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Abstract

Uncertainty in travel time is one of the key factors that could allow us to understand
and manage congestion in transportation networks. Models that incorporate uncer-
tainty in travel time need to specify two mechanisms: the mechanism through which
travel time uncertainty is generated and the mechanism through which travel time
uncertainty influences users’ behavior. Existing traffic equilibrium models are not
sufficient in capturing these two mechanisms in an integrated way.

This thesis proposes a new stochastic traffic equilibrium model that incorporates
travel time uncertainty in an integrated manner. We focus on how uncertainty in
travel time induces uncertainty in the traffic flow and vice versa. Travelers indepen-
dently make probabilistic path choice decisions, inducing stochastic traffic flows in
the network, which in turn result in uncertain travel times. Our model, based on the
distribution of the travel time, uses the mean-variance approach in order to evaluate
travelers’ travel times and subsequently induce a stochastic traffic equilibrium flow
pattern.

In this thesis, we also examine when the new model we present has a solution as
well as when the solution is unique. We discuss algorithms for solving this new model,
and compare the model with existing traffic equilibrium models in the literature. We
find that existing models tend to overestimate traffic flows on links with high travel
time variance-to-mean ratios.

To benchmark the various traffic network equilibrium models in the literature rel-
ative to the model we introduce, we investigate the total system cost, namely the total
travel time in the network, for all these models. We prove three bounds that allow us
to compare the system cost for the new model relative to existing models. We discuss
the tightness of these bounds but also test them through numerical experimentation
on test networks.

Thesis Supervisor: Georgia Perakis
Title: William F. Pounds Professor of Operations Research
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Chapter 1

Introduction

One of the most serious problems in the contemporary transportation system is traffic

congestion. In the year of 2007 alone, it is estimated that congestion is responsible for

4.2 billion hours of travel delay and causes travelers to consume 2.8 billion gallons of

extra fuel that in turn cost the U.S. economy $87 billion (Schrank and Lomax, 2009).

Despite the fact that considerable efforts have been devoted to alleviate congestion

(for example, by increasing road capacity, enhancing the infrastructure planning,

utilizing Advanced Traveler Information System, and finally, through congestion

pricing), so far relatively little attention has been directed to addressing travel time

uncertainty.

Travel time uncertainty is often a direct consequence of traffic congestion. In the

presence of congestion, the unpredictability of travel time causes additional frustra-

tion to travelers. It is common for travelers to dislike travel time uncertainty just as

much as traffic congestion itself (Liu et al., 2004), and consequently to adjust their

behavior to cope with the unpredictable travel time that they will experience (for a

review, see Noland and Polak, 2002). Furthermore, data shows that the utility loss

due to travel time uncertainty is of the same order of magnitude as the total travel
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costs (see, for example, Hallenbeck et al. 2003, Skabardonis et al. 2003, and Mar-

chal and de Palma 2008). This observation strongly suggests that it is important to

model and understand the implications of travel time uncertainty on transportation

systems.

This thesis considers travel time uncertainty in traffic networks. It is well-known

that vehicles running on roads experience uncertain travel times, and traffic flows

on roads fluctuate from day to day. Roads constitute links in the traffic network

of highways, major and minor roads, and junctions. Traffic flow theory predicts

that traffic flows influence travel times, and transportation network models often

reasonably assume that, the larger the traffic flow on a link is, the longer the time

it takes to traverse that link. This thesis specifically focuses on how to model and

handle the uncertainty of travel times resulting from the uncertainty in traffic flows

and in turn the influence that travel time uncertainty has on travelers’ path choice

decisions.

Although it is not the intent of this thesis to model all sources of travel time un-

certainty (e.g., accidents, weather conditions), the goal of this thesis is to consider the

sources and influences of travel time uncertainty in an integrated manner. Previous

models on this topic appear to make little effort to consider travel time uncertainty

in an integrated way. This thesis attempts to make the missing connection.

1.1 Motivations

This research has been motivated by two main issues. First, at a general level, recent

developments in the study of transportation networks have shown that travel time

uncertainty is an important factor that influences traffic networks (see, for example,

Liu et al. 2004, Brilon et al. 2005, and Marchal and de Palma 2008). Despite this

realization, the understanding of travel time uncertainty in the literature is still very

12



limited. Second and more specifically, most existing research has focused on either

the sources or the influences of travel time uncertainty. As a result, our goal is to

develop an integrated model that incorporates both aspects.

1.1.1 Travel time uncertainty

Researchers have built various mathematical models of traffic networks since the

1920s1. These models serve various purposes that range from infrastructure plan-

ning, network performance evaluation, and vehicle fleet operations management, to

congestion pricing.

Traditionally most traffic network models assume that traffic network statistics

(for example, traffic flows and travel times) are deterministic, largely because deter-

ministic models are theoretically and computationally tractable and produce useful

predictions for the purpose of study. Nevertheless, in reality traffic networks are sub-

ject to random fluctuations that are not foreseeable neither by the modeler nor by

the traveler. These random fluctuations may result, for example, from the random

waiting time at road junctions, traffic accidents, bad weather, or the fluctuations in

the number of total travelers. The random fluctuations lead to travel time uncer-

tainty in the traffic network. Deterministic models do not capture this uncertainty,

and hence they are insufficient in describing the impacts of these uncertainties on

the traffic network.

However, uncertainty plays an important role in traffic networks. Intuitively,

uncertain travel times often cause frustration to travelers, and as a result travelers

adjust their travel behavior in response to travel time uncertainty. For example,

travelers catching a train or plane may be very concerned about the uncertainty of

the travel time they might experience. As a result, they react by adjusting their

1Pigou (1920) considered a two-node, two-link transportation network. His idea was further
developed by Knight (1924).
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departure times or path choices.

Transportation studies have also confirmed the important role that travel time

uncertainty plays in traffic networks. Liu et al. (2004) found that travelers value a

reduction in travel time variability more highly than a corresponding reduction in the

overall travel time for that journey. Marchal and de Palma (2008) concluded that the

utility loss due to uncertainty is of the same order of magnitude as the total travel

costs. Brilon et al. (2005) commented that deterministic traffic network models are

insufficient for traffic network performance assessment because they overemphasize

small differences in travel times, but in the meantime, the significant influences

that travel time uncertainty will cause are not adequately represented. Travel time

uncertainty has also gained considerable attention from public authorities in recent

years. See, for example, the reports of Cambridge Systematics et al. (2000) and of

the U.S. Federal Highway Administration (2007).

Accounting for the influences of travel time uncertainty in traffic networks calls for

an explicit approach to modeling travel time uncertainty. The incorporation of travel

time uncertainty will not only improve traffic network modeling, but also enhance

our general understanding of uncertainty and its influence on human decisions.

1.1.2 Integration of sources and influences

There are two crucial steps in order to incorporate travel time uncertainty in traffic

networks: 1) identifying the sources of travel time uncertainty, so that travel time

uncertainty can be properly represented in a traffic network, and 2) determining the

influences of travel time uncertainty on travelers’ decisions.

Existing models have identified different sources of travel time uncertainty and

adopted different approaches to representing travel time uncertainty in traffic net-

works (see Section 1.2.1). Many approaches have also been used to model the influ-

14



ence of travel time uncertainty on travelers’ behavior (see Section 1.2.2; for a review,

see also Noland and Polak, 2002). Despite considerable progress in both aspects,

we are not aware of models that incorporate both the sources and the influences of

travel time uncertainty and treat them in an integrated manner.

1.2 Literature Review

As stated in the previous section, this thesis contributes to enhancing the literature

of existing traffic network models in their ability to capture the interactions between

network travel time uncertainty and travelers’ behavior. This section contains some

related background material.

1.2.1 What causes travel time uncertainty

Conventional traffic network models are concerned with predictions of link flows and

travel times on a traffic network, under the assumptions that 1) the link travel times

are dependent on the link traffic flows, and 2) the travelers’ path choice decisions

are dependent on path travel times. The deterministic user equilibrium (DUE, also

called Wardrop equilibrium) and the stochastic user equilibrium (SUE) are by far

the most well studied traffic equilibrium models. The DUE model was first proposed

by Wardrop (1952); it assumes that travelers only travel on paths with minimum

path travel times. Daganzo and Sheffi (1977) introduced the SUE model, which

assumes that travelers have random perception errors of their travel times, and

therefore choose paths that minimize their perceived travel times. For both the

DUE and SUE models, the word “user” emphasizes the noncooperative nature of the

individual travelers. These models are contrasted with the system optimum (SO)

model, which assumes that flow patterns are optimized by a central planner in order

to minimize the aggregate travel times of all travelers. The monographs of Sheffi
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(1984), Ben-Akiva and Lerman (1985) and Cascetta (2001) extensively investigate

the theoretical and practical aspects of these models. For a review of the DUE model,

see also Florian and Hearn (1995), Nagurney (1999), and Correa and Stier-Moses

(2010).

An important feature of the DUE and SUE models is that traffic flows and

(actual) travel times are assumed to be deterministic.2 As a result, both models are

referred to as deterministic network models.

However, it is well-known that in reality both traffic flows and travel times are

stochastic and vary from day to day. Traffic flows are stochastic because travelers

make unpredictable travel decisions. This unpredictability comes from both the

modeler’s lack of understanding of the travelers’ exact decision mechanisms and the

modeler’s inability to capture all the factors that influence travelers’ decisions. The

travel time uncertainty also results from two sources. On the demand side, uncertain

traffic flows cause uncertain travel times (because the link travel times are dependent

on the link traffic flows). On the supply side, stochastic events, for example, waiting

times at traffic signals, traffic accidents, and unexpected closure of roads, will result

in uncertain travel times.

Previous traffic network models have developed multiple approaches to modeling

travel time uncertainty, as presented in the following.

The first approach focuses on the travel time uncertainty resulting from uncertain

traffic flows. In this approach, despite the assumption that the link travel times

deterministically depend on the link traffic flows, the uncertain traffic flows lead to

uncertain travel times. Models that adopt this approach include Watling (2002) and

Clark and Watling (2005).

2The word “stochastic” in the name of the SUE model emphasizes the model’s assumption of
stochastic perception errors. However, the SUE model interprets the probability that a traveler
chooses a certain path as the proportion of travelers of the same trip choosing that path. Hence
this model results in deterministic predictions of traffic flows and (actual) travel times.
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The second approach focuses on the travel time uncertainty resulting from the un-

certain link capacities due to unexpected events. Models that adopted this approach

generally assume that unexpected events such as traffic accidents and bad weather

will temporarily reduce the link capacity in a stochastic manner. As a result, despite

the assumption that the traffic flows remain deterministic, the link travel times are

stochastic. Modelers can adjust the various parameters including the probability,

severity (that is, how much capacity is affected), and duration of unexpected events

to represent networks of different uncertainty levels. This approach is adopted, for

example, by Noland et al. (1998), Brilon et al. (2005), and Marchal and de Palma

(2008).

The third approach is to explicitly specify the distribution of link travel times for

all links in the network. In this approach, the travel time on each link is composed

of a deterministic component and a stochastic component. While the deterministic

component depends on the link traffic flow, the stochastic component is generally

assumed to be a random variable independent of the link traffic flow. This approach is

adopted by, for example, Mirchandani and Soroush (1987), Ordonez and Stier-Moses

(2007), and Connors and Sumalee (2009). This approach is particularly suitable for

modeling uncertain travel times as a result of random waiting time at traffic signals.

Finally, travel time uncertainty can also be represented using a microscopic simu-

lation model. This last approach differs in that it models the movement of individual

cars in real time. Studies that follow this approach include Schadschneider (2000).

The different approaches described above are not mutually exclusive. In fact

it could be argued that each of the first three approaches explains a component of

the travel time uncertainty experienced by travelers. It remains an open research

problem to develop a traffic model that unifies all these approaches.
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1.2.2 How travelers respond to travel time uncertainty

An essential component of traffic network models is traffic demand modeling. The

idea is to study travelers’ behavior, namely, how many travelers will be traveling

from one place to another at a given time (the trip generation problem) and what

paths these travelers will choose (the path choice problem). For simplicity and

clarity, in this thesis, fixed trip demands are assumed, i.e., we do not model demand

stochasticity. We are mainly concerned with the path choice problem under the

influence of travel time uncertainty.

The travelers’ behavior is governed by the (dis)utility associated with each of the

available paths. In the transportation literature, travel (dis)utility is also referred

to as travel cost. These two terms will be used interchangeably in this thesis. In

general, path choice models involve two steps. In the first step, the travel costs of

all available paths are evaluated. In the second step, travelers make path choice

decisions that minimize their path travel costs.

The concept of the travel cost has evolved over time and remains an area of active

academic research. Conventional traffic network models assume that the (determin-

istic) path travel time is the only component of the travel cost, as is most obviously

reflected in Wardrop’s first principle (see Wardrop, 1952): “The journey times in all

routes actually used are equal and less than those which would be experienced by a

single vehicle on any unused route.” Since then modelers have included other factors

(for example, the cost of fuel, wear and tear, and toll or congestion charges) into

the travel cost. McFadden (1974) introduced the concept of random utility theory

in traffic demand modeling. This theory further justifies the use of demographic

data as travel cost factors. It interprets the travel cost as a variable determined

by observable economic factors, which include the travel time, monetary costs and

travelers’ social economic status, and unobservable factors, such as road quality or
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scenery, the need to make an extra mid-path stop, etc. The aggregate effect of the

unobservable factors on the travel cost is modeled as a random variable that follows

a known distribution. Recently, Zeid (2009) has enriched the traffic demand models

by incorporating travelers’ subjective well-being as a component of the travel cost.

For simplicity, we assume that travel costs are decided by travel times alone.

Travel time uncertainty generally has a negative influence on travel costs. There are

many different ways of incorporating travel time uncertainty into travel costs. Next

we will discuss these approaches.

The first approach measures the travel cost as the sum of the mean travel time and

the variance or the standard deviation of travel time multiplied by a trade-off factor.

This approach is adopted by a number of empirical studies. For example, Jackson

and Jucker (1982) studied travelers’ route-to-work choices using the mean-variance

approach. Senna (1994) and Nam et al. (2005) estimated the value of travel time

variability using the mean-variance approach. These empirical studies developed the

methodologies of measuring the trade-off factor of a population through techniques

such as stated preferences. Nikolova et al. (2006) studied the optimum routing

problem in stochastic traffic networks. In a special case of their model the travel

cost is a linear combination of the mean and variance of path travel time. However,

these models do not address how the individual travelers’ routing decisions influence

the traffic network.

The second approach utilizes the expected utility (EU) theory. Under this theory,

the traveler uses a continuous utility function to transform travel times into travel

(dis)utilities. The expected value of the travel (dis)utility is then taken as the travel

cost. For example, when the utility function is linear, the travel cost equals the

expected travel time (multiplied by a constant). When the utility function assigns

very large (dis)utility values for long travel times, travelers become risk averse. This
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approach is adopted by Mirchandani and Soroush (1987) and Senna (1994).

The third approach utilizes the principles of prospect theory. Due to the draw-

backs of the EU theory (for example, the EU theory has limited representation of the

behavior process and violates perception rationality; for a review, see Tversky and

Kahneman, 1992), various non-expected utility theories have also been developed as

alternatives to the expected utility theory. One of the most popular among them

is prospect theory (see Kahneman and Tversky, 1979). This theory, in addition to

modeling travel times using a utility function, uses a probability weighting function

that underweights large and overweights small probabilities for travel cost evalua-

tion. Avineri and Prashker (2005) and Connors and Sumalee (2009) recently applied

this prospect theory approach to traffic network modeling.

The fourth approach is the percentile approach. This approach typically mea-

sures the travel cost as the 90th or 95th percentile of travel time (see the report of

the U.S. Department of Transportation, 2007). Because percentile measures are easy

to communicate, this approach has received a lot of attention among transportation

authorities recently. However, although the percentile approach is often used by

transportation planners as a measure of network reliability, it is less understood

whether this approach provides a good measure of the travel cost that governs trav-

elers’ behavior. Moreover, the calculation of travel time percentiles usually involves

convolutions of probability density functions and may pose computational challenges

to traffic network modelers.

Lastly, the fifth approach is the robust optimization approach adopted by Or-

donez and Stier-Moses (2007). This approach assumes that all users are risk-averse

and minimize their worst case travel time. As a result, in this sense users make

“robust” decisions. The robust optimization approach was initially considered by

Soyster (1973). However, Soyster’s approach was deemed to be too conservative
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at his time (see Ben-Tal and Nemirovski, 2000). A significant step forward for de-

veloping a theory for robust optimization was taken independently by Ben-Tal and

Nemirovski (1998) and El Ghaoui et al. (1998). In traffic network modeling, instead

of specifying a distribution function for the travel time as a random variable, the ro-

bust approach defines an uncertainty set for the variations of travel times. Travelers

measure their travel costs as the worst case travel times, given that the realization

of travel times comes from the uncertainty set. Bertsimas and Sim (2003) developed

a robust optimization network flow model. This distribution-free model provides

another conceptually and computationally attractive alternative to the previously

mentioned approaches. Nevertheless, due to its considering a worst case approach,

some may criticize it as too conservative.

1.2.3 Stochastic traffic equilibrium models

In this last part of the literature review section we review four existing traffic equi-

librium models that incorporate travel time uncertainty. Because these models rep-

resent travel times as random variables, we refer to them as stochastic network equi-

librium models. These models contrast with the deterministic traffic equilibrium

models (see the DUE and the SUE model) which assume deterministic travel times.

Mirchandani and Soroush (1987) developed one of the earliest stochastic traffic

network equilibrium models. To represent travel time stochasticity, they exogenously

specify the distributions of link travel times. Users measure their travel costs using

the expected utility approach. Although users have heterogeneous perception errors

for travel costs, the resulting traffic flows are deterministic (similar to the SUE model,

this model interprets the probability of a randomly picked traveler choosing a certain

path as the proportion of travelers choosing that path).
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Watling (2002) considered another stochastic traffic network equilibrium model

and named it the generalized stochastic user equilibrium (GSUE). The GSUE model

extends the SUE model by assuming that users make probabilistic path choice de-

cisions according to the SUE path choice probabilities. In other words, unlike the

SUE model, the GSUE model does not interpret the path choice probabilities as path

choice proportions. As a result, the traffic flows in the GSUE model are stochas-

tic, inducing stochastic travel times. However, the GSUE model assumes that the

path travel cost is the expected path travel time, and thus the model is insufficient

in modeling the influences of travel time uncertainty on travelers’ behavior. Be-

cause the traffic flows in the GSUE model are stochastic, we call the GSUE model a

generalized stochastic traffic equilibrium model.

Ordonez and Stier-Moses (2007) developed a robust user equilibrium (RUE)

model. They assume that travelers measure travel costs as the worst case travel

time, and travelers further choose paths that minimize the travel costs (no percep-

tion error is present; similar to the assumption of the DUE model). The uncertainty

set of travel time variations is exogenously specified and does not depend on traffic

flows. The resulting equilibrium traffic flows are deterministic. Nevertheless, this

model may be too conservative.

Connors and Sumalee (2009) considered a stochastic traffic network equilibrium

model that utilized prospect theory. They exogenously specify the link travel time

distributions (similar to Mirchandani and Soroush, 1987), and transform the travel

time distributions into travel costs using the cumulative prospect theory. Users have

no perception errors, and they choose paths that minimize their travel costs. The

resulting equilibrium traffic flows are deterministic.

Among the existing stochastic network equilibrium models, only the GSUE model

has assumed stochastic traffic flows, yet it fails to address the problem of how un-

22



certain travel times influence travelers’ decisions. The other three traffic equilibrium

models require an exogenous specification of travel time distributions, and they can-

not incorporate how travelers’ decisions under uncertain travel times influence the

travel time uncertainty.

To address the deficiencies of the existing stochastic network models, this thesis

develops a new stochastic network model in which the travel time uncertainty is

induced by traffic flow uncertainty3 and traffic flow uncertainty is influenced by travel

time uncertainty. In this sense the new model incorporates travel time uncertainty

in an integrated manner.

1.3 Contributions

The study of travel time uncertainty in traffic networks is recently gaining momen-

tum. Despite the growing literature that examines the influences of travel time

uncertainty on travelers’ behavior, to the best of our knowledge, no studies provide

an integrated model that is concerned with both how travel time uncertainty is gen-

erated and how travelers react to it. Existing models are not sufficient in capturing

these two aspects in an integrated way and hence cannot reveal the interactions

between the two.

This thesis has two main contributions. The first main contribution is the de-

velopment and testing of a new stochastic traffic network model that accounts for

travel time uncertainty in an integrated manner. First, we developed a new stochas-

tic user equilibrium model, presented the conditions under which this model has a

unique solution, and discussed algorithms that solve this model. Second, we tested

this model on test networks and compared it to previous models existing in the lit-

3It is possible to enrich the present model by incorporating other sources of travel time stochas-
ticity.
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erature. Lastly, we studied a related day-to-day dynamic traffic network model in

order to study the stability of our new model.

The main finding of this new model is that deterministic traffic network models

tend to overestimate traffic flows on more congested links and underestimate traffic

flows on less congested links.

The second main contribution is that we benchmarked different traffic network

equilibrium models in terms of the total system cost. The system cost is defined as

the total travel time of all users of the network. We proved three new bounds for

the system cost that improved on existing bounds. We studied the tightness of these

bounds and presented numerical results of the system cost on test networks.

Finally, this work also contributes in terms of developing theoretically the mean-

variance approach in order to model the influence of travel time uncertainty on

travelers’ behavior. This approach has been used in the literature before, but pri-

marily in empirical studies. To the best of our knowledge, it has not received any

attention in traffic equilibrium modeling from a theoretical perspective.

1.4 Thesis Outline

Chapter 2 introduces the traffic user equilibrium model, the assumptions we made,

and previously studied traffic equilibrium models. In this chapter we distinguish

the deterministic network equilibrium model and the stochastic network equilibrium

model. Chapter 3 develops a new model, the Truly Stochastic User Equilibrium

(TSUE) model. In this chapter we study the existence and uniqueness of its equilib-

rium solution, propose two solution algorithms, and present numerical results on the

Sioux Falls test network. In Chapter 4, we benchmark various traffic network equi-

librium models in terms of the system cost. We establish theoretical bounds for the

system cost. Chapter 5 considers a day-to-day dynamic model and how this model
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converges to the newly proposed equilibrium. Chapter 6 concludes the thesis.
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Chapter 2

Traffic Network User Equilibrium

Models

This chapter introduces various traffic network user equilibrium models that exist

in the literature. These models can be separated into two groups. The first group

consists of deterministic network equilibrium models. These models assume that the

traffic network is deterministic; that is, in the state of equilibrium the traffic flows

and travel times are represented by a single point in the state space. The second

group consists of stochastic network equilibrium models. These models introduce

stochasticity in the underlying traffic network, so that travel times (and, for some

models, traffic flows) are stochastic. Stochastic network models must specify both

how the stochasticity is generated and how the uncertain travel times will influence

travelers’ behavior.

In general the traffic network consists of two components, traffic supply and

traffic demand. An equilibrium is reached when these two components match each

other. This relationship is plotted in Figure 2.5. Figures like this will repeat multiple

times in this thesis. They will be explained in detail in this chapter.
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Travel cost

Path choices

Travel time

Traffic flow

Traffic demand Traffic supply

Figure 2.1: Diagram of traffic network user equilibrium models.

This chapter is organized as follows. Section 2.1 defines the traffic network, states

the model assumptions, and introduces the concept of user equilibrium. Section

2.2 focuses on deterministic network models. Two models are introduced, namely,

the deterministic user equilibrium (DUE, also called Wardrop equilibrium) and the

stochastic user equilibrium (SUE). Section 2.3 focuses on the stochastic network

models. The robust user equilibrium (RUE) and the cumulative prospect user equi-

librium (CPUE) are introduced.

2.1 The Traffic Network

The transportation system at its full scale is an extremely complex system. It is

highly dynamic and stochastic, as it operates and evolves in both spacial and tem-

poral dimensions and involves complicated human decisions. It is well-known that

attempts to manage traffic networks often lead to unintended consequences, which
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poses great challenges to modelers.1

The traffic network model provides a simplified view of the real transportation

system, and it is introduced for the purpose of studying a specific aspect of the

transportation system. Traffic network equilibrium models aim to predict the long-

term traffic flows and travel times in the network (and any network attributes that

can be derived from traffic flows and travel times). The main feature of these models

is to balance traffic demand and traffic supply. The mathematical representation,

along with the necessary simplifying assumptions, of the traffic network studied in

this thesis will be described below.

2.1.1 Representation of the traffic network

The spacial aspect of the transportation system is modeled as a directed graph,

which consists of a set of nodes and a set of directed links. Users (travelers) move

from node to node through links, and their movements induce traffic flows on links.

Each user is associated with an origin node and a destination node, and he travels

on one path that connects the origin node to the destination node. A pair of origin

and destination nodes is called an OD pair (or a trip). Let N be the set of nodes,

L be set of links, and K be the set of all OD pairs. For any OD pair k ∈ K, let

Rk be the set of available paths (also called routes) that connects the origin to the

destination nodes, and qk be the travel demand of OD pair k (that is, the number

of users traveling on that OD pair in a unit of time). Let R be the set of all paths,

thus R = ∪k∈KRk. The link-path relationship is characterized by the link-path

incidence matrix ∆ ∈ {0, 1}|L|×|R|, with ∆lr = 1 if link l is included in path r, and

∆lr = 0 otherwise. Let Γ ∈ {0, 1}|K|×|R| be the OD-pair-path incidence matrix, with

Γkr = 1 if path r connects OD pair k, and Γkr = 0 otherwise. Here | · | represents
1An interesting example that reveals the complicated feedback loops related to road congestion

is discussed in Section 5.6 of Sterman and Sterman (2000).
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the cardinality (i.e., the number of elements) of a set.2

Users of the same OD pair are assumed to use the same mode of transportation

(for example, a car), and share similar characteristics (for example, the RUE model

assumes that these users share the same approach towards uncertainty and, as we

will see later, the same level of “uncertainty budget”). This assumption does not

sacrifice the generality of our model, because modelers can always divide users into

homogeneous groups at the expense of increasing the number of OD pairs.

To be specific, in a very simple traffic network model, the links represent roads,

and the nodes represent road junctions. However, it should be noted that the trans-

portation system can be modeled at different levels of details. The level of details

depends on the purpose of the study.3

A B

C

D

1 2

3 4

5

Figure 2.2: A simple traffic network

As an example, for the network in Figure 2.2

• node set N = {A, B, C, D}

• link set L = {1, 2, 3, 4, 5}

• set of OD pairs K = {(A,B)}
2As a convention in this thesis, we shall always use symbols in bold fonts to indicate vectors

and matrices. For the convenience of readers, we have complied a summary of notations in the
appendix of this thesis.

3For example, in the simple case, a 4-way junction may be modeled as a single node in the traffic
network; yet in more complicated applications, it can be modeled as multiple nodes with each lane
modeled separately. Readers may refer to Chapter 2 of the monograph of Cascetta (2001) for a
complete presentation on this aspect.
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• travel demand q(A,D) = 1000 veh/hour

• path set R(A,D) = {(1, 3), (2, 4), (1, 5, 4)}

• link-path incidence matrix

∆ =



1 0 1

0 1 0

1 0 0

0 1 1

0 0 1



• OD-pair-path incidence matrix

Γ =
(

1 1 1

)

Now we turn to the temporal aspect of traffic network models. Because traffic net-

works evolve with time, it is of great importance to identify the time horizon analyzed

in a traffic network model. Traffic networks usually exhibit cyclic behavior in the

temporal dimension. For example, there is the daily cycle, the weekly cycle, and the

annual cycle. The traffic network models in this chapter (and in this thesis) study

short time periods (within one cycle) repeated over a long time horizon (covering

multiple cycles). The short time period is also called the reference time period. Its

typical length varies from a few minutes to a few hours in different studies. For

example, it is typical for these models to study the morning rush hour from 7am to

8am on week days, spanning the horizon of a year. Here the morning rush hour is

the short time period, and a year is the long time horizon. Such particular temporal

settings allow the following approximation that tremendously simplifies our model:

31



The intra-period stationarity approximation. This approximation assumes a sta-

tionary state of the network within the short time period, namely the network statis-

tics (traffic flows, link travel times) do not change with time during the short time

period.4 Commonly used by transportation planners, this approximation leads to a

tractable traffic network model that provides useful predictions.

A relaxation of the above approximation leads to the development of the (intra-

period) dynamic traffic assignment (DTA) models, where traffic flows vary with time.

As can be imagined, these models are in general much less tractable compared to the

intra-period stationary models, both theoretically and computationally. Neverthe-

less, the DTA models are of growing research interest over the past years. Interested

readers may refer to, for example, the review article of Peeta and Ziliaskopoulos

(2001) or the monograph of Friesz (2010).

Depending on whether the stationary traffic flows in the short time period remain

the same for different periods, there are inter-period static models (stationary flows

persist across periods) and inter-period dynamic models (stationary flows do not

persist across periods; also referred to as day-to-day dynamic models).

Under the intra-period stationarity approximation and the inter-period static

assumption, the state of the traffic network reduces to a timeless fixed point state

(see Figure 2.3). There are two obvious advantages of studying a fixed point state.

On one hand, powerful analytical procedures exist to find the fixed point state, as

will be demonstrated later in this thesis. On the other hand, the fixed point model

does not need to specify a potentially complicated dynamic mechanism in which the

traffic network evolves over time. In applications, it is often implicitly assumed that

the traffic network will converge to the fixed point state over the long run. However,

whether or why this assumption is true is still an open research question.

4As a result of stationary traffic flows, the flow conservation law requires that for any two points
on the same link, traffic flows are equal.
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Time (h)

Flow (veh/h)

period 1 period 2 period 3 period 4

Figure 2.3: For a fixed point state, traffic flows are stationary within a period, and
persist across periods

2.1.2 Traffic supply and traffic demand

In traffic network models, travelers’ behavior is governed by travel costs. These are

quantities that measure the dissatisfaction level of traveling on different paths. On

one hand, travel costs influence users’ path choice decisions (i.e., which path to travel

on), and hence the traffic flows. On the other hand, travel costs are dependent of the

traffic flows (for example, large traffic flow may cause congestion and hence increase

the level of dissatisfaction). While the former relationship is referred to as traffic

demand, the latter is referred as traffic supply.

Traffic supply

Consider a stationary short time period as described previously, for any link l ∈ L,

let the traffic flow be fl, and the travel time on this link be τl. Similarly, for any

path r ∈ R, let hr and µr be the path flow and path travel time, respectively. Let f ,

h be the respective link and path flow vectors, τ and µ be the respective link and

path travel time vectors, then f , τ ∈ R|L|, and h,µ ∈ R|R|. The link and path flows

satisfy the following relationship f = ∆h; the link and path costs satisfy µ = ∆Tτ .

It is reasonable to assume that link travel times depend on link flows. Due to
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congestion, when the link flow increases, the link travel time is likely to increase as

well. Such relationship is assumed to be deterministic5 and represented by the link

flow-time function tl = tl(f), ∀l ∈ L.6

In vector form the flow-time function can be written as t = t(f). We define the

equivalent travel time function in the path space: µ = µ(h) = ∆Tt(∆h).

The link flow-time function is called separable if tl = tl(fl), ∀l ∈ L. This implies

that the travel time on link l only depends on the flow on link l. The link flow-

time function is called symmetric if it is differentiable and ∂tl
∂fl′

= ∂tl′
∂fl
, ∀l, l′ ∈ L.

Obviously separable link flow-time functions are also symmetric.

Two specific types of link flow-time functions will be used in this thesis. The first

is the affine flow-time function, namely,

tl(f) = alfl + bl. (2.1)

This functional form is often used for its theoretical simplicity. Here al and bl are link

specific parameters. The second is the BPR link-travel-time function recommended

by the U.S. Bureau of Public Roads (see U.S. Department of Commerce, 1964),

namely,

tl(f) = αl

(
1 + βl

(
fl
γl

)4
)
. (2.2)

This functional form is widely used in empirical traffic network modeling. Here αl,

βl, and γl are link specific parameters.

5In fact, the traffic flow theory studies the flow-time relationship and concludes that when link
flow approaches its maximum level, the link travel time becomes highly stochastic. Interested
readers may refer to Chapter 2 of Cascetta (2001) for more details. However, the traffic flow theory
and its results will not be the subject of this thesis. The deterministic flow-time relationship is a
good approximation for traffic networks and has been proved effective in applications.

6Some stochastic network models assume that such a relationship is not deterministic and that
link flow-time functions give rise to the mean travel times.
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Traffic demand

In many applications it suffices to assume that the travel cost is solely determined

by the travel time. If travel time is deterministic, the obvious choice is c = µ =

∆Tt(∆h). Building upon this, other components of travel costs can be included in

at least three manners:

1. For quantifiable travel costs such as tolls or delay penalties. The resulting

travel costs are called generalized travel costs.

2. Travel costs that are not observable to the modeler or that are observable but

difficult to quantify, can be incorporated into the model as random “perception

errors”. The perception errors follow a modeler specified distribution. The

stochastic user equilibrium model follows this approach.

3. In the case of stochastic network models, the travel times are random and the

travel time uncertainty can be translated into travel costs through certain risk

measures. These risk measures will be discussed in detail in Chapter 3.

There are two commonly adopted approaches for the traffic demand model. The first

approach imposes users only traveling on paths of minimum cost. The deterministic

user equilibrium follows this approach. The second approach assumes users have

perception errors of the path costs, and hence minimize the perceived travel cost.

The stochastic user equilibrium follows this approach.

Both approaches will be analyzed in greater detail later in this chapter.

2.1.3 User equilibrium

In a traffic network, user equilibrium is achieved when the inputs and outputs of the

traffic supply model and the traffic demand model match each other, namely the

flows and the costs in the two models are equal. This definition is formally stated in
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Bell and Iida (1997) as follows: under equilibrium, demand (flow) is equal to supply

(flow) at the prevailing costs to the users. Historically user equilibrium is defined as

the state in which the traffic flow is such that there is no incentive for path switching.

These two definitions are equivalent since “no incentive for path switching” implies

that the traffic demand flow at prevailing costs coincides with the existing flow, and

vice versa.

One key feature of the user equilibrium is that the traffic network reaches a

static state across different time periods. On the other hand, if we assume that both

travel demand and travel supply remain (approximately) static across different time

periods, it is generally true that the traffic network will also be in an equilibrium

state.

Equilibrium models are widely used because they are powerful and simple. These

models are effectively timeless, and hence avoid the need of specifying and calibrating

a dynamic mechanism according to which the traffic network evolves over time.

2.2 Deterministic Network Equilibrium Models

Deterministic network equilibrium models are models in which the traffic flows and

travel times (costs) are deterministic. This type of models include the deterministic

user equilibrium (DUE) model and the stochastic user equilibrium (SUE) model.

First proposed by Wardrop (1952), the DUE model assumes travelers only choose

paths that minimize their travel costs, and is perhaps the most studied traffic network

model in the literature. The SUE model was first studied by Daganzo and Sheffi

(1977) as an extension to the DUE model. It assumes that travelers minimize their

perceived travel costs. The perceived travel cost deviates from the actual travel cost

by a stochastic perception error term. In this chapter, we shall investigate the exact

meaning of these perception errors.
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2.2.1 The deterministic user equilibrium (DUE) model

One of the most well studied traffic network equilibrium models is the deterministic

user equilibrium (DUE) model. It assumes that users minimize their travel cost,

which in the simple case is just the travel time. This implies, for a given OD

pair, any path with a positive flow has minimum cost. For any OD pair k, let

πk be the minimum path cost. Let Sh be the set of feasible path flows, that is,

Sh =
{
h ∈ R|R| > 0 : Γh = q

}
.

This gives rise to the following formulation for the DUE model.

DUE-FIX. Find a path flow vector hDUE ∈ Sh, such that there exists a vector

π ∈ R|K|×1 of minimum path costs for all OD pairs, so that the following

relationship holds

cDUE = ∆Tt(∆hDUE)

cDUE
r = πk, if hDUE

r > 0, ∀k ∈ K, r ∈ Rk

cDUE
r > πk, if hDUE

r = 0, ∀k ∈ K, r ∈ Rk

(2.3)

We refer to the above formulation as the fixed point (FIX) formulation of the DUE

model. For the convenience of the theoretical and computational study of the DUE

model, a number of equivalent formulations have been developed in the literature.

Two particular formulations, namely the variational inequality (VI) formulation and

the optimization (OPT) formulation will be of particular interest because they will

be used later in this thesis. We first state the VI formulation. It can be formulated

in either the link flow space or the path flow space. Let Sf be the set of feasible link

flows, that is, Sf = {f = ∆h : h ∈ Sh}.
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Travel cost
c = ∆Tτ

Path choices
hr > 0 =⇒ cr = πk

hr = 0 =⇒ cr > πk

Travel time
τ = t(f)

Traffic flow
f = ∆h

Traffic demand Traffic supply

Figure 2.4: Diagram of the deterministic user equilibrium model.

DUE-VI-PATH. Find hDUE ∈ Sh, such that

cDUE = ∆Tt(∆hDUE)(
cDUE

)T (
h− hDUE

)
> 0, ∀h ∈ Sh

(2.4)

DUE-VI-LINK. Find fDUE ∈ Sf , such that

t(fDUE)T
(
f − fDUE

)
> 0, ∀f ∈ Sf (2.5)

When function t(·) is smooth and has a symmetric Jacobian matrix everywhere, an

optimization formulation exists. In this case, the vector field defined by t(·) is the

gradient of a scalar field (refer to Lemma 2.1). Namely, there exists a scalar function

y(·) such that t(f) = ∇y(f), for any f ∈ Sf . This function can be explicitly defined

by a line integral y(f) ≡
´ f
0 t(ω)·dω.7 The optimization formulation is stated below.

7A line integral can be converted to a standard integral by expressing the integrand as a function
of a single (scalar) parameter, and then performing the integration along the curve defined by the
parameter. If the integrand function is smooth and has s symmetric Jacobian matrix, the integral
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DUE-OPT. Find the minimizer fDUE to the following minimization problem

min
f∈Sf

y(f) (2.6)

The following lemma formally states that existence of the scalar function y(·).

Lemma 2.1. If function t(·) is smooth and has a symmetric Jacobian matrix every-

where, then there exists a smooth scalar function y(·) such that t(f) = ∇y(f) for

any f ∈ Sf .

Remark. This lemma can be proved using Poincare’s lemma (refer to Chapter 10 of

Rudin, 1986).

We then proceed to state the equivalences of the various formulations.

Theorem 2.2. The following DUE formulations are equivalent.

• DUE-FIX: the original formulation (2.3)

• DUE-VI-PATH: the VI formulation in the path flow space (2.4)

• DUE-VI-LINK: the VI formulation in the link flow space (2.5)

Furthermore, if the flow-time function t(·) is smooth and has a symmetric and pos-

itive semidefinite Jacobian matrix everywhere, then the above formulations are also

equivalent to the following.

• DUE-OPT: the optimization formulation (2.6).

Remark. Refer to Cascetta (2001) for a proof of this theorem.

only depends on the starting and ending points of the integration and is independent of the path.
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2.2.2 The stochastic user equilibrium (SUE) model

While the DUE model allocates travel demands to the set of paths with the least

travel costs, the SUE model assumes that due to variations in travelers’ perceptions

of travel costs, trip makers distribute themselves along competitive paths. In SUE,

users’ perceived travel cost c̃r deviates from the “actual” travel cost cr by some

random perception error εr, namely,

c̃r = cSUE
r + εr,

with the “actual” travel cost generated by the flow-time function cSUE = µ(hSUE) =

∆Tt(∆hSUE). The perception error εr is identically and independently distributed

across the traveler population and across different routes.

The SUE literature has provided several interpretations of the exact meaning of

the perception errors:

• The perception error may correspond to the deviation of the realization of the

random individual travel time from its mean value (see Daganzo and Sheffi

1977). Despite the intra-period stationarity approximation, this interpretation

acknowledges the randomness of individual travel time and model them as

perception error.

• The perception error may correspond to the imprecise measurement of the

travel time by users (see Sheffi and Powell 1982). This is the deviation of

perceived travel time from the actual travel time.

• The perception error may correspond to factors unobservable to modelers but

that contribute to the travel cost (see Sheffi 1984, Bell and Iida 1997, and

de Palma and Picard 2005). This interpretation acknowledges that individual
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travelers may place different weights on such attributes as the number of stops,

variability in travel time, scenery and road quality. Since these factors are

unobservable to modelers, it may be captured by through a random perception

error.

In what follows we assume the multinomial logit model, in which the perception

error εr is assumed to follow the Gumble distribution with parameter θ. Under the

multinomial logit model, the probability that path r has the least perceived travel

time compared to all available paths for OD pair k is pr = exp(−cSUE
r /θ)P

r′∈Rk exp(−cSUE
r′ /θ)

. The

SUE model translates these probabilities as the proportions of users of OD pair k

traveling on path r.

Travel cost
c = ∆Tτ

Path choices
pr = qk exp(−cr/θ)P

r′∈Pk exp(−cr′/θ)

h = diag{ΓTq}p

Travel time
τ = t(f)

Traffic flow
f = ∆h

Traffic demand Traffic supply

Figure 2.5: Diagram of the (multinomial logit) stochastic user equilibrium model.

The SUE equilibrium can then be formulated as below

SUE-FIX. Find a path flow vector hSUE ∈ Sh, such that the following relationship

holds
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cSUE = ∆Tt(∆hSUE),

hSUE
r = qk

exp(−cSUE
r /θ)∑

r′∈Rk exp(−cSUE
r′ /θ)

, ∀k ∈ K, r ∈ Rk.
(2.7)

The above formulation has an equivalent VI and optimization formulation, as

stated below

SUE-VI-PATH. Find hSUE ∈ Sh, such that

cSUE = ∆Tt(∆hSUE),(
cSUE + θ log

hSUE

q

)T (
h− hSUE

)
> 0, ∀h ∈ Sh.

(2.8)

SUE-OPT-PATH. Find the minimizer of the following optimization problem

min
h∈Sh

y(∆h) + θg(h), (2.9)

In this setting y(·) is defined as y(f) ≡
´ f
0 t(ω) · dω, and g(h) ≡

(
log h

q

)T
h.

Note that we can prove the inequality in the VI formulation (2.8) always holds as

an equality. See the proof of Theorem 3.1.

Theorem 2.3. The following SUE formulations are equivalent.

• SUE-FIX: the fixed point formulation (2.7)

• SUE-VI-PATH: the VI formulation in the path flow space (2.8)

Furthermore, if function t(·) is smooth and has a symmetric and positive semidefinite

Jacobian matrix everywhere, then the above formulations are also equivalent to the

following.

• SUE-OPT-PATH: the optimization formulation in the path flow space (2.9)

Remark. The proof is similar to that in the DUE case. We shall omit the proof.
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2.3 Stochastic Network Equilibrium Models

In this section we provide a unified framework for stochastic network equilibrium

models. We will discuss two specific stochastic network equilibrium models, namely

the robust user equilibrium (RUE) and the cumulative prospect user equilibrium

(CPUE).

All stochastic network models must specify two fundamental mechanisms. One

fundamental mechanism defines how travel time uncertainty is generated; we refer to

this mechanism as uncertainty generator. The other fundamental mechanism defines

how travel time uncertainty influences users decision; we refer to this mechanism as

uncertainty responder. Different stochastic network models have specified different

combinations of these two mechanisms.

However, as we will discuss below, among existing stochastic network equilibrium

models, some have a sophisticated uncertainty generator, others have sophisticated

uncertainty responder. The lack of balance between these two mechanisms motivates

our development of a new stochastic network user equilibrium model in the next

chapter.

2.3.1 The robust user equilibrium (RUE) model

Ordonez and Stier-Moses (2007) developed a stochastic network user equilibrium

model that assumes users adopt a robust optimization approach in making their

route choice decisions. We refer to this model as the robust user equilibrium (RUE).

RUE uses a relatively simple uncertainty generator. It assumes that while the traffic

flow is still deterministic, the actual link travel times have random deviations from

the link travel times predicted by the flow-time functions:

T (f) = t(f) + ε.
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Travel cost
c = maxε∈E ∆TT

Path choices
hr > 0 =⇒ cr = πk

hr = 0 =⇒ cr > πk

Travel time
T = t(f) + ε

Traffic flow
f = ∆h

Traffic demand Traffic supply

Figure 2.6: Diagram of the robust user equilibrium model.

In this case, ε is the vector of random deviations. It is assumed that these devia-

tions are independent of the traffic flow. Consistent with other robust optimization

models, RUE does not specify a distribution function for ε. Instead RUE specifies

an uncertainty set for ε, denoted by E.

RUE adopts a robust approach in defining its uncertainty responser. It assumes

that all users are risk-averse and hence only travel on paths with minimum worst

case travel time. This assumption implies that the path cost is the worst case travel

time, namely

cRUE
r = max

ε∈E
∆T
r T = max

ε∈E
∆T
r (t(∆h) + ε) .

Users then choose the paths that minimize this cost.

2.3.2 The cumulative prospect user equilibrium (CPUE) model

Connors and Sumalee (2009) considered a stochastic network equilibrium model

that features a sophisticated approach of modeling users’ perception of travel time

uncertainty. Their model utilizes the cumulative prospect theory (CPT), which
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Travel cost
c = cCPT(∆TT )

Path choices
hr > 0 =⇒ cr = πk

hr = 0 =⇒ cr > πk

Travel time
T = t(f) + ε

Traffic flow
f = ∆h

Traffic demand Traffic supply

Figure 2.7: Diagram of the cumulative prospect user equilibrium model.

provides an empirically well-supported paradigm for choices made under uncertainty.

In their model, the path travel cost8 is evaluated from the actual outcomes (namely,

travel times) and their probabilities of occurring via two transformations

• a value function g(·) that describes the payoff level experienced by users for

each possible travel time, and

• a probability weighting function w(·) that transforms the probability into the

perceived likelihood of occurrence.

In particular, let M be the random variable of path travel time, then

g(M) =


(M −m0)α M > m0

−λ(m0 −M)β M < m0

w(p) = exp (− (− log p)γ)

8The term actually used by Connor and Sumalee is perceived value. Path travel cost is the
general term this thesis adopts to provide a consistent framework for various models.
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where the parameters satisfy 0 < α, β, γ 6 1, and m0 is a reference travel time (as

reflected in function g, depending on whether M is larger or smaller compared to

the reference travel time, users value the outcome differently). If M is a continuous

random variable, let FM (·) be its cumulative density function (CDF) for M . The

path travel cost is (we denote it as cCPT)9

c = cCPT(M) =
ˆ m0

−∞
g(m)

d
dm

(w (FM (m))) dm+
ˆ ∞
m0

g(m)
d

dm
(−w (1− FM (m))) dm

While on the demand side, Connors and Sumalee (2009) adopted a sophisticated

way in modeling users’ perception and response to uncertain travel time, on the

supply side they assumed a much simpler model, namely, that 1) the flow is deter-

ministic and 2) the stochasticity of travel time is modeled by a flow-independent

error term

M = ∆T (t (∆f) + ε) .

ε is independent on different links.

9Note that w(·) applies on the cumulative probability weight instead of probability of individual
events. Hence this approach is named cumulative prospect theory.
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Chapter 3

Mean-Variance Approach to

Stochastic Network Equilibrium

Model

This section develops a new stochastic user equilibrium model. This model assumes

stochasticity, in the sense that travelers make probabilistic path choices from day

to day. The probabilistic path choice decisions induce stochastic traffic flows in the

network, which result in uncertain travel times. The travel time uncertainty in turn

encourages travelers to reduce their probabilities of choosing the more uncertain

paths.

This model is unique in the sense that travel time uncertainty is captured both

as a source of network stochasticity (through its impact on travelers’ path choice

decisions) and as a result of network stochasticity (through the path choice model

that generates stochastic traffic flows). This new model contrasts with most pre-

viously developed models in assuming that both traffic flows and travel times are

stochastic. It is on this ground that we name this new model the “Truly Stochastic
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User Equilibrium” (TSUE) model.

This chapter is organized as below. Section 3.1 formulates this model. Section

3.2 introduces a number of alternative approaches to modeling the travel cost in

stochastic network. Section 3.3 investigates the existence and uniqueness of the

equilibrium solution. Section 3.4 proposes a solution algorithm. Section 3.5 presents

the numerical results, followed by discussion.

3.1 Model Formulations

This section introduces the new model. The model involves four key steps (approx-

imations):

1. We assume that travelers make probabilistic path choice decisions. Travel-

ers associate with each of their available paths a probability. Everyday, each

traveler independently chooses between alternative paths according to these

probabilities. These probabilities are assumed to be the same for travelers of

the same OD pair. We refer to this as the assumption of probabilistic path

choice decisions. As a result, the path flows are random variables that follow

the multinomial distribution.

2. We approximate the travel time function with its first order expansion in the

neighborhood of the expected flow. From this approximation and the distri-

bution of path flows, we obtain the mean and variance of travel times.

3. In the equilibrium state, the traveler’s travel cost is determined by the mean-

variance approach. That is, the travel cost associated with a path is the sum of

its mean travel time and the variance of its travel time multiplied by a trade-off

factor λ > 0. This trade-off factor characterizes how much cost the travelers
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associate with the variance of travel times, relative to the mean travel times.

It is assumed that this factor is fixed across the traveler population.

4. Travelers have random perception errors of their travel cost. The perceived

travel cost differs from the actual travel cost by a random perception error

term. This error term is assumed to be independently and identically distributed

from day to day and across the traveler population. In this thesis we assume

that this perception error follows the Gumbel distribution with dispersion level

θ, resulting to the multinomial logit model.

We discuss these steps in detail in this section. In Section 3.2, we will discuss some

alternative approaches to the third step.

3.1.1 Probabilistic path choice decisions

To motivate the new model, we first recall the SUE model, which assumes that

travelers have perception errors of their path travel costs. The perception errors

are assumed to be independent from traveler to traveler, and follow a known distri-

bution across the population. Based on these assumptions, the SUE model derives

from the actual path travel costs the probability of one randomly selected traveler

choosing a certain path. This probability on the individual traveler level is then

interpreted aggregately as the proportion of travelers choosing that path. Despite

the stochasticity involved in deriving the path choice probabilities, the interpretation

of probabilities as proportions renders the SUE model into a deterministic network

model with deterministic traffic flows and travel times.

However, in reality, it is well known that traffic flows fluctuate from day to day,

hence it is more appropriate to represent traffic flows as random variables. Notic-

ing this, we consider an alternative interpretation of the probabilities in the SUE

model. Namely, we will avoid characterizing the path choice behavior in an aggre-
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gate level through a deterministic approach, and instead we will characterize the

path choice behavior at an individual level using a stochastic approach, where each

traveler independently and at random chooses from available paths using a probabil-

ity distribution. Under this assumption the traffic flows are random variables. We

assume that the traffic demand is fixed at each OD pair, then traffic flows follow the

multinomial distribution. As a result, the actual path traffic flows on a certain day

are realizations from this multinomial distribution.

In the equilibrium state, we assume that travelers of the same OD pair share

the common set of path choice probabilities. We will explain why we make this

assumption when we discuss the random utility model in Section 3.1.4.

Next we introduce the notations we use. Let p ∈ [0, 1]|R| be the vector of path

choice probabilities and Sp be the set of feasible path choice probabilities1. Written

in explicit form, we set Sp =
{
p ∈ [0, 1]|R| : Γp = 1

}
, where Γ is the trip-path

incidence matrix, 1 is a column vector of all 1’s, and Γp = 1 states that the path

choice probabilities sum up to 1 for each OD pair. Let H be the vector of path

traffic flows; in the TSUE model, H is a multivariate random variable of dimension

|R|, that we define next.

For an OD pair k ∈ K, let pk and Hk be the vectors of path choice probabilities

and path traffic flows, respectively, of paths available for k. Since |Rk| paths are

available for OD pair k, both pk and Hk have |Rk| elements. By the path choice

probability assumption, Hk follows the multinomial distribution. Assuming that

the total demand for OD pair k is qk, we have that

Hk ∼ Multinomial(qk,pk). (3.1)

1In our notation, letter p always stands for probability, and letter r always stands for paths
(routes).
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The above relationship holds for any OD pair k ∈ K. To simplify our notation, we

write the random variable in vector form

H ∼ Multinomial(q,p).

Let h = E[H] be the vector of the expected path flows, then

hk = E[Hk] = qkpk. (3.2)

Notice that this relationship coincides with that in the SUE model. However, con-

trary to the TSUE model, the SUE model interprets h as the flow that is determin-

istic, rather than the expected flow as in the TSUE model.

Let F be the vector of link traffic flows and f = E[F ] be the vector of expected

link flows. Then

F = ∆H, (3.3)

f = ∆h. (3.4)

3.1.2 First-order approximation of the travel time function

To incorporate the travel time uncertainty into the travel cost, we need to evaluate

the mean and variance of the path travel time. Let M be the vector of path travel

times. We assume that the travel time is deterministically determined by the traffic

flow, i.e., M = ∆Tt(F ), where t is the link travel time function.

In practice, both E[M ] and Var (M) may be difficult to evaluate for general

nonlinear travel time functions. To overcome this difficulty, we propose the following

approximation scheme. We write the Taylor expansion of the link travel time function
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in the neighborhood of the expected flow f , namely

t(F ) = t (f) + Jt (f) (F − f) +O
(

(F − f)2
)
,

where Jt (f) is the Jacobian matrix of the travel time function t evaluated at f . We

consider the first order approximation of the travel time function

t(F ) ≈ t̂(F ) = t (f) + Jt (f) (F − f) .

Let M̂ = ∆Tt̂(F ) be the corresponding approximate path travel time. Using Eq.

(3.3) and Eq. (3.4), we have that

M̂ = ∆Tt (∆h) + ∆TJt (f) ∆ (H − h) . (3.5)

The expectation of M̂ is

E[M̂ ] = ∆Tt (∆h) . (3.6)

Let Var(M̂) be the vector of the variances of M̂ . Then

Var(M̂) = Diag
{
∆TJt (∆h) ∆Cov (H) ∆TJt (∆h) ∆

}
.

In this equation, the Diag {·} operator extracts the main diagonal of a square matrix.

For example, applying the Diag {·} operator on the identity matrix I gives the

vector of all 1’s 1, i.e., Diag {I} = 1). Cov(H) gives the covariance matrix of the

multivariate random variable H. For two paths r, r′ ∈ R, the (r, r′) element of
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Cov (H) is

(Cov (H))r,r′ =


qk(pr − p2

r) if r = r′ ∈ Rk,

−qkprpr′ if r 6= r′, but both rand r′are in Rk,

0 otherwise.

We may rewrite the above result in a more compact form. In fact, Cov (H) is a

block diagonal matrix with |K| blocks on this diagonal. For k ∈ K, its kth block is

Cov(Hk) = qk
(

diag
{
pk
}
− pk(pk)T

)
= diag

{
hk
}
− 1
qk
hk(hk)T.

(3.7)

In this equation, the diag {·} operator turns a vector into a diagonal matrix. It is

the inverse of the Diag {·} operator, e.g., diag {1} = I. Let ∆k be the link-path

incidence matrix restricted to OD pair k ∈ K (with dimension |L| × |Rk|), then we

have

Var(M̂) = Diag

{
∆TJt (∆h)

∑
k∈K

(
∆kCov

(
Hk
)

(∆k)T
)
Jt (∆h) ∆

}

= Diag

{
∆TJt (∆h)

∑
k∈K

(
∆k

(
diag

{
hk
}
− 1
qk
hk(hk)T

)
(∆k)T

)
Jt (∆h) ∆

}
.

(3.8)

3.1.3 Mean-variance approach to the travel cost

Essential to our stochastic network model is the mechanism in which travelers deter-

mine their travel cost in the presence of uncertain travel times. Consider any path

r ∈ R. The travel time on this path is Mr. We assume that its path travel cost cr

is measured as the mean travel time plus a constant multiplied with the variance of
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the travel time, namely

cr = E[Mr] + λVar(Mr), (3.9)

where the multiplier λ is called the mean-variance trade-off factor. Multiplier λ

represents the travelers’ risk aversion level; the greater its value, the more risk averse

are the travelers. It is important to note that λ is not a dimensionless parameter. If

the travel time is measured in minutes, λ has the unit of 1/minute.

This above mean-variance approach was frequently used in empirical studies of

travelers’ path choice behavior under travel time uncertainty (including Jackson and

Jucker 1982, Senna 1994, and Nam et al. 2005). These studies also allow modelers

to calibrate the value of λ. Furthermore, Small (1999) showed that the variance of

travel time is a significant and positive attribute in the travel cost, which implies

that λ > 0. Another empirical study by de Palma and Picard (2005) suggests that

there are two different groups of travelers with respect to their preferences of travel

time uncertainty: the majority of travelers are risk-averse, others are risk neutral

or risk seeking. For the present thesis, the value of λ is assumed to be nonnegative

and uniform across the population. Relaxing the assumption that λ is fixed across

the population is an open field of exploration. For example, one can assume that λ

follows a distribution that models traveler heterogeneity.

There are two main reasons to justify our choice of the mean-variance approach.

1. Although empirical traffic network studies have frequently used the travel time

variance as a variable to explain travelers’ path choice decisions (see, for exam-

ple, Jackson and Jucker, 1982), no traffic equilibrium model appears to have

incorporated the travel time variance as a factor in its path choice model; and

2. From a computational point of view, the evaluation of the travel time variance

is relatively easy (see the following discussion).
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We will list some alternative approaches to modeling travel costs in Section 3.2.

Using the first-order approximation introduced in Section 3.1.2, the traveler’s

path choice is characterized by the travel cost

c = c(h) = E[M̂ ] + λVar(M̂), (3.10)

where λ > 0 is a constant parameter. The expectation and variance of M̂ can be

obtained through Eq. (3.6) and Eq. (3.8), respectively. From these two equations

we know that the path travel cost c is a function of the expected path flow h. We

have that

c(h) = ∆Tt (∆h) + λDiag

{
∆TJt (∆h)

∑
k∈K

(
∆k

(
diag

{
hk
}
− 1
qk
hk(hk)T

)
(∆k)T

)
Jt (∆h) ∆

}
.

(3.11)

When λ = 0, the TSUE travel cost is c = ∆Tt (∆h). In this special case the

TSUE model reduces to the SUE model.

3.1.4 The random perception errors of the travel cost

We assume that the travelers have perception errors of their travel cost c. The

perceived travel cost is

c̄ = c+ ε,

where ε is the vector of random perception errors. In this thesis we assume that ε is

independent and identically distributed for all paths and all travelers, and it follows

the Gumbel distribution with dispersion level θ. Travelers then choose paths that

minimize their perceived travel cost. This process results in the multinomial logit

model. According to this model, the probability that a traveler traveling on OD pair
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k ∈ K chooses path r ∈ Rk is

pr =
exp(−cr/θ)∑

r′∈Rk exp(−cr′/θ)
. (3.12)

We assume that travelers have common path choice probabilities in the equi-

librium state. This is because: 1) travelers use the same mechanism to determine

their path choice probability (that is, Eq. (3.12)), and 2) in the long run, travelers

will have enough samples of the travel times that allow them to evaluate the mean

and variance of travel times, hence they will experience the same travel cost c. In

order to study how traveler update their cost based their actual travel experience,

we need to specify a learning mechanism in which travelers update their path choice

probabilities. A specific learning mechanism will be considered in Chapter 5 when

we study a related inter-period dynamic model. However, we do assume that travel-

ers are aware of all the paths available to them and the travel costs of these paths.

Ramming (2002) examined the relationship between network knowledge and path

choice behavior. Nevertheless, we will not cover this topic in the thesis.

In the equilibrium state, the path choice probability p does not change over time,

and as a result, the (actual) travel cost c is also stationary. We further assume that

the perception errors are independent not only across the traveler population, but

also from day to day. This assumption ensures that for the same traveler the per-

ceived travel cost is random from day to day. Hence the traveler makes probabilistic

path choice decisions everyday.

The TSUE model seeks to find the equilibrium path choice probabilities. We

propose two equivalent formulations
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TSUE-FIX. Find hTSUE ∈ Sh, such that

cTSUE = c(hTSUE),

hTSUE
r = qk

exp(−cTSUE
r /θ)∑

r′∈Rk exp(−cTSUE
r′ /θ)

, ∀k ∈ K, r ∈ Rk.
(3.13)

TSUE-VI. Find hTSUE ∈ Sh, such that

cTSUE = c(hTSUE),(
cTSUE + θ log

hTSUE

q

)T (
h− hTSUE

)
> 0, ∀h ∈ Sh.

(3.14)

The first formulation is a fixed point formulation. The second formulation is a

variational inequality formulation. We note that the inequality in the TSUE-VI

formulation always holds as an equality (as shown in the proof). The next theorem

states the equivalence of these two formulations.

Theorem 3.1. The TSUE-FIX and TSUE-VI formulations for the TSUE model are

equivalent.

Proof. We first show that TSUE-FIX implies TSUE-VI. Suppose hTSUE satisfies the

TSUE-FIX formulation. For any OD pair k ∈ K, let πk = −θ log
(∑

r′∈Rk exp(−cTSUE
r′ /θ)

)
.

Then, according to Eq. (3.13), we have that

cTSUE
r + θ log

hTSUE
r

qk
= πk ∀k ∈ K, r ∈ Rk.
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For any h ∈ Sh, we have

(
cTSUE + θ log

hTSUE

q

)T (
h− hTSUE

)
=
∑
k∈K

∑
r∈Rk

πk
(
hr − hDUE

r

)

=
∑
k∈K

πk

∑
r∈Rk

hr −
∑
r∈Rk

hDUE
r


=
∑
k∈K

πk
(
qk − qk

)
= 0.

Hence hTSUE satisfies the TSUE-VI formulation.

Next we show that TSUE-VI implies TSUE-FIX. Suppose hTSUE satisfies the

TSUE-VI formulation Eq. (3.14). Notice that for any OD pair k ∈ K, we have

∑
r∈Rk

hTSUE
r = qk =

∑
r∈Rk

qk
exp(−cTSUE

r /θ)∑
r′∈Rk exp(−cTSUE

r′ /θ)
.

If, by contradiction, the TSUE-FIX formulation doesn’t hold, then there must

exist some OD pair k and paths r, s ∈ Rk, such that hTSUE
r > qk exp(−cTSUE

r /θ)P
r′∈Rk exp(−cTSUE

r′ /θ)

and hTSUE
s < qk exp(−cTSUE

s /θ)P
r′∈Rk exp(−cTSUE

r′ /θ)
. Let πk = −θ log

(∑
r′∈Rk exp(−cTSUE

r′ /θ)
)
.

Then we have that

cTSUE
r + θ log

hTSUE
r

qk
> πk > cTSUE

s + θ log
hTSUE
s

qk
. (3.15)

Consider the path flow vector defined in the following

hr′ =


hTSUE
r′ r′ 6= r, r′ 6= s,

0 r′ = r,

hTSUE
r + hTSUE

s r′ = s.
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This is clearly a feasible path flow, i.e., h ∈ Sh. But

(
cTSUE + θ log

hTSUE

q

)T (
h− hTSUE

)
=−

(
cTSUE
r + θ log

hTSUE
r

qk

)
hTSUE
r +

(
cTSUE
s + θ log

hTSUE
s

qk

)
hTSUE
r

<0.

The last line follows from Eq. (3.15) and the fact that hTSUE
r > 0. The above

inequality contradicts with the TSUE-VI formulation. Hence we proved that TSUE-

VI implies TSUE-FIX.

It is easy to see that when λ = 0, the TSUE-VI formulation reduces to the

SUE-VI formulation (Eq. (2.8)).

We further note that if we set λ = 0, and substitute the first-order approximation

of the travel time function in the TSUE model with a second-order approximation,

we obtain the GSUE model developed by Watling (2002). In the GSUE model, the

travel time function is approximated by, for any link l ∈ L,

tl(F ) ≈ ˆ̂tl(F ) = tl(f) + (∇tl(f))T (F − f) +
1
2

(F − f)T ∇2tl(f) (F − f) ,

where ∇tl(f) and ∇2tl(f) respectively give the gradient of Hessian matrix of func-

tion tl at f . Hence, the expected link travel time is

E[ˆ̂tl(F )] = tl(f) +
1
2

∥∥∇2tl(f),Cov(F )
∥∥ ,

where the scalar product of twom×nmatrices is defined as ‖X,Y ‖ =
∑m

i=1

∑n
j=1XijYij ,

and Cov(F ) is the covariance matrix of the link flows. We have Cov(F ) = ∆Cov(H)∆T.
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The (actual) travel cost of the GSUE model is

cGSUE = E[∆Tˆ̂t(F )]

= ∆Tt(f) +
1
2
∆T

∥∥∇2t(f),∆Cov(H)∆T
∥∥ . (3.16)

For networks with affine travel time functions, the GSUE model reduces to the SUE

model.

We provide the TSUE travel cost function for comparison

cTSUE = E[∆Tt̂(F )] + λVar(∆Tt̂(F ))

= ∆Tt(f) + λDiag
{
∆TJt (f) ∆Cov (H) ∆TJt (f) ∆

}
.

(3.17)

Both the TSUE and GSUE travel cost functions involve the covariance matrix of

link flows (∆Cov (H) ∆T). However, while the TSUE model relates to the first-order

derivatives of the travel time function, the GSUE model relates to the second-order

derivatives of the travel time function. The TSUE model incorporates the travel

time uncertainty in the travel cost, and hence this model can capture the influence

of travel time uncertainty on travelers’ behavior. This is not accomplished by the

GSUE model.

3.2 Alternative Approaches to Modeling Travel Costs

This section discusses alternative approaches to modeling travel costs that have been

previously used in transportation studies. These approaches share the same purpose

of turning the stochastic travel times into travel costs. Similar to the fact that

uncertainty in investment returns cause financial risk to investors, uncertain travel

times are also a form of risk for travelers. Risk can be modeled using operators

called risk measures. Given any distribution of travel times, a risk measure returns
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a deterministic scalar travel cost, which represents the risk level experienced by the

traveler. To be specific, let R(·) be a risk measure. Then for any path r ∈ R, we

have that

cr = R(Mr), (3.18)

where cr ∈ R is the travel cost for path r.

Previous studies of stochastic traffic networks models have adopted different ap-

proaches to choosing risk measures, and hence these studies used different forms of

operator R in Eq. (3.18). We list some of these approaches below. We restrict our

attention to traffic network modeling. For a general purpose review of optimiza-

tion under uncertainty, see Rockafellar (2007); for using random utility models in

the study of decision making under uncertainty, see de Palma et al. (2008). The

following list attempts to be comprehensive but not necessarily exhaustive.

Approach 1: Guessing a point

This approach identifies a single point in the travel time distribution as an estimate

of the travel cost. This is a commonly used approach in practice that essentially

avoids the issue of travel time uncertainty. Namely, let µr be the identified travel

time, we have that

cr = µr.

We point out that the SUE model can be interpreted as using this approach. By

interpreting the path choice probabilities as path choice proportions and obtaining

deterministic traffic flows, the SUE model essentially identifies a single point in the

traffic flow space, which by Eq. (3.2) is h = E[H]. Meanwhile, the SUE model also

identifies a single point in the travel time distribution, namely the travel time decided

by the identified traffic flow, which is µ = ∆T(∆h). The SUE model proceeds to
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take the travel time µ to be the same as the travel cost, that is, c = µ. Therefore,

the SUE model essentially obtains the travel costs by a single point estimation.

Approach 2: Relying on expectation

In this case, the travel cost is the expected travel time, namely

cr = E[Mr]. (3.19)

This approach corresponds to a special case of the expected utility approach

that we will introduce below. Although Eq. (3.19) is relatively easy to evaluate, this

approach effectively assumes that travelers are “risk-neutral”. As a result, it fails to

explicitly account for the impact of travel time uncertainty on the travel cost.

Travel costs defined as expected travel times will be distinguished from the travel

costs in the SUE model. In the SUE model, c = µ = ∆T(∆h) = ∆T(∆E[H]). But

Eq. (3.19) implies that c = E[M ] = E[∆T(∆H)]. These costs coincide if the

flow-time function is affine, but in general they are different.

This approach was adopted in the GSUE model studied by Watling (2002).

Approach 3: Expected utility analysis

Expected utility (EU) theory is perhaps the most widely used theory to study choices

under uncertainty. It proposes a utility function that transforms the uncertain out-

comes (here the travel times) into utilities and define the cost as the expected utility.

Let u(·) be the utility function, then we have that

cr = E[u(Mr)]. (3.20)
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Mirchandani and Soroush (1987) used this approach for stochastic network mod-

eling. Barberis and Thaler (2003) reviewed the drawbacks of the expected utility

approach. A few types of commonly used utility functions would result in the fol-

lowing risk measures

• Linear utility function. In this case cr = E[Mr];

• Quadratic utility function. In this case cr = E[Mr+bM2
r ], where b is a constant

parameter; and

• Exponential utility function. In this case cr = E[exp(bMr)], where b is a

constant parameter.

Approach 4: Cumulative prospect theory analysis

Tversky and Kahneman (1992) proposed a new framework for choice modeling. In

this framework, the outcomes of uncertain events are transformed by a utility func-

tion (as in the case of expected utility), meanwhile the probability weights of these

outcomes are also transformed by a probability weighting function to represent trav-

elers’ perceptions of these probabilities. In a recent work, Connors and Sumalee

(2009) proposed a stochastic network model that adopts this approach. Interested

readers should refer to their work for the details of this approach.

Approach 5: Worst-case analysis

The robust approach uses a fundamentally different idea to characterize travel time

uncertainty. Instead of assuming a probabilistic distribution of travel times, this

approach considers only the worst case travel time and hence is best suited to capture

the behavior of risk averse travelers. We include this approach here for completeness.
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3.3 Existence and Uniqueness of the Equilibrium Solu-

tion

In this section we discuss the existence and uniqueness of the TSUE equilibrium

solution.

3.3.1 Existence of the equilibrium solution

Existence of the equilibrium solution to the TSUE model is stated in the following

theorem. To prove this theorem, we apply Brouwer’s fixed point theorem to the

TSUE-FIX formulation.

Theorem 3.2. If the flow-time function t(·) is continuously differentiable, then the

TSUE model has at least one solution in Sh.

Proof. Consider the following function U that maps from Sh to Sh, with

Ur(h) = qk
exp(−cr/θ)∑

r′∈Rk exp(−cr′/θ)
, ∀k ∈ K, r ∈ Rk, (3.21)

where c = c(h) as defined in Eq. (3.11).

By the TSUE-FIX formulation, finding the solutions to the TSUE model is equiv-

alent to finding the fixed points of U . We now claim that U is a continuous function

of h. To prove this, it suffices to show that c is a continuous function of h. Since

t(·) is continuously differentiable, both t(·) and Jt(·) are also continuous functions.

By Eq. (3.11) we know that c is a continuous functions of h.

Thus U is a continuous function on a convex compact set Sh. By Brouwer’s fixed

point theorem, it must have at least one fixed point.

64



3.3.2 Uniqueness of the equilibrium solution

In general, the TSUE model can have multiple equilibria. Recall the proof for the

uniqueness of the SUE equilibrium solution (see, for example, Cascetta, 2001). The

literature requires that the travel cost function is monotone.

Definition 3.3. The cost function c(·) is monotone if for any h, h̃ ∈ Sh, it satisfy

the following condition

(
c(h)− c(h̃)

)T (
h− h̃

)
> 0.

If the inequality holds as a strict inequality for all h 6= h̃, then the cost function c(·)

is called strictly monotone.

Under this condition, the VI formulation of the SUE model implies that this

model must have a unique solution (for a proof, see Lemma 3.5).

For the TSUE model, the cost function has two components. One component

is the expected travel time (this is the same as in the SUE model). The other

component is the variance of the travel time multiplied by λ. While under mild

assumptions we can easily prove that the first term is monotone, the second term

can break the monotonicity assumption, because the variance of the travel time is

in general not a monotonic function of the path choice probabilities. Fortunately,

when λ is relatively small, the non-monotonicity of the variance term is dominated

by the monotonicity of the expectation term. As a result, the travel cost remains

a monotone function, and the uniqueness of the equilibrium solution still holds. In

what follows we prove this statement formally.

In the following discussion, we first present a few lemmas before we prove the

uniqueness theorem.
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Lemma 3.4. If h 6= h̃ ∈ Sh, with h, h̃ > 0, then the following inequality holds

(
log

h

q
− log

h̃

q

)T (
h− h̃

)
> 0.

Proof. For any OD pair k ∈ K, consider a path r ∈ Rk, since log pr is a strictly

increasing function of pr, we have that

(log pr − log p̃r) (pr − p̃r) > 0.

Multiplying by qk, we have that

(
log

hr
qk
− log

h̃r
qk

)(
hr − h̃r

)
> 0.

By summing up the above inequalities over all paths, we obtain the result in the

lemma.

Remark. In Chapter 4 we will prove a stronger version of this lemma. See Corollary

4.5.

Lemma 3.5. Consider a traffic network model. If the path travel cost function c(h)

is monotone, that is,

(
c(h)− c(h̃)

)T (
h− h̃

)
> 0, ∀h, h̃ ∈ Sh,

then the TSUE model has at most one solution.

Proof. Suppose, by contradiction, that the TSUE model has two different solutions
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h 6= h̃. By its VI formulation, we have that

(
c(h) + θ log

h

q

)T (
h̃− h

)
= 0,(

c(h̃) + θ log
h̃

q

)T (
h− h̃

)
= 0.

Summing up these two inequalities, we have that

(
c(h)− c(h̃)

)T (
h− h̃

)
+ θ

(
log

h

q
− log

h̃

q

)T (
h− h̃

)
= 0.

By assumption, the first term in the left hand side of the above equation is non-

negative. By Lemma 3.4, the second term is positive, hence

(
c(h)− c(h̃)

)T (
h− h̃

)
+ θ

(
log

h

q
− log

h̃

q

)T (
h− h̃

)
> 0,

which is a contradiction.

Lemma 3.6. Let x ∈ Rn be a vector. Let |x| represent the Euclidean vector norm

of x. Then the following relationship holds

|x| 6
n∑
i=1

|xi| 6
√
n |x| .

Proof. To prove the stated inequality, we only need to prove the following

n∑
i=1

x2
i 6

(
n∑
i=1

|xi|

)2

6 n

n∑
i=1

x2
i .

The left hand side follows easily. The right hand side follows from Cauchy’s inequal-

ity.

Theorem 3.7. Consider a traffic network with
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• an affine travel time function t(f) = Gf + b, where G is a positive definite

matrix,

• all the elements of matrix G are non-negative, and

• the mean-variance trade-off factor 0 < λ 6 1

2
√
|R|

νmin(∆TG∆)
νmax(∆TG∆)2

, where |R| is the

number of paths, ∆ is the link-path incidence matrix, and νmin (·) and νmax (·)

respectively give the smallest and largest eigenvalues of a matrix.

Then the TSUE model has at most one solution.

Remark. This is the main theorem proving the uniqueness of the solution. Briefly,

it states that when λ is sufficiently small, the TSUE solution is unique. In fact, the

upper bound on λ given in this theorem is more restrictive than actually necessary.

Computationally, even if we choose values greater than this upper bound for λ, the

TSUE model can still have a unique solution.

Proof. By Lemma 3.5, to prove this theorem, we only need to prove that c(h) is a

monotone function of h. Using Eq. (3.11), this means that for any h, h̃ ∈ Sh, the

following expression is nonnegative.

(
c(h)− c(h̃)

)T
(h− h̃)

=
(
∆T (G∆h+ b)−∆T(G∆h̃+ b)

)T
(h− h̃)

+ λDiag
{
∆TG

∑
k∈K

(
∆k
(
Cov(Hk)− Cov(H̃k)

)
(∆k)T

)
G∆

}T(h− h̃).

(3.22)

We consider the two terms in the above expression separately. For the first term
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in Eq. (3.22), we have that

(
∆T (G∆h+ b)−∆T(G∆h̃+ b)

)T
(h− h̃)

=(h− h̃)T∆TG∆(h− h̃)

>νmin

(
∆TG∆

) ∣∣∣h− h̃∣∣∣2 ,
(3.23)

where |·| represents Euclidean vector norm and νmin(∆TG∆) gives the smallest

eigenvalue of ∆TG∆. Note that ∆TG∆ is a symmetric and positive definite matrix,

hence all its eigenvalues are real and positive.

For the second term in Eq. (3.22), consider OD pair k ∈ K. For s, s′ ∈ Rk, the

(s, s′) component of the matrix
(

Cov(Hk)− Cov(H̃k)
)
is

(
Cov(Hk)− Cov(H̃k)

)
s,s′

= qk
(

diag{pk − p̃k} − pk(pk)T + p̃k(p̃k)T
)
s,s′

= qk
(
(ps − p̃s)δs,s′ − psps′ + p̃sp̃s′

)
= qk

(
(ps − p̃s)δs,s′ − psps′ + p̃sps′ − p̃sps′ + p̃sp̃s′

)
= qk

(
(ps − p̃s)(δs,s′ − ps′) + p̃s(p̃s′ − ps′)

)
,

where δs,s′ is the Kronecker delta function. Since |δs,s′ − ps′ | 6 1 and |p̃s| 6 1, we

have that ∣∣∣∣(Cov(Hk)− Cov(H̃k)
)
s,s′

∣∣∣∣
=qk

∣∣(ps − p̃s)(δs,s′ − ps′) + p̃s(p̃s′ − ps′)
∣∣

6qk
∣∣(ps − p̃s)(δs,s′ − ps′)∣∣+ qk |p̃s(p̃s′ − ps′)|

6
∣∣∣hs − h̃s∣∣∣+

∣∣∣h̃s′ − hs′∣∣∣ .
(3.24)
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To simplify our notations, let Ḡ = ∆TG∆. We have that

(
Diag

{
∆TG

∑
k∈K

(
∆k
(
Cov(Hk)− Cov(H̃k)

)
(∆k)T

)
G∆

})
r

=

(
∆TG

∑
k∈K

(
∆k
(
Cov(Hk)− Cov(H̃k)

)
(∆k)T

)
G∆

)
r,r

=
∑
k∈K

∑
s,s′∈Rk

Ḡr,sḠr,s′
(

Cov(Hk)− Cov(H̃k)
)
s,s′

.

Because the elements of both matrices ∆ and G are nonnegative, the elements

of matrix Ḡ must be nonnegative. Taking the norm and applying Eq. (4.18), we

have that ∣∣∣∣∣∣
(

Diag

{
∆TG

∑
k∈K

(
∆k
(
Cov(Hk)− Cov(H̃k)

)
(∆k)T

)
G∆

})
r

∣∣∣∣∣∣
6
∑
k∈K

∑
s,s′∈Rk

Ḡr,sḠr,s′

∣∣∣∣(Cov(Hk)− Cov(H̃k)
)
s,s′

∣∣∣∣
6
∑
k∈K

∑
s,s′∈Rk

Ḡr,sḠr,s′
(∣∣∣hs − h̃s∣∣∣+

∣∣∣hs′ − h̃s′∣∣∣)
=2

∑
s,s′∈R

Ḡr,sḠr,s′
∣∣∣hs − h̃s∣∣∣ .

Applying Lemma 3.6, we have that

∣∣∣∣∣Diag

{
∆TG

∑
k∈K

(
∆k
(
Cov(Hk)− Cov(H̃k)

)
(∆k)T

)
G∆

}∣∣∣∣∣
62
∑
r∈R

∑
s,s′∈R

Ḡr,sḠr,s′
∣∣∣hs − h̃s∣∣∣

=21ḠḠd

62 |1|
∥∥ḠḠ∥∥ |d|

=2
√
|R|νmax

(
∆TG∆

)2 ∣∣∣h− h̃∣∣∣ ,
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where 1 is the column vector of all 1’s (with dimension |R|× 1), d is the vector with

its sth component being
∣∣∣hs − h̃s∣∣∣, and ‖·‖ denotes the Euclidean matrix norm. The

last line follows from the facts that (1) |1| =
√
|R|, |d| =

∣∣∣h− h̃∣∣∣, and (2)
∥∥ḠḠ∥∥ =∥∥Ḡ∥∥2 =

∥∥∆TG∆
∥∥2 = νmax

(
∆TG∆

)2.
Now return to the second term in Eq. (3.22). We have that

Diag
{
∆TG

∑
k∈K

(
∆k
(
Cov(Hk)− Cov(H̃k)

)
(∆k)T

)
G∆

}T(h− h̃)

>−

∣∣∣∣∣Diag

{
∆TG

∑
k∈K

(
∆k
(
Cov(Hk)− Cov(H̃k)

)
(∆k)T

)
G∆

}∣∣∣∣∣ ∣∣∣h− h̃∣∣∣
>− 2

√
|R|νmax

(
∆TG∆

)2 ∣∣∣h− h̃∣∣∣2 .
(3.25)

Plugging Eq. (3.23) and (3.25) to Eq. (3.22), we have that

(
c(h)− c(h̃)

)T
(h− h̃)

>
(
νmin

(
∆TG∆

)
− 2λ

√
|R|νmax

(
∆TG∆

)2) ∣∣∣h− h̃∣∣∣2 .
Therefore, when λ 6 1

2
√
|R|

νmin(∆TG∆)
νmax(∆TG∆)2

, the above expression is nonnegative.

By Lemma 3.5, the TSUE model has at most one solution.

3.4 Solution Algorithms

In the previous sections, we have formulated the TSUE model both as a fixed point

problem (Eq. (3.13)) and as a variational inequality problem (Eq. (3.14)). In Theo-

rem 3.7, we provided conditions under which the TSUE travel cost c = c(h), defined

in Eq. (3.11), is a monotone function. Under this condition, and by Lemma 3.4,

function
(
c(h) + θ log h

q

)
in the variational inequality formulation is strictly mono-

tone. Many algorithms already exisit for solving variational inequality problems with

strictly monotone (or strongly monotone) functions (see, for example, the projection
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and relaxation method discussed in Nagurney, 1999). We can solve the TSUE model

by applying these algorithms.

However, the conditions developed in Theorem 3.7 are very restrictive. In general

cases we can not ensure the strict monotonicity of function
(
c(h) + θ log h

q

)
, and

hence we are not guaranteed that the traditional algorithms in the literature will

converge to a solution. This motivates us to develop special algorithms to solve the

TSUE model in order to find the equilibrium solution for general networks.

In this section we describe two algorithms for solving the TSUE model. The first

algorithm (using the PATH solver) only works for small-scale networks (|R| < 50).

The second algorithm (a modified Frank-Wolfe algorithm) works well for medium

and large scale networks (|R| > 50). Nevertheless, we would like to point out that

for small-scale networks, the first algorithm is faster.

3.4.1 An algorithm solving the mixed complementarity formulation

To apply this algorithm, we first reformulate the problem as a set of nonlinear

equations. We interpret these equations as a mixed complementarity problem, and

then apply a standard solver (PATH) to solve the mixed complementarity problem.

The fixed point formulation of the TSUE model (Eq. (3.13)) implies that, for

any k ∈ K, r ∈ Rk, the following is true

cTSUE
r + θ log

hTSUE
r

qk
= −θ log

 ∑
r′∈Pk

exp
(
−
cTSUE
r′

θ

) .

We define the right hand side as a new variable π, i.e., for any k ∈ K, define the

component πk of vector π as

πk = −θ log

 ∑
r′∈Pk

exp
(
−
cTSUE
r′

θ

) .
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Then we have that

cTSUE + θ log
hTSUE

q
− ΓTπ = 0.

With this new variable, the TSUE model can be formulated as a set of nonlinear

equations, that is, find h ∈ R|R|+ and π ∈ R|K|, such that

 c(h) + θ log h
q − ΓTπ

Γh− q

 = 0. (3.26)

Here the presence of the term log h
q requires that h > 0. This requirement, together

with equation Γh − q = 0, ensures that h ∈ Sh. The above formulation can be

solved using standard methods described in text books (see, for example, Chapter

11 of Nocedal and Wright, 2006).

Eq. (3.26) can also be viewed as a mixed complementarity problem (MCP). In

this thesis, we use the PATH solver (see Ferris and Munson, 1999) to solve the TSUE

model.

3.4.2 The modified Frank-Wolfe algorithm

The second algorithm is a modification of the Frank-Wolfe algorithm that is com-

monly used to solve traffic equilibrium models (see, for example, Bell and Iida,

1997). The Frank-Wolfe algorithm and its modifications are frequently used to solve

the SUE model (see, for example, Damberg et al. 1996, Maher 1998, and Bekhor

and Toledo 2005).

The proposed algorithm for the TSUE model is as follows.

1. (initialization)

(a) Set p′r ← 1
|Rk| , for all k ∈ K, r ∈ Rk.

(b) Set n← 1.
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2. (auxiliary link flows)

(a) Set c′ ← c(p′).

(b) Set p∗r ←
exp(−cr/θ)P

r′∈Rk exp(−cr′/θ)
, for k ∈ K, r ∈ Rk.

3. (approximate line search)

(a) Set p′ ← the minimizer of |U(p) − p| where p = p′ + α(p∗ − p′), with

0 6 α 6 1
n . This is done by an approximate line search.

(b) Set n← n+ 1.

(c) If the convergence criterion is satisfied (i.e., |U(p)− p| < 10−4), exit the

algorithm. Otherwise, go to Step 2.

In the above algorithm, function U(p) is defined in Eq. (3.21).

The approximate line search in Step 3(a) is performed using a heuristic algorithm.

Many standard line search algorithms exist in the literature (see, for example, No-

cedal and Wright, 2006 and Gill et al., 1982). However, these algorithms typically

work under the conditions that (1) the objective function is convex and/or (2) the

moving direction is a descent direction. Neither of these two conditions necessarily

hold in our case. Hence we develop the following heuristic line search algorithm.

The purpose of this heuristic is to decide an optimal step length that mini-

mizes the objective defined in Step 3(a). For this purpose, we sequentially try

the following step lengths: α = 1
n , α = 1

2n , α = 1
4n , α = 1

8n , etc. Let y(α) =

|U (p′ + α(p∗ − p′))− (p′ + α(p∗ − p′))| be the objective function. Ideally we ar-

rive at some step length α = α0 such that y(α0) 6 y(0) and y(α0) 6 y(2α0). This

ensures that function y has a local minimum in [0, 2α0]. Then we make a quadratic

approximation of function y using its value at α = 0, α = α0, and α = 2α0, and set

the step length α = α∗ to be the minimizer of this quadratic approximation (α∗ must
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satisfy 0 6 α∗ 6 2α0 because y(α0) 6 y(0) and y(α0) 6 y(2α0)). If we cannot find a

step length α0 that satisfies the above requirements after trying for 10 different step

lengths, we will set α = 1
n . The line search algorithm is as follows

1. (initialization)

(a) Set maxi←10.

(b) Set i← 1.

(c) Set α← 1
n .

(d) Set obj(0)← |U(p′)− p′|

2. (try a new point)

(a) Set p← p′ + α(p∗ − p′).

(b) Set obj(i)← |U(p)− p|.

(c) If i > 2 and obj(i) > obj(i− 1), then set α = 1
n and go to Step 4.

(d) If i = maxi, then set α = 1
n and go to Step 4.

(e) If i > 2 and obj(i) 6 obj(i − 1) and obj(i) 6 obj(0), then let α ←
α
2
obj(i−1)+3obj(0)−4obj(i)
obj(i−1)+obj(0)−2obj(i) and go to Step 3.

(f) Set i← i+ 1.

(g) Set α← α/2.

(h) Go to Step 2.

3. (moving the point)

(a) Set p← p′ + α(p∗ − p′).
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In the numerical experiment section we will consider a large-scale network with

26,400 paths, and as a result, we will use the second algorithm. We would also like

to point out that the first algorithm fails to converge for some network instances

with |R| > 50.

3.5 Numerical Results on Test Networks

In this section we present the numerical results of our new model on test networks.

We first investigate the convergence speed of our proposed algorithm. Next we

study the equilibrium solution of the new TSUE model, compare it with the SUE

equilibrium solution, and state the implications of the results on traffic network

modeling.

3.5.1 Convergence speed of solution algorithm

In this subsection we investigate how fast our proposed algorithm converges to the

equilibrium solution. For this purpose we solve the TSUE model for the Sioux

Falls network (see Figure B.3 in the appendix). This network is commonly used by

transportation modelers to test algorithm performances. It has 24 nodes, 76 links,

528 OD pairs, and 1,632,820 simple paths (a simple path is a path that has no

repeating nodes). Most of these paths are not used by travelers. In practice, for

each OD pair, we select the 50 shortest paths in terms of the free-flow travel time.

In total 26,400 paths are selected. We restrict our attention to these paths. The

network assumes BPR type link travel time functions (see Eq. (2.2)).

Using the proposed algorithm, we solve the TSUE model for the Sioux Falls

network. The TSUE model has two parameters, namely, θ, the perception dispersion

level, and λ, the mean-variance trade-off factor. For the numerical study in this

chapter we fix θ = 1. We will investigate the influence of θ on traffic equilibrium
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models in the next chapter. For the Sioux Falls network we pick λ = 0, 100, and

200. We will explain how we pick these values in the following subsection.

Recall that the TSUE model has a fixed point formulation U(p) = p (See

Eq. (3.21)). The convergence speed of an algorithm can be measured in terms

of |U(p)− p|, that is, the Euclidean norm of (U(p)− p). The convergence of the

proposed algorithm is shown in Figure 3.1 and Table 3.1. In the figure and table, the

label TSUE(0) stands for the TSUE model with λ = 0 (i.e., the SUE model), and the

label TSUE(100) stands for the TSUE model with λ = 100, etc. The average rate of

convergence is defined as
(
|U(pn)− pn| /

∣∣U(p0)− p0
∣∣) 1

n , where n is the number of

iterations, p0 is the initial value for the path choice probability, and pn is the path

choice probability at Step n.
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Figure 3.1: Convergence speed of the proposed TSUE algorithm.

From the numerical results we observe that

• For the Sioux Falls network, the TSUE algorithm converges in a few hundred
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Model Number of iterations Run time (sec) Ave. rate of convergence
TSUE(0) 184 83.34 0.935
TSUE(100) 284 131.84 0.958
TSUE(200) 352 167.37 0.966

Table 3.1: Number of iterations and run time of the proposed TSUE algorithm.

iterations. On a personal computer with a 3.00 GHz dual core CPU, the total

computation time is less than three minutes (see Table 3.1). This indicates

that the algorithm can be applied to large scale networks.

• This algorithm converges approximately linearly to the TSUE equilibrium (see

Figure 3.1; note that the error is plotted in log scale). This meets our ex-

pectation that Frank-Wolfe type algorithms in general converge linearly or

sublinearly (see, for example, Bertsekas, 1995).

• As λ increases, the convergence speed becomes slower (see Table 3.1). This

indicates that the extra variance term in the travel cost makes the convergence

slower. However, even for very large values of λ, the algorithm still converges,

although it uses more iterations. For example, when λ = 10, 000, the algorithm

converges after 3000 iterations (by convergence, we mean |U(p)− p| < 10−4).

3.5.2 Numerical results on the TSUE equilibrium

To study the TSUE model we introduced, we need to examine the relative magnitude

of the mean travel time and the variance of the travel time. As noted before, when

λ = 0, the TSUE model reduces to the SUE model, that is, the expected TSUE

equilibrium flows are equal to the SUE equilibrium flows, and the TSUE path choice

probabilities are equal to the SUE path choice probabilities. (Note that the TSUE

and SUE interpret these probabilities differently. See our discussion in Section 3.1.1.)

With these path choice probabilities we can evaluate E[Mr] (i.e., the expected path
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travel time for any path r ∈ R) and Var(Mr) (i.e., the variance of the path travel

time for any path r ∈ R).

In general, we call Var(Mr)
E[Mr]

the variance-to-mean (VM) ratio for path r. For

any link l ∈ L, let Tl be the random variable for the travel time on link l. We

call Var(Tl)
E[Tl]

the variance-to-mean (VM) ratio for link l. The VM ratio measures the

level of travel time uncertainty experienced on a path or a link. We further define

the median variance-to-mean (MVM) ratio for the network as the median value of

the VM ratio of all the paths, weighted by the their expected path flows (that is,

E[H]). The MVM ratio measures the level of travel time uncertainty experienced

by a typical traveler. It has the following interpretation: on average, 50% of the

travelers travel on a path r that has a VM ratio less than the MVM ratio.

The MVM ratio is helpful when picking the value of λ for the TSUE model. As

a rule of thumb, for the numerical tests in this chapter and next chapter, we will

pick values of λ to be roughly 0.1 or 0.2 divided by the MVM ratio. This implies

that for a typical traveler, the travel cost attributed to the travel time uncertainty

is roughly 10% or 20% of that attributed to the mean travel time.

The TSUE equilibrium with λ = 0

We present results related to the VM ratio in Figures 3.2a and 3.2b.

Figure 3.2a shows the mean path travel time relative to the variance of the path

travel time. In this figure, each path r ∈ R is represented by a circle. The coordinates

of the circle’s center are the mean and variance of path r’s travel time. The area

of the circle is proportional to the expected flow on path r, i.e., E[Hr]. (The figure

shows 740 paths, i.e., 740 circles, out of all 26,400 paths. Other paths have very

small expected flows, hence they are not shown in the figure.) This figure implies

that the mean path travel time is positively correlated with the variance of the path
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Figure 3.2: Mean and variance of the path travel time for the TSUE equilibrium
with λ = 0.
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travel time. The correlation coefficient is 0.66.

Figure 3.2b shows the cumulative distribution of the path VM ratio, weighted

by the expected path flow. This figure implies that, on average, 50% of the travelers

choose a path with VM ratio less than 0.86 × 10−3, 80% of the travelers choose a

path with VM ratio between 0.12 × 10−3 and 2.5 × 10−3, and almost no travelers

choose a path with VM ratio greater than 3.1 × 10−3. We provide the quantiles of

the path VM ratio in Table 3.2.

Quantile 0.01 0.10 0.25 0.50 0.75 0.90 0.99
Path VM ratio (10−3) 2.1e-5 0.12 0.39 0.86 1.6 2.5 3.1

Table 3.2: Quantiles of the path VM ratio for the TSUE(0) equilibrium solution.

The above result has important implications on choosing the value of λ for the

TSUE model. The TSUE travel cost has two components. The first component is

E[Mr], and the second component is λVar(Mr). Consider the following example,

if λ = 100, then on average, for 50% of the travelers, the travel cost attributed to

the travel time uncertainty is no more than 10% of that attributed to the mean

travel time. For 80% of the travelers, the travel cost attributed to the travel time

uncertainty is between 1% to 25% of that attributed to the mean travel time.

The TSUE equilibrium with λ > 0

We are now in a position to solve the TSUE model. For the purpose of presentation

we will choose two values of λ, that is, λ = 100 and λ = 200. We are particularly

interested in two questions: 1) how different are the TSUE solutions from the SUE

solution and GSUE solutions, and 2) what can we learn from these differences.

To show the difference of the TSUE solutions from the SUE and GSUE solutions,

we investigate the mean travel time in both the path space and the flow space.

We measure the relative change of the mean travel time and the mean traffic flow
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in the TSUE and GSUE solutions compared to the SUE solution (i.e., the TSUE

equilibrium with λ = 0). Figures 3.3a and 3.3b present these results.

Figure 3.3a plots the cumulative distribution of the relative change of the mean

path travel time experienced by users. This figure implies that, for example, in the

case of λ = 100, on average around 20% of the travelers will experience at least 5%

less mean travel time compared to the predicted travel time of the SUE model.

Figure 3.3b plots the cumulative distribution of the relative change of the mean

link traffic flow. For example, in the case of λ = 200, the TSUE model predicts a

longer mean travel time on about 50% of the links. The gap is up to 17% of the

mean travel time predicted by the SUE model. On the other hand, the TSUE model

also predicts about 9% less mean travel time on some link. (See Table 3.3.)

Rel. change in the mean link flow
Quantile GSUE TSUE(100) TSUE(200)
0.01 -0.0038 -0.0605 -0.0976
0.10 -0.0025 -0.0466 -0.0734
0.25 -0.0010 -0.0162 -0.0277
0.50 0.0005 0.0029 0.0042
0.75 0.0008 0.0213 0.0340
0.90 0.0014 0.0413 0.0746
0.99 0.0019 0.1086 0.1777

Table 3.3: Quantiles of the relative change in the mean link traffic flow.

We also conclude from Figures 3.3a and 3.3b and Table 3.3 that the mean travel

time and traffic flow predicted by the GSUE model is close to that of the SUE model.

This shows that accounting for the second-order term in the travel time function does

not significantly change the equilibrium solution. This justifies our use of the first

order approximation in the TSUE model.

We further investigate the changes in the predicted link flows of the TSUE model.

To understand how travel time uncertainty influences the equilibrium link flows, we

plot the relative change of expected link flows against the link travel time uncertainty
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Figure 3.3: Relative change in mean travel time and traffic flow of the TSUE and
GSUE equilibrium solutions, compared to the SUE equilibrium solution.
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level. For link l ∈ L, we measure the link travel time uncertainty level using its VM

ratio, i.e., Var(Tl)
E[Tl]

. The results are shown in Figure 3.4a (the case of λ = 100) and

3.4b (the case of λ = 200). Both figures indicate that the link VM ratio is negatively

correlated with the link flow. When λ increases, the influences become more obvious.

This is a strong evidence that the SUE model underestimates flows on links with

high VM ratio and underestimates flows on links with low VM ratio.
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Figure 3.4: The SUE model under-estimates flows on links with high VM ratio and
over-estimate flows on links with low VM ratio.
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Chapter 4

Benchmarking the Traffic Network

Equilibrium Models with Respect

to the System Cost

Given a traffic network with fixed traffic demands1, we can build different traffic

equilibrium models (see Chapter 2). Each of these equilibria predicts a total system

cost (for example, the total traverse time) for the traffic system. It is important

to study the total system cost and how it relates for each model, for the following

reasons.

First, this study allows us to understand different traffic network equilibrium

models using a common measure. This contributes to our understanding of each of

the individual models and their relationship.

Second, since all traffic network equilibrium models are simplifications of reality,

by evaluating the system cost with different models, we achieve a better understand-

ing of the system cost and its possible range in a real traffic network.

1In this chapter, by traffic demands we refer to the OD pair flow.
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Closely related to the concept of the system cost is the system optimum (SO)

model. The SO model assumes that a central planner is in full control of the flows

in the network and optimizes the flows in order to minimize the system cost. This

assumption contrasts with the assumption of a selfish and non-cooperative routing

behavior in the traffic equilibrium models. The system cost is a measure of the

overall performance of the traffic network. For example, the lower the total travel

cost is, the more efficient is the traffic system. Hence the gap between the system

cost in equilibrium and the optimal system cost measures the loss of system efficiency

due to the selfish routing behavior of network users. Our study will also address this

issue.

In this chapter we consider the following models: the DUEmodel, the SUEmodel,

the TSUE model, and the SO model. This chapter is organized as follows. Section 4.1

introduces notations and defines the system cost for traffic network models. Section

4.2 establishes upper bounds for the TSUE system cost. Section 4.3 illustrates the

tightness and quality of the bounds.

4.1 The System Cost

Throughout this chapter we restrict our attention to traffic networks with affine,

symmetric and positive semidefinite travel time functions. That is, the path travel

time is

µ(h) = Gh+ b,

where G is a symmetric and positive semidefinite matrix and b is a constant vec-

tor (the vector of free-flow path travel times). To keep our notations simple, all

discussions in this section will be conducted in the path space.

In the following, we will define the system cost for the following models: the
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DUE and SUE models, the SO model, and the TSUE model.

4.1.1 The system cost for the DUE and SUE models

For deterministic models, the system cost, defined as the aggregate travel time ex-

perienced by all users, is z(h) = µTh = (Gh + b)Th. In particular, let hDUE and

hSUE(θ) be the vectors of equilibrium path flows for the DUE and SUE models,

respectively, then

zDUE =
(
GhDUE + b

)T
hDUE,

zSUE(θ) =
(
GhSUE(θ) + b

)T
hSUE(θ).

Note that the SUE model is parameterized by the perception dispersion level θ,

whose range is (0,∞). We consider two extreme cases of the SUE model:

Case 1: θ → 0. Zero perception dispersion level implies that users have accu-

rate perceptions of their travel times. Hence the SUE model reduces to the DUE

model. We define hSUE(0) = limθ→0+ hSUE(θ) and zSUE(0) = limθ→0+ zSUE(0).

Then hSUE(0) = hDUE and zSUE(0) = zDUE. This fact is formally stated in Propo-

sition 4.1 below.

Proposition 4.1. Consider a traffic network with a continuous travel time function

t(·). If there exists a positive number δ > 0, such that for all θ ∈ (0, δ), the SUE

model has a unique solution and hSUE(0) = limθ→0+ hSUE(θ) exists, then hSUE(0) is

a solution to the DUE model.

Proof. By the SUE-VI-PATH formulation (see Eq. (2.8)), for all θ ∈ (0,∞), the

following equation holds for all h ∈ Sh

(
c
(
hSUE(θ)

)
+ θ log

hSUE(θ)
q

)T (
h− hSUE(θ)

)
= 0.
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That is,

c
(
hSUE(θ)

)T (
h− hSUE(θ)

)
=θ
(

log
hSUE(θ)
q

)T

hSUE(θ)− θ
(

log
hSUE(θ)
q

)T

h.

Since t(·) is continuous, c(·) is continuous as well. Taking θ to 0 from above, we

have that

c
(
hSUE(0)

)T (
h− hSUE(0)

)
= lim
θ→0+

(
θ

(
log

hSUE(θ)
q

)T

hSUE(θ)− θ
(

log
hSUE(θ)
q

)T

h

)
.

We claim that
(

log hSUE(θ)
q

)T
hSUE(θ) is bounded for all θ ∈ (0, δ). To prove this,

we only need to show that for all k ∈ K, r ∈ Rk,
(

log hSUE
r (θ)
qk

)
hSUE
r (θ) is bounded.2

By taking derivatives, we can show that
(

log x
qk

)
x is a convex function of x for

x > 0, and it takes its minimum value at x = qk

e . Hence
(

log hSUE
r (θ)
qk

)
hSUE
r (θ) >

− qk

e . Furthermore we notice that hSUE
r (θ) 6 qk. Thus

(
log hSUE

r (θ)
qk

)
hSUE
r (θ) 6 0.

Therefore,
(

log hSUE
r (θ)
qk

)
hSUE
r (θ) is bounded. As a result,

lim
θ→0+

θ

(
log

hSUE(θ)
q

)T

hSUE(θ) = 0,

which means that

c
(
hSUE(0)

)T (
h− hSUE(0)

)
= − lim

θ→0+
θ

(
log

hSUE(θ)
q

)T

h.

Since
(

log hSUE(θ)
q

)T
h is always non-positive, we have that limθ→0+ θ

(
log hSUE(θ)

q

)T
h 6

2In fact, we can show that 0 >
“
log hSUE(θ)

q

”T

hSUE(θ) >
“
log hINF

q

”T

hINF, where hINF is
defined in Eq. (4.1).
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0. This implies that

c
(
hSUE(0)

)T (
h− hSUE(0)

)
> 0, ∀h ∈ Sh.

This coincides with the DUE-VI-PATH formulation, namely, Eq. (2.4). Hence

hSUE(0) is a solution to the DUE model.

Case 2: θ → ∞. In this case travelers are assumed to have very large per-

ception errors. According to the random utility model, travelers should have equal

probabilities of choosing any of the available paths. Let

hINF = lim
θ→∞

hSUE(∞). (4.1)

By the SUE-FIX formulation (see Eq. (2.7)) and the fact that the cost function c(·)

is bounded, we have hINF
r = qk

|Rk| for any k ∈ K, r ∈ Rk. Let zINF = limθ→∞ z
SUE(θ),

then

zINF =
(
GhINF + b

)T
hINF.

4.1.2 The system cost for the SO model

Next we define the system cost for the system optimum model. It has the following

optimization formulation.

SO-OPT. Find the minimizer hSO ∈ Sh of the following minimization problem

min
h∈Sh

(Gh+ b)T h. (4.2)

Let hSO be the vector of the SO path flows. Then the SO system cost is

zSO =
(
GhSO + b

)T
hSO.
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By this optimization formulation, we have that zDUE > zSO, zINF > zSO, and

zSUE(θ) > zSO, for all θ ∈ [0,∞).

4.1.3 The system cost for the TSUE model

Lastly, we define the system cost for the TSUE model. We consider two different

definitions of the TSUE system cost.

In the first definition, we define the TSUE system cost as the system cost of the

expected flow, namely

zTSUE(θ, λ) =
(
GhTSUE(θ, λ) + b

)T
hTSUE(θ, λ). (4.3)

In this equation, hTSUE(θ, λ) is the expected equilibrium path flow of the TSUE

model. In the special case of λ = 0, since hTSUE(θ, 0) = hSUE(θ), it also follows

that zTSUE(θ, 0) = zSUE(θ). This definition is a natural extension to the definitions

of the DUE, SUE and SO system costs. It keeps the functional form of the previous

definitions and hence allows us to compare these system costs in a consistent manner.

Alternatively, we can define the TSUE system cost as the expected system cost.

Unlike the deterministic models such as the DUE and SUE models, the TSUE model

assumes that traffic flows and travel times are random variables. As a result the

aggregate travel cost experienced by all users is a random variable. LetHTSUE(θ, λ)

be the vector of equilibrium path flows of the TSUE equilibrium. Then the TSUE

system cost is defined as

z̃TSUE(θ, λ) = E
[(
GHTSUE(θ, λ) + b

)T
HTSUE(θ, λ)

]
.

Here θ is the perception dispersion level, and λ is the mean-variance trade-off factor.

Let hTSUE(θ, λ) = E[HTSUE(θ, λ)]. When λ = 0, the TSUE model reduces to the
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SUE model. As a result, the expected flows in the TSUE equilibrium are equal to

the flows in the SUE equilibrium, i.e.,

hTSUE(θ, 0) = hSUE(θ). (4.4)

However, the deterministic system cost for the SUE model is not necessarily equal

to the expected system cost for the TSUE model.

For simplicity, in the following discussion we will omit the parameters θ and λ

in the expression. For example, we will write HTSUE instead of HTSUE(θ, λ). For

arbitrary θ ∈ (0,∞), λ ∈ [0,∞), we have

z̃TSUE = E
[(
HTSUE

)T
GHTSUE

]
+ bThTSUE

=
∑
r,r′∈R

Gr,r′E
[
HTSUE
r HTSUE

r′
]

+ bThTSUE

=
∑
r,r′∈R

Gr,r′
(
hTSUE
r hTSUE

r′ + Cov
(
HTSUE
r , HTSUE

r′
))

+ bThTSUE

=
(
hTSUE

)T
GhTSUE +

∑
r,r′∈R

Gr,r′Cov
(
HTSUE
r , HTSUE

r′
)

+ bThTSUE

=
(
GhTSUE + b

)T
hTSUE + eT

(
G ◦ Cov

(
HTSUE

))
e,

where e is a column vector of all 1’s, Cov
(
HTSUE

)
is the covariance matrix of

HTSUE, and A ◦ B denotes the Hadamard product of two matrices of the same

dimension, with (A ◦B)i,j = Ai,jBi,j .

The above result suggests that, when λ = 0, by Eq. (4.4), we have that

z̃TSUE(θ, 0) = zSUE(θ) + eT
(
G ◦ Cov

(
HTSUE(θ, 0)

))
e. (4.5)
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In general, we have the following relationship between these two definitions.

z̃TSUE(θ, λ) = zTSUE(θ, λ) + eT
(
G ◦ Cov

(
HTSUE(θ, λ)

))
e. (4.6)

4.2 Bounds for the System Cost

In this section we will develop three bounds for the TSUE system cost. These

bounds establish the relationship between the TSUE system cost and the system

costs of other models. Section 4.2.1 briefly reviews previous studies on the system

cost. Section 4.2.2 introduces three upper bounds for the TSUE system cost. In the

special case of λ = 0, these bounds reduces to upper bounds for the SUE system cost.

We present a number of lemmas necessary to prove these bounds in Section 4.2.3.

The proofs are shown in Section 4.2.4. We discuss the tightness of these bounds in

Section 4.2.5.

4.2.1 Literature review

The system optimum model was initially formulated by Wardrop (1952). Wardrop’s

second principle states: “at equilibrium the average journey time is minimum”. Our

formulation of the system optimum model follows this principle.

Maher et al. (2005) formulated the Stochastic System Optimum (SSO) model.

The system cost for the SSO model, in addition to accounting for the total travel

times, also includes travelers’ perception errors. However, because we focus on the

total travel time in this chapter, we will not address the SSO model.

Roughgarden and Tardos (2002) were perhaps the first to study the loss of effi-

ciency between the user equilibrium and system optimum in transportation networks.

They provided an upper bound for the ratio of the DUE system cost over the SO

system cost. They called the ratio price of anarchy, following Koutsoupias and Pa-
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padimitriou (1999), who initially coined the term in the context of a load balancing

game. The price of anarchy is a measure of the efficiency loss due to the selfish rout-

ing behavior of travelers. Roughgarden and Tardos (2002) proved that for networks

with affine and separable travel time functions, the DUE system cost is at most 4
3

of the system optimal cost. That is,

zDUE 6
4
3
zSO. (4.7)

Roughgarden (2002) subsequently generalized the bound for special classes of

separable and nonlinear travel time functions (such as polynomials). Correa et al.

(2004) studied the “price of anarchy” for capacitated networks. See also, among

others, Chau and Sim (2003) and Correa et al. (2008).

Perakis (2007) extended the above results to networks with nonlinear and asym-

metric travel time functions (with positive semidefinite Jacobian matrix). She proved

that

zDUE

zSO
6


4

4−c2A if c2 6 2
A ,

c2A2 − 2(A− 1) if c2 > 2
A ,

(4.8)

where c measures the degree of “asymmetry” of the travel time function t(·) (with

c = 1 if the Jacobian matrix of t(·) is symmetric and c > 1 otherwise), and A

measures the degree of “nonlinearity” of t(·) (with A = 1 if t(·) is affine and A > 1

otherwise). This bound reduces to Eq. (4.7) for affine and symmetric link travel

time functions. Furthermore, it was shown that this bound is tight.

Guo and Yang (2005) were perhaps the first to develop a bound for the SUE

system cost. They considered networks with separable and non-decreasing travel

time functions. Let tl(·) be the travel time function on link l. Following Roughgarden
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(2002), for each link, they defined

γl = sup
f,f ′>0

(tl(f)− tl(f ′))f ′

tl(f)f
.

For the whole network, they defined

γ = max
l∈L

γl.

For example, for networks with separable affine travel time functions, we have that

γ = 1
4 . For networks with more general travel time functions, we have that 1

4 6 γ < 1.

Guo and Yang showed that

zSUE(θ) 6
1

1− γ
(
zSO + θB

)
, (4.9)

where B is a network specific constant, defined as

B =
∑
k∈K

qkK(|Rk|).

Here |Rk| is the number of paths available to travelers of OD pair k, and K(·) is a

function defined as follows. For any positive integer n, K(n) is a positive real number

that solves the following equation

KeK+1 = n− 1.

It is easy to show that this equation has a unique solution. The numerical values of

this function for some values of |Rk| are shown in Table 4.1.

The bound in Eq. (4.9) grows linearly as a function of θ. For networks with

affine travel time functions, it reduces to the bound in Eq. (4.7) when θ → 0. This
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|Rk| 1 10 102 103 104 105

K(|Rk|) 0 1.10 2.63 4.42 6.36 8.39

Table 4.1: Numerical values of K(|Rk|).

bound grows to infinity when θ →∞.

We note that the performance of this bound is unsatisfactory for both extreme

cases. When θ → 0, we know zSUE(0) 6 zDUE in addition to zSUE(0) 6 4
3z

SO. The

first bound is stronger than the second bound because zDUE 6 4
3z

SO . When θ →∞,

we know that zSUE(∞) 6 zINF, i.e., the bound is finite. These observations motivate

us to develop new and stronger bounds for the TSUE system cost in the following

subsection.

4.2.2 Bounds for the TSUE system cost

We develop three upper bounds for zTSUE(θ, λ) defined in Eq. (4.3). These bounds

benchmark zTSUE(θ, λ) against the total travel times for the various models, that is,

zDUE, zSO and zINF, respectively. These bounds are as follows (refer to Theorem 4.8,

4.9 and 4.10 for the formal statements of the conditions under which these bounds

hold)

zTSUE(θ, λ) 6 zDUE +
θB + λJ

2 + 2θA
+

√
θB + λJ

2 + 2θA

√
θB + λJ

2 + 2θA
+ 2zDUE, (4.10)

zTSUE(θ, λ) 6
4 + 4θA
3 + 4θA

(
zSO + θB + λJ

)
, (4.11)

zTSUE(θ, λ) 6
4 + 8θA
3 + 8θA

(zINF + λJ) 6
4
3

(zINF + λJ). (4.12)

Here A, B, and J are three network dependent constants. To be specific, A de-

pends on the magnitude of traffic demands and the travel time function, with

A = 1
2qmaxνmax(G) , where the qmax = maxk∈K qk denotes the largest demand flow
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among all OD pairs, and νmax(G) denotes the largest eigenvalue of matrix G. B

depends on the traffic demands as well as the number of paths in the network, with

B =
∑

k∈K q
k log |Rk|, where |Rk| is the number of available paths for OD pair k. J

is a constant defined as J = 4
√
|R|νmax (G)2 (

∑
k q

k)3/2. These three constants can

be easily calculated for a given network without solving any of the user equilibrium

or system optimum models.

To understand the meaning of A, consider a network with a single OD pair

and n parallel links. Suppose the link travel time functions are ti(fi) = aifi + bi,

for i = 1, · · · , n. Let q be the demand flow. Then νmax(G) = maxi{ai}, and

qmaxνmax(G) = qmaxi{ai} = maxi{(aiq + bi) − bi}. Therefore, for this network,

qmaxνmax(G) represents the maximum difference between the travel time when a link

is free of flow and the travel time when the link is fully loaded. Roughly speaking

this quantity measures the magnitude of potential variation in the link travel time.

Hence A is inversely proportional to the level of potential variation in the link travel

time.

Dependence on λ

When λ = 0, these bounds reduces to upper bounds for the SUE system cost. For a

fixed value of θ, all these bounds increase linearly as λ increases.

Dependence on θ

To investigate how these bounds depend on the value of θ, we focus on the case of

λ = 0.

The first bound is tight when θ = 0; in this case the bound reduces to zSUE(0) 6

zDUE. The second bound implies that zSUE(0) 6 4
3z

SO. Since zSUE(0) = zDUE , we

have zDUE 6 4
3z

SO. This reproduces the bound for the DUE model (see Roughgarden
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and Tardos, 2002). The third bound is tight when θ → ∞; under this limit the

bound reduces to zSUE(∞) 6 zINF. Furthermore, the third bound implies that

zSUE(θ) 6 4
3z

INF for any dispersion level θ.

A summary of the bounds for various values of θ are provided in Table 4.2.

The first bound The second bound The third bound
Eq. Number Eq. (4.10) Eq. (4.11) Eq. (4.12)

θ = 0 zDUE 4
3z

SO 4
3z

INF

θ =∞ ∞ ∞ zINF

θ ∈ (0,∞) increasing increasing decreasing

Table 4.2: Bounds for various values of θ. The first and second bound are always
increasing functions of θ. The third bound is always a decreasing function of θ.

In general, the first bound is the most restrictive among all three when θ is small,

and the third upper bound is the most restrictive when θ is large. The second upper

bound may be the most restrictive when θ lies in the middle range.

4.2.3 Useful inequalities

In this subsection, we prove a number of useful inequalities (Lemma 4.2, 4.3, 4.4 and

4.7 and Corollary 4.5 and 4.6) necessary to prove the upper bounds (see Theorem

4.8, 4.9 and 4.10).

Lemma 4.2. If G is a positive semidefinite matrix, then for any feasible path flow

vectors h and h̃ in Sh, and any real number a > 0, the following inequality holds

ahTGh+
1
4a
h̃TGh̃ > hTGh̃. (4.13)

Proof. Since G is positive semidefinite, the following inequality must hold

(√
ah− 1

2
√
a
h̃

)T

G

(√
ah− 1

2
√
a
h̃

)
> 0.
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By expanding the above expression we obtain (4.13).

Lemma 4.3. Consider the INF solution hINF (defined as hINF
r = qk

|Rk| for any k ∈ K,

r ∈ Rk). For any feasible path flow vector h ∈ Sh, the following relationship holds

(log
hINF

q
)T
(
h− hINF

)
= 0. (4.14)

Proof. For any OD pair k ∈ K and any path r ∈ Rk for the OD pair, we have
hINF
r

qk
= 1
|Rk| , hence

∑
r∈Rk

hINF
r

qk
(
hr − hINF

r

)
=

1
|Rk|

∑
r∈Rk

(
hr − hINF

r

)
=

1
|Rk|

(
qk − qk

)
= 0.

Eq. (4.14) is obtained by summing up the above result for all OD pairs.

Remark. It is possible to show that hINF is the only path flow vector that ensures

the equation holds for all feasible path flow vectors. But since this result is related

to our topic we will not prove it.

Lemma 4.4. If G is a non-zero, symmetric and positive semidefinite matrix, then

for any feasible path flow vectors h and h̃ in Sh, such that all components of h̃ are

positive, the following inequality holds

(log
h

q
− log

h̃

q
)Th > A(h− h̃)TG(h− h̃). (4.15)

Here A is a constant defined by A = 1
2qmaxνmax(G) , where qmax = maxk∈K qk repre-

sents the largest demand of all OD pairs, and νmax(G) represents the largest eigen-

value of G.

Remark. The assumption that G is symmetric and positive semidefinite implies that

G must have real and nonnegative eigenvalues. The assumption that G is not a
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zero matrix ensures that νmax(G) > 0. The assumption that all components of h̃

are positive, namely h̃ is in the interior of Sh ensures that the term (log h̃
q

)Th is

well-defined.

Proof. For any OD pair k ∈ K, consider the following scalar function f : Skp → R,

defined as f(pk) = (log pk)Tpk. The domain of this function Skp is the set of vectors

of feasible path flow probabilities, namely Skp =
{
pk ∈ [0, 1]|R

k| :
∑

r∈Rk pr = 1
}
.

The gradient and Hessian matrix of this function are respectively

∇f = logpk + 1,

(Hf )rs =


1/pr, if r = s,

0, otherwise.

Note that in the above expressions, 1 is a |Rk|-dimensional vector of all 1’s. The

Hessian matrix Hf is a diagonal matrix, and its rth diagonal component is 1
pr

> 1.

Hence for any two vectors pk and p̃k in Skp , by Taylor Expansion, there exists a path

flow vector p̄k = p̃k + λ(pk − p̃k), with λ ∈ [0, 1], such that

(log pk)Tpk − (log p̃k)Tp̃k = f(pk)− f(p̃k)

= ∇f(p̃k)T(pk − p̃k) +
1
2

(pk − p̃k)THf (p̄k)(pk − p̃k)

> (log p̃k + 1)T(pk − p̃k) +
1
2

(pk − p̃k)T(pk − p̃k)

= (log p̃k)T(pk − p̃k) +
1
2

(pk − p̃k)T(pk − p̃k).

The third line follows from the fact that all diagonal elements ofHf (p̄k) are at least

1. Note that the same term −(log p̃k)Tp̃k appears on both sides of the inequality,
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so it cancels out. Hence

(log pk − log p̃k)Tpk >
1
2

(pk − p̃k)T(pk − p̃k).

Let pk = hk

qk
and p̃k = h̃k

qk
, we have that

(log
hk

qk
− log

h̃k

qk
)Thk >

qk

2
(
hk

qk
− h̃

k

qk
)T(
hk

qk
− h̃

k

qk
)

>
1

2qk
(hk − h̃k)T(hk − h̃k)

>
1

2qmax
(hk − h̃k)T(hk − h̃k).

Summing up this inequality over all k ∈ K, we obtain that

(log
h

q
− log

h̃

q
)Th >

1
2qmax

(h− h̃)T(h− h̃)

>
1

2qmaxνmax(G)
(h− h̃)TG(h− h̃).

In the last inequality we have used the fact that (h− h̃)TG(h− h̃) 6 νmax(G)(h−

h̃)T(h− h̃).

Corollary 4.5. If G is a non-zero, symmetric and positive semidefinite matrix, then

for any feasible path flow vectors h and h̃ in Sh, such that all components of both h

and h̃ are positive, the following inequality holds

(log
h

q
− log

h̃

q
)T
(
h− h̃

)
> 2A(h− h̃)TG(h− h̃), (4.16)

where A is defined in Lemma 4.4.
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Proof. By Lemma 4.4, we have that

(log
h

q
− log

h̃

q
)Th > A(h− h̃)TG(h− h̃),

(log
h̃

q
− log

h

q
)Th̃ > A(h− h̃)TG(h− h̃).

Eq. (4.17) is obtained by summing up the above two inequalities.

Corollary 4.6. If G is a non-zero, symmetric and positive semidefinite matrix, then

for any feasible path flow vectors h and h̃ in Sh, such that all components of both h

and h̃ are positive, the following inequality holds

(log
h

q
)T
(
h− h̃

)
> A(h− h̃)TG(h− h̃) +A(h−hINF)TG(h−hINF)−B, (4.17)

where A is defined in Lemma 4.4, and B = −(log hINF

q )ThINF =
∑

k∈K q
k log |Rk| is

a constant that depends on the traffic demand flows and the number of paths available

for each OD pair.

Proof. By Lemma 4.4 and Lemma 4.3, we have that

(log
h̃

q
−log

h

q
)Th̃ > AzDUE+

θB + λJ

2 + 2θA
+

√
θB + λJ

2 + 2θA

√
θB + λJ

2 + 2θA
+ 2zDUE(h−h̃)TG(h−h̃),

(log
h

q
− log

hINF

q
)Th > A(h− hINF)TG(h− hINF),

(log
hINF

q
)Th = (log

hINF

q
)ThINF (= −B) .

Furthermore, since all components in log h̃
q
are nonpositive, we have that

0 > (log
h̃

q
)Th̃.
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Eq. (4.17) is obtained by summing up the above four equations.

Lemma 4.7. If G is a non-zero, symmetric and positive semidefinite matrix, with

only non-negative elements, then for any feasible path flow vectors h and h̃ in Sh,

the following inequality holds

(Diag{GCov(H)G})T
(
h− h̃

)
> −J

where Cov(H) is a function of h defined in Eq. (3.7), and J is a constant defined as

J = 4
√
|R|νmax (G)2 (

∑
k q

k)3/2, and νmax(G) gives the largest eigenvalue of matrix

G.

Proof. Consider OD pair k ∈ K. For s, s′ ∈ Rk, the (s, s′) component of matrix(
Cov(Hk)

)
is (

Cov(Hk)
)
s,s′

= qkps(δs,s′ − ps′),

where δs,s′ is the Kronecker delta function. Since |δs,s′ − ps′ | 6 1, we have that

∣∣∣∣(Cov(Hk)
)
s,s′

∣∣∣∣ 6 qkps = hs. (4.18)

Let G = ∆TḠ∆. We have that

(Diag{GCov(H)G})r

=

(
Diag

{
∆TḠ

∑
k∈K

(
∆kCov(Hk)(∆k)T

)
Ḡ∆

})
r

=

(
∆TḠ

∑
k∈K

(
∆kCov(Hk)(∆k)T

)
Ḡ∆

)
r,r

=
∑
k∈K

∑
s,s′∈Rk

Gr,sGr,s′
(

Cov(Hk)
)
s,s′

.

Since the elements of matrix G are nonnegative, taking the norm and applying
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Eq. (4.18), we have that

|(Diag{GCov(H)G})r|

6
∑
k∈K

∑
s,s′∈Rk

Gr,sGr,s′

∣∣∣∣(Cov(Hk)
)
s,s′

∣∣∣∣
6
∑
k∈K

∑
s,s′∈Rk

Gr,sGr,s′hs

=2
∑
s,s′∈R

Gr,sGr,s′hs.

Applying Lemma 3.6, we have that

|Diag{GCov(H)G}|

62
∑
r∈R

∑
s,s′∈R

Gr,sGr,s′hs

=21GGh

62 |1| ‖GG‖ |h|

=2
√
|R|
∑
k

qkνmax (G)2 ,

(4.19)

where 1 is the column vector of all 1’s (with dimension |R| × 1) and ‖·‖ denotes the

Euclidean matrix norm. The last line follows from the facts that (1) |1| =
√
|R|, (2)

|h| 6
∑

k q
k, and (3) ‖GG‖ = ‖G‖2 = νmax (G)2. Hence we have that

(Diag{GCov(H)G})T
(
h− h̃

)
>− |Diag{GCov(H)G}|

∣∣∣h− h̃∣∣∣
>− 4

√
|R|νmax (G)2 (

∑
k

qk)3/2.

(4.20)

In the last step we have used the fact that
∣∣∣h− h̃∣∣∣ 6∑r |hr − h̃r| 6

∑
r(hr + h̃r) =
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2
∑

k q
k.

Remark. The lower bound proved in this lemma is a loose bound, largely because

we have used a series of loose inequalities in Eq. (4.19) and (4.20). Nevertheless this

result allows us to prove the upper bounds for the TSUE system cost in the following

subsection.

4.2.4 Proof of the bounds

Next we prove three uppers bounds for the TSUE system cost. It should be noted

that we can obtain a single upper bound by taking the minimum of all three bounds.

We present the three bounds separately for the sake of clarity.

Theorem 4.8. If G is a non-zero, symmetric and positive semidefinite matrix, with

only non-negative elements, if b > 0, if θ satisfies 2(θB + λJ)(1 + 2θA) 6 zDUE,

then the system cost for the TSUE model zTSUE(θ, λ) has the following upper bound

zTSUE(θ, λ) 6 zDUE +
θB + λJ

2 + 2θA
+

√
θB + λJ

2 + 2θA

√
θB + λJ

2 + 2θA
+ 2zDUE, (4.21)

where θ > 0 is the dispersion level, λ > 0 is the mean-variance trade-off factor,

A = 1
2q2maxνmax(G)

, B =
∑

k∈K q
k log |Rk|, and J = 4

√
|R|νmax (G)2 (

∑
k q

k)3/2.

Proof. Using the VI formulation of the TSUE model, namely Eq. (3.14), we have

that

(
GhTSUE + b+ λDiag{GCov(H)G}+ θ log

hDUE

q

)T (
hDUE − hTSUE

)
= 0.
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That is,

(
GhTSUE + b

)T (
hDUE − hTSUE

)
=θ
(

log
hTSUE

q

)T (
hTSUE − hDUE

)
+ λ(Diag{GCov(H)G})T

(
hTSUE − hDUE

)
>− θB − λJ + θA

(
hDUE − hTSUE

)T
G
(
hDUE − hTSUE

)
+ θA

(
hINF − hTSUE

)T
G
(
hINF − hTSUE

)
,

(4.22)

where the last line follows from Corollary 4.6 and Lemma 4.7.

Using the VI formulation of the DUE model, namely Eq. (2.4), we have that

(
GhTSUE + b

)T (
hDUE − hTSUE

)
> 0. (4.23)

Furthermore, Lemma 4.2 implies that

a1(hDUE)TGhDUE +
1

4a1
(hTSUE)TGhTSUE > (hTSUE)TGhDUE, (4.24)

a2(hINF)TGhINF +
1

4a2
(hTSUE)TGhTSUE > (hTSUE)TGhINF, (4.25)

where a1 > 0 and a2 > 0.

Multiply Eq. (4.23), (4.24) and (4.25) respectively by nonnegative constants C1,

C2 and C3, and add to Eq. (4.22). We have that

(
C3

4a2
− θA)(hINF)TGhINF + θB + λJ

+ (−C3 + 2θA)(hTSUE)TGhINF + (1 + C1 − C2 + 2θA)(hTSUE)TGhDUE

+ (−1 +
C2

4a1
+ a2C3 − 2θA)(hTSUE)TGhTSUE − (1− C1)bThTSUE

+ (−C1 + a1C2 − θA) (hDUE)TGhDUE + (1− C1)bThDUE > 0.

(4.26)
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We select 

C2 = 1 + C1 + 2θA,

C3 = 2θA,

a1 = 1+θA
1+C1+2θA ,

a2 = 1
2 .

Then the following equations hold.

−C3 + 2θA = 0,

1 + C1 − C2 + 2θA = 0,

C3

4a2
− θA = 0,

−C1 + a1C2 − θA = 1− C1.

The above equations suggest that, in Eq. (4.26), the three terms, namely, (hTSUE)TGhINF,

(hTSUE)TGhDUE, and (hINF)TGhINF, are eliminated. Furthermore, the coefficient

of these two terms (hDUE)TGhDUE and bThDUE are equalized. We have that

(1− C1)(4 + 4θA)
(
(hDUE)TGhDUE + bThDUE

)
+ (4 + 4θA)(θB + λJ)

>(1− C1)(3 + C1 + 4θA)(hTSUE)TGhTSUE + (1− C1)(4 + 4θA)bThTSUE.

When C1 < 1, we have (1− C1)(4 + 4θA) > (1− C1)(3 + C1 + 4θA), hence

(1− C1)(4 + 4θA)
(
(hDUE)TGhDUE + bThDUE

)
+ (4 + 4θA)(θB + λJ)

>(1− C1)(3 + C1 + 4θA)
(
(hTSUE)TGhTSUE + bThTSUE

)
.

That is,

zTSUE(θ) 6
4 + 4θA

3 + C1 + 4θA
(zDUE +

θB + λJ

1− C1
). (4.27)

This upper bound holds for any value of C1 ∈ [0, 1). By minimizing this upper
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bound over C1, we set

C1 = 1 +
θB + λJ

zDUE
− θB + λJ

zDUE

√
1 +

4zDUE

θB + λJ
+

4θAzDUE

θB + λJ
.

It is obvious that C1 < 1. When 2(θB + λJ)(1 + 2θA) 6 zDUE, we have C1 > 0.

Substituting the value of C1 back into Eq. (4.27), we obtain Eq. (4.21).

Theorem 4.9. If G is a non-zero, symmetric and positive semidefinite matrix, with

only non-negative elements, if b > 0, then the system cost for the TSUE model

zTSUE(θ, λ) has the following upper bound

zTSUE(θ, λ) 6
4 + 4θA
3 + 4θA

(
zSO + θB + λJ

)
, (4.28)

where θ > 0 is the dispersion level, λ > 0 is the mean-variance trade-off factor,

A = 1
2q2maxνmax(G)

, B =
∑

k∈K q
k log |Rk|, and J = 4

√
|R|νmax (G)2 (

∑
k q

k)3/2.

Proof. Using Lemma (4.2), the following inequality holds

a(hSO)TGhSO +
1
4a

(hTSUE)TGhTSUE > (hTSUE)TGhSO, (4.29)

where a > 0. The VI formulation of the TSUE model (see Eq. (3.14)) implies that

(
GhTSUE + b+ λDiag{GCov(HTSUE)G}+ θ log

hTSUE

q

)T (
hSO − hTSUE

)
= 0.
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That is,

(
GhTSUE + b

)T (
hSO − hTSUE

)
=θ
(

log
hTSUE

q

)T (
hTSUE − hSO

)
+ λ(Diag{GCov(HTSUE)G})T

(
hTSUE − hSO

)
>− θB − λJ + θA

(
hSO − hTSUE

)T
G
(
hSO − hTSUE

)
.

(4.30)

The third line follows from Corollary 4.6 and Lemma 4.7.

Multiplying Eq. (4.29) by a constant C > 0 and adding to Eq. (4.30), we have

that

(aC − θA)(hSO)TGhSO + (−1 +
C

4a
− θA)(hTSUE)TGhTSUE

+ (1− C + 2θA)(hTSUE)TGhSO + bThSO − bThTSUE + θB + λJ > 0.
(4.31)

We select 
C = 1 + 2θA,

a = 1+θA
1+2θA .

Then the following equations hold.

1− C + 2θA = 0,

aC − θA = 1.

The above equations suggest that, in Eq. (4.31), the term (hTSUE)TGhSO is elimi-

nated. Furthermore, the coefficient of these two terms (hSO)TGhSO and bThSO are
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equalized. We have that

(hSO)TGhSO + bThSO + θB + λJ

>
3 + 4θA
4 + 4θA

(hTSUE)TGhTSUE + bThTSUE

>
3 + 4θA
4 + 4θA

(
(hTSUE)TGhTSUE + bThTSUE

)
.

The third line follows from the facts that 1 > 3+4θA
4+4θA and bThTSUE > 0. The above

equation is zTSUE(θ, λ) 6 4+4θA
3+4θA(zSO + θB + λJ).

Theorem 4.10. If G is a non-zero, symmetric and positive semidefinite matrix,

with only non-negative elements, if b > 0, then the system cost for the TSUE model

zTSUE(θ, λ) has the following upper bound

zTSUE(θ, λ) 6
4 + 8θA
3 + 8θA

(zINF + λJ) 6
4
3

(zINF + λJ), (4.32)

where θ > 0 is the dispersion level, λ > 0 is the mean-variance trade-off factor,

A = 1
2q2maxνmax(G)

, B =
∑

k∈K q
k log |Rk|, and J = 4

√
|R|νmax (G)2 (

∑
k q

k)3/2.

Proof. Lemma 4.2 implies that

a(hINF)TGhINF +
1
4a

(hTSUE)TGhTSUE > (hTSUE)TGhINF, (4.33)

where a > 0 is a positive constant. The VI formulation of the TSUE model (see Eq.

(3.14)) implies that

(
GhTSUE + b+ λDiag{GCov(HTSUE)G}+ θ log

hSUE

q

)T (
hINF − hSUE

)
= 0.
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That is,

(
GhTSUE + b

)T (
hINF − hTSUE

)
=θ
(

log
hTSUE

q

)T (
hSUE − hINF

)
+ λ(Diag{GCov(HTSUE)G})T

(
hTSUE − hINF

)
=θ
(

log
hTSUE

q
− log

hINF

q

)T (
hTSUE − hINF

)
+ λ(Diag{GCov(HTSUE)G})T

(
hTSUE − hINF

)
>2θA

(
hINF − hTSUE

)T
G
(
hINF − hTSUE

)
− λJ.

(4.34)

In the third line we used the fact that
(

log hINF

q

)T (
hTSUE − hINF

)
= 0 (see Lemma

4.3). The last line follows from Corollary 4.6 and Lemma 4.7.

Multiplying (4.33) by a constant C > 0 and adding to (4.34) implies that

(aC − 2θA)(hINF)TGhINF + (−1 +
C

4a
− 2θA)(hTSUE)TGhTSUE

+ (1− C + 4θA)(hTSUE)TGhINF + bThINF − bThTSUE − λJ > 0.
(4.35)

We select 
C = 1 + 4θA,

a = 1+2θA
1+4θA .

Then the following equations hold.

1− C + 4θA = 0,

aC − 2θA = 1.

The above equations suggest that, in Eq.(4.35), the term (hTSUE)TGhINF is elimi-

nated. Furthermore, the coefficient of these two terms (hINF)TGhINF and bThINF
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are equalized. We have that

(hINF)TGhINF + bThINF + λJ

>
3 + 8θA
4 + 8θA

(hTSUE)TGhTSUE + bThTSUE

>
3 + 8θA
4 + 8θA

(
(hTSUE)TGhTSUE + bThTSUE

)
.

The third line follows from the facts that 1 > 3+8θA
4+8θA and bThTSUE > 0. The above

equation is zTSUE(θ, λ) 6 4+8θA
3+8θA(zINF + λJ).

4.2.5 Tightness of the bounds

In this subsection we discuss the tightness of the three upper bounds for the TSUE

system cost. When λ > 0, as noted in the remark that follows Lemma 4.7, these

upper bounds can be loose. Hence we instead focus on the case of λ = 0, namely we

will study the tightness of the upper bounds for the SUE system cost.

In general, an upper bound for the SUE system cost can be written in the fol-

lowing form

zSUE(θ) 6 FBD(zDUE, zSO, zINF, A,B, θ), (4.36)

where FBD(·) is a function describing the corresponding bound. For θ0 ∈ [0,∞) ∪

{+∞}, we say FBD is tight at θ = θ0 if and only if there exists at least one network

instance for which the equality sign in Eq. (4.36) holds for θ = θ0. We say FBD

is exact at θ = θ0 if and only if for any arbitrary network, Eq. (4.36) holds as an

equality for θ = θ0.

It is easy to see that an exact bound is always tight. Nevertheless, the reverse

is not always true. For example, the bound on the DUE system cost developed by

Roughgarden and Tardos (2002), i.e., zDUE 6 4
3z

SO, is tight but not exact. It is tight

because we can find a network instance (discussed below) for which zDUE = 4
3z

SO.
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However the equality does not hold for any arbitrary networks.

Recall that the three upper bounds we proved are (when λ = 0)

zSUE(θ) 6 zDUE +
θB

2 + 2θA
+

√
θB

2 + 2θA

√
θB

2 + 2θA
+ 2zDUE, (4.37)

zSUE(θ) 6
4 + 4θA
3 + 4θA

(
zSO + θB

)
, (4.38)

zSUE(θ) 6
4 + 8θA
3 + 8θA

zINF

(
6

4
3
zINF

)
. (4.39)

Using the above definitions of tightness and exactness, we have the following results.

The first bound is exact at θ = 0.

When θ = 0, the first bound becomes zSUE(0) 6 zDUE. Nevertheless we know that

zSUE(0) = zDUE. Hence this bound is exact.

The second bound is tight at θ = 0.

When θ = 0, the second bound becomes zSUE(0) 6 4
3z

SO. Consider the following

network with a single OD pair and two parallel links, as shown in Figure B.1a. The

demand flow is 100 (we omit the units), and the travel time functions on each link

are

t1 = 0.1f1,

t2 = 10.

Solving this network, we have that hSUE(0) = (100, 0)T and hSO = (50, 50)T. Hence

zSUE(0) = 1000 and zSO = 750. For this network zSUE(0) = 4
3z

SO. This shows that

the second bound is tight.
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The third bound is tight at θ = 0, and exact at θ =∞.

When θ = 0, the third bound becomes zSUE(0) 6 4
3z

INF. To show that this bound is

tight, consider the previous network. We have that hINF = (50, 50)T and zINF = 750.

That is, zSUE(0) = 4
3z

INF. Hence we showed that the third bound is tight at θ = 0.

When θ → ∞, the third bound becomes zSUE(∞) 6 zINF. Since we know

zSUE(∞) = zINF, this bound is exact.

4.3 Numerical Results on Test Networks

In this section we present the numerical results on test networks.

4.3.1 The test networks

We will examine the DUE, SUE, SO, and TSUE models for seven networks. The

properties of these networks are summarized in Table 4.3. Refer to Appendix B for

the detailed descriptions of these networks.

We will refer to a network as a small-scale network if it has less than 50 paths.

We will refer to a network as a medium-scale network if it has 50 to 1000 paths. We

will refer to a network as a large-scale network if it has more than 1000 paths.

Among the seven networks, the first four are small-scale networks. The first

network is the network we used to show the tightness of our bounds. The first three

networks all have a single OD pair. The fourth network has 5 OD pairs.

The fifth and sixth networks are medium-size networks. They share the same

graph (nodes and links) but differ in terms of the number of OD pairs and demand

flows. These networks are labeled as Grid-1 and Grid-2 because their nodes and

links form a 3× 3 grid.

The last network is the modified Sioux Falls network. The link travel time

115



functions of the original Sioux Falls network are BPR-type functions, i.e., tl(fl) =

αl

(
1 + βl

(
fl
γl

)4
)
, for all l ∈ L. For the purpose of study in this chapter, we

transform these functions into affine functions. The new link travel time functions

are defined as t̃l(fl) = αlβl
γl
fl + αl, for all l ∈ L. This transformation allows us

to evaluate the bounds proved in the previous section. We label this transformed

network as Sioux Falls*. (We have also done this transformation for the Grid-1 and

Grid-2 networks.)

Table 4.3 also contains the a summary of measures: 1
A , B, J , z

DUE

zSO , and zINF

zSO , for

these networks. In general, as the scale of the network increases, A becomes smaller,

and B and J becomes larger. The value of J grows very quickly as the scale of the

network increases, largely because the term (
∑

k q
k)3/2 in the expression of J grows

very quickly. This observation suggests that our bound in terms of λ may be loose

(see also the remark that follows Lemma 4.7).

Network |N | |L| |K| |R| 1
A B J zDUE

zSO
zINF

zSO

Small-1 2 2 1 2 20.00 69.31 28.28 1.3333 1.0000
Small-2 2 2 1 2 40.00 69.31 113.1 1.0340 1.0014
Small-3 4 5 1 3 114.6 109.9 1138 1.0196 1.2941
Small-4 8 10 5 14 1689 427.7 4.269e6 1.0073 1.1405
Grid-1* 9 24 7 69 331.7 1194 2.339e5 1.0142 1.7967
Grid-2* 9 24 72 644 1382 6946 6.819e8 1.0028 5.3097

Sioux Falls* 24 76 528 26400 8.099e4 1.411e6 2.180e15 1.0031 4.7104

Table 4.3: Summary of test networks.

4.3.2 Results on the SUE system cost

The results on the SUE system cost and its upper bounds are shown in Figure 4.1.

We plot the DUE, SUE, and INF system costs, together with the three bounds for

the SUE system cost. All values are normalized against the SO system cost. We

plot the SUE system cost and its upper bounds vs. different values of θ that range
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from 10−2 to 103. Note that in reality the value of θ should be at the level of 10−1

to 101, since the link travel times for these networks are typically between 1 to 10.

However, we intentionally consider a very large range for the value of θ in order to

study the performance of the bounds in extreme conditions. The horizontal axis (for

θ) is plotted in log scale.

The DUE and INF system costs are not dependent on θ, hence they are plotted

as a horizontal line.

We make the following observations:

• The SUE system cost as a function of θ can be increasing (see the plots for

Small-4, Grid-2*, and Sioux Falls*), decreasing (see the plots for Small-1 and

Small-2), or not monotone (see the plot for Small-3 and Grid-1*).

• When θ is small, the SUE system cost is close to the DUE system cost. When

θ is large, the SUE system cost is close to the INF system cost. The transition

typically happens when θ is between 100 and 102.

• In general, when θ is close to 0, the first bound is smaller than the second

bound (the only exception is the Small-1 network). As θ increases, the first

bound increases much faster than the second bound does. When θ passes a

critical value (from the plots this value is typically between 100 and 102), the

first bound is greater than the second bound.
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Figure 4.1: Numerical results on the SUE system cost and its bounds.
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Figure 4.1: Numerical results on the SUE system cost and its bounds.(continued)
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Figure 4.1: Numerical results on the SUE system cost and its bounds. (continued)
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Figure 4.1: Numerical results on the SUE system cost and its bounds. (continued)
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4.3.3 Results on the TSUE system cost

As discussed before (see, for example, the remark following Lemma 4.7), the three

upper bounds on the TSUE system cost are very loose when λ > 0. Hence we will not

show these bounds in the following discussion. Instead, we focus on how the TSUE

system cost is different from the SUE system cost. (We have already discussed how

the SUE system cost is different from the DUE, SO, and INF system costs in the

previous subsection.)

In order to numerically solve the TSUE model, we must decide what values of

λ to choose. Our choices are shown in Table 4.4. For each network, we present the

median variance-to-mean (MVM) ratio defined in Section 3.5.2. The MVM ratio

measures the ratio of the variance of travel time over the mean travel time for a

typical network user.

As a rule of thumb, for the numerical tests in this section, we will pick values of

λ to be roughly 0.1 or 0.2 divided by the MVM ratio. This implies that for a typical

traveler, the travel cost attributed to the travel time uncertainty is roughly 10% or

20% of that attributed to the mean travel time. The values of λ are shown in Table

4.4.

Network ID MVM ratio λ1 λ2

Grid-1* 0.0028 36 72
Grid-2* 0.0020 50 100

Sioux Falls* 4.83e-6 2.1e4 4.2e4

Table 4.4: Choice of the values of λ for the TSUE model.

The results on the TSUE system cost are shown in Figure 4.2 and Table 4.5. We

plot the TSUE system cost as a function of θ. The range of θ is chosen to be from 1

to 10. As commented before, this is a “realistic” range for the value of θ. In Figure

4.2, the label TSUE(0) stands for the TSUE system cost when λ = 0 (i.e., the SUE
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system cost). Similarly, the labels TSUE(λ1) and TSUE(λ2) respectively stand for

the TSUE system costs when λ = λ1 and λ = λ2.

Grid-1* Grid-2* Sioux-Falls*
θ = 1 θ = 10 θ = 1 θ = 10 θ = 1 θ = 10

zTSUE(0)/zSO 1.0218 1.4859 1.0035 2.1018 1.0336 2.5363
zTSUE(λ1)/zSO 1.0159 1.4395 1.0023 1.6861 1.0307 1.7431
zTSUE(λ2)/zSO 1.0124 1.4012 1.0026 1.4995 1.0329 1.5080
z̃TSUE(0)/zSO 1.0241 1.4905 1.0043 2.1048 1.0336 2.5363
z̃TSUE(λ1)/zSO 1.0180 1.4439 1.0030 1.6886 1.0307 1.7431
z̃TSUE(λ2)/zSO 1.0144 1.4055 1.0033 1.5016 1.0329 1.5080

Table 4.5: The TSUE system cost for different values of λ and θ.

Recall that we have two definitions for the TSUE system cost. The first definition,

zTSUE(θ, λ), is the system cost of the expected path flow. The second definition,

z̃TSUE(θ, λ), is the expected system cost. In Figure 4.2, we plot zTSUE(θ, λ) in solid

lines and z̃TSUE(θ, λ) in dashed lines.

From these results we have the following observations:

• For our choice of the values of λ, the difference between zTSUE(θ, λ) and

z̃TSUE(θ, λ) is relatively small compared to the difference between zTSUE(θ, λ)

and zTSUE(θ, 0). This is perhaps because these networks have small VM ra-

tios (i.e., Var(Mr)
E[Mr]

), namely, the variance of travel times is relatively small com-

pared to the mean travel times. As a result, the difference between zTSUE(θ, λ)

and z̃TSUE(θ, λ), which is the extra term eT
(
G ◦ Cov

(
HTSUE(θ, λ)

))
e in Eq.

(4.6), is small.

• For these networks, when λ increase, the TSUE system cost tends to decrease

(see Table 4.5). This indicates that, when the travel time variance is a part of

the travel cost, users’ selfish behavior of minimizing their own travel cost seem

to reduce the total system travel time. We are yet to test this effect on larger

networks.
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Figure 4.2: Numerical results on the TSUE system cost.
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Figure 4.2: Numerical results on the TSUE system cost. (continued)
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Chapter 5

An Inter-Period Dynamic Traffic

Network Model

In this chapter we develop an inter-period dynamic learning traffic network model.

Contrary to inter-period stationary models (namely, the equilibrium models dis-

cussed in the previous chapters), inter-period dynamic models assume that users

update their travel decisions in each period to account for their most recent travel-

ing experience. Hence travelers’ decisions and traffic flows evolve over time.

The main purposes of studying inter-period dynamic models include the following

• Studying whether traffic models converge to their corresponding equilibria. As

indicated in previous chapters, early researches of traffic network models take

for granted that traffic networks converge to their equilibria in the long run.

However this assumption is not well justified. Indeed, some inter-period dy-

namic models, including Cascetta (1989) and Nakayama et al. (1999), suggest

that traffic models may not converge to traffic equilibria.

• Modeling the short-term inter-period evolution of a traffic network in the pres-

ence of a sudden change in the network. For example, this sudden change may
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be the opening of a new highway, the closing of a bridge, or the temporary

increase of traffic demands due to a major event such as the FIFA World Cup.

Inter-period dynamic models are necessary for studying the evolution of traffic

network over time.

• Utilizing finer traffic network information to provide more accurate predictions

of traffic networks (compared to the equilibrium models). Traditional traffic

network performance data usually only includes estimation of average perfor-

mance over a quarter or a year, and the data is not available on a daily basis.

At this large time scale it may be reasonable to argue that the average traffic

flows are decided by the balance between traffic supply and traffic demand,

and the equilibrium models attempt to capture this balance. However, mod-

ern traffic network performance data is collected at a much finer time scale.

Typically the data is available on a daily scale, an hourly scale, or even on a

real-time basis. Traffic flows on these finer time scales are more susceptible to

specific events and learning and updating mechanism of users, and dynamic

traffic network models can outperform the equilibrium models by utilizing finer

traffic network information.

However, inter-period dynamic models are to be distinguished from intra-period

dynamic models. While the former assumes constant traffic flows within a time

period, the latter considers traffic flows as time-dependent variables within a time

period. These two thus differ in the major factors they intend to capture in the traffic

networks. With a simplifying within period stationarity assumption, the inter-period

dynamic models mainly capture the day-to-day learning and updating behavior of

users. On the contrary, the intra-period dynamic models attempt to more closely

examine the structure of time-dependent traffic network flows and the real-time

interactions between travelers, traffic networks and traveler information systems.
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In this chapter we focus on a simple network with one OD pair and two parallel

links. In Section 5.1 we introduce the notations and assumptions of the model. The

dynamic evolution of this model is presented in Section 5.2.

5.1 Model Formulation

Consider a network with single OD pair and two parallel links. The traffic demand

is q = 100 veh/period. The travel time on each link is decided by its link flow-time

function. For this model we consider the BPR function

τi = αi(1 + βi(
fi
γi

)4), (5.1)

where fi is the link flow, αi is the free flow travel time, βi is the congestion factor

and γi measures the link capacity. In the model, the parameters are given below

i αi βi γi
1 1.0 1.0 60
2 1.0 1.0 40

Table 5.1: Flow-time function parameters

The link choice behavior of each user is characterized by a link choice proba-

bility. Users can have non-uniform link choice probabilities, and they update these

probabilities over different time periods. In time period t, the probability that user

u chooses link i is P tu,i. (We use capitalized letters to indicate random variables.)

We impose that

P tu,1 + P tu,2 = 1.

Namely each user’s link choice probabilities for the two links sum up to 1. We assume

that users make their link choices independently, and their link choice decisions in

period t are also independent from their previous decisions.
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In time period t, let F tu,i represent the link choice actually made by user h, defined

as

F tu,i =


1 if user u chooses link i in time period t,

0 otherwise.

Furthermore, let F ti the traffic flow on link i. Then F ti =
∑

u F
t
u,i. It follows from

our assumption that F tu,i and F
t
i are random variables that the travel time on link i

is also a random variable, denoted as T ti (F
t
i ) = αi(1 + βi(

F ti
γi

)4).

We assume that users believe that the traffic network is inter-period stationary,

namely, that their experienced travel time T ti is sampled from an unknown but time-

period-invariant travel time distribution associated with link i. This assumption is

common in the study of learning in games called fictitious play (see Brown 1951).

Under this assumption of stationary travel time distribution, users can estimate

the mean and variance (denoted as µtu,i and v
t
u,i) of the travel time distribution based

their respective experiences in the first t time periods, i.e.,

µtu,i =
t∑

s=1

T su,iF
s
u,i/

t∑
s=1

F su,i,

vtu,i =
t∑

s=1

(
T su,i − µsu,i

)2
F su,i/

t∑
s=1

F su,i.

In this equation, the term
∑t

s=1 F
s
u,i gives the number of periods that user u has

chosen link i in the first t time periods. It should be noted that our model assumes

users only know the travel time they actually experiences. The user doesn’t know

the travel time on the link that he doesn’t travel on.

We assume that the users adopt the mean-variance approach in Chapter 3 to

evaluate the link travel cost. Furthermore, assume that they have perception errors

of the travel cost. As a result, the link travel costs are transformed into link choice
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probabilities through the following MNL model

P
(t+1)
u,i =

exp(−(µtu,i + λvtu,i)/θ)
exp(−(µtu,1 + λvtu,1)/θ) + exp(−(µtu,2 + λvtu,2)/θ)

,

where λ is the mean-variance trade-off factor, and θ is the dispersion level of the

perception error.

5.2 Results of Numerical Simulations

In the numerical simulations we performed, we set θ = 0.5 and λ = 2. The model

starts on time period 1 with randomly chosen link choice probabilities P 1
u,1 and P 1

u,2.

The probabilities are drawn from a uniform distribution on [0.1, 0.9]. We discard

the very large and very small probabilities in order to make sure that users have

reasonable chances of sampling on both links. We also assume users only start to

update his link choice probabilities when both links have been sampled.

We run simulations with the above setting. The results are presented in Figure

5.1 and Figure 5.2.

Figure 5.1 plots the evolution of the link choice probability for link 1 (P tu,1)

over time (t). For a given day, we plot the follow 4 values: the maximum link

choice probability (maxu P tu,1), the medium link choice probability (medianuP tu,1),

the minimum link choice probability (minu P tu,1), and the realized link flow (F t1).

We observe that, over a long time, the link choice probabilities converge to a con-

stant for all users. This justifies the assumption of uniform path choice probability

across the traveler population in the TSUE model. The speed of convergence can be

measured in terms of how fast the difference between the maximum and minimum

link choice probabilities, i.e.,
(
maxu P tu,1 −minu P tu,1

)
, converges to 0. As shown in

Figure 5.2, the convergence speed is approximately t−0.5.
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Chapter 6

Conclusions

This thesis focuses on modeling travel time uncertainty in traffic network models.

Travel time uncertainty plays an important role in the transportation system. Ac-

counting for travel time uncertainty in traffic network models is a field of active

academic research.

Models that incorporate travel time uncertainty must specify two fundamental

mechanisms: the mechanism through which travel time uncertainty is generated and

the mechanism through which travel time uncertainty influences users’ behavior.

Previous studies have adopted different approaches to defining these two mecha-

nisms; most existing stochastic traffic equilibrium models feature a sophisticated

approach to one of the two mechanisms, but nevertheless adopt a simplistic view

on the other mechanism. This thesis proposed a new stochastic traffic equilibrium

model, namely the Truly Stochastic User Equilibrium (TSUE), that combines both

mechanisms. We showed that there exists a solution to this new model and the con-

ditions under which the solution is unique. We compared this new model with the

existing traffic equilibrium models in the literature. Through numerical results on

test networks we observed that the conventional stochastic user equilibrium model
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tends to overestimate traffic flows on the links with larger travel time variances.

To benchmark the various traffic network equilibrium models, we investigate

the total system cost, namely the total travel time of all users, of these models.

We proved upper bounds of the system cost for the TSUE model and presented

numerical results on test networks. As a special case, we also derived upper bounds

for the SUE system cost. These bounds improved the previous bounds obtained by

researchers. Through numerical study, we discovered that the total system cost of

the network is reduced when travelers minimize the variance of their travel time in

addition to the mean travel time.

This thesis contributes to the traffic network modeling literature and our general

understanding of modeling uncertainty in large and complicated systems.
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Appendix A

Summary of Notations

This appendix provides a summary of the notations used in this thesis.

In general, we use lower case letters for deterministic variables, and upper case

letters for random variables. For example, while f refers to the deterministic traffic

flow, as used in the DUE model, F refers to the random variable of traffic flow, as

used in the TSUE model.

We use bold fonts to indicate vector and matrices. Many equations used in this

thesis can be written in either a vector form or componentwise. This thesis frequently

uses the vector form to simplify notations. As a special rule, when the logarithm

function applies to a vector, it means applying the function component-wise and

the output variable is a vector of the same size as the input variable. In particular,

y = log h
q should be understood as yr = log hr

qk
, ∀k ∈ K, r ∈ Rk.

Letter p stands for probability. Letter r stands for paths (routes).

For a set X, |X| represents the cardinality of the set.

Notations for the traffic network

A set of all nodes, with cardinality |A|.
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L set of all links (arcs), with cardinality |L|.

K set of all OD pairs (trips, movements), with cardinality |K|.

R set of all paths (routes), with cardinality |R|.

Rk set of all paths available to OD pair k ∈ K, with cardinality |Rk|.

∆ link-path incidence matrix, with dimension |L| × |R|

∆k link-path incidence matrix restricted to only paths for OD pair k ∈ K,

with dimension |L| × |Rk|

Γ OD-pair-path incidence matrix, with dimension |K| × |R|

Notations for traffic demand and traffic supply

q vector of travel demand flows, with dimension |K| × 1

f vector of deterministic link flows, with dimension |L| × 1

F vector of random link flows, with dimension |L| × 1

t vector of deterministic link travel times, with dimension |L| × 1

T vector of random link travel times, with dimension |L| × 1

µ vector of deterministic path travel times, with dimension |R| × 1

M vector of random path travel times, with dimension |R| × 1

c vector of deterministic path costs, with dimension |R| × 1

p vector of path choice probabilities, with dimension |R| × 1

h vector of deterministic path flows, with dimension |R| × 1
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H vector of random path flows, with dimension |R| × 1

Sh set of feasible path flow vectors, Sh =
{
h ∈ R|R| > 0 : Γh = q

}
Sf set of feasible link flow vectors, Sf = {f = ∆h : h ∈ Sh}

Sp set of feasible path choice probability vectors, Sp =
{
p ∈ R|R| > 0 : Γp = 1|K|

}
θ dispersion level parameter, used in the multinomial logit path choice

model

λ mean-variance trade-off factor, used in the TSUE cost function

µk, ck,pk,hk These variables respectively represent the vectors of deterministic path

travel times, path costs, path choice probabilities, and path flows, but

restricted to a single OD pair k ∈ K

Mk,Hk These variables respectively represent the vectors of random path travel

times and random path flows, but restricted to a single OD pair k ∈ K

Link space Path space
Deterministic Random Deterministic Random

Traffic flow f F h H
Travel time t T µ M
Travel cost c

Choice probability p

Table A.1: Summary of variables
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Appendix B

Illustrations of Test Networks

B.1 Small-scale networks
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Figure B.1: Illustration of the small-scale test networks.
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Link 1 2
a 0.1 0.0
b 0 10
(a) Small-1

Link 1 2
a 0.20 0.12
b 10 20

(b) Small-2

Link 1 2 3 4 5
a 0.1 0.1 0.2 0.1 0.1
b 5 5 4 16 10

(c) Small-3

Link 1 2 3 4 5 6 7 8 9 10
a 0.7 0.2 0.6 0.3 0.0 0.8 0.7 0.1 0.8 0.7
b 35 20 10 15 40 10 10 35 20 10

(d) Small-4

Table B.1: Link flow-time function parameters for small-scale networks.

No. 1
Origin 1

Destination 2
Flow 100
(a) Small-1

No. 1
Origin 1

Destination 2
Flow 100
(b) Small-2

No. 1
Origin 1

Destination 2
Flow 100
(c) Small-3

No. 1 2 3 4 5
Origin 1 1 1 2 3

Destination 6 7 8 8 8
Flow 50 100 100 50 100

(d) Small-4

Table B.2: OD pair flows for small-scale networks.

140



B.2 Medium-scale networks
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Figure B.2: Illustration of the medium-scale test networks.

Link 1 2 3 4 5 6 7 8 9 10 11 12
α 2.0 2.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
β 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
γ 100 100 100 100 100 100 100 100 100 100 100 100

Link 13 14 15 16 17 18 19 20 21 22 23 24
α 2.0 2.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
β 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
γ 100 100 100 100 100 100 100 100 100 100 100 100

(a) Grid-1

Link 1 2 3 4 5 6 7 8 9 10 11 12
α 2.0 2.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
β 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
γ 100 100 100 100 100 100 100 100 100 100 100 100

Link 13 14 15 16 17 18 19 20 21 22 23 24
α 2.0 2.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
β 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
γ 100 100 100 100 100 100 100 100 100 100 100 100

(b) Grid-2

Table B.3: Link flow-time function parameters for medium-scale networks.
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No. 1 2 3 4 5 6 7
Origin 1 1 2 3 4 6 6

Destination 5 9 8 7 9 7 8
Flow 20 150 80 100 50 50 60

(a) Grid-1

Destination 1 2 3 4 5 6 7 8 9
Origin OD pair flow

1 50 40 70 80 70 60 20 20
2 30 70 50 10 60 50 30 40
3 70 80 10 70 20 20 30 70
4 40 30 80 70 50 10 80 10
5 40 70 10 20 40 20 40 70
6 80 10 70 60 60 10 10 40
7 10 20 20 20 40 50 80 70
8 70 80 50 30 10 50 40 40
9 30 40 60 70 50 20 50 50

(b) Grid-2

Table B.4: OD pair flows for medium-scale networks.
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B.3 Large-scale networks
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Figure B.3: Illustration of the Sioux Falls network.

143



Link 1 2 3 4 5 6 7 8
α 6.00 4.00 6.00 5.00 4.00 4.00 4.00 4.00
β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
γ 25900 23403 25900 4958 23403 17111 23403 17111

Link 9 10 11 12 13 14 15 16
α 2.00 6.00 2.00 4.00 5.00 5.00 4.00 2.00
β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
γ 17783 4909 17783 4948 10000 4958 4948 4899

Link 17 18 19 20 21 22 23 24
α 3.00 2.00 2.00 3.00 10.00 5.00 5.00 10.00
β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
γ 7842 23403 4899 7842 5050 5046 10000 5050

Link 25 26 27 28 29 30 31 32
α 3.00 3.00 5.00 6.00 4.00 8.00 6.00 5.00
β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
γ 13916 13916 10000 13512 4855 4994 4909 10000

Link 33 34 35 36 37 38 39 40
α 6.00 4.00 4.00 6.00 3.00 3.00 4.00 4.00
β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
γ 4909 4877 23403 4909 25900 25900 5091 4877

Link 41 42 43 44 45 46 47 48
α 5.00 4.00 6.00 5.00 3.00 3.00 5.00 4.00
β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
γ 5128 4925 13512 5128 14565 9599 5046 4855

Link 49 50 51 52 53 54 55 56
α 2.00 3.00 8.00 2.00 2.00 2.00 3.00 4.00
β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
γ 5230 19680 4994 5230 4824 23403 19680 23403

Link 57 58 59 60 61 62 63 64
α 3.00 2.00 4.00 4.00 4.00 6.00 5.00 6.00
β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
γ 14565 4824 5003 23403 5003 5060 5076 5060

Link 65 66 67 68 69 70 71 72
α 2.00 3.00 3.00 5.00 2.00 4.00 4.00 4.00
β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
γ 5230 4885 9599 5076 5230 5000 4925 5000

Link 73 74 75 76
α 2.00 4.00 3.00 2.00
β 0.15 0.15 0.15 0.15
γ 5079 5091 4885 5079

Table B.5: Link flow-time function parameters for the Sioux Falls network.
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Destination 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Origin OD pair flow/100

1 1 1 5 2 3 5 8 5 13 5 2 5 3 5 5 4 1 3 3 1 4 3 1
2 1 1 2 1 4 2 4 2 6 2 1 3 1 1 4 2 1 1 1
3 1 1 2 1 3 1 2 1 3 3 2 1 1 1 2 1 1 1
4 5 2 2 5 4 4 7 7 12 14 6 6 5 5 8 5 1 2 3 2 4 5 2
5 2 1 1 5 2 2 5 8 10 5 2 2 1 2 5 2 1 1 1 2 1
6 3 4 3 4 2 4 8 4 8 4 2 2 1 2 9 5 1 2 3 1 2 1 1
7 5 2 1 4 2 4 10 6 19 5 7 4 2 5 14 10 2 4 5 2 5 2 1
8 8 4 2 7 5 8 10 8 16 8 6 6 4 6 22 14 3 7 9 4 5 3 2
9 5 2 1 7 8 4 6 8 28 14 6 6 6 9 14 9 2 4 6 3 7 5 2
10 13 6 3 12 10 8 19 16 28 40 20 19 21 40 44 39 7 18 25 12 26 18 8
11 5 2 3 15 5 4 5 8 14 39 14 10 16 14 14 10 1 4 6 4 11 13 6
12 2 1 2 6 2 2 7 6 6 20 14 13 7 7 7 6 2 3 4 3 7 7 5
13 5 3 1 6 2 2 4 6 6 19 10 13 6 7 6 5 1 3 6 6 13 8 8
14 3 1 1 5 1 1 2 4 6 21 16 7 6 13 7 7 1 3 5 4 12 11 4
15 5 1 1 5 2 2 5 6 10 40 14 7 7 13 12 15 2 8 11 8 26 10 4
16 5 4 2 8 5 9 14 22 14 44 14 7 6 7 12 28 5 13 16 6 12 5 3
17 4 2 1 5 2 5 10 14 9 39 10 6 5 7 15 28 6 17 17 6 17 6 3
18 1 1 1 2 3 2 7 2 2 1 1 2 5 6 3 4 1 3 1
19 3 1 2 1 2 4 7 4 18 4 3 3 3 8 13 17 3 12 4 12 3 1
20 3 1 3 1 3 5 9 6 25 6 5 6 5 11 16 17 4 12 12 24 7 4
21 1 2 1 1 2 4 3 12 4 3 6 4 8 6 6 1 4 12 18 7 5
22 4 1 1 4 2 2 5 5 7 26 11 7 13 12 26 12 17 3 12 24 18 21 11
23 3 1 5 1 1 2 3 5 18 13 7 8 11 10 5 6 1 3 7 7 21 7
24 1 2 1 1 2 2 8 6 5 7 4 4 3 3 1 4 5 11 7

Table B.6: OD pair flows for the Sioux Falls network.

145



146



Bibliography

Avineri, E., and Prashker, J. N. Sensitivity to travel time variability: Travelers’

learning perspective. Transportation Research Part C: Emerging Technologies, 13

(2):157–183, Apr. 2005.

Barberis, N., and Thaler, R. A survey of behavioral finance. In Handbook of the

Economics of Finance, volume 1(2), pages 1053–1128. Elsevier, 2003.

Bekhor, S., and Toledo, T. Investigating path-based solution algorithms to the

stochastic user equilibrium problem. Transportation Research Part B: Method-

ological, 39(3):279–295, Mar. 2005.

Bell, M. G. H., and Iida, Y. Transportation Network Analysis. Wiley, 1997.

Ben-Akiva, M. E., and Lerman, S. R. Discrete Choice Analysis: Theory and Appli-

cation to Travel Demand. MIT Press, 1985.

Ben-Tal, A., and Nemirovski, A. Robust convex optimization. Mathematics of

Operations Research, 23(4):769–805, Nov. 1998.

Ben-Tal, A., and Nemirovski, A. Robust solutions of linear programming problems

contaminated with uncertain data. Mathematical Programming, 88(3):411–424,

2000.

Bertsekas, D. P. Nonlinear Programming. Athena Scientific, 1995.

147



Bertsimas, D., and Sim, M. Robust discrete optimization and network flows. Math-

ematical Programming, 98(1):49–71, 2003.

Brilon, W., Geistefeldt, J., and Regler, M. Reliability of freeway traffic flow: a

stochastic concept of capacity. In Transportation and traffic theory: flow, dynam-

ics and human interaction: proceedings of the 16th International Symposium on

Transportation and Traffic Theory, University of Maryland, College Park, Mary-

land, 19-21 July 2005, page 125, 2005.

Brown, G. W. Iterative solution of games by fictitious play. In Activity Analysis of

Production and Allocation, volume 13, page 374–376. New York: Wiley, 1951.

Cambridge Systematics, National Research Council, American Association of State

Highway and Transportation Officials, and National Cooperative Highway Re-

search Program. A guidebook for performance-based transportation planning.

Transportation Research Board, 2000.

Cascetta, E. A stochastic process approach to the analysis of temporal dynamics in

transportation networks. Transportation Research Part B: Methodological, 23(1):

1–17, Feb. 1989.

Cascetta, E. Transportation Systems Engineering. Springer, 2001.

Chau, C. K., and Sim, K. M. The price of anarchy for non-atomic congestion games

with symmetric cost maps and elastic demands. Operations Research Letters, 31

(5):327–334, Sept. 2003.

Clark, S., and Watling, D. Modelling network travel time reliability under stochastic

demand. Transportation Research Part B: Methodological, 39(2):119–140, 2005.

Connors, R. D., and Sumalee, A. A network equilibrium model with travellers’ per-

148



ception of stochastic travel times. Transportation Research Part B: Methodological,

43(6):614–624, July 2009.

Correa, J. R., Schulz, A. S., and Stier-Moses, N. E. Selfish routing in capacitated

networks. Mathematics of Operations Research, 29(4):961–976, Nov. 2004.

Correa, J. R., Schulz, A. S., and Stier-Moses, N. E. A geometric approach to the

price of anarchy in nonatomic congestion games. Games and Economic Behavior,

64(2):457–469, Nov. 2008.

Correa, J. R., and Stier-Moses, N. E. Wardrop equilibria. In Encyclopedia of Oper-

ations Research and Management Science (to be published). 2010.

Daganzo, C. F., and Sheffi, Y. On stochastic models of traffic assignment. Trans-

portation Science, 11(3):253, 1977.

Damberg, O., Lundgren, J. T., and Patriksson, M. An algorithm for the stochastic

user equilibrium problem. Transportation Research Part B: Methodological, 30(2):

115–131, Apr. 1996.

de Palma, A., Ben-Akiva, M., Brownstone, D., Holt, C., Magnac, T., McFadden, D.,

Moffatt, P., Picard, N., Train, K., Wakker, P., and Walker, J. Risk, uncertainty

and discrete choice models. Marketing Letters, 19(3):269–285, Dec. 2008.

de Palma, A., and Picard, N. Route choice decision under travel time uncertainty.

Transportation Research Part A: Policy and Practice, 39(4):295–324, May 2005.

El Ghaoui, L., Oustry, F., and Lebret, H. Robust solutions to uncertain semidefinite

programs. SIAM Journal on Optimization, 9:33–52, 1998.

Ferris, M. C., and Munson, T. S. Interfaces to PATH 3.0: Design, implementation

149



and usage. Computational Optimization and Applications, 12(1):207–227, Jan.

1999.

Florian, M., and Hearn, D. Network equilibrium models and algorithms. In Network

Routing, volume 8 of Handbooks in Operations Research and Management Science,

page 485–550. Elsevier, 1995.

Friesz, T. L. Dynamic Optimization and Differential Games. Springer, 2010.

Gill, P. E., Murray, W., and Wright, M. H. Practical Optimization. Academic Press,

Feb. 1982.

Guo, X. L., and Yang, H. The price of anarchy of stochastic user equilibrium in

traffic networks. In Proceedings of the 10th International Conference of Hong

Kong Society for Transportation Studies (HKSTS). Hong Kong: HKSTS Ltd, page

63–72, 2005.

Hallenbeck, M. E., Ishimaru, J., and Nee, J. Measurement of Recurring Versus

Non-Recurring Congestion. Washington State Transportation Center (TRAC),

2003.

Jackson, W. B., and Jucker, J. V. An empirical study of travel time variability and

travel choice behavior. Transportation Science, 16(4):460–475, Nov. 1982.

Kahneman, D., and Tversky, A. Prospect theory: An analysis of decision under risk.

Econometrica, 47(2):263–291, Mar. 1979.

Knight, F. H. Some fallacies in the interpretation of social cost. The Quarterly

Journal of Economics, 38(4):582–606, Aug. 1924.

Koutsoupias, E., and Papadimitriou, C. Worst-Case equilibria. In Proceedings of

150



the 16th Annual Symposium on Theoretical Aspects of Computer Science Trier,

Germany, March 4–6, 1999, pages 404–413. 1999.

Liu, H. X., Recker, W., and Chen, A. Travel time reliability. In Assessing the

Benefits and Costs of ITS, pages 241–261. 2004.

Maher, M. Algorithms for logit-based stochastic user equilibrium assignment. Trans-

portation Research Part B: Methodological, 32(8):539–549, Nov. 1998.

Maher, M., Stewart, K., and Rosa, A. Stochastic social optimum traffic assignment.

Transportation Research Part B: Methodological, 39(8):753–767, Sept. 2005.

Marchal, F., and de Palma, A. Measurement of uncertainty costs with dynamic

traffic simulations. Transportation Research Record: Journal of the Transportation

Research Board, 2085(-1):67–75, Dec. 2008.

McFadden, D. Conditional logit analysis of qualitative choice behavior. Frontiers in

Econometrics, 8:105–142, 1974.

Mirchandani, P., and Soroush, H. Generalized traffic equilibrium with probabilistic

travel times and perceptions. Transportation Science, 21(3):133–152, Aug. 1987.

Nagurney, A. Network Economics: A Variational Inequality Approach. Springer,

1999.

Nakayama, S., Kitamura, R., and Fujii, S. Drivers’ learning and network behavior:

Dynamic analysis of the Driver-Network system as a complex system. Transporta-

tion Research Record: Journal of the Transportation Research Board, 1676(-1):

30–36, Jan. 1999.

Nam, D., Park, D., and Khamkongkhun, A. Estimation of value of travel time

reliability. Journal of Advanced Transportation, 39(1):39–61, 2005.

151



Nikolova, E., Brand, M., and Karger, D. R. Optimal route planning under uncer-

tainty. In Proceedings of International Conference on Automated Planning and

Scheduling, 2006.

Nocedal, J., and Wright, S. J. Numerical Optimization. 2006.

Noland, R. B., and Polak, J. W. Travel time variability: a review of theoretical and

empirical issues. Transport Reviews: A Transnational Transdisciplinary Journal,

22(1):39, 2002.

Noland, R. B., Small, K. A., Koskenoja, P. M., and Chu, X. Simulating travel

reliability. Regional Science and Urban Economics, 28(5):535–564, Sept. 1998.

Ordonez, F., and Stier-Moses, N. Robust wardrop equilibrium. In Network Control

and Optimization, pages 247–256. 2007.

Peeta, S., and Ziliaskopoulos, A. Foundations of dynamic traffic assignment: The

past, the present and the future. Networks and Spatial Economics, 1(3):233–265,

2001.

Perakis, G. The "price of anarchy" under nonlinear and asymmetric costs. Mathe-

matics of Operations Research, 32(3):614–628, Aug. 2007.

Pigou, A. C. The Economics of Welfare. 1920.

Ramming, M. S. Network Knowledge and Route Choice. Thesis, Massachusetts

Institute of Technology, 2002.

Rockafellar, T. Coherent approaches to risk in optimization under uncertainty. Tu-

torials in Operations Research: Or Tools and Applications: Glimpses of Future

Technologies, 2007.

Roughgarden, T. Selfish Routing. Thesis, Cornell University, 2002.

152



Roughgarden, T., and Tardos, Éva. How bad is selfish routing? Journal of the ACM

(JACM), 49(2):236–259, 2002.

Rudin, W. Principles of Mathematical Analysis. McGraw-Hill, 1986.

Schadschneider, A. Statistical physics of traffic flow. Physica A: Statistical Mechanics

and its Applications, 285(1-2):101–120, Sept. 2000.

Schrank, D., and Lomax, T. 2009 Urban Mobility Report. Texas Transportation

Institute, The Texas A&M University System, 2009.

Senna, L. A. D. S. The influence of travel time variability on the value of time.

Transportation, 21(2):203–228, May 1994.

Sheffi, Y. Urban Transportation Networks: Equilibrium Analysis with Mathematical

Programming Methods. Prentice-Hall, 1984.

Sheffi, Y., and Powell, W. B. An algorithm for the equilibrium assignment problem

with random link times. Networks, 12(2):191–207, 1982.

Skabardonis, A., Varaiya, P., and Petty, K. Measuring recurrent and nonrecurrent

traffic congestion. Transportation Research Record: Journal of the Transportation

Research Board, 1856(-1):118–124, Jan. 2003.

Small, K. A. Valuation of Travel-Time Savings and Predictability in Congested Con-

ditions for Highway User-Cost Estimation. Transportation Research Board, Jan.

1999.

Soyster, A. L. Convex programming with Set-Inclusive constraints and applications

to inexact linear programming. Operations Research, 21(5):1154–1157, Oct. 1973.

Sterman, J., and Sterman, J. D. Business Dynamics: Systems Thinking and Modeling

for a Complex World. McGraw-Hill/Irwin, Feb. 2000.

153



Tversky, A., and Kahneman, D. Advances in prospect theory: Cumulative rep-

resentation of uncertainty. Journal of Risk and Uncertainty, 5(4):297–323, Oct.

1992.

U.S. Department of Commerce. Traffic Assignment Manual for Application with a

Large, High Speed Computer. U.S. Department of Commerce, Bureau of Public

Roads, Office of Planning, Urban Planning Division, Washington, 1964.

U.S. Department of Transportation. Making It There on Time, All the Time. U.S.

Department of Transportation, Federal Highway Administration, Brochure, 2007.

U.S. Federal Highway Administration. Making It There on Time, All the Time. U.S.

Department of Transportation, Federal Highway Administration, 2007.

Wardrop, J. G. Some theoretical aspects of road research. Institute of Civil Engineers

Proceedings: Engineering Divisions, 1(3):325–362, 1952.

Watling, D. A second order stochastic network equilibrium model, I: theoretical

foundation. Transportation Science, 36(2):149–166, May 2002.

Zeid, M. A. Measuring and Modeling Activity and Travel Well-Being. Thesis, Mas-

sachusetts Institute of Technology, 2009.

154


