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Abstract

This thesis proposes a novel approach to address the issues of efficiency and fairness
when multiple portfolios are rebalanced simultaneously. A fund manager who rebal-
ances multiple portfolios needs to not only optimize the total efficiency, i.e., maximize
net risk-adjusted return, but also guarantee that trading costs are fairly split among
the clients. The existing approaches in the literature, namely the Social Welfare and
the Competitive Equilibrium schemes, do not compromise efficiency and fairness ef-
fectively. To this end, we suggest an approach that utilizes popular and well-accepted
resource allocation ideas from the field of communications and economics, such as
Max-Min fairness, Proportional fairness and a-fairness.

We incorporate in our formulation a quadratic model of market impact cost to re-
flect the cumulative effect of trade pooling. Total trading costs are split fairly among
accounts using the so-called pro rata scheme. We solve the resulting multi-objective
optimization problem by adopting the Max-Min fairness, Proportional fairness and
a-fairness schemes. Under these schemes, the resulting optimization problems have
non-convex objectives and non-convex constraints, which are NP-hard in general. We
solve these problems using a local search method based on linearization techniques.
The efficiency of this approach is discussed when we compare it with a deterministic
global optimization method on small size optimization problems that have similar
structure to the aforementioned problems.

We present computational results for a small data set (2 funds, 73 assets) and a
large set (6 funds, 73 assets). These results suggest that the solution obtained from
our model provides a better compromise between efficiency and fairness than existing
approaches. An important implication of our work is that given a level of fairness
that we want to maintain, we can always find Pareto-efficient trade sets.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Professor of Operations Research
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Chapter 1

Introduction

1.1 Motivation and objectives

This thesis proposes a novel approach to address the issues of efficiency and fairness

when multiple portfolios are rebalanced simultaneously. A fund manager who man-

ages multiple accounts of diverse clients needs to periodically rebalance the portfolios

to maintain the desired levels of return and risk exposure. In practice, the manager of-

ten wants to pool and execute trades from these portfolios simultaneously to increase

efficiency. In this process, the nonlinear trading impact costs depend on the size of

the cumulative trade. Thus, the individual problems of rebalancing the accounts are

in fact interdependent. As a central decision maker, the fund manager needs to de-

cide how to distribute the total trading costs fairly among the clients. The existing

approaches in the literature, namely the Social Welfare and Competitive Equilibrium

schemes, do not address the issue of fair distribution of trading costs appropriately.

The objective of this research is to contribute towards this direction. Specifically,

we want to build a mathematical model that captures the interdependence between

different portfolios under the presence of market impact cost. We also suggest a way

to split the trading costs fairly among the clients. Finally, we apply popular resource

allocation ideas from the fields of communications and economics, such as Max-Min

fairness, Proportional fairness and a-fairness, to our problem to get solutions that

trade off efficiency and fairness.



1.2 Approaches and contributions

We propose here a model to the multi-account rebalancing problem which incorporates

quadratic market impact cost to reflect the cumulative effect of trade pooling. Total

trading cost is split fairly among accounts using the so-called pro rata scheme. We

then solve the resulting multi-objective optimization problem under the Max-Min

fairness, Proportional fairness and a-fairness schemes. Under these schemes, we need

to solve either a single or a series of non-convex problems with non-convex constraints,

which are NP-hard in general. We solve these problems using a local search method

based on linearization techniques. The efficiency of this approach is discussed when we

compare it with a deterministic global optimization method on small size optimization

problems that have similar structure to the aforementioned problems.

We present computational results for a small data set (2 funds, 73 assets) and a

large data set (6 funds, 73 assets). These results suggest that the solution obtained

from our model provides a better compromise between efficiency and fairness than

existing approaches. An important implication of our work is that given a level of

fairness that we want to maintain, we can always find Pareto-efficient trade sets.

1.3 Thesis outline

The outline of this thesis is as follows. In Chapter 2, we formulate the multi-account

rebalancing problem as a multiple objective optimization problem and review the

existing approaches to solve this problem. In the last section of this chapter, we

review some important fairness concepts from the field of communications that we

want to use in our problem. In Chapter 3, we explain in details how we applied these

fairness concepts to the multiple portfolio trading problem. We also propose in this

chapter a local search algorithm that can be applied to solve the resulting nonlinear

and non-convex optimization programs. This chapter concludes with a description of



a deterministic global optimization algorithm based on branch-and-bound strategy

that we utilize as a benchmark to our proposed approach. In Chapter 4, we present

the numerical experiments based on two case studies that we generate from real-

world financial data. We compare the performance of different approaches and show

that our proposed method is superior to existing approaches in the literature in term

of compromise between efficiency and fairness. We also argue that our local search

algorithm could possibly provides near optimal solutions by comparing the outcomes

to those from the branch and bound algorithm on small size problems. Chapter 5

summarizes this thesis and provides some directions for future development of this

research.



Chapter 2

Model Formulation and Fairness

Concepts

2.1 Introduction

The foundations of modern portfolio theory were laid by Markowitz with his mean-

variance analysis framework [8]. Under this framework, the asset allocation problem is

solved via means of an optimization problem, in which the asset weights are chosen so

as to maximize the portfolio expected return given a specified level of portfolio return

variance. Alternatively, the asset weights can be chosen to minimize the portfolio

return variance given a desired level of expected return. Under the risk aversion

formulation (see for e.g. [2]), the mean-variance portfolio optimization problem takes

the form

max{t'w - Aw'Ew | w'e = 1}, (2.1)

where w E Rn is the vector of asset weights, t E R' and E E RflX are the expected

values and covariance matrix of asset returns, respectively, e = [1, ... , 1] E R4 and A

is the risk aversion parameter reflecting the investor's risk preference.

In practice, portfolio managers often introduce additional constraints to the origi-

nal formulation to reflect specific institution's features or investment policies. Exam-

ples include long-only constraints, turnover constraints or sector exposure constraints



[2]. Practical portfolio optimization problems may also involve complicated mixed

integer constraints such as minimum holding requirement [14] or restrictions on the

number of assets we invest on [1]. The inclusion of transaction costs in the asset al-

location problem was first studied by Pogue [17] and further expanded and modified

by other authors (see for e.g. [7, 9]). The principal idea in these studies is the adjust-

ment of the objective function of (2.1) to take into account various transaction costs

such as brokerage fees/commissions or market impact cost. Specifically, the portfolio

optimization problem is rewritten as

max{p'w - Aw'Ew - AcC(w) I w'e = 1}, (2.2)

where AC is the transaction cost aversion parameter and C is the transaction cost

function. The transaction cost function C can be a complicated nonlinear function

and it is commonly approximated by a linear or quadratic function for tractability.

In Section 2.2, we discuss in more detail the quadratic model approximation of the

transaction cost function that we use in this thesis.

The multi-account portfolio rebalancing problem with transaction costs was intro-

duced by O'Cinneide et al. [11]. In their study, O'Cinneide et al. noticed that when

a fund manager optimizes a client's portfolio individually, the calculated trades are

suboptimal in the presence of concurrent trades of other accounts. The authors also

suggested two approaches to tackle the multi-account portfolio rebalancing problem

by applying ideas of common good distribution from microeconomics, namely the

Social Welfare scheme and the Competitive Equilibrium scheme. The main idea of

the Social Welfare scheme is to maximize the total goodness of participating clients.

The problem with the Social Welfare idea is that the resulting allocation might favor

several clients over others. As we will see in Section 2.4, the resulting allocation vector

from Social Welfare scheme is Pareto optimal but need not satisfy justified fairness

criteria. Furthermore, the justification for Competitive Equilibrium scheme is that

it corresponds to how the clients would behave if they traded independently in an

efficient market, given that each client had complete information about the trades of



others at execution time. However, this is a heuristic scheme and the resulting allo-

cation vector might not be Pareto optimal. The lack of an approach that guarantees

both fairness and Pareto optimality in the current literature motivates us to tackle

this problem with the application of fairness ideas from the fields of communications

and economics, namely the Max-Min fairness, Proportional fairness and a-fairness

scheme.

The structure of this chapter is as follows. In Section 2.2, we introduce the no-

tation and the multi-account portfolio rebalancing problem that we consider in this

thesis. Section 2.3 reviews current approaches in the literature, including the Inde-

pendent scheme, the Social Welfare scheme and the Competitive Equilibrium scheme.

Section 2.4 introduces the concepts of fair rational preference relation and fair dom-

-inance. It also describes the a fairness scheme as a fair aggregation problem using

a class of parametric utility functions. Proportional fairness and Max-Min fairness

appear as two special cases of the a fairness scheme.

2.2 Model formulation

Notation

In this thesis, we will consider a scenario in which a fund manager has to manage

n portfolios (or funds) that are invested in the same market with m risky assets (or

stocks). The funds and assets are indexed by i = 1, ... , n and j = 1, ... , m respectively.

Each fund i is assumed to have an initial investment (in dollar value), denoted by

wi E Rm. We want to rebalance by making changes to the positions of the funds.

Let xi E Rm be the dollar change in the position of the ith fund and let xij be the

change in dollar value held in the jth asset. We model the utility of the ith fund as

the risk-adjusted mean return of its position:

Ui(xi) = pLT(w + xi) - Ai(wi + xi)TE(w + x2 ), (2.3)



where y E R' is the vector of the mean returns of the assets, E E Rmxm is the

covariance matrix, and A2 is the risk aversion factor of the ith fund.

Allocation of trading cost

Given the desired rebalancing changes of all the funds in the jth asset, x1j, x2j, ... , znj,

the net trade volume on asset j is defined as

Z = Xlj + X2j + + XnJ. (2.4)

Trading costs include commissions, fees and market impact cost. In this thesis, we

will focus mainly on the market impact cost because it dominates commissions and

fees for large transactions.

A common assumption is that the charge for trading an amount zj on asset j is

independent from the charge for trading an amount zk on asset k (j # k). Thus, for

each asset j = 1, ... , m, we can define the trading cost function tj: R -+ R such

that given a net trade volume zj, t3 (zj) is the total market impact cost due to trading

activities of all the funds on asset j. This trading cost is then split among the funds

according to the volumes they trade on that particular asset. Let ry : R x R -+ R be

the trading cost splitting function corresponding to asset j. A fund i that trades an

amount xij on asset j will be charged rj (zi, zj), which depends only on xij and the

net trade zj. The functions T (x, z) should satisfy:

n

rj (ij, z) = t (z), Vj = , ... ,m. (2.5)
i=1

We use the pro rata allocation scheme [18] to split the trading costs fairly among

the individual funds. As shown in [18], the pro-rata split costs are justified in the

sense that they correspond to expected costs that the clients would pay if they traded

in the market simultaneously without any information of other clients' trades. In this

scheme, each fund receives an amount proportional to its own rebalancing change in



a particular asset:

n

r(xJ, z) = z t(y) =j t( (2.6)

Since the marginal market impact cost increases with respect to the trade volume,

the market impact cost tj (zj) is often a nonlinear function of the trade volume z3 .

Hence, to simplify the computation, piecewise linear or quadratic approximation are

common choices in practice. Even though a piecewise linear function is considered

a good option in the single account portfolio optimization problem, it introduces

fractional terms under the pro rata scheme. Thus, we will consider the quadratic

model of market impact cost:

tj (zj) = aj zj (2.7)

where a3 is price impact parameter of asset jth. If we substitute (2.7) into (2.6), we

obtain

T (Xz, zj) = az X(ij ± - -+ + Xnj). (2.8)

We will see later in this section how the utility functions of clients are modified

to take into account the trading costs of the form in (2.8). However, we first discuss

our specifications for the sets of feasible rebalancing trades in the next section.

Constraints

For each fund i, let Ci be the set of feasible rebalancing vectors xi. We use the

following constraints to specify C2 :

1. No short-selling. Many funds and institutional investors are prohibited from

selling stocks short. Hence, we require that

Wi + Xi > 0.



2. Self-financing. We assume that there are no cash flows in or out of each portfolio

(except for trading costs)

e Txi = 0.

3. Turnover~ Portfolios with high turnover often incur large transaction costs.

Hence, we want to limit the total trades of fund i to within some fraction yi of

the initial investment amount:

|1 xi |1, < ie T

4. Sector exposure. The exposure of a fund after rebalancing in any sector S should

remain within a percentage 6, of the initial exposure

(1- 6is) E wij
jGS

< E(wij + xig) < (1
jES

+ 6is) E wij,
jES

where S is the set of assets belonging to sector S.

Multiobjective optimization problem formulation

In this section, we will formulate the multi-account portfolio rebalancing problem as

a multi-objective optimization problem. We first adjust the utility function of each

fund to incorporate the trading costs, forming the effective utility function:

(2.9)Ui(x) = Ui(wi + xi) - Z ry (Xij, zJ).
j=1

Let x = (x1,x 2, ... ,xn) E R"n4, A = diag(ai, a 2 ,..., am).

rewrite (2.9) as

Ui(x) = U'(wi + xi) - x[Az.

Using (2.8), we can

(2.10)



The multi-account portfolio optimization problem facing fund managers can then be

written as the following vector optimization problem:

maximize (Ui(x), U2(x), ... ,Un(x)) (2.11)

s.t. xi E C, Vi =1, ... , n.

Because of the coupling market impact costs, the objectives are interdependent

and the problem (2.11) is non-separable. A feasible trade vector x* of problem (2.11)

is called Pareto-optimal (or Pareto-efficient) if there does not exist any feasible trade

vector x # x* such that Ui(x) > Ui(x*), Vi = 1,..., n (we will revisit the concept

of Pareto-optimal solution in Section 2.4 when we discuss about rational preference

relations). There could be many feasible trade vectors that are Pareto-optimal, and

the set of those Pareto-optimal vectors is called the Pareto-efficient frontier. When

solving problem (2.11), the fund manager wants to find a Pareto-optimal solution that

reflects his or her beliefs about the tradeoff between different clients' objective. In

the next section, we will review some existing approaches of tackling problem (2.11)

and discuss the advantages and drawbacks of these approaches.

2.3 Existing approaches

2.3.1 Independent scheme

In practice, many fund managers do recognize the presence of market impact cost but

they often ignore concurrent trades from other portfolios. In other words, they try to

optimize each fund's utility independently, taking into account only the impact cost

resulting from that particular fund's trades. That is, they decide on the rebalancing



vector xi by solving the problem

maximize ttT(w + xi) - Ai(w + x)T E(wi + xi) - x[Axi (2.12)

s.t. wi + xi > 0

1Txi = 0

|| x, <| _ YilTWi

(1 - 6is) Z wij < Z (wij + xij) < (1 + 6is) wij, VS.
jeS jES jES

Notice that the last term in the objective of (2.12) is x[Axi, instead of xTAz as in

the effective utility function (equation (2.10)). This is because the fund manager only

uses the trade information of fund i. Let x' be the optimal solution of (2.12). The

optimal net trade vector is then

Zb b + Xb + + Xb

The resulting effective utility for the ith fund is then given as:

m

Uib(xb) = Ui(wi + xb) - Z j(zbz).

j=1

The performance of each fund under this scheme is not efficient due to the minimal

usage of trading information of other funds. In particular, the resulting vector of

effective utilities (U?, Ub, . .. , Un) is not Pareto-optimal. From a computational view

point, the optimization problems involved are convex and can be solved efficiently

using quadratic optimization solvers.



2.3.2 Social Welfare scheme

In this scheme, we determine xi's simultaneously by optimizing the sum of effective

utilities of n funds:

n

maximize E(pi(wi + xi) - Ai(wi + x)T (wj + xi)) - zTAz (2.13)
i=1

s.t. wi+xi;>0, Vi=1,...,n

1Txi=0, Vi=1,...,n

|| x < lli jsTwi, Vi = 1, ..., n

(16-is) wij Z E(wij + xi) (1 + 6is) E wij, Vi, S
jES jES jES

n

z = xi.

i=1

Due to the aggregation, the net trading costs, zTAz, are given by convex quadratic

functions. Thus, (2.13) is a convex problem and can be solved efficiently. The sum of

effective utilities reflects the social welfare idea which is popular in the microeconomics

literature (see for e.g. [15]). The resulting vector of effective utilities

(Uio , U2"",. ... , Uns" )

is Pareto-optimal, i.e., we can not increase a client's utility by reallocation trades

without worsening the utility of another [11]. However, under this scheme, some

clients can gain at the expense of others. One might argue that a modified version of

Social Welfare scheme can be applied with different weights assigned to the effective

utilities. However, such choice of weights is not clear and can be hardly justified.

2.3.3 Competitive Equilibrium scheme

This iterative scheme (proposed in [11]) borrows the idea of market competitive equi-

librium from game theory. It stimulates a game in which players are competing

for a scarce resource and are trying to maximize their own utilities given the infor-



mation of other players. In the multiple account rebalancing problem, the scarce

resource is the market liquidity. Under this scheme, we sequentially determine xi

by optimizing the ith fund's effective utility, considering the trades of other funds

as constants. Specifically, let .N = {1, 2, ... , n} and i (E N. Given a trade vector

C= (k1, k2, ....., n) E Rmn", we define a subproblem P(i, E,oii) as

maximize pT (wi + xi) - Ai(wi + xi)TE(wi + xi) - xTAz (2.14)

s.t. wi + xi > 0

1Txi = 0

|Xi ||< _21ij i

(1 - 6 is) E wii < Z(wij + Xij) < (1 + 6is) S Wij, VS (2.15)
jES jES jES

Z =Xi + kt

The iterative algorithm for finding the optimal trade vector under the Competitive

Equilibrium scheme is as follows:

Algorithm 1: Competitive Equilibrium Algorithm

Step 1 Initialize k = 0, x(') = 0 E R n and E > 0

Step 2 Let x(k+1) - x(k).

Step 3 For i = 1, 2, ... ,n,

Solve P (i, E, x ,±+ and denote the optimal solution as x*.

Update xik±i) x

End for

Step 4 If || x(k+l) _ x(k) ||<,E then stop.

Else, increment k := k + 1 and go to Step 2.

If Algorithm 1 converges, the resulting optimal solution is the Nash-equilibrium

solution of the market and thus is argued to be a fair solution. However, as discussed

in [11], this is an ad-hoc scheme. There is no mathematical guarantee for convergence

and convergence rate of the algorithm. In particular, the resulting effective utilities



need not be Pareto optimal. As we will see later in the numerical examples, the

outcome utility vector from this scheme is not Pareto optimal, even though it is fairer

than the social scheme and more efficient than the independent scheme.

2.4 Fairness concepts

2.4.1 Happiness levels

Before our discussions of fairness concepts, we want to rewrite the multicriteria op-

timization problem (2.11) in a more appropriate form, which has the objectives rep-

resenting the happiness levels of each clients. Clearly, the effective utilities are not

good measures of clients' satisfaction of a trading cost allocation. For example, given

a feasible trade vector x such that Ui(x) > Uk(x) for some i # k, it is inappropriate

to conclude that client i is happier than client k. Indeed, client i could have incurred

an amount of trading costs that exceeds what he or she normally pays when trading

independently, while client k only receives a small portion of this, in which case client

k should be happier than client i. The fact that Ui(x) > Uk(x) might be simply

because the initial holdings of client i is much larger than the initial holdings of client

k. A client's happiness level is intuitively the proportion of maximum allowable ef-

fective utility that the client achieves. The formal definition of the happiness level is

as follows. First, we assume that the clients are not happy unless they get at least as

much as they would get under the Independent scheme. We then refine the set F of

feasible allocation vectors x as

.F= {x E R'"xi E Ci, Ui(x) > , Vi - 1,..., , (2.16)

where U' = UP(xb) is the resulting effective utility of fund i under the Independent

scheme (Section 2.3).

When an allocation is feasible, each client will compare his utility to the maximum

utility he or she could get in the feasible set. The client is happier when his or her

utility is closer to this maximum level. Let hi(x) denote the happiness level of player



i when allocation x is chosen. We define hi(x) as

Ui (X) - UPhi(x) =(2.17)

where the maximum achievable utilities Umax = maxxErUi(x) can be found by solving

maximize pT (w, + x,) - Ai(we + x,)TE(w, + x,) - x7Az (2.18)

s.t. T(wk + Xk)- Ak(Wk + xk)TE(wk + Xk) - xTAz > U , Vk = 1, ... , n

Wk+Xk ;>0, Vk=1,...,n

1Txk=0, Vk-1,...,n

|Xk 1 yk1Wk, Vk = 1,. .. , n

(1 - 6 ks) E Wkj < E(Wkj + Xkj) < (1 + 6 ks) E Wkj, VS, Vk
jsS jES jES

n

z = 5x .

2.4.2 Equitable efficient solution

In this section, we will review the concept of equitably efficient solution [12]. First,

we modify the multiple objective problem (2.11) with the objectives being replaced

by the happiness levels and the feasible set being replaced by F as defined in previous

section:

maximize (hi(x), h2 (x), ..., hn(x)) (2.19)

s.t. x E F.

Intuitively, the outcome solution of (2.19) is fair if all the happiness levels are the

same. Traditionally, fairness is quantified by inequality measures. For example, given

an outcome vector h = (hi, h2 , ... , ha), the mean absolute difference is defined as:

F(h) = 2 n - hk|, (2.20)
i=1 k=1



or the maximum absolute difference is defined as:

d(h) = maxi,k lhi - hkl. (2.21)

More examples on inequality measures can be found in [12] and the references therein.

An outcome h is often considered fair if inequality measures such as F(h) or d(h) are

small. Unfortunately, simple minimization of the inequality measures to ensure fair-

ness often results in inefficient outcomes for individuals. Thus, we need an allocation

strategy that takes into account efficiency but still ensures fairness criteria of the

allocation vector.

We will consider the formal definition of an equitably efficient solution. First of

all, a preference relation is a model that specifies which one among two arbitrary out-

come vectors is preferred. Given two outcome vectors hi and h2 , we denote hi > h2

if h1 is preferred to h 2. In addition, the strict preference >- and indifference a are

defined as:

h >- h 2  (h > h2  and h2  hi)

h1 2 h 2  (hi > h2  and h2 >- h).

Definition 1. A rational preference relation is a preference relation that satisfies

the following properties:

1. Reflexive:

h > h.

2. Transitive:

(h' >- h" and h" >- h"') - h' >- h'".

3. Strictly monotonic

h + es - h, for e > 0, i=1,...,n,



where ei E R' is the vector with its ith element equals to one and other elements

equal to zero.

An outcome vector hi is said to rationally dominate h2 iff hi >- h2 for all rational

preference relations >-. A feasible solution x to (2.19) is called Pareto-efficient iff the

corresponding output vector h(x) is rationally nondominated. This is a more gen-

eral definition of Pareto-efficiency than the one in Section 2.2. We can see that

if the preference relation >- is simply an elemenwise comparison, i.e, h > h' iff

hi > h' , Vi = 1,..., n, then the two definitions become equivalent. In this the-

sis, we will mainly use the elemenwise comparison preference relation when talking

about Pareto-efficiency.

Notice that rational preference relations only deal with efficiency. We now incor-

porate some fairness criteria into our preference model.

Definition 2. A fair rational preference relation is a rational preference relation

that satisfies two conditions:

1. If outcomes are interchanged between clients, the new outcome must be indif-

ferent in terms of the preference relation. In other words, outcomes must be

equally desirable under permutations:

(h,(1), hr(2 ), . .. , h,r(n) (hi, h 2 , ... , hn),

where (7r(1), 7(2), ... , 7(n)) is a permutation of (1, 2, . .. , n).

2. If by transferring outcomes between two clients, we achieve a smaller difference

in outcomes between those clients then it will be more desirable compared to the

previous outcome. This property is known as the principle of transfers:

hi, > hpn -+ h - ei + eein, >- h for 0 < c < hi, - hin.

Based on a fair preference relation, we call an outcome vector hi fairly (or equi-

tably) dominates h2 (denoted as hi >e h 2 ) if hi >- h 2 for all fair rational preference



relation -.

Definition 3. A feasible solution of (2.19) is called a fairly (equitably) efficient so-

lution if the corresponding outcome vector h(x) is equitably nondominated.

2.4.3 Max-Min fairness, Proportional fairness and a-fairness

One way to obtain equitably efficient solutions of (2.19) is to solve the corresponding

fair aggregation problem:

n

maximize u(hi(x)) (2.22)
i=1

s.t. xi E CC, Vi = 1, . . . , n,

where u : R -+ R is a strictly concave, increasing utility function. It is shown in [5]

that any Pareto-efficient solution of (2.22) is an equitably efficient solution of (2.19).

In this thesis, we will use a class of parametric utility function u(h, a)(a > 0)

defined as

u(h, a) = - a (2.23)
log(h) if a =1.

The fair aggregation problem (2.22) with utility function u as defined in (2.23) is

called the a-fairness scheme. The parameter a quantifies the degree of fairness we

want to ensure. As a increases, the solution gets fairer (the inequality measures of

outcome vector are smaller). For the case of a = 1, the problem (2.22) corresponds

to the so-called Proportional fairness (PF) scheme proposed in [4]. The solution

of PF maximizes the product of additional utilities compared to the status-quo (this

is commonly known as Nash criterion [10]). In particular, the solution to the PF is

fair and Pareto-optimal.

For the case of a -+ oc, problem (2.22) becomes the so-called Max-Min fairness

(MMF) scheme. Intuitively speaking, MMF maximizes the smallest happiness

level, and then the second smallest happiness level, and the third smallest one, and

so on. This is a lexicographical optimization problem of the sorted happiness level



vector h. The MMF problem is mathematically defined as follows. Let X be the set

of feasible x in (2.19). A vector h is called lexicographically greater than h' if there

exists an index k, 0 < k < n, such that hi = h' Vi < k and hk+1 > h' We will

write h >Ie, h' to indicate that h is lexicographically greater than h'. Let (h(x)) be

the vector obtained by sorting h(x) in non-decreasing order. The MMF problem is

Find x* E X s.t. (h(x*)) >Ie, (h(x)), Vx E X. (2.24)

The solution x* of the MMF problem is considered absolutely fair in the sense that

if we deviate from x*, smaller happiness levels decreases while the higher happiness

levels increases (which is a more unfair outcome). The lexicographical optimization

problem (2.24) is not a mathematical programming problem and finding x* directly

is not easy. In Chapter 3, we will show how MMF is adopted in our problem and

present an iterative algorithm to find the optimal solution x*.

Finally, we want to emphasize that in the a-fairness scheme above, the parameter

a is strictly positive. If a = 0, we can easily see that u(h) = h and problem (2.22) is

simply the maximization of the sum of happiness levels. This is a similar version of the

Social Welfare scheme (because hi(x) is a linear function of Ui(x), Vi = 1, 2, ... , n),

except that hi(x)'s are better measures of clients' satisfaction of an allocation vector.

The optimal solution to (2.22) when a = 0 is a Pareto-optimal solution of (2.19) but

it needs not be an equitably efficient solution because the strict concavity condition

of u(h) is violated. Similarly, the solution under the Social Welfare scheme needs not

be an equitably efficient solution.

In the next chapter, we will adopt the fair aggregation problem (2.22) to our

problem. We show that the resulting optimization problems have non-convex objec-

tives and non-convex constraints, which are NP-hard in general. We then provide a

solution method to the non-convex problems based on a local search algorithm and

discuss its performance on these problems.



Chapter 3

Fairness in Trading

In this chapter, we discuss the adoption of Max-Min fairness, Proportional fairness

and a-fairness to the multiple portfolios rebalancing problem with quadratic market

impact cost. The structure of this chapter is as follows. In Section 3.1, we discuss the

formulation of the multi-account portfolio rebalancing problem under the Max-Min

fairness scheme and introduce an iterative algorithm to solve this problem. Section

3.2 follows with a discussion on the local search method that we use for solving

the resulting nonconvex quadratically constrained quadratic programs. We then ex-

tend this solution method to solve the resulting concave maximization problems with

nonconvex constraints under Proportional fairness and a-fairness schemes in Section

3.3. Finally, in Section 3.4, we provide a deterministic global optimization algorithm

based on branch-and-bound method that we will use to compare with our local search

method.

3.1 Max-Min fairness

Given the definition of h(x) as in (2.17) and the refined feasible set F of allocation

vectors x, we rewrite the MMF problem (2.24) as

lexmax (h(x)) (3.1)

s.t. x E F,



where (h(x)) is the vector h(x) sorted in non-decreasing order.

In order to solve (3.1), we adopt an iterative algorithm introduced by Pioro et al.

[16]. Let N {1, 2, ... , n} and B C M. Also, let tB = {tB : i G B}. The B-vector

tB represents the blocking happiness levels and B represents the set of clients with

happiness levels at least tB. Let B' =J \ B be the complement of B. Given a set

B and the blocking vector tB, we define a subproblem P(B, tB) that will be used in

the iterative algorithm as:

maximize y (3.2)

s.t. hi(x) > y, Vi E B'

hi(x) ti, Vi E B

x E F.

Clearly, if we have already known the set of clients B whose happiness levels attain

maximum values at tB then problem (3.2) maximizes the (IBl+1)th smallest happiness

level. Also, for a given value y0 of y in (3.2) and an iteration index k, we define the

test problem T(B, tB, y0, k) as:

maximize hk (x) (3.3)

s.t. hi(x) > yo, Vi E B' \ {k}

hi (x) > t , Vi EB

x E F.

The iterative algorithm for solving (3.1) is shown in Algorithm 2. In Step 2 of this

iterative algorithm, we find the maximum value for the smallest happiness level and

add this value to tB. We then perform a test to determine which clients correspond

to this smallest happiness level and add these clients to the blocking set B. In the

next iteration, we solve the problem P(B, tB) to get the maximum value of the sec-

ond smallest happiness level. Similarly, we then solve T(B, tB, y0 , k) and update the

blocking set B as well as the blocking levels tB.



Algorithm 2: MMF Algorithm

Step 1 Initialize B = 0 and tB - 0

Step 2 If B = N then stop, tB is the optimal outcome vector.

Else, solve P(B, tB) and denote the optimal solution as (x0 , y0 )

Step 3 For each k E B' such that hk(x 0 ) = y0 , solve the test problem

T(B, tB, y0 , k). Let x1 be the optimal solution to T(B, tB, y0 , k).

If hk(x 1 ) - ya then put B = B U {k} and tB = yO

Step 4 Go to Step 2

When hi's are concave functions and F is a convex set, this process terminates

when B = K, in which case the obtained solution x0 is the optimal solution to the

MMF problem and the optimal happiness level vector is given as tB. In addition, un-

der the most favorable scenario when all the happiness levels are the same, the MMF

algorithm requires solving n + 1 subproblems (problem P(0, 0) and n test problems

T(B, tB, y0 , k)). However, in the worst case, the MMF algorithm requires solving

O(n 2/2) subproblems. Because hi's are non-concave functions and F is a non-convex

set in our case, the adoption of this algorithm is purely a heuristic approach that

has no guarantee for convergence. However, from our experimental experiences, the

algorithm performs well when we have good convex approximations to the resulting

subproblems, as we will discuss shortly. Interested readers are referred to [13] for

alternative sequential algorithms that can be applied to general non-convex MMF

problems.

3.2 Local search method

The problem of finding the maximum achievable effective utility Ulax (problem

(2.18)) and the subproblems P(B, tB) and T(B, tB, y0 , k) used in the MMF algorithm

(problems (3.2) and (3.3)) are classified as non-convex Quadratically Constrained

Quadratic Programs (QCQPs). The non-convexity comes from indefinite trading cost



terms x[Az's, which make Ui(x)'s and hi(x)'s neither convex nor concave functions

of x. The general non-convex QCQP can be written in the form:

maximize xTQox + b rx + cO (3.4)

s.t. xTQix + bTx+c >O, Vi= 1,. .. , m

xE ,

where x E R", Qi E S""" (the set of symmetric matrices of dimension n x n) are

indefinite matrices, bi E R', ci E R and G is a polyhedral which can be specified

by general linear constraints. For convenience in discussion of the methodology, we

will use x, m, n in this section as anonymous variables and parameters instead of

the definitions given in Section 2.2. It is commonly known that non-convex QCQP

is NP-hard, which means the computation time typically grows exponentially with

problem dimension. Therefore, it is often extremely hard to solve a non-convex QCQP

globally, especially when the problem involves several hundreds of variables.

There are several ways to deal with the non-convex QCQP problem. Relaxation

methods such as semidefinite relaxations or Lagrangian relaxations can provide upper

bounds for problem (3.4). For example, the semidefinite relaxation of (3.4) is given

as:

maximize Trace(XQo) + b rx + cO (3.5)

s.t. Trace(XQi) + bix+c;>0 Vi=1...,m

X X
>_ 0,

X T

x EX EG

However, such convex relaxation approaches do not provide any good feasible point

as an outcome. We adopt here a local search algorithm that starts at some feasible

point xO and works sequentially to improve the objective until it converges to a local



maximum. At each iteration k, we solve the convex approximation of problem (3.4)

around the current solution Xk and assign Xk+1 as the maximizer of this approximation

problem. The convex approximation of (3.4) can be obtained by using the so-called

linearization techniques. For example, consider the objective of (3.4), we can write

the eigenvalue decomposition of matrix Qo as Q0 = HDH-1 , with D G R' is the

diagonal matrix of eigenvalues. We then decompose D as D = Di - D 2 where D1 and

D2 are diagonal matrices with nonnegative diagonal elements. Matrix Qo can then

be written as the difference between two positive semidefinite matrices:

Qo = H(D 1 - D2)H- 1 = HD 1H- 1 - HD 2H- 1  (3.6)

Qo = Q0o+ _-

We want to linearize the convex part xTQIx in the objective function by using the

first order Taylor's series approximation around some current feasible solution xk:

xTQox + brx + Co = XTQ+X _ XTQ-x + b x + CO (3.7)

> XQ+x + 2xTQ+(x - Xk) _ XTQ-x + b rx + co.

Similarly, the indefinite quadratic constraints in (3.4) can be approximated by concave

quadratic lower bounds as

xTQx + bTx + ci > xTQtxT + 2x[Q (x - Xk) - xTQ-x + b Tx + Ci. (3.8)

The convex approximation P(k) of problem (3.4) on a small region B(xk, e) around

the feasible solution Xk is then given as

maximize xTQ+xT + 2xTQ (x - Xk) - XTQ-X + b rx + cO (3.9)

s.t. xTQtXT + 2xTQt(x - Xk) - XTQ-X + b Tx + c, > 0, Vi = 1,... , m

x E G n B(xk, C).



The local search method for solving the non-convex QCQP problem using lineariza-

tion technique is defined formally below:

Algorithm 3: Local Search Algorithm

Step 1 Initialize k = 0, > 0, x0 is a feasible solution to (3.4)

Step 2 If |1 Xk+1 - Xk ||< ( then stop

Else solve P(k) and let Xk+1 be the optimal solution

Step 3 Increment k and go to Step 2

Theorem 1. The solutions x 0 , x1,... , Xk,... produced by the above local search al-

gorithm are feasible to the problem (3.4) and satisfy

f(xo) <_f(x1) - f(xk) <...

where f(x) is the objective function of (3.4).

Proof. We will prove by induction. The conclusion is obvious for k = 0. Assume that

the conclusion holds for k > 0. Let Xk+1 be the optimizer of problem P(k). Because

Xk+1 is feasible to P(k), we have

XkQtX+k2x Qt (xk+1-Xk)--X+ 1QiXk+1+bixk+1+ci > 0, Vi = 1, ... Im (3.10)

Using (3.8) with x = Xk+1 and (3.10), we get

xT+1 Qixk+1 + bTixk+l + c 2 0, Vi = 1, ... , m (3.11)

Furthermore, we have Xk+l E g. Hence, Xk+1 is a feasible solution to the problem

(3.4). In addition, let fk(x) be the objective function of the convex approximation

problem P(k) (3.9). From the optimality of Xk+l, we have

f(Xk+l) > fk(Xk+1) > fk(Xk) = f(Xk)-

Thus, the conclusion also holds for k + 1. By induction, the conclusion holds for all



k > 0.

It is clear from Theorem 1 that given a proper choice of c and (, the optimal

solution x* obtained from the local search algorithm is at least a local maximum of

problem (3.4). An advantage of this approach over the Newton-like methods is that

it does not stop at a saddle point. Furthermore, as we can see in the next section, the

algorithm can be easily extended to solve the resulting problems under Proportional

fairness and a-fairness schemes.

3.3 Proportional fairness and a-fairness

In this section, we will write the explicit form of multi-account rebalancing problem

under Proportional fairness and a-fairness scheme. First, we introduce additional

decision variables hi. The problem formulation under Proportional fairness scheme is

then given as

n
maximize [ log(hi) (3.12)

i=1

Ui(x) - UP

x E F.

Similarly, the problem formulation under a-fairness scheme is

maximize (3.13)

St hi < iX ZIV1 - 1..I
Ur x) - UPs.t. h U Vi=1,...,

x E F.

We notice that the objectives of (3.12) and (3.13) are concave functions. The first

constraints in these two problems are non-convex because Ui(x)'s are non-concave

functions of x. The set F is a non-convex set for the same reason. However, we notice



that the feasible sets of (3.12) and (3.13) have the same form as in the problem (3.4).

Thus, the local search algorithm proposed in Section 3.2 can be similarly applied for

problems (3.12) and (3.13). The only difference is that at each iteration, we only

need to apply linearization technique to the non-convex constraints.

3.4 Global optimization

To further facilitate our argument that the local search algorithm proposed in Section

3.2 is an efficient approach for solving the non-convex problems in our application,

we compare it with a global optimization algorithm. Global optimization is a branch

of nonlinear programming that deals with absolutely optimal solution of complicated

non-convex programs. It has wide application in various fields such as engineering

design, process control, biotechnology, etc. The most popular techniques in global

optimization are deterministic approaches (such as branch and bound or interval

analysis) and stochastic heuristics (such as genetic algorithm, simulated annealing,

etc). In this section, we will review briefly a branch and bound algorithm for solving

non-convex problem (3.4) that we use to compare with our local search algorithm.

The main idea of branch and bound (BNB) algorithm is to recursively divide

a problem into subproblems until a solution with a desired level of optimality is

obtained. A general BNB algorithm includes four processes: Branching, Selection,

Bounding and Elimination. Branching involves dividing the box containing the fea-

sible region of the current problem into smaller boxes. The new subproblems on

these smaller boxes are created and added to the current list A of subproblems. Se-

lection refers to the process of selecting the appropriate subproblem in A to process

next. Bounding involves solving the relaxation of current subproblem to find an up-

per bound (assuming we are solving the maximization problem). Finally, Elimination

is the process of deleting subproblems that are either infeasible or suboptimal. The

details of the BNB algorithm are provided in Algorithm 4 [3].



Algorithm 4: Branch and Bound Algorithm

Step 1 Determine a set B1 enclosing feasible region X of (3.4)

Step 2 Determine an upper bound ff on B1 and a feasible point x1 C B1 n X

Step 3 If $xi then STOP.

Else let fL := f(xi), store B1 in A, r := 1

Step 4 If A = 0 then STOP.

Step 5 Remove a node B E A and split it into smaller nodes Br+, ... , Br+h

Step 6 Determine upper bounds f+1,--- , fr+h
Step 7 Forp:=r+ 1tor+hdo

if(Bp n X = 0)

fP := -ooD

if(f U > fL)

determine a feasible point x, and f, := f(x,)

if(f, > fL)

fL p

remove all Bk E A with fU < fL

if ( f < fL - 6)

save x, as approximation of the optimum

elseif(size(B,) > E) store B, in A

End for

Step 8 Increment r := r + h and go to Step 4

Even though BNB method is appealing in terms of the ability to provide global

optimality, it is often intractable for large problems with hundreds of variables and

constraints as in our case. However, we can use the BNB algorithm as a good bench-

mark to test the performance of our proposed algorithm for instances of small size.

The analysis of the local search algorithm's performance on small size problems with

similar structures could give hints to the behaviors of the method on large scale

problems in practice.



Chapter 4

Computational Results

In this chapter, we present computational experiments with real world financial data.

We will show that by applying the fairness schemes discussed in Chapter 3, we can

obtain solutions that dominate those obtained from the Independent and Competitive

Equilibrium schemes. In addition, we show that our approach gives a better tradeoff

between fairness and efficiency as compared to the Social Welfare scheme. Finally,

we compare our local search approach and the BNB algorithm in terms of optimality

and running time for small size problems with similar structures. We show that

in these particular cases, our method actually can provide an optimal solution in a

much shorter computation time. All numerical experiments are implemented using

YALMIP [6], a MATLAB-based advanced modeling language for convex and non-

convex optimization problems. All convex optimization problems are modeled in

YALMIP and solved by calling the semidefinite programing solver SEDUMI. The

BNB algorithm is carried out by a specialized global optimization module in YALMIP,

which calls linear solver GLPK for linear relaxation problems, and the general purpose

solver SNOPT for finding good feasible solutions.

The structure of this chapter is as follows. In Section 4.1, we describe the financial

data that are used in our computational experiments. Section 4.2 follows with the

results obtained from Scenario I that has 2 funds and 73 stocks. We present in

Section 4.3 the results for a more complicated scenario, which has 6 funds and 73

stocks. Finally, in Section 4.4 we show the comparison of our proposed local search



algorithm and the BNB method as described in Chapter 3.

4.1 Data description

Our computational experiments are based on financial data used in [18]. Specifically,

we have historical information for a universe of 73 stocks from January 2005 to Febru-

ary 2007. The mean returns y and covariance matrix E are estimated from these

historical data. All turnover parameters -yj and 6j, are set to 5%. Risk aversion pa-

rameters are generated randomly in the interval A2 E [5. 10-6, 30. 10-6]. Market price

impact parameters aj are confidential information which are usually not available to

public so we set a to an arbitrary (but meaningful) value of 0.125.

Using the above settings, we generate two scenarios to test our algorithms. In

Scenario I, there are 2 funds invested in 73 stocks with total initial investment of

$500 million and $1 billion. We assume for this case that all stocks are in one sector.

In Scenario II, there are 6 funds with initial investment of $10 million for fund 6 and

$1 billion for other funds. There are 6 non-overlapping sectors S1, ... , S6. Funds 1,

2 invested in S1, S2, S3; funds 3, 4, 5 invested in S4, S5 , S6 and fund 6 invested in all

sectors. In this setting, we want to see the behavior of different fairness schemes when

there are two common types of resources (i.e., two sector groups) to be allocated to

6 clients. The presence of fund 6 introduces a coupling effect between the two groups

of sectors.

4.2 Scenario I

Table 4.1 shows the effective utilities of 2 funds under different fairness schemes. The

general a-fairness scheme is solved for a = 0.1, 0.5, 1(Proportional fairness), 2, 4, 6.

The simple setting of this first scenario enables us to see the behavior of the outcomes

under different fairness schemes. We can see that in terms of efficiency, the Indepen-

dent scheme is the least favorable scheme. Meanwhile, the Social Welfare scheme

gives the best total throughput. For the general a-fairness scheme (including Propor-



tional and MMF fairness), we can see that as a increases, efficiency decreases. It is

interesting to note that all the effective utility vectors obtained from a-fairness, Pro-

portional fairness and MMF dominate that of the Competitive Equilibrium scheme.

The observation suggests that market equilibrium does not guarantee an efficient so-

lution in this case. This is mainly because of the present of a central decision maker

(the fund manager) who has complete trading information of all the clients.

Table 4.1: Effective utilities (in million $ ) under Scenario I.

Scheme Fund 1 Fund 2 Total

Independent 31.7836 9.5213 41.3049
Max. allowable 31.9316 9.5998 N/A
Social 31.9236 9.5596 41.4832
Comp. Equi. 31.8609 9.5606 41.4215
a = 0.1 31.9221 9.5606 41.4826
a = 0.5 31.9125 9.5648 41.4772
a = 1 (PF) 31.9042 9.5681 41.4723
a = 2 31.8971 9.5707 41.4678
a = 4 31.8918 9.5725 41.4643
a = 6 31.8896 9.5733 41.4629
MMF 31.8846 9.5749 41.4595

In Table 4.2, we show the happiness levels of the two funds under different fairness

schemes. Due to our assumption that the Independent scheme is the worst case, hap-

piness levels of clients under this scheme are zeros. Under the Social Welfare scheme,

even though the outcome vector is Pareto-optimal, we can see that the first client

is much more favored than the second client, which is an unfair situation. We can

also see in Table 4.2 that the clients are almost equally happy under the Competitive

Equilibrium scheme. However, this observation might not be true in a more compli-

cated scenario, as we will see in Section 4.3. For the general a-fairness scheme, as a

increases, the total efficiency is traded off with equity among clients. In particular,

under the MMF scheme, the two clients are equally happy. The tradeoff between effi-

ciency and fairness is shown in Figure 4-1. We can see that MMF is an extreme point

on this tradeoff curve that corresponds to the most equitable outcome. On the other

hand, the Social Welfare scheme is at the other extreme of the tradeoff curve, which



corresponds to the most efficient outcome, but with no fairness properties at all. From

Figure 4-1, we can see the price that one needs to pay to guarantee a desired level of

equity among the clients. For example, one needs to sacrifice approximately 4% of

efficiency to achieve an absolutely fair solution under the MMF scheme. Such a price

of fairness can be reduced if the decision maker's preference toward fairness criteria is

less extreme. Figure 4-1 also shows the clear dominance of the a-fairness scheme to

the Competitive Equilibrium scheme. At the same level of fairness obtained by the

Competitive Equilibrium scheme, the solution obtained from our proposed a-fairness

scheme can significantly improve the efficiency (approximately 17% more efficient).

Table 4.2: Happiness levels (in % ) under Scenario I.

Scheme Fund 1 Fund 2

Social 94.61 48.82
Comp. Equi. 52.22 50.05
a = 0.1 93.59 50.01
a = 0.5 87.09 55.36
a = 1 (PF) 81.49 59.61
a = 2 76.69 62.95
a = 4 73.09 65.29
a = 6 71.63 66.21
MMF 68.26 68.26

4.3 Scenario II

Tables 4.3 and 4.4 show the effective utilities and happiness levels under different

fairness schemes in Scenario II. Due to the similarity of results from the a-fairness

scheme, we only present in Tables 4.3 and 4.4 the effective utilities and happiness

levels under Proportional fairness and MMF schemes. We can see from Tables 4.3

and 4.4 the similar behaviors as observed in Scenario I. As we can see from Table

4.4, Social Welfare is clearly an unfair scheme because fund 2 is extremely favored

(7.36% better than the maximum achievable level) while fund 1 is not happy at all

(9.43% worse than the baseline level). Another interesting observation is that the

Competitive Equilibrium scheme does not scale well when there are more funds. In



0.1 0.15
Fairness

0.2 0.25 0.3 0.35

Figure 4-1: Tradeoff between efficiency and fairness under Scenario I. x-axis is the
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contrast to the fairly flat distribution of happiness levels obtained from the Com-

petitive Equilibrium scheme under Scenario I, the happiness level distribution under

Scenario II for this fairness scheme is substantially diverse. From Table 4.4, we can

also see the happiness levels of clients under Proportional fairness and MMF are very

close to each other, especially for the case of MMF. We recall that, under the set-

tings of this scenario, there are 2 sector groups (namely {S1 , S2 , S3} and {S4 , S5 , S6 ),

and all the funds (except for fund 6) are investing in either of these sector groups.

Intuitively, under the absolute fair situation, the outcome happiness levels of all the

funds investing in the same sector group should be the same. This is exactly what

we can observe from the results show in Table 4.4. Funds 1 and 2 are invested in the

first sector group {S 1 , S2 , S 3} and have equal happiness levels under MMF scheme.

Similarly, funds 3, 4 and 5 have equal happiness levels under MMF scheme because

they are invested in the same sector group {S 4 , S5 , S6 }. In Figure 4-2, we plot the

bar chart of the happiness levels under different schemes. This helps illustrate further

the observations that we discussed above.

Table 4.3: Effective utilities (in million $ ) under Scenario II.

Scheme Fund 1 Fund 2 Fund 3 Fund 4 Fund 5 Fund 6 Total

Independent 12.2478 12.2264 14.5260 12.4109 12.2004 0.1145 63.7260
Max. allowable 12.2637 12.2427 14.5854 12.4828 12.2651 0.1162 N/A
Social 12.2463 12.2439 14.5515 12.4564 12.2163 0.1147 63.8291
Comp. Equi. 12.2485 12.2295 14.5508 12.4309 12.2255 0.1154 63.8006
Proportional 12.2553 12.2340 14.5510 12.4449 12.2260 0.1156 63.8268
MMF 12.2547 12.2335 14.5513 12.4415 12.2279 0.1152 63.8241

Table 4.4: Happiness levels (in % ) under Scenario II.

Scheme Fund 1 Fund 2 Fund 3 Fund 4 Fund 5 Fund 6

Social -9.43 107.36 42.93 63.28 24.57 11.76
Comp. Equi 4.40 19.02 41.75 27.82 38.79 52.94
Proportional 47.17 46.63 42.09 47.29 39.57 64.71
MMF 43.40 43.56 42.59 42.56 42.50 41.18

Figure 4-3 shows the tradeoff between efficiency and fairness in different fairness
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schemes under Scenario II. We can see from this figure similar behaviors as observed

in Scenario I. However, under the more complicated settings of Scenario II, the dom-

inance of the a-fairness scheme over the existing approaches in the literature such

as the Social Welfare scheme and the Competitive Equilibrium scheme is amplified.

Indeed, in this case, all outcomes obtained from the a-fairness scheme dominate those

from the Social Welfare scheme and the Competitive Equilibrium scheme in terms of

both fairness and optimality. For example, under the a-fairness scheme with a = 0.1,

the resulting outcome is approximately 17% more efficient than the outcome from the

Competitive Equilibrium scheme, and the distribution of happiness levels is slightly

flatter under this a-fairness scheme. On the other hand, from Figure 4-3, we see

that the Social Welfare scheme is totally dominated by a-fairness scheme in terms

of fairness and optimality. Indeed, in contrast to the high total efficiency (i.e., total

happiness level) obtained under Scenario I, the Social Welfare scheme is less efficient

than any of the outcomes from the a-fairness scheme, including the most equitable

MMF scheme. Under the Social Welfare scheme, the total effective utility achieves the

maximum value (Table 4.3), but the mean happiness level is much lower than those

from the a-fairness scheme. In addition, the happiness level distribution diverges the

most under this scheme. This could be the result of optimizing the unscaled happi-

ness levels under the Social Welfare scheme (i.e., combining the happiness levels with

the unfair weights). In terms of the price of fairness, if we consider the most efficient

solution is that of the a-fairness scheme with a = 0.1 (see Figure 4-3), one needs to

pay approximately 5.9% of efficiency to get a solution which is completely fair (i.e.,

the MMF scheme). We can see that, in both Scenarios I and II, such price for fairness

is relatively small compare to the benefit that all clients are absolutely equally happy.

4.4 Comparison with BNB algorithm

In this section, we discuss the performance of our proposed algorithm in comparison

with the BNB algorithm described in Section 3.4 on small instances of non-convex



0.5

Social
0.38

0.36 - - .

0.34 -

0.32 - -Competitive - -
Equilibrium

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Fairness

Figure 4-3: Tradeoff between efficiency and fairness under Scenario II. x-axis is the
standard deviation of the happiness levels and y-axis is the mean of the happiness
levels. The solid curve is the fitting of a-fairness data points.



QCQP problems. The main purpose of the comparison is to give an idea of how

our method performs in the settings of our application. Specifically, we generate 6

scenarios similar to Scenario I but with smaller number of funds. The reason why we

test on smaller numbers of funds is because the running time of BNB algorithm grows

exponentially with the problem dimension and current computational tools prohibit

us from experimenting on large problems. All 6 scenarios have 2 funds and the number

of stocks are 5, 10, 15, 20, 25 and 30, respectively (the stocks are extracted from the

original universe of 73 stocks). Under each scenario, we solve the problem of finding

Ul". We think that it is sufficient to compare the methods on this single problem

because all other subproblems encountered in our application bear similar structures.

For each method, we record the optimal objective obtained and the computational

time. We also record the optimality gaps resulting from the BNB algorithm. The

BNB algorithm is implemented in YALMIP [6], which calls the linear program solver

GLPK for solving relaxation problems and the general purpose solver SNOPT to find

good feasible solutions.

Table 4.5 shows the comparison between our proposed local search approach with

the BNB algorithm. We can see clearly that the optimal objectives obtained from

these two methods are the same. In addition, the local search algorithm is superior

to the BNB algorithm in term of computation time for n > 20. Thus, we believe that

the proposed local search algorithm is a tractable approach that could possibly lead

to near global optimal solutions of the non-convex optimization problems arise in our

application.

Table 4.5: Comparison of local search and BNB algorithms (n = 2).

Local search BNB
m Optimal obj. Time (s) Optimal obj. Optimality gap (%) Time (s)

5 13.5363 18.26 13.5363 0.0378 0.73
10 13.8372 3.36 13.8372 0.0003 5.75
15 10.1860 38.17 10.1861 0.9894 26.33
20 11.8041 32.39 11.8041 0.0000 171.84
25 12.2679 12.19 12.2679 0.7623 356.17
30 16.0859 15.20 16.0859 0.8231 492.07



Chapter 5

Conclusion

5.1 Summary

In this thesis, we approached a practical problem faced by many fund managers when

they execute trades for multiple portfolios of diverse clients in a short period of time.

Due to the presence of trading costs, these clients have conflicting objectives. As a

central decision maker, the fund manager needs to make a decision of how to dis-

tribute the market liquidity among the clients by charging them based on the amount

that they trade in the market. This process poses a challenge to the fund manager

who needs not only to optimize the total efficiency of the system but also to ensure

that the participating clients are equally happy. Existing approaches such as the So-

cial Welfare and the Competitive Equilibrium schemes not compromise the optimality

and fairness criteria effectively.

We proposed in this thesis a novel approach that fills up the gap in the current

literature. We utilized the pro rata allocation scheme to split the total trading cost

among the clients. The pro rata scheme is justified because under this scheme, the

trading cost incurred by each client coincides with the cost when they trade indepen-

dently in the open market without information of other's trade. Our formulation of

this problem incorporated a quadratic model of market impact cost as the primary

source of trading costs when trading is performed at large scale. The effective util-

ity of each clients is then defined as the expected return adjusted for the risk and



expected market impact cost. To address the fairness issue among clients, we first nor-

malized the clients' effective utilities to the same range of [0, 1] and called the scaled

version of effective utilities the happiness levels of clients. Based on these happiness

levels, we formulated our problem as a multiple objective optimization problem in

which fairness of the outcome vector is an important criterion in addition to the total

system optimality. We then discussed a possible way to obtain solutions to this mul-

tiple objective problem that are both Pareto-efficient and equitable. The proposed

approach involved solving the fair aggregation problem which utilizes a class of para-

metric utility function of the happiness levels. Under this so-call a-fairness scheme,

we could obtain outcomes that are Pareto-optimal and satisfy the important proper-

ties of equitable outcomes such as the principle of transfer or being equally desirable

under permutation. The Max-Min fairness and Proportional fairness schemes which

are popular in communications are the two special cases of this a-fairness scheme.

We also justified our approach by conducting computational experiments based on

real-world financial data. The computational experiments involved solving the non-

convex and nonlinear problems, which are typically impossible to solve globally in

practice. We proposed a local search algorithm based on linearization techniques

that could provide good feasible solutions in efficient running time. The results

obtained indicated that the outcomes of the a-fairness scheme are superior to the

existing approaches in the literature in compromising the optimality and fairness

criteria. In particular, outcomes from the a-fairness scheme is about 17% more effi-

cient than outcomes of the Competitive Equilibrium scheme, given the same level of

fairness (quantified by the standard deviation of the happiness levels) is maintained.

Our computational experiments also suggested that even though the Social Welfare

scheme could sometimes produce solution with good total system efficiency, the un-

fairness among clients is often far from being acceptable. We also quantified the price

that one needs to pay for to obtain an absolutely fair solution, as given under the

MMF scheme. The computational results suggested that the price of fairness often

ranges from 4% to 6% of system efficiency (measured as the average of the happiness

levels). Our belief is that such a price is relatively small compare to the benefit of



having all clients equally happy and thus the MMF scheme could be a good choice

for fund managers in practice.

5.2 Future directions

This thesis provides a good example of how ideas of resource allocation from the

field of communications can be adopted to finance and trading. We will discuss here

several directions for future development in this topic.

First of all, we utilized in our formulation a quadratic model of market impact

cost (equation 2.7). In practice, to accurately capture the nonlinear nature of trading

cost with respect to the total trade, it is sometimes desirable to have a more accurate

trading cost model, such as the piecewise linear function or the function of the form

ty (zy) = oy z , where pj C (1, 2] Vj = 1, . . ., m. However, such models of trading cost

will pose computational challenges because when we incorporate them into the pro

rata scheme, the resulting optimization problems have either fractional or non-integer

power terms. In such cases, it is difficult to apply the proposed local search algorithm

because the decomposition of non-concave utility function into difference of convex

functions is not obvious.

Another possible development in our research is the modification of the mathe-

matical model to reflect the real-world scenarios. An example could be the inclusion

of the minimum holding requirement in the constraint set, which makes the resulting

optimization problems mixed-integer problems. Even though mixed-integer nonlinear

programs are difficult to deal with in practice, they could be possibly solved using

heuristics that utilize the special structures of the problem at hand. It is also inter-

esting to see how the proposed fair trading approach could fit into the framework of

robust portfolio optimization. Robust optimization is appealing because it enables

the decision maker to take into account the risk caused by the change in price of

assets when optimizing his portfolio. A critical issue that one can address is that how

could we compute the price for fairness and robustness in combination in such cases.

The multi-account portfolio rebalancing we consider here is an instance of multi-



ple objective optimization programs. The principal difference between our problem

and the typical multiple objective problems is that we only focus on a subset of

Pareto-efficient outcomes that satisfy stated fairness criteria. In the literature of

vector optimization, a popular method to generate the Pareto-efficient outcome is

to combine different objectives with corresponding weights into a single objective.

Clearly, given that the set of equitably efficient outcomes is a subset of the Pareto-

efficient outcomes, there exist "fair" combinations of weights such that by optimizing

the scalarized objective, we can get an equitably efficient solution. Hence, a critical

issue that one might want to address is how to characterize those fair combinations

of weights. In addition, even though we suggest in this thesis an approach to obtain

the equitably efficient solution by solving the fair aggregation problems, it might not

be the best choice. For example, as we could see in Figure 4-3, the outcomes from

a-fairness scheme do not distribute evenly on the tradeoff curve when the problem is

at large scale. The issue of generating evenly spaced fair and efficient frontier might

thus pose interesting challenges for future work in this topic.
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