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Abstract In this paper we compare different formulations of the multi-depot fleet size and mix
vehicle routing problem (MDFSMVRP). This problem extends the multi-depot vehicle routing
problem and the fleet size and mix vehicle routing problem, two logistics problems that have been
extensively studied for many decades. This difficult vehicle routing problem combines complex as-
signment and routing decisions under the objective of minimizing fixed vehicle costs and variable
routing costs. We first propose five distinct formulations to model the MDFSMVRP. We introduce
a three-index formulation with an explicit vehicle index and a two-index formulation in which only
vehicle types are identified. Other formulations are obtained by defining aggregated and disaggre-
gated loading variables. The last formulation makes use of capacity-indexed variables. For each
formulation, we summarize known and propose new valid inequalities, including symmetry break-
ing, lexicographic ordering, routing and rounded capacity cuts, among others. We then implement
branch-and-cut and branch-and-bound algorithms for these formulations and we fed them into a
general purpose solver. We compare the bounds provided by the formulations on a commonly used
set of instances in the MDFSMVRP literature, containing up to nine depots and 360 customers,
and on newly generated instances. Our in-depth analysis of the five formulations shows which for-
mulations tend to perform better on each type of instance. Moreover, our results have considerably
improved available lower bounds on all instances and significantly improved quality of upper bounds
that can be obtained by means of currently available methods.

Keywords vehicle routing problem ·multi-depot · heterogeneous fleet · formulation ·mathematical
model · exact solution.

1 Introduction

Distribution problems are central to the performance of many industries. The area of transportation
has been widely studied, notably the vehicle routing problem (VRP) (Toth and Vigo, 2014) which
has attracted the interest of many researchers for more than 50 years (Laporte, 2009) and is
still among the most prominent and widely studied combinatorial optimization problems. Several
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different exact and heuristic algorithms have been proposed since the seminal paper of Dantzig
et al (1954), and in the past decade a myriad of practical applications have emerged, describing
many variants of the classical capacitated VRP (Lahyani et al, 2015b; Coelho et al, 2016). These
variants often incorporate ad hoc decisions or constraints to address challenging problems observed
from practice.

In this paper we model and solve the multi-depot fleet size and mix vehicle routing problem
(MDFSMVRP). This problem is a direct generalization of the classical VRP by considering multiple
depots and different types of vehicles to serve a set of customers with known demands. It combines
three decisions simultaneously: selecting the number of vehicles of each type, planning vehicle
routes and assigning routes to depots. Each vehicle is characterized by a fixed and a variable cost
proportional to the traveled distance. The number of available vehicles of each type is assumed to
be unlimited. The simultaneous optimization of the best fleet composition, the best vehicle routes
and the depot choice substantiates the challenges of this problem. The MDFSMVRP consists of
designing a set of vehicle routes, each starting and ending at the same depot, visiting each customer
exactly once, and respecting the capacity of the vehicles. The objective is to minimize the total
fixed and variable routing costs.

The literature dealing explicitly with the MDFSMVRP is not well furnished as the problem
includes several prominent problems as special cases, such as the multi-depot VRP (MDVRP) and
the FSMVRP. We are aware of four works focusing on the MDFSMVRP. A seminal work on this
specific variant is due to Salhi and Sari (1997). The authors propose a multi-level composite heuristic
based on integrating and modifying efficient heuristics designed for the single depot fleet size and
mix vehicle routing problem (FSMVRP). Their method relies on switching to a more powerful
and expensive neighborhood when moving to a superior level. The authors integrate reduction
tests and refinement modules in the heuristic to speed up some of its steps. Seventeen years later,
Salhi et al (2014) propose a mixed integer linear program to formulate the problem and a set of
valid inequalities to tighten it. They also propose a variable neighborhood search metaheuristic. The
method distinguishes between customers served from their nearest depots and borderline customers.
It makes use of local search heuristics and Dijkstra’s algorithm to refine the tours constructed for
each depot separately. The authors derive lower and upper bounds using a three-hour execution of
CPLEX and provide percentage gaps computed using the best known bounds. Recently, Vidal et al
(2014) propose a unified algorithmic framework tackling different classes of multi-depot VRPs with
and without fleet mix. They present two metaheuristics, i.e., a multi-start iterated local search and
a hybrid genetic algorithm. Both methods rely on a bidirectional dynamic programming approach
to efficiently evaluate customer-to-depots assignments. The three published works described above
assess the performance of their methods on the same testbed. Finally, Mancini (2016) tackles a real
and new variant of the MDFSMVRP with multiple periods and different levels of incompatibility
between customers and vehicles, and between customers and days. The author proposes an adaptive
large neighborhood search metaheuristic and demonstrates the performance of her method on a
new set of randomly generated instances.

Many papers and book chapters have been devoted to study separately the two straightforward
reductions of the MDFSMVRP. The primary decision related to the fleet consists to determine
the optimal size of the fleet, which may be limited for the Heterogeneous Fleet Vehicle Routing
Problem (HFVRP) or unlimited for the FSMVRP. Dealing with the fleet composition goes back to
the seminal papers by Gheysens et al (1984) and Golden et al (1984). Since then, several variants
of the FSMVRP have been addressed in the literature, including those with time windows (Koç
et al (2015)), pickups and deliveries (Qu and Bard (2014)), multi-trip (Prins (2009)), and more
recently green routing (Juan et al (2014); Saka et al (2017)), and multi-compartment (Derigs et al
(2011); Lahyani et al (2015a)). Several metaheuristics (Euchi and Chabchoub (2010); Liu (2013))
addressed large scale instances of the FSMVRP while exact methods (Yaman (2006); Baldacci and
Mingozzi (2009)) manage smaller-size ones. For more details, we refer to recent surveys proposed
by Baldacci et al (2008); Andersson et al (2010); Irnich et al (2014a) and Koç et al (2016b).
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The literature for the MDVRP is also rich. This problem first appeared in the literature in
the works of Kulkami and Bhave (1985) and Carpaneto et al (1989). More intricate and extended
variants of the MDVRP have also been studied. Mancini (2016) and Rahimi-Vahed et al (2015)
consider a closely related problem with multiple periods. Time related constraints including static
and fuzzy time windows for customers and depots have also received increased attention in the
last few years, e.g., Bettinelli et al (2011), Xu and Jiang (2014), Adelzadeh et al (2014) and
Koç et al (2016a) along with the consideration of open vehicles routes, e.g., Liu et al (2014);
Lalla-Ruiz et al (2015). Besides, several works focused on studying the MDVRP combined with
the location problem, e.g., Contardo et al (2013); Prodhon and Prins (2014). The great amount
of solution methods proposed for the MDVRP has been focused on the design of metaheuristic
algorithms, e.g., genetic algorithms (Thangiah and Salhi (2001); Vidal et al (2012)) and adaptive
large neighborhood search algorithm (Pisinger and Ropke (2007)) for large scale cases as well as
exact algorithms (Baldacci and Mingozzi (2009); Contardo et al (2013); Contardo and Martinelli
(2014)) for smaller scale instances. An extensive survey of all methods is outside the scope of
this section, and we refer to Karakatič and Podgorelec (2015) and Montoya-Torres et al (2015)
for focused and recent surveys for the MDVRP. In Karakatič and Podgorelec (2015) the authors
focused on reviewing genetic algorithms designed for solving MDVRPs and compared them to other
existing approaches, both exact and heuristic for solving this same problem. In Montoya-Torres et al
(2015) the authors presented a systematic review of MDVRP literature and an analysis of both
single and multiple objective multi-depot problems.

The MDFSMVRP is an NP-hard combinatorial problem since the VRP is NP-hard. Several
authors explicitly outline the difficulty of solving to optimality either the FSMVRP instances or
the MDVRP instances, or even finding tight bounds (Pessoa et al, 2009; Salhi et al, 2014).

Our contributions lie in adapting and proposing new formulations and valid inequalities for the
MDFSMVRP. Specifically, we propose a model based on a three-index VRP formulation introduced
by Laporte and Nobert (1987), to which we include new dimensions to account for each vehicle type,
as in Vidal et al (2014). We then present a formulation derived from the two-index VRP model of
Laporte (1986), in which we create copies of the graph for each vehicle type, but we do not identify
individual vehicles. Our third formulation is derived from the commodity flow model proposed in
Salhi and Rand (1993) and Yaman (2006), which we modify to consider multiple depots. This
formulation makes use of loading variables to model capacity and subtour elimination constraints.
We obtain our fourth formulation by disaggregating the loading variables by vehicle type, as in
Yaman (2006). Finally, the last formulation we propose is derived from the model of Pessoa et al
(2009) for the FSMVRP, which is compact enough to enumerate all variables and constraints, and
to which we incorporate new procedures to reduce the number of variables. We compare these five
formulations in order to provide tighter bounds for this difficult routing problem. The focus of the
paper is on the last three compact formulations since the first two path-based formulations have
been extensively studied in the VRP literature. We compare the last three formulations against
the one proposed by Salhi et al (2014). The five formulations are intended to be solved with a
general purpose solver. We also describe the thinking path and the conceptual motivation behind
the proposition of the five formulations. A subproduct of this research is to identify the origins and
give credits to the main ideas used by our community to formulate many distribution problems.
Thus, for each proposed formulation we provide the main references that have put forward the
modeling techniques and the valid inequalities used.

The remainder of this paper is organized as follows. In Section 2 we provide a formal description
of the MDFSMVRP, followed by the introduction of the five mathematical models. Section 3
presents a description and discussion of several theoretical analysis for the VRP and lays down
some theoretical comparison for our five models. The algorithms used to solve these formulations
are briefly presented in Section 4. The results of extensive computational experiments are presented
in Section 5. Section 6 is devoted to our conclusions.
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2 Problem description and mathematical formulations

The MDFSMVRP is formally defined on a directed graph G = (V,A), where V is the vertex set and
A is the arc set. The vertex set V is partitioned into two subsets Vd = {1, . . . ,m} representing m
depots, and Vc = {m+1, . . . ,m+n} representing n customers, such that V = Vd∪Vc. Each customer
i ∈ Vc is associated with a non-negative demand qi, while qi = 0, i ∈ Vd. The distance between
nodes i and j ∈ V is βij . In the following, we use the terms cost and distance interchangeably. The
use of loop arcs (i, i) is not allowed including loop arcs between customers i ∈ Vc and loop arcs
between depots i ∈ Vd. This is imposed by defining βii =∞ for all i ∈ V. Also, back-and-forth arcs
connecting two different depots are forbidden by imposing βij =∞ for all i, j ∈ Vd, i 6= j. Graph G
is assumed to be complete as it includes all the arcs connecting the vertex pairs, with the exception
of loops. If the distance matrix is asymmetric, the arc set A is composed of {(i, j) : i, j ∈ V, i 6= j}.
Otherwise, i.e., when βij = βji, the arc set A is replaced by a set of undirected edges, E such that
E is composed of edges {(i, j) : i, j ∈ V, i > j}. A fleet of heterogeneous vehicles K = {1, . . . ,K}
with different capacities and housed in multiple depots d ∈ Vd is available. Each vehicle type k ∈ K
is associated with a capacity Qk, a fixed cost F k and a variable cost αk per unit of distance. Each
vehicle must start and end its journey at the same depot. We define a set H as a fleet including n
copies of each vehicle type k, with |H| = nK. Each vehicle has an index t ∈ H that represents its
number. Each vehicle t ∈ H is associated with a capacity Qt, a fixed cost F t and a variable cost αt

which are equal to the capacity Qk, the fixed cost F k and the variable cost αk of its corresponding
type k.

A solution to the problem must determine routes that minimize the total costs such that each
route must start and end at the same depot, each customer is visited exactly once, and the total
demand of each route does not exceed the capacity of the selected vehicle. Also, when solving
this problem, the vehicle fleet composition will be found for all depots as well as for each depot.
An illustration of this problem is shown in Figure 1 where each route is performed by a different
vehicle.

Fig. 1 Solution for the MDFSMVRP with 2 depots, 10 customers and 3 vehicle types
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We now provide five different formulations for the MDFSMVRP. In Section 2.1 we present
a vehicle flow model which explicitly considers all edges, vehicles and depots. In Section 2.2 we
show an adaptation of the two-index formulation, notably extending it to handle an heterogeneous
fleet. Section 2.3 presents a commodity flow formulation in which capacity and subtour elimination
constraints are expressed using flows. In Section 2.4 we introduce a model based on disaggregated
loading variables by vehicle type. In Section 2.5 we present a capacity-indexed formulation for the
problem at hand.

2.1 Explicit formulation

We first provide a three-index vehicle flow formulation for the symmetric case with an explicit
vehicle index. The extension to an asymmetric version is straightforward. This formulation is based
on the model proposed by Golden et al (1977) for the multiple depot vehicle routing problem with
length restrictions, on the three-index vehicle flow formulation proposed by Laporte and Nobert
(1987) for the asymmetrical multi-depot VRP with homogeneous fleet, on the model proposed by
Toth and Vigo (2002) for the single depot VRP, and on the model proposed by Vidal et al (2014)
for the MDFSMVRP. Note that as required for this symmetric case, the arc set A is replaced by
the set of undirected edges, E = {(i, j) : i, j ∈ V, i > j}, because as it was stated in Toth and Vigo
(2002) and Irnich et al (2014b), it is not necessary to know in which direction edges are traversed
by the vehicles. We define routing variables xtdij to indicate the number of times (0, 1, 2) edge

(i, j)(i > j) is used in the solution. xtdij equal to one if edge (i, j) is traversed by vehicle t housed

at depot d, and equal to two for a round trip to customer j. Binary variables ytdi are equal to one
if node i is visited by vehicle t from depot d. Note that, as in Vidal et al (2014), in formulation
F1 t refers to the vehicle index, not the vehicle type since all the available vehicles are explicitly
considered. However, unlike Vidal et al (2014), we define different assignment variables ytdi . The
problem can then be formulated as follows:

(F1) minimize
∑
i∈Vd

∑
t∈H

∑
d∈Vd

F tytdi +
∑

(i,j)∈E

∑
t∈H

∑
d∈Vd

αtβijx
td
ij (1)

subject to ∑
t∈H

∑
d∈Vd

ytdi = 1 i ∈ Vc (2)

∑
j∈V,i>j

xtdij +
∑

j∈V,j>i

xtdji = 2ytdi i ∈ V, t ∈ H, d ∈ Vd (3)

ytdi ≤ ytdd i ∈ Vc, t ∈ H, d ∈ Vd (4)

ytdd ≤
∑

(i,j)∈E

xtdij t ∈ H, d ∈ Vd (5)

2ytdd ≤
∑
i∈Vc

xtdid t ∈ H, d ∈ Vd (6)

∑
i∈Z

∑
j∈Z,i>j

xtdij ≤
∑
i∈Z

ytdi − ytdz Z ⊆ Vc, |Z| ≥ 2, z ∈ Z, t ∈ H, d ∈ Vd (7)

∑
i∈Vc

qiy
td
i ≤ Qt t ∈ H, d ∈ Vd (8)

xtdij ∈ {0, 1} (i, j) ∈ E , t ∈ H, d ∈ Vd (9)

xtdij ∈ {0, 1, 2} i ∈ Vc, j ∈ Vd, t ∈ H, d ∈ Vd (10)
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ytdi ∈ {0, 1} i ∈ V, t ∈ H, d ∈ Vd. (11)

The objective function (1) minimizes the total cost composed of fixed vehicle costs and variable
routing costs. Constraints (2) impose that all customers must be visited exactly once. Constraints
(3) are degree constraints and constraints (4) impose that if a customer is served by vehicle t
housed at depot d, then vehicle t must leave the depot. Constraints (5) and (6) link the two types
of variables of the problem. They ensure that if a vehicle t of depot d is used, then at least one
customer i must be visited by this vehicle. Constraints (7) forbid subtours. Constraints (8) impose
vehicle capacities. The domain of the variables is enforced by constraints (9)–(11). This formulation
contains O(2n) subtour elimination constraints whose number grows exponentially with n. This is
a large formulation which strongly depends on the number of available vehicles.

Model F1 is sufficient to represent the MDFSMVRP, however we can add some valid inequalities
and lift some constraints to strengthen it. Constraints (12) enforce restrictions related to the vehicle
use. Specifically, each vehicle t housed at depot d is allowed to perform at most one trip.∑

j∈Vc

xtdjd ≤ 2 t ∈ H, d ∈ Vd. (12)

To avoid symmetries due to the presence of identical vehicles at each depot, we introduce vehicle
symmetry breaking constraints. Observe that (13) and (14) are only valid if the fleet is homogeneous.
We define the set Hk ⊂ H containing only the homogeneous vehicles of type k. Thus, constraints
(13) state that vehicle t can only be dispatched if vehicle t − 1 is already dispatched. Constraints
(14) rank identical vehicles according to the index of the customers visited. These constraints are
defined for each depot. They are inspired by those presented in Adulyasak et al (2013); Coelho and
Laporte (2013, 2014), and Lahyani et al (2015a).

ytdd ≤ yt−1,d
d t ∈ Hk\{Hk

1},Hk ⊂ H, k ∈ K, d ∈ Vd (13)

ytdi ≤
∑

j∈Vc,j<i

∑
h∈Vd

yt−1,h
j i ∈ Vc, t ∈ Hk\{Hk

1},Hk ⊂ H, k ∈ K, d ∈ Vd, (14)

where Hk
1 represents the first element of Hk.

We also introduce a set of logical inequalities that enforce the relationships between routing
and visiting variables. They are defined as follows:

ytdd ≤
∑
i∈Vc

ytdi t ∈ H, d ∈ Vd (15)

xtdid ≤ 2ytdi i ∈ Vc, t ∈ H, d ∈ Vd (16)

xtdij ≤ ytdj i, j ∈ Vc, i > j, t ∈ H, d ∈ Vd (17)∑
j∈Vc

ytdj ≤
∑

(i,j)∈E

xtdij t ∈ H, d ∈ Vd (18)

2ytdj ≤
∑
i∈Vc

xtdid j ∈ Vc, t ∈ H, d ∈ Vd (19)

∑
j∈V,i>j

∑
t∈H

∑
d∈Vd

xtdij +
∑

j∈V,i<j

∑
t∈H

∑
d∈Vd

xtdji = 2 i ∈ Vc (20)

⌈ ∑
i∈Vc

qi

max{Qt}

⌉
≤
∑
i∈Vc

∑
t∈H

∑
d∈Vd

xtdid. (21)

Constraints (15)–(20) are referred to as routing cuts. The first ones replace the right hand side of
constraints (5) by enforcing that at least one customer must be visited by vehicle t of depot d if this
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vehicle is used. We also note that constraints (15) are the sum over the customers in inequalities
(4). Constraints (16) remove all edges (i, d) if customer i is not visited by vehicle t of depot d.
Constraints (17) further remove variables by forbidding the use of edge (i, j) if customer j is not
visited by vehicle t housed at depot d. Constraints (18) impose that the sum of customers visited
by vehicle t is less than or equal to the sum of edges traversed by vehicle t. Constraints (19) impose
the condition that if vehicle t of depot d is not used, then customer j cannot be visited by this
vehicle. Equations (20) further define the degree constraints by imposing that each customer is
visited once. Finally, constraints (21) are referred to as rounded capacity cuts (Naddef and Rinaldi,
2002; Pessoa et al, 2009). They impose a lower bound on the number of used vehicles. However, in
the case it is not necessary to use the vehicle with the biggest capacity in one trip and if there is a
considerable difference between max{Qt} and the capacity of the used vehicle, then the left hand
side of constraints (21) may give a poor lower bound. Even if these constraints are redundant in
this context, they are known to help the mathematical programming solvers derive new cuts and
improve the overall algorithmic performance (Coelho and Laporte, 2014; Gendron and Crainic,
1994; Jena et al, 2015b,a; Lahyani et al, 2015a).

Constraints (22) and (23) are lexicographic ordering constraints. They are inspired from the
ones defined in Sherali and Smith (2001) and Adulyasak et al (2013). Given the large coefficients
that arise when dealing with large instances, these constraints are only added for small and medium
size instances containing up to 60 customers.

j∑
i=m+1

2(j−i)ytdi ≤
j∑

i=m+1

2(j−i)yt−1,d
i j ∈ Vc, t ∈ Hk\{Hk

1},Hk ⊂ H, k ∈ K, d ∈ Vd (22)

∑
i∈Vc

2(m+n−i)ytdi ≤
∑
i∈Vc

2(m+n−i)yt−1,d
i t ∈ Hk\{Hk

1},Hk ⊂ H, k ∈ K, d ∈ Vd. (23)

2.2 Implicit vehicle index formulation

Formulation F1 has the drawback that the number of variables and constraints increases when the
number of vehicles increases. These variables are dependent on the number of customers n.

We now propose a formulation with implicit vehicle assignment as proposed in Laporte (1986),
and Toth and Vigo (2002) for the single depot VRP.

This formulation uses the same type of variables defined in Section 2.1 but using the index k
instead of t which refers to vehicle types instead of individual vehicles. This has the advantage of
having one type of variable per vehicle type, instead of creating one variable per vehicle of each type.
For the sake of briefness, we do not restate the whole definition of the variables and constraints (in
this section and for the remainder of this paper), and refer to the ones already defined in Section
2.1 when the interpretation is straightforward. The only difference consists in to replace parameter
t by parameter k while defining the variables and the sets. This implicit vehicle index formulation
can then be defined as follows:

(F2) minimize
∑
j∈Vc

∑
k∈K

∑
d∈Vd

0.5F kxkdjd +
∑

(i,j)∈E

∑
k∈K

∑
d∈Vd

αkβijx
kd
ij (24)

subject to (2)–(6), (9)–(11) and to∑
i∈S

∑
j∈S,i>j

xkdij ≤ |S| − r(S) S ⊆ Vc,S 6= ∅, k ∈ K, d ∈ Vd. (25)

When using a compact variables definition, the objective function (24) is expressed by the variables
xkdij . Constraints (25) simultaneously replace constraints (7) and (8) where r(S) is a lower bound
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on the number of vehicles required to serve the customers in S. They correspond to generalized
subtour elimination constraints, and prevent capacity violation on each vehicle. This formulation
has a number of linear subtour elimination constraints growing exponentially with n. F2 is much
more compact than F1 since it depends on the number of vehicle types.

Several of the valid inequalities previously defined remain valid, namely (15)–(21). Alterna-
tively, we can reinforce subtour elimination (25) by introducing inequalities (7). Constraints (7) are
known to be efficient when solving the problem with a branch-and-cut algorithm. Both families of
constraints (7) and (25) have a cardinality growing exponentially with n.

Vehicle symmetry breaking constraints and lexicographic ordering constraints no longer hold for
this formulation because they require distinguishing between vehicle index and not vehicle types.

2.3 Compact formulation with loading variables

A main disadvantage of model F2 presented in Section 2.2 is that capacity constraints are not
explicitly defined, requiring cuts to be added dynamically. This might lead to weak bounds at the
early stages of its optimization. To overcome this situation, formulation F3 proposed in this section
makes use of stronger constraints to handle capacity restrictions. We define additional continuous
variables to help control the load of the vehicles. This model is based on the commodity flow
formulation proposed by Garvin et al (1957) for an oil delivery problem and later extended by
Gavish and Graves (1982) to VRP variants. A similar formulation for the single depot VRP is
given in Toth and Vigo (2002). Later, Baldacci et al (2008) extended this formulation for the VRP
with heterogeneous fleet, Salhi and Rand (1993) and Yaman (2006) extended it for the FSMVRP,
Salhi et al (2014) modified it to handle a VRP with multiple depots, and Koç et al (2016a) amended
it for the fleet size and mix location-routing problem with time windows. The formulation proposed
in this section is quite different from the one proposed in Salhi et al (2014) for the MDFSMVRP as
we define new assignment variables ykdi in addition to xkdij . Indeed, Bosch and Trick (2005) highlight
that adding variables and/or constraints to a formulation may strengthen the linear relaxation and
provide improved formulations. They also state that for many problems, the use of integer variables,
even when it is not required, may expand the capability of the model and help find an optimal
solution.

The formulation is derived by defining new continuous variables zij representing the remaining
load on the vehicle when traversing arc (i, j), i.e., after visiting node i and before visiting node j.
Note that the loading variables could be defined only for the asymmetric version of the problem
since the complete graph is considered. In this graph, a vehicle must return to the depot empty.
We also use the same four-index binary variables xkdij and the visiting binary variables ykdi defined
in Section 2.2 but on a directed graph. Indeed, in this model, (i, j) belongs to the arc set A and
xkdij takes value one if arc (i, j) ∈ A traversed by vehicle type k housed at depot d is used in the
solution, and zero otherwise. In what follows, we restate all the constraints of the problem dealing
with routing variables xkdij , since they are expressed differently from the constraints defined in
models F1 and F2, despite having the same role. The formulation is defined by:

(F3) minimize
∑
i∈Vc

∑
k∈K

∑
d∈Vd

F kxkddi +
∑

(i,j)∈A

∑
k∈K

∑
d∈Vd

αkβijx
kd
ij (26)

subject to (2), (4) and to:∑
j∈V

xkdij +
∑
j∈V

xkdji = 2ykdi i ∈ Vc, k ∈ K, d ∈ Vd (27)

∑
i∈V

xkdij =
∑
i∈V

xkdji j ∈ V, k ∈ K, d ∈ Vd (28)
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ykdd ≤
∑

(i,j)∈A

xkdij k ∈ K, d ∈ Vd (29)

2ykdd ≤
∑
j∈Vc

xkdjd +
∑
j∈Vc

xkddj k ∈ K, d ∈ Vd (30)

∑
i∈V

zij −
∑
i∈V

zji = qj j ∈ Vc (31)

∑
i∈Vd

∑
j∈Vc

zij =
∑
j∈Vc

qj (32)

zij ≤
∑
k∈K

∑
d∈Vd

(Qk − qi)xkdij i ∈ V, j ∈ Vc (33)

xkdij ∈ {0, 1} (i, j) ∈ A, k ∈ K, d ∈ Vd (34)

ykdi ∈ {0, 1} i ∈ V, k ∈ K, d ∈ Vd (35)

zij ≥ 0 i, j ∈ V. (36)

The objective function (26) minimizes the total routing costs. Equations (2) enforce that each
customer must be visited exactly once. Constraints (27) and (28) replace the flow conservation
constraints (3) defined in model F1. Constraints (4), (29) and (30) are equivalent to constraints (4)–
(6) in model F1. They enforce that only used vehicles may serve customers. Constraints (31)–(33)
are specific to the commodity flow formulation. They impose both the connectivity of the solution
and the vehicle capacity constraints. In particular, constraints (31) guarantee that each customer
demand is satisfied. Summing up these constraints yields constraint (32) which states that the total
load leaving all depots must be equal to the total customers demands. Constraints (33) bound the
load on each arc (i, j), i.e., after visiting node i the load on arc (i, j) plus the demand of node i
cannot exceed the capacity of the vehicle used. Constraints (34)–(36) define the domain and nature
of the variables. Formulation F3 has the advantage that connectivity constraints are polynomial
in size, unlike models F1 and F2 which require a branch-and-cut algorithm to dynamically add
subtour elimination constraints which are exponential in number.

Because of the way new variables zij are defined, it is possible to further tighten this formulation.
We introduce bounding constraints as in Salhi et al (2014). Constraints (37) impose a lower bound
on loading variables. They state that the total load of arc (i, j) must be at least equal to the demand
of node i.

zij ≥
∑
k∈K

∑
d∈Vd

qjx
kd
ij i ∈ Vc, j ∈ Vc (37)

Constraints (38) and (39) enhance the flow conservation of the problem by imposing that the total
flow entering a node must equal to the total flow leaving the node. Karaoglan et al (2012) have
introduced several classes of valid inequalities for the location-routing problem with simultaneous
pick-up and delivery. Some of these constraints have been extended to the fleet size and mix
location-routing problem with time windows in Koç et al (2016a). We adapt these constraints in
(40)–(42) to the MDFSMVRP. They exclude illegal vehicle routes that do not start and end at
the same depot. Constraints (43) represent a special case of subtour elimination constraints on
two-node sets. Constraints (44) bound the number of vehicles trips.∑

i∈V

∑
k∈K

∑
d∈Vd

xkdij = 1 j ∈ Vc (38)

∑
j∈V

∑
k∈K

∑
d∈Vd

xkdij = 1 i ∈ Vc (39)
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k∈K

xkdid ≤
∑
k∈K

ykdi i ∈ Vc, d ∈ Vd (40)

∑
k∈K

xkddi ≤
∑
k∈K

ykdi i ∈ Vc, d ∈ Vd (41)

∑
k∈K

xkdij +
∑
k∈K

ykdi +
∑
k∈K

∑
h∈Vd,h 6=d

ykhj ≤ 2 i, j ∈ Vc, i 6= j, d ∈ Vd (42)

xkdij + xkdji ≤ 1 i, j ∈ Vc, k ∈ K, d ∈ Vd (43)⌈ ∑
i∈Vc

qi

max{Qk}

⌉
≤
∑
i∈Vc

∑
k∈K

∑
d∈Vd

xkddi . (44)

2.4 Compact formulation with disaggregated loading variables

In this section, we propose a more detailed formulation based on F3 for the MDFSMVRP, referred
to as F4. The motivation is to carry information related to the vehicle type on each arc by disaggre-
gating the loading variables zij . We define new continuous variables zkij , such that zij =

∑
k∈K z

k
ij .

This model is inspired from the work of Yaman (2006) for the FSMVRP. The model is defined by
minimizing (26) subject to (2), (4), (27)–(30), (34), (35) and to:∑

i∈Vd

∑
j∈Vc

∑
k∈K

zkij =
∑
j∈Vc

qj (45)

∑
i∈V

zkij −
∑
i∈V

zkji =
∑
d∈Vd

qjy
kd
j j ∈ Vc, k ∈ K (46)

zkij ≤
∑
d∈Vd

(Qk − qi)xkdij i ∈ V, j ∈ Vc, k ∈ K (47)

zkij ≥ 0 i, j ∈ V, k ∈ K. (48)

Constraints (45)–(47) have a similar meaning as constraints (31)–(33) of model F3. The only
exception is that they provide more precision on the vehicle type carrying the load on arc (i, j).
Formulation F4 has more continuous variables and constraints compared to F3.

Model F4 can also be strengthened by (38)–(44), while constraints (37) must be replaced by
(49):

zkij ≥
∑
d∈Vd

qjx
kd
ij i ∈ Vc, j ∈ Vc, k ∈ K. (49)

2.5 Capacity-indexed formulation

In this section, we make use of a novel formulation to model VRPs, referred to as capacity-indexed
formulation. This type of formulation has only appeared a few times for basic variants of VRPs. A
seminal paper proposing a capacity-indexed formulation for the time-dependent traveling salesman
problem is due to Picard and Queyranne (1978). Godinho et al (2008) used it for the case of
unitary demands. Later, Pessoa et al (2008) and Poggi de Aragão and Uchoa (2014) propose a
similar formulation for the asymmetric VRP, and Pessoa et al (2007) and Pessoa et al (2009)
extend this model to handle the asymmetric VRP with heterogeneous fleet.

We define new binary variables xkdqij equal to one if and only if vehicle type k housed at depot
d traverses arc (i, j) with a load of q units. This variable indicates the load of a given vehicle type
housed at a given depot on a given arc, unlike the commodity flow formulations (F3 and F4) that



Title Suppressed Due to Excessive Length 11

require the definition of continuous variables to convey similar information. Vehicles returning to
the depot must have a load q equal to zero and a vehicle k traversing arc (i, j) must not carry a
load q lower that the demand of node j. This model can then be formulated as follows:

(F5) minimize
∑
i∈Vc

∑
k∈K

∑
d∈Vd

Qk∑
q=1

F kxkdqdi +
∑

(i,j)∈A

∑
k∈K

∑
d∈Vd

Qk∑
q=0

αkβijx
kdq
ij (50)

subject to

∑
j∈V

∑
k∈K

∑
d∈Vd

Qk∑
q=1

xkdqji = 1 i ∈ Vc (51)

∑
i∈Vc

Qk∑
q=1

xkdqdi =
∑
i∈Vc

xkd0id k ∈ K, d ∈ Vd (52)

∑
j∈V

xkdqji =
∑
j∈V

x
kd(q−qi)
ij i ∈ Vc, k ∈ K, d ∈ Vd, q = {qi, . . . , Qk} (53)

xkdqij ∈ {0, 1} i, j ∈ V, k ∈ K, d ∈ Vd, q = {0, . . . , Qk}. (54)

The total routing costs are minimized in (50). Equations (51) are in-degree constraints. They ensure
that each customer is visited exactly once. Constraints (52) ensure flow conservation and guarantee
that if a vehicle of type k leaves a depot d with a load q then it must return to this depot with a load
equal to 0. The connectivity of the solution and the vehicle capacity requirements are ensured due
to constraints (53). If vehicle k carrying a load qi ≤ q ≤ Qk enters a node i, then it must leave it
with a load equal to q−qi. Constraints (54) define the domain of the capacity-indexed variables. In
order to reduce the research space when using capacity-indexed variables, one can further remove
unnecessary variables. We eliminate variables related to vehicle k traversing an arc (i, j) with an
irrelevant load, i.e., after visiting a node i, the vehicle should not carry a load between Qk− qi and
the capacity of vehicle k, Qk. Those unnecessary variables are removed with equalities (55):

xkdqij = 0 i ∈ V, j ∈ Vc, k ∈ K, d ∈ Vd, Qk − qi < q ≤ Qk. (55)

Solving the MDFSMVRP directly with this formulation is practical only for small values of Qk. We
derive new valid inequalities in the form of balance and capacity constraints and routing constraints,
which impose bounds on the binary variables. Constraints (56) and (57) are inspired from those
proposed in Pessoa et al (2009). They impose a lower bound on the number of vehicle routes and
the number of variables, respectively. Equations (58) are balance constraints. They state that if
vehicle k traversing arc (i, j) enters node i then the load delivered to node i must be exactly qi.⌈ ∑

i∈Vc
qi

max{Qk}

⌉
≤
∑
i∈Vc

∑
k∈K

∑
d∈Vd

Qk∑
q=qi

xkdqdi (56)

∑
i∈Vc

qi ≤
∑
i∈V

∑
j∈Vc

∑
k∈K

∑
d∈Vd

Qk∑
q=qi

qxkdqij (57)

∑
j∈V

∑
k∈K

∑
d∈Vd

Qk−qj∑
q=qi

qxkdqji −
∑
j∈V

∑
k∈K

∑
d∈Vd

Qk−qi∑
q=qj

qxkdqij = qi i ∈ Vc. (58)

Constraints (59)–(61) are referred to as routing constraints, as a way to ensure that if there is an
arc (i, j) related to vehicle k and linking two customers i and j, i.e., (59) holds, then there must
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be at least one arc traversed by k and returning to depot d, i.e., (60) holds. Equalities (61) are
outgoing arcs, they reinforce equations (51).

Qk−qi∑
q=qj

xkdqij ≤
∑
h∈Vc

xkd0hd i, j ∈ Vc, k ∈ K, d ∈ Vd (59)

xkd0hd ≤
∑
i∈V

∑
j∈Vc

Qk−qi∑
q=qj

xkdqij h ∈ Vc, k ∈ K, d ∈ Vd (60)

∑
j∈V

∑
k∈K

∑
d∈Vd

Qk∑
q=0

xkdqij = 1 i ∈ Vc. (61)

3 Theoretical insights

A large number of formulations have been proposed for the VRP. However, a much smaller number
of papers have discussed the theoretical formulations of these models, comparing their structures
and dominance (Letchford and Salazar-González, 2006). Many researchers have focused on studying
the polyhedral structure of one particular model at a time (Laporte and Nobert, 1984; Araque et al,
1990; Campos et al, 1991; Cornuéjols and Harche, 1993; Augerat, 1995; Gouveia, 1995b; Letchford
et al, 2002; Godinho et al, 2008; Gouveia and Salazar-González, 2013; Gouveia et al, 2013; Bektaş
and Gouveia, 2014). Very few compare different formulations, e.g., Gouveia (1995b), Letchford
and Salazar-González (2006) and Yaman (2006). In what follows we discuss their main results and
relations to the models presented in Section 2.

The seminal work of Gouveia (1995b) describes the set of feasible solutions of a one-commodity
flow formulation for the one-unit VRP (Gavish and Graves, 1982), comparing the polyhedral struc-
ture against existing weaker variants of that formulation. Based on these results, the author pro-
posed a new and better extended formulation for the problem, besides generalizing the results for
VRPs with non-unit demands. These families of commodity flow formulations use two sets of vari-
ables: routing variables to describe the design of the routes, and another set of continuous loading
variables to capture the load of the vehicle traversing each arc. The load variables are then used
to enforce capacity and subtour elimination constraints. This idea is exploited in formulations F3
and F4 proposed in Sections 2.3 and 2.4. Gouveia (1995b) stated that flow-based formulations used
for capacitated problems can lead to good lower bounds, and yield interesting results when used in
combinations with some families of valid inequalities. This has been successfully used to solve the
capacitated minimal spanning tree problem (Gouveia, 1995a), the VRP (Toth and Vigo, 2002) and
the FSMVRP (Yaman, 2006). Moreover, Gouveia (1995b) stated that the commodity flow formula-
tion using loading variables to enforce subtour and capacity constraints, such as (31)–(33), performs
better than models exploiting binary variables and generalized subtour elimination constraints of
the form (25). The information regarding load variables leads to a more compact formulation, with
fewer constraints that are easier to lift. The author demonstrated that result by analyzing the pro-
jection of the commodity flow formulation into the the two-index vehicle flow space. Toth and Vigo
(2002) have later revalidated the same results. The authors have stated that two- and three-index
vehicle flow formulations using binary routing variables to enforce capacity and subtour elimination
constraints, i.e., the models on which formulations F1 and F2 of Sections 2.1 and 2.2 are based,
cannot be used efficiently to solve problems with some operational constraints, such as those with a
fixed vehicle cost depending on its type. The authors have also stated that the linear programming
(LP) relaxation of these two models is very weak.

Letchford and Salazar-González (2006) have later proposed the commodity flow formulation
as an alternative for the two- and three-index vehicle flow formulations, based on the fact that
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these latter require an exponential number of constraints to enforce connectivity. Moreover, they
have shown that the integer relaxation of the commodity flow model is generally not dominated
by that of the vehicle flow models. Gouveia (1995b) had suggested using the linear relaxation of
the commodity flow formulation strengthened by inequalities (33) when starting a branch-and-cut
procedure. However, since the number of (33) is exponential in n, the author points out that the
size of the linear programming problem may become an issue.

This latter disadvantage may be overcome by using a more compact model replacing binary
routing variables by binary ones indicating the flow on each arc (Gouveia, 1995b). By doing this, one
replaces O(n2) constraints of type (33) by O(n) constraints of type (53). This is the idea exploited
by model F5 presented in Section 2.5. Recently, Yaman (2006) have performed a deep theoreti-
cal analysis of several different formulations and valid cuts for the heterogeneous VRP. She has
compared LP bounds of flow formulations and Miller-Tucker-Zemlin (MTZ) formulations through
projection. The main result indicates that the LP bounds of formulations with capacity and sub-
tour elimination constraints modeled with MTZ constraints (Miller et al, 1960) and binary routing
variables give raise to a weak estimate of the optimal value compared to the LP bounds of the
formulations using flow variables to express the capacity and the subtour elimination constraints.
The author has also shown that the LP relaxation of the formulations with disaggregating flow
variables outperforms that of the original aggregated flow formulation, which in turn outperforms
the LP relaxation of vehicle flow formulations.

In Section 5, we provide a comparison of the performance of the five proposed models from
an empirical perspective. As has been the choice of several other researchers, we will analyze and
discuss the results of the LP relaxation, the bounds obtained, and the efficiency of some families of
the proposed valid inequalities with a focus on the compact formulations. All tests will be performed
on various publicly available instances.

4 Solution algorithms

The formulations presented in Sections 2.3, 2.4 and 2.5 can be explicitly generated and one can
enumerate all variables and constraints. These can then be fed into a general purpose solver and
solutions are obtained by branch-and-bound. However, the models presented in Sections 2.1 and
2.2 cannot be fully generated due to constraints (7) and (25) which are in the order of O(2n).
Thus, one needs to dynamically generate them only if they are found to be violated in a partial
solution. The exact algorithm we present is then a classical branch-and-cut which works as follows.
At a generic node of the search tree, a linear program including a subset of the subtour elimination
constraints is solved, a search for violated constraints is performed, appropriate valid inequalities
are added to eliminate subtours, and the current subproblem is then reoptimized. This process is
reiterated until a feasible or dominated solution is reached, or until no more cuts can be added. At
this point, branching on a fractional variable occurs. We provide a sketch of the branch-and-cut
scheme in Algorithm 1.

Finally, the model presented in Section 2.5 can be fully enumerated for most small and medium
size instances. However, it is easy to observe that some variables are never used in the model, e.g.,
those for which values of q cannot be obtained by any combination of demands. These variables
can be generated and fed to the solver, which will set them to zero in any feasible solution. If one
can identify these variables beforehand, it is possible to set them to zero and remove then from
the model at a preprocessing phase. Thus, one can (substantially) decrease the size of the model
and the memory usage by preprocessing the model and the instance a priori, identifying the subset
of variables that should not be generated. We have then implemented a subset sum algorithm to
identify all possible values of q from 1 to Qk that can be achieved by any combination of demands
qi. The ones that are found not to be feasible are not generated and we could substantially reduce
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Algorithm 1 Pseudocode of the proposed branch-and-cut algorithm

1: At the root node of the search tree, generate and insert all valid inequalities into the program.
2: Subproblem solution. Solve the LP relaxation of the node.
3: Termination check:
4: if there are no more nodes to evaluate then
5: Stop.
6: else
7: Select one node from the branch-and-cut tree.
8: end if
9: while the solution of the current LP relaxation contains subtours do

10: Identify connected components as in Padberg and Rinaldi (1991).
11: Determine whether the component containing the supplier is weakly connected as in Gen-

dreau et al (1997).
12: Add violated subtour elimination constraints.
13: Subproblem solution. Solve the LP relaxation of the node.
14: end while
15: if the solution of the current LP relaxation is integer then
16: Go to the termination check.
17: else
18: Branching: branch on one of the fractional variables.
19: Go to the termination check.
20: end if

the size of the model. Details regarding the improvements provided by this algorithm are presented
in Section 5.3.

5 Computational experiments

In this section we provide details on the implementation, benchmark instances, and describe the
computational experiments we have performed. Implementation and hardware information is pro-
vided in Section 5.1. The description of the existing and new benchmark instances we have used
are presented in Section 5.2, followed by the results of our extensive computational experiments in
Section 5.3.

5.1 Implementation details

All the formulations described in Section 2 were implemented in C++ and solved with IBM CPLEX
Concert Technology 12.5.1. We have used the nearest neighbor heuristic to provide the solver with
a trivial initial solution. To better exploit our resources, we allow CPLEX to invoke up to 12
parallel threads and to run for three hours on each execution. All other parameters are kept to a
default setting, as our tests have shown no significant gains could be obtained. The separation of
the subtour elimination constraints was performed with the Concorde package of Applegate et al
(2011) and the CVRPSEP package of Lysgaard et al (2004).

We have run all instances described in the next section using all models described in Section
2 with a time limit of three hours and a maximum of 96 Gb of memory. The machines used are
all equipped with Intel XeonTM processors running at 2.66 GHz with 96 GB of RAM installed per
node, with the Scientific Linux 6.1 operating system.
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5.2 Description of the instances

In order to compare the performance of our models and algorithms, we have used a set of 14 test
instances proposed by Salhi and Sari (1997) for the MDFSMVRP. These instances were inspired
from older benchmarks for other vehicle routing problems proposed by Gillett and Johnson (1976),
Perl and Daskin (1985) and Chao et al (1993). They are commonly used in the VRP literature.
They have been used in previous researches to evaluate the performance of heuristic algorithms,
namely the multi-level composite heuristic of Salhi and Sari (1997), the variable neighborhood
search of Salhi et al (2014), and the hybrid genetic search with advanced diversity control of Vidal
et al (2014). The only lower bounds and solutions obtained with an exact approach existing for
these instances were obtained by a branch-and-bound algorithm applied to a mathematical model
presented in Salhi et al (2014).

These instances contain between 50 and 360 customers, and between two and nine depots. There
are five vehicle types, i.e., K = 5, in all instances. The vehicle capacities are generated centered
around the value of the vehicle capacity (Q̂) of the original instances designed for of the MDVRP
data sets. The vehicle capacities Qk along with the vehicle variable cost F k and the vehicle fixed
cost αk are derived based on the following formulas: Qk = (0.4 + 0.2k)Q̂, F k = 70 + 10k and
αk = 0.7 + 0.1k, with k = 1, . . . , 5.

We have also generated ten smaller instances to better evaluate the performance of the different
formulations in terms of lower and upper bounds, and of running times. These instances were created
by randomly selecting subsets of customers from the smaller instances of Salhi and Sari (1997),
namely instances 4-55-100 and 4-50-80. Our instances contain two and three depots, from 10 to
30 customers, five vehicle types and different demands distribution. Table 1 contains a list of all
instances used in this paper and provides additional information on their origins and sizes.

Instance Reference Origin # depots # customers Q̂

4-55-100 Salhi and Sari (1997) Perl and Daskin (1985) 4 55 100
3-85-100 Salhi and Sari (1997) Perl and Daskin (1985) 3 85 100
3-85-160 Salhi and Sari (1997) Perl and Daskin (1985) 3 85 160
4-50-80 Salhi and Sari (1997) Gillett and Johnson (1976) 4 50 80
4-50-160 Salhi and Sari (1997) Gillett and Johnson (1976) 4 50 160
5-75-140 Salhi and Sari (1997) Gillett and Johnson (1976) 5 75 140
2-100-100 Salhi and Sari (1997) Gillett and Johnson (1976) 2 100 100
2-100-200 Salhi and Sari (1997) Gillett and Johnson (1976) 2 100 200
3-100-100 Salhi and Sari (1997) Gillett and Johnson (1976) 3 100 100
4-100-100 Salhi and Sari (1997) Gillett and Johnson (1976) 4 100 100
2-80-60 Salhi and Sari (1997) Chao et al (1993) 2 80 60
4-160-60 Salhi and Sari (1997) Chao et al (1993) 4 160 60
6-240-60 Salhi and Sari (1997) Chao et al (1993) 6 240 60
9-360-60 Salhi and Sari (1997) Chao et al (1993) 9 360 60
2-10-60 New Salhi and Sari (1997) 2 10 60
2-15-60 New Salhi and Sari (1997) 2 15 60
3-20-80 New Salhi and Sari (1997) 3 20 80
3-25-80 New Salhi and Sari (1997) 3 25 80
3-30-80 New Salhi and Sari (1997) 3 30 80
2-10-60* New Salhi and Sari (1997) 2 10 60
2-15-60* New Salhi and Sari (1997) 2 15 60
3-20-100 New Salhi and Sari (1997) 3 20 100
3-25-100 New Salhi and Sari (1997) 3 25 100
3-30-100 New Salhi and Sari (1997) 3 30 100

Table 1: Configurations of the existing and newly generated instances
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5.3 Computational experiments

In this section we describe the results of computational experiments carried out in order to assess
the performance of the proposed models and algorithms. Table 2 recalls the configurations of the
five formulations tested and their origins.

# Formulation name Origin O.F. and constraints

F1 Explicit vehicle index formulation Vidal et al (2014) with introducing (1) s.t. (2) –(23)

new assignment variables ytd
i

F2 Implicit vehicle index formulation F1 with vehicle index denoting vehicle (24) s.t. (2)–(6), (7), (9)–(11),
type instead of individual vehicles (15)–(21), (25)

F3 Compact formulation with loading Salhi et al (2014) with introducing (26) s.t. (2), (4), (27)–(44)

variables new assignment variables ykd
i

F4 Compact formulation with F3 with disaggregating the continuous (26) s.t. (2), (4), (27)–(30),
disaggregated loading variables loading variables zij (34), (35), (38)–(49)

F5 Capacity indexed formulation Pessoa et al (2009) (50) s.t. (51)–(61)

Table 2: Summary of the five formulations

As stated in Section 4, Formulation F5 can be defined only for the values of q that can be
attained, which can significantly reduce its size. For the existing instances described in Table 1,
the average number of variables of F5 is reduced from 22,395,311 to 19,636,711 when applying the
preprocessing step with the subset sum algorithm. We note that for the largest instance of the
testbed, 9-360-60, which contains nine depots and 360 customers, the number of required variables
could not be enumerated due to memory usage (it required more than 100 Gb of RAM memory).
We also observe that the efficiency of the preprocessing phase is highly dependent on the scale and
the distribution of the demands. For example, if all demands are multiples of 20, then the number
of variables is reduced by almost 20-fold; however, if they are all small and some are unitary, then
almost all values of Qk can be obtained by combining the demands of some customers. In this
testbed, the number of generated variables is reduced by more than 16 times for instance 4-55-100,
while it remains unchanged for 2-100-100. These values can be observed for all instances in Table
3.

Instance Before preprocessing After preprocessing

4-55-100 7031620 417720
3-85-100 11732160 696960
3-85-160 18701760 998976
4-50-80 4723920 4548960
4-50-160 9389520 9214560
5-75-140 22560000 22400000
2-100-100 10508040 10508040
2-100-200 20912040 20912040
3-100-100 16072635 16072635
4-100-100 21848320 21848320
2-80-60 4101640 4101640
4-160-60 32813120 32813120
6-240-60 110744280 110744280
9-360-60 out of memory out of memory
Average 22,395,311.92 19,636,711.62

Table 3: Number of generated variables for model F5 before and after the preprocessing phase
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5.3.1 Linear programming relaxation

Solving the linear programming relaxation (LR) can be quite useful as it provides a bound on the
optimal value of the integer programs, and it highlights the difference between the formulations.
The first experiment we conduct in this section consists of solving the LRs of the five formulations
for both data sets with a time limit of 2 hours. We include all the valid inequalities presented in
the previous sections. Table 4 summarizes the results of this test. For each model and each solved
instance, we provide the LR value and the running time in seconds. In all tables, if an instance
cannot be solved we mention NF indicating not found status, and NC if the number of required
variables and constraints could not be enumerated. The results indicate that the LR of model F1
is quite poor. This is due to the drawbacks of this formulation mentioned before, particularly the
fact of enumerating the available vehicles. Formulation F1 does not provide a solution to the linear
relaxation within two hours for any instance of the first data set. Furthermore, comparing the last
four formulations substantiates that models F3 and F4 perform extremely well on both data sets
compared to model F2. The average of the LR values, only over solved instances (from instance 4-
55-100 to 2-80-60), equals 790.94, 1554.14, and 1649.38 while the average running time is increasing
from 55 to 77 and to 574 seconds for models F2, F3 and F4, respectively. The average computation
time of model F4 is almost seven times the average computation time of model F3 whereas the
difference between the LRs of these two formulations is small. This implies that disaggregating
loading variables requires more computational time to find slightly better relaxations. Model F5
provides better LR values for all 15 solved instances compared to all other formulations. Over all
models, the average time taken to solve the LRs is not negligible. This is due to the high number
of variables and constraints required to model the problem.

Instance Formulation F1 Formulation F2 Formulation F3 Formulation F4 Formulation F5
Value Time(s) Value Time(s) Value Time(s) Value Time(s) Value Time(s)

4-55-100 NF 7200 574.32 17 1313.54 29 1354.41 58 1359.99 56
3-85-100 NF 7200 841.57 43 2027.98 66 2079.01 456 2094.42 157
3-85-160 NF 7200 631.65 44 1347.39 77 1411.31 505 1435.19 357
4-50-80 NF 7200 642.90 23 1322.30 21 1381.63 58 1416.05 4348
4-50-160 NF 7200 496.07 10 807.47 17 890.99 89 NF 7200
5-75-140 NC 7200 707.52 62 1362.47 102 1478.41 530 NF 7200
2-100-100 NC 7200 966.10 53 2095.84 94 2191.73 816 NF 7200
2-100-200 NC 7200 749.49 54 1262.37 80 1382.34 1021 NF 7200
3-100-100 NC 7200 952.52 84 1990.05 143 2106.65 1074 NF 7200
4-100-100 NC 7200 951.76 166 1993.18 197 2103.29 1422 NF 7200
2-80-60 NC 7200 1186.35 48 1573.03 24 1763.45 287 1790.17 6861
4-160-60 NC 7200 NF 7200 3063.71 1090 NF 7200 NF 7200
6-240-60 NC 7200 NF 7200 NF 7200 NF 7200 NF 7200
9-360-60 NC 7200 NF 7200 NF 7200 NF 7200 NC 7200

2-10-60 268.51 5 268.58 0 399.87 0 409.55 0 422.33 3
2-15-60 355.68 50 356.02 0 600.23 0 627.41 1 650.23 9
3-20-80 333.43 540 334.30 0 594.47 1 626.40 2 640.66 117
3-25-80 395.63 1880 397.93 1 706.59 1 744.38 6 759.54 218
3-30-80 NF 7200 438.25 2 828.87 3 866.25 7 884.23 393
2-10-60* 245.29 3 246.38 0 448.59 0 459.77 0 468.59 0
2-15-60* 316.37 43 318.53 0 646.36 0 659.91 1 681.01 0
3-20-100 255.55 206 255.41 1 525.82 1 544.05 2 544.71 2
3-25-100 303.23 1299 303.47 1 631.16 1 658.49 4 660.80 3
3-30-100 382.75 2216 383.20 1 784.34 2 820.20 9 824.98 5

Table 4: Linear programming relaxations for the five formulations

5.3.2 Comparison of upper and lower bounds

We now present the computational results of the solutions we have obtained when applying branch-
and-bound and branch-and-cut for the five proposed formulations. Table 5 summarizes the results
after three hours of running time with CPLEX. We report the upper bound (UB) and the lower
bound (LB) of each formulation for each instance, if they are found. We provide the average
percentage gaps over the two testbeds. The percentage gap is given by the ratio (UB−LB

UB 100). We
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also give the average time in seconds spent to solve the new testbed. Bold face is used to indicate
the best results.

A deeper analysis of the formulations highlights a remarkable improvement over all the lower
bounds and the number of solved instances compared to the LRs results. The results clearly show
that formulation F1 is outperformed by all the other formulations, even on small instances. The
largest instance size that can be solved by formulation F1 is 4-5-160. Model F1 could identify a
feasible solution only for three (out of 14) instances, whereas formulation F2 is able to solve all the
instances of the two testbeds. This implies that the compact formulation, reducing the number of
generated variables, has a positive impact on the model performance. Model F2 provides tighter
bounds compared to F1 but is still uncompetitive compared to the other formulations. The results
of Table 5 distinctly show the performance of the last three formulations to solve the MDFSMVRP.
Model F4 could generally provide better bounds compared to all other formulations, especially on
the first testbed, despite the fact that model F3 yields better UBs. We observe that there is a
difference between models F3 and F4 regarding the overall gaps. The solutions provided by F4 are
8.2% and 1.2% better than the solutions provided by F3 on the two testbeds, respectively. Model
F4 provides eight best LBs and five best UBs over 14 instances, while F3 provides eight best UBs on
the first testbed. This implies that disaggregating the commodity flow variables is likely improving
the model performance. Model F5 has better bounds on the first three instances compared to all
other formulations and provides the best gap for instances 2-100-100 and 2-80-60. This is due to the
fact that few variables are generated in these test instances, characterized by a regular distribution
of customers demands and/or a small number of customers. However, even if model F5 provides six
best LBs over 14 instances, its overall average gap is about three times the overall average gap of
model F4 since seven instances out of 14 are not solved. Regarding the small generated instances,
F5 outperforms all the other formulations and provides eight optimal solutions over 10, with an
average gap equal to 0.57% and an average running time of 2390 seconds. F4 provides competitive
solutions with slightly better average gap (0.49%) than F5 within less computation time (1832
seconds). However, formulation F4 proves the optimality only for the smallest instance with two
depots and 10 customers. The computation times and the average gaps provided by formulations
F1 and F2 on these small instances are quite high. In particular they require, on average, 8590 and
8841 seconds to solve instances with up to three depots and 30 customers.

These results point out again that formulations F3, F4 and F5 are the most suitable among the
five proposed to solve small, medium and large size instances of the MDFSMVRP. Particularly, if
the aim is to provide good upper bounds to compare with an heuristic, then it would be better to
use formulation F3 on large instances and formulation F5 on small instances. Similarly, if major
problems of running out of memory occur, one should use formulation F5 as fewer variables will
be generated, especially with a regular distribution of customers demands. Finally, if the goal is to
get a good trade-off between solution quality and running time, one should choose formulation F4
as disaggregating continuous variables is likely improving the model performance.

A transversal analysis over Tables 4 and 5 allows us to remark that the deductions derived
after solving the models with integrality restrictions confirm the preliminary results derived from
the LR experiment. This analysis also shows that the experimental results reassert the theoretical
findings discussed in Section 3. In addition, we observe that, on average, the values of the LR of
models F3 and F4 over the first 11 solved instances in Table 4 is equal to almost 0.7 and 0.8 times
the UBs of the 3-hour execution of these models. Thereby, one can conclude that the last three
compact models proposed, especially the commodity flow formulations are good enough as they
provide strong linear relaxations. Finally, we can derive some comments on the relative difficulty
of the problem. We observe that the average gaps remain large, especially on instances with more
than two depots and 100 customers.
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5.3.3 Comparison against the best known solutions

As it was mentioned, the literature devoted to the MDFSMVRP is rather scarce and the pub-
lished works on this specific variant are focused on heuristic methods. We are only aware of the
exact bounds recently obtained by the three-hour CPLEX execution of Salhi et al (2014). The
performance of the proposed formulations is assessed with respect to the available lower bounds
provided in Salhi et al (2014) and to the best upper bounds given heuristically by Vidal et al
(2014). Table 6 presents the results of the best formulations proposed in Section 2 compared to
the state-of-the art methods. For completeness, we have also reported the percentage gap between
the best LBs and UBs obtained over the proposed formulations in the column Best gap (%). The
results in Table 6 show that the proposed formulations could often identify a feasible solution for
all the instances, even for the largest instance considered with nine depots and 360 customers,
unlike the exact solution method of Salhi et al (2014). The largest instance solved by this method
includes four depots and 100 customers. Models F3 and F4 yield better optimality gaps than that
work on all instances. Note also that the improvement with respect to the bounds given by Salhi
et al (2014) are significant. We have improved all the LBs and UBs with respect to that work.
The average LB is increased by 8.63% for the first eleven instances solved by Salhi et al (2014),
and the average UB is reduced by 21.30%. One particular example is that of instance 3-85-160 for
which the gap was 47.29% and is now just 2.13%. The average gap over all the instances of the
first testbed has decreased from 51.00% to 17.84%. The comparison of our best results against the
heuristic of Vidal et al (2014) show that we could not improve the UBs found heuristically but
our gaps are tight. Even though the quality of the UBs is not improved, the introduction of these
different formulations helps providing very good lower bounds.

5.3.4 Effect of valid inequalities

We now briefly analyze the effect of the valid inequalities proposed for each model. We study the
effect of valid inequalities in each model on the gap. We have decided not to study the impact
of each valid constraint proposed in each model because this would lead to a combinatorial and
unmanageable comparison between valid inequalities, which is not the focus of this paper. We
have compared the average gaps between two configurations of each formulation, without and with
valid inequalities, on each testbed, with the maximum computing time limit of three hours. Table
7 summarizes these results. On average, they clearly show the benefits of using valid inequalities
especially for the explicit formulation. The average gap of model F1 is reduced by almost 50%
on the new smaller instances. We can also observe that the introduction of valid inequalities is
more relevant for formulations which explicit the index of the vehicle because it is hard to generate
efficient valid inequalities for variables that do not carry at least the vehicle type traversing an arc,
as it is the case of formulation F3.

We have also reported the effect of some families of valid inequalities, and the average gap yielded
by models F3, F4, and F5. Specifically, we have assessed the performance of routing constraints
(40)–(42) which have been adapted from Koç et al (2016a) to formulations F3 and F4. Table 8
shows that these new configurations substantiate the low efficiency of these constraints especially
for the commodity flow formulation, with aggregated flow variables. Table 8 shows also the effect
of capacity constraints (56)–(58) and of routing inequalities (59)–(61) for model F5. It shows that
their introduction improves the performance, reducing the average gap from 62% to 57%. The
combination of both sets of inequalities yields an average gap of 56.94%.
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Average gap Average gap Average gap
F3 F4 F5

Without any VI 29.45 25.52 62.43
Without (40)–(42) 28.93 25.50 -
With all VI 28.88 20.29 56.94
With VI (56)–(58) - - 57.43
With VI (59)–(61) - - 57.78

Table 8: Average percentage gaps for different configurations of formulations F3, F4 and F5

6 Conclusions

In this paper we have modeled and solved the MDFSMVP. We have presented five different formu-
lations for this difficult distribution problem. The first one is a three-index VRP formulation with
an explicit vehicle index, and the second one is more compact, in which individual vehicles are not
explicitly identified. The third and the fourth models are commodity flow formulations without
a vehicle index. They are based on loading variables to model capacity and connectivity require-
ments. The fifth and last model is a capacity-indexed formulation, which is a based more compact
single commodity flow. We have also provided a survey on how these formulations relate to each
other from a theoretical perspective. We have proposed several valid inequalities to strengthen the
formulations and we have solved them by branch-and-cut and by branch-and-bound.

We compared the bounds of these formulations on existing instances and on newly generated
ones. The results show that the commodity flow formulations and the capacity-indexed formulation
provide better bounds. Our results also show that compact formulations represent a very promising
research avenue. On classical benchmark instances our methods could improve all previous lower
bounds, and we have obtained the best upper bounds and gaps when compared to another exact
method from the literature.
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Gouveia L, Riera-Ledesma J, Salazar-González JJ (2013) Reverse multistar inequalities and vehicle

routing problems with a lower bound on the number of customers per route. Networks 61(4):309–
321

Irnich S, Schneider M, Vigo D (2014a) Four variants of the vehicle routing problem. In: Toth
P, Vigo D (eds) Vehicle Routing: Problems, Methods, and Applications, MOS-SIAM Series on
Optimization, Philadelphia, pp 241–260

Irnich S, Toth P, Vigo D (2014b) The family of vehicle routing problems. In: Toth P, Vigo D (eds)
Vehicle Routing: Problems, Methods, and Applications, MOS-SIAM Series on Optimization,
Philadelphia, pp 1–23

Jena SD, Cordeau JF, Gendron B (2015a) Dynamic facility location with generalized modular
capacities. Transportation Science 49(3):484–499

Jena SD, Cordeau JF, Gendron B (2015b) Modeling and solving a logging camp location problem.
Annals of Operations Research 232(1):151–177

Juan A, Goentzel J, Bektaş T (2014) Routing fleets with multiple driving ranges: Is it possible to
use greener fleet configurations? Applied Soft Computing 21:84–94
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Montoya-Torres JR, Franco JL, Isaza SN, Jiménez HF, Herazo-Padilla N (2015) A literature review
on the vehicle routing problem with multiple depots. Computers & Industrial Engineering 79:115–
129

Naddef D, Rinaldi G (2002) Branch-and-cut algorithms for the capacitated vehicle routing prob-
lem. In: Toth P, Vigo D (eds) The Vehicle Routing Problem, SIAM Monographs on Discrete
Mathematics and Applications, Philadelphia, pp 53–84

Padberg MW, Rinaldi G (1991) A branch-and-cut algorithm for the resolution of large-scale sym-
metric traveling salesman problems. SIAM Review 33(1):60–100

Perl J, Daskin MS (1985) A warehouse location-routing problem. Transportation Research Part B:
Methodological 19(5):381–396

Pessoa A, Poggi de Aragão MVS, Uchoa E (2007) A robust branch-cut-and-price algorithm for the
heterogeneous fleet vehicle routing problem. Lecture Notes in Computer Science 4525:150–160

Pessoa A, Poggi de Aragão MVS, Uchoa E (2008) Robust branch-cut-and-price algorithms for
vehicle routing problems. In: Golden BL, Raghavan S, Wasil EA (eds) The Vehicle Routing
Problem: Latest Advances and New Challenges, Springer, New York, pp 297–325

Pessoa A, Uchoa E, Poggi de Aragão MVS (2009) A robust branch-cut-and-price algorithm for the
heterogeneous fleet vehicle routing problem. Networks 54(4):167–177

Picard JC, Queyranne M (1978) The time-dependent traveling salesman problem and its application
to the tardiness problem in one-machine scheduling. Operations Research 26(1):86–110

Pisinger D, Ropke S (2007) A general heuristic for the vehicle routing problem. Computers &
Operations Research 34(8):2403–2435

Prins C (2009) Two memetic algorithms for heterogeneous fleet vehicle routing problems. Engi-
neering Applications of Artificial Intelligence 22(6):916–928

Prodhon C, Prins C (2014) A survey of recent research on location-routing problems. European
Journal of Operational Research 238(1):1–17



26 Rahma Lahyani 1 et al.

Qu Y, Bard J (2014) A branch-and-price-and-cut algorithm for heterogeneous pickup and delivery
problems with configurable vehicle capacity. Transportation Science 49(2):254–270

Rahimi-Vahed A, Crainic TG, Gendreau M, Rei W (2015) Fleet-sizing for multi-depot and periodic
vehicle routing problems using a modular heuristic algorithm. Computers & Operations Research
53:9–23
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