
P a g e  | 1 

Chemical composition of tourmaline in orogenic gold deposits 1 

Marjorie Sciuba1,2, Georges Beaudoin1,2, Sheida Makvandi1,2 2 

 Marjorie Sciuba 3 

Marjorie.sciuba@gmail.com 4 

 Georges Beaudoin 5 

 Georges.Beaudoin@ggl.ulaval.ca 6 

1 Département de Géologie et Génie Géologique, Université Laval, Québec (QC) G1V 0A6, Canada 7 

2 Centre de recherche sur la géologie et l’ingénierie des ressources minérales (E4m), Université Laval, Québec (QC) 8 

G1V 0A6, Canada 9 

Abstract 10 

Tourmaline from eighteen orogenic gold deposits and districts, hosted in varied country rocks and metamorphic facies, 11 

was investigated by EPMA (Electron Probe Micro-Analyzer) and LA-ICP-MS (Laser Ablation-Inductively Coupled 12 

Plasma-Mass Spectrometry) to establish discriminant geochemical features to constrain indicator mineral surveys for 13 

gold exploration. Such tourmaline most commonly belongs to the alkali group, with a dravitic composition. LA-ICP-MS 14 

results were investigated with binary plots and PLS-DA (Partial Least Square-Discriminant Analysis). PLS-DA suggests 15 

that the major element composition of tourmaline from orogenic gold deposits is buffered by the hydrothermal fluid, 16 

whereas trace element composition is strongly controlled by the composition and the metamorphic facies of the 17 

country rocks. Contents of Sn, Ga, Ti, Rare Earth Elements (REE), Zr, Hf, Nb, Ta, Th and U vary with the metamorphic 18 

facies of the country rocks. Tourmaline from orogenic gold deposits has high contents of Sr, V, and Ni and low Li, Be, 19 

Ga, Sn, Nb, Ta, U, and Th compared to tourmaline from other deposit types and geological environments. Binary plots 20 

such as Sr/Li vs. V/Sn, Sr/Sn vs. V/Nb, Sr/Sn vs. Ni/Nb and Sr/Sn vs. V/Be, as well as PLS-DA, discriminate tourmaline 21 

from orogenic gold deposits from that of other settings. Binary plots highlight a transitional variation in the trace 22 

element composition of tourmaline from metamorphic, to magmatic-hydrothermal, to magmatic environments.  23 
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Introduction 25 

Tourmaline is commonly associated with mineralization in orogenic gold deposits where it is a major to accessory 26 

mineral in veins and in proximal to intermediate-scale alteration zones in sub-greenschist to amphibolite facies 27 

settings (Goldfarb et al. 2005; Eilu et al. 1999). Tourmaline formation in orogenic gold deposits (e.g. Val-d’Or, Canada; 28 

Mount Gibson and Big Bell, Western Australia) is contemporaneous with gold mineralization (Anglin et al. 1996; 29 

Garofalo et al. 2002; Jiang et al. 2002; Beaudoin and Pitre 2005). In several deposits, tourmaline may precede, or less 30 

commonly postdate, gold precipitation but is part of the gold-bearing veins (Goldfarb et al. 2005). 31 

Tourmaline forms in a wide range of pressure-temperature conditions (up to 6-8 GPa, Krosse 1995; up to 800-850°C, 32 

Ota et al. 2008) and, occurs in a broad range of geological settings including metamorphic, magmatic, and 33 

hydrothermal (Henry and Dutrow 1996; Dutrow and Henry 2011; Van Hinsberg et al. 2011). Magmatic tourmaline 34 

includes occurrences in pegmatites, and granites whereas hydrothermal tourmaline is found in greisen, porphyry 35 

Cu±Mo, Cu–Au breccia pipes, Sn–W veins, iron oxide-copper-gold (IOCG), shear zone-hosted U-Cu, sedimentary-36 

exhalative (SEDEX), volcanogenic massive sulfide (VMS) and unconformity-associated U, in addition to orogenic gold 37 

deposits (Slack 1996; Slack and Trumbull 2011). Metamorphic tourmaline is found in diverse settings in 38 

metamorphosed rocks (Galbraith et al. 2009; Marks et al. 2013; Wang et al. 2018). 39 

Tourmaline is a complex borosilicate (XY3Z6[T6O18](BO3)3V3W) with three major end-members reflecting the major 40 

element present in the Y site: Fe-rich schorl, Mg-rich dravite and Li-rich elbaite (Henry et al. 2011). A wide range of 41 

elements is able to substitute in the tourmaline structure as major, minor or trace elements including Na, Ca, K, Mn, Al, 42 

Cr, Si, Be, Ti, Zn, Cr, Ni, Cu, Sn, Ga, Sc, V, Ga, Sc, Rb, Cs, Sr, Y, REE, Pb, Ag, F, Cl and Br (Dietrich 1985; Henry et al. 2011; 43 

Marschall and Jiang 2011). Several studies document the major and minor element composition, but only a few report 44 

trace element compositions of tourmaline from orogenic gold deposits (Jiang et al. 2002; Deksissa and Koeberl 2004; 45 

Hazarika et al. 2015; Hazarika et al. 2016; Grzela 2017; Manéglia 2017; Kalliomäki et al. 2017). The trace element 46 

composition of tourmaline from various environments and deposit types are also available, including porphyry Cu-Mo 47 

(Koval et al. 1991; Yavuz et al. 1999; Iveson et al. 2016), VMS (Hellingwerf et al. 1994; Griffin et al. 1996; Slack et al. 48 

1999), Sn skarn (Jiang et al. 2004), SEDEX (Griffin et al. 1996; Klemme et al. 2011), W-Sn (Harlaux 2016; Duchoslav et 49 

al. 2017; Hong et al. 2017); Sn (Harlaux et al. 2018; Harlaux et al. 2019); polymetallic Pb-Zn-Cu±U (Yavuz et al. 2011); 50 

polymetallic Sn-Ag-Pb-Zn (Jiang et al. 1999); U unconformity-related (Joyce 2016) deposits, pegmatites (Jolliff et al. 51 

1987; Roda et al. 1995; Roda-Robles et al. 2004; Roda-Robles et al. 2011; Bačik et al. 2012; Gadas et al. 2012; Roda-52 
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Robles et al. 2012; Čopjaková et al. 2013; Marks et al. 2013; Roda-Robles et al. 2015; Hazarika et al. 2017), and granites 53 

(Drivenes et al. 2015; Yang et al. 2015b; Hong et al. 2017; Kalliomäki et al. 2017; Tahmasbi et al. 2017).  54 

Previous studies showed that the major element composition of tourmaline records bulk rock and fluid compositions 55 

in metasomatic and metamorphic environments (Taylor and Slack 1984; Lottermoser and Plimer 1987; Slack and Coad 56 

1989; Gallagher and Kennan 1992). For example, high Li concentration is typical of magmatic tourmaline in pegmatites 57 

and granites (Keller et al. 1999; Selway et al. 1999; Selway et al. 2000; Drivenes et al. 2015; Kalliomäki et al. 2017), 58 

whereas high Sn is common in Sn deposits (Jiang et al. 1999; Williamson et al. 2000; Duchoslav et al. 2017; Hong et al. 59 

2017; Harlaux et al. 2018). Drivenes et al. (2015) proposed that Sn concentration is a good indicator for Sn magmatic 60 

fertility, such that the Sn concentration is high in tourmaline associated with Sn mineralization and low in barren 61 

granites. Hong et al. (2017) used high Sn and Zn/Nb, Co/Nb, Sr/Ta, and Co/La ratios to discriminate tourmaline host 62 

rock composition of fertile from barren Sn granites. In alteration zones with low fluid/rock ratios, such as the Broken 63 

Hill deposit, protolith composition exerts a strong control on tourmaline major element signature (Slack et al. 1993), 64 

whereas deposits formed at high fluid/rock ratios, such as VMS deposit feeder zones, tourmaline major element 65 

composition is buffered by the fluid (Slack and Coad 1989; Slack and Trumbull 2011). Other workers have shown that 66 

tourmaline composition in magmatic to hydrothermal environments depends on pressure, temperature, salinity of the 67 

hydrothermal fluid and host rock composition (Henry and Dutrow 1996; Van Hinsberg and Schumacher 2007; Ertl et 68 

al. 2008; Van Hinsberg and Schumacher 2009; Slack and Trumbull 2011; Orlando et al. 2017). For example, schorl is 69 

more common in magmatic rocks whereas dravite is typical of SEDEX and VMS hydrothermal assemblages (Slack 70 

1996). Povondraite tourmaline forms preferentially from highly saline fluids (Henry et al. 2008; Van Hinsberg and 71 

Schumacher 2011). Trace element compositions also reflect the bulk composition of the host rocks (Raith et al. 2004; 72 

Van Hinsberg and Schumacher 2011; Yang et al. 2015a; Kalliomäki et al. 2017) and may be indicative of the fluid origin 73 

(Griffin et al. 1996). Copper, Pb and Zn in tourmaline from VMS and SEDEX deposits reflect the major commodities in 74 

the associated mineralization (Griffin et al. 1996). Baksheev et al. (2012) suggested that tourmaline has a good 75 

potential to distinguish the type of porphyry deposit (Cu, Au and Sn) based on variation in Mg, F, and Fetot contents, 76 

and Fe3+/Fetot ratio. Duchoslav et al. (2017) reported that, in the Cornubian Batholith (England), hydrothermal 77 

tourmaline is Sn-rich and Ti-, Cr- and V-poor compared to late-magmatic tourmaline.  78 

The physical and chemical properties of tourmaline are ideal for use as an indicator mineral for exploration for 79 

orogenic gold deposits. Tourmaline is resistant to weathering and can survive long-distance transport. With a specific 80 

gravity ranging from 2.9 to 3.1 g/cm3, tourmaline can be separated by density in heavy mineral concentrates. However, 81 
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the origin of tourmaline found in heavy mineral concentrates cannot yet be constrained. Here, we study tourmaline 82 

composition from gold-bearing veins from orogenic gold deposits, and from other geological settings. We test the 83 

influence of country rock composition, local metamorphic facies and age of the deposit on the tourmaline composition. 84 

Our results are compared with data from literature in order to identify trace elements that may discriminate 85 

tourmaline from gold-bearing veins from orogenic gold deposits from that derived from other deposit types and 86 

geological environments, and to establish criteria for indicator mineral surveys to constrain the source of tourmaline 87 

and thus guide mineral exploration. 88 

Geological setting of selected orogenic gold deposits 89 

Tourmaline was investigated from gold-bearing veins from 18 orogenic gold deposits and districts (Table 1) including 90 

eight world-class deposits as defined by Goldfarb et al. (2005). The selected deposits present diverse geological 91 

settings with different bulk country rock compositions, metamorphic facies and age of country rocks, as well as age 92 

and style of mineralization, and cover the range of major features described for orogenic gold deposits (Table 1). 93 

Country rocks of the selected deposits vary from clastic sedimentary, and volcanic (tholeiitic basalt, komatiite), to 94 

plutonic (syenite, granite, gabbro). Country rocks are metamorphosed from lower greenschist (e.g. Essakane) to the 95 

upper amphibolite facies (e.g. New Consort). Archean ages are most common for tourmaline-bearing orogenic gold 96 

deposits. At Essakane and Navachab, country rocks are Proterozoic, whereas at Excelsior and Salsigne, country rocks 97 

are Phanerozoic. In most deposits studied, the timing of gold mineralization is slightly younger than the age of the 98 

country rocks, with the exception of the Rosebel deposit where the country rocks are Archean, whereas mineralization 99 

formed during the Proterozoic (Daoust et al. 2011). Mineralization styles vary from quartz-carbonate veins to 100 

replacement or disseminated. Tourmaline from Young-Davidson is from deformed, late, V3 quartz veins with low gold 101 

contents (Martin 2012; Zhang et al. 2014). In the sample from Hira Buddini, tourmaline is part of the first tourmaline 102 

stage that formed during amphibolite-facies metamorphism with the most significant gold mineralization event 103 

(Hellmann et al. 2005; Krienitz et al. 2008). 104 

Samples analyzed from other geological environments include metamorphic tourmaline from the Tehery-Wager area 105 

(Canada; Steenkamp et al. 2016), hydrothermal tourmaline from veins cutting the LaRonde VMS deposit (Canada), and 106 

tourmaline from Li-Cs-Ta-rich pegmatite associated with the Roberto gold deposit (Canada; Ravenelle et al. 2010; 107 

Ravenelle 2013). The pegmatite emplacement at Roberto is associated with late D2, early D3, deformation that 108 

postdates the metamorphism that affected the bulk of the gold mineralization. However, rare gold occurs within these 109 
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pegmatitic dikes (Ravenelle et al. 2010; Dubé et al. 2011; Ravenelle 2013; Fontaine et al. 2015). Additional samples 110 

include tourmaline from the Lincoln Hill gold deposit in the Humboldt Range (Nevada, USA) that has epithermal 111 

characteristics (R. Taylor, pers comm, 2015).  112 

Analytical methods 113 

Sample selection  114 

Forty-nine polished thin sections from orogenic gold deposits and eight additional polished thin sections of tourmaline 115 

from various geological settings were investigated using the petrographic microscope. One to 24 samples per deposit 116 

were studied (Table 1). Samples were selected to represent textural, spatial and paragenetic variability within some 117 

of the deposits. Deposits investigated using one sample yield limited variability for that deposit. The range of geological 118 

characteristics of the selected deposits, however, is considered to be adequate to capture the compositional variability 119 

of tourmaline in orogenic gold deposits, as shown for other minerals such as scheelite (Sciuba et al. 2020). This 120 

assumption, however, constrains the data interpretation. In addition, even if tourmaline is from gold-bearing samples, 121 

the paragenetic relation of tourmaline to gold is not known if gold was not found in the investigated samples. This 122 

limitation is not critical as the study’s objective is to define the chemical composition of tourmaline in gold-bearing 123 

veins for indicator mineral surveys. 124 

Electron Probe Micro-Analysis (EPMA) 125 

Major and trace elements in tourmaline were measured with a CAMECA SX-100 Electron Probe Micro-Analyzer at 126 

Université Laval using the analytical methods described in Grzela (2017). Analytical parameters were fixed at 10 µm 127 

beam size, 15 kV voltage and 20 nA current. Major and minor element distributions were mapped using a 25 kV 128 

voltage, 100 nA current and 20 ms dwell time per pixel. Following standards were used for calibration: hematite for 129 

Fe, chromite for Cr, diopside for Ca, albite for Na, forsterite for Mg, quartz for Si, cordierite for Al, rhodochrosite for 130 

Mn, rutile for Ti, orthoclase for K, sphalerite for Zn, chalcopyrite for Cu, nickeline for Ni, Co-ATX for Co, V-ATX for V, 131 

Sc-ATX for Sc, tugtupite for Cl, celestite for Sr and, fluorite for F. Tourmaline structural formulae were calculated from 132 

the EPMA data using an Excel spreadsheet based on the data reduction scheme in Henry et al. (2011). Tourmaline 133 

major element composition was normalized to 29 oxygens and the structural formula was calculated based on 3 apfu 134 

B and 4 apfu OH.  135 
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Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) 136 

Minor and trace elements were measured with a RESOlution M-50 Excimer 193 nm laser coupled to an Agilent 7700x 137 

ICP-MS at the LabMaTer Laboratory at Université du Québec à Chicoutimi (Canada) using a frequency of 20 Hz and 138 

fluence of 3 J.cm-2. Line analyses were performed with a 33-44 µm beam size; spot analyses used a 55 µm beam size. 139 

Backgrounds were measured for 30 s and tourmaline grains were ablated for 40-90 s. Maps of tourmaline trace 140 

element concentration were generated using a 15 µm beam size with 20 s backgrounds between each ablating line. 141 

29Si was used as an internal standard and fixed at 16.72 wt% based on the average Si measured by EPMA (16.72 ± 0.66 142 

wt. %). Silicon shows the lowest variance in tourmaline in this study (Fig. 3). The reference materials NIST-610, GSD-143 

1g and GSE-1g were used as external standards for data quantification depending on the element (ESM 1 Table T1). 144 

NIST-610, NIST-612, GSD-1g, GSE-1g and Gprobe6 were used as secondary standards to control data quality. All 145 

reference materials are basalt glass. Data were extracted with Iolite software. Detection limits were calculated using 146 

Longerich et al. (1996) and are reported in ESM 1 Table T1. The rim signal was commonly a mixed result of the 147 

tourmaline rim and surrounding matrix and the rim area was too small to yield good quality data. Analyses of 148 

inclusions and cracks were excluded in data integration.  149 

Multivariate statistical analysis 150 

EPMA and LA-ICP-MS data were investigated using Partial Least Square-Discriminant Analysis (PLS-DA; Makvandi et 151 

al. 2016b). PLS-DA is a supervised statistical method that combines both Principal Component Analysis (PCA) and 152 

linear regression. PLS-DA generates a series of orthogonal components that relate the X (N x K) and Y (N x M) matrices 153 

by maximizing the covariance between matrices, and uses labeled data to enhance classification (de Iorio et al. 2007). 154 

In the qw* loadings plot, elements that plot close to the origin do not covary, whereas those far from the center of the 155 

plot show strong covariations. Elements that plot in opposite quadrants have inverse covariations. Elements that 156 

explain the compositional variance of a class of samples, such as a deposit type, plot close to the class label or in the 157 

opposite quadrant if they covary inversely. In scores (t) diagrams, samples plotting near a data class label have similar 158 

compositional characteristics. The Variable Importance on Projection (VIP) measures the importance of an element in 159 

the classification (Eriksson et al. 2001), such that VIP values that are equal or larger than 1 are the most significant for 160 

the classification (Eriksson et al. 2001). Prior to multivariate statistical analysis, EPMA and LA-ICP-MS data were 161 

transformed using centered-log ratio (Aitchison 1986; Whitten 1995), suitable for multivariate statistical analysis 162 

(Aitchison 1986; Egozcue et al. 2003; Thió-Henestrosa and Martín-Fernández 2005; Makvandi et al. 2016b). Censored 163 
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values were imputed by the R-package robCompositions using the k-nearest neighbor function (Hron et al. 2010) as 164 

described in Makvandi et al. (2016a) and Sciuba et al. (2020). Elements with more than 40 % concentrations below 165 

detection limit were excluded from the multivariate analysis.  166 

Results 167 

Tourmaline textures and mineral assemblages 168 

In orogenic gold deposits, tourmaline is commonly found in quartz-carbonate veins or disseminated in country rocks. 169 

Tourmaline presents a wide range of sizes (µm to cm), textures, colors, optical zoning and mineral associations. The 170 

petrographic characteristics of tourmaline from investigated orogenic gold deposits are summarized in Table 2. 171 

Tourmaline forms aggregates of fine grained (µm scale) anhedral crystals in some deposits (e.g. Hoyle Pond, Canadian 172 

Malartic, James Bay, Rosebel, Salsigne, Hira Buddini). In others, aggregates of tabular to acicular euhedral, medium 173 

size grains (e,g, Essakane, New Consort, St. Ives, mm scale; Fig. 1) predominate. Under plane-polarized light, the most 174 

common tourmaline color in orogenic gold deposits is bluish-green to brown. In some cases, tourmaline is light blue 175 

or orange. Tourmaline typically shows rims with colors from orange to brown to dark green, with thickness up to 50 176 

µm (Fig. 1). In orogenic gold deposits, rare complex grains exhibit oscillatory zoning, patchy and/or sector zoning (Fig. 177 

2). Tourmaline is commonly associated with quartz, calcite, ankerite, dolomite, biotite, sericite, K-feldspar, rutile, 178 

magnetite, pyrite, arsenopyrite, pyrrhotite, chalcopyrite and gold (Fig. 1). In the samples from Rosebel and Essakane, 179 

tourmaline textures suggest co-precipitation with gold (Fig. 1f). At Hoyle Pond and St. Ives, tourmaline occurs with 180 

native gold but not in contact. In some deposits, a single generation of tourmaline is associated with mineralization 181 

but in rare cases such as at Roberto, two generations of tourmaline are present. Subhedral orange tourmaline is found 182 

within ferro-magnesian greywacke and with disseminated gold mineralization. Anhedral brown tourmaline occurs in 183 

the selvage of mineralized quartz-diopside veins or in hydrothermal breccias in greywacke (Fontaine et al. 2015). 184 

Tourmaline may contain inclusions of quartz (Hoyle Pond, Young Davidson, Roberto, James Bay, Rosebel, New Consort, 185 

Uti, St. Ives), calcite (Canadian Malartic), chlorite (Rosebel), or amphibole (Roberto). Fractures in tourmaline are filled 186 

with quartz (James Bay, Roberto, Lincoln Hill, Essakane), chlorite (Canadian Malartic, James Bay, Salsigne), calcite (St. 187 

Ives) or pyrrhotite (New Consort; Fig. 1). In the Roberto pegmatite, tourmaline is coarse grained (up to 4.5 mm), 188 

anhedral to subhedral, and is associated with quartz and microcline. 189 
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Major element compositions 190 

Major and minor element compositions of tourmaline measured by EPMA shows large compositional ranges in Al, Fe, 191 

and Mg (Fig. 3; ESM 1 Table T2). Calcium, Ti, and V show large standard deviation caused by chemical zoning (Figs. 3a 192 

and 4). Tourmaline from orogenic gold deposits plots most commonly in the alkali group (Fig. 5a). Rare examples from 193 

Salsigne, Rosebel, Hoyle Pond and the James Bay district plot in the X-vacant group, but have compositions close to 194 

those within the alkali group (Fig. 5a). Tourmaline from orogenic gold deposits has dravite to, less commonly, schorl 195 

composition (Fig. 5b and c). Minor exceptions from James Bay, Big Bell and Hoyle Pond show magnesio-foitite 196 

compositions; some tourmaline grains from Salsigne, New Consort and Rosebel plot in the foitite field. Orange 197 

tourmaline from Roberto is dravite, whereas most brown tourmaline from Roberto is schorl (Fig. 5b). In the 198 

Mg/(Fe+Mg) vs Ca/(Ca+Na) diagram, brown tourmaline from Roberto shows uvite and feruvite compositions (Fig. 5c). 199 

PLS-DA with major elements does not reveal any group discrimination on mineralization age, country rock 200 

composition, and local metamorphic facies (ESM 2 Fig. S2). Tourmaline from the Lincoln Hill gold deposit, the 201 

hydrothermal veins cutting the VMS mineralization at LaRonde, and from the Tehery Wager area, also belongs to the 202 

alkali group (Fig. 5a). 203 

Minor and trace element composition 204 

A total of 253 line and four spot analyses were performed in areas free of mineral inclusions as verified by petrographic 205 

observations (ESM 1 Table T3). EPMA and LA-ICP-MS data show strong covariation for Na, K, Fe, Al, Mg, Mn, Ni, Zn and 206 

V (Fig. 3; ESM 2 Fig. S1). Covariation is weaker for Ca, Ti and Sc reflecting chemical zoning (ESM 2 Fig. S1). Blue 207 

tourmaline is characterized by low Ti contents (median= 0.10 wt %) compared to orange tourmaline (median= 0.44 208 

wt %), and brown tourmaline (median= 0.40 wt %; ESM 2 Fig. S3). Pearson correlation coefficient r shows moderate 209 

to strong covariation (0.40 to 0.97) for High Field Strength Elements (HFSE: Zr, Hf, Nb, Ta, Y, REE, Th and U), Large Ion 210 

Lithophile Elements (LILE: K, Ba), and several highly compatible transition metals (Ti, Cr, V, Co and Ni; Fig. 6; ESM 2 211 

Table T4; ESM 2 Figs. S4 and S5). Gallium and Sn show broad increase with increasing metamorphic facies of the 212 

country rock and from mafic to felsic rocks (Table 3; Fig. 6e and i; ESM 2 Figs. S4 and S5). Tourmaline from deposits 213 

hosted in lower greenschist to lower amphibolite facies sedimentary rocks has intermediate Ga and Sn concentrations 214 

(median= 32.6 and 1.31 ppm, respectively). Canadian Malartic is an exception where tourmaline has Ga concentrations 215 

(median 69.8 ppm) similar to those of lower greenschist to lower amphibolite facies felsic rocks, but intermediate Sn 216 

concentration (median 2.11 ppm; Table 3). Iron and Sn correlate moderately (r = 0.57) in tourmaline from deposits 217 
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hosted in lower greenschist to lower amphibolite terrains (Fig. 6e). Tourmaline hosted in middle to upper amphibolite 218 

facies rocks tends to have higher concentrations of  Hf, Nb, Ta, Y, U, Th, and Ti than that from deposits hosted in lower 219 

greenschist to lower amphibolite facies rocks (Table 3, Fig. 6, ESM 2 Figs. S4 and S5). Tourmaline from deposits hosted 220 

in middle to upper amphibolite facies rocks has higher ∑LREE (median= 11.05 ppm) compared to that from deposits 221 

hosted in lower greenschist to lower amphibolite facies rocks (median= 0.55 ppm ∑LREE; Table 3, ESM 2 Fig. S6). 222 

Rare earth elements patterns for each deposit are presented in ESM 2 Fig. S9. Tourmaline from orogenic gold deposits 223 

displays three REE patterns (Fig. 7, ESM 2 Figs. S6 and S9): 1) a HREE-enriched with (La/Yb)CN ratios less than 0.1 224 

(ESM 2 Fig. S6a); ESM 2 Fig. S9); 2) a LREE-enriched pattern with (La/Yb)CN ratio greater than 10 and positive Eu 225 

anomaly; and 3) a flat pattern with (La/Yb)CN ratios between 0.1 and 10 and positive Eu anomaly (ESM 2 Figs. S6a and 226 

S9f, i and j). The LREE-enriched and flat patterns are the most common in tourmaline from orogenic gold deposits. 227 

Tourmaline from deposits hosted in felsic rocks tends to have a smaller Eu anomaly (median Eu* = 2.02) compared to 228 

those from deposits within in mafic and sedimentary rocks (median Eu* = 4.6 and 15.1, respectively, Fig. 8b). The REE 229 

patterns of tourmaline from orogenic gold deposits do not correlate with the composition and metamorphic facies of 230 

the country rocks, or mineralization age.  231 

In some tourmaline grains, two REE patterns are present (ESM 2 Fig. S10). At St. Ives, a bluish-grey tourmaline core is 232 

characterized by a HREE-enriched pattern, whereas the greenish brown rim has a LREE-enriched pattern (ESM 2 Fig. 233 

S10a). In contrast, tourmaline from Rosebel, with similar textures and colors than that of St. Ives, has LREE-enriched 234 

patterns in both rim and core (ESM 2 Fig. S10b). No systematic relationship exists between REE pattern, texture, color 235 

and zoning in tourmaline from orogenic gold deposits.  236 

Tourmaline from hydrothermal veins cutting the VMS mineralization at LaRonde and from the Lincoln Hill gold deposit 237 

has REE patterns similar to those of tourmaline from orogenic gold deposits, with LREE-enriched and flat REE patterns 238 

with positive Eu anomalies (ESM 2 Fig. S11a and b). Tourmaline from the Roberto pegmatite displays three REE 239 

patterns (ESM 2 Figs. S11c and S12): (1) flat with a large negative Eu anomaly ((La/Yb)CN ~ 2.1; Eu* ~ 0.02), (2) weakly 240 

LREE-enriched with a moderate negative Eu anomaly ((La/Yb)CN ~ 8.8; Eu* ~ 0.4) , and (3) a strongly LREE-enriched 241 

with a small negative Eu anomaly ((La/Yb)CN ~ 99.8 ; Eu* ~ 0.6), that show inconsistent relation to color zoning (ESM 242 

2 Fig. S12). 243 

Chemical zoning 244 

Core and rim of the same tourmaline grain commonly have similar major element compositions such that they plot 245 

close to each other in the classification diagrams (Fig. 5). EPMA and LA-ICP-MS maps of tourmaline show that zoning 246 
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is systematically characterized by variations in Ti, V, Co, Cr, Ni and Sc, whereas Si, Al and Na show small variations 247 

(Fig. 4). Iron and Mg vary with zoning in James Bay area tourmaline (Fig. 4) but not systematically in other deposits 248 

(ESM 2 Fig. S7). Variations are not systematic, however. Excelsior tourmaline core has a higher V concentration than 249 

the rim, in contrast to tourmaline from Rosebel where the core has lower V than the rim (ESM 2 Fig. S7). Tourmaline 250 

from Hoyle Pond is Ti-poor in the core but Ti-rich in the rim, in contrast to Excelsior where the core is Ti-rich and the 251 

rim is Ti-poor (ESM 2 Fig. S7). EPMA and LA-ICP-MS maps reveal complex micrometric-scale concentric zoning in 252 

some tourmaline characterized by variations in Fe, Mg, Ca, Mn, K, Ga, Sr, and Li concentrations that are not related to 253 

the color variation under polarized light (Figs. 2 and 4).  254 

Multi-variate analysis of tourmaline composition in relation to geological environment 255 

Partial Least Square-DA includes tourmaline data with the same set of compositional data from the Val-d’Or (Grzela et 256 

al. 2019) and Meliadine (Manéglia et al. 2018) gold districts . LA-ICP-MS results for major, minor and trace elements 257 

were classified by country rock composition, simplified as the main country rock type (Table 1; Fig. 9), metamorphic 258 

facies of the country rocks (Table 1; Fig. 10), and age of gold mineralization, simplified by geological period (Table 1, 259 

ESM 2 Fig. S8).  260 

Country rock compositions define qw*1 by moderate positive contributions of Sc, Co, Yb and Lu and large negative 261 

contributions of Eu, Li, Mn, Ti and Ca (Fig. 9a). In contrast, qw*2 is defined by large positive contributions of Sr and Ga 262 

and negative contributions of Eu, Al, B and Li (Fig. 9a). Tourmaline from orogenic gold deposits hosted in sedimentary 263 

rocks commonly has negative t1 scores caused by Eu, Li, Mn, Ti (VIP >1.5) and negative to positive t2 scores (Fig. 9b 264 

and c). Tourmaline from deposits hosted in felsic rocks typically has positive t1 and t2 scores caused by covariations of 265 

Sr, Eu and Ga (VIP >1.5). Tourmaline from deposits hosted in intermediate composition rocks has positive t1 scores 266 

and t2 scores close to 0, as a result of covariations of Pb, Cu, Ni and, Li (VIP >1.5). Tourmaline from deposits hosted in 267 

mafic rocks commonly has positive t1 and negative t2 scores, caused by Sr, Eu and, Ga (VIP >1.5; Fig. 9). In summary, t1 268 

discriminates tourmaline hosted by sedimentary rocks from that hosted by felsic to mafic rocks, whereas t2 classifies 269 

the country rocks from felsic to mafic, with overlap between the different rock types. 270 

Country rock composition and metamorphic facies yield qw*1 defined by positive contributions of Fe and Na and 271 

negative contributions of La, Eu, Mn, Sn and Li, whereas qw*2 is defined by positive contributions of Lu and Yb and 272 

negative contributions of Al, Li, B, Eu, Mn, Mg, Ti and Ca (Fig. 10a). In the t1-t2 plot (Fig. 10b), tourmaline hosted in 273 

lower greenschist to lower amphibolite facies rocks plot at low t1 and t2 scores caused by covariations of Ca, Sr and Eu 274 

that have VIP values greater than 1 (Fig. 10b, c). Tourmaline from deposits hosted in middle to upper amphibolite 275 
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facies rocks is characterized by negative t1 scores as a result of covariations between Li, Na, Al, Ca, Mn, Fe, La, and Eu, 276 

and by negative to positive t2 scores (Fig. 10b). 277 

Country rock composition and deposit age yields qw*1 defined by positive contributions of Sc, Fe, Co and Na and 278 

negative contributions of Ca, La, Ti, Mn, Li and Eu, whereas qw*2 is defined by positive contributions of Lu, Yb and Y 279 

and negative contributions of Zn, Al and Eu (ESM 2 Fig. S8a). Tourmaline from Archean orogenic gold deposits spreads 280 

across negative to positive t1 and t2 scores (ESM 2 Fig. S8b). Tourmaline from Proterozoic deposits has t1 scores close 281 

to 0 and negative to positive t2 scores, overlapping with Archean deposits. Phanerozoic tourmaline from the Excelsior 282 

deposit has positive t1 and t2 scores caused by Zn, Sr, Ga and, Eu (VIP >1.5; ESM 2 Fig. S8c).  283 

Discussion 284 

Influence of geological settings 285 

Major and trace element composition of tourmaline vary with several factors including coexisting minerals (Taylor 286 

and Slack 1984; Griffin et al. 1996; Slack et al. 1999; Grzela 2017), fluid composition (Slack and Trumbull 2011) and 287 

physical conditions during crystallization, including P-T regimes and oxygen fugacity (Dutrow and Henry 2011; Van 288 

Hinsberg 2011). PLS-DA results show that tourmaline from orogenic gold deposits lacks compositional variation with 289 

age of mineralization, in contrast to scheelite (Sciuba et al. 2020; ESM 2 Fig. S8). The major element composition of 290 

tourmaline is known to be influenced by that of the host rocks (Henry and Guidotti 1985; Lottermoser and Plimer 291 

1987; Slack and Coad 1989; Gallagher and Kennan 1992; Slack 1996; Slack 2002; Van Hinsberg and Schumacher 2011; 292 

Berryman et al. 2017). However, PLS-DA for major elements do not discriminate samples by country rock composition 293 

(ESM 2 Fig. S2). Slack and Coad (1989) highlighted that in systems with high fluid/rock ratios, such as shear zones and 294 

veins, typical of orogenic gold deposits (Goldfarb et al. 2005), major elements in tourmaline are buffered by the fluid 295 

phase. 296 

Van Hinsberg (2011) showed that magmatic tourmaline does not significantly fractionate trace elements from silicate 297 

melt, and that trace element incorporation under these conditions follows rules of lattice-strain theory. Thus, the trace 298 

element variations in relation to optical zoning in orogenic gold deposit tourmaline could record variable fluid 299 

compositions. Others, such as Galbraith et al. (2009) and Hazarika et al. (2015), noted that high Co and Ni 300 

concentrations in tourmaline from the Tsa da Glisza emerald prospect and the Hutti and Hira-Buddini gold deposits 301 

correlate with the presence of mafic protoliths. Tourmaline from orogenic gold deposits hosted in mafic rocks tend to 302 

have high Ni and Co concentrations, but this is not systematic (Fig. 6h). King (1988) and King and Kerrich (1989) 303 
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reported that tourmaline from the Timmins-Porcupine orogenic gold district, hosted in ultramafic rocks, is 304 

characterized by high Cr and Mg concentrations. Jiang et al. (2004) proposed that Rb and Cs, Sr and transition metals 305 

Mn, Sc, V, Co, Cr and Ni contents in tourmaline reflect concentrations of these elements in the host rocks. In orogenic 306 

gold deposits, Ga and Sn are the only trace elements in tourmaline that show systematic variation with country rock 307 

composition (Fig. 6i; ESM 2 Figs. S4a and S5d). In deposits hosted by lower greenschist to lower amphibolite facies 308 

rocks, Ga and Sn concentrations are high in felsic rocks and low in mafic rocks, consistent with the incompatible 309 

behavior of Ga and Sn during magmatic differentiation. The intermediate Ga and Sn concentrations in tourmaline from 310 

deposits hosted in sedimentary rocks likely reflect compositional heterogeneity of the sedimentary source. Canadian 311 

Malartic is dominantly hosted by clastic sedimentary rocks, but the tourmaline analyzed is from a mineralized vein 312 

within a monzodiorite dike, consistent with its signature similar to that of tourmaline hosted in felsic rocks. Other 313 

binary diagrams do not reveal strong correlations in trace element compositions of tourmaline with that of the country 314 

rock compositions (Fig. 6, ESM 2 Figs. S4 and S5). PLS-DA of trace elements, however, yields a good classification based 315 

on country rock composition, in which tourmaline hosted in sedimentary rocks have negative t1 in contrast to positive 316 

t1 for tourmaline within mafic to felsic rocks, which are further classified by t2 according to magmatic differentiation 317 

(Fig. 9b). The overlap among the different country rock composition classes, defined by the composition of the 318 

dominant lithology in the rock package hosting the orogenic gold deposits (Fig. 9b) indicates that tourmaline records 319 

the trace element signature of the country rocks, as a result of fluids sourced from the regional country rocks or of 320 

fluid-rock exchange during flow. 321 

Tourmaline from orogenic gold deposits hosted in middle to upper amphibolite facies rocks, irrespective of country 322 

rock composition, commonly have higher concentrations of Ti, Ga, Sn, ∑REE, Zr, Hf, Nb, Ta, Th and U compared to those 323 

from deposits within lower greenschist to lower amphibolite facies rocks (Fig. 6, ESM 2 Figs. S4 and S5). Rutile is 324 

typically an accessory mineral in gold mineralization hosted in lower greenschist to lower amphibolite facies rocks. At 325 

middle to upper amphibolite facies, rutile is absent from the characteristic mineral assemblages of orogenic gold 326 

deposits (Eilu et al. 1999). Zack et al. (2002) showed that rutile strongly partitions HFSE, which perhaps explains the 327 

higher concentrations of Ti, Ga, Sn, and HFSE within these tourmalines in absence of rutile at higher metamorphic 328 

facies. Other minerals such as xenotime, apatite or scheelite may also scavenge these trace elements (Belousova et al. 329 

2002; Kositcin et al. 2003; Mao et al. 2016; Sciuba et al. 2020). However, they occur in orogenic gold mineralization 330 

independently of host rock composition and metamorphic facies (McCuaig and Kerrich 1998; Vielreicher et al. 2003; 331 

Sciuba et al. 2020), which is unlikely to explain the trace element distribution in tourmaline from orogenic gold 332 



13 

deposits hosted in higher metamorphic grade. Trace elements in coexisting rutile, xenotime and apatite have not been 333 

measured in our samples, such that we cannot discuss partitioning in detail.  334 

Rare Earth Elements 335 

Orogenic gold systems fluid is dominated by sulfide complexes and has low salinity with 3-7 wt.% NaCl (Kerrich 1993; 336 

Goldfarb and Groves 2015). In these fluids, REE are likely transported as sulfide complexes, with similar solubilities at 337 

all temperatures (Migdisov et al. 2016). Thus, the high LREE and low HREE contents in tourmaline hosted in middle 338 

to upper amphibolite facies country rocks (ESM 2 Fig. S6) are unlikely caused by fractionation during hydrothermal 339 

precipitation. At middle amphibolite facies, garnet appears in the mineral assemblage associated with gold 340 

mineralization (Eilu et al. 1999). Garnet is characterized by HREE-enriched patterns (Rubatto 2002), which could 341 

explain the HREE-depleted tourmaline in the Big Bell deposit, where almandine and andradite occur in close 342 

association with massive quartz-tourmaline veins (Mueller et al. 1996). Garnet is absent in the mineral assemblage of 343 

gold mineralization at the Roberto deposit (Fontaine et al. 2014), which is consistent with lack of HREE depletion in 344 

tourmaline.  345 

Jiang et al. (2004) suggested that the HREE-enriched patterns in tourmaline from the Yunlong Sn deposit are caused 346 

by REE-rich mineral inclusions such as zircon, xenotime, monazite or allanite in tourmaline. Hazarika et al. (2015) also 347 

noted positive covariations between ∑REE and Ti, Y, and Zr, and attributed HREE-enriched patterns to zircon or 348 

titanite inclusions that would be invisible via optical microscope and SEM. However, there were no Zr or Ti spikes in 349 

the LA-ICP-MS signal, thus suggesting lack of inclusions in the analyzed tourmaline. Samples with HREE-enriched 350 

patterns (Hoyle Pond and Excelsior) have Y, Zr, Ca and Ti contents similar to those in tourmaline with other types of 351 

REE patterns (Fig. 6; ESM 2 Figs. S4, S5 and S6). Titanium and Ca contents, measured along trenches (~ 33-44 µm wide 352 

x 100 µm long) by LA-ICP-MS, are similar to those measured via 10 µm spots by EPMA (Fig. 3 and ESM 2 Fig. S1b and 353 

j). Tourmaline with HREE-enriched pattern, however, could form from fluids that dissolved HREE-rich minerals as 354 

suggested by Migdisov et al (2009). 355 

The diverse REE patterns documented in tourmaline from orogenic gold deposits (Fig. 7; ESM 2 Fig. S9) were 356 

previously recognized in tourmaline from other types of mineral deposits and  geological settings (Jiang et al. 2002; 357 

Jiang et al. 2004; Roberts et al. 2006; Roda-Robles et al. 2015; Harlaux 2016; Iveson et al. 2016; Berryman et al. 2017; 358 

Hazarika et al. 2017; Kalliomäki et al. 2017; Harlaux et al. 2018; Manéglia et al. 2018; Wang et al. 2018; Grzela et al. 359 

2019), and thus are not discriminant of deposit types or geological environments.  360 
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Comparing tourmaline from various deposit types and geological environments 361 

The trace element composition of tourmaline from orogenic gold deposits is compared with those from other deposit 362 

types and geological settings from literature (Figs. 11 and 12, ESM 2 Figs. S13 and S14). Vanadium correlates 363 

moderately with Ni (r=0.55), Nb with Ta (r=0.58), Zr with Y (r=0.39) and, Th with U (r=0.75) in tourmaline from all 364 

deposit types and geological settings (Figs. 11 and 12, ESM 2 Figs. S13 and S14), similarly to tourmaline from orogenic 365 

gold deposits (ESM 2 Table T4). Literature data for tourmaline from orogenic gold deposits (King et al. 1988; Koval et 366 

al. 1991; Jiang et al. 2002; Deksissa and Koeberl 2004; Roberts et al. 2006; Hazarika et al. 2015; Hazarika et al. 2016; 367 

Grzela 2017; Manéglia 2017) plot with tourmaline from this study in binary and PLS-DA plots (Figs 8, 11 and 12, ESM 368 

2 Figs. S13 and S14). Thus, we discuss all orogenic gold deposits tourmaline data together. 369 

Tourmaline from orogenic gold deposits has a compositional range similar to that of tourmaline from various deposit 370 

types and geological settings for Ti, Zn, K, Cr, Sc, Co, Cu, Mn, Pb, Zr, Y and Rb (Figs 3, 11 and 12, ESM 2 Figs. S13 and 371 

S14). As a result, data for these elements are not useful for discriminating orogenic gold deposits from other deposit 372 

types. Tourmaline from orogenic gold deposit contains higher V, Sr and Ni concentrations (median 398 ppm V, 437 373 

ppm Sr, 38 ppm Ni) compared to tourmaline from other magmatic-hydrothermal (median 160 ppm V, 78 ppm Sr, 11 374 

ppm Ni) and magmatic environments (median 25 ppm V, 8 ppm Sr, 5 ppm Ni; Fig 11 and ESM 2 Fig. S13 and Fig. S14). 375 

Tourmaline from magmatic-hydrothermal deposits, including porphyry Cu-Mo, W-(Sn) veins, Sn skarns, Sn deposits 376 

and veins, commonly has intermediate concentrations of V and Sr, whereas Ni concentrations are similar to those in 377 

tourmaline from pegmatites and granites. Tourmaline from orogenic gold deposits has low Li, Be, Ga, Sn, Nb, Ta, U and 378 

Th concentrations compared to tourmaline from magmatic-hydrothermal and magmatic environments (Fig 11, ESM 2 379 

Figs. S13 and S14). Tourmaline from the Lincoln Hill gold deposit has V, Sr, Nb and Sn concentrations (median 79 ppm 380 

V, 523 ppm Sr, 0.15 ppm Nb, 3.81 ppm Sn) between those of orogenic gold deposits and magmatic-hydrothermal 381 

environments, but which plot mostly with orogenic gold deposits in binary diagrams (Fig. 11, ESM 2 Figs. S13 and 382 

S14). Tourmaline from hydrothermal veins that cut VMS mineralization at LaRonde (Canada) plots in the orogenic 383 

gold deposit field in binary plots (Figs. 8 and 11, ESM 2 Figs. S13 and S14). Those veins are not considered auriferous 384 

(D. Pitre, pers comm, 2015), but likely formed during the same hydrothermal event that produced the orogenic gold 385 

deposits in the Abitibi subprovince. This indicates that the geochemical signature of the regional country rocks 386 

dominates over that of the local VMS rock composition.  387 

Ratios combining an element characterized by a high concentration in tourmaline from orogenic gold deposits such as 388 

V, Sr and Ni, over an element with a low concentration, such as Li, Be, Ga, Sn, Nb and Ta efficiently separate tourmaline 389 
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of different origins. For example, tourmaline from orogenic gold deposits has relatively high Zn/Nb, Co/Nb and, Sr/Ta 390 

ratios compared to tourmaline from magmatic-hydrothermal and magmatic environments, such that binary diagrams 391 

using Sr/Li vs V/Sn, Sr/Sn vs V/Nb, Sr/Sn vs Ni/Nb and Sr/Sn vs V/Be are efficient in discriminating tourmaline from 392 

orogenic gold deposits from those from other deposit types and environments (Fig. 11, ESM 2 Figs. S13h and S14). 393 

Tourmaline compositions from orogenic gold deposits is compared with those from various deposit types and 394 

geological settings using PLS-DA (Fig. 12). Literature contains sufficient data for Li, Sc, V, Co, Zn, Sr, Sn and Pb only. 395 

The PLS-DA analysis yields qw*1 defined by positive contributions of V and Sr and negative contributions of Li and Sn, 396 

whereas qw*2 is defined by positive contributions of Co and Pb and negative contributions of Sc and Zn (Fig. 12a). Data 397 

for tourmaline from orogenic gold deposits plot in a separate field with positive t1, and negative to positive t2 scores 398 

caused by covariations of V, Sr, Sn and Li (VIP >1; Fig. 12c). Tourmaline from unmineralized metamorphic 399 

environments has positive to negative t1 and t2 defined by Sc, Co and Pb covariations (VIP >1; Fig. 12c). Tourmaline 400 

from the Lincoln Hill gold deposit has low positive t1 and negative t2 scores such that the results plot with the orogenic 401 

gold deposits, close to the magmatic-hydrothermal field (Fig. 12b), similar to binary diagrams (Fig 11, ESM 2 Figs. S13 402 

and S14). Taking into account that tourmaline is an uncommon mineral in epithermal gold deposits and that its 403 

composition in that deposit type has not been investigated, we suggest that the Lincoln Hill deposit affinity may need 404 

to be re-evaluated. Tourmaline from the other hydrothermal deposits, including polymetallic Pb-Zn-Cu±U veins and 405 

Sn-Pb-Zn stratiform deposits, has negative t1 and positive t2 scores defined by covariations of Zn and Pb (VIP >1; Fig. 406 

12c). Tourmaline from magmatic environments, including pegmatites and granites, has negative t1 and positive to 407 

negative t2 scores caused by moderate covariations of Sn, Li, Sr and V (VIP >0.8; Fig. 12c). Tourmaline from the Roberto 408 

pegmatite plots close to the orogenic gold field (Fig. 12b), suggesting that this tourmaline may have formed from fluids 409 

similar to those from orogenic gold deposits. Tourmaline from magmatic-hydrothermal environments has negative t1 410 

and positive to negative t2 scores caused by moderate covariations of Zn, Pb, Sn, Co and Sc (VIP >0.8; Fig. 12c). PLS-411 

DA, thus shows that tourmaline from various deposit types and environments is effectively discriminated by qw*1 and 412 

that the trace elements that define qw*1, including Sr, V, Sn and Li, efficiently discriminate tourmaline from orogenic 413 

gold deposits from those of other deposit types and geological environments.  414 

The low variance of orogenic gold tourmaline composition, as shown in binary diagrams and PLS-DA (Figs 8, 11 and 415 

12, ESM 2 Figs. S13 and S14), is consistent with the low geochemical variance of the hydrothermal fluid composition 416 

that formed the orogenic gold mineralization (Goldfarb and Groves 2015). Goldfarb and Groves (2015) proposed that 417 

this low compositional variance of the hydrothermal fluid reflects a single source located at upper to middle crustal 418 
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depth. However, the trace element compositional variation of tourmaline from orogenic gold deposits indicates that 419 

the primary hydrothermal fluid composition varies with the regional lithological packages. This dichotomy suggests 420 

that some elements (e.g. Nb, Ta, U, Th) are derived from the primary crustal source, whereas others (e.g. Ni, V, Ga, Sn) 421 

are derived from reaction between the fluids and local country rocks, as suggested by Goldfarb and Groves (2015). 422 

Binary diagrams and PLS-DA results show a transition in the trace element composition of tourmaline from orogenic 423 

gold to hydrothermal, to magmatic-hydrothermal deposits and then, to magmatic environments (Figs. 11 and 12, ESM 424 

2 Figs. S13 and S14). This gradation in composition likely reflects the broad transition between fluids sourced from 425 

prograde metamorphism of country rocks to hydrothermal fluids equilibrated with crustal rocks with increasing 426 

magmatic fluid contributions and then, to LREE-enriched magmatic environments. 427 

Marks et al. (2013) highlighted that the trace element composition of tourmaline in granite is expected to reflect the 428 

trace element behaviour during fractional crystallization and partial melting, such that incompatible elements, such 429 

as LILE (e.g. Li, Be) and HFSE (e.g. Nb, Ta, U, Th), that are concentrated in the residual melt, are enriched in tourmaline 430 

associated with highly evolved granite and pegmatite. Tourmaline from orogenic gold deposits has high Ni and V and 431 

low Li, Be, Ga, Sn, Nb, Ta, U and Th concentrations compared to tourmaline from magmatic and magmatic-432 

hydrothermal environments (Fig. 12g). Ultramafic and mafic igneous rocks are commonly part of the regional country 433 

rock package hosting orogenic gold deposits (Goldfarb et al. 2005), which may explain the high concentrations of 434 

compatible Ni and V, and the low concentrations of incompatible Li, Be, Ga, Sn, Nb, Ta, U and Th in tourmaline from 435 

orogenic gold deposits. In contrast, tourmaline in felsic magmatic rocks has low concentrations in Ni and V and high 436 

concentrations in Li, Be, Ga, Sn, Nb, Ta, U and Th. Strontium is high in tourmaline from orogenic gold deposits compared 437 

to magmatic and magmatic-hydrothermal environments. It has been proposed that Sr was derived from basement 438 

rocks below the greenstone belt hosting the orogenic gold deposits (Kerrich 1989; Mueller et al. 1991) whereas in 439 

other deposits, a local wallrock origin for both Sr has been proposed (Miller et al. 1995; Kempe et al. 2001). In contrast, 440 

Böhlke and Kistler (1986) favored multiple strontium sources from the country rocks. Similarly, the covariation of 441 

oxygen and strontium isotope composition in tourmaline from the Val-d’Or orogenic gold district was interpreted to 442 

be the result of mixing between a deep-seated fluid that leached less radiogenic Sr from volcanic and sedimentary 443 

country rocks, and an upper crustal fluid that had leached radiogenic Sr from plutonic, seawater-altered volcanic, or 444 

Archean carbonate rocks (Beaudoin and Chiaradia 2016). 445 

Tourmaline from VMS and SEDEX deposits (Griffin et al. 1996) has relatively high Ba concentrations that discriminate 446 

these sources from tourmaline from orogenic gold deposits and magmatic-hydrothermal and magmatic environments 447 
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(Fig. 11e). Barium is high in VMS and SEDEX environments where barite is commonly part of the mineral assemblage 448 

of the massive sulfides lenses in VMS deposits, and can form large bedded to massive accumulations in SEDEX deposits 449 

(Leach et al. 2005). This pattern suggests that Ba can be used a discriminant element to differentiate tourmaline from 450 

Ba-rich environments, such as VMS and SEDEX deposits.  451 

Conclusions 452 

Orogenic gold deposit tourmaline belong most commonly to the alkali group and has dravite to schorl compositions. 453 

Major element compositions are independent of the composition and metamorphic facies of the country rocks. 454 

However, our data show that Sn and Ga systematically vary with both of these parameters. Tin and Ga display similar 455 

behavior with low concentrations in mafic rocks, high concentrations in felsic rocks, and intermediate concentrations 456 

in sedimentary rocks. Tin and Ga both increase with increasing metamorphic grade of the country rocks. Tourmaline 457 

from orogenic gold deposits hosted in middle to upper amphibolite facies rocks tends to have higher concentration of 458 

HFSE including REE, Hf, Nb, Ta, Y, U and Th, as well as Ti, relative to those from deposits hosted in lower greenschist 459 

to lower amphibolite facies rocks. Partial Least Square-DA results highlight a combination of several trace elements 460 

that can discriminate the geological settings of the orogenic gold deposits including composition and metamorphic 461 

grade of the country rock. Some elements such as Ga and Sn are derived from local country rocks whereas others such 462 

as HFSE are probably derived from regional country rocks. Tourmaline from orogenic gold deposits displays three 463 

different REE patterns including HREE-enriched, a LREE-enriched (most common), and flat. These three REE patterns 464 

are documented in tourmaline from various deposit types and geological settings and are not diagnostic.  465 

The trace element composition of tourmaline from orogenic gold deposits has a distinctive signature characterized by 466 

high V, Sr and Ni and low Li, Be, Ga, Sn, Nb, Ta, U and Th concentrations compared to tourmaline from other deposit 467 

types and geological settings. Binary plots including Sr/Li vs V/Sn, Sr/Sn vs V/Nb, Sr/Sn vs Ni/Nb and Sr/Sn vs V/Be, 468 

as well as PLS-DA results, discriminate tourmaline from orogenic gold deposits from that from other deposit types and 469 

geological settings. Tourmaline trace element composition reflects a transition in geological environments between 470 

metamorphic, hydrothermal, magmatic-hydrothermal, and magmatic. Thus, tourmaline trace element compositions 471 

have a great potential to constrain provenance in exploration using data from overburden sediments.  472 
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Figures captions 862 

Fig. 1. Photomicrographs showing tourmaline textures and mineral associations in orogenic gold deposits; all plane 863 

polarized light except f (left side plane polarized; right side reflected light) (a) disseminated euhedral greenish 864 

tourmaline (Royal Hill, Rosebel, Suriname), (b) disseminated euhedral tourmaline with light blue core and subtle 865 

orange rim (Hoyle Pond, Canada), (c) aggregate of subhedral orange tourmaline (Roberto, Canada), (d) aggregate of 866 

subhedral tourmaline with bluish grey core and greenish brown rim (Canadian Malartic, Canada), (e) disseminated 867 

subhedral tourmaline with greyish core and brownish rim associated with sulfides (New Consort, South Africa), (f) 868 

aggregate of subhedral orange to brown tourmaline associated with gold (Essakane, Burkina Faso) on the left in 869 

transmitted light and on the right in reflected light. Abbreviations: Au: native gold, Carb: carbonate, Chl: chlorite, Po: 870 

pyrrhotite, Py: pyrite, Qz: quartz, Tur: tourmaline. 871 

Fig. 2. Back-scattered electron images of zoned tourmaline in orogenic gold deposits, (a) complex sector zoning 872 

(Essakane, Burkina Faso), (b) oscillatory zoning coupled with sector zoning (Salsigne, France), (c) oscillatory and 873 

sector zoning (TR98-111, James Bay, Canada), (d) diffuse zoning and inclusions (Nevada, USA), (e) narrow rim with 874 

large core (New Consort, South Africa), (f) irregular zoning (Big Bell, Australia). Abbreviations: Bt: biotite, Fsp: 875 

feldspar, Py: pyrite, Qz: quartz, Ser: sericite, Tur: tourmaline. 876 

Fig. 3. (a) Major, minor and (b) trace elements concentrations sorted by median tourmaline composition for orogenic 877 

gold deposits, measured by EPMA and LA-ICP-MS. See ESM 1 Tables T2 and T3 for EPMA and LA-ICP-MS data, 878 

respectively.  879 

Fig. 4. (a) Back-scattered electron images of zoned tourmaline in pyrite and EPMA maps (512 x 512 pixels) (b) Ti (c) 880 

Fe, (d) Ca, (e) Mg, (f) V. Sample TR98-111 showing from James Bay, Canada. 881 

Fig. 5. Composition of tourmaline from orogenic gold deposits and other deposit types and settings (a) X-Vacancy-Ca-882 

(Na+K) ternary diagram (b) Mg/(Fe+Mg) vs Vac/(Na+K+Vac) diagram and (c) Mg/(Fe+Mg) vs Ca/(Ca+Na) diagram. 883 

Diagrams adapted from Henry et al. (2011). 884 
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Fig. 6. Binary plots of LA-ICP-MS trace element data for tourmaline from orogenic gold deposits (a) La vs Zr, (b) Yb vs 885 

Zr, (c) ∑REE vs Zr, (d) Zr vs Hf, (e) Fe vs Sn, (f) ∑REE vs Ti, (g) Eu anomaly vs Y, (h) Ni vs Co and, (i) ∑REE vs Ga. Data 886 

from literature: Lottermoser and Plimer 1987; Slack and Coad 1989; Gallagher and Kennan 1992; Jiang et al. (2002); 887 

Deksissa and Koeberl (2004); Roberts et al. (2006); Hazarika et al. (2015); Hazarika et al. (2016); Grzela (2017); 888 

Kalliomäki et al. (2017); Manéglia (2017). 889 

Fig. 7. Rare earth element patterns with mean (thick line) for tourmaline from orogenic gold deposits. Data are 890 

normalized to chondrite from McDonough and Sun (1995). The individual deposit patterns are in ESM 2 Fig. S9. 891 

Fig. 8. Binary plots of Eu anomaly vs (La/Sm)CN (LA-ICP-MS data) for tourmaline from (a) various deposit types and 892 

(b) orogenic gold deposits only. “m+” refers to a positive slope and “m-” refers to a negative slope. Data from literature: 893 

Lottermoser and Plimer 1987; Slack and Coad 1989; Gallagher and Kennan 1992; Jiang et al. (2002); Deksissa and 894 

Koeberl (2004); Roberts et al. (2006); Hazarika et al. (2015); Hazarika et al. (2016); Grzela (2017); Kalliomäki et al. 895 

(2017); Manéglia (2017). 896 

Fig. 9. PLS-DA of LA-ICP-MS data for tourmaline in orogenic gold deposits hosted in country rocks with diverse 897 

compositions. (a) qw*1-qw*2 loadings show correlations among chemical elements and country rock classes, (b) t1-t2 898 

scores shows distribution of tourmaline data from within space defined by qw*1-qw*2, and, (c) VIP values show 899 

importance of compositional variables in classification of different country rock classes. Data for orogenic gold 900 

deposits include  results from Grzela (2017) and Manéglia (2017). 901 

Fig. 10. PLS-DA of LA-ICP-MS data for tourmaline from orogenic gold deposits hosted in country rocks with diverse 902 

compositions and in various metamorphic grades. (a) qw*1-qw*2 loadings show correlations among chemical elements 903 

and classes defined by composition and metamorphic facies of country rocks, (b) t1-t2 scores shows distribution of 904 

tourmaline data within the space defined by qw*1-qw*2, and (c) VIP values show importance of compositional 905 

variables in classification defined by composition and metamorphic facies of country rocks. Data for orogenic gold 906 

deposits include results of Grzela (2017) and Manéglia (2017). 907 
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Fig. 11. Binary plots of trace element data for tourmaline from various deposit types and geological settings (a) Sr vs 908 

V, (b) Nb vs V, (c) Li vs Sn, (d) Ta vs Be, (e) Sr/Li vs V/Sn, (f) Sr/Sn vs V/Nb, (g) Ta vs Ni, (h) Nb vs Ga and, (i) Sr/Sn vs 909 

Ba. Data for orogenic gold deposits from Jiang et al. (2002); Deksissa and Koeberl (2004); Roberts et al. (2006); 910 

Hazarika et al. (2015); Hazarika et al. (2016); Grzela (2017); Kalliomäki et al. (2017); Manéglia (2017). 911 

Fig. 12. PLS-DA from LA-ICP-MS data for tourmaline from various deposit types and rocks using Li, Sc, V, Co, Zn, Sr, Sn, 912 

and Pb (a) qw*1-qw*2 loadings show correlations among elemental variables and classes defined by deposit types and 913 

geological environments, (b) t1-t2 scores shows distribution of tourmaline data within space defined by qw*1-qw*2, 914 

and (c) VIP values show importance of compositional variables in classifications defined by deposit types and 915 

geological environments. 916 

Table captions 917 

Table 1. Geological settings of studied gold deposits. 918 

Table 2. Characteristics of tourmaline for each gold deposit.  919 

Table 3. Median trace element compositions in tourmaline from orogenic gold deposits divided by the metamorphic 920 

facies of the country rocks. 921 

Electronic Supplementary Material 922 

ESM 1. Tables 923 

T1. Analytical conditions for trace element analyses in tourmaline by LA-ICP-MS. 924 

T2. EPMA elements composition in tourmaline from orogenic gold deposits and other localities. 925 
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ESM 2. Figures 930 

S1. Comparison between LA-ICP-MS and EPMA analyses for (a) Na, (b) Ca, (c) K, (d) Fe, (e) Al, (f) Mg, (g) Mn, (h) Ni, (i) 931 

Zn, (j) Ti, (k) V and (l) Sc. Red line – 1:1 slope. 932 

S2. Partial Least Square Discriminant Analysis with EPMA major elements for tourmaline in orogenic gold deposits 933 

hosted in various country rock compositions. (a) qw*1-qw*2 loadings, (b) t1-t2 scores, (c) VIP. Data from the literature: 934 

Grzela (2017) and Manéglia (2017). 935 

S3. Binary plot of Mn vs Ti with color variation under non polarized light of EPMA data in tourmaline from orogenic 936 

gold deposits. 937 

S4. LA-ICP-MS trace element binary plots for tourmaline from orogenic gold deposits (a) ∑REE vs Sn, (b) ∑REE vs Hf, 938 
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(2002); Deksissa and Koeberl (2004); Roberts et al. (2006); Hazarika et al. (2015); Hazarika et al. (2016); Grzela 940 

(2017), Kalliomäki et al. (2017) and Manéglia (2017). 941 
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Manéglia (2017). 945 
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refers to a negative slope. Data from the literature: King et al. (1988), Jiang et al. (2002), Deksissa and Koeberl (2004), 948 
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REE content is normalized to Sun and McDonough (1989). 963 

S10. Rare earth elements variations with zoning in tourmaline from orogenic gold deposits from LA-ICP-MS data; (a) 964 

St. Ives (Australia); (b) Royal Hill (Rosebel, Suriname); (c) Young Davidson (Canada); (d) Hollinger (Canada); (e) Hoyle 965 
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37 
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Sn vs Co/Nb, (d) V vs Ni, (e) Sn vs Sr/Ta, (f) Sn vs Co/La, (g) V vs Cr, (h) Sr/Sn vs Ni/Nb, and (i) Sr/Sn vs V/Be. Data 975 
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Table 1. Geological settings of studied gold deposits. 
 
 

Deposits1 Metamorphic facies Main country rock Minor country rock Mineralization age References 

Canadian shield     
Dome,  
Timmins, Canada 

Greenschist  Tholeiitic basalt-komatiite Mudstone-sandstone-
conglomerate 

<2679-2633±6 Ma 
 

Proudlove et al. (1988);Moritz 
and Crocket (1990); Poulsen et al. 
(2000) 

Hollinger,  
Timmins, Canada 

Greenschist  Tholeiitic basalt Unclassified granitoid, 
unclassified sediments 

<2673 Ma 
 

Smith et al. (1984); Wood et al. 
(1986); Smith et al. (1987); 
Schneider et al. (2012) 

Hoyle Pond,  
Timmins, Canada 

Greenschist Tholeiitic basalt, basalt, 
komatiite 

 2660-2640 Ma 
 

Dinel et al. (2008); Schneider et 
al. (2012) 

Young Davidson, 
Matachewan, 
Canada 

Greenschist Syenite   2661 Ma 
 

Martin (2012); Zhang et al. 
(2014b) 

Canadian 
Malartic, Canada 

Greenschist  Clastic sedimentary rocks Subalkaline porphyritic quartz 
monzodiorite, granodiorite 

2664 Ma 
 

De Souza et al. (2014); De Souza 
(2015); El Goumi et al. (2015) 

Roberto, Canada Amphibolite Turbiditic rocks  2675-2603 Ma 
 

Ravenelle et al. (2010); Dubé et al. 
(2011); Ravenelle (2013); 
Fontaine et al. (2014); Fontaine et 
al. (2015) 

James Bay, Canada 
   Wedding  
   TR98-111 
   As  
 
   Veine 
   Marylou 
 
   Orezone 

Greenschist  
Basalt 
 
Intermediate to mafic 
volcanic  
Tonalite  
Sedimentary rocks, felsic 
volcanoclastics 
Gabbro  

 
 
 
 
 
Ultramafic dyke 

2.7-2.6 Ga 
 

Hanes et al. (2017) 

North American Cordillera    
Excelsior, USA Greenschist  Granite, granodiorite  162±5 Ma https://mrdata.usgs.gov/mrds/s

how-
mrds.php?dep_id=10310646 
Taylor et al. (2015) 

Amazonian craton     
Rosebel district, 
Suriname 
   Royal Hill 
   Pay Caro 

Greenschist  Turbiditic and arenitic rocks Basalt, andesite, rhyolite, felsic 
to intermediate tuff 

2023-1955 Ma  
 

Daoust et al. (2011) 

Massif Central     
Salsigne, France Greenschist  Siliciclastic and carbonate 

rocks  
 Late Carboniferous 

 
Reynolds (1965); Marcoux and 
Lescuyer (1994); Demange et al. 
(2006) 

West African craton     

Table 1

https://mrdata.usgs.gov/mrds/show-mrds.php?dep_id=10310646
https://mrdata.usgs.gov/mrds/show-mrds.php?dep_id=10310646
https://mrdata.usgs.gov/mrds/show-mrds.php?dep_id=10310646


 

Essakane, Burkina 
Faso 

Lower greenschist Turbiditic rocks  Proterozoic IAMGold (2009) 

Damara orogen     
Navachab, Namibia Amphibolite Sedimentary rocks 

including marble, calc-
silicate rock and biotite 
schist 

 540-550 Ma Nörtemann et al. (2000); Kisters 
(2005); Wulff (2008); Dziggel et 
al. (2009) 

Kaapvaal craton     
New Consort, 
South Africa 

Upper amphibolite At the contact between 
mafic and ultramafic 
volcanic rocks and 
sedimentary rocks 

 3030 Ma Otto (2007); Otto et al. (2007) 

Dharwar craton     
Hira Buddini, India Amphibolite Basalt Dacite, gabbro 2550-2530 Ma Kolb et al. (2005); Krienitz et al. 

(2008); Hellmann (2009) 
Uti, India Amphibolite  Basalt   2550-2530 Ma Kolb et al. (2005); Mishra et al. 

(2005) 
Yilgarn craton     
Big Bell, Australia Amphibolite Basalt, komatiite  2662±5 Ma Chown et al. (1982); Phillips and 

Nooy (1988); Wilkins (1993); 
Mueller et al. (1996) 

St. Ives, Australia 
   Britannia 

Upper greenschist Gabbro 
Basalt, komatiite  

Sedimentary rocks 2650 Ma Neumayr et al. (2008); Blewett et 
al. (2010); McGoldrick et al. 
(2013) 

1In bold: deposit with more than 70 t Au considered to be world-class after Goldfarb et al. (2005) 
 



 

Table 1. Characteristics of tourmaline for each gold deposit.  

 

Deposits Thin 
Section 

Mineral texture Zoning Core color (1) Rim color (1) Mineral associations 

Dome, Canada 4 Very fine grained aggregates Subtle Orange Orange qz, ms, bt, carb, py, cpy, rt 
Hollinger, Canada 2 Fine grained aggregate 

anhedral 
Subtle to weak Brown Colorless to brown qz, carb, ser, py, cpy, rt 

Hoyle Pond, Canada 11 Fine to coarse grained 
aggregate 

Weak  Bluish grey or 
orange 

Orange qz, carb, ser, bt, py, cpy, apy, 
gold 

Young Davidson, 
Canada 

1 Isolated coarse grain  Weak  Beige to dark 
greenish brown 

Lighter than the 
core color 

ksp, mc, qz, carb, rt, hem, gold 

Canadian Malartic, 
Canada 

3 Medium grained aggregate Moderate Bluish grey Brownish green 
Locally orange 

qz, mc, or, carb, py, cpy. sp, rt, 
mag 

Roberto, Canada 9 Disseminated fine grained sub-
rounded 
 

Subtle 
 
Subtle to weak 

Orange 
 
Light to dark 
greenish brown 

Orange 
 
Light to dark 
greenish brown 

qz, mc, apy, po 

James Bay, Canada 
   Wedding  
 
   TR98-111 
 
   As  
 
   Veine 
 
   Marylou 
 
   Orezone 
 

 
2 
 
1 
 
2 
 
3 
 
4 
 
1 

Massive aggregate of medium 
grained anhedral to subhedral 
for all showings 

 
Subtle to weak 
 
Subtle to strong oscillatory 
 
Subtle to weak 
 
Subtle to weak 
 
Subtle to moderate 
 
Subtle 

 
Light to dark 
brown 
Bluish green 
 
Bluish grey 
 
Bluish grey to light 
brown 
Bluish grey to 
orange brown 
Bluish grey 

 
Light to dark 
brown 
Bluish green 
 
Light brown 
 
Green 
 
Orange brown 
 
Brownish green 

 
qz, carb, py, cpy, rt 
 
qz, py, rt 
 
qz, py, ser, rt 
 
qz, cpy 
 
qz, apy, py 
 
qz, bt, carb, rt 

Excelsior, USA 1 Disseminated medium grain 
acicular in fan shape 

Subtle to irregular Dark green to light 
brown 

Dark green to light 
brown 

qz, bt, ser, py, mag, po, cpy 

Rosebel district, 
Suriname 
   Royal Hill 
 
 
   Pay Caro 

 
 
9 
3 

 
 
Aggregate to disseminated of 
medium grain subhedral to 
euhedral 
Fine grained disseminated 
acicular 

 
 
Subtle to strong 
 
 
Subtle  

 
 
Brown to bluish 
green 
 
Greenish blue 

 
 
Bluish green 
 
 
Greenish blue 

 
 
qz, carb, ser, chl, py, apy, rt, 
gold 
 
 
qz, carb, ser, chl, py, rt, mag 

Salsigne, France 3 Fine grained disseminated to 
small aggregate of subhedral 
grains 

Subtle  Orange to light 
blue 

Orange qz, ser, bt, chl, apy, py, sp 

Table 2



 

Essakane, Burkina Faso 21 Fine to very fine grained 
acicular disseminated to 
massive aggregate 

Subtle to weak Orange Light orange qz, carb, pl, ser, sch, py, apy, 
rt, Gold 

Navachab, Namibia 1 Fine grained disseminated Subtle to weak Greenish brown Greenish brown qz, carb, py, cpy 
New Consort, South 
Africa 

4 Fine to medium grained 
disseminated to massive 
aggregates 

Weak irregular Dark brown to 
light grey 

Light to dark 
brown 

qz, pl, ser, bt, hbl, py, po, apy, 
cpy, rt, hem, po 

Hira Buddini, India 3 Medium grained disseminated 
subhedral to massive 
aggregate of very fine anhedral 
grains 

Weak irregular Dark brownish 
green 

Brownish green qz, ksp, pl, ser, amp, bt, py, rt 

Uti, India 1 Disseminated fine grained 
euhedral 

Absent Brownish orange Brownish orange qz, ms, carb, rt 

Big Bell, Australia 1(2) Fine grained or 1-2 mm 
porphyroblasts 

   Lo, apy, mag 

St-Ives, Australia 
   Britannia 

 
2 

Medium to coarse grained 
subhedral disseminated 

Irregular Greenish blue Green qz, carb, ms, py, rt, gold 

(1) The core and the rim color refers to the color under optical microscope 

(2) grains mounted in polished section 

Mineral abbreviations: ab: albite, ap: apatite, apy: arsenopyrite, cal: calcite, carb: carbonate, chl: chlorite, cpx: clinopyroxene, cpy: chalcopyrite, grt: garnet, hem: 

hematite, mag: magnetite, mc: microcline, ms: muscovite, pl: plagioclase, po: pyrrhotite, py: pyrite, qz: quartz, rt: rutile, ser: sericite, sulf: sulfide, tur: tourmaline. 

NA: Not Available 

 

 

 



Table 1. Median trace element compositions in tourmaline from orogenic gold 

deposits divided by the metamorphic facies of the country rocks. 

 
 (ppm) 

Lower greenschist to lower 
amphibolite (with the exception 

of Canadian Malartic) 

Middle to upper 
amphibolite 

Ga 32.5 64.6 
Sn 1.0 10.5 
∑REE 0.94 12.75 
∑LREE 0.55 11.05 
∑HREE 0.11 0.18 
Hf 0.019 0.084 
Nb 0.014 0.129 
Ta 0.006 0.043 
Y 0.122 0.300 
U 0.006 0.057 
Th 0.010 0.017 
Ti 2036 5585 

Table 3
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