lb32cu + a2lb 33c23) + (a22 b1 + a23b2l)c 33
Y31 = (a3 lb 32cu + a31 b33c2 ) + (a 32bn + a33b2i)c 31

Y32 = (a3ib 32 cl2 + a3ib 33c22) + (a32bnl + a33b2 l)c 32
Y33 = (a3 lb 32cl3 + a3 lb 33c23) + (a 32 b, + a33b2 l)c 33-

0
0
0
0
0
0
0

b12

b22-

0-
0
0
0
0
0
0
0

Cli-

0
0
0

3

23

33

13

3

33



Z11  Z12 213 anb 31c31  anlb 31c32  allb 31c331
Z =Z21 Z22 Z23 = as b31c31 a21b31c32 a21b31c33

Z31 Z32 Z33- -a31b31c31 a31b31c32  a31b31c33

anlkm 1  (al b + a13bl)n allb 31n] (aub + a13b22)c11
W = arakm U (a22bnl + a23bal)n V = an b3ln , T = (a 2 2 b12 + a2 3 b22 )c 1 1

-a31km -(a 32b 1 + a33b2 l)n -a 31b31n (a3 2 bl2 + a33b22 )c1 1

What we observe from the product is that as expected, there are three matrices in the product as a

result of the different shifts in each of the individual matrices. As always we are interested in the

ranks of the smaller matrices that are repeated in the product. With the current order of

multiplication we see that the matrices are of ranks 1, 2 and 2 in that order. Please note that for

this particular pattern for the factors - G1, G2 and G3 - yields this particular result. If however,

we were to change the ordering, then we would get a bunch of different sequence for the ranks.

Thus it would be impossible to furnish proofs in this particular situation. The 2-by-2 case was

simple because there were only two possible ranks - one or two. Moreover, there were only two

sequences for the Fs, while here we have many more.

There is an interesting point that we would like to point out when considering the three 3-by-3

blocks case. This concerns the order of multiplication of the factors G1, G2 and G3. When the

order of multiplication was changed, in some cases the order of the ranks also changed. What we

found was that there seemed to be some sort of a cyclic relation for the products that shared the

same ranks. We illustrate this with the following table:



Table 1: Shifts and ranks for different G1, G2 and G3

We see that in cases (0, 1, 2), (1, 2, 0), (2, 0, 1) share the same order for the ranks in the product

G123- (1, 2, 2). In a similar manner, the cases (0, 2, 1), (2, 1, 0) and (1, 0, 2) share the same order

for the ranks - (2, 2, 1). In fact, it was also seen that the cases where the ranks were (2, 2, 1) can

be obtained by transposing the cases with ranks (1, 2, 2).

We make here a short remark about the case involving two factors in the 2-by-2 blocks case -

there we did not have any such problems with the order based on the shift. This is because the

ranks of the matrices were (1, 1) and as a result no matter which order we obtain the product, the

ranks will always be (1, 1). Even in the three factors 2-by-2 block situation, this was the case.

The ranks in the product were (1, 2, 1) which was symmetric and independent of the order we

chose for F1, F2 and F3 (admittedly, there were only two possible choices - both F, and F3 have a

shift or F2 has a shift).

We now look at trying to solve for the entries of the factors - G1, G2 and G3 - given the product

G 123. We can see that just like in the 2-by-2 blocks case, we would need to look at the end rows

and columns. This would give us an idea of what the order of multiplication should be. However,

since each of the matrices 'a', 'b' and 'c' contain 9 unknowns, it is difficult to solve for all of

them. We could set a few entries to be specific values, but which ones is in itself a big question.

For the 2-by-2 case, there were far fewer unknowns and as a result, the unknowns that needed to

G1 G2 G3 R S T

no. of shifts 0 1 2 ranks 1 2 2
0 2 1 2 2 1
1 0 2 2 2 1
1 2 0 1 2 2
2 0 1 1 2 2
2 1 0 2 2 1



be set could be arrived at'by brute force in the worst case scenario. That however, would not be

useful in the 3-by-3 block case. What we can do is to examine what are the different matrices

and where they come from. An exact solution (as in the 2-by-2 block case) could not be obtained

in the duration of the current thesis. We present some of the formulations in the product below:

X = a2r b12 + a3rbzz + a2rb 1D + a3r b23,

Z = abl, W = aikm,

V = alb 31n,

Y = a1rb32 + a1r b33 + a2rb + a3r b21

U = (a2bnj + a3b21) n

T = (a2b12 + a3 b22 ) c11
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Chapter 5

Circulant Matrices

5.1 Two factors with 2-by-2 blocks - Toeplitz and Non-Toeplitz

In this chapter, we consider the effects of adding elements to the top right and bottom left of the

factor matrices. In order to be able to understand the process better, we only consider factors

with 2-by-2 blocks. However, we consider both the Toeplitz and the non-Toeplitz cases.

For the most part, the product that we obtain is very similar to what we obtained previously. The

difference, as expected, is seen only at the ends. The middle rows remain unaffected. In order to

make the discussion general, we consider a 2-by-2 matrix at the ends of the factors. Please note

that we add the 2-by-2 matrix only to the factor F2 that already has a shift. We do not add

anything to the matrix F1 that is free of the shift. The structures of F1 and F2 are shown next.

all a 12  0 0 0 0 0 0
a21 a 22  0 0 0 0 0 0
0 0 al 1  a 12  0 0 0 0
0 0 a 21 a 22  0 0 0 0
0 0 0 0 all a12  0 0
0 0 0 0 a 21 a22  0 0
0 0 0 0 0 0 al1  a 12
0 0 0 0 0 0 a 21 a 22



-k
0
0
0
0
0

du
.d21

0
bn
b0l
0
0
0

d12

d22

0
b12

bzz2

0
0
0
0
0

0
0
0

bn
bn

0
0
0

0
0
0

b12

b22
0
0
0

0
0
0
0
0

bn0
bn

0

C1

C21
0
0
0

b02
b22
0

C12 -
C22
0
0
0
0

0

bn.-

The product F12 has the following structure:

F12 =

a = an1  a12]La2 a22]'

A 1 = [a nk ,
A- [a2lkj

[All
A21

0
0
0
0

Z11
-Z21

Xn
X21
Y1
Y2 1
0
0

Z12
z22

X12
X22
Y1 2

Y22
0
0
0
0

0
0

X11
X21
Y1
Y2 1
0
0

0
0

X12
X22
Y 2

Y2 2
0
0

0
0
0
0

X11
X21
Y1
Y21

Wi'
W21

0
0

X12
X22
Y 2

Yzz 2

W 2-
W22

0
0
0
0

A12
A22

b = [b bn12
[bnj bz2j'

A2 = [anbu|]
- [22buj'

X= [anbn-
[a22bn

anb12]
azzbuj'

W = [alcn + a1 2 C21
[a21c11 + a22c21

ancn + a12 C22]
a21c12 + a22c22]' Z [an1dn1 + a 2 d2u

[a2ndln + a22d21

In a generic scenario, we see that the addition of the end elements and matrices in F2 has resulted

in full rank matrices at the ends.

5.2 Solution Process: Toeplitz Case

In order to solve for the factors F1 and F2 in this case, we use the information from the middle

rows of the matrix F 12 first and solve it as for the two factor 2-by-2 case. The only addition that

we make here is to solve for the blocks c and d also. The different steps in this process are shown

next:

y - [anb anb22]
[anlbu anlb223

+ a1 2 d22]
+ a2 2 d2 2]

C = C1 C12] d = [du, d12
IC21 C22.l [du d221



We set k and bu1 to I to get:

Then

A, = al,

A2r; = Y,

A 2 'Y

A2 'A2 '

a = [A1 A2 ],

A2 = a ,

Azr '=X,

A 1 'X

A 1'A1'

A = [A A2] = a

Ac = W, Ad = Z

c = A-1W, d = A~ 1Z

c = A-W d = A-1Z

Which then implies that all the blocks - a, b, c and d - are known and from which the matrices

F1 and F2 can be approximately constructed (approximately because we don't know the original

factors)

One point to note in the above solution process is that we do not specify that the matrices 'c' and

'd' have to be of a particular rank. In fact c and d can contain a single non-zero entry and this

solution method will still work.

At this juncture, we also make a few remarks under some of the cases. Let us assume for the

moment that the matrices 'c' and 'd' contain only a single non-zero entity. We assume that these

are the extreme top right (c12) and the extreme bottom left(d21) entries. We then get:

w - anicfl + a 12 c 2  a1 1 c1 2 + a12 C2 2
W a21c11 + a22c21  a21c12 + a22c22 '

W = [0 a1 1 c1 2
[0 a2 1 c1 j'

Z - anldn,+ and21 an1dn+and22]
-a2 dl, + a2 2 d21  a21 dl + a2 2 d 22]

- [a2d21 0]
la22d21 0]



A11  X11  X 12  0 0 0 0 au c12-
A21  X21  X22  0 0 0 0 a2nc 12
0 Y1 Yl2 Xnl X12  0 0 0

F 0 Y21 Y22 X21 X22  0 0 0
0 0 0 Y1  Y1 2  Xn1  X12  0
0 0 0 Y21 Y22  X21  X 22  0

a12d2 l 0 0 0 0 Y1 Y12  A12
.a22d2 l 0 0 0 0 Y21  Y22  A22

We can now re-arrange this particular form of F12 to the following form (and denote it as f12 ):

anc12  Anl Xnl X12  0 0 0 0
a2nc 12  A21  X21 X22  0 0 0 0

0 0 Y1  Y12 Xnl X12  0 0
0 0 Y21 Y2 2 X21  X22  0 0

12 0 0 0 0 Y1  Y12  Xul X12
0 0 0 0 Y21 Y22  X21 X22

A12  a12d2 l 0 0 0 0 Yu1  Y12
A22 a22 d2 l 0 0 0 0 Y21 Y22

Al]- [al1k] = [ l]A2- [ank an [A12 ] [a12b11 1 _an 2A 2 2] [a22b1 j -a 2 2]

This then implies that the:

rank aI ) = 1,a rank (a2 a2d2l])

In essence, this is like analyzing an infinite dimensional banded matrix to see if it too has a

banded inverse. The major difference however, lies in the final two rows where the position of

the second matrix is not the same as where it would have been in the case of an infinite

dimensional matrix.

This particular re-arranged form can be solved for using the code that has been written to solve

for the cyclic factors. In essence, all this requires is a permutation matrix to be multiplied at

some point to change the position of the columns to get the standard formulation. The way to

check if a permutation matrix is needed or not is very simple and straight forward - we check the

72



first and last rows of the matrix f12. If the four elements are consecutively placed (in the first

row; and similarly there are two elements in the first four slots in the last row), then we know

that we should shift the first column over to the last. Now we solve as usual on this F 12. We

essentially then have this:

fi2 = F1 2 P

But: F12 = F1F2

=> f12 = F1F2P = flf2, wheref 1 = F1 and f2 = F2P

0 1 0 0 0 0 0 0-
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

P=0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
-1 0 0 0 0 0 0 0.

For the non-Toeplitz case, there is not much of a difference between the current solution and the

solution that we obtained in the purely non-Toeplitz case. What this means is that, we solve for

the constituents of the factors as per normal, by setting the first entries of all the matrices to 1.

Finally, we use the very first matrix in F1 (the one with no shift) to get the matrix 'c and then

use the last matrix in F, to get the factor 'd. In this manner, we solve for all the factors as well as

all extra entries present in the factors.

5.3 Three factors with 2-by-2 blocks - Toeplitz

Now we deal with the three factors 2-by-2 blocks case. For this, we only deal with trying to solve

for the factors when F2 is the only matrix that has a shift and consequently, is the one with entries

in the off-diagonal positions. The structure of the product is similar to that what we had obtained
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previously. The difference is the presence of the two blocks in the top right and bottom left

corners of the matrix. The structures of F2 and of the product are shown next:

r k
0
0
0
0
0
enl

-en

0
bn
b2
0
0
0

e12

e22

0
b12

b22
0
0
0
0
0

0
0
0

bn
by

0
0
0

0
0
0

b12
b22
0
0
0

0
0
0
0
0

bn
b21
0

d 1
du

0
0
0

b12

b22
0

du2

d22
0
0
0
0
0

bnl

F123

a1 1kcll + a12 bllC2 1
a21kcll + a2 2 blnC2 1

0
0
x11
x21

0
0

a22bl2Cl

a11 b 22 Cl + al2 blC21
a21 b 22Cl + a22bllC21

a110nC21

a4210nCC1

a1 1 kCl + a12 bllC2 2
a21 kCl + a22blnC22

a11bn C22

021bnC22
0
0

x12
x22

0
0

a22b 2 C12
a1 1 b22 C2 + al2 bC1c22
a21 b22Cl + a22bllC22

a11bnlC22

a21b0lC22

a12bl2Cl

a22bl2Cl

a1 1 b2 2 Cl + al2bllc2 l
a21 b22Cl + a22b1nC21

a1 1 b2 lC21
a21 b2 lC21

0
0

y11

Y21
0
0

a22bl2Cll

a11b22Cl + al 2 bC1c2 1
a2 lb 22Cl + a22bnC1 21

alG12nC12

a22bl2C12

an1 b22Cl + al2 bllC22
a21 b22Cl + a22bllC22

allb21 C22

0
0

Y12
Y22
0
0

a12b12C12
a22 b 2 C12

a11 b22C12 + a1 2 bllC22
a2 lb22Cl + a 22bnC22-

[Xll 1 2 1 11  a12 [e11  e12  C11
=X21 X22] La21 a22 Le21 e22 LC21

C12] - aec
C22 C

[Y1 Y12 a11  a121 [dl d12 ir C C12 ] d
= Ly21  Y22] = 21 a 22  d 2 d22  C21  C22 = dC

To solve, we follow the exact same procedure stated previously to solve for the matrices 'a', 'b'

& 'c' and the factor 'k'. We can then see that



x = aec == e = a- 1xc-1, y = adc = d = a~1yc-

From which we see that everything about the matrices F1, F2 and F3 is known. Hence we have the

complete solution for this case.
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Chapter 6

Conclusions and Future Work

This chapter serves as a final recap of all that we have looked at. We started by looking at the

two factor 2-by-2 blocks case. We proved that the ranks of the matrices in a banded matrix with

two blocks needed to be unity. Only under this situation was the banded matrix actually

invertible and also banded. We then looked at solving for the factors in this case. Owing to the

large number of unknowns vs. the number of equations to solve for them, we realized that we

had to assign values to a few of the variables. Once this was done, we could solve for the others

easily. We solved for the factors in situations where the factors were either Toeplitz or non-

Toeplitz. The non-Toeplitz case added a lot more unknowns into the mix than the number of

equations available. However, we were able to circumvent this problem by assuming a kind of

normalization for each of the blocks - we set the first element of every block to be unity.

We then went on to the case where we had three factors with 2-by-2 blocks. Once again we

proved that the ranks needed to be (1, 2, 1) for the inverse of the banded matrix to also be banded

and factorizable. Like the two factor case, here also we solved for the different factors after

assuming a few values.



We then had a brief overview of the three factor 3-by-3 blocks case. We saw that simply going

from 2-by-2 to 3-by-3 causes a lot more hassles and it is a lot more complicated to solve. We

made observations regarding the different entries in the banded matrix but did not solve for them.

We believe that trying to solve for the three factors would be a nice and logical extension to the

current work done.

Finally, we looked at the case of circulant matrices, where we had non-zero entries in the minor

diagonals of the factors. We saw that for the most part we needed to add only an extra step to

compute the off-diagonal entries. We did this for the two factor Toeplitz and non-Toeplitz case

as well as for the three factor Toeplitz case. In this manner, we covered most of the ground for

the Toeplitz and non-Toeplitz cases.

We wrote solvers for each of the cases that we have discussed and the algorithm used in the

solvers is seen in the solution process section of Chapters 2 and 3. In some cases, we ensured that

given a random banded matrix, the solver itself would determine if it is a two factor Toeplitz or

non-Toeplitz case or if it needs to be permuted or transposed before being solved. The actual

solving though was done in a separate solvers - one for the two factor Toeplitz 2-by-2 blocks

case, one separate for the two factor 2-by-2 non-Toeplitz blocks case and so on. We also think it

would be great to see how much of a generalized solver we can write in order to be able to solve

for factors that have n-by-n sized blocks.



Appendix A

Conjecture for an n-by-n matrix formed

the various permutations

elements

In this section we conjecture that the minimum rank possible for an n-by-n matrix formed from

the permutation of n elements is given by the smallest possible q which satisfies the relation:

n q!

Let us now look at an example to illustrate the point. Consider a set of 7 distinct elements - ai

through a7. We now form a 7-by-7 matrix using only the different permutations of the 7 elements

a1
a1
a1

M = a1

a1
a1
a1

a7
a6
a7
a5
a6
a5
a 7.

According to this conjecture, we say that the minimum rank of M is 4

q = 3 =: 7 > 3!,

from of n

q = 4 =* 7 < 4!



Now we try to show that this is indeed the case. Perform row operations to get:

a4  a5
0 0
0 a6 -
0 a6 -
0 a7 -
0 a7 -

as-a 4 a4 -

Next, we perform column operations to get:

a4 + a5 +a 6 + a7
0
0
0
0
0
0

a4 + a5 + a6 + a7
0
0
0
0
0
0

Now we prove that the last four columns are linearly independent. Denote

a4 + as

C1 =

+ a7 -+ a
0
0
0
0
0
0

; C2 =

- as

0
a6 - as

a6 - as

a 7 - as

a 7 - as

-a4 - as.

- a6 -

a 7 - a 6
as - a 6

= a7 - a6 ; c4 =
as - a6

0
-0-

Need: c1, c2, c3 and c4 are linearly independent

-> aic, + a2c2 + a3c 3 + a4c4 = 0,

a6

- a 6

- a 6

- a6

- a6

0
0

a 7 -

a6 - a 7

0
a5 - a 7

a6 - a 7

a5 - a 7

0

as
0

a 6 -

a6 -

a 7 -

a 7 -

a 4 -

as
0

a6 - as
a6 - as
a 7 - as

a7 - as

a 4 - as

a6
- a 6

- a6

- a6

- a6
0
0

a6
a7 - a6

as - a6

a7 - a 6

a5 - a6
0
0

a 7 -

a6 - a 7

0
as - a7

a6 - a 7

as - a 7
0_

a7
a6 - a 7

0
as - a 7

a6 - a 7

as - a 7
0-

a 7 -

- a 7

0
- a 7

- a 7

- a 7

0-

s. t. ai = a2 = a3 = a4 = 0



We need the above vector equation to be satisfied. In particular it should be satisfied no matter

which row we consider. We then get:

a1 .0 + a2.0 + a3. (a7 - a6) + a 4. (a6 - a 7 ) = 0,

a1 .0 + a 2 . (a6 - as) + a 3-(as - a6 ) + a4 .0 = 0,

a1 .0 + a2 .(a7 - as) + a3 .0 + a4 . (as - a 7 ) = 0,

a1 . 0 + a 2. (a4 - as) + a 3.0 + a4 .0 = 0,

considering 2 nd row

considering 3 rd row

considering 6 th row

considering 7 th row

Which then leads to:

(a 7 - a6 )(a 3 a 4 ) = 0,

(as - a7)(a 4 - a 2 ) = 0,

(a 6 - as)(a 2 - a 3) = 0

a 2 (a 4 - as) = 0

As per the construction, the a1 are all distinct. This then leads to:

a 3 = a 4, a 2 = a3 , a4 = a 2 , a 2 = 0

- a 3 = a 4 = a 2 = a = 0

Finally this yields:

a1. (a4 + as + a6 + a7 ) + a2 .a5 + a 3.a6 + a4.a7 = 0

a1 .(a 4 + as + a6 + a7 ) + a. (as + a6 + a7 ) = 0

a1 . (a4 + as + a6 + a7 ) = 0

Now, if we also impose the condition (a4 + as + a6 + a7 ) * 0, we get

a, = 0



Thus

a1 a2 = a 3 = a 4 = a = 0

And the four columns ci through c4 are linearly independent.

We see that the smallest integer q which satisfies the conjecture:

n q!

75 q!

The smallest q would be: q = 4

We see that the rank of the matrix M that we constructed is also the same as q=4.

The reason we call this the lowest possible rank is because in this particular case we change the

positions of only very few elements. The number of elements that need to be permuted is much

lesser than the size of the matrix. Hence we end up with a matrix that can be reduced to one with

a large number of zeros.

We now try to give a possible proof to support the conjecture. There are two cases we should

consider - when n = q! and when n < q!

i) n = q!

- a1

ap+m

a6
- ak

a2
aq-k

ak-p

ai+j

aq-1
aq-p

am
a6

aq+1
aq+1

aq+1
aq+1



- a1  a2  --- --- aq_1 aq-
ap+m aq--- ---. aqp a

Construct: Anxq =

a6  ak-p am a;
L ak ai+ - a 6  a,

We need to prove now that A is of full column rank. Denote coefficients at- one for each one of

the columns of the matrix A. Then we need to prove:

a1 A1 + a2 A 2 + -+ aqiAq_1 + aqAq =- 0 < a 1 = z = a 2 q_ 1 = aq =0

Perform row operations to get:

a1  a2  --- --- aq_1 aq -

ap+m - a1 aq-k- a2 ----. aqp-aq1 ai - aq

A=

a6 - a1  ak-p- a2 --- --- am - aq_1 aj - aq

ak -al ai+; - a2  - - a6 - aq_1 ap - aq.

It can be seen that each of the q numbers appear at each of the q positions exactly (q-1)! times.

As a result, for each aj, (i = 1 to q) we can construct q-1 equations in the remaining q-1

numbers. Please note that every row sums to the same value (because we have the same set of

numbers in every row, only the ordering has changed). This trivial fact is highly important and is

used recursively. We then consider this reduced system of equations which we call Ared

ap+m - a, aq_ -- a2 ---. .aqp - aq.1 ai -[-- . - . a2
Ared a -

a 6 - a1  ak-p - a 2 --- --- am - aq- 1
ak -a1 aj+j - a2  --- --- a6 - aq _1 a-1

ap+m - a, aqk - a2 '-- -aq-p - aq-1- a, a, - i]
a2 a2 1

a6 - a, ak-p - a2 -- '-- am - aq-1

ak- al ai+j - a2  --- --- a 6 - aq.1 .aq-1. a 1 . 1j

83



In a similar manner we can prove that all the a are equal. This then leads to (from the first row of

A):

aia + a2a 2+ + aq_1aq.1+ aqaq= 0 -O= aa + aa 2 + -+ aaq_1 + aaq = 0

->a(ai + a2+ -+ aql+ aq) = 0

=a(ai + a2 + -- + aq_1 + aq) = 0

-> a= 0 or (a + a2 + --- + aq_ + aq) =0

For the moment, let us suppose that (a1 + a2 + -+ aq1 + aq) * 0. Then we have a = 0 and so

the q columns of A are linearly independent. Also, we have changed only the q elements in the

big matrix M. So the rank of the matrix M is essentially the same as the rank of A. And this is

gives us that the rank of the matrix M is

rank(M) = q, where: q! = n

ii) n < q!

In this situation, an exact proof could not be obtained. We leave the current problem in this

state with the hope that the second part can also be proved.



Appendix B

Miscellaneous Properties

The thesis dealt with the problem of obtaining the factors for the 2-by-2 block matrices cases.

We also looked at the results that we obtained from the 3-by-3 block matrices cases. We made an

observation that the ranks of the matrices in the product of G123 seemed to follow a particular

pattern. We furnished a table that showed the same. We now briefly extend that result that we

obtained to the case where we have 4-by-4 block matrices in the product. The table for this is

presented below



No. of shifts Rank of matrix
H1 H2 H3 H4 rank(R) rank(S) rank(T) rank(U)

0 1 2 3 1 2 3 3
1 2 3 0 1 2 3 3
2 3 0 1 1 2 3 3
3 0 1 2 1 2 3 3
0 1 3 2 1 3 3 1
1 3 2 0 2 4 3 1
3 2 0 1 1 3 3 1
2 0 1 3 1 3 4 2
0 2 1 3 2 4 3 1
2 1 3 0 1 3 3 1
1 3 0 2 1 3 4 2
3 0 2 1 1 3 3 1
0 2 3 1 1 3 4 2
2 3 1 0 1 3 3 1
3 1 0 2 2 4 3 1
1 0 2 3 1 3 3 1
0 3 1 2 1 3 3 1
3 1 2 0 1 3 4 2
1 2 0 3 1 3 3 1
2 0 3 1 2 4 3 1
0 3 2 1 3 3 2 1
3 2 1 0 3 3 2 1
2 1 0 3 3 3 2 1
1 0 3 2 3 3 2 1

Table 2: Shifts and ranks for different 111, 112, H3 and 114

We see that for the 4-by-4 blocks case, in some cases cyclically switching the order of

multiplication of the matrices results in the same order of ranks for the products. However, this is

not always the case as can be seen from the second set that is considered. This table might be

useful for those who want to have a quick idea of what the ranks look like without having to

perform the experiments in full.

From the work done over the period of the thesis, a couple of interesting patterns were obtained.

We list a couple of them here:



i) Suppose we have n factors, each of which is made up of n-by-n block matrices. Let us

denote them to be fi through f,. Assume further that the each matrix from f2 is shifted

one down and one to the right from its predecessor's position. This would mean that

fi would have no shift, f2 would have a shift one down and one to the right in position

with respect to fi and so on. Now, let us consider the product of the matrices fi

through fk, We then have

ranks of matrices in the product fl...k = 1,2,3 ... k, 2 < k n - 1

ranks of matrices in the product fl ... = 1, 2,3 ...k - 1,k - 1, k = n

Let us apply this to the three factor 3-by-3 case. We then have

n = 3 -* ranks of matrices in the product fl...k = 1,2,3 ...k, 1:5 k 2

k = 2 =* ranks of matrices in the product f 12 = 1, 2

k = 3 ==> ranks of matrices in the product f123 = 1, 2,2

ii) Another pattern that we obtained was related to the product factors made up of 2-by-2

block matrices. We saw that in the two factor case the ranks were simply (1, 1). This

became (1, 2, 1) when three factors were considered. We then multiply the product

F 123 with another matrix F4 (also made up of 2-by-2 blocks and with the same

structure as F2). The rank pattern we got in this case was (1, 2, 2, 1). When this was

continued with F5, it lead to (1, 2, 2, 2, 1). Hence it became apparent that with every

extra factor that we add in, we get another full rank matrix in the product. There is a

logical explanation for this. Every additional multiplication essentially means that we

combine entries that are themselves linear combination of the previous cases. So



initially we have two rank-I matrices adding up to give a rank-2 (full rank) matrix.

Since we are looking at 2-by-2 blocks, more such additions will only give a full rank

matrix and that is why we keep getting rank-2 blocks in the product.



Appendix C

Extension of results obtained in [1]

We now look at some of the properties that we can derive for the matrices P and Q as mentioned

in the paper by Strang[1]. We examine the construction of the matrices R, S and T among others.

Basically we look at the matrices P and Q. We need them to be of rank-I each and we also need

to satisfy a few conditions. The properties we need ftom them are the following

PQ = QP = 0,

[A1[ As

P+Q=I, pz p, Q2 =Q

A2 [B1 B21
A4] [=B3 B4 1

Since P and Q should be of rank-1, we can re-write them as:

[A1  pA1 ]
kA1 kpAj i

[B1 qB1]
1B [l1 qB1]

pz =p A1  pA1 ][ A1  pA1 ] _ [A1  pA1 ]
[kA 1 kpA1 ]IkA1 kpA1 kA1 kpA1]

=> A 2 1+kp p+kp2 =A 1
k+k 2p kp+k 2p2 [k kp

=A,(1 +kp)A1 p(1 +kp)A1 [ ,1 pI=>A1k(1 +kp)A1 kp(1 +kp)A11 = 1k kpj



=> (1 + kp)A1 = 1,
1

=> (1+ kp)

=> k =A- - 1)|p

In a similar manner using Q2 = Q, we get:

=> w =kus - 1 lq

Next, we make use of PQ = QP = 0 to get some more relations:

P _[ A1  pA 1 [B 1  qB1 1
kA1 kpA1j lB1 lqB1

= A1 B1 [k1+ pl q(1+ pl) =[0 01
k(1 + pl) kq(1 + pl)j 0 0

QP =[ B qBj[ A l pA1 = A1B1 [ 1+ kg p(+ k) I 0 01
[1B,1 qB1) [kA1 kpA1) 1(1 + kg) 1p(1 + kq)) 100

>1 +pl = 0, 1 +qk = 0

1 1
=l=--, q=--

p k

Finally, we make use of the last requirement:

P +Q = I

A1  pA1  [ B1  qB1 )[1 0
kA1 kpA1j [lB1 lqB1 ] 1

pA1 + qB 1  1 0
kpA + 1qB 1] l0 1

=>A 1 + B1 = 1, pA1 + qB 1 = 0, kA1 + lB1 = 0, kpA1 +lqB1=1

Now, we make use of the relations connecting q with k, I with p and k with p to get:

1
kp =---

A,

[ A1 + B1

[kA 1 + lB1



pA1 + qB1 = 0 = pA1

(IA- 1)A1 -B1 = 0 ->

1
-- B1 = 0 => pkA1 -B 1 = 0

1 -A 1 -B 1 = 0 =:>A 1 +B 1 = 1

In a similar manner, the other two equations yield the same result. Hence we need:

A1 + B1 = 1

To recap, the following need to hold:

k =(1 1 -* (A1 + B1 = 1)

Now let us use these relations in the simple case of a matrix formed from the product F12 (where

F 12 is obtained from the matrices F1 and F2, with F2 having a shift in its structure). As usual we

let the block matrices in F1 be 'a' and those in F2 be 'b':

a= a12La21 a22
b - [bn b2

lb21 b221

Then we have:

- b b22

p= a 1 b21 a 1 b2 2]= a11b21 I b2

1a21b21 a21lb 2 2J a21 a21 b2 2

-all allb 21.

=> A1 =ab21 k a21
anl

Q = [a1nb al2b1 2]La22bnj a22b12

1

= a12b11 a22
a22

We use the previously mentioned equations to get:

b1

a22b1n
a12buj

= B1 = albn q = bn
- a 2 2

a12

- 1)/P 1

p=2

b21

_q



k = -1

j ajjb21 + a21 b2 2 = 1

l=-l/p

=> anb!2 1 + a2 2 b2 2 = 0

> lalubn + a22bn

q = -1/k

= anlbn + a21 bn = 0

Solving this set of equations leads to:

b12
all = det(b)

a2 1 - det(b)

a = (1/det(b)) [b1 b22
[ bn, -b213

b22
a1 2 = det(b)

_b21
a 2 2 - det(b)

b = [bn bn~
[b21 b221

We now look at the construction of 2-by-2 matrices R, S and T in the product and look at the

means of constructing them. We know that the matrices R and T need to be of rank- 1 while the

matrix S is of full rank.

r = (r2 t = (t' U=IN V=N

R ru' = [Ui U 2] =[T2r 2u1 r2u2] [R3 R4

T = tv' = ] [V1 V2] = [t 1V1 t1 v2 1 [T1 T21t2 t2V1 t2v2  T3 T4]

We construct two different S matrices - Si and S2 - to determine which should be the one that

needs to be used to get a banded inverse.



S1 = rv' + tu' = [v'1 V2] + [j [u1 u2 ]

S, = [riv1  r1v2] + [t1u1  tu 2] rivi + tiu1r2v1 r2v2
1t2u1 t2 u2 Lr2v1 + t2u 1

S2= rv' + atu' = 1] [v1

r1v 2 + tiu21 =[fI # #2]
r2 v2 + t2u2 1 W3 /34

V2] + a [[u1 u2]

rivi r1v2] + a [tiu 1  tiu2] _ [rivi + atiu12 =r 2v1 rzav2 tzu 1 t2u2 r2v1 + at 2u 1
riv2 + atlU2] = [Y1 Y2]T2v2 + at2u 2 Ys Y4

Now construct M, and M2 as follows:

M1 = R + S1 z + Tz 2
M2 = R + S2z + T z 2

M,- [r1ui + (r1v1 + tiu1)z + (tv 1 )z2

tr 2u1 + (r2v1 + t2u1 )z + (t 2v1)z 2

M riu1 + (riv1 + atiui)z + (tivi)z2

1r2u- + (r2v1 + at 2u,)z + (t 2v1)z 2

r1u 2 + (r1v 2

r2u 2 + (r2v 2

r1u2 + (r1v2

r2u 2 + (r2v2

+ tiu2)z + (tiLv 2)zZ2

+ t2u 2)z + (t 2v 2)z 2 j

+ atiu2)z + (tlv 2)z 2 1
+ at 2u2)z + (t 2v 2)z2j

Let us consider M1 first:

M1 = R + S1 z + T z 2

M- [riu + (riv1 + tiui)z + (tivi)z2

Lr2u1 + (rzv 1 + t2u1)z + (t 2V1 )z 2
r1u 2 + (r1v2 + tiu2)z + (t1v 2)z2

r2u2 + (r2v2 + t2u 2)z + (t 2V2)z 2]

Using our determinant notation we have:

constant =R, R = 0, coefficient of z = I~ R +I R
coefficient of z 2 = fli 321+ IR, R2 +I T1  T2f3 & T3 T41 R3 R?4

coefficient of z3 = I T oef+ fin of2 , T3 4=0coefficient of z4 =



Consider now, the remaining terms - coefficient of z, coefficient of z3 and coefficient of z2:

We get: coefficient of z = 0, coefficient of z3 = 0

And: coefficient of z 2 = 0

= det(M1 ) = 0

This implies that the matrix with R, S1 and T as blocks will not be invertible.

Let us now consider M2 :

M2 = R + S2z + T z 2

M2- [riu1 + (rivi + atiu1)z + (tiv1 )z2

2 r2 u1 + (r2v1 + at 2u1 )z + (t2v1)z 2
riu2 + (riv2 + atiu2)z +
r2u2 + (r2v 2 + at 2u 2)z +

constant = R R2 = 0,
IR3 R41

coefficient of z = R1, R21+ I Y1 Y21y3 y4| R3 R4

coefficient of zz = r 1 r;
I Y3 Y4

coefficient of z3= 2 + IT T2,

+1 R2 + \T1 T2
T3 T4  R3 R4

coefficient of z4 = TT= 0
I T3 T'410

Consider now, the remaining terms - coefficient of z, coefficient of z3 and coefficient of z2:

We get: coefficient of z = 0, coefficient of z 3 = 0

And: coefficient of z 2 = (1 - a)(r2 ti - rit2 )(U2v1 - uIv 2)

= det(M2 ) = ((1 - a)(r2 t1 - rit2 )(u 2v 1 - uiV2))Z2

Let us look at det(M2) a bit more closely:

(t1v2)z
2]

(tzV2)z z 1



det(M2 ) = ((1 - a)(r2t1 - rit2 )(u 2v 1 - ulv2))Z2

This will be zero when one of the terms is zero:

(1 - a)(r2 t1 - rit2 )(u 2v1 - u1 v 2 ) = 0

= (1-a) = 0 or (r2 t, - r1 t2) = Oor (u 2v 1 - u1 v 2 ) = 0

i) (r2 ti - r1t2) = 0

=> r 2 ti = ritz,
r2  t2

r1 ti
=> r = pt

=> S2 = rv' + atu' = ptv' + atu' = t(Mpv' + au')

This then implies that S2 is of rank-1. However, we need it to be of rank-2 if we need the big

matrix to be factorizable with a banded inverse.

ii) (u 2 v1- u1 v2) = 0

=>u 2 v 1 = u1 V2 ,
U2  V2

U1 V1

[U1] =P[V

= S2=rv' + atu' = rpu + atu' = (rp + at)u'

This once again implies that S2 is of rank- 1. However, we need it to be of rank-2 if we need the

big matrix to be factorizable with a banded inverse.

iii) (1 -a) = 0

= a = 1, => S2 = rv' + tu' = S1

= > u = pV

l = 1 ,'



We get that the matrix S2 in this case is the same as Si. But we also know that Si does not lead to

a monomial determinant for M1. The determinant will instead be zero implying that the matrix is

not invertible.

Thus we see that as long as a # 1, it is possible to have a monomial determinant for M2.

We also need the following to hold true:

PT = QR = 0

tiV2 0
t2 V21

PT = [ A1t1v1 + pA1t2v1
[ kA1t1v1 + kpA1t2v1

QR = [Birui +
1B1r1u1 +

qBjr 2ui
lqB 1r2u1

QR =[ B1  qB1 Iriu,
[lB1  lqBj zr2 ui

A1t1v2 + p A1 t2v2 ] = 0
kA 1t1v2 + kp A 1t2 v 2 1

Biriu2 + qBir2 u 2 ] 0
lB1r1u2 + lqB 1r2u2]

P t1v1 + pt2v1
lkt 1v1 + kpt 2v1

=> (t 1 + P

QR = [lriu1 + qr2 ui
[(r1u1 + 1qr 2 u =

==> (r1 + gr2) =

t1v 2 + pt2 v2 ] [ v1 (t1 + pt2)
kt 1v 2 + kpt 2 v2 =lkv1 (t1 + pt 2)

tz2 0, -> -= -p,t2

r1u2 + qr2u2 1 [ui(r1
1r1uz + lqr2u2 ] 1u1 (r1

0, => = -q= ,)

v 2 (t 1 + pt2)1 =0
kv 2 (t1 + pt 2)]

[ l = [P11

+ qr 2)
+ qr2 )

u2(r1 + qr 2) = 0
1u2 (r1 + qr2)]

[ ri]=[q =[1

Pr =r, Qt =t

Pr A1  pA = rP-kAj kpA1]Lr2] Qt = B1 q BJ I = t

[ A1  pA1 Ir ti 1V
P kA1 kpA1 j 1t2 v 1

r1u2  0
r2u2 1



Pr- =A 1r1 + pA1 r2 1 = [r1 ] = B1 t1 + qB1 t2 1 ] [ t
P kA 1r1 + kpA1 rj r =r Qt- 1B 1t1 +lqB1 t2 ] U lt21

It can be shown that r and t are linked to the eigenvectors of P and Q

(P - AI)x = 0

(P- A= A -2AL kAj
pA-

kpA1 -
= 0 => det(P - Al) = 0 = (A1 - 1)(kpA1 - A) - (pA 1 )(kA 1 )

= (A1 - A)(kpA 1 - A)= kpA1
2

=> (kpA12 - AA1 (1 + kp) + A2) = kpA1
2

= >A(A - A1(1+ kp))= 0

=>A= 0or A = A1 (1 +kp) = 1

Px = A1 pA|[x1= IX1 x
kA1 kpAi1 X2  X2

A1x1 + pA1x2 = x1 and kA 1x1 + kpA1x2 = X2

x1 = X2= 1 ~ =
= k = []= = r

Thus r is an eigenvector of P. In a similar manner, it can be shown that t is an eigenvector of Q.
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