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Abstract

This thesis aims to solve the periodic-reviewed inventory control problem in supply
chain networks with uncertain demand so as to minimize the overall cost of the sys-

tem over a fixed planning time horizon. In such problems, one seeks to optimally
determine ordering quantities at different stages in time. We investigate the class of

polynomial policies, where the control policy is directly parametrized polynomially
in the observed uncertainties of previous stages. We use sum-of-square relaxations to

reformulate the problem into a single semidefinite optimization problem for a specific

polynomial degree. We consider both robust and stochastic approaches in order to
address the uncertainties in demand.

In extensive numerical studies, we find that polynomial policies exhibit better
performance over basestock policies across a variety of networks and demand distri-

butions under the mean and standard deviation criteria. However, when the uncer-
tainty set turns out to be larger than planned, basestock policies start outperforming
polynomial policies. Comparing the policies obtained under the robust and stochastic
frameworks, we find that they are comparable in the average performance criterion,
but the robust approach leads to better tail behavior and lower standard deviation
in general.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Professor of Operations Research
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Chapter 1

Introduction

In this thesis, we study the inventory management problem of a multi-echelon supply

chain network with stochastic demands under a fixed planning time horizon. It is one

of the core problems in supply chain management offering significant opportunities

for increasing the operational and financial efficiency of a company.

The general setting of inventory management in a supply chain network is as

follows. In a multi-echelon assembly network, the storage hubs receive their sup-

plies from outside sources and send items through the network; each processing node

assembles parts from upstream nodes and ships the intermediate products to down-

stream nodes until the final destinations, the sinks of the network, where the final

products are assembled to satisfy unknown sequences of demands from customers. If

the underlying system is a distribution network, the distribution centers receive their

supplies from outside manufacturing plants with infinite capacity and send items

through the network by intermediate warehouses to bring them closer to the stores,

the sinks of the network, where unknown sequences of demands occur. In both types

of networks, external demand can also occur at intermediate nodes of the networks.

In either networks, at each time period, each node orders from its upstream sup-

pliers at a per unit variable cost. For simplicity, we have assumed that there is no

lead time. The order size is constrained to be nonnegative. In each time period,



each node also incurs per unit inventory holding cost for all the amount of materials

stored there, or per unit backordering penalty for any quantity or demand that is

not satisfied in the current period. All unsatisfied demands are fully backlogged in

the system until they are satisfied in subsequent periods. The objective is to find an

inventory control policy on the ordering quantity in each time period that minimizes

the overall cost of the system over a fixed planning time horizon, which could be

expected average cost or worst case cost depending on the company's interest or risk

aversion.

1.1 Literature Review

It has been a fundamental yet challenging problem to design a computationally ef-

ficient and practically implementable inventory control policy for supply chain net-

works. As a result, it has attracted a large interest from diverse research communities.

The most established methodology for dealing with such problems is dynamic pro-

gramming. It has been very successful in theoretically characterizing the structure

of optimal policies in simple structures. Basestock type policies were proven to be

optimal for multiple variants of the problem. Clark and Scarf [11] first proved the

optimality of basestock policies for a serial network with independent and identical

distributed demand in the absence of capacity constraints. Subsequently researchers

generalized the proof to other models and more general assumptions on the demand

distributions [13, 17]. In basestock type policies, there is a lower bound inventory

level defined as echelon basestock level. When the echelon inventory is higher than

the basestock level, no order will be placed. However, if the echelon inventory falls

below the basestock level, it will make order to bring the inventory to an upper bound

level defined as the echelon order-up-to level.

The main drawback of dynamic programming approach is the curse of dimension-

ality, in that the complexity of the underlying recursive equations grows exponentially



with the size of the state-space, making the computation of actual policy sometimes

infeasible. Therefore, one has to resort to numerical or approximate methods in prac-

tice [1, 121.

Researchers in the stochastic programming community proposed an alternative

approach to consider control policies parametrized directly in the sequence of ob-

served uncertainties in past periods [10, 14], which is typically referred to as recourse

decision rules. Gartska and Wets [14] showed that piece-wise affine decision rules

are optimal for the case of linear constraints on the controls, with random uncer-

tainties having bounded support and known distributions, and minimizing piece-wise

quadratic, convex cost as the objective.

In recent years, disturbance feedback parameterizations have been adopted in ro-

bust control and optimization. Some of initial steps in analyzing the properties of

disturbance-affine policies were taken by Kerrigan and Maciejowski [16] and Goulart

and Kerrigan [15], where they showed that the resulting parametrization has de-

sirable system theoretic properties of stability and robust invariance under certain

suitable conditions, and that the class of affine disturbance feedback policies incor-

porate the open-loop and pre-stabilizing control policies, as it is equivalent to the

class of affine state feedback policies with memory of prior states. Subsequently, in

the papers [2, 5, 6, 19, 22], it was demonstrated how reformulations can be done

to allow the computation of the policy parameters by solving convex optimization

problems which vary from linear and quadratic to second-order conic and semidefi-

nite programs. Bertsimas et al. [7] also showed that, in the case of one-dimensional

systems with independent state and control constraints, linear control costs and any

affine state costs, disturbance-affine policies are optimal and can be found effectively.

Robust optimization addresses the issue of data uncertainty. Bertsimas and Thiele

[8] first applied robust optimization to inventory theory with encouraging numerical

results. Ben-Tal et al. [3] advanced this approach by computing affine order policies



for a two-echelon supply chain. Bertsimas et al. [6] implemented polynomial policies

to single echelon and serial supply chain networks and reported that the optimality

gap can be essentially closed with increasing the degree of the polynomials.

1.2 Main Contributions

In this thesis, we address the problem of computing polynomial policies for multi-

echelon supply chain networks with general topologies by robust and stochastic opti-

mization, respectively. The demand distribution is not specified, but assumed to lie

in some polyhedral uncertainty set. Then we perform numerical simulations to ana-

lyze the behavior of these two approaches. Our main contributions are summarized

below:

* We implement control policies that depend polynomially on the observed dis-

turbances, and reformulate the constraints and objective function using Sum-

of-Square (SOS) relaxations on the uncertainty set. We solve the resulting

convex reformulation efficiently as a single semidefinite optimization problem

in polynomial time for a fixed precision. We consider both the robust min-max

objective and the stochastic expectation objective for each polynomial policy.

9 In our numerical study, we compare the performance of our framework with

basestock policies and observe a steady improvement in reducing cost. We also

notice the better performance of affine policies compared to constant policies;

we find, however, quadratic policies do not really improve upon affine policies.

We further find that the robust approach outperforms the stochastic approach

in most demand realizations in mean value, standard deviation and 5%-tail.

Across various realizations of demand, we observe that the polynomial policies

work best if the demand sequence follows a discrete distribution; multi-modal

continuous distributions lead to lower cost than unimodal continuous distribu-



tions; and negatively correlated demand realization gives better performance of

polynomial policies especially in standard deviation and 5% tail than positively

correlated demand. We also investigate the scaling of this framework and estab-

lish the size of problems (size of network and time horizon) that our approach

is able to solve.

1.3 Thesis Structure

The thesis is organized as follows. Chapter 2 presents the general mathematical

formulation of the problem for a fixed polynomial degree and discussed the related

techniques. Chapter 3 reports the numerical study of the framework on supply chain

networks with varying complexity, compares the polynomial policies with basestock

policies, and evaluates performances of robust and stochastic approaches. Chapter 4

concludes the thesis and proposes directions of future research.

1.4 Notation and Definitions

Throughout the rest of the thesis, we use lowercase, non-bold face symbols (e.g. x E

R) to denote scalar quantities; lowercase, bold face symbols (e.g. x E R', n > 1) to

vector quantities; and uppercase symbols (e.g. X E R"', n > 1) to matrices. Also we

use operator to denote vertical vector concatenation, e.g. with x = (x1 , ... , Xn) c R n

and y = (yi, . . . , ym) E Rm, then (x, y) (X 1 , .. ,Xn, y1,... ,Ym) E Rnm We de-

note quantities specific to time period t by using a subscript, e.g. xt, and we refer to

the k-th component of a vector at time t asXk (t).

With x = (X1, ... , xn) E R', we denote by R [x) the ring of polynomials in variables

X1, ... , n, and by 'Pd [x] the R-vector space of polynomials in x1,... , xn, with degree



at most d. We denote the canonical basis of Pd [x],

Bd (X) : 1 1 X2, ... , n, iX1x2, ... i n iX 2X3, .... ,z

and its dimension s(d) =(nd). We write polynomial f E Pd [x] as a finite linear

combination of monomials,

p(x) = pAzi, . ,z) = pax' = p"Ud(x),

where xa := X12 ... Xn, and the sum is taken over all n-tuples c = (ai, 2,... , n)

N" satisfying E" 1 ais < d. In the expression above, p =(pa) E R(d) is the vector of

coefficients of p(x) in the basis Bd(X).

A polynomial p(x) is called a sum of squares polynomial if p(x) can be written as

p(x) - > 1 q2 (x) for some polynomials qi (x),. . . , q,(x).



Chapter 2

Problem Formulation

2.1 Problem Description

In the inventory control problem in the multi-echelon system we introduced in Chap-

ter 1, the state of the system, i.e., the vector of inventory levels at each node, is

represented by xt, and the control at each time period, i.e., the vector of orders made

by each node, is represented by ut. With matrices of appropriate dimensions At, Bt

and Ct describing the evolution of the system, the dynamics of the system can be

expressed as:

xt+ = Atxt + Btut + Ctwt, (2.1)

over a finite planning horizon t = 0, 1, . . . , T - 1. We assume that the initial state is

known. The system is affected by unknown external disturbances, wt, that lie in a

given compact semi-algebraic set

W/V := {wt E R""' : g (wt) ;> 0,J j 1, . . . ,m}, (2.2)

where g1 are multivariate polynomials depending on the vector of uncertainties at

time t, Wt.



The states and controls satisfy linear inequalities,

Etxt + Ftut < ft, t = 0, 1, ... ,T - 1, (2.3)

ETXT fr. (2.4)

Also, the cost incurred by the system can be expressed as piece-wise affine and convex

function in the states and controls:

qt(xt, ut) max [ct(i) + c"(i)Tut + c (i)Txt1.

Given that the demand wt is uncertain, we choose two modeling frameworks to

model uncertainties: a) robust optimization and b) stochastic optimization.

Under robust optimization, we assumed that the uncertainty sequence is in the

set Wo x W1 x ... x Wr_1. The objective is to find non-anticipatory control policies

ut, t 0,... , T - 1 under the constraints that minimize the cost incurred by the

system in the worst-case realization of the uncertainties. Specifically,

minuo go(xo, uo)+ maxw0 minu {q1(x 1, u1) + ...

+ maxWT-2 minuT1 {qT-1(xT_1, u_1) ±-I maxWT_1 qT(xT)}. . .

s.t. xt+1 = Atxt + Btut + Ctwt Vt = 0, ... , T - 1,

Etxt + Ftut < ft Vt = 0, ..., )T- 1,

ETXT fT.

Under stochastic optimization, we assume that the uncertainties are random vari-

ables with bounded support given by Wo x W1 x ... x WT1. The objective is to find

non-anticipatory control policies ut, t = 0, .. . , T - 1 obeying the constraints almost

surely, and minimizing the expected cost. Specifically,



minuo qo(xo, uo) +EwO minul {q(xi, Ui) +...

+EwT-2 minUT1 qT-1(xT-1, UT-1) + E WT qT(xT)} .

s-t. xt+1 = Atxt + Btut + Ctwt Vt = 0, . .. ,IT- 1,

Etxt + Ftut < ft Vt =0,...,IT - 1,

ETXT fr.

2.2 Polynomial Policies and SDP Formulation

In this thesis, we explore the performance of polynomial policies, namely setting the

control as a polynomial function in past observed uncertainties. We assume that every

node in the network is able to "see" all external demands, so the policies at each node

will depend on all past observed external uncertainties incurred to the entire system.

At the initial time period, since there is no uncertainty observed yet, the first policy

will be only constant. For a specific polynomial degree d, we have

ut = LtBd( t),

where (t denotes the vector of all past disturbances,

de = [wo, wi, . .. , wt_1) .

and lies in a compact basic semi-algebraic set

E {tE Rt"" : gj ( t) ;> 0, j3 = 1, . .. ,mI

where gj are all polynomial functions describing the set E x ... x Vt- 1.lBd((t)

is the canonical basis of Pd [,, the vector space of polynomials in variables (t with

degrees at most d. Lt is the matrix of coefficients of the polynomials in the basis

Bd(t). The new decision variables become the coefficients in Lt instead of the order

quantity itself. Consequently from the dynamics, we can also transform all the states



into polynomials in basis Bd( t).

With the polynomial parametrization of controls and states, all the constraints

can now be written as:

p((t) ;> 0, V(t E W/o x -. -- X Wt_1,

where p('t) is a polynomial in variables (t. A sufficient condition for a polynomial

to be nonnegative on a basic semi-algebraic set like E is that it can be written in the

following form:

p =T0 T+ ryg, (2.5)
j=1

where T are sums of squares (SOS) polynomials in variables 't, and gj are the poly-

nomial functions describing the uncertainty set. Utilizing this condition, testing the

non-negativity of p on the set 3 can be transformed into a system of linear equality

constraints on the coefficients of p and Tj, and testing whether T are SOS, which is

equivalent to solving a semidefinite optimization problem (SDP). For a fixed precision,

solving a SDP problem can be done in polynomial time by interior point methods

[18, 21].

The stage cost at node k of time t, qk(t), is a convex piecewise affine function

of the state Xk(t) and the control uk(t). Since the control and inventory both are

parametrized as polynomials of the past uncertainties, q(t) becomes a piecewise

polynomial function in the past uncertainties, i.e., a maximum of several polynomials.

qk(t) = max pk t)-
i=1,...,rt

Therefore it is natural to introduce an upper bound polynomial 7rk (t) E Pd [(] for

each stage cost so that it is greater than every piece of the stage cost function under



every possibility of uncertainties.

7k >- Pk M(t) , Vt E W/O X . .. X WiV-1, VZ

We impose this condition by setting that 7k (t) - p(t)( t) is SOS.

In robust optimization, we are looking for a polynomial policy, denoted by ROB,

that minimizes the overall cost in the worst case realization, so we introduce an upper

bound value on the overall modified cost such that

N T

J > E E (t)(t),VT E WO X ... X WT-1
k=1 t=O

This inequality can be transformed into SOS condition as well. In the end, the

objective is

min J.

In contrast to the robust approach, we are also interested in the polynomial policy

that minimizes the expectation of the overall cost, denoted by STO, by solving

N T~

min E ET E 7 k(tt)]

k=1 t=O

The sum of modified costs is a polynomial in past uncertainties in the form of

pTB r(T), where the expectation can be evaluated by using moments of Gr, so the

objective is an affine function in the coefficients.

Algorithm for computing optimal polynomial policies of degree d:

1. Consider polynomial control policies in the uncertainties, ut( t) = LtBd(t).

2. Substitute a typical stage cost qk(t) = maxi=1 ,...,,t p(t)() with a modified

stage cost lrk(t) E Pd [ J, constrained to satisfy 7rk(t)((t) pik(t)( t),V E

VVo x ... x Wt_ 1,Vi.



3. Substitute the overall cost with the sum of the modified stage costs

4. Substitute a typical constraint p((t) > 0, gV (C) 0, J = 1,. .. , m}

(for either state-control constraints or modified costs constraints) with the con-

dition:

(a) Linear equality constraints on coefficients: p = Ta + Ej_ 1 ryg;

(b) SDP constraints: Tj SOS, deg(To) < d, deg(rgj) < d,j 1,. .. ,m.

5. Formulate the objective function to find the coefficients of the respective poli-

cies.

(a) ROB policy: introduce an upper bound J on the overall cost such that

N T

J > YE ,t (t), ir V E WO X ... X WT_1

k=1 t=O

and repeat Step 4 for this constraint, and solve the resulting SDP.

(b) STO policy: find the expectation of the overall cost, E L t 7kt~t),
by moments of (T, and solve the resulting SDP.

Example We take an example of a single echelon network with two planning time

periods to illustrate the above framework. Let x, U, and w represent the inventory,

order and demand, respectively. We assume the demand has mean y and standard

deviation o, and we design the uncertainty set as wi C [p - -, p + o]. Since the initial

inventory is zero, the dynamics are as follows:

x1 - U0 - W0,

X2 XI + U1 - WI-



With c, h and p represents the ordering, holding and backlogging cost, respectively,

the costs are:

qO= cuo,

qi = cui + max(hxi, -px1),

q2 = max(hx 2 , -px 2 ).

We have constraints:

UO > 0, a1 > 0.

Applying our framework,

1. For polynomial policy of degree d, we have

Uo = 10 > 0,

1 =- 11 TBd(1) 0,

where (1 = [wo].

2. We introduce polynomials FO, 71 and r2 such that

iro = cIO,

7r1 > cui + hxi,

71 > Cui - po1,

7r2 > hx 2,

ir 2 ;> px2.

wTo is a scalar, 7ri = 11 TBd(() is a polynomial of degree d in wo, and 7 2 =

12 TBd(2) is a polynomial of degree d in wo and wi, where 2 = [wo, W1]T.

3. The overall cost of the system is iro + i1 + 7 2 , which is a polynomial in 2-

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)



4. Perform SOS relaxations to constraints (2.7),(2.9),(2.10),(2.11),and (2.12), we

have

UI = rs + T'(wo - P + a)+ r2AP + 0- - wo),

where T 0" =B 1(), ri" -1 1d 1( 1 ) and r 12TBdl() are SOS.

T - cui - hx, = r + rl(wo - p ± a) + rf p +- -wo

7r 1 - Cui + poi = r + Tf'jWo - pM + a) + T (p + a - wo),

where T = 1i B3 1) r1 = BT I1) d( ij = liiT Bdl(1), 72 = 1T2hB_ i

TP = T B 1 ) and P2 = 2' Bd_1(( 1 ) are SOS.

7r2-hX 2 = rTh2 + (wo -t+o) +T2 (t+o-Wo)+Th2 (W1 t+or)+rT2 (p+ -_w),

72 +pX2 = 702+ T2 (wo - I+ 0)+ (t +- 0 Wo)+T 2 (w1-ft-+o)+T2 (ft+--w1),

where T 2 lTjB(2) To T2pBa 2 ) r 1 -- rBd-13) T2J - T B- h2T 2),
wher ihT _ B() 0 - 1T -13(2) T1 - 1 2Bdl( 2 ) -2 1 BT1dl( 2 )

-3 = 3h Bd-1 2, r4 - 4 Bd- 1(- 2 , r1 2T d-1 ( 2), r T _d1(2),

T3 2TBg-1( 2) and r 4 = 12TB-1( 2) are SOS.

5. (a) Robust approach: We introduce an upper bound value J on the overall

cost such that

J 2 ITO + 7 1 + 7 2

Doing SOS relaxation,

J -7 0 - 7T1 - 7 2 - r + < (wo - t + a) + T1 (2p + o - wO)

+ r3(w 1 - ft + o) + r4j + O- - Wi,

where TJ - lT ( 2), Tj = B_1( 2 ), r2 = j B-1 (2), 7T3 - _ B (2

Bd-1( 2) are SOS. As a result, the robust formulation is :andT~ rf = l4



min J

s.t. J - To -,r1I - 7r2=

- hx1

+ px1

- hx 2

T2 + PX 2 -

f + T<'(wo - At o-) + 7 (p+ )- - wo)

(W - pu + o-) + r(t + (- - wi)

To + T1 (wo -t + 7) + T2'1 (t +-- wo)

To'1 + -TI"(wo - p + 0-) + TVl (P p +0- -WO)

_h2 +Th 2 (o I 7 ~2(t+0 OTos ,, 2(woty u) F4 2(y H _wo)

+r2 (W1 - t + U) + Th2 (At + 0- - wI)

T2 + T 2 (wo - At + 7) + T2P2 (t + . _ WO)

+T2 (W1 - t + -7) +TP2 (t + 7 - w 1 )

Uo = 10

u1 = 1 +t(wo - t + 0) +(t + 0- - wo)

1o > 0, all T are SOS

(b) Stochastic approach: We evaluate the expectation of 7ro + 71 + 7r2 using

moments up to degree d of wo and wi, so

E [ro [ + ri + 7r2] = f (lo, 11, 12),

where f is an affine function in (10,11,12). As a result, the stochastic for-

mulation is:

min f (l0 , 11, 12)

s.t. ,w1 - cu 1 - hx1 =

71 - cu1 + px1 =

V2- hx 2 =

T2 + px 2 -

Uo

U1

10 >

TO' + TI(wo - P + -T) + T2(A p +CT - wo)

7g' + Tf2 (Wo - At + -T) +T71(At+- - wo)

r2 2(W1 - At + -) + Th2 (At + 0 _ w1)

Tg2  (W _ I + o.) + 22(p + 0. _ O)

+T2 (W1- _ C T) + T42(p + CT _- w)

10

TU +T1(wo - P - ) +r T(P + - wo)

all r are SOS

71 - Cu 1

1 - CU1

T2



2.3 Special Cases of SDP

In this section, we show that under affine policies and polyhedral uncertainty sets, the

resulting problem reduces into a linear optimization problem instead of a semidefinite

one.

Firstly, in order for the resulting problem of the framework to be affine, the degree

of the polynomial policies can only be either 0 or 1. In degree 0 policies, ut(t) = 0,

which are actually constants and independent of the uncertainties. In degree 1 poli-

cies, ut( t) = tt -+t. By the linear dynamics of the system (2.1), the states xt are

affine in the uncertainties, so the constraints (2.3) and (2.4) are either independent

of or affine in the uncertainties. Each piece of the stage cost pk t)(t) becomes affine

in the past uncertainties, so as the modified stage cost rk M(C).

Secondly, the uncertainty sets have to be polytopic, i.e., all the functions g de-

scribing the uncertainty set VVk(t) in (2.2) are affine so that the SDP constraints in

Step 4 reduces into positivity constraints. For a polyhedral uncertainty set, Bem-

pored et al. [11 proved that piecewise affine policies are optimal and the min-max

values is achieved at some extreme points of the polyhedron.

If the constraint p('t) is of degree 0, it will be substituted as:

p((s) = ro, where o is scalar and To > 0.

If the constraint p((t) is of degree 1, we will have:

P = ro + E _ -rjgj, where r is scalar and -r ;> 0, Vj = 0 1, .

We can see that in the resulted formulation, there are no SOS constraints, and all

the constraints and objective function are linear, so it is indeed a linear optimization

problem.



Chapter 3

Computational Results

In this section, we test the polynomial policy framework on multi-echelon networks of

varying size and topology so as to obtain insights on the effectiveness of the policies,

and the framework (robust vs. stochastic) models . There specific questions that we

aim to investigate are:

" how performance depends on the polynomial policy degree;

" comparing the performance of polynomial and basestock policies;

" the relative performance evaluation of the robust and the stochastic framework;

" how the performance of polynomial policies depends on different realization

distribution of the demand sequences;

" examining the scaling of the polynomial policy framework with the problem

size, namely the complexity of the network and time horizon; and

" investigating the performance of the polynomial policies across different types

of networks.

For these purposes, we consider three assembly networks containing three, five and

eight installations with polyhedral type uncertain demands. The details are described

below.



Networks:

Figure 3-1, 3-2, and 3-3 depict system setups of three-echelon, five-echelon and eight-

echelon networks respectively, and the inventory holding cost h, backlogging cost b,

variable ordering cost c are summarized in Table 3.1. We obtained the networks from

Bertsimas et al. [9], where they considered basestock policies.

Figure 3-1:73-Instalato SyteIetp

'IN

u'~Figure 3-1: 3-Installation System Setup.

uIM

Firstly, we would like to consider polynomial policies in assembly networks. We

assume that at each node, all the parts ordered from each suppliers are equal in quan-

tities, since any extra amount of parts will incur higher holding cost than in upstream

nodes, e.g. U13(t) = U23(t) in the three-echelon network and both will be denoted by

Us(t). In these three systems, there is no constraint on the inventory levels, but the
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Figure 3-3: 8-Installation System Setup.

Network size Installation h b c
1 6 10 1

3-installation 2 8 15 3
3 10 28 4

1 6 10 1
2 8 15 2

5-installation 3 8 15 2
4 14 30 10
5 15 35 10
1 6 10 1
2 8 15 2
3 8 15 2

8-installation 4 10 20 6
5 16 28 6
6 16 28 2
7 25 45 8
8 30 55 8

Table 3.1: Cost parameters for the networks.



order quantity has to be nonnegative, i.e., the flow of items is only one-way. The

planning time horizons considered for these three networks are T = 15, T = 10 and

T = 10 respectively.

With Xk(t) denoting the inventory of node k at time t, Uk(t) denoting the order

of node k placed to its suppliers at time t, and wk(t) denoting the external demand

incurred at node k of time t, we have the following dynamics:

Xk(t + 1) Xk(t) + Uk(t) - E U(t) - Wk(t)]I[kES], (3-1)
iED(k)

where D(k) represents the set of downstream nodes of node k, i.e., the nodes making

orders from node k, and S denotes the set of sink nodes where external demands

occur. For simplicity, we assume the initial states at all the nodes are zero, i.e. there

is no initial inventory in the system prior to the beginning of planning periods. The

cost incurred at node k time period t is

qk(t) = Ck(t)UZk(t) + max(hk(t)xk(t + 1), -bk(t)xk(t + 1)), (3.2)

and the system is constrained by

nk(t) > 0, Vk, t.

Uncertainty set:

The external demands at all the sinks are assumed to be i.i.d and have mean y = 100

and standard deviation - = 20. To find the robust and stochastic polynomial policies

for the three networks, we used the same uncertainty set as in [9], which is specified by

a combination of individual demand uncertainty and cumulative demand uncertainty.

WS(t) E -, p+ a]Vs E S, t = 0, ... ,T- 1, (3.3)

Vt_ < 3o-Vs E Sit = 0, . .. ,)T- 1. (3.4)



The first constraint of the polyhedral uncertainty set limits each individual demand

within one standard deviation from the average. The second constraint, by central

limit theorem, covers 99% of the possible occurrences of demand sequences and elim-

inates the unlikely scenario where all the realized demands are dominated at one end

of the interval.

3.1 Performance Analysis as a Function of Poly-

nomial Policy Degree

Applying the framework in Chapter 2 under uncertainty set given in (3.3)-(3.4), we

found both the robust and stochastic optimization solutions denoted by ROB and

STO respectively for the three networks under consideration. With the policies,

firstly we would like to measure their effectiveness with respect to the worst case de-

mand realization of varying sizes of polyhedral uncertainty. The results are presented

in Table 3.2 and Table 3.3 for degree 0 and degree 1 policies respectively.

network policy [p -p+o-] [p-2o,p+2] [p -3a,p+ 3 ]

3-installation STO 60232 88180 155380
ROB 48134 115334 182534

5-installation STO 90130 122030 180610
ROB 67948 139176 210676

8-installation STO 188530 260030 349330
ROB 141933 273266 405266

Table 3.2: Max cost of degree 0 policies for assembly networks assuming demand lies

in a polyhedron of varying size.

From these two tables, we can see that the cost by degree 0 policy is very high.

At degree 0, the ordering policy is independent of the past realized uncertainties, it is

solved as a closed-loop problem with all the policies become static ordering quantities

regardless the actual realization of demand sequences. However, in the polynomial

policy of degree d > 1, the exact ordering quantities are not fixed, and the open-loop



network policy [t - , p + a] [t - 2a, p + 2o] [p - 3, t + 3o]
3-installation STO 16595 25755 36355

ROB 16111 26751 37391
5-installation STO 32290 46430 63290

ROB 31016 47876 64736
8-installation STO 74850 105690 139770

ROB 72052 106132 140212

Table 3.3: Max cost of degree 1 policies for assembly networks assuming demand lies
in a polyhedron of varying size.

policy adapts to the available information of realized demand sequence at hand to

compute the next ordering quantities. In order to reduce the cost of degree 0 policy,

we also would like to make use of some of the available information at each time period

to decide the order quantities. Therefore, when implementing the degree 0 policy, we

resolved the problem every two time periods, corresponding to the commonly used

bi-weekly review policy in industry, based on the instant inventory level.

Next we evaluate the performance of the policies by generating demand sequences

under the following distributions with the same mean [ = 100 and standard deviation

or 20.

* Unimodal continuous distribution: This class of distribution is commonly used

to model the demand distribution. We draw demands from three such distribu-

tions - Normal(p, a), Lognormal(p, a), and Gamma(p, or).

* Multi-modal continuous distribution: We used uniform and mixture of two

normal distributions to simulate demands with the original yI and o.

" Discrete distribution: Each demand is generated to be either y + a or p - a

with 50% probability for each. This is a very special demand realization since

the generated demand sequences are at the vertices of the original assumed

uncertainty set in obtaining the ROB and STO.

* Correlated distribution: In finding the policies, the demand sequences are as-

sumed to be independent. We would like to test the effect of correlation on the



time horizon of demand sequence, which exists in some commodities. We used

both positive correlation and negative correlation when p = 0.5 and p = -0.5

respectively. We note that the correlation here only exits on the time horizon,

so demands at multiple sinks are still uncorrelated.

For each of the above distribution, we generated 20000 instances for degree 1

policies and 1000 instances for degree 0 policies as it is very time consuming for the

resolving in implementing degree 0 policies. We calculated the total cost for each

instance, and, to compare the performance, we reported the mean cost, standard

deviation of costs, and average of 5% highest costs. Tables 3.4 to 3.9 present all the

results.

demand distribution policy mean std 5% tail
normal STO 18103 705 19941

ROB 17841 866 20155
lognormal STO 18340 865 20311

ROB 18059 970 20360
gamma STO 18213 902 20596

ROB 17897 941 20329
mixture of two normals STO 17867 517 19002

ROB 17747 657 19338
uniform STO 17934 582 19011

ROB 17838 776 19656
discrete STO 17288 709 18488

ROB 17384 554 18522
50% correlation STO 18636 1358 22339

ROB 18517 1507 22639
-50% correlation STO 17767 513 18818

ROB 17462 575 18715

Table 3.4: Performance of degree 0 policies for 3-installation assembly network.

Firstly, we notice that the costs of degree 0 policies have been largely reduced by

adopting the idea of resolving in every two periods. Then comparing the performance

of degree 0 and degree 1 policies for each network, we can see steady improvement in

performance, lower mean cost, lower 5% tail, and generally lower standard deviation

in all the distribution realizations, when moving from degree 0 policies to degree 1



demand distribution policy mean std 5% tail
normal STO 16790 692 18589

ROB 16594 777 18579
lognormal STO 17023 907 19466

ROB 16812 987 19420
gamma STO 16860 843 19209

ROB 16756 930 19196
mixture of two normals STO 16597 456 17713

ROB 16499 529 17787
uniform STO 16723 456 17772

ROB 16608 554 17883
discrete STO 15835 248 16295

ROB 16111 6.01e-6 16111
50% correlation STO 16773 873 19398

ROB 16571 1013 19566
-50% correlation STO 16789 741 18736

ROB 16590 820 18698

Table 3.5: Performance of degree 1 policies for 3-installation assembly network.

demand distribution policy mean std 5% tail
normal STO 37724 1410 40425

ROB 37269 1214 40067
lognormal STO 38310 1886 42952

ROB- 37642 1532 41333
gamma STO 38146 1649 42163

ROB 37671 1570 41910
mixture of two normals STO 37957 1280 39846

ROB 37262 1006 39337
uniform STO 37883 1336 40328

ROB 37328 1035 39238
discrete STO 36428 1579 39143

ROB 36185 1154 38276
50% correlation STO 38410 2249 44321

ROB 37856 2001 43339
-50% correlation STO 37648 1245 40701

ROB 36670 1029 39257

Table 3.6: Performance of degree 0 policies for 5-installation assembly network.



demand distribution policy mean std 5% tail
normal STO 33202 1238 34147

ROB 33049 1111 35856
lognormal STO 33492 1558 37347

ROB 33435 1446 37136
gamma STO 33419 1454 36975

ROB 33322 1312 36630
mixture of two normals STO 32906 1044 35174

ROB 32881 758 34678
uniform STO 33096 1037 35328

ROB 33035 779 34797
discrete STO 30629 928 32047

ROB 31016 2.79e-6 31016
50% correlation STO 34203 1628 38597

ROB 34054 1487 38267
-50% correlation STO 34197 1255 37222

ROB 34038 1141 36903

Table 3.7: Performance of degree 1 policies for 5-installation assembly network.

demand distribution policy mean std 5% tail
normal STO 79629 2304 85322

ROB 78173 1981 82408
lognormal STO 80737 2983 86881

ROB 79531 2839 86209
gamma STO 80900 2947 86999

ROB 79577 2760 85232
mixture of two normals STO 79559 2235 83985

ROB 78087 1946 81811
uniform STO 79968 2714 84915

ROB 78652 2012 82482
discrete STO 77472 2282 82397

ROB 76422 1976 80244
50% correlation STO 80603 3438 87656

ROB 79446 3248 86959
-50% correlation STO 79202 2005 83132

ROB 76958 1773 80211

Table 3.8: Performance of degree 0 policies for 8-installation assembly network.



demand distribution policy mean std 5% tail
normal STO 73907 2030 78653

ROB 73485 1912 78127
lognormal STO 74502 2534 80691

ROB 74168 2439 80314
gamma STO 74358 2347 80007

ROB 74023 2252 79612

mixture of two normals STO 73315 1687 76948
ROB 73310 1341 76438

uniform STO 73698 1642 77204
ROB 73680 1378 76664

discrete STO 70846 1557 73708
ROB 72052 1.96e-4 72052

50% correlation STO 73942 2575 80800
ROB 73511 2509 80427

-50% correlation STO 73904 2085 78942
ROB 73471 2049 78564

Table 3.9: Performance of degree 1 policies for 8-installation assembly network.

policies for all the three networks.

However, similar improvement in performance was not observed when moving

from affine policies to quadratic policies. Simulation results of quadratic policies for

3-installation system are shown in Table 3.10. Comparing with affine policies, we

can see that except for the equal performance in discrete distribution, the costs of

quadratic ROB policies appear slightly higher than the affine ROB policies, and costs

of quadratic STO policies appear much higher than the affine STO policies. To in-

vestigate the underlying reason, we look at the computed policies, which are shown

partially in Table 3.11, 3.12, 3.13, and 3.14 for illustration purpose.

In the policy of affine ROB, we can see that they only depend on the constant term

and the last demand. In the quadratic ROB policy, all the first order monomials have

essentially the same coefficients as in affine ROB policy. The coefficients of second

order monomials are almost zero with a few terms having some residuals, which cancel

out with the residual in constant term coefficient compared to the constant coefficient



mean std 5% tail
normal STO 462927 214297 960902

ROB 161604 764 18565
lognormal STO 481873 216293 978560

ROB 16835 1001 19499
gamma STO 469246 216017 965626

ROB 16778 929 19211
mixture of two normals STO 296295 144868 670740

ROB 16508 537 17802
uniform STO 330245 169181 770180

ROB 16608 553 17907
50% correlation STO 512458 233650 1034069

ROB 16613 1045 19694
-50% correlation STO 515900 237465 1049546

ROB 16615 831 18780
discrete STO 15834 249 16293

ROB 16111 2.4E-7 16111

Table 3.10: Performance of degree 2 policies for 3-installation assembly network.

monomial 1
U1 (1) 118
U2(1) 118
U3 (1) 118

monomial 1 w1

u,(2) 100 20
U2(2) 100 20
U3(2) 100 20

monomial 1 w1  W2
ui(3) 100 5e-10 20
U2(3) 100 5e-10 20

u3 (3) 100 3e-10 20
monomial 1 w1  w 2  w3

ui(4) 100 3e-10 5e-10 20

U2(4) 100 3e-10 5e-10 20

u3 (4) 100 2e-10 3e-10 20

Table 3.11: Partial affine ROB policies for 3-installation assembly network.



monomial 1
u,(1) 118

u2 (1) 118
U3 (1) 118

monomial 1 wi
ui(2) 100 20 -3e-2
u2(2) 100 20 -3e-2
U2 (2) 100 20 -2e-2

monomial 1 w1 W2  W W1w2  w2
u1(3) 100 -6e-11 20 -le-3 -4e-13 -3e-2
u 2 (3) 100 2e-11 20 -le-3 -4e-13 -3e-2
U2 (3) 100 -le-11 20 -le-3 -2e-13 -2e-2

monomial 1 w. W2 W3 W 2 W2 Wiss W2 3 2
u,(3) 100 6e-11 -8e-12 20 le-3 4e-13 -le-3 -6e-14 -3e-13 -4e-2
u2(3) 100 le-11 -2e-11 20 2e-3 3e-13 -le-3 2e-13 -4e-13 -3e-2
u3 (3) 100 7e-11 -4e-12 20 le-3 3e-13 -le-3 8e-14 -2e-13 -2e-2

Table 3.12: Partial quadratic ROB policies for 3-installation assembly network.

policies in 3-installation assembly network.

monomial 1
u,(1) 120

U2(1) 120
U3 (1) 120

monomial 1 Wi
u,(2) 100 20
U2 (2) 100 20
U3 (2) 100 20

monomial 1 Wi W2
u,(3) 100 -7e-11 20
u2 (3) 100 -2e-11 20
U3(3) 100 le-11 20

monomial 1 Wi W2  W3

ui(4) 100 le-10 8e-12 20
U2 (4) 100 9e-11 8e-11 20
U3 (4) 100 6e-11 6e-11 20

Table 3.13: Partial affine STO



monomial 1
u1(1) 120

U2 (1) 120
u3 (1) 120

monomial 1 Wi E
u1(2) 465 20 -365
U2 (2) 415 20 -315

U3(2) 260 20 -160
monomial 1 w1 2 W 12 2  E

u1(3) 820 4e-13 20 -352 -2e-12 -368

U2 (3) 700 7e-13 20 -288 -2e-12 -312

U3 (3) 417 6e-13 20 -156 -le-12 -160

monomial 1 wi W2  W3  W W1W2 W1W3 W2 W2W3 3

u1(3) 1223 le-12 -2e-12 20 -367 le-13 -371 -7e-13 -2e-12 -386

U2 (3) 1032 le-12 2e-13 20 -300 le-13 -306 -7e-13 -le-12 -326

U3 (3) 603 le-12 -6e-14 20 -169 8e-13 -166 -3e-13 -8e-13 -169

Table 3.14: Partial quadratic STO policies in 3-installation assembly network.

in affine policy. It indicates that under our assumptions and conditions the optimal

policy is an affine function in the very last observed demand, instead of depending

on the entire past history. Also we can conclude that the solution becomes unstable

at degree 2, and this instability leads to slightly poorer performance comparing to

degree 1. Comparing the STO affine and quadratic policies, we notice much severe

instability. The first order monomials similarly have essentially the same coefficients

in both affine and quadratic policies as well. Though the instability of second order

monomial coefficients will cancel out with the instability of the constant coefficients

in expectation, it renders the quadratic STO policy very bad performance in practice.

The cost can be 100 times higher as shown in Table 3.10.

By these experiments, we find that affine policies exhibit the best performance

in all the three networks for both robust and stochastic frameworks. We notice an

interesting point: in all three networks, affine robust policies consistently give almost

constant cost in discrete distribution, where all the demand sequences are at the ver-

tices of the polyhedral uncertain set. The constant cost of discrete distribution is the

same as the worst case cost of the original uncertainty set in Table 3.3, i.e., 16111,



31016 and 72052 for 3-, 5- and 8-installation network respectively. This observation

indicates that almost all the vertices are worst case realizations for the robust affine

policy, so as to minimize the corresponding worst case cost, it has to be at some point

with equal distance to all of them.

3.2 Robust Policies vs. Stochastic Policies

The purpose of this section is to measure the effectiveness of robust polynomial pol-

icy with respect to stochastic polynomial policy in the following aspects: worst case

demand realization of polyhedron uncertainty, realization of various demand distri-

butions, and uncertainty in standard deviation of demand distribution. Table 3.15

to 3.19, expressed as STO-ROB(%) present the performances comparison for affine

policies.

It is obvious that ROB gives lower worst case cost than STO in the original

polyhedron, since ROB minimizes the worst case cost. However, if the uncertainty

set turns out to be different as planned, the STO actually performs better in the

worst case scenario as shown in Table 3.15.

network [- , p + o] [1 -- 2a, p + 2] [p - 3a, p + 3a]
3-installation 2.92% -3.87% -2.85%
5-installation 3.95% -3.11% -2.28%
8-installation 3.74% -0.42% -0.32%

rim r~ m r\ m
Table 3.15: Max cost comparison of affine ROB vs. STO Vjg 4  assuming de-
mand lies in a polyhedron of varying size.

From Table 3.16, 3.17 and 3.18, it is obvious that robust policies outperform

stochastic policy in almost all the demand realizations except the discrete case in

mean, standard deviation and 5% tail of the costs. Comparing the superiority of

ROB over STO in the three aspects, we found the superiority in mean in the least



demand distribution mean std 5% tail
normal 1.2% -12.3% 0.1%

lognormal 1.2% -8.9% 0.2%
gamma 1.2% -10.3% 0.1%

mixture of two normals 0.6% -16.2% -0.4%
uniform 0.7% -21.6% -0.6%
discrete -1.7% 100.0% 1.1%

50% correlation 1.2% -16.0 % -0.9%
-50% correlation 1.2% -10.7% 0.2%

Table 3.16: Performance comparison
installation assembly network.

of affine ROB vs. STO STO-ROB for 3-

demand distribution mean std 5% tail
normal 0.5% 10.2% 0.8%

lognormal 0.2% 7.2% 0.6%
gamma 0.3% 9.8% 0.9%

mixture of two normals 0.1% 27.4% 1.4%
uniform 0.2% 24.9% 1.5%
discrete -1.3% 100.0% 3.2%

50% correlation 0.4% 8.7% 0.9%
-50% correlation 0.5% 9.1% 0.9%

Table 3.17: Performance comparison of
installation assembly network.

affine ROB vs. STO STO-ROB for 5-

demand distribution mean std 5% tail
normal 0.6% 5.8% 0.7%

lognormal 0.5% 3.8% 0.5%
gamma 0.5% 4.1% 0.5%

mixture of two normals le-2% 20.6% 0.7%
uniform 0.2% 16.1% 0.7%
discrete -1.7% 100.0% 2.3%

50% correlation 0.6% 2.6% 0.5%
-50% correlation 0.6% 1.7% 0.5%

Table 3.18: Performance comparison of
installation assembly network.

affine ROB vs. STO STO-ROB for 8-



demand distribution mean std 5% tail
gamma(p, 0.5-) 1.28% 44.69% 2.27%
gamma(p, 0.75u) 0.73% 19.32% 1.49%

gamma(t, -) 0.29% 9.78% 0.93%
gamma(p, 1.25u) 0.13% 7.16% 0.82%
gamma(p, 1.5-) -0.17% 3.99% 0.32%

gamma(pt, 1.75oa) -0.34% 2.72% 0.18%
gamma(p, 2-) -0.57% 2.12% 0.10%

Table 3.19: Relative performance of affine ROB vs. STO STO-ROB as a function of
realized & for 5-installation assembly network. STO

which is usually less than 0.5%. Superiority in 5% tail is the second with around

1% lower, since robust optimization minimizes the worst scenario cost. With the

reduction in the high tail, ROB leads to a large reduction in standard deviation of

performance, which is usually around 10% and may go up to 20% for multimodal

continuous distributions. We indeed have situations that STO gives smaller standard

deviation than ROB, when ROB is not able to reduce the tail significantly. These

situations occur in the unimodal continuous distributions of 3-installation network.

Lastly, in the special discrete demand realization, as explained in Section 3.1, robust

affine policy is invariant to the actual demand sequences with constant cost, which is

higher than the stochastic affine policy in average but lower in 5% tail.

In all the previous simulations, we assume the standard deviation to be known.

However, we would like to measure the effect of uncertainty in o. Therefore, we exper-

iment on the 5-installation network under gamma distribution of demand sequence,

where demands are drawn from gamma distribution with mean y and standard de-

viation & E {0.5-, 0.75-,. . . , 2-}. Table 3.19 presents the relative performance of

affine ROB vs. STO in this situation. We observed that ROB outperforms STO

significantly when o is small in all of mean standard deviation and 5% tail. However,

with increase of o, the gap between ROS and STO decreases. At 1.50-, STO starts

beating ROB in mean value, however ROB still keeps advantage in minimizing the

5% tail, and lower the standard deviation.



By comparing the affine policies from robust and stochastic frameworks, we find

STO is more robust than ROB in larger uncertainty set; ROB generally performs

than STO for distribution with presumed standard deviation; however with increas-

ing standard deviation, the superiority of ROB over STO decreases.

3.3 Sensitivity Analysis with Respect to Demand

Distributions

In this section, we compare the performance of polynomial policies across different

demand realization distributions with reference to Figure 3-4, 3-5 and 3-6.

Firstly, we notice that the policies lead to lowest cost in both average and 5% tail

with the smallest standard deviation when realized demand is discretely distributed.

This is because the demand sequences all fall in the original planned uncertainty set

in discrete distribution. However, substantial amount of the demand sequences of

other distribution will be outside of the set [p - -, P + o].

Secondly, the policies yield better performance in multimodal than unimodal con-

tinuous distributions, as the three figures all indicate lower average cost, standard

deviation and 5% tail. The two multimodal continuous distributions, mixture of two

normals and uniform, lead to very similar performance in all three criteria for both

frameworks. In the three unimodal distributions, lognormal is the highest in all three

aspects, gamma in the middle and normal is the lowest.

Lastly, comparing the effects of correlation, we noticed the cost of positively corre-

lated demands is higher than the negatively correlated ones. In the positive correlation

case, one high demand supports the occurrence of another high demand or one low

demand boosts the occurrence of another low demand, so the demand sequence over
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time has a wider distribution and it is more likely to take extreme values. On the

other hand, by negative correlation, the total demand is more centered around the

average value by the likely coupling across high and low demands. As a result, the

positive correlation gives rise to higher 5% tail and standard deviation than negative

correlation, but on average they do not differ much.

3.4 Performance Comparison with Basestock Poli-

cies

In this section, we compare the performance of polynomial policies, in both robust

and stochastic frameworks, with basestock policies presented in Bertsimas et al. [9].
They computed the basestock robust policy as the best basestock strategy for the

worst realization of uncertainty under the same assumption (3.3)-(3.4), but they as-

sumed normal distribution N(p, o) in the basestock stochastic policy and minimized

the sample average objective of M = 1000 simulations. They solved both policies by

simulated annealing which is well known for finding global optimal solution in prac-

tice. After finding the basestock ROB and STO policies, they also evaluated the max

cost of two policies under varying size of polyhedron uncertainties, and performed

demand realization simulation according to various distributions as in Section 3.1.

Table 3.20 to Table 3.23 present the comparison between affine policies and bases-

tock policies. All the results are presented as percentage of Basestock-Affine for bothBasestock
robust and stochastic policies respectively.

Table 3.20 shows that if the uncertainty set is realized as planned, both polynomial

ROB and STO policies achieve lower maximum cost than their basestock counter-

parts. If the uncertainty set is moderately different from planned, STO polynomial

policy still gives better results than basestock policy, but, in robust optimization,

both policies give similar results with one policy outperforming the other depending



Network policy [p - o-, -+ ] [p-2,p+2o-] [pt-3u, p+33]
3-installation STO 20.7% 6.1% -5.3%

ROB 11.3% -1.7% -12.8%
5-installation STO 23.0% 12.0% 9.0%

ROB 10.8% -1.1% -11.1%
8-installation STO 16.9% 7.1% 5.6%

ROB 8.2% 1.0% -7.9%

Table 3.20: Max cost comparison of affine policies vs. basestock policies
BasestockAffine assuming demand lies in polyhedron of varying size.

on the network. However, when the uncertainty set turns out to differ largely from

the planned, basestock ROB policy results in around 10% lower cost than polynomial

ROB policy for all the networks. In stochastic optimization, basestock policy appears

to perform better for small networks and the polynomial policy has the edge in larger

networks.

From the comparison of results under various demand distribution on all the three

networks, polynomial policies beat basestock in almost all aspects. In discrete de-

mand distribution, polynomial policies outperform basestock policy the most, with

more than 10% improvement in average cost, 50% improvement in standard deviation,

and around 10% improvement in 5% tail. For unimodal continuous distributions, we

still observed around 5% lower average cost, 20% lower standard deviation, and 10%

lower in 5% tail. In the correlated distributions, we noted that the improvement in

mean cost is the same for both positive and negative correlations, but the advantage

of the polynomial policy appears to be stronger in terms of standard deviation and

5% tail in the case of positively rather than negatively correlated distribution. We ob-

served in robust optimization of the 5-installation network that the basestock policy

gives smaller standard deviation than the polynomial policy in unimodal continuous

distributions and correlated distributions. Across the network size, we noticed the

advantage of the polynomial policy is more significant for smaller size networks.

By comparing the affine and basestock policies, we find that affine policies out-



Table 3.21: Performance comparison of affine policies vs.
Basestocklcffine in 3-installation network.

Table 3.22: Performance comparison of
Basestock-Afine in 5-installation network.

basestock policies

affine policies vs. basestock policies

demand distribution policy mean std 5% tail
Normal (p, -) STO 4.6 % 47.8% 10.4%

ROB 6.3 % 17.5% 7.2%
Lognormal (pu, o) STO 3.4 % 39.6% 8.3%

ROB 6.1 % 12.2% 6.5%
Gamma (p, -) STO 3.7 % 41.0% 8.7%

ROB 6.1 % 11.5% 6.1%
Mixture of two normals (p, o) STO 8.9 % 58.3% 14.2%

ROB 7.5 % 22.7% 8.3%

Uniform (p, o) STO 7.1 % 60.5% 13.4%
ROB 7.1 % 22.2% 8.0%

Discrete(p, o) STO 15.7 % 68.2% 20.0%
ROB 10.4 % 100.0% 11.7%

50% correlation(p, o) STO 4.6 % 53.3% 14.2%
ROB 6.3 % 15.1% 6.9%

-50% correlation(p, o) STO 4.6 % 44.7% 9.7%
ROB 6.3 % 24.4% 8.4%

demand distribution policy mean std 5% tail
Normal (p, -) STO 5.7 % 42.0% 9.8%

ROB 7.1% -2.0% 6.4%
Lognormal (t, o) STO 4.5 % 34.5% 8.2%

ROB 7.1 % -2.2% 6.2%

Gamma (t, -) STO 4.9 % 36.7% 8.7%
ROB 7.1 % -1.1% 6.5%

Mixture of two normals (p, o-) STO 8.4 % 45.0% 12.2%
ROB 6.9% 2.2% 6.6%

Uniform (p, o) STO 7.0% 46.7% 11.3%
ROB 7.0 % 5.le-3% 6.7%

Discrete(A, o-) STO 16.6 % 43.3% 20.0%
ROB 9.5 % 100.0% 10.9%

50% correlation(p, -) STO 2.5 % 49.0% 10.5%
ROB 4.3 % -3.0% 3.7%

-50% correlation(p, -) STO 2.9 % 39.5% 7.4%
ROB 4.3 % 3.3e-2% 4.0%



Table 3.23: Performance comparison o
Basestock-Affine in 8-installation network.

F affine policies vs. basestock policies

perform basestock policies in most scenarios. The advantage of affine over basestock

in the stochastic framework is more significant than in the robust framework espe-

cially for the worst case cost, standard deviation and 5% tail. However, ROB affine

appears to be less robust than ROB basestock in the worst case for large polyhedral

uncertainty set.

3.5 Scaling of the Framework

In this section, we are interested in finding out how large problems can be solved

for polynomial policies by the presented framework. As discussed previously, the

decision variables for polynomial policies of degree d are the matrices of coefficients

SE t =0,.. . , T - 1, where s (t~"d is the dimension of the monomials,

n is the number of orders in the network which is equal to the number of nodes in

assembly network, and n is the number of sink nodes. Therefore, with a fixed degree

d, the problem size is polynomially bounded by the problem input T, nu, n. From the

demand distribution policy mean std 5% tail
Normal (pu, a) STO 1.7% 50.6% 7.1%

ROB 2.6% 24.9% 4.2%

Lognormal (p, a) STO 0.7% 45.1% 6.1%
ROB 2.5 % 20.7% 4.1%

Gamma (p, a) STO 1.0 % 47.2% 6.4%
ROB 2.5% 22.0% 4.1%

Mixture of two normals (p, a) STO 5.0% 54.7% 10.0%
ROB 3.9% 33.3% 5.5%

Uniform (t, a) STO 3.6% 56.3% 8.9%
ROB 3.4 % 32.7% 5.1%

Discrete(p, a) STO 10.1 % 51.9% 14.0%
ROB 6.6 % 100.0% 9.1%

50% correlation(p, a) STO 1.7 % 58.7% 11.2%
ROB 2.6 % 27.7% 5.1%

-50% correlation(p, a) STO 1.7 % 45.5% 6.2%
ROB 2.7 % 26.5% 4.6%



NO. of installations NO. of sinks Largest time horizon
10 4 11
15 6 7
20 9 5
25 12 3
30 15 3
35 17 2
40 20 2
45 23 1

Table 3.24: Largest solvable problem size as a trade-off between the number of in-
stallations and the time horizon.

analysis in Section 3.1, we have found that the performance does not improve when

moving from degree 1 to degree 2. Therefore, we will only investigate the largest

problem size as a trade-off between the number of nodes and the time horizon that

can be solved for affine policy (on a computation machine of 2.26GHz Intel Dual Core

7550 Processor with 2GB of RAM memory, running Windows) as shown in Table 3.24.

We can see as the network size becomes bigger, the planning time horizon that can

be solved is reduced. At network of 45 installations and 23 sinks, we will only be able

to solve for one planning time period, which is essentially not an open-loop policy

and does not depend on the demand information. We found the bottleneck is at the

SOS relaxations by using the package YALMIP [20], which has a high requirement

on memory.

3.6 Distribution Network Evaluation

In this section, the three networks are treated as distribution networks. In the dis-

tribution network, it is assumed there is only one single commodity flowing in the

system from a factory of unlimited capacity through distribution centers and ware-

houses to the stores. In this setting, each node is not required to make orders from

all its suppliers since they all supply the same product. Therefore, the cost of the



distribution network is expected to be lower than its assembly network counterpart.

With xk(t) denoting the inventory of node k at time t, and u,k(t) denoting the

order of node k placed from its supplier i at time t, we have the following dynamics:

Xk (t + 1) = Xk(t) - E Ui,k(t) - > Uk,j(t) ~- Wk(t) I[kES], (3-5)
iEU(k) jE. D(k)

where U(k) and D(k) represent the set of upstream and downstream nodes of node k

respectively, and S denotes the set of sink nodes where external demands occur. The

cost incurred at node k time period t is

qk(t) = Ck(t) E Ui,k(t) + max (hk(t)xk(t + 1), -bk(t)Xk(t + 1)), (3.6)
iEU(k)

and the system is constrained by

Uik(t) > 0, Vi E U(k), k, t.

We applied the same framework to find the robust and stochastic polynomial policies

and carried out the same set of simulations to analyze the performance of polynomial

policies in distribution network and compared with assembly network.

Firstly, Table 3.25 and 3.26 present the performance of degree 0 and degree 1

policies in the worst case demand realization of varying sizes of polyhedral uncertainty.

Resembling the behavior in assembly network, when the uncertainty is the same as

planned, ROB gives better result in worst case; however STO performs better when

the uncertainty set turns out to be larger than expected.

Next, we also measured the performance of polynomial policies in distribution

networks under various distribution realizations as in the assembly networks case.

The results are shown in Table 3.27 to 3.32. It is clear that costs are consistently



Table 3.25: Max cost of degree 0 policies
lies in polyhedron of varying size.

Table 3.26: Max cost of degree 1 policies for
lies in polyhedron of varying size.

for distribution networks assuming demand

distribution networks assuming demand

reduced from degree 0 to degree 1 polynomial policies. However, policies of degree

2 degenerate into degree 1 and become unstable as well. Very similar observations

to the assembly network are found for the distribution network: the ROB policies

generally perform better than the STO counterparts, but we did notice STO policy

gives lower standard deviation and 5% tail for 3-installation distribution network;

lower cost in multi-modal continuous distribution than unimodal; positive correlation

gives slightly higher cost than negative correlation, as in assembly networks, but the

gap is smaller; and discrete distribution gives the lowest cost among all demand re-

alization distributions and affine ROB is again leads to invariant cost to all sequences.

Lastly, we look at the effects of varying standard deviation of demand realization

distribution on the distribution network as shown in Table 3.34. Once again, ROB

shows strong superiority over STO when a is smaller, but with increasing value of

u, the superiority of ROB decreases though at a slower speed compared to assembly

network, and STO starts to outperform ROB in cost standard deviation at 1.75a.

network policy [ - a, p- + ] [p - 2a, p + 2a] [p - 3o, p + 3a]
3-installation STO 54360 82308 149508

ROB 44578 111778 178978
5-installation STO 85160 117060 175640

ROB 63874 135102 206602

8-installation STO 176529 248029 323129
ROB 121576 252908 384908

network policy [p - a, p + o] [t - 2a, p + 2a] [p-3a, p + 3a]
3-installation STO 12875 19515 29275

ROB 11980 21780 31580

5-installation STO 27090 37070 51210
ROB 26260 38400 51940

8-installation STO 54880 73340 102960
ROB 49236 79356 109476



demand distribution policy mean std 5% tail
normal STO 13554 731 15304

ROB 13323 911 13662
lognormal STO 13772 862 15519

ROB 13493 954 15734
gamma STO 13704 846 15733

ROB 13359 920 15533
mixture of two normals STO 13305 598 14373

ROB 13218 758 14884
uniform STO 13345 667 14525

ROB 13307 856 15375
discrete STO 12747 867 14275

ROB 12906 680 14366
50% correlation STO 14086 1416 17885

ROB 14011 1558 17986
-50% correlation STO 13182 557 14368

ROB 12876 642 14311

Table 3.27: Performance of degree 0 policies for 3-installation distribution network.

Table 3.28: Performance of degree 1 policies for 3-installation distribution network.

demand distribution policy mean std 5% tail
normal STO 12221 624 13790

ROB 11969 788 13916
lognormal STO 12470 807 14615

ROB 12183 983 14726
gamma STO 12385 727 14264

ROB 12127 915 14446
mixture of two normals STO 12037 447 13040

ROB 12010 560 13300
uniform STO 12158 417 13057

ROB 12077 585 13372
discrete STO 11277 423 12130

ROB 11980 1.16e-5 11980
50% correlation STO 12228 754 14317

ROB 11964 1010 14833
-50% correlation STO 12225 715 14094

ROB 11964 899 14245



Table 3.29: Performance of degree 0 policies for 5-installation distribution network.

demand distribution policy mean std 5% tail
normal STO 28280 1193 31081

ROB 27828 1109 30583
lognormal STO 28588 1461 32230

ROB 28207 1411 31801
gamma STO 28479 1366 31785

ROB 28116 1315 31430
mixture of two normals STO 27970 1017 30171

ROB 27749 780 29603
uniform STO 28165 980 30276

ROB 27893 799 29712
discrete STO 26707 949 28360

ROB 27260 8.66e-6 27260
50% correlation STO 28254 1444 32135

ROB 27826 1445 31888
-50% correlation STO 28283 1252 31301

ROB 27831 1205 30865

Table 3.30: Performance of degree 1 policies for 5-installation distribution network.

demand distribution policy mean std 5% tail
normal STO 30903 1446 33627

ROB 30282 1234 33062
lognormal STO 31477 1865 36005

ROB 30644 1499 34217

gamma STO 31288 1616 35024
ROB 30646 1530 34760

mixture of two normals STO 31135 1338 33157
ROB 30269 1067 32597

uniform STO 31015 1330 33525
ROB 30293 1054 32292

discrete STO 29561 1656 32437
ROB 29145 1250 31494

50% correlation STO 31566 2242 37238
ROB 30842 1995 36202

-50% correlation STO 307768 1277 33921
ROB 29629 1052 32309



demand distribution policy mean std 5% tail
normal STO 58560 2196 62081

ROB 56157 2340 61037
lognormal STO 59308 2773 65198

ROB 57412 2800 63358
gamma STO 59521 2623 64350

ROB 57603 2777 62661
mixture of two normals STO 58609 2588 63716

ROB 56265 2468 61231
uniform STO 58891 2652 63494

ROB 56853 2413 61161

discrete STO 56008 3242 62410
ROB 54437 2527 59143

50% correlation STO 59800 3396 67054
ROB 57455 3634 65831

-50% correlation STO 58085 1797 62408
ROB 55096 1928 58787

Table 3.31: Performance of degree 0 policies for 8-installation distribution network.

Table 3.32: Performance of degree 1 policies for 8-installation distribution network.

demand distribution policy mean std 5% tail
normal STO 52328 1733 56256

ROB 50313 1972 54918
lognormal STO 53036 2044 57960

ROB 50897 2380 56714
gamma STO 52827 1923 57354

ROB 50714 2237 56073

mixture of two normals STO 51718 1512 54889
ROB 50763 1443 53931

uniform STO 52101 1414 55048
ROB 50791 1528 54119

discrete STO 49250 1696 52686
ROB 51086 7.69e-5 51086

50% correlation STO 52339 2065 57333
ROB 50288 2459 56678

-50% correlation STO 52323 1932 57009
ROB 50262 2273 55690



Table 3.33: Performance of degree 2 policies for 3-installation distribution network.

demand distribution mean std 5% tail
gamma(p, 0.5u) 3.41% 40.08% 4.37%
gamma(p, 0.75o) 2.31% 14.08% 2.54%

gamma(p, -) 1.27% 3.74% 1.12%
gamma(p, 1.25c-) 0.79% 1.58% 0.64%
gamma(p, 1.50-) 0.45% 2.45% 0.69%
gamma(p, 1.75cr) 0.04% -1.47% -0.38%

gamma(pt, 2cr) -0.39% -1.42% -0.75%

Table 3.34: Relative performance of affine ROB vs. STO as a function
for 5-installation distribution network.

of realized a

demand distribution policy mean std 5% tail
normal STO 642489 528785 692489

ROB 12017 787 14003

lognormal STO 692489 691051 2033865
ROB 12214 970 14777

gamma STO 663793 594856 2650087
ROB 12168 920 14573

mixture of two normals STO 404656 292484 1321264
ROB 12038 566 13381

uniform STO 421083 271862 1249664
ROB 12110 592 13453

discrete STO 11280 423 12140
ROB 11980 8.58e-5 11980

50% correlation STO 12228 754 14317
ROB 11964 1010 14833

-50% correlation STO 12225 715 14094
ROB 11964 899 14245



From these experiments, we find that overall polynomial policies perform consis-

tently to both types of supply chain networks. This is supported in cases involving

worst case of varying polyhedral uncertainty, various demand realization distribu-

tions, as well as varying standard deviation of demand distribution.



Chapter 4

Conclusions

We solved the inventory control problem of multi-echelon supply chain networks with

uncertain demands. The objective is to minimize the cost incurred to the entire sys-

tem over a fixed planning time horizon, comprising variable ordering cost, inventory

holding cost and backlogging cost. We implemented polynomial policies parametrized

directly in the sequence of the observed uncertainties, and then carried out SOS relax-

ations to reformulate the problem as an SDP, applicable to both robust and stochastic

optimization frameworks.

By extensive numerical studies on three supply chain assembly networks of varying

complexity, we find that affine policies is the best and gives lower cost than constant,

quadratic and basestock policies. Comparing the two frameworks, the robust affine

policies is overall better if the demand sequences come from the one we planned

though the performance of robust affine policies is also satisfactory. However, in

larger uncertainty set than planned, affine robust policies is less robust in the worst

case compared to affine stochastic and robust basestock policies. Also, with the in-

creasing of standard deviation in demand distribution, stochastic affine policies catch

up robust affine policies. Similar findings are also obtained when we apply the same

policies and frameworks to distribution networks.

We did not include fixed ordering cost in the cost function when we formulated



the optimization problems as it does not fit into the current convex frameworks. An

insightful direction is to find ways of solving polynomial policies in mixed integer

problem when fixed ordering costs are incorporated. The constraints in our network

are relatively simple: only the order quantity has to be nonnegative. Therefore an

interesting future direction will be looking at networks with more general constraints

on the states and controls. In those cases, the affine policies may not be optimal.

Therefore we do need more powerful and stable software packages for interior point

methods and dedicated algorithms for SOS problems, since the problem size grows

very quickly at higher degrees.
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