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Résumé

Le séquengage de nouvelle génération (NGS) a révolutionné la recherche chez les plantes et
les animaux de plusieurs fagons, y compris via le développement de nouvelles méthodes de
génotypage a haut débit pour accélérer considérablement I'étude de la composition des
génomes et de leurs fonctions. Dans le cadre du projet SoyaGen, financé par Génome Canada,
nous cherchons a mieux comprendre la diversité génétique et l'architecture sous-jacente
régissant les principaux caractéres agronomiques chez le soja. Le soja est la plus importante
culture oléagineuse au monde en termes économiques. Dans cette étude, nous avons cherché
a exploiter les technologies NGS afin de contribuer a I'élucidation des caractéristiques
génomiques du soja. Pour ce faire, trois axes de recherche ont formé le cceur de cette thése :
1) le génotypage pan-génomique a faible co(t, 2) la caractérisation exhaustive des variants
génétiques par reséquencage complet et 3) lidentification de mutations a fort impact

fonctionnel sur la base d'une forte sélection au sein des lignées élites.

Un premier défi en analyse génétique ou génomique est de rendre possible une caractérisation
rapide et peu co(iteuse d'un grand nombre de lignées a un trés grand nombre de marqueurs
répartis sur tout le génome. Le génotypage par séquencage (GBS) permet d'effectuer
simultanément lidentification et le génotypage de plusieurs milliers de SNP a I'échelle du
génome. Un des grands défis en analyse GBS est dextraire, d'une montagne de données
issues du séquengage, un grand catalogue de SNP de haute qualité et de minimiser limpact
des données manquantes. Dans une premiére étape, nous avons grandement amélioré le GBS
en développant un nouveau pipeline d’analyse bio-informatique, Fast-GBS, congu pour
produire un appel de génotypes plus précis et plus rapide que les outils existants. De plus,
nous avons optimisé des outils permettant d’effectuer l'imputation des données manquantes.
Ainsi, nous avons pu obtenir un catalogue de 60K marqueurs SNP au sein d’'une collection de
301 accessions qui se voulait représentative de la diversité du soja au Canada. Dans un
second temps, toutes les données manquantes (~50%) ont été imputées avec un tres grand
degré d'exactitude (98 %). Cette caractérisation génétique a été réalisée pour un colt

modique, soit moins de 15% par lignée.

Deuxiemement, pour caractériser de maniére exhaustive les variations nucléotidiques et
structurelles (SNV et SV, respectivement) dans le génome du soja, nous avons séquencé le
génome entier de 102 accessions de soja au Canada. Nous avons identifié prés de 5M de
variants nucléotidiques (SNP, MNP et Indels) avec un haut niveau d'‘exactitude (98,6 %).
Ensuite, en utilisant une combinaison de trois approches différentes, nous avons détecté ~92K

SV (délétions, insertions, inversions, duplications, CNV et translocations) et estimé que plus



de 90 % étaient exacts. C'est la premiére fois qu'une description compléete de la diversité des

haplotypes SNP et du SV a été réalisée chez une espece cultivée.

Enfin, nous avons mis au point une approche analytique systématique pour faciliter
grandement l'identification de génes dont des alléles ont fait 'objet d'une trés forte sélection
au cours de la domestication et de la sélection. Cette approche repose sur deux progrés
récents en génomique : 1) le séquencage de génomes entiers et 2) la prédiction des mutations
entrainant une perte de fonction (LOF pour « loss of function »). En utilisant cette approche,
nous avons identifié 130 génes candidats liés a la domestication ou a la sélection chez le soja.
Ce catalogue contient tous les genes de domestication précédemment caractérisés chez le
soja, ainsi que certains orthologues chez d'autres espeéeces cultivées. Cette liste de génes
fournit de nombreuses pistes d’investigation pour des études visant a mieux comprendre les

genes qui contribuent fortement a fagonner le soja cultivé.

Cette thése permet ultimement une meilleure compréhension des caractéristiques
génomiques du soja. En outre, elle fournit plusieurs outils et références génomiques qui
pourraient facilement étre utilisés dans de futures recherches en génomique chez le soja de
méme que chez d'autres espeéces.



Abstract

Next-generation sequencing (NGS) has revolutionized plants and animals research in many
ways, including the development of new high-throughput genotyping methods to accelerate
considerably the composition of genomes and their functions. As part of the SoyaGen project,
funded by Genome Canada, we are seeking to better understand the genetic diversity and
underlying architecture governing major agronomic traits in soybeans. Soybean is the world's
largest oilseed crop in economic terms. In this study, we sought to exploit NGS technologies
to help elucidate the genomic characteristics of soybeans. To this end, three main research
topics have formed the core of this thesis: 1) low-cost genome-wide genotyping, 2)
exhaustive characterization of genetic variants by whole-genome resequencing, and 3)
identification of mutations with high functional impact on the basis of a strong selection within
the elite lines.

A first challenge in genetic or genomic analysis is to make possible a rapid and inexpensive
characterization of a large number of lines with a very large number of markers distributed
throughout the genome. Genotyping-by-sequencing (GBS) allows simultaneous identification
and genotyping of several thousand SNPs on a genome-wide scale. One of the major
challenges in GBS analysis is to extract a large catalog of high quality SNP from a mountain
of sequencing data and minimize the impact of missing data. As a first step, we have greatly
improved the GBS by developing a new bio-informatics analysis pipeline, Fast-GBS, designed
to produce a more accurate and faster call of genotypes than existing tools. In addition, we
have optimized tools for imputing missing data. For example, we were able to obtain a catalog
of 60K SNP markers from a collection of 301 accessions that were representative of soybean
diversity in Canada. Second, all missing data (~ 50%) were imputed with a very high degree
of accuracy (98%). This genetic characterization was performed at a low cost, less than $ 15

per line.

Second, to fully characterize the nucleotide and structural variations (SNV and SV,
respectively) in the soybean genome, we sequenced the whole genome of 102 Canadian
soybean accessions. We have identified nearly 5M of nucleotide variants (SNP, MNP and
Indels) with a high level of accuracy (98.6%). Then, using a combination of three different
approaches, we detected ~ 92K SV (deletions, insertions, inversions, duplications, CNVs and
translocations) and estimated that more than 90% were accurate. This is the first time that
a complete description of the diversity of SNP and SV haplotypes has been carried out in a
cultivated species.



Finally, we have developed a systematic analytical approach to greatly facilitate the
identification of genes whose alleles have undergone a very strong selection during
domestication and selection. This approach is based on two recent advances in genomics: (1)
whole-genome sequencing and (2) predicting mutations resulting in loss of function (LOF).
Using this approach, we identified 130 candidate genes related to domestication or selection
in soybean. This catalogue contains all of the previously well-characterized domestication
genes in soybean, as well as some orthologues from other domesticated crop species. This
list of genes provides many avenues of investigation for studies aimed at better understanding

the genes that contribute strongly to shaping cultivated soybeans.

This thesis ultimately leads to a better understanding of the genomic characteristics of
soybeans. In addition, it provides several tools and genomic resources that could easily be

used in future genomic research in soybeans as well as in other species.
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Avant-propos

Cette thése est organisée en huit chapitres. Le premier chapitre consiste en une
introduction générale, alors que le second chapitre présente I'état des connaissances d'une
maniére plus spécifique sur le sujet abordé par la thése et expose les différentes méthodes
de génotypage reposant sur les technologies de séquencage. Ce chapitre de ma thése
(Chapitre II) a été rédigé en vue d'étre publié sous forme d’article de revue. Les chapitres III,
IV et V ont été publiés dans des revues scientifiques et le chapitre VI a été accepté. Le chapitre
VII a été soumis dans une revue scientifique. Finalement, le chapitre IX est un chapitre de
conclusions générales et réflexions personnelles. Voici I'état de ces publications :

Le chapitre III est publié sous la référence : Torkamaneh D., Laroche J., Bastien M., Abed A.,
Belzile F. (2017a). Fast-GBS: a new pipeline for the efficient and highly accurate calling of
SNPs from genotyping-by-sequencing data. BMC Bioinformatics, 18:5
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FB ont écrit le manuscrit.

Le chapitre IV est publié sous la référence : Torkamaneh D., Laroche J., Belzile F. (2016).

Genome-Wide SNP Calling from Genotyping by Sequencing (GBS) Data: A Comparison of
Seven Pipelines and Two Sequencing Technologies. PLoS ONE, 11(8): e0161333.

DT a développé lidée du projet. FB a supervisé le projet. DT et JL ont contribué a la

programmation et a I'analyse des données. DT et FB ont écrit le manuscrit.

Le chapitre V est publié sous la référence : Torkamaneh, D., and Belzile, F. (2015). Scanning
and Filling: Ultra-Dense SNP Genotyping Combining Genotyping-By-Sequencing, SNP Array
and Whole-Genome Resequencing Data. PLoS ONE, 10(7): e0131533.

DT et FB ont développé lidée du projet. FB a supervisé le projet. DT a réalisé le travail de

laboratoire, produit et analysé les données. DT et FB ont écrit le manuscrit.
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Chapitre I

Introduction générale



I.1 Séquencage de nouvelle génération en phytogénétique

Des avancées technologiques ont rendu possible le séquencage de nouvelle génération (NGS),
lequel ouvre la voie a une caractérisation rapide et exhaustive du génome des plantes. Le
NGS a révolutionné la recherche sur les plantes et les animaux de plusieurs fagons. Tout
d'abord, il a permis aux chercheurs de décoder le génome entier de nombreux organismes.
Actuellement, les génomes de centaines d’eucaryotes ont été séquencés et, pour certaines
especes, de nombreux individus, cultivars ou accessions d'une méme espéce ont également
été séquencés. L'aveénement des technologies de séquencage NGS a fourni une occasion
exceptionnelle de détecter systématiquement les variations génétiques chez les plantes (El-
Metwally et al. 2014; Hall, 2007). Les variations génétiques constituent la matieére premiére
de I'évolution, car certaines d’entre elles améliorent I'adaptabilité et la survie d'une population
face aux conditions environnementales changeantes et a d'autres circonstances imprévues
(Hedrick, 2011; Dobzhansky, 1970). La variation génétique peut étre divisée en deux grandes
catégories: les variations nucléotidiques et structurelles. Les variants nucléotidiques sont
généralement définis comme englobant des variants de nucléotides simples ou multiples
(SNP, MNP) et de petites insertions/délétions (indels), tandis que les variants structurels (SV)
représentent des réarrangements plus importants de différents types [délétions, insertions,
inversions, translocations, duplications et variations du nombre de copies (CNV)]. Dans ce
travail (Chapitre VI), nous avons séquencé le génome entier de 102 lignées canadiennes de
soja pour décrire de maniére exhaustive les variations génétiques qui existent au sein de ce
matériel.

Le NGS a également facilité grandement le développement de méthodes de génotypage a

haut débit pour détecter un trés grand nombre de marqueurs moléculaires tels que les SNP

(« single nucleotide polymorphism »). Dans une telle approche, le séquencage a grande
échelle a permis aux chercheurs d’explorer la diversité des nucléotides dans des collections
d'individus pour découvrir des sites polymorphes, puis développer des puces de génotypage
(« SNP chips »). Ces puces de génotypage peuvent étre utilisées pour déterminer le génotype
d'une ligne individuelle a des milliers jusqu’a des millions de sites SNP (Ha et al. 2014). A ce
jour, des puces de génotypage avec plus de 40K SNP ont été développées et utilisées pour
diverses applications en génétique et dans des programmes d‘amélioration génétique chez
plusieurs cultures comme le riz, le mais, le tournesol, le soja, I'avoine, le coton et le blé
(Rasheed et al. 2017). D'un autre coOté, des méthodes de génotypage qui exploitent la
puissance des technologies NGS ont également été développées pour rendre possible
Iidentification et le génotypage simultané de milliers a des millions de sites SNP. Le

génotypage par séquengage (GBS) est un exemple d’une telle approche de génotypage SNP



qui s'appuie sur le NGS (Elshire et al. 2011). Cette méthode a été grandement utilisée chez
des plantes.

1.2 Génotypage par séquencage (GBS)

Chez les plantes, le GBS a été développé comme une approche rapide et robuste pour le
séquencage partiel du génome (« reduced-representation sequencing ») qui permet la
découverte et le génotypage de marqueurs moléculaires a I'échelle du génome chez un grand
nombre de lignées (Davey et al. 2011). Le GBS est une approche hautement flexible avec un
faible co(t qui en fait un excellent outil pour de nombreuses applications et questions de
recherche en génétique et en élevage. De telles avancées modernes permettent le
génotypage de milliers de SNP et, ce faisant, augmente la probabilité d'identifier des SNP
associés avec des caracteres d'intérét. Cependant, lors de I'utilisation d‘approches telles que
le GBS, laquelle repose surl'examen d’une fraction du génome, certains défis sont rencontrés.
En général deux problématiques majeures doivent étre surmontés : 1) comment transformer
une masse d'informations de séquence en un catalogue de marqueurs SNP ; et 2) comment

surmonter le probléme posé par les données manquantes.

I.2.1 Analyse bio-informatique des données GBS

Le principal défi du GBS, pour la plupart des utilisateurs, est l'analyse bio-informatique de la
grande quantité d'informations de séquence dérivées du séquencage des librairies GBS en
vue d'appeler les alléles chez les locus SNP (Davey et al. 2011). Il est clair que les pipelines
bio-informatiques d'analyse sont devenus une nécessité pour filtrer, trier et aligner ces
données de séquence. Un pipeline pour le GBS doit inclure des étapes pour filtrer et retirer
les lectures de mauvaise qualité, classer les lectures par pool ou les individus en fonction des
séquences des code-barres, identifier les locus et les alléles de novo ou aligner les lectures
sur un génome de référence pour découvrir des polymorphismes et attribuer le génotype a
chaque locus pour chaque individu (Glaubitz et al. 2014). Pour répondre a ces besoins, de
nombreux pipelines de bio-informatiques ont été développés. Dans ce travail (Chapitre III),
nous décrivons un nouveau pipeline, Fast-GBS, qui utilise le génome de référence. Il est facile
a utiliser avec différentes espéces, dans différents contextes, et fournit une plate-forme
d'analyse qui peut étre exécutée avec différents types de données de séquencage et avec des
ressources de calcul modestes. Nous avons évalué Fast-GBS en fonction d'une analyse a
grande échelle chez trois especes. Nous avons aussi comparé de maniére exhaustive les
principaux pipelines d'analyse GBS existants en fonction du nombre de SNP appelés, de la

précision des génotypes résultants ainsi que de la rapidité et de la facilité d'utilisation de ces



pipelines. Nous avons également comparé les résultats obtenus a l'aide des lectures Illumina
et Ion Torrent (Chapitre 1V).

1.2.2 L'imputation de données manquants généré par GBS

Comme décrit, le GBS est une approche balayage ou d’échantillonnage du génome basé sur
I'enzyme de restriction utilisée (Elshire et al. 2011). Ainsi, lors I'analyse de données GBS, une
quantité considérable de données manquantes peut étre rencontrée. Une question importante
qui restait sans réponse a ce stade est la mesure dans laquelle les données manquantes
peuvent étre tolérées (Jarquin et al. 2014). Et aussi dans quelle mesure elles affectent la
précision du processus d'imputation. En général, il existe deux types de données manquantes
dans de grands ensembles de données. Le plus évident est lorsque nous ignorons le génotype
de certains individus a un locus qui a été génotypé avec succes chez les autres individus dans
une population. Dans une autre situation, qui se pose lorsque différents ensembles de
données (par exemple, obtenus a l'aide de différentes technologies de génotypage) sont
combinés, il peut y avoir des locus qui ne sont pas génotypés au sein de la population, c'est-
a-dire qu'il n'y a pas d'information pour un locus SNP chez tous les individus de la population,
sauf pour quelques individus qui peuvent étre communs aux deux ensembles de données. On
appelle ce premier cas de figure une « donnée manquante » tandis que le second est appelé
« génotype manquant » (Hao et al. 2009). Il y a eu un intérét considérable a imputer ces
données manquantes en fonction des données disponibles. Beaucoup d'outils utilisés dans
l'analyse génétique nécessitent des jeux de données complets et il existe donc deux
possibilités: ne retenir que des locus SNP dépourvus de données manquantes (ce qui réduit
considérablement le nombre de SNP disponibles en GBS) ou imputer ces données manquantes

a travers diverses stratégies.

Dans ce travail (Chapitre V), nous avons exploré la précision et l'efficacité de différents outils
d'imputation a la fois pour limputation des données manquantes dans le contexte du GBS et
des génotypes manquant dans le contexte de la combinaison des ensembles de données SNP
obtenues au moyen de différentes approches de génotypage (GBS, puce et re-séquencage).
Enfin, nous avons examiné limpact de I'utilisation de ces ensembles de données SNP

améliorés dans les analyses d'association.

L3 Pourquoi le soja?
Le soja (Glycine max L. Merr.), est une légumineuse annuelle de la famille des légumineuses
(Fabaceae) avec des graines comestibles (Lam et al. 2010). Le soja est économiquement la

légumineuse la plus importante au monde, fournissant des protéines végétales a des millions



de personnes et des ingrédients pour des centaines de produits chimiques (Mian, 2006). De
nombreux botanistes pensent qu'il a été domestiqué pour la premiére fois en Chine centrale
en 7000 avant 'Ere Commune. Le soja est utilisé en Chine, au Japon et en Corée depuis des
milliers d'années comme un aliment et un composant de médicaments (Mian, 2006). Le soja
a été introduit aux Canada au 19éme siécle et est devenu particulierement important. Au
niveau mondial, les Etats-Unis, le Brésil et I'Argentine sont les trois plus grands producteurs
de soja (FAOSTAT).

I.3.1 Le génome du soja

Le génome du soja (1,1 gigabase) a été séquencé en 2010 (Schmutz et al. 2010). Plus de
50K génes codant pour des protéines ont été prédits, soit 70% de plus que la plante modéle
Arabidopsis, aussi une dicotylédone comme le soja. Le génome du soja porte les traces d'une
polyploidie ancienne (paléopolyploide) et il aurait subi deux duplications complétes. Les
duplications du génome se seraient produites il y a environ 59 et 13 millions d'années, ce qui
a donné lieu a un génome hautement dupliqué avec prés de 75 % des génes présents en plus
d’'une copie. Les deux événements de duplication ont été suivis d'une diversification, d'une

perte de génes et de nombreux réarrangements chromosomiques (Schmutz et al. 2010).

I.3.2 Domestication du soija

Au cours des 12 000 derniéres années, les humains ont domestiqué des centaines d'espéces
végétales et animales pour plusieurs fins: surtout en tant que source d‘aliments et de
matériaux (p. ex. textiles et peaux) ou encore en tant qu'espéces compagnes ou pour leur
valeur esthétique (Zeder 2015). Il est largement admis que le soja cultivé moderne a été
domestiqué du soja sauvage (Glycine soja Sieb & Zucc.) en Asie de I'Est il y a 6000-9000 ans
(Carter et al. 2004; Kim et al. 2012b.). La dissection de l'architecture génétique des
caracteres de domestication chez les plantes cultivées et la nature de la sélection ont été un
sujet d'étude en génétique moléculaire au cours des deux dernieres décennies. Récemment,
Sedivy et col. (2017), en utilisant des données de séquencage des génomes entiers ont
montré que le soja cultivé provenait de multiples événements de domestication, mais
l'identification des génes liés ala domestication reste un travail trés difficile et laborieux. Dans
ce travail (Chapitre VII), on présente une nouvelle approche basée sur les données de re-
séquencage et les mutations de perte de fonction (LOF) pour la détection efficace et

hautement précise de genes candidats liés a la domestication.



1.8 Objectifs spécifiques de la thése

Tel que présenté et décrit, les technologies de séquencage de nouvelle génération (NGS)
ont révolutionné la recherche sur les plantes. L'objectif global de cette thése était de
développer de nouveaux outils génomiques pour permettre d’étudier le génome du soja et de
faciliter l'utilisation de ces outils pour les sélectionneurs. En s‘appuyant sur une grande culture
(le soja), cette thése visait plus spécifiguement a : 1) permettre I'amélioration de la plate-
forme de génotypage en développant de nouveaux outils et approches analytiques, 2) réaliser
un séquencage complet du génome entier d'une collection de lignées représentatives de la
diversité génétique du soja cultivé au Canada en vue d'identifier et de génotyper des
variations génétiques, 3) d'utiliser ces données génétiques pour identifier de maniére rapide

des génes ayant joué un r6le important dans la domestication et I'adaptation du soja.

Le prochain chapitre (Chapitre II) constitue une revue de littérature (rédigée sous forme
de manuscrit) visant a décrire plus en détail les différentes stratégies et méthodes de
génotypage fondées sur les technologies NGS, lesquelles permettant de génotyper un tres
grand nombre de marqueurs moléculaires chez un grand nombre d‘individus. Ce chapitre
décrit les principaux défis existants dans les approches génotypage actuel qui ont été mises
au point dans la présente thése. Les chapitres III, IV et V sont trois chapitres trés proches
sur le plan thématique, car ils relatent nos travaux visant a améliorer la méthode de
génotypage par séquencage (GBS). Le chapitre III présente le point de départ de notre
développement et amélioration du GBS. On y décrit un nouveau pipeline d’analyse bio-
informatique des données GBS, appelé Fast-GBS, pour l'appel efficace et trés précis des SNP
a partir des données de GBS. Ensuite, dans le chapitre IV, on rapporte le fruit d'une analyse
comparée des principaux pipelines analytiques en usage. Enfin, dans le chapitre V, on
présente une approche d'imputation des données manquantes chez le GBS, laquelle permet
de maximiser les données génotypiques tirées du GBS. Au chapitre VI, nous avons généré un
catalogue exhaustif de la variation génétique, tant nucléotidique que structurale, rencontrée
au sein du génome du soja cultivé au Canada. Dans le cas des variations structurales, il s'agit
de la premiere description compléte de ce type de variation chez une plante cultivée.
Jusqu’alors, les analyses de la variation génétique ont été largement concentrées sur les
variations nucléotidiques. Dans le chapitre VII, nous avons développé une approche
analytique systématique visant a identifier des génes liés a la domestication chez le soja. On
y décrit comment, a partir de nombreuses données génomiques chez les espéces cultivées et
leurs ancétres sauvages, on peut identifier des genes qui sont fixés pour des alleles distincts
chez ces deux groupes de plantes. Finalement, dans un ultime chapitre, nous tentons de

présenter une vue d’ensemble des contributions apportées par ces travaux a l'état des



connaissances, mais surtout d’en décrire les retombées dans tous les domaines de la

phytogénétique.
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II.1 Résumé

Les technologies de séquencage de la nouvelle génération (NGS) fournissent des méthodes
de génotypage puissantes et flexible aux sélectionneurs et aux chercheurs. Ces méthodes
offrent une large gamme d'applications allant de I'analyse pan-génomique au dépistage de
routine avec un haut niveau de précision et de reproductibilité. En outre, ils fournissent un
flux de travail direct pour identifier, valider et afficher des variants génétiques en peu de
temps avec un faible co(t. Ici, on passe en revue et aussi nous discutons les avantages et les
défis de plusieurs méthodes NGS pour le développement de marqueurs génétiques a I'échelle
du génome et le génotypage chez les plantes cultivées. Ces méthodes comprennent le ré-
séquencage du génome entier, la puce de génotypage et le génotypage par séquengage, qui
sont largement appliqués chez les plantes. Nous discutons également les méthodes
d'imputation qui peuvent étre utilisées pour remplacer les données manquantes dans les
ensembles de données génotypiques et aussi pour intégrer les ensembles de données obtenus
a l'aide de différents outils de génotypage. Nous espérons que cette vision synthétique des
méthodes de génotypage aidera les généticiens et les sélectionneurs a intégrer ces méthodes
qui sont basées sur le NGS dans les programmes d'amélioration génétique et la recherche sur
les plantes cultivées.



II.2 Abstract

Next-generation sequencing technologies provide powerful and flexible genotyping methods
to plant breeders and researchers. These methods offer a wide range of applications from
genome-wide analysis to routine screening with a high level of accuracy and reproducibility.
Furthermore, they provide a straightforward workflow to identify, validate, and screen genetic
variants in a short time with a low cost. Here we review and discuss the advantages and
challenges of several NGS methods for genome-wide genetic marker development and
genotyping in crop plants. These methods include whole-genome re-sequencing, SNP arrays
and genotyping-by-sequencing, which are widely applied in crops. We also discuss how
imputation methods can be used to both fill in missing data in genotypic datasets and to
integrate datasets obtained using different genotyping tools. It is our hope that this synthetic
view of genotyping methods will help geneticists and breeders integrate these NGS-based

methods in crop plant breeding and research.
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II.3 Introduction

Since the Green Revolution in the 1960s (Swaminathan, 2009), plant breeding efforts have
been supported and facilitated by new technologies and approaches. The genomic tools and
resources that facilitate genotype-phenotype studies (Pérez-de-Castro et al. 2012), in
particular for complex traits, are leading to a second revolution. Next-generation sequencing
(NGS) technologies (Metzker, 2010), known as high-throughput parallel (HTP) DNA and RNA
sequencing technologies, have revolutionized plant research in many ways (Figure II.1).
Firstly, deep sequencing and de novo assembly have enabled the decoding of the entire
genome in many plant species (>100 plant species, to date) (NCBI,
“www.ncbi.nlm.nih.gov/projects/WGS/W GSprojectlist.cgi”). In addition to providing valuable
insights into crop genome organization and evolution, such reference genomes represent a
foundational resource for transcriptome analysis, sequence mapping and genetic marker
development (Church, 2006). Secondly, NGS has also allowed to quickly and exhaustively
assess genetic diversity at the intraspecific level thanks to low- to mid-depth sequencing
(whole-genome re-sequencing (WGR)) of the entire genome of numerous cultivars or
accessions of the same species. WGR provides the most comprehensive approach for genome-
wide discovery of genetic variants (nucleotide and structural variants (NVs and SVs,
respectively)) (Goodwin et al. 2016). Finally, NGS has enabled researchers to develop cost-
effective high-throughput genotyping methods such as genotyping-by-sequencing (GBS)
(Davey et al. 2011).

In crop genetics and breeding, genotyping obviously plays a critical role in both the
identification of genomic regions controlling traits of interest (genes or QTLs) but also in
marker-assisted selection (MAS) used to expedite the development of advanced lines with the
desired traits (Varshney et al. 2014). As highlighted above, NGS has made major
contributions to genotyping through the discovery of polymorphic sites in a genome. These
polymorphic sites can then serve to develop genotyping arrays ("SNP chips”) that allow one
to interrogate these genomic positions in a high-throughput fashion (Ha et al. 2014). In a
third step (after variant discovery and array design), such SNP chips can be used to
characterize the genotype of an individual at thousands to millions of SNPs (Kumar et al.
2012). Alternatively, NGS technologies, coupled with complexity-reduction methods, have
been used to simultaneously identify large numbers of variant positions and determine an
individual's genotype at these SNPs. In plants, such approaches, in particular genotyping-by-
sequencing (GBS), have been the tool of choice to discover and type SNPs using NGS
(Deschamps et al. 2012). GBS is a particularly attractive complexity reduction method that

offers a simple, robust, low-cost, and high-throughput method for genotyping in both model
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and non-model species (Elshire et al. 2011). Despite the tremendous opportunities brought
about by NGS in crop genetics and breeding, these technologies bring new challenges. The
typically very large raw datasets (e.g. billions of sequence reads) are devoid of value on their
own and only become intelligible and useful once they have been subjected to some form of
bioinformatics analysis, sometime within a very short time (Nielsen et al. 2011). The efficient
and accurate computational processing, variant and genotype calling of large-scale NGS data
requires the development of new bioinformatics tools (algorithms, software and pipelines)
(Pirooznia et al. 2014). Given the large scale of such data, there is a natural, yet dangerous,
tendency to trust the outcomes of these analyses. In our view, this is one of the great dangers
of this revolution: the insufficient critical assessment of the reliability of the resulting

processed data.

In this review, we present and discuss the most relevant advances in genotyping methods for
crop plants. We introduce the most widely-used genotyping approaches and illustrate their
potential contributions to HTP genotyping in several crop plants. Furthermore, we discuss the
limitations and challenges of each method along with proposed solutions. The objective is to
provide geneticists and breeders with an updated synthetic view of the NGS-based genotyping

tools available for the improvement of the efficiency of crop breeding programs.

IL.4 Identification of genetic variants through WGR

For the most part, WGR experiments have been conducted to comprehensively identify the
differences between the genomes of individual samples of interest and a reference genome
(Li et al. 2009). Several recent reviews have comprehensively discussed the bioinformatics
analytical tools and pipelines that have been developed for discovery and genotyping of
genetic variants through WGR (Hwang et al. 2015). The genetic variants provide an extremely
valuable insight into the genetic background of the individuals (Hedrick, 2011). Generally,
genetic variants are divided in two main categories, nucleotide variants (NVs) and structural
variants (SVs). In the following sections, we introduce and discuss these two categories of

genetic variants with several examples in crop plants.

I1.4.1 Nucleotide variants (NVs)

Nucleotide variants (NVs) reflect variation in a single or multiple neighboring nucleotides
(SNVs and MNVs) that occurs at these positions in the genome. Small insertions or deletions
(InDels), generally smaller than 50 bp, are also typically called by tools designed to call SNVs
and MNVs. NVs may arise within the coding or non-coding regions of genes, or in the

intergenic regions. In most crop species, as the portion of the genome that codes for a protein
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is a small part of the whole, NVs occur more frequently in non-coding than in coding regions
(Varela and Amos, 2010). The subset of NVs located within coding regions may or may not
change the amino acid sequence, due to the degeneracy of the genetic code (Karki et al.
2015). Up to date, several large WGR projects have been conducted in Arabidopsis, maize,
rice, soybean and tomato. For example, the WGR of 2,029 A. thaliana accessions unveiled
11M biallelic SNVs and 1.4M InDels (up to 40 bp). A genome-wide association analysis based
on this extensive dataset allowed researchers to gain insight on the evolution of Arabidopsis
from the glacial age to modern (The 1001 Genomes Consortium, 2016). In 2013, a rice WGR
project was conducted on 3,000 accessions to create a public rice genetic/genomic database
for global rice community. The 18.9M NVs derived from this project showed that the O. sativa
gene pool is differentiated into five varietal groups - indica, aus/boro, basmati/sadri, tropical
japonica and temperate japonica (The 3,000 rice genomes project, 2014). The WGR of 302
wild and cultivated soybean (G. max and G. soja) accessions revealed 10M SNVs and 1M
InDels. This dataset has allowed researchers to detect more than two hundred domestication
and improvement sweeps in soybean genome (Zhou et al. 2015). In addition to genetic
diversity studies based on WGR data, several WGR projects performed to gain insights into
the genetic architecture of agronomic traits in crop plants. A genome-wide association study
(GWAS) for 14 agronomic traits in 517 accessions of O. sativa indica using 3.6M SNVs derived
from WGR allowed to detect 80 strong genotype-phenotype associations (Huang et al. 2010).
Genomic analyses based on the WGR of 360 tomato accessions provided insights into the
history of tomato breeding. It showed that 18 QTLs related to fruit mass in tomato are located
within domestication and improvement sweeps (Lin et al. 2014). As exemplified above, WGR
studies generate the most comprehensive catalogues of NVs that provide key genetic insights

into complex traits in crop plants.

I1.4.2 Structural variants (SVs)

Structural variants (SVs) represent larger genetic rearrangements (>50 bp) that comprise
various types of variants: deletions, insertions, inversions, translocations, duplications, and
copy number variations (CNVs) (Figure II.2) (Tattiniet al. 2015). To date, for the identification
of SVs from NGS reads, three major strategies have been exploited: i) depth of coverage, ii)
paired-end mapping and iii) split reads (Alkan et al. 2011). For many SVs (excluding
inversions), the rearrangement causes a change in the number of reads that map to a given
region in the reference genome. This is most straightforward in the case of deletions,
duplications and CNVs as, in all three cases, the reference genome contains the affected

region that either is lacking in the re-sequenced sample (resulting in a lack of read coverage)
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or present in more copies (leading to abnormally deep coverage) (Campbell et al. 2008).
Translocations represent a special case where read coverage is absent at the original location
of the translocated segment in the reference genome, but appears as an insertion in a new
position in the reference genome. Insertions cannot be detected through depth of coverage
analysis for lack of the corresponding sequence in the reference genome on which sequence
reads are mapped. Finally, inversions cannot be detected in this way as they do not result in
a change in read coverage (except at the breakpoints of the inverted segment). The second
approach, paired-end reads, relies on reads derived from the two ends of the same DNA
fragment originally obtained after fragmentation of the genomic DNA (Hormozdiari et al.
2011). Because of the known mean distance between these paired reads and the expectation
that they should map to opposite strands of the reference genome, deviations from these
expectations provide evidence of a SV in an individual sample compared to reference genome
(Ye et al. 2009). As illustrated below, deletions and insertions result in abnormal spacing
between the paired reads. Inversions, duplications, translocations and CNVs only cause
abnormal read pairs at the junctions between the rearranged segment and the rest of the
reference genome. Finally, split-read mapping is specifically aimed at detecting SV
breakpoints (Mills et al. 2011). This strategy exploits the fact that SVs generate breakpoints
that are analogous to “scars”. These “scars” generate sequence reads that are not contiguous
in the reference genome. The alignment of the two portions of the sequence in two different
regions of the reference genome provides evidence for the existence of SV in an individual
sample (Figure II.2).

To date, numerous studies have illustrated the functional importance of the SVs in crop plants
where these have been associated with diverse phenotypes ranging from adaptation to
disease resistance. One such example is resistance to soybean cyst nematode (SCN) in
soybean. Cook et al. (2012) showed that copy number variation at the Rhgl locus determines
nematode resistance in soybean, with a high copy number resulting in greater resistance.
CNVs have been extensively characterized in maize (Springer et al. 2009). Maron et al. (2013)
found that an increased number of copies of the MATE1 gene is associated with superior Al
tolerance in maize. Wang et al. (2015) reported that CNV at the GL7 locus contributes to grain
size diversity in rice. Nishida et al. (2013) identified a deletion in the 5’ upstream region of
photoperiod-insensitive alleles Ppd-Ala and Ppd-Bla in hexaploid wheat (Triticum aestivum
L.). They also showed the functional effect of this deletion on wheat heading time.
Furthermore, it has been comprehensively documented that genes encoding miRNAs in plants
originated by inverted duplication of target gene sequences (Fenselau et al. 2008).

Additionally, several studies have shown the impact of translocations on neutral and functional
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genetic diversity within and among plant populations (Saxena et al. 2014). These examples
provide ample evidence that SVs often contribute to allelic variation at loci of great func tional

significance.

Despite their involvement in the generation of allelic diversity in crop plants, the identification
of SVs on a genome-wide scale remains very challenging and limited. The identification of
SVs in crop plants, using WGR data or comparative genomic hybridization (CGH) arrays
(Pinkel, 2005), has mostly been limited to the identification of large deletions, insertions and
sometimes CNVs (Redon et al. 2009). Recently, Torkamaneh et al. (2017) identified 92K SVs
among a collection of 102 elite soybean accessions using WGR data and three SV discovery
approaches. More importantly, they showed that 34.5% of SVs or their breakpoints (close to
32k SVs) overlapped completely or partially with genic regions. This indicates that a
substantial proportion of SVs would be expected to impact the function of one or more genes.
In contrast, of the ~5M SNPs and small indels identified in the same collection of lines, only
a very small proportion resided in coding regions (2%) and a still smaller subset (0.01%)
were predicted to impact gene function. Thus, despite the much lower abundance of SVs
compared to SNPs and small indels, their “functional footprint”, e.g. the number of genes

impacted by such variants, is relatively similar.
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I1.4.3 Challenges of WGR in crop breeding

Despite the significant reductions in cost experienced over the last few years, WGR of every
accession remains too costly to be performed routinely on thousands of individual lines
assessed each year within a breeding program. Fortunately, it is usually unnecessary as the
amount of recombination encountered within the progeny of a cross is relatively limited such
that large segments of the genome remain unaffected by recombination (Esch et al. 2007).
If one has captured the alleles and their association (in the form of haplotypes) in a collection
of parental accessions through WGR, it is sufficient to simply scan the progeny of a cross and
impute missing genotypes (Howie et al. 2011). A second challenge is that WGR generates a
huge amount of sequencing data that should be analyzed and stored. The analysis of WGR
data requires high-performance computing systems (computers with a large number of
processors (CPUs) and large amounts of memory) (Muir et al. 2016). Typically, breeders are
not well equipped either for storing this volume of data or performing the various
bioinformatics analyses. Although the use of WGR is limited in crop breeding programs, it has
greatly facilitated the development of the high-throughput genotyping methods for crop

plants.

IL.5 NGS-based SNP arrays for crop genotyping

Large-scale sequencing, made possible and affordable thanks to NGS technologies, has
allowed researchers to probe nucleotide diversity in panels of individuals to discover genetic
variants (mostly SNPs and small indels). The identification of large numbers of molecular
markers in crops has allowed the development of high-throughput genotyping tools such as
SNP arrays (Ganal et al. 2012). Array-based genotyping methods are based on two strategies:
i) the use of solid-phase bound oligonucleotide probes diagnostic for the respective alleles
and subsequent hybridization of genomic DNA onto such arrays (Affymetrix) (Adessi et al.
2000), and ii) the use of single-base primer extension (SBE) technologies to determine the
specific allelic state for a given SNP (Illumina) (Giusto and King, 2003). To date, SNP arrays
with >40K SNPs have been developed for several crops such as rice (44K, 50K and 700K),
maize (50K and 600K), soybean (50K, 180K and 355K), rye (600K), pepper (640K), canola
(60K), cotton (63K) and wheat (90K, 660K and 820K) (Rasheed et al. 2017). Generally, on
arrays capable of interrogating fewer than 100K SNPs, more than 80% of markers are present

in genic regions.

These SNP arrays are widely used for genetic diversity analysis (Song et al. 2013),
evolutionary studies (identification of domestication and improvement sweeps), GWAS (Gao

et al. 2016), and marker-assisted selection (MAS) programs (Collard et al. 2008). As
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described, SNP chips have been or are currently being developed for a large number of
important crop plants that can be used to get more precise insights into their genetic

constitution and for the improvement of breeding programs.

II.5.1 Limitations of SNP _arrays

SNP arrays have greatly reduced the time and effort spent on genotyping, but the
development of new markers or new arrays still requires significant investments (Tennessen
et al. 2011). It has been largely shown that an increase in SNP density results in a higher
resolution in large samples for genome-wide association studies (GWAS), bulk segregant
analysis (BSA) and genomic selection (GS) (Deschamps et al. 2017). The development of a
new SNP array requires prior generation of sequence information, identification of
polymorphisms, validation and array production that can be seriously restricted by cost and
time (Tennessen et al. 2011). Furthermore, current array-based technologies have clear
limitations for different application, because the markers are often specific to the population
in which they were developed, and the resulting allelic bias can be problematic in some
divergent populations and species (Lachance, and Tishkoff, 2013). In other words, SNP loci
that are polymorphic in one set of accessions may not be informative in another and vice
versa. On the other hand, it has been documented that several biological factorsin crop plants
can affect the quality of SNP arrays such as polyploidy, high structural polymorphism,
significant sequence diversity and a high proportion of repetitive regions (Deschamps et al.
2017). For example, in a hexaploid species such as bread wheat, interrogating SNPs located
in genic regions (that are typically more highly conserved) increases the odds of capturing
DNA fragments originating from the various homeologues (Deschamps et al. 2017). This will
greatly complicate the calling of genotypes at such a SNP locus. Also, several studies have
reported that most causal SNPs (i.e. ones responsible for a change in phenotype) are located
in regulatory regions and not in the coding region (Edwards et al. 2013). As a majority of
markers on SNP chips are present in genic regions, this can reduce the odds of capturing such

causal mutations on arrays.

II.6 Genotyping by sequencing (GBS)

Genotyping by sequencing (GBS), is a genotyping approach that relies on sequencing to
simultaneously discover nucleotide positions that are polymorphic within a collection of
samples and call genotypes at these informative sites (Elshire et al. 2011). It does not
examine all nucleotide positions in a genome, but relies on a complexity reduction approach

to inspect a relatively small and constant subset of the genome (Rosato et al. 2012). This is
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achieved through the use of restriction enzymes (one or a combination of enzymes) that cut
the genome at the same position in most samples (Davey et al. 2011). Once the genomic
DNA has been digested with the chosen enzyme (or enzyme combination), the resulting
restriction fragments will be sequenced in part (typically 100-150 bp) to provide sequence
information on the region immediately flanking the restriction sites (Elshire et al. 2011; Sonah
et al. 2013). GBS provides the ability of exceptional multiplexing of individual samples through
barcoding. High levels of multiplexing and consistently reduced genome representations have
been achieved via GBS, thus allowing a significant reduction in cost. The GBS approach and
it applications in crop breeding have been greatly described and discussed in several reviews
(Poland and Rife, 2012). The key factors that must be considered in any GBS experiment are
the analytical pipeline and missing data imputation. In the following section, we will discuss
these two aspects of GBS.

II.6.1 GBS data analysis

GBS data analysis can be complex owing to both biological and technical factors (Nielsen et
al. 2011; Gompert et al. 2010; Lynch et al. 2009; Hohenlohe et al. 2010). Among the former,
we can note the number of detected variants, the complexity of the genome, the degree of
heterozygosity, the proportion of repetitive sequences throughout the whole genome, the
level of polymorphism and divergence among populations. Among the latter, we need to
consider the degree of sample multiplexing, the total number of reads per sample, the length
of reads, and the sequencing error rate. To overcome these challenges and extract SNP
genotypes from a large number of GBS reads, efficient and accurate bioinformatics analytical
pipelines are required. In these pipelines, several steps must be included to filter out poor-
quality reads, categorize reads by pool or individual (based on barcodes), align reads to a
reference genome to uncover polymorphisms, and finally score genotypes for each individual
at each polymorphic locus (Glaubitz et al. 2014; Torkamaneh et al. 2017a). Early in the
development of GBS in crop plants, Illumina was the most commonly used sequencing
technology (with fixed read length of ~100 bp) and TASSEL was the main GBS bioinformatics
analytical pipeline (Bradbury et al. 2007). Later, the Ion Torrent sequencing technology also
started to be used for GBS. It differs from Illumina sequencing in that it produces reads of
variable length (50 to 150-bp) (Mascher et al. 2012). Recently, several custom packages such
as Stacks (Catchen et al. 2013), IGST (Sonah et al. 2013) and Fast-GBS (Torkamaneh et al.
2017a) have been developed specifically for the processing of reads produced by GBS
technologies. All of these GBS pipelines were developed using different combinations of tools

for demultiplexing, trimming, mapping, and variant calling. Mascher et al. (2013) performed
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GBS on barley RILs using three sequencing technologies (Illumina, Ion PGM and Ion Proton)
and using two GBS bioinformatics pipelines (TASSEL and IGST) found ~53% overlap between
SNP calls derived from Illumina and Ion Proton reads. More recently, a greater overlap (69%)
between Ion Proton and Illumina SNP calls was reported in soybean (Torkamaneh et al. 2016).
Both studies reported a high level of concordance between shared SNPs (~99%). Recently,
Torkamaneh et al. (2016) have comprehensively compared seven GBS pipelines (Stacks,
Stacks de novo, TASSEL-GBS v1, UNEAK, IGST, TASSEL-GBS v2 and Fast-GBS) and two
sequencing technologies (Illumina and Ion Proton) for variant calling from GBS data. They
found more than 87% overlap between different GBS pipelines, with the sole exception of
TASSEL-GBSv1 that showed the lowest overlap (36.7%). Furthermore, they showed that
SNPs called by more than one pipeline were typically highly accurate. They also documented
that the main source of errors in GBS SNP calls was the presence of paralogues and/or
repetitive regions. Typically, all such pipelines offer a certain number of parameters that can
be adjusted by the user based on the specific properties of the genetic materials being studied.
It is impossible to develop a universal pipeline that would be equally suited to every situation.
Ultimately, users need to adjust pipeline parameters to suit their chosen sequencing platform
(Ilumina vs. Ion Proton) and the characteristics of their species in terms of genome
complexity (genome size and proportion of repetitive regions), ploidy and level of

heterozygosity.

II.6.2 Missing data in GBS

As described above, GBS is a genome-wide scanning or sampling approach. By nature, GBS
will generate sizeable amounts of missing data because sequence reads are not necessarily
obtained for the same region (flanking a restriction site) in all individuals subjected to GBS
(Rutkoski et al. 2013; Jarquin et al. 2014). Also, because the GBS sequence reads are
distributed across a very large number of loci, the mean depth of coverage at each site is
relatively thin (often less than 10). Several studies have shown that the quantity of missing
data generated by GBS can be substantial, thus the final number of informative SNPs obtained
from GBS data can be greatly affected by the chosen tolerance towards missing data
(Beissinger et al. 2013; Crossa et al. 2013). Typically, such missing data will need to be
imputed as many tools used in genetic analysis require complete datasets. Among a panel of
301 soybean accession, the number of markers increased five fold (from 12K to 62K) when
increasing the amount of missing data tolerated at each locus, from 20% to 80%
(Torkamaneh and Belzile, 2015). It is important to note, however, that this criterion refers to

the maximal proportion of missing data per locus. When SNP loci with up to 20% of missing
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data were retained, the overall proportion of missing data in the SNP dataset was 7%. When
this maximal allowance was increased to 80%, the overall proportion of missing data was
51%. The question that needs to be answered (and the answer may vary in different crops)
can be framed in this way: Is it better to impute a small amount of missing data (e.g. 7% in
the example given) at a limited number of loci (12K SNPs) or to impute a larger amount of
missing data (e.g. 51%) at a much larger number of loci (62K SNPs) for which there are some

data? This requires some understanding of how imputation works.

Generally, imputation is the substitution of some value for missing data, in other words, *filling
in” missing data with plausible values through various strategies (Hao et al. 2009). Several
imputation algorithms were designed for imputation in ordered markers such as Hidden
Markov Models (HMH), linear models and pedigree-based haplotyping (Glodziket al. 2013;
Cheung et al. 2013; Kong et al. 2008; Pei et al. 2008). Most current imputation tools used
for the imputation of missing GBS data are based on the HMH algorithm. These tools rely on
linkage disequilibrium (LD), i.e. non-random or favored occurrences of certain combinations
of alleles at different loci (Li et al. 2009). SNPs residing close together on a chromosome are
often inherited together as a unit known as a haplotype (Slatkin, 2008). In this approach,
missing alleles can be inferred from the available data in other samples sharing the same
haplotype (Figure II.3). In principle, a larger number of SNP markers (even with half of the
data missing) could provide a better opportunity to capture the haplotypes than a smaller
number of markers (albeit with fewer missing data). In the two contrasting scenarios
described above (12K SNPs with 7% missing data and 62K SNPs with 51% missing data), the
accuracy of imputation of missing data was higher with more SNPs and missing data (96%)
than with fewer SNPs and missing data (12K with 7% missing data) (Torkamaneh and Belzile
2015).

As described above, imputation success is related to how LD blocks and haplotypes are
captured by SNP data. It thereby stands to reason that imputation accuracy increases with
an increasing density of markers. Unfortunately, LD patterns are not homogenous across
species. In some, such as soybean and rice, LD extends over long stretches (soybean: ~150
kb; rice: <65-180) (Lam et al. 2010; Zhu et al. 2007). In others, such as maize (<1 kb) or
Arabidopsis thaliana (~3-4 kb) (Gore et al. 2009; Kim et al. 2007), LD decays much faster
and a larger number of markers will be needed to adequately capture the underlying
haplotypes. Thus, it is impossible to define an optimal level of tolerance for missing data in
different species or even in different collections of accessions from the same species if they
differ in the extent of LD between markers. Nonetheless, as GBS usually allows for the

identification of large sets of informative SNP loci, the imputation accuracy of missing data
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reported in different species (maize, rice, wheat, barley and soybean) has generally been high
(92-98%; Crossa et al. 2013; Huang et al. 2014; Jarquin et al. 2014; Torkamaneh and Belzile
2015).

II.7 Integrating data obtained using different genotyping tools

I1.7.1 Combining two SNP datasets via imputation

Genotyping platforms differ in the set of loci on which they can provide information and
updated content is continuously being added as new products and datasets become available
(LaFramboise, 2009). Several SNP chips with different SNP sets have been developed for
different species (e.g. 6K, 50K, 180K and 355K in soybean) (Wang et al. 2016). There is
therefore a need to be able to combine these available datasets via imputation. The process
for combining two genotypic datasets via imputation is schematically illustrated in Figure II.4.
Here two sets of samples were genotyped with two different genotyping platforms (SNP array
and GBS). As can be seen, there are two categories of SNP loci: i) platform-specific SNP loci
(blue or yellow in the figure), and ii) common SNP loci present in both datasets (green). A
partial overlap can also exist with regards to the samples for which data are available, i.e.
data for some samples may be available only for one of the two genotyping technologies.
Merging these two datasets will provide partial information for all samples (Hao et al. 2009).
Then missing data in the combined dataset can be imputed. For example, Torkamaneh and
Belzile (2015) used imputation to combine SNP catalogues derived from two high-throughput
genotyping techniques in soybean: GBS and a SNP array. The GBS-derived dataset (301
samples, 60K SNPs) was merged with a SNP array dataset (25 samples, 40K polymorphic
SNPs), where these 25 samples were a subset of the larger collection of 301. Despite the
limited overlap between GBS and SNP array SNP loci (7% of common loci), the resulting
catalogue (301 samples, >100K SNPs) was highly accurate with ~95% of the missing data
having been correctly imputed. Combining SNP datasets derived from different genotyping
tools can thus be successfully performed and can enhance the power of genetic analysis in

crop plants.

II.7.2 Genotype imputation using a reference panel

Genotype imputation using a reference panel refers to the situation in which a reference panel
of haplotypes (generally derived from WGR projects) with a genome-wide exhaustive set of
SNPs can be used to impute onto a set of samples that have been genotyped at a subset of

the SNPs (derived from GBS or a SNP array). An overview of this process is given in Figure
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II.5. Here, imputation algorithms use the correlation (LD) between SNPs present in the
reference panel for making predictions of the genotypes present in the samples genotyped
using a low-density (low-cost) method. These algorithms use both the dense information from
reference panel and less-dense genotype information from samples to infer genotypes at SNP
loci that are missing (Marchini and Howie 2010). To date, such reference panels have been
developed for Arabidopsis, maize, rice and soybean (Cao et al. 2011; Bukowski et al. 2015;
The 3,000 rice genomes project, 2014; Torkamaneh et al. 2017b). In Arabidopsis, a high level
(>98%) of missing data imputation accuracy has been reported (Cao et al. 2011) using a
reference panel with 80 samples. In maize, a set of 35M SNPs discovered by WGR of 1,268
inbred lines, was imputed on a large collection (>10,000) previously genotyped with 500K
GBS-derived SNPs, again with a high level of accuracy (98%) (Swarts et al. 2016). In humans,
it has been documented that population structure, the properties of the reference panel
(comprehensiveness of haplotype diversity) and the chosen low-density genotyping platform
(GBS or SNP array) will all influence performance, and performance may vary between rare
and common alleles (Marchini and Howie 2010). In the coming years, we expect that
imputation based on reference panels, due to the ever-increasing availability of WGR data,

will become a key tool in crop genomics.

II.8 Conclusion

Genotyping technologies have become an essential component in many crop breeding
programs. Continuous reductions in the cost of sequencing and rapid advances in data
processing suggest that sequencing-based genotyping approaches will become increasingly
advantageous. Similarly, decreases in the cost of sequencing will spur an important increase
in the use of WGR as a means to provide exhaustive characterization of nucleotide and
structural variation in core collections in view of capturing a significant portion of this extant
variation. Such in-depth characterization of genetic variation in core collections will also
provide exceptional data for genotype-phenotype association studies (e.g. GWAS). Cost-
effective, genome-wide genotyping platforms (e.g. GBS and SNP chips) will remain the main
tool in breeding programs. Despite all these impressive technological advances, the uptake of
these new tools will likely require a significant effort in user training and in the development
of analytical tools capable of extracting information thatis the most relevant to breeders from
these very large datasets.
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II1.10 Figures
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Figure IL.1. The position of NGS and bioinformatic analysis in crop breeding program. One
of the main aims of modern crop breeding is development of genetic markers related to

agronomic traits. Application of different genotyping platforms and approaches is related to

breeding program.
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Figure II.2. Identification of structural variants through the analysis of NGS reads. Top, three
different approaches used in SV detection. Bottom, different types of SVs and identification

strategies, DEL: deletion; INS: insertion; TR: translocation; INV: inversion; CNV: copy-

number variation; DUP: duplication.

25



GBS dataset GBS dataset

(Before imputation) ¢\ p, (After imputation) g\p
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
A|T|[A|G|A|C|]T|[T|A|G]|C AN T PASIRG I PASIECR T [ ST FAY G A RC
C T alo|clalelr all c e A RCacHIc ARG A
clelT|a G AlG A Sl ¢ el c [Ael T I
cle|t|alelelec G|[T|a cle|rt|alaclalclalalz[a
= |lalT e A e B (G A e [ Alr|al|clalclrlTlAa]G]|cC
S la|lt|lAalclA A A AlT|A|GlA|clc|AalGg|T|A
= |lclolrlalelclclala A clelr]lalelclclalelra
2 lalrlale clc G|T|aA Alr|ale|alclclalelT[a
T|alalafc]c AT A [ElaaaRAcic o Bl A
cle|T|cla T|T|A A cle it iclia] ¢ [EERlEm ¢ IR
cle clclie] T AlG|a clelt|clalalr|[r[alc|a
clelt]e Gltltlalcla clelt[e]c [olmElalica

Figure II.3. Phase-based imputation of missing data. Left, GBS raw genotype table with
missing data (white blocks). Right, imputed dataset (white blocks with green imputed
genotype values). Markers located within the same LD block are shaded in the same tone of
purple.
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III.1 Résumé

Les technologies de séquencage de la nouvelle génération (NGS) ont considérablement
accéléré l'étude de la composition des génomes et de leurs fonctions. Génotypage par
séquencage (GBS) est une approche de génotypage qui fait usage de NGS pour balayer
rapidement et économiquement d'un génome. Il a été démontré qu'il permet la découverte
simultanée et le génotypage de milliers a des millions de SNP a travers un large éventail
d'espéces. Pour la plupart des utilisateurs, le principal défi de GBS est l'analyse
bioinformatique de la grande quantité d'informations de séquence dérivées du séquengage
des librairies GBS en vue d'appeler les alleles au locus SNP. Nous décrivons ici un nouveau
pipeline d’analyse bioinformatique GBS, appelé Fast-GBS, congu pour fournir un génotypage
trés précis, nécessiter des ressources informatiques modestes et offrir une facilité d'utilisation.
Fast-GBS est basé sur le langage et les formats de fichiers bioinformatiques standard, capable
de gérer les données a partir de différentes plates-formes de séquengage. En plus il est
capable de détecter différents types de variants (SNP, MNP et Indels). Pour illustrer sa
performance, nous avons appelé des variants chez trois collections d'échantillons (soja, orge
et pomme de terre) qui couvrent une gamme de différentes au termes de tailles de génome,
les niveaux de complexité du génome et de ploidie. Au sein de ces petits ensembles
d'échantillons, nous avons appelé 35k, 32k et 38k SNP pour le soja, l'orge et la pomme de
terre, respectivement. Pour évaluer la précision du génotype, nous avons comparé ces
génotypes de SNP dérivés de GBS avec des ensembles de données indépendants obtenus a
partir de séquencage de génome entier ou la puce de SNP. Cette analyse a donné des
précisions estimées de 98,7, 95,2 et 94% pour le soja, l'orge et la pomme de terre,
respectivement. Nous concluons que Fast-GBS fournit un outil hautement efficace et fiable

pour appeler des SNP a partir de données GBS.
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II1.2 Abstract

Next-generation sequencing (NGS) technologies have accelerated considerably the
investigation into the composition of genomes and their functions. Genotyping-by-sequencing
(GBS) is a genotyping approach that makes use of NGS to rapidly and economically scan a
genome. It has been shown to allow the simultaneous discovery and genotyping of thousands
to millions of SNPs across a wide range of species. For most users, the main challenge in GBS
is the bioinformatics analysis of the large amount of sequence information derived from
sequencing GBS libraries in view of calling alleles at SNP loci. Herein we describe a nhew GBS
bioinformatics pipeline, Fast-GBS, designed to provide highly accurate genotyping, to require
modest computing resources and to offer ease of use. Fast-GBS is built upon standard
bioinformatics language and file formats, is capable of handling data from different sequencing
platforms, is capable of detecting different kinds of variants (SNPs, MNPs, and Indels). To
illustrate its performance, we called variants in three collections of samples (soybean, barley,
and potato) that cover a range of different genome sizes, levels of genome complexity, and
ploidy. Within these small sets of samples, we called 35k, 32k and 38k SNPs for soybean,
barley and potato, respectively. To assess genotype accuracy, we compared these GBS-
derived SNP genotypes with independent data sets obtained from whole-genome sequencing
or SNP arrays. This analysis yielded estimated accuracies of 98.7, 95.2, and 94% for soybean,
barley, and potato, respectively. We conclude that Fast-GBS provides a highly efficient and
reliable tool for calling SNPs from GBS data.
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II1.3 Introduction

Currently, genomics lies at the heart of an extraordinary number of discoveries, innovations
and applications. This revolution is a direct result of the rise of next-generation sequencing
(NGS) technologies (Metzker 2010; Edwards et al. 2013; Kilpinen & Barrett 2013; Kumar et
al. 2012). In the area of genotyping, the combination of NGS and reduced representation
methods, which focus the sequencing effort on a small subset of the genome, has made it
possible to simultaneously perform genome-wide single nucleotide polymorphism (SNP)
discovery and genotyping in a single step even in species with large genomes (Davey et al.
2011) This has facilitated greatly the genotyping of very large numbers of SNPs using a
number of related methods (e.g. CRoPS, RAD-seq, GBS, double-digest RAD-seq, and 2bRAD)
(van Orsouw et al. 2007; Etter et al. 2007; Elshire et al. 2011; Etter etal. 2011; Peterson et
al. 2012; Wang et al. 2012). These various methods make it possible to study important
questions in molecular breeding, population genetics, ecological genetics and evolution using
thousands to millions of genetic markers in a wide array of species (Davey et al. 2011).
Genotyping-by-sequencing (GBS) is a particularly attractive complexity reduction method that
offers a simple, robust, low-cost, and high-throughput method for genotyping in both model

and non-model species (Elshire et al. 2011).

Advanced sequencing technologies (NGS) have reduced both the cost and the time required
to generate sequence data. The efficient and accurate computational processing, variant and
genotype calling, of large-scale NGS sequence data is the new bottleneck in genomics. To
meet this need, numerous bioinformatics pipelines have been developed (Nielsen et al. 2011;
Bradbury et al. 2007; Glaubitz et al. 2014; Catchen et al. 2013; Lu et al. 2013) and all need
to accomplish a similar set of steps such as: 1) acquiring raw sequence data, 2) demultiplexing
pooled sequence read data, 3) filtering out low-quality reads, 4) assembling or aligning reads,
and finally 5) discovering polymorphic loci and inferring actual genotypes at these loci. Each
step has its own set of associated challenges and uncertainties. These arise from genomic
attributes such as the number of loci identified, genome complexity, degree of heterozygosity,
abundance of repetitive sequences throughout the genome, and the level of polymorphism
and divergence among populations (Nielsen et al. 2011). These biological factors also interact
with technical factors such as the quality of the DNA, the degree of sample multiplexing, the
total number and length of reads, and the sequencing error rate (Gompert et al. 2010; Lynch
et al. 2009; Hohenlohe et al. 2010a). Key decisions therefore need to be made at each step
regarding parameters such as the required depth of coverage or allowable nucleotide distance
between reads for assembly. Finally, because of biological and sequencing sampling variation,
the use of statistical models will often be necessary.
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Conventionally, bioinformatics pipelines for handling GBS data are categorized in two groups:
de novo-based and reference-based. In the presence of a reference genome, the reads from
reduced-representation sequencing can be mapped to the reference genome and SNPs can
be called (Nielsen et al. 2011; Li & Durbin 2009). Up to now, several reference-based GBS
analysis pipelines have been developed. The most widely used reference-based GBS analysis
pipelines are: TASSEL-GBS (v1 and v2), Stacks, and IGST (Bradbury et al. 2007; Glaubitz et
al. 2014; Catchen et al. 2013; Sonah et al. 2013). But when a reference genome is not
available, pairs of nearly identical reads (presumed to represent alternative alleles at a locus)
need to be identified. The most highly used pipelines for such a de novo-based approach are
UNEAK and Stacks (Catchen et al. 2013; Lu et al. 2013).

Herein, we describe a new reference-based pipeline, Fast-GBS, and we benchmark the
pipeline based upon a large-scale, species-wide analysis of soybean, barley and potato. It is
easy to use with various species, in different contexts, and provides an analysis platform that

can be run with different types of sequencing data and modest computational resources.

III.4 Test dataset

To test the performance of Fast-GBS, we used existing sequence datasets of association
mapping panels for three species covering a range of genomic situations: soybean
(Torkamaneh & Belzile 2015), barley (Abed et al. unpublished), and potato (Bastien et al.
unpublished). Table III.1 shows the species which we used in this study. These vary in terms
of their ploidy, genome size and mode of reproduction (which relates to the expected

zygosity). We used sequence datasets composed of 24 samples for each species.

III.5 Genotype validation

To estimate genotype accuracy for Fast-GBS calls, we compared the called SNPs with
independently derived genotypic data resulting from either whole-genome resequencing
(soybean and barley) or genotyping on a SNP array (potato) for the same samples. For
soybean, we compared the GBS-called SNPs with whole genome resequencing data for the
same 24 samples. In the case of barley, GBS-derived genotypic data for one of the 24 barley
samples (cv. Morex) was compared to the barley reference genome produced using this same
cultivar. For potato, we compared the GBS-derived genotypes with those obtained for the
same 24 samples at a set of 122 SNPs that were in common with the SolCAP Infinium Chip
(8.3k SNPs) (Felcher et al. 2012).

III.6 Implementation
The Fast-GBS analysis pipeline was developed by integrating public packages with internally

developed tools. The public packages include Sabre (demultiplexing), Cutadapt (read
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trimming and cleaning) (Martin 2011), BWA (read mapping) (Li & Durbin 2010), SAMtools
(file conversion and indexing) (Li 2011), and Platypus (post-processing of reads, haplotype

construction and variant calling) (Rimmer et al. 2014). Fast-GBS functions and software tools
are presented in Figure III.1.

ITI1.6.1 Creating directory structure

We developed a Bash script to create the directory structure before running the Fast-GBS

pipeline. This command line creates the directories for data (FASTQ files), barcodes (key file),

reference genome, and results (Fast-GBS outputs).

I11.6.2 Input

The input data are sequenced DNA fragments from any restriction enzyme-based GBS

protocol. Fast-GBS handles raw sequencing data in FASTQ format.

II1.6.3 Preparing the parameter file

The parameter file is a text file containing key information about the analysis including the
path to the FASTQ files, barcodes and reference genome. It also contains information about
the type of sequence (paired or single-end), the adaptor sequence and the sequencing
technology. In this file we can define critical filtering options such as the minimal quality
scores for reads, minimal number of reads required to call a genotype, and maximal amount
of missing data allowed. Number of CPU, names of output files are also defined in this file.
This file comes with the Fast-GBS pipeline.

II1.6.4 Data demultiplexing

The cost efficiency of GBS is partly due to the multiplexing of samples and the resulting pooled
reads will need to be demultiplexed prior to SNP calling. Fast-GBS uses Sabre to demultiplex
barcoded reads into separate files. It simply compares the provided barcodes with the 5’ end
of each read and separates the reads into the appropriate barcode files after having clipped
the barcode from the read. If a read does not have a recognized barcode, it is put into an
“unknown” file. Sabre also has an option (-m) to allow mismatches within barcodes. Sabre
supports gzipped input files. After demultiplexing, Sabre outputs a BC summary log file of

how many reads went into each barcode file.

IT1.6.5 Trimming and cleaning
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After demultiplexing, Fast-GBS uses Cutadapt to find and remove adapter sequences,
primers, and other types of unwanted sequence from high-throughput sequencing reads.

I11.6.6 Read mapping algorithms

Fast-GBS uses the MEM (maximal exact matches) algorithm implemented in BWA that works
by seeding alignments and then extending seeds with the Smith-Waterman (SW) algorithm
using an affine gap penalty. This algorithm can perform local alignment for reads of 70 bp up
to 1Mbp. This algorithm can perform parallel alignment, thus markedly increasing the speed
of the analysis. The ability to align reads of variable size allows the use of data obtained using
different sequencing platforms (Illumina, Ion Torrent, etc). Aligned reads may be gapped to

allow for Indels.

ITII.6.7 Post-processing of mapped reads

After initial alignment, the mapped reads are further processed by Platypus in order to
improve the sensitivity and specificity of variant calling. This post -processing seeks to improve
the quality of mapping by performing a re-examination of poorly mapped reads and reads
mapping to multiple locations. Platypus classifies poorly mapped reads in three categories: 1)
reads with numerous mismatches (high level of sequencing errors), 2) reads mapping to
multiple locations in the genome, and 3) any remaining linker or adaptor sequences (causing
poor mapping). Variants called using such potentially incorrectly mapped reads (see next

step) are highlighted using a BadReads flag.

IT1.6.8 Haplotype construction and variant calling

In Fast-GBS, variants are called using Platypus. Unlike alignment-based variant callers which
focus on a single variant type (SNP or indel), Platypus uses multi-sample variant calling that
helps to exploit information from multiple samples to call variants that may not look reliable
in a single sample. This approach decreases the errors around indels and larger variants
(MNPs). At first, the local assembler looks at a small window (~few kb) at a time and uses all
the reads in the window to generate a colored de Bruijn graph, then using all candidate
variants, it generates an exhaustive list of haplotypes. Candidate haplotypes are generated
by clustering the candidate alleles across windows. Haplotype frequencies are estimated by
the expectation-maximization (EM) algorithm. Then variants are called using the estimated

haplotype frequencies. This approach works on the local haplotype level rather than on the
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level of individual variants and does well on highly divergent regions. This also decreases

computational requirements.

I11.6.9 Variant and individual-level filtering

Platypus was originally designed and used to detect variants in human, mouse, rat and
chimpanzee samples. To optimize Platypus options in the context of the analysis of GBS-
derived single-end reads, we modified several options (see

https://wiki.gacrc.uga.edu/wiki/Platypus-Sapelo for details of Platypus options). Some of the

filters used in Fast-GBS variant calling steps are: number of reads (NR) per locus (default=2),
mapping quality score of reads to call a variant (MQ=10), minimum base quality (default=10),
MNPs distance (minFlank=5), and maximum missing data (MaxMD) allowed (default<80%).
See Fast-GBS user manual for a full description of all filtering options.

I11.6.10 Output data

The main output file of Fast-GBS is a .vcf file (Danecek et al. 2011) containing detailed
information on each of the variants. In addition, Fast-GBS also generates a simple text file
containing only the genotypic data. The Fast-GBS log file contains the completed steps of the
pipeline as it is running. In cases where an error occurs and prematurely terminates the
running of the pipeline, the log file shows the step at which the analysis stopped. An analysis
can be started at any point on the existing intermediate files simply by creating a log file in
which the previously completed steps are listed. Fast-GBS will re-initiate the analysis starting

from that point onwards.

II1.7 Results and discussion

ITII.7.1 Performance of Fast-GBS

To assess the performance of the Fast-GBS analysis pipeline, we used it to analyze existing
GBS-derived read data from sets of 24 soybean, barley, and potato samples. Table III.2
presents a summary of this analysis. As can be seen, a total of 35k SNPs were called using
42M 100-bp Illumina reads on ApeKI-digested DNA from 24 different soybean lines. Similarly,
for barley, 32k SNPs were successfully called from 72M Ion Torrent reads (50 - 150 bp in
length) derived from a 24-plex Mspl/Pstl library. Finally, in potato, 38k SNPs were obtained
from sequencing a 24-plex Mspl/Pstl library (43 million 100-bp Illumina reads).

GBS was originally demonstrated for soybean by Sonah et al. (2013) using the IGST pipeline.
Using 8 diverse soybean lines, they called ~10k SNPs. Later work by the same group lead to
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the calling of 45k SNPs on a large collection of 304 soybean lines for the purpose of conducting
a GWAS study (Sonah et al. 2014). Analysis of this dataset using IGST took four days while
the same analysis using Fast-GBS took only 11 hours and called ~60k SNPs (data not shown).
As can be seen Fast-GBS present a high level of performance for soybean samples.

Barley has one of the larger genomes (>5 Gb) among cultivated plant species. Because of the
huge size and high level of complexity of its genome, complexity reduction is highly
recommended in barley, an important crop species for which a draft genome has been
published (The International Barley Genome Sequencing Consortium 2012). Mascher et al.
(2013) genotyped 94 barley RIL lines using GBS (Mspl/Pstl-digested library) and they called
34k and 19k SNPs using either the reference genome (with SAMtools) or a de novo pipeline
(TASSEL), respectively. In this study we used Fast-GBS for SNP calling in barley and, as can
be seen in Table III.2, Fast-GBS called 32k SNPs for a small number of samples (24). This

showed the capability of Fast-GBS to run with large and complex genomes.

Because of the high level of ploidy and heterozygosity, potato is a challenging species for
genotyping. The most often used method for genotyping in potato is a SNP array. Two SNP
arrays have been developed so far, the SolCAP 8k and 20k arrays (Felcher et al. 2012; Peter
et al. 2015; Prashar et al. 2014). Recently, Endelman (2015), genotyped 96 F2 diploid potato
samples using GBS. Using an R-based bioinformatics pipeline to filter the GBS variants, they
identified 11k SNPs. In this study, we called 38k SNPs from 24 samples which had also been
genotyped using the SolCAP 8k SNP array. Of these, 5.5k SNPs on the array were polymorphic
among this set of 24 potato samples. As can be seen, using Fast-GBS, we called around

almost seven times more polymorphisms than using a SNP array (38k vs 5.5k SNPs).

II1.7.2 Validation of Fast-GBS data

An important aspect to consider for any variant calling tool is the accuracy of called genotypes.
In this study, we estimated the accuracy of genotypes called by Fast-GBS (Table III.2) by
comparing them to the “true” genotypes (obtained from either whole-genome resequencing
or SNP array data). For soybean, for all 24 samples, we compared the SNP genotypes called
by Fast-GBS to the genotypes assigned to the same loci following whole-genome sequencing.
We found a very high level of concordance, as almost all genotypes (98.7%) proved identical.
For barley, we compared the SNP genotypes called by Fast-GBS with the true genotypes for
one of the 24 lines (cv. Morex), the only one for which we had whole genome sequencing
data. Again, a high degree of agreement between the two datasets (97%) was obtained.

Finally, for potato, we used data obtained on the SolCAP 8k Infinium Chip for the same 24
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samples used to perform GBS. These two datasets shared 122 SNP loci. In our initial
comparison, only 87.7% were in agreement. When we examined the proportion of concordant
calls, we discovered that more than 50% of all discordant calls came from only three samples
and the degree of discordance in these was so great that it suggested we were not comparing
the same clones. After removing these outliers from the analysis, 94% of genotypes called by
Fast-GBS and the SNP array were in agreement in the remaining 21 clones. We conclude that
Fast-GBS can accurately call SNPs in species with different characteristics (genome size,
ploidy, zygosity).

IT1.7.3 Flexibility to run different sequencing platforms

In this study, to assess the performance of Fast-GBS, we used both Illumina and Ion Torrent
reads. Soybean and potato samples were sequenced using an Illumina Hiseq platform and
barley samples on an Ion Torrent (Proton) platform. Typically for GBS, Illumina sequencing
generates reads of uniform length (100 bp), while Ion Torrent reads are in 50 to 150 bp. Ion
Torrent sequencing usually leads to a higher rate of sequencing errors (Golan & Medvedev
2013; Bragg et al. 2013). Thus, it is preferable for an analytical pipeline to be versatile and
capable of using reads derived from either technology (or new technologies in development).
Most GBS bioinformatics pipelines are able to proceed with Ion Torrent reads, but often need
to be modified to be suitable for this type of read data. TASSEL, UNEAK, and Stacks generate
tags of a fixed length (e.g. 64 bp). This will lead to an important loss of sequence information
and can lead to inaccurate or ambiguous mapping of reads. Also, because of the increased
amount of sequencing errors, these pipelines can generate false tags which produce false
SNPs. As shown above, Fast-GBS proved the capacity of accurately proceed maximum SNP

calling using reads obtained from both sequencing platforms (Ion Proton and Illumina).

III.8 Conclusions

GBS provides an extremely powerful and versatile tool for identifying and calling genetic
markers to be used by researchers working in numerous species and fields of study. This
genotyping approach, like all applications based on NGS, generates a huge amount of raw
data. These data need to be analyzed as quickly and efficiently as possible, all the while
yielding SNP data that is highly accurate. Fast-GBS showed itself to be a powerful pipeline to
generate large numbers of highly accurate SNPs using sequence read data obtained from
different sequencing platforms and diverse species characterized by different levels of ploidy,
zygosity, and genome complexity. By combining efficiency and accuracy in this way, Fast-
GSB constitutes a useful tool for a broad array of users in different research communities.
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II1.10 Tables

Table IIL.1. List of species genotyped using a GBS approach and analyzed using Fast-GBS. Description of three different species
representing essential factors (ploidy, genome size and reproduction mode) influencing GBS analysis.

Name

. . Genome size Mode of Number of
Species Ploidy (Mb) reproduction chromosomes

Soybean ‘ Glycine max Paleotetraploid 1,100 Selfing 20

Barley ‘ Hordeum vulgare Diploid 5,300 Selfing 7

Potato ‘ Solanum tuberosum Autotetraploid 844 Clonal 12
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Table IIL.2. Number of variants detected among 24 soybean, barley, and potato samples. The sequencing platform, number of

reads, filtering options, and genotype accuracy for each dataset are also provided.

Filtering options*

Name  Seivendng MesTeton NomBerl  minNR  MiMAF  MaxMD (%) emier o A
Soybean Illumina ApeKI 42 M 2 0.04 80 35k 98.7
Barley Ion Torrent Mspl/Pstl 72 M 2 0.04 80 32k 95.2
Potato Illumina Mspl/Pstl 43 M 11 0.04 20 38k 94.0

*Filtering options: minNR; minimum number of reads to call a variant (depth), MinMAF; minimum minor allele frequency, and

MaxMD; maximum missing data allowed.
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III.11 Figures
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Figure IIL.1. Schematic representation of the analytical steps in the Fast-GBS pipeline.
Showing implemented tools at left and inputs and outputs of each steps at right.
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IV.1 Résumé

Le séquencage de la nouvelle génération (NGS) a révolutionné la recherche sur les plantes et
les animaux de nombreuses fagons, y compris de nouvelles méthodes de génotypage a haut
débit. Le génotypage par séquencage (GBS) s'est révélé étre une méthode de génotypage
robuste et rentable qui est capable de produire des milliers a des millions de SNP dans un
large éventail d'espéces. Sans aucun doute, le plus grand obstacle a son utilisation plus large
est le défi de I'analyse des données. Nous décrivons ici une comparaison compléte de sept
pipelines bioinformatique de GBS développés pour traiter les données brutes de séquence
GBS pour génotypage de SNP. Nous avons comparé cing pipelines qui nécessitent un génome
de référence (TASSEL-GBS v1 et v2, Stacks, IGST et Fast-GBS) et deux pipelines de novo qui
ne nécessitent pas de génome de référence (UNEAK et Stacks). En utilisant les données de
séquence dlIllumina pour un ensemble de 24 lignes de soja dont leur génome a déja
entierement séquencé, nous avons effectué des appels des SNPs avec ces pipelines et
comparé les appels de SNP avec les données de séquencage afin d'évaluer leur précision. Le
nombre de SNP appelés sans génome de référence était inférieur (13k a 24k) qu'avec un
génome de référence (25k a 54k SNP) alors que la précision était élevée (92.3 a 98.7%) pour
toutes les pipelines sauf une (TASSEL-GBSv1, 76.1%). Parmi les pipelines offrant une grande
précision (> 95%), Fast-GBS a appelé le plus grand nombre de polymorphismes (prés de 35
000 SNP + Indels) et a donné la plus haute dégrée d’exactitude (98,7%). En utilisant les
données de séquence d'lon Torrent pour les mémes 24 lignes, nous avons comparé les
performances de Fast-GBS avec celles de TASSEL-GBSv2. Il a encore appelé plus de
polymorphismes (25,8 K contre 22,9 K) et ceux-cise sont révélés plus précis (95,2 vs 91,1%).
En régle générale, les catalogues SNP appelés a partir des mémes données de séquencage
utilisant différentes pipelines ont abouti a des catalogues SNP trés chevauchants
(chevauchement de 79 a 92%). En revanche, le chevauchement entre les catalogues SNP
obtenus a l'aide du méme pipeline, mais différentes technologies de séquencage étaient moins
étendues (~ 50-70%).
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IV.2 Abstract

Next-generation sequencing (NGS) has revolutionized plant and animal research in many
ways including new methods of high throughput genotyping. Genotyping-by-sequencing
(GBS) has been demonstrated to be a robust and cost-effective genotyping method capable
of producing thousands to millions of SNPs across a wide range of species. Undoubtedly, the
greatest barrier to its broader use is the challenge of data analysis. Herein we describe a
comprehensive comparison of seven GBS bioinformatics pipelines developed to process raw
GBS sequence data into SNP genotypes. We compared five pipelines requiring a reference
genome (TASSEL-GBS v1& v2, Stacks, IGST, and Fast-GBS) and two de novo pipelines that
do not require a reference genome (UNEAK and Stacks). Using Illumina sequence data from
a set of 24 re-sequenced soybean lines, we performed SNP calling with these pipelines and
compared the GBS SNP calls with the re-sequencing data to assess their accuracy. The
number of SNPs called without a reference genome was lower (13k to 24k) than with a
reference genome (25k to 54k SNPs) while accuracy was high (92.3 to 98.7%) for all but one
pipeline (TASSEL-GBSv1, 76.1%). Among pipelines offering a high accuracy (>95%), Fast-
GBS called the greatest number of polymorphisms (close to 35,000 SNPs + Indels) and
yielded the highest accuracy (98.7%). Using Ion Torrent sequence data for the same 24 lines,
we compared the performance of Fast-GBS with that of TASSEL-GBSv2. It again called more
polymorphisms (25.8K vs 22.9K) and these proved more accurate (95.2 vs 91.1%). Typically,
SNP catalogues called from the same sequencing data using different pipelines resulted in
highly overlapping SNP catalogues (79-92% overlap). In contrast, overlap between SNP
catalogues obtained using the same pipeline but different sequencing technologies was less
extensive (~50-70%).
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IV.3 Introduction

Next-generation sequencing (NGS) has facilitated greatly the development of methods to
genotype very large numbers of molecular markers such as single nucleotide polymorphisms
(SNPs). NGS offers several approaches that are capable of simultaneously performing
genome-wide SNP discovery and genotyping in a single step, even in species for which little
or no genetic information is available (Davey et al. 2011). This revolution in genetic marker
discovery enables the study of important questions in molecular breeding, population
genetics, ecological genetics and evolution. The most highly used methods of genotyping
relying on NGS use restriction enzymes to capture a reduced representation of a genome
(Miller et al. 2007; Baird etal. 2008; Van Orsouw et al. 2007; Andolfatto et al. 2011; Elshire
etal. 2011; Peterson et al. 2012; Parchman et al. 2012; Sonah et al. 2013). New approaches
such as restriction site-associated DNA sequencing (RAD-seq) and genotyping-by-sequencing
(GBS) have been developed as rapid and robust approaches for reduced-representation
sequencing of multiplexed samples that combines genome-wide molecular marker discovery
and genotyping (Davey et al. 2011). This family of reduced representation genotyping
approaches generically called genotyping-by-sequencing (GBS) (Davey et al. 2011). The
flexibility and low cost of GBS makes this an excellent tool for many applications and research
questions in genetics and breeding. Such modern advances allow for the genotyping of
thousands of SNPs, and, in doing so, the probability of identifying SNPs correlated with traits
of interest increases (Kumar et al. 2012). Even with advancement of NGS to produce millions
of sequence reads per run, data analysis for these new approaches can be complex owing to
using restriction enzymes, sample multiplexing, different fragment length and variable read
depth (Davey et al. 2011). It is crystal clear that advanced analysis pipelines have become a
necessity to filter, sort and align this sequence data. A pipeline for GBS must include steps to
filter out poor-quality reads, classify reads by pool or individuals based on sequence barcodes,
either identify loci and alleles de novo or align reads to an index reference genome to discover
polymorphisms, and often score genotypes for each individual included in the study.
Generally, pipelines for handling GBS data are categorized in two groups; de novo-based and
reference-based. When a reference genome is available, the reads from reduced-
representation sequencing can be mapped to the reference genome and SNPs can be called
as for whole-genome resequencing projects (Li & Durbin 2009; Nielsen et al. 2011). Up to
now, several reference-based GBS analysis pipelines have been developed. The most widely
used reference-based GBS analysis pipelines are: TASSEL-GBS (v1 and v2) (Bradbury et al.
2007; Glaubitz et al. 2014), Stacks (Catchen et al. 2013), IGST (Sonah et al. 2013), and

Fast-GBS (the most recent pipeline (Torkamaneh et al. 2017a)). In the absence of a reference
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genome, pairs of nearly identical reads (presumed to represent alternative alleles of a locus)
need to be identified. The most highly used pipelines for such a de novo-based approach are
UNEAK and Stacks (Catchen et al. 2013; Lu et al. 2013).

Finally, different NGS sequencing platforms are currently available and offer different
advantages. For example, whereas the Illumina technology offers very high throughput and
read quality, this usually comes at the expense of speed as close to two weeks are required
to complete a run. In contrast, the Ion Torrent technology (Rothberg et al. 2011) offers great
speed (4 hours) at the expense of lower throughput and read quality. Depending on the
constraints, one or the other technology may prove more suitable. Ideally, one would like
SNP calling pipelines to perform equally well with both types of read data.

In this study, we comprehensively compared existing GBS analysis pipelines on the basis of
the number of SNPs called, the accuracy of the resulting genotypes as well as the speed and
ease of use of these pipelines. We also compared the results obtained using Illumina and Ion
Torrent reads. Finally, we examined the amount of overap in the SNP loci that were called

using different pipelines.

IV.4 Materials and methods

IV.4.1 Samples and sequencing platform

Soybean (Glycine max L.) is a diploid species with 20 pairs of chromosomes and it has a
medium-sized genome (1.1 Gb). Because it is an autogamous species, soybean lines/cultivars
breed true and are highly homozygous. A set of 23 Canadian soybean lines and one plant
introduction (PI) was subjected to GBS analysis. These same lines were resequenced as
previously described by Torkamaneh and Belzile (2015). Using the same DNA, two GBS
libraries were constructed following ApeKI digestion: one for Illumina sequencing (as per
Elshire et al. (2011)) and the other for Ion Torrent sequencing (as per Mascher et al. (2013)).
Single-end sequencing was performed either on an Illumina HiSeq 2000 at the McGill
University-Génome Québec Innovation Center in Montreal, Canada, or on an Ion Proton
machine at the Institut de Biologie Intégrative et des Systémes (IBIS) of Université Laval,
Quebec, Canada. A total of 42 million 100-bp reads were generated on the Illumina platform
and 38 million 50- to 135-bp reads were obtained on the Ion Torrent platform. All data (GBS
and WGS) are available in NCBI Sequence Read Archive (SRA) with the SRP Study accession,
SRP059747 (Illumina sequences) and SRP073237 (Ion Torrent sequences).

IV.4.2 GBS analysis pipelines
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We used two de novo variant callers and five reference-based pipelines (Williams82 reference
genome; (Schmutz et al. 2010)) to call SNPs. We ran all pipelines in the same conditions of
depth of coverage (minDP=2), maximum mismatch for alignment (n=3), Maximum Missing
Data (MaxMD=80%), and Minimum Minor Allele Frequency (MinMAF 20.05). Below, we briefly
describe the processes for each pipeline. For computation, we used a Linux system with 10
CPU and 25G of memory. In addition to the descriptions provided below, a summary of the
different components of each pipeline is provided in Supplementary Table IV.1 and we provide

all command lines used in this work as supporting information.

IvV.4.2.1 Fast-GBS

The Fast-GBS analysis pipeline has been developed by integrating public packages with
internally developed tools. The core functions include: (1) demultiplexing and cleaning of raw
sequence reads; (2) read quality assessment and mapping; (3) filtering of mapped reads and
estimation of library complexity; (4) re-alignment and local haplotype construction; (5) fit
population frequencies and individual haplotypes; (5) raw variant calling; (6) variant and
individual-level filtering; (7) identification of highly consistent variants. Since researchers may
not always have immediate access to cluster resources, this pipeline allows either parallel
processing of a large number of samples in a cluster or serial processing of multiple samples

on a single machine.

1V.4.2.2 IGST (IBIS Genotyping-by-Sequencing Tool)

A pipeline implemented in Perl programming language was developed for the processing of
Ilumina sequence read data. The steps involved in the pipeline were executed in separate
shell scripts. This pipeline uses different publicly available software tools (FASTX toolkit, BWA,
SAMtools, VCFtools) as well as some in-house tools (Li & Durbin 2009; Li et al. 2009; Danecek
etal. 2011). The raw SNPs obtained were further filtered using VCFtools based on read depth,
missing data in genotypes and minor allele frequency. Heterozygous correction is performed

by an in-house Python script.

IV.4.2.3 TASSEL-GBS (version 1 and 2)

TASSEL-GBS pipelines are implemented in Java programming language. Currently, two
versions are available: TASSEL-GBS v1 (TASSEL 3.0) and TASSEL-GBS v2 (TASSEL 5.0). Both
pipelines function in a similar manner and require that all reads be trimmed to an identical

length (64 bp in v1, up to 92 bp in v2) and identical reads are collapsed into tags. These tags
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are then aligned against the reference genome and SNPs are called from aligned tags. The
main changes implemented in TASSEL-GBS v2 are: 1) the possibility to use longer tags to

improve the accuracy of alignment to the reference genome and 2) an enhanced SNP
discovery and production step.

IV.4.2.4 UNEAK (Universal Network Enabled Analysis Kit)

The general design of UNEAK is as follows: 1) reads are trimmed to 64 bp; 2) identical 64-bp
reads are collapsed into tags; 3) pairwise alignment identifies tag pairs having a single base
pair mismatch. These single base pair mismatches are candidate SNPs. A “network filter” is
employed to discard repeats, paralogs and sequencing errors, resulting in a collection of
reciprocal tag pairs, or SNPs.

IV.4.2.5 Stacks (reference-based and de novo)

The raw input data to Stacks are sequenced DNA fragments from any restriction enzyme -
based GBS protocol. Stacks can handle raw sequencing data to identify loci de novo or via
alignment against a reference genome. Regardless of whether the data are assembled de
novo, or aligned against a reference genome, many subsequent steps in Stacks are shared.
The pipeline can be described as follows: (1) Raw sequence reads are demultiplexed and
cleaned (process_radtags). (2) Data from each individual are grouped into loci, and
polymorphic nucleotide sites are identified (ustacks or pstacks for unaligned or aligned data,
respectively). (3) Loci are grouped together across individuals and a catalogue is written
(cstacks). (4) Loci from each individual are matched against the catalogue to determine the
allelic state at each locus in each individual (sstacks). (5) Allelic states are either converted
into a set of mappable genotypes (for a genetic map) using genotypes or subjected to
population genetic statistics via populations, with the results being written in one or several
output files.

IV.4.3 Genotype accuracy

For the estimation of the accuracy of genotype calls, we used an in-house script to compare
the genotypes called using GBS with the genotypes called at the same loci following WGS.
The sequencing and calling of SNPs in this collection of 24 soybean lines was previously
described in Torkamaneh and Belzile (2015). Briefly, soybean lines were sequenced toa mean
depth of coverage of 9x and a genome coverage of 96% was achieved. Illumina paired-end

reads were aligned onto the soybean reference genome (Wiliams82) using BWA and the
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genotypes at polymorphic loci were called using SAMtools. Variants with two or more
alternative alleles were removed. A total of 3.6M SNPs were thus called among these lines.
As a complementary means to measure genotype quality, we estimated the proportion of
missing data and heterozygous calls produced with each analysis pipeline. For de novo
pipelines, we aligned the tags supporting SNPs against reference genome to find the physical

position and then we compared them with WGS dataset.

IV.5 Results

IV.5.1 Variant calling with different pipelines using Illumina read data

To assess the performance of different GBS analysis pipelines, we analyzed publicly available
GBS data (100-bp Illumina reads) from a set of 24 previously studied soybean lines. We
compared five reference-based analysis pipelines: TASSEL-GBS v1 and v2, Stacks, IGST, and
Fast-GBS. We also compared two widely used de novo variant callers: UNEAK and Stacks. We
used the same number of reads for all analyses (42M reads) and attempted to select
parameters that would be as similar as possible for all the pipelines (see M&M for details). As
shown in Table 1V.1, large differences in the number of SNPs called were seen with both de
novo and reference-based pipelines. Among the former, Stacks called the fewest SNPs, ~2
fold fewer than UNEAK (13,303 vs 24,743). The number of SNPs called by UNEAK was not
too far below the mean number of SNPs called by reference-based pipelines (32,423). Among
reference-based pipelines, the number of SNPs called varied between 18,941 (Stacks) and
54,412 (TASSEL-GBS v1), a 2.8-fold difference. The other three reference-based pipelines
were much closer to the mean, calling between roughly 25k and 35k SNPs. In addition to
calling SNPs, IGST and Fast-GBS were also able to call indels. In both cases, these contributed
an extra 12-13% to the tally of variants.

Fast-GBS and TASSEL-GBS v1 proved to be the fastest running among the reference-based
pipelines (~1h45), whereas IGST proved the slowest, requiring almost 13h to complete the
analysis. Among de novo pipelines, UNEAK was almost three times faster than Stacks (1h11
vs 3h07) and proved the fastest of all pipelines. In terms of memory required, here also, very
large differences were observed. Among de novo pipelines, UNEAK required almost three
times as much disk space compared to Stacks (20 Gb vs 7 Gb). Among the reference-based
pipelines, the differences were even greater as IGST required 17.1-fold more memory (240
Gb) than Stacks (14 Gb).

50



IV.5.2 Accuracy and efficacy of GBS bioinformatics pipelines

To examine the quality of the SNP data obtained using reference-based pipelines, we first
measured the amount of missing data and then estimated genotype accuracy by comparing
the GBS-derived genotypes with the true genotypes uncovered through whole-genome
resequencing of the same lines. Assessments of the accuracy of GBS-called SNPs were
performed on all SNPs for all pipelines at the same levels of tolerance for missing data (<80%)
and minor allele frequency (=0.05). As can be seen in Table IV.2, among reference-based
pipelines, the proportion of missing data varied from as little as 28% (TASSEL GBS v1) to as
much as 57.3% (Stacks). Among the de novo pipelines, the proportion of missing data was
less variable, ranging from 39.4% (Stacks) to 41.3% (UNEAK).

When we compared the genotypes obtained using each pipeline with the genotypes derived
from resequencing, we found that 98.7% of SNP genotypes called using the Fast-GBS pipeline
matched the true genotypes. Similar levels of accuracy were found for SNPs called with IGST
(98.4%). With a single exception, all reference-based pipelines achieved levels of accuracy
>92%. TASSEL-GBS v1 proved the least accurate of these pipelines, as only 76.1% of the
genotypes it called were identical to the resequencing data. Among de novo pipelines, the
accuracy of genotype calls was only slightly lower (93.7%, on average) than that obtained
with the reference-based pipelines other than TASSEL-GBS v1 (95.6%, on average).

Among plants, recent or ancient polyploidization events can generate paralogs that can be
mistaken to represent alleles of a single locus based on short sequence reads. We therefore
examined both the overall number of heterozygous genotype calls and the number of loci
containing a large proportion (>50%) of heterozygous calls. As can be seen in Table 1V.2, de
novo pipelines called a similar proportion of heterozygous genotypes (~3.7 and 5.3% for
Stacks and UNEAK, respectively), and did not retain any loci with a large proportion of
heterozygotes. Among reference-based pipelines, Fast-GBS and TASSEL-GBS v1 called the
fewest and the most heterozygous genotypes (3.4 and 11.5%, respectively). Additionally
TASSEL-GBS v1 called the largest number of loci with a large proportion of heterozygous
genotypes (1125), while Stacks only called 65 loci with more than 50% heterozygotes.

IV.5.3 Overlap between SNP catalogues

We then determined the degree of overlap between the SNP catalogues obtained using the
different pipelines and their accuracy. We selected Fast-GBS as the basis for comparison

because of its ability to very accurately call a large number of SNPs. As demonstrated in Table
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IV.3, among reference-based pipelines, the most overlap was observed between Fast-GBS
and Stacks (>96%), and 92% of SNPs called with IGST were also found in the Fast-GBS
dataset. In contrast, TASSEL-GBS v1 showed the lowest overlap (36.7%) with Fast-GBS. The
de novo pipelines showed similar levels of overlap with Fast-GBS (Stacks= 89.1% and
UNEAK= 87.5%). In an additional analysis (not shown in Table IV.3), we measured the
overlap between the two de novo pipelines; around 67% of SNPs called by Stacks were also
found in the UNEAK dataset. These two de novo pipelines therefore seem to identify fairly

distinct subsets of the more extensive SNP catalog obtained using Fast-GBS.

To gain a deeper understanding of the genotypic accuracy among different subsets of shared
or unique SNPs, we prepared two separate Venn diagrams, each comprising only four pipelines
(for clarity), with Fast-GBS included in both panels (Figure IV.1). What stands out in this
figure is that SNPs called by more than one pipeline were typically highly accurate (weighted
mean accuracy = 94.8%). In contrast, with the sole exception of Fast-GBS, SNPs called by a
single pipeline were typically much less accurate (weighted mean accuracy = 66.3%). Most
strikingly, we note that TASSEL-GBS v1 called a very large number of unique SNPs (over
30,000) that show a low accuracy (65%). Unique SNPs called by other pipelines also typically

showed low accuracy but were far fewer in number and thus had less impact overall.

IV.5.4 Reasons for poor performance of some pipelines

Given the observed variation in the number of called SNPs and their accuracy, we chose to
investigate the causes of erroneous calls. To conduct this investigation, we followed a
systematic approach illustrated in Figure IV.2. We divided the catalogue of SNPs in two
categories, accurate and inaccurate, based on the comparison of the GBS-derived calls and
the calls resulting from WGS. Inaccurate SNPs were then classified as being either unique to
a single pipeline or shared between at least two pipelines. To investigate unique “weaknesses”
of pipelines, we focused our attention on unique inaccurate SNPs. The first step in this
investigation was to classify these inaccurate SNPs as being supported by reads mapping to
a unique position in the genome or by reads mapping to multiple positions. In the first case,
genotyping errors were attributed to a fault by the variant caller (e.g. due to sequencing or
PCR amplification errors). In the second case, we reasoned that the mapping of reads to more
than one location in the genome could result from these reads originating from either
paralogues or repetitive regions. To resolve this, we mapped the reads against the masked
reference genome v1.1 to estimate the proportion of inaccurate SNPs originating from
repetitive regions. Means that repetitive parts of the reference genome are hidden away

(turned into n's), so they won't be aligned to. In this reference genome 29.1% of the sequence
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have been masked. SNPs that were no longer present in the catalogue derived from mapping
to the masked reference genome were taken to be due to repetitive sequences. The remaining
reads that successfully mapped to multiple sites in the masked reference genome were
analyzed via a BLAST search to detect paralogy. A read was deemed to derive from a
paralogue when we encountered at least 2 hits with 100% coverage and minimum of 96%
identity. On average, we found 2.4 hits per read deemed to originate from paralogous loci

defined in this fashion.

The results of this analysis are shown in Table IV.4. As most pipelines provided a largely
accurate (>92%) set of SNPs, only a few hundred unique inaccurate SNPs were called by each
pipeline with the sole exception of TASSEL-GBS v1 (9,828 unique inaccurate SNPs). A minority
(11.5 to 29.7%) of the unique inaccurate SNPs were supported by reads mapping to a single
position in the genome and deemed to result from an error in variant calling. The majority
(70.3 to 88.5%) of inaccurate SNPs were supported by reads mapping to more than one
region in the genome. Among these, the vast majority were due to reads mapping to
paralogous regions (74 to 93%). We therefore conclude that most genotyping errors in
soybean could be attributed to the presence of paralogs and that TASSEL-GBS v1 proved to

be, by far, the pipeline most subject to making erroneous calls because of this.

Another result that begged investigation was the relatively low number of SNPs called by
Stacks, as both de novo and reference-based versions of Stacks had called the fewest SNPs.
We investigated the efficacy of the demultiplexing step as this had already been described as
problematic. In our analyses, we found that 19.7% of Illumina reads failed to be assigned to
a specific barcode file, a number that is much higher than that seen with the other pipelines.
To measure the impact of such a decrease in the number of reads available to call SNPs, we
used an alternative demultiplexing tool (Sabre), instead of the one provided in Stacks. The
proportion of missing reads decreased to ~2% and the number of SNPs called using this more
extensive set of reads increased by 12 and 24% (21,456 and 17,342) for Stacks reference-
based and Stacks de novo, respectively. We conclude that the poor performance of the Stacks
demultiplexing tool is an important contributor to the decreased number of SNPs called by
Stacks.

IV.5.5 GBS using different sequencing platforms

To compare SNP calling using different sequencing technologies, we performed GBS on the
same 24 soybean samples on an Ion Torrent platform. In contrast to Illumina reads that are

all exactly the same length (100 bp), Ion Torrent reads varied in length from 50 to 135 bp.
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In this analysis, we used only two reference-based pipelines that had performed best in the
tests described above (Fast-GBS and TASSEL-GBS v2) using 38 million Ion Torrent reads. As
seen in Table IV.5, the number of SNPs called with each pipeline at the same levels of
tolerance for missing data (<80%) and minor allele frequency (=0.05) was highly similar
(~23K in both cases). As above, Fast-GBS called a greater number of variants as it called a
total of over 2,000 indels in addition to the SNPs. In terms of computing time, Fast-GBS was
more than two-fold faster than TASSEL-GBS v2 (1h31 vs 3h29), while it used 15% more disk
space (20 Gb vs 17 Gb).

In a second analysis, we measured the amount of missing data and estimated the accuracy
of genotypes both by comparing GBS-called genotypes to the ones obtained through
resequencing and by assessing the amount of heterozygosity in these lines that are presumed
homozygous. As can be seen in Table IV.6, the proportion of missing data was relatively
similar for the two pipelines (37% vs 33%). In this analysis, TASSEL-GBS v2 called more
heterozygous genotypes than Fast-GBS (6.6% vs 4.5%). Also, TASSEL-GBS v2 called many
more loci with a large proportion (>50%) of heterozygous genotypes than Fast-GBS (4,831
vs 861). In this analysis, Fast-GBS again achieved the highest accuracy in calling genotypes
(95.2%), compared to 91.1% using TASSEL-GBS v2.

Finally, we compared the overlap among SNP catalogues obtained using the two sequencing
platforms (Illumina vs Ion Torrent). As illustrated in Figure IV.3, when using Fast-GBS, we
found that 69% (16,416 of 23,792 SNPs) of the SNPs derived from Ion Torrent reads were
also present in the catalogue of SNPs obtained using Illumina reads. Conversely, of all the
SNPs called using Illumina reads (34,953 SNPs), 47% were in common with the Ion Torrent
catalogue. Using TASSEL-GBS v2, a slightly lower proportion (54%) (12,377 of 22,921 SNPs)
of SNPs called from Ion Torrent reads were also obtained using Illumina reads. Conversely, a
similar proportion (44%) of SNPs called using Illumina reads were in common with those
called using the Ion Torrent reads. We found that using Ion Torrent reads leads more
inaccurate SNPs compared to Illumina reads. Using Illumina reads only 23.7% and 12.9% of
inaccurate SNPs called by TASSEL-GBS v2 and Fast-GBS had unique position, while using Ion
Torrent reads this proportion increased to 76% and 87% for TASSEL-GBS v2 and Fast-GBS,
respectively. This result suggested the higher level of sequencing error for Ion Torrent reads
compared to Illumina. On the other hand, proportion of inaccurate SNPs with origin of
paralogy and repetitive regions were similar for both of two sequencing technologies.

54



In conclusion, the amount of overlap across sequencing platforms was similar using both
pipelines but much lower than the overlap seen across pipelines using the same sequencing

platform.

IV.6 Discussion

The flexibility and low cost of genotyping methods relying on NGS make these excellent tools
for many applications and research questions in genetics, breeding, and biodiversity (Baird et
al. 2008; Elshire et al. 2011; Sehgal et al. 2015; Truong et al. 2012; Poland et al. 2012).
Currently, GBS appears to be favored in the agricultural sciences (plant and animal breeding)
whereas RAD-Seq seems to be the more prevalent approach in the field of ecology (Davey et
al. 2011). Whatever library preparation approach is chosen to achieve complexity reduction
prior to sequencing, bioinformatics must be used to extract useful information on SNP loci
and genotypes from a vast amount of short sequence reads (Davey et al. 2011; McCormack
et al. 2013). It is at this stage that the choice of an analytical method will have the greatest
impact on the amount and quality of the resulting genotypic information. Unfortunately, to
date, few studies have systematically compared SNP-calling pipelines for GBS and compared

their efficiency, accuracy and degree of overlap.

The first question that arises concerns the use of de novo vs reference-based methods. In the
absence of a reference genome, there is little choice but to use one of the two currently
widespread tools, UNEAK and Stacks. Although they use different algorithms to do so, these
two pipelines are conceptually similar in that they seek to first establish catalogues of identical
reads and then to search for highly related reads that are potentially alleles at the same locus.
Under the conditions used in this work, UNEAK greatly outperformed Stacks in that it
generated 82% more SNPs (~25k vs ~13k). From a qualitative perspective, both de novo
pipelines performed similarly well in terms of missing data (~40%) and genotypic accuracy
(~94%). This is comparable to the results reported by Lu et al. (2013) in maize where it was
estimated that 92% of genotype calls were accurate and that this proportion could be
increased to 96.2% by filtering for SNPs with a MAF > 0.3 in a segregating biparental
population. Both de novo pipelines can be run quite quickly and are relatively conservative in
their SNP calls resulting in a dataset of high quality. Thus, for the vast majority of species for
which no reference genome is available currently or in the foreseeable future, the de novo
SNP calling tools perform extremely well in terms of accuracy, but UNEAK will yield almost
two-fold more SNPs.

The picture painted of the performance of de novo pipelines in this comparison may be too

rosy, however. Indeed, for the sake of uniformity, we used the same filtering options
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(MinMAF=0.05, MaxMD=80%, and minDP >2) for both de novo and reference-based pipelines.
But this high tolerance towards missing data may not be realistic in the case of de novo
pipelines. We have shown previously that missing data imputation is very efficient and
accurate on a dense set of SNPs obtained using a reference-based pipeline (Torkamaneh &
Belzile 2015). In the case of de novo pipelines, in the absence of positional information on
the different SNPs and the haplotype structure, imputation is much more challenging. For this
reason, most users of de novo pipelines will set a lower ceiling for the maximal amount of
missing data, typically between 20% and 50% at most (Lu et al. 2013; Mascher et al. 2013;
Larson et al. 2014). With the GBS sequence data used in this work, tolerating up to 20% of
missing data substantially decreases the number of SNPs that can be called using both de
novo pipelines (~5k SNPs; data not shown). Under these more realistic conditions (in view of
the necessary imputation of missing data), we find that reference-based pipelines yielded
about 5- to 7-fold more high-quality SNP markers (~5k vs 25k to 35k markers).

Given the increasing availability of reference genomes in economically important crops and
animals, we then need to ask which of the available reference-based pipelines produces the
best catalogue of SNPs both in terms of abundance of markers and their accuracy. Among the
five reference-based pipelines, Fast-GBS can be run quickly, resulted in the highest
genotyping accuracy for a very large number of SNP loci (close to 35,000) in addition to
almost 4,000 indels. Based on these considerations, it seems to be the pipeline of choice, at
least in the case of soybean and likely also for other species with similar genomic and

reproductive characteristics.

Of the pipelines tested, TASSEL-GBSv1 stood out from the rest of the group in terms of the
number of SNP loci called (50-100% more than the others), but this came at the cost of
accuracy as it was the only pipeline whose genotypic calls were accuratein less than 90% of
cases (76.1%). As it is not easy to distinguish true from false genotypes, we would argue that
TASSEL-GBSv1 is insufficiently accurate to be used on its own. In previous work, the large
resulting catalogue of SNPs was often “filtered” by discarding markers that did not behave as
expected in a segregating population (Elshire et al. 2011). This presumably helped to discard
“false” markers that resulted from confounding alleles (at a single locus) and reads derived
from paralogous loci. We hypothesized that the main reason for this decreased accuracy is
the fact that TASSEL-GBSv1 clips all reads to a uniform length of 64 bases, thus producing
short tags that are at increased risk of mapping to multiple or erroneous locations. Pipelines
using longer reads did not exhibit this problem and typically had at least 10-fold fewer reads

mapping to multiple locations. For example, despite sharing much in common with TASSEL-
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GBS v1, when TASSEL-GBS v2 was run under conditions that allow for longer tags (92 bases

in our case), the reliability of the genotypes increased considerably.

The reference-based version of Stacks is the other pipeline that stood out in that it called
much fewer SNPs than the others. In investigating the different steps needed to go from
sequences to SNPs, we found that Stacks lost ~20% of reads at the demultiplexing step, i.e.
some barcoded reads were not attributed to a sample and were simply discarded from the
ensuing steps. This obviously resulted in a concomitant decrease in the number of SNPs called
(~19k vs ~25k). This poor performance of the Stacks demultiplexing step has been previously
reported by Herten et al. (Herten et al. 2015).

In our view, the genome-wide measurement of the accuracy of GBS datasets derived from
different bioinformatics pipelines represents an important and key contribution of this work.
It was assessed by comparing directly to whole genome resequencing data. In many previous
studies, estimates of genotypic accuracy were often achieved by indirect measurement (Lu et
al. 2013) or performed on avery small subset of SNP loci (Sonah et al. 2013). Typically, levels
of genotype accuracy ranging between 92 and 98% have been reported with slight differences
being observed between species and types of population (Sonah et al. 2013; Lu et al. 2013;
Mascher et al. 2013). The advantage of using resequencing data in this fashion is that we can

directly assess the accuracy of GBS data yielded by different pipelines.

Another important consideration is whether the SNP catalogues produced using different
pipelines and different sequencing technologies are concordant. When using a single
sequencing technology (Illumina), we found that ~80% or more of SNPs called by most
pipelines were also present in the SNP catalogue derived from Fast-GBS. Thus, these pipelines
largely agree on the loci that are polymorphic within a given set of germplasm. The only
exception was TASSEL-GBS v1, as, only a quarter of the SNPs present in the resulting
catalogue was also present in the set derived using Fast-GBS. This is likely due tothe shorter
sequences used (only 64 bp) and a large number of “false” SNPs as this pipeline proved the
least accurate of all. When using the same pipeline to analyze data derived from two
sequencing technologies (Illumina and Ion Torrent), we typically found that the overlap
between SNP catalogues varied between roughly 50 and 70%. Thus, the choice of sequencing
technology used resulted in a greater variability in the catalogue of SNPs produced than did
the choice of pipeline used on a single set of reads. At first glance, this would seem to
contradict the conclusions drawn by Mascher et al. (2013) who found that the SNP catalogues
produced using two pipelines (TASSEL-GBS v1 and SAMtools) differed more than the

catalogues obtained using different sequencing technologies (Illumina and Ion Torrent)
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(Mascher et al. 2013). In our view, this is more a reflection of the limitations of TASSEL-GBS
vl (due to its short tags). When we consider a broader array of reference-based pipelines,

these generally provide a very good overlap in SNP loci uncovered.

IV.7 Conclusion

The conclusions drawn from this work are likely to extend to other organisms sharing similar
genomic features (medium-sized genome, diploid). It can be anticipated that species having
experienced recent whole genome duplication events will represent a greater challenge as the
risk of confounding alleles at the same locus and paralogs will likely increase in such cases.
In species where such events occurred in the more distant past, there will have been more
opportunity for paralogs to diverge, thus facilitating the correct mapping of reads.

As such, it is impossible to devise a single pipeline that will be equally suited to every situation.
This is where it becomes important for users to be able to change various parameters in the
SNP calling process. Unfortunately, not all pipelines are equally “transparent” in this regard
and offer the same opportunity to be altered. At one end of the spectrum, UNEAK and TASSEL-
GBS offer very good performance, but rely on some purpose-built tools or algorithms that a
user cannot easily alter (e.g. for demultiplexing and variant calling). Also, the intermediate
data files are not always easily accessible and this makes it more difficult to investigate
specific problems. At the other end of the spectrum, IGST and Fast-GBS string together a set
of existing tools for which the user can alter parameters/options at will, and the intermediate
files are easily accessible. In this spectrum, in our view, Stacks offers an intermediate level

of transparency.

Finally, although whole-genome sequencing of entire populations is rapidly approaching, we
believe that the methods described here are likely to remain invaluable for years to come in
population genomics, breeding, mapping studies and reference genome sequence assembly,

particularly for non-model organisms.
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IV.8 Tables
Table IV.1. Number of SNPs and indels detected among 24 soybean lines using seven

different bioinformatics pipelines on Illumina reads. The time and amount of memory needed

to run each pipeline are also provided.

Variants

Approach Pipeline SNPs Indels Ui ey
(h:m) (Gb)
Stacks 13,303 ND 3:07 7
de novo UNEAK 24,743 ND 1:11 20
TASSEL-GBSv1 54,412 ND 1:45 15
Stacks 18,941 ND 3:30 14
Reference  |ggT 25,650 3,170  12:59 240
- based TASSEL-GBSv2 28,158 ND 4:16 18
Fast-GBS 34,953 3,921 1:47 27

* Using a Linux system with 10 CPU and 25G of memory

59



Table IV.2. Accuracy of GBS SNP data derived from Illumina platform using different bioinformatics pipeline.

Approach de novo Reference-based

Parameter/Pipeline Stacks UNEAK | TASSEL-GBS v1 Stacks IGST TASSEL-GBS v2 Fast-GBS
Number of SNPs 13,303 24,743 54,412 18,941 25,650 28,158 34,953
Number of genotypes 319,272 593,832 1,305,888 454,584 | 615,600 675,792 838,872
Missing data (%) 41.3 39.4 28 57.3 44 35.6 46
Heterozygotes (%) 3.7 5.3 11.5 4.4 5.9 5.7 3.4
Loci with >50% heterozygotes* 0 0 1125 65 324 551 184
Accuracy (%) 93.6 93.9 76.1 93.2 98.4 92.3 98.7

*These were eliminated from the final catalogue used to estimate accuracy
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Table IV.3. Degree of overlap among SNP loci called using Fast-GBS and six other

bioinformatics pipelines.

SNPs

87.5

96.2

TASSEL-GBS v2 28,158 88.3 3,295 10,090
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Table IV.4. Number and characteristics of unique inaccurate SNPs called by different pipelines.

Approach de novo Reference-based
TASSEL TASSEL
Pipeline Stacks UNEAK GBS vi1 Stacks IGST GBS v2 Fast-GBS
495 533 9,828 103 207 558 272
Unique inaccurate (3.7% of (2.2% of | (18.1% of (0.5% of (0.8% of  (2.0% of (0.8% of
SNPs 13.303)  24,743) 54,412)  18,941)  25,650)  28,158)  34,953)
Inaccurate SNPs with 146 72 1,126 20 46 132 35
unique position (%) (29.7) (13.5) (11.5) (19.4) (22.2) (23.7) (12.9)
Inaccurate SNPs with 349 461 8,702 83 161 426 237
multiple positions (%) (70.3) (86.5) (88.5) (80.6) (77.8) (76.3) (87.1)
o . 45 120 1,828 9 15 60 17
0, r
Repetitive region (%) (13) (26) (21) (11) (9) (14) )
Paralogues (%) 304 341 6875 74 146 366 220
9 (87) (74) (79) (89) (91) (86) (93)
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Table IV.5. Number of SNPs and indels detected among 24 soybean lines using Ion Torrent

reads and two different bioinformatics pipelines.

Variants
s Time* Memory
Approach Pipeline SNP Indels (h:m) (Gb)
Reference- TASSEL-GBSv2 22,921 ND 3:29 17
based Fast-GBS 23,792 2,054 1:31 20

* Using a Linux system with 10 CPU and 25G of memory
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Table IV.6. Accuracy of SNP data derived using Ion Torrent reads and two different
bioinformatics pipelines.

Stat type/Pipeline TASSEL-GBSv2 Fast-GBS
Number of SNPs 22,921 23,792
Missing data (%) 37 33

i i 0,
Residual heterozygotes (%) 6.6 4.5
Accuracy (%) 91.1 95.2

*These were eliminated from the final catalogue used to estimate accuracy
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IV.9 Figures

TASSEL-GBS v2 IGS UNEAK
TASSEL-GBS v1

Stacks de novo

Figure IV.1. Venn diagram representing the degree of overlap among SNP loci called using
seven bioinformatics pipelines. The percentages showed estimated accuracy for all groups of
SNPs (uniqgue and shared).
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Figure IV.2. Systematic approach used to investigate the possible causes of unique

inaccurate SNP calls.
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Fast-GBS TASSEL-GBS v2

Ilumina Ion Torrent Ilumina Ton Torrent

16416 7376

98% 78%

Figure IV.3. Venn diagram for overlap of the SNPs called using two different bioinformatics
pipelines (a) Overlap of SNPs called with Fast-GBS using Illumina and Ion Torrent reads. (b)
Overlap of SNPs called with TASSEL-GBS v2 using Illumina and Ion Torrent reads.

IV.10 Supplementary files

Supplementary files listed and described below can be found online at

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0161333#sec018

Additional file IV.1 Supplementary Table. Summary of five reference based GBS
pipelines.

Additional file IV.1 Supplementary Text. Command lines for seven pipelines used in this
study.
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V.1 Résumé

Le génotypage par séquencage (GBS) représente une approche de génotypage a haut débit
hautement rentable. Par nature, cependant, GBS est soumise de générer des quantités
importantes de données manquantes et celles-ci devront étre imputées pour de nhombreuses
analyses en aval. La mesure dans laquelle ces données manquantes peuvent étre tolérées
lors de l'appel des SNP n'a pas été largement explorée. Dans ce travail, nous explorons
d'abord [I'utilisation de limputation pour compléter les génotypes manquants dans les
ensembles de données GBS. Il est important de noter que nous utilisons des données de re-
séquencage du génome complet pour évaluer I'exactitude des données imputées. A l'aide d'un
panel de 301 accessions de soja, nous montrons que plus de 62 000 SNP peuvent étre appelés
lorsqu'ils tolérent jusqu'a 80% de données manquantes, une augmentation de cing fois par
rapport au nombre appelé tolérant jusqu'a 20% de données manquantes. A tous les niveaux
de données manquantes examinées (entre 20% et 80%), les jeux de données SNP résultants
étaient d'une précision uniformément élevée (96 a 98%). Nous avons ensuite utilisé
l'imputation pour combiner des ensembles de données SNP complémentaires dérivés de GBS
et une puce de SNP (SoySNP50K). Nous avons donc produit un ensemble de données amélioré
de>100 000 SNP et les génotypes dans les loci qui était précédemment absent ont encore été
imputés avec un haut niveau de précision (95%). Sur les 4 000 000 de SNP identifiés par re-
séquencage 23 accessions (parmi les 301 utilisés dans l'analyse GBS), 1,4 million de tags SNP
ont été utilisés comme référence pour imputer ce grand ensemble de SNP sur I'ensemble du
panel de 301 accessions. Ces loci précédemment absent pourraient étre imputés avec une
précision d'environ 90%. Enfin, nous avons utilisé I'ensemble de données SNP 100K (GBS +
SoySNP50K) pour effectuer un GWAS sur la teneur en huile de graines dans cette collection
d'accessions de soja. Le nombre d'associations importantes de marqueurs-caractéres et les
niveaux de signification maximale ont été considérablement améliorés en utilisant ce
catalogue amélioré de SNP par rapport a un catalogue plus petit résultant de GBS seul a
<20% de données manquantes. Nos résultats démontrent que limputation peut étre utilisée
pour remplir a la fois les génotypes manquants et les loci absent avec une précision trés

élevée et que cela ment a des analyses génétiques plus puissantes.
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V.2 Abstract

Genotyping-by-sequencing (GBS) represents a highly cost-effective high-throughput
genotyping approach. By nature, however, GBS is subject to generating sizeable amounts of
missing data and these will need to be imputed for many downstream analyses. The extent
to which such missing data can be tolerated in calling SNPs has not been explored widely. In
this work, we first explore the use of imputation to fill in missing genotypes in GBS datasets.
Importantly, we use whole genome resequencing data to assess the accuracy of the imputed
data. Using a panel of 301 soybean accessions, we show that over 62,000 SNPs could be
called when tolerating up to 80% missing data, a five-fold increase over the number called
when tolerating up to 20% missing data. At all levels of missing data examined (between
20% and 80%), the resulting SNP datasets were of uniformly high accuracy (96-98%). We
then used imputation to combine complementary SNP datasets derived from GBS and a SNP
array (SoySNP50K). We thus produced an enhanced dataset of >100,000 SNPs and the
genotypes at the previously untyped loci were again imputed with a high level of accuracy
(95%). Of the >4,000,000 SNPs identified through resequencing 23 accessions (among the
301 used in the GBS analysis), 1.4 million tag SNPs were used as a reference to impute this
large set of SNPs on the entire panel of 301 accessions. These previously untyped loci could
be imputed with around 90% accuracy. Finally, we used the 100K SNP dataset (GBS +
SoySNP50K) to perform a GWAS on seed oil content within this collection of soybean
accessions. Both the number of significant marker-trait associations and the peak significance
levels were improved considerably using this enhanced catalog of SNPs relative to a smaller
catalog resulting from GBS alone at <20% missing data. Our results demonstrate that
imputation can be used to fill in both missing genotypes and untyped loci with very high
accuracy and that this leads to more powerful genetic analyses.
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V.3 Introduction

Next generation sequencing (NGS) has revolutionized plant and animal research in many
ways. Firstly, it has allowed researchers to decode the whole genome of many organisms.
Currently, hundreds of eukaryotic genomes have been sequenced (NCBI,

“www.ncbi.nlm.nih.gov/projects/WGS/W GSprojectlist.cgi”) and, for some species, numerous

individuals, cultivars or accessions of the same species have also been sequenced (Huang et
al. 2012; Aflitos et al. 2014; Daetwyler et al. 2014). Next generation sequencing has also
facilitated greatly the development of methods to genotype very large numbers of molecular
markers such as single nucleotide polymorphisms (SNPs). In one such approach, large-scale
sequencing has allowed researchers to probe nucleotide diversity in panels of individuals to
discover polymorphic sites and then to develop genotyping arrays ("SNP chips”) that can
subsequently be used to determine the genotype of an individual line at thousands to millions
of such SNPs (Kumar et al. 2012). In soybean, an example of this approach is the SoySNP50K
array that was constructed to interrogate over 52K SNPs of which 47,337 were found to be
polymorphic among a set of 288 elite cultivars, landraces and wild soybean accessions (Ha et
al. 2014). Alternatively, genotyping methods exploiting the power of NGS technologies have
also been developed to simultaneously identify and genotype SNPs. RAD-Seq and genotyping-
by-sequencing (GBS) are two examples of such SNP genotyping approaches relying on NGS
(Song et al. 2013; Davey et al. 2011).

In soybean, GBS has been developed as a rapid and robust approach for reduced-
representation sequencing of multiplexed samples that combines genome-wide molecular
marker discovery and genotyping (Donato et al. 2013). The flexibility and low cost of GBS
makes this an excellent tool for many applications and research questions in genetics and
breeding. Such modern advances allow for the genotyping of thousands of SNPs, and, in doing
so, the probability of identifying SNPs correlated with traits of interest increases (Sonah et al.
2013). However, when using approaches such as GBS that perform a scan or a sampling of
the genome, the quantity of missing data can be substantial. An important question that
remains unanswered at this point is the degree to which missing data can be tolerated and to
what extent they affect the accuracy of the imputation process.

Conceptually, there are two types of missing data in large datasets. The most obvious is when
some individuals are missing a genotype value at a locus that is otherwise successfully typed
in the other individuals of a population. In another situation, which arises when different
datasets (e.g. obtained using different genotyping technologies) are combined, there can be
loci that are not typed at all within a population, i.e. there is no information for a SNP locus

in all individuals of the population except for a few individuals that can be common to both
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datasets. The first type of missing data can be termed a “missing genotype” while the second
is termed an “untyped locus”. There has been considerable interest in imputing such missing
data based on the available data (Li et al. 2009). Many tools used in genetic analysis require
complete datasets and there are thus two possibilities: work only with SNP loci devoid of any
missing data (thereby considerably reducing the number of SNPs available) or impute these
missing data through various strategies.

Imputation is the substitution of some value for missing data, in other words, *filing in’
missing data with plausible values. Generally, methods of genotype imputation are based on
the concept that SNPs close together on a chromosome are often inherited together. The
resulting correlations among SNPs are referred to as linkage disequilibrium (LD), or
association, in the genetic literature (Ardlie et al. 2002). Many methods for imputing missing
genotypes have been suggested and tested. Generally, two methodological classes are
considered: regression and phasing.

A first approach is to use regression models to impute the missing genotypes by using flanking
SNPs as covariates (Li et al. 2009). Regression-based methods face a common problem in
variable selection; it can be difficult to select which available SNPs should be included as
covariates. One reason for this is that LD patterns are not homogenous across the genome
(Ardlie et al. 2002); for example, lower LD would be expected among SNPs located in
recombination hotspots than those in low recombination regions (high LD regions). Therefore,
fewer SNPs may be useful as covariates in lower LD regions. These limitations made
regression methods less attractive and less accurate.

Phase-based methods consider haplotype structure and common descent patterns (Li et al.
2009). As humans, animals, and plants are (often) diploid, a genotype is the combination of
maternal and paternal alleles. Alleles close together on a chromosome are typically inherited
together in a whole unit as a haplotype. Phase-based algorithms try to split genotypes at
SNPs into haplotypic phases. Here, a “phase” is simply an inferred parental haplotype. Once
phased, missing alleles can be estimated from neighboring haplotype alleles through their LD
relationship, and the inferred alleles are then combined to impute the missing genotype.
Currently, many popular genotype imputation methods are phase-based.

In this work, we explored the accuracy and efficiency of different imputation tools for both
the imputation of missing genotypes in the context of GBS and of untyped loci in the context
of combining SNP datasets obtained through different genotyping approaches (GBS, SNP
array and resequencing). Finally, we examined the impact of using such enhanced SNP

datasets in genome-wide association analyses.
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V.4 Materials and methods

V.4.1 Samples and SNP datasets

A set of 301 Canadian soybean lines was subjected to GBS analysis (with ApeKI digestion)
and a total of 450 million 100-bp reads (~1.5M reads/line) were processed through our
analytical pipeline that relies on SAMtools to call SNPs as described previously in Sonah et al.
(2013) and Sonah et al. (2014). The SoySNP50K iSelect BeadChip (Song et al. 2013) has
been used to genotype the USDA Soybean Germplasm Collection (Song et al. 2015). The

complete dataset for 19,652 G. max and G. soja accessions genotyped with 42,508 SNPs are

publicly available on Soybase (www.soybase.org). Of these 19,652 accessions, 25 were in
common with the 301 Canadian lines used for GBS. Finally, on the basis of geographic

distribution and genotypic diversity, we chose 23 soybean lines from the set of 301 mentioned

above to undergo whole genome resequencing (described below).

V.4.2 DNA extraction and whole genome resequencing

Seeds were planted in individual two-inch pots containing a single Jiffy peat pellet (Gérard
Bourbeau & fils inc. Quebec, Canada). First trifoliate leaves from 12 day-old plants were
harvested and immediately frozen in liquid nitrogen. Frozen leaf tissue was ground using a
Qiagen TissuelLyser. DNA was extracted from approximately 100 mg of ground tissue using
the Qiagen Plant DNeasy Mini Kit according to the manufacturer’s protocol. DNA was
quantified on a NanoDrop spectrophotometer. Illumina Paired-End libraries were constructed
for DNA samples using the Illumina Tru-seq DNA Library Prep Kit (Illumina, San Diego CA,
USA) following the manufacturer’s instructions. DNA library quality was verified on an Agilent
Bioanalyzer with a High Sensitivity DNA chip. Samples were sequenced using the Illumina
HiSeq 2000 platform at the McGill University-Génome Québec Innovation Center in Montreal,
QC, Canada.

V.4.3 Alignment and variant calling

Illumina paired-end reads were aligned using the Burrows-Wheeler Aligner (BWA) (Li & Durbin
2009) onto the soybean reference genome (Williams82) (Schmutz et al. 2010). Variants were
called using SAMtools 0.1.18 (Li et al. 2009). BAM files were pooled for variant calling.
Variants were then removed if they had two or more alternative alleles, no observation of the

alternative allele on either forward or reverse reads, an overall quality (QUAL) score of <20,
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a mapping quality (MQ) score <30, a read depth of <2, or were suspected of representing
false heterozygotes (based on unequal read depth of the two alleles). For tag SNP selection,
we used PLINK (Purcell et al. 2007) to calculate linkage disequilibrium (LD) between each pair
of SNPs within a sliding window of 50 SNPs and we removed all but one SNP that were in
perfect LD (LD=1); the remaining SNPs were deemed tag SNPs.

V.4.4 Imputation _methods

We used three software tools to impute missing data: fastPHASE (Scheet et al. 2006), BEAGLE
v4.0 (Browning & Browning 2007), and IMPUTE2 (Howie et al. 2009). As recommended by
Delaneau and Marchini (2014) we used SHAPEIT2 (Delaneau et al. 2013) to first infer the
haplotypes among the set of genotypes studied, and then used the resulting output to perform
the imputation of untyped loci using IMPUTE2. All three software tools were used to impute
missing genotypes while only the last two were used to impute untyped loci. The parameters
for fastPHASE were: fastPHASE -T 20 -E 10 -M 0 -o output name fastPHASE input file.
The command line for BEAGLE read as follows for missing data imputation: java --Xmx5000m
--jar unphased=phased.input.bgl missing=0 niterations=10 out=out file, and for
untyped genotype imputation: java --Xmx5000m --jar phased=phased.input.bgl
unphased=unphased.input.bgl markers=marker.ids missing=0 niterations=10
out=out file. Finally, the command line for IMPUTE2 was: impute -h phased file --1
legend file --g geno file -m genetic map chr*.txt --call -thresh 0.0 --Ne 11418
--i info file -o out file. Finally, both BEAGLE and IMPUTE2 were used to assess the
impact of the number of lines composing the reference panel on the accuracy of imputation

at untyped loci.

V.4.5 Genotype accuracy

For the initial estimation of the accuracy of genotype calls in GBS analysis, we compared the
called genotypes at all loci on a single chromosome (Gm03; 3326 SNP loci) for the 23 lines
common to both the GBS and WGS datasets. These GBS-derived genotypes were directly
compared with the true genotypes (revealed by WGS) using an in-house script. Similarly, all
imputed genotype calls (initially missing data) on GmO03, following imputation (three
imputation methods, as described above, at the different levels of MaxMD and MinMAF), were
compared with the true genotypes (WGS). To verify that this chromosome was representative

of the broader genome, we estimated the overall genotype accuracy (GBS-derived and
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imputed SNPs) for all chromosomes (GmO01 to Gm20) using BEAGLE only and at MaxMD<80%
and MinMAF=0.003.

To assess the accuracy of imputation at untyped loci when combining GBS and SoySNP50K
datasets, i.e. when the SoySNP50K data were used as a reference panel to impute genotypes
at loci not common to both datasets we extracted the genotypes at all loci on chromosome
GmO03 for three lines (Maple Presto, Mandarin, and Evans) for which WGS, GBS, and
SoySNP50K data were available. Imputed SNP genotypes were compared with the true
genotypes revealed by WGS.

Similarly, to assess the accuracy of imputation at untyped loci that were imputed using the
WGS dataset, we used the WGS SNP data from 22 of the 23 resequenced lines as a reference
panel toimpute these SNPs onto the GBS or GBS + SoySNP50K data. The remaining line was
kept for validation of the imputed SNPs. We performed three permutations where a single line
was kept aside to estimate imputation accuracy (Supplementary Table V.3). We then
extracted the genotypes at all loci on chromosome GmO03 for the remaining line and we

directly compared with the true genotypes.

V.4.5 Genome-wide association study

A subset of 139 soybean lines were used in the GWAS analysis. Phenotypic data (seed oil
content) for these lines were originally described by Sonah et al. (2014). All the analyses
were performed using the Genomic Association and Prediction Integrated Tool (GAPIT) (Lipka
et al. 2012). A general linear model (GLM) was used with or without the covariate P from
principal component analysis (PCA) and a kinship matrix was calculated either using the
VanRaden method (K) or the EMMA method (K*) to determine relatedness among individuals
(Lipka et al. 2012). A multi-locus mixed model (MLMM) incorporating a kinship matrix (K or
K*) along with a P or Q matrix was used to test for marker-trait association (Segura et al.
2012). The negative log(1/p) was used to establish a significance threshold (Wang et al. 2012;
Yang et al. 2013).

V.5 Results
V.5.1 Factors that affect number of SNPs in GBS analysis

We first explored the impact of two key filtering steps central to the production of SNP catalogs

derived from GBS analysis: the maximal amount of missing data allowed (MaxMD, in %) and
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the minimal minor allele frequency (MinMAF). A set of 301 Canadian soybean lines was
subjected to GBS analysis and a total of 450 million 100-bp reads (mean of ~1.5M reads/line)
were processed through our analytical pipeline that calls SNPs using Samtools (see materials
and methods for details). Using a minimum of one read to call a genotype, we obtained an
initial catalog of 247,851 SNPs. We then filtered this set of SNPs for both MaxMD (between 0
and <80% missing data) and for MinMAF (0.003, 0.05 and 0.1). As can be seen in Figure
V.1la, the amount of missing data allowed had a very large impact on the number of SNPs
retained. At a MinMAF of 0.003 (i.e. a single line carrying a different allele among 301 lines),
the number of SNPs increased steadily from only 1 (0% missing data) up to 62,643 (<80%
missing data). At the other MIinMAF values, SNP numbers similarly increased markedly
between 0 and 41,024 (MinMAF=0.05) and between 0 and 32,035 (MinMAF=0.1).

As the MaxMD filter only reflects the maximal proportion of missing data that are tolerated
for an individual SNP marker to be retained, it does not accurately reflect the actual mean
amount of missing data that characterizes a SNP dataset. To better capture this, we plotted
the mean proportion of missing data at each of the MaxMD and MIinMAF levels described above
(Figure V.1b). As can be seen, the proportion of missing data in an entire dataset was hardly
affected by the MinMAF threshold used but was heavily impacted by the chosen MaxMD level.
Even at MaxMD of 80%, the mean amount of missing data was around 50%, while at more
stringent MaxMD levels (e.g. 20%), the mean proportion of missing data became quite low
(<10%).

We then examined the distribution of these SNPs based on the amount of missing data (in
successive increments of 10%) at the most permissive MIinMAF level (0.003). As can be seen
in Figure V.1c, over 13,000 SNPs were called with >70% and <80% missing data, while
around 7,000 were called with <10% missing data. Globally, approximately half of the SNPs
could be called with <50% missing data while the other half were called with between 50%
and 80% missing data. We therefore conclude that it is possible to quite significantly increase
the number of called SNPs by allowing for more missing data, but this will only be attractive

if these missing data can be accurately imputed.

V.5.2 Accuracy and efficacy of imputation for missing genotypes

To examine the quality of the SNP data obtained using GBS, we first assessed the accuracy
of the SNP genotypes initially called by GBS, prior to any imputation. To achieve this, we

performed whole-genome resequencing on a representative subset of 23 soybean lines at a
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mean depth of coverage of 9x (genome coverage of 96%). A total of 3.6M SNPs were called
among these lines and this dataset was presumed to represent the true genotype at variant
positions. Assessments of the accuracy of called or imputed SNPs were performed on SNPs
located on a single chromosome (Gm03) for all methods at different levels of MaxMD and
MinMAF. At a MaxMD of 80% and MinMAF of 0.003, we found that 98.4% of SNP genotypes
called by our GBS pipeline proved to be identical to the true genotypes. Similar levels of

accuracy were found for called SNPs under all filtering conditions (data not shown).

In a second step, to estimate the accuracy of imputed SNP data (i.e. formerly missing
genotypes), we performed imputation at all levels of MaxMD and MinMAF on the entire set of
301 lines. Once again, we used the resequencing data as a reference and, as shown in Figure
V.2a and detailed in Table V.1, we found that imputation accuracy was hardly affected by the
chosen minor allele frequency and only moderately affected by the amount of missing data.
Somewhat surprisingly, the accuracy of imputation actually increased with increasing missing
data. Indeed, while the imputation accuracy was 86% at MaxMD=20%, it rose steadily to
reach 94% at MaxMD=80%. Therefore, allowing for a greater amount of missing data not
only yielded a larger number of SNP markers, but this also proved beneficial in terms of the

accuracy of imputed genotypes.

As illustrated above, the proportions of called and imputed SNP genotypes did vary at different
MaxMD levels and thus impacted the overall accuracy of the resulting SNP catalog. The
accuracy of the entire GBS-derived SNP dataset (after imputation) was measured and is
illustrated in Figure V.2b and detailed in Table V.1. This includes both the SNP genotypes
initially called and those resulting from imputation. Overall genotype accuracy ranged
between 96% (MaxMD=80%) and 98% (MaxMD=20%), with hardly any impact of the MinMAF
level. To determine if Gm03 was representative of the entire set of 20 chromosomes, we
measured overall genotype accuracy for all chromosomes using a single imputation tool
(BEAGLE) at a single level of MaxMD and MIinMAF (80% and 0.003, respectively). The
imputation accuracy differed very little between chromosomes, ranging between 95.3% and
96.3% (mean = 95.84% =+ 0.28%).

Finally, although all three software tools performed equally well in terms of accuracy of
imputation, computational speed varied considerably (Table V.1). Whereas it took fastPHASE
14h to impute the missing data, BEAGLE completed the task in only 30 minutes. In conclusion,
we find that large amounts of missing data do not have a significant detrimental impact on

the overall accuracy thanks to a highly accurate imputation.
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V.5.3 Accuracy of imputation at untyped loci

The existence of multiple genotyping approaches offers the opportunity to exploit already
existing haplotype information to further enhance marker density and to facilitate the
integration of data obtained from different genotyping platforms. We first wanted to test
whether the publicly available SoySNP50K array data obtained on 19,562 USDA soybean
accessions could be used to impute additional (“untyped”) SNPs in our GBS-derived catalog
of SNPs. In a first step, we identified 25 accessions common to our set of 301 lines and the
USDA collection. By comparing the SNP data for these common accessions, we found that
only 7% of markers (2,975 of 42,508; at MAF=0.05) were shared between the GBS and
SoySNP50K data. As these two datasets have a limited overlap, this offered the potential of
adding a large number of untyped SNP loci through imputation. In a second step, we used
the SoySNP50K data as a reference panel to perform imputation of genotypes at the untyped
loci in our GBS-derived catalog. As shown in Table V.2, both BEAGLE and IMPUTE2 performed
very well resulting in a high accuracy of the imputed genotypes (94.9 and 95.3%,
respectively). The successful imputation of these untyped loci increased the number of SNP
markers from 62,643 to 102,175, all the while maintaining a high level of accuracy of the
combined catalog of SNPs.

Another source of haplotype information resided in our WGS data on the subset of 23
resequenced Canadian lines. We therefore tested how useful this information could be in
terms of imputing an even larger set of untyped loci. As described above, a total of 3.6M SNPs
were identified among these 23 lines. We removed all redundant markers, i.e. SNPs that were
in perfect LD with at least one other SNP, thus reducing this reference panel to 1.4M tag SNPs.
We then used BEAGLE and IMPUTE2 for imputation using the SNP data from 22 lines as a
reference panel and keeping the last line (Gaillard) for the estimation of accuracy. As shown
in Table V.2, the accuracy of imputed genotypes ranged from as low as 88% to as high as
91.8%. Again, differences in computation time were observed with BEAGLE proving to be the

most efficient.

Finally, to ensure that these results were broadly applicable to the larger set of 23 lines, two
additional permutations were done where a different set of 22 lines was used as a reference
panel and the remaining line (Mandarin or OAC-Lakeview) used for validation. Here again, the
accuracy of imputation proved highly similar to the results described above, ranging between
87.9% and 92.4%.
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To explore the impact of the size of this reference panel on the accuracy of imputed SNPs, we
performed imputation with reference panels representing subsets of 5, 10, 15 or 22 of the 23
lines for which WGS data were available. As can be seen in Figure V.3, the accuracy of
imputation was highly affected by the number of lines used in the reference panel. With only
5 lines included in the reference panel, imputation accuracy was low (60% with BEAGLE and
59% with IMPUTE2) while it increased (to 88% with BEAGLE and 91.8% with IMPUTE2) using
the maximum number of lines available (22). This suggests that a further increase in the
number of lines included in the reference panel could provide an increase in the accuracy of

the imputation of untyped loci.

V.5.4 Power of association test using imputed data

To determine if the enhanced SNP catalogs obtained through imputation could provide
increased power in genome-wide association scans, a subset composed of 139 soybean lines
was used to perform an association analysis for seed oil content. This subset was used
because phenotypic data were available only for these lines. One analysis was conducted
using a “basic” GBS catalog of 7,152 SNPs obtained at MaxMD=20% and MinMAF=0.05, while
the other was performed using an enhanced catalog resulting from imputation of missing GBS
data (at MaxMD=80%) and untyped loci from the SoySNP50K dataset. At MAF =0.05, a total
of 83,532 SNPs were retained within this combined dataset. As can be seen in Figure V.4a,
using the “basic” SNP catalog, a single SNP marker on Gm19 showed a significant association
(p = 9.6x10°3 and g = 0.09) with seed oil content. In contrast, using the enhanced SNP
catalog (Figure V.4b) and a multi-locus mixed-model implementation, a total of 11 markers
were in significant association with this trait despite the fact that the significance threshold
increased from 3.4 to 5.3 (-Logio p-value). Interestingly, the peak SNP in both cases was the
same (Gm19_41742182), but its association with oil content exhibited a much higher p-value
(3.1x10°7) and lower g-value (0.01). This demonstrates that the increased number of
informative SNP loci, obtained through the imputation of both missing GBS data and untyped
loci from additional sources of SNP haplotype information, can prove highly beneficial in
studying the genetic architecture of complex traits.

V.6 Discussion
A first key element to come out of this work is that MaxMD is the most important factor

determining the number of SNPs in GBS analysis. As seen in this study when increasing
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MaxMD from 20 to 80% incrementally, the number of SNPs called increased from 12,712 to
62,643. As previously described, one of the unique features associated with GBS is the
generation of highly incomplete SNP genotype data (Fu et al. 2011; Fu et al. 2012; Poland et
al. 2012; Fu et al. 2014), largely due to low coverage sequencing (Davey et al. 2011). The
incompleteness could be up to 90% of observations missing (Fu et al. 2011; Elshire et al.
2011). As described in several GBS studies in different species (maize, rice, wheat, soybean,
and barley), increasing the amount of missing data allows to capture more SNPs (Huang et
al. 2014; Rutkoski et al. 2013; Fu et al. 2014; Jarquin et al. 2014; Crossa et al. 2014). In the
most closely related work, Jarquin et al. (2014) observed a 4-fold increase in the number of
SNPs scored in elite soybean breeding lines when increasing the percentage of missing data
allowed from 5% to 80%. These data confirm that with increasing MaxMD the number of SNPs
called through GBS can be increased substantially.

As described, the number of SNPs is also affected by MinMAF, but the overall proportion of
missing data is hardly affected. The effect of MinMAF on the number of SNPs has been
described in several reports. The number of SNP increases as the minor allele frequency
decreases (Jarquin et al. 2014; Crossa et al. 2014; Howie et al. 2011). These authors,
however, did not show the relation between MinMAF and the proportion of missing data. In
this study, we demonstrated that the proportion of missing data is largely independent of the
chosen MIinMAF. In a practical context, however, there is a more limited scope for using a
broad range of MInMAF values, as these are usually constrained by the need to have an
adequate representation of the minor allele state. Typically, in GWAS and other similar genetic
studies, the most frequently encountered MinMAF values are 0.05 and 0.10. In contrast, the
amount of missing data that is tolerated is much more variable across studies and is mostly
constrained by the quality of the imputation that can be achieved when filling in these missing
data.

Somewhat counterintuitively, a second key result of this work was that imputation of missing
data was more accurate when performed on datasets with a higher proportion of missing
data. Indeed, at MaxMD=80%, 94% of SNP genotypes were correctly imputed, whereas at
MaxMD=20%, the accuracy decreased to 86%. Upon reflection, however, it seems logical that
a larger number of SNP markers (albeit with more missing data) better captures the diversity
of haplotypes that are present within a collection of lines. Increased imputation accuracy at
MaxMD=80% is likely achieved through increased LD between markers. As documented by
Zheng et al. (2011), imputation accuracy increases with increasing density of markers.
Soybean has high levels of LD and the average distance over which LD decays to half of its
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maximum value in soybean is substantially longer than that of many plants and animals
analyzed to date (cultivated soybean: ~150 kb; wild soybean: ~75 kb; cultivated rice: <65 -
180; wild rice <10 kb; maize: <1 kb; and Arabidopsis thaliana: ~3-4 kb; humans <5kb;
cattle <10kb ) (Gore et al. 2009; Kim et al. 2007; Zhu et al. 2007; Xu et al. 2012; Shifman
et al. 2003; Porto-Neto et al. 2014). High levels of LD will decrease the haplotype diversity
and as a result facilitate the imputation of missing data even over long distances. This

suggests that imputation accuracy will vary with differing levels of LD in different species.

A novel aspect of this work is that the measurement of the accuracy of imputation was
assessed by comparing directly to whole genome resequencing data obtained for a subset of
the lines. In many previous studies, estimates of the accuracy of imputation have been
achieved by masking a subset of the data, imputing these missing genotypes, and then
comparing the imputed genotype with the original data (Huang et al. 2014; Jarquin et al.
2014; Crossa et al. 2013; Howie et al. 2011). For the most part, similarly high levels of
imputation accuracy (92-98%) have been reported with slight differences being observed
between species and types of population (related or unrelated individuals). The advantage of
using resequencing data in this fashion is that we can assess the accuracy of imputation at a
specific level of missing data without having to add to this by masking a subset of the available
data.

Furthermore, although the threshold for retaining a SNP marker at MaxMD=80% would
suggest a tremendous amount of missing data, we showed that, averaged across all markers
kept at this threshold, a mean of 50% missing data was obtained. When we considered jointly
both the called and imputed markers comprising the final dataset at the various missing data
levels, all were highly accurate (96-98%). This is because the genotypes initially called via
GBS analysis are themselves highly accurate (98.4%). At MaxMD=20%, these high-quality
SNPs are combined with a small proportion (7%) of SNPs imputed with what we term a “good”
accuracy (84%). At the other end of the missing data spectrum (MaxMD=80%), the original
set of GBS-called SNPs is combined with an equal amount (~50%) of SNPs derived from
imputation with an only slightly lower accuracy (94%). Thus, catalogs of called and imputed
SNPs retain a constant, high level of accuracy (~97%) across a broad range of missing data
thresholds.

A third key finding of this work is that different and highly complementary marker datasets
can be successfully combined via imputation at untyped loci. We showed that SNP catalogs

derived from two high-throughput genotyping techniques, GBS and a SNP array
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(SoySNP50K), could be fused through the imputation of a large number of untyped loci.
Because of the different composition of the two initial catalogs, only 7% of the GBS markers
were present in the SoySNP50K set. This is because most (90%) of the SoySNP50K markers
are present in genic regions (Song et al. 2013), while most of the GBS markers are present
in intergenic regions (29.8%) or downstream regions (20.2%) (Sonah et al. 2013). We
nonetheless successfully imputed ~40K SNPs from the array that were absent from the GBS
dataset with a high level of accuracy (95%). By doing so, our catalog of SNPs for the collection
of 301 Canadian soybean lines was enhanced and exceeded 100K SNPs. This analysis shows
that GBS and SNP arrays are highly complementary approaches that can be used in parallel
and combined. As the SoySNP50K has been used by the USDA to characterize close to 20,000
lines of soybean, and because these data are public, any researcher anywhere in the world
can make use of this data, in combination with their own GBS-derived data obtained at a very
low cost, to achieve excellent genome coverage. Similarly, Pei et al. (2008) and Hao et al.
(2009) used imputation to combine data from two human genotyping arrays: the Affymetrix
500k SNP chip and the Illumina 550k chip with HapMap SNPs. They showed that the accuracy
of imputation at such untyped loci using various tools (BEAGLE, fastPHASE, and IPMUTE2)
ranged between 92 and 94%. We suggest that the higher level of imputation accuracy
observed in this study compared to the human dataset is because of the high level of LD in
soybean. Again this result suggests that the accuracy of genotype imputation at untyped loci
will vary in different species because of stark differences in the extent of LD. Overall, a
competing genotyping platforms are developed, it is good to know that researchers can
produce high-quality integrated data sets offering better genome coverage by such imputation

of untyped loci.

Although all imputation softwares use the same fundamental phenomenon of LD across the
genome, the algorithms employed by each package differ. Likewise, each package offers
differing strengths and weaknesses. Therefore, it is a good idea to use more than one software
package, compare results, and investigate any major discrepancies (Ellinghaus et al. 2009).
To perform genotype imputation, we used three imputation softwares and found that these
showed approximately the same level of accuracy for missing data imputation. In our view,
BEAGLE proved the most attractive, as it ran very quickly and was the most user friendly. As
reference panels for the imputation of untyped loci become larger and larger, thanks to the
increasing availability of data derived from the resequencing of an increasing number of
soybean lines, these tools will gain further utility. In the context of this work, genotype

imputation using the SoySNP50K data as a reference, both BEAGLE and IMPUTE2 showed the
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same accuracy (95%). Contrary to most previous work, we did not assess the accuracy of our
imputation through the masking of a subset of available data. Rather, we performed whole-
genome resequencing of a subset (23 lines) from our study population (301 lines) and we
compared directly the imputed genotype and the true genotype. This analysis showed the

high level of imputation accuracy.

When performing imputation at a much larger scale, using the 1.4M tag SNPs identified in our
resequencing effort, the accuracy of imputation of this large number of untyped loci was
dependent on the number of lines included in the reference panel. When increasing the
number of lines composing the reference panel from only 5 to a maximum of 22, imputation
accuracy increased from ~60% to close to 90%. Similarly, in humans, Li etal. (2009) showed
that increasing the number of individuals in the reference panel from 60 to 500 improved the
accuracy of imputation (from 85% to more than 95%, respectively). Interestingly, even a
small number of soybean lines (22) resulted in higher imputation accuracy than was achieved
with 60 human samples. As LD is much more extensive in soybean than in humans, this again
illustrates how important this factor will be in determining imputation accuracy. In future, to
achieve a level of accuracy similar to that seen using the SoySNP50K data (95%), more lines

from the Canadian germplasm collection would likely need to be sequenced.

A final key finding of this work is that the much increased marker coverage achieved through
a better exploitation of available GBS and SoySNP50K data is highly useful in the genetic
dissection of complex traits. The availability of higher density marker coverage enables
researchers to more accurately determine which regions to investigate further and actually
narrow down each region on which they should perform fine mapping. As illustrated in our
analysis of seed oil content, the use of an enhanced SNP catalog (~6 fold larger) allowed us
to capture more significant marker-trait associations around candidate QTLs and the
significance level of such associations was also much higher. These results are consistent with
recent work in both animals and plants that have demonstrated the benefits of marker
imputation for GWAS (Santana et al. 2014; He et al. 2015). In the latter case, the authors
compared the benefits of marker imputation on the accuracy of measures of relatedness, the
accuracy of genomic selection and the power to detect QTLs through GWAS. In this work,
these authors concluded that “association mapping profited most from imputing missing

values”.
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V.7 Conclusion

As seen in this study, genotype imputation represents an essential tool in the analysis of high-
throughput genotypic data. One of the most common criticisms regarding GBS is the presence
of a substantial amount of missing data. Our data show that this can largely be overcome in
soybean thanks to highly accurate imputation of missing genotypes. Furthermore, genotype
imputation is particularly useful for combining results across studies that rely on different
genotyping platforms. As different groups may use different genotyping tools, it is highly
important to be able to produce integrated datasets that include all such markers to facilitate
the exchange of knowledge and information. It is important to remember, however, that
imputation accuracy will be affected by the extent of LD in the population/species studied.
Finally, a further benefit of such imputation is that it increases the power of individual scans
thanks to more extensive marker coverage. In the coming years, we expect these imputation -
based analyses will become a key tool in the analysis of massively parallel shotgun sequence
data enabling geneticists to rapidly deploy these technologies to analyze large samples and
dissect the genetic basis of complex traits.
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V.8 Tables

Table V.1. Accuracy of imputed GBS SNP data and computational speed of three imputation methods at different levels of missing

data (MaxMD) and minor allele frequency (MinMAF).

Missing data imputation accuracy (%)

MAF 0.003 MAF 0.05 MAF 0.1
MaxMD Missing o Missing Missing Computing

Method Dataset (%) data Overall data Overall data Overall Time

80 93.2 95.8 93.9 96.4 94.1 96.5

X %k

fastPHASE GBS 20 85.6 97.5 86.5 98.1 87.5 98.1 14 hours
BEAGLE cpe 80 92.9 95.6 94.0 96.5 94.2 9.6 |

20 85.6 97.5 86.7 98.1 87.6 98.1 minutes
IMPUTE cpe 80 93.0 95.6 93.5 96.2 94.3 96.6 h

20 86.1 97.5 86.9 98.1 88.1 98.2 ours
Number of 80 62,643 41,024 32,035

GBS

SNPs 20 12,712 7,152 5,657

* Includes both genotypes originally called by GBS and following imputation

** 301soybean lines
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Table V.2. Accuracy and computational efficiency of imputation at untyped loci. SNP data from a SNP array (SoySNP50K) or

whole-genome resequencing (WGS) were used as a reference to impute missing data at loci that were untyped in an initial dataset
(GBS data only or GBS +SoySNP50K data).

Dataset Imputation method Reference . U_ntyped loci Number of Com_putmg
panel imputation accuracy (%) markers Time

BEAGLE

GBS Beagle SoySNP50K 94.9 102,175 71 hours

GBS Beagle WGS 80.0 1,414,925 2 hours

GBS+ SoySNP50K Beagle WGS 88.1 1,312,760 2 hours
IMPUTE2

GBS pre-Phasing by SHAPIT2 SoySNP50K 95.3 102,175 91 hours

GBS pre-Phasing by SHAPIT2 WGS 90.0 1,414,925 7 hours

GBS+ SoySNP50K pre-Phasing by SHAPIT?2 WGS 91.8 1,312,760 8 hours
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V.9 Figures
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Figure V.1. Impact of missing data and minor allele frequency on the number of
SNPs. (a) The number of SNPs (in '‘000’s) is plotted as a function of the maximal proportion
(in %) of missing data tolerated (MaxMD) at three levels of minimal minor allele frequency
(MinMAF). (b) Overall mean proportion of missing data (in %) for datasets obtained at
different levels of MaxMD and MiInMAF. (c) Distribution of SNPs called at different levels of

missing data.
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Figure V.2. Missing data imputation accuracy. (a) The accuracy of imputed missing

data (in %) is plotted against the proportion of missing data (in %) tolerated (MaxMD) at

three levels of minimal minor allele frequency (MinMAF). (b) Accuracy of overall GBS

dataset (in %) after imputation at different levels of MaxMD and MinMAF.
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Figure V.3. Imputation accuracy at untyped SNPs using reference panels of different

sizes. SNPs identified through resequencing of a varying number (5 to 22) soybean

accessions were used as a reference panel to impute the genotypes at these SNP loci in a set

of 301 soybean accessions using two different imputation softwares (BEAGLE and Impute2).
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Figure V.4. Association analysis for seed oil content on chromosome 19 (Gm19) in
soybean. Negative logl0 p-values from a genome-wide scan are plotted against marker
positions on chromosome 19. (a) Association analysis with the original GBS dataset (~7K
SNPs). (b) Association analysis with the enhanced SNP dataset (>83K SNPs) after combining

GBS and SoySNP50K data via imputation.
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V.10 Supplementary files

Supplementary files listed and described below can be found online at

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131533 #sec015

Additional file V.1 Supplementary Table. List of resequenced samples with the number
of reads and bases.

Additional file V.2 Supplementary Table. Overall accuracy of genotypic data following
GBS analysis and imputation of missing data for all 20 soybean chromosomes.

Additional file V.3 Supplementary Table. Imputation accuracy of genotypes at untyped
loci using whole-genome sequence data as a reference panel.
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VI.1 Résumé

Les séquencages de la nouvelle génération (NGS) et les outils de bioinformatique ont
grandement facilité la caractérisation des variations nucléotidique; néanmoins, une
description exhaustive de la diversité haplotypique et de la variation structurelle reste limité
dans la plupart des espéces. Dans cette étude, nous avons séquencé un ensemble de 102
accessions de soja hatif qui a permis a attendre une couverture étendue de la diversité
nucléotidique et des variations structuraux (SV). Nous avons détecté proches de 5M (SNP,
MNP et Indels) des variants de séquences. Nous avons remarqué que le nombre d’haplotypes
uniques avait plafonné dans cet ensemble de germoplasme (1.7M tag SNPs). Cet ensemble
de données s'est avéré trés précis (98,6%) en fonction d'une comparaison des génotypes
appelés a loci partagé avec une puce de SNP. Nous avons utilisé ce catalogue de SNP en tant
gue panneau de référence pour imputer les génotypes manquants dans les loci absent dans
les ensembles de données dérivés d'outils de génotypage a faible densité (150K GBS-SNPs
dérivés / 530 échantillons). Aprés imputation, 96,4% des génotypes manquants imputés de
cette maniére se sont révélés exacts. A l'aide d'une combinaison de trois pipelines
bioinformatique, nous avons découvert ~92K SV (délections, insertions, inversions,
duplications, CNV et translocations) et estimé que plus de 90% étaient exacts. Enfin, nous
avons remarqué que la duplication de certaines régions génomiques expliquait une grande
partie de I'hétérozygotie résiduelle desloci SNP dans les accessions de soja trés consanguines.
C'est la premiére fois d'une description complete de la diversité haplotypique et du SV a été
réalisée chez un grand culture.
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VI.2 Abstract

Next-generation sequencing (NGS) and bioinformatics tools have greatly facilitated the
characterization of nucleotide variation; nonetheless, an exhaustive description of both SNP
haplotype diversity and of structural variation remains elusive in most species. In this study,
we sequenced a representative set of 102 short-season soybeans and achieved an extensive
coverage of both nucleotide diversity and structural variation (SV). We called close to 5M
sequence variants (SNPs, MNPs, and Indels) and noticed that the number of unique
haplotypes had plateaued within this set of germplasm (1.7M tag SNPs). This dataset proved
highly accurate (98.6%) based on a comparison of called genotypes at loci shared with a SNP
array. We used this catalogue of SNPs as a reference panel to impute missing genotypes at
untyped loci in datasets derived from lower density genotyping tools (150K GBS-derived
SNPs/530 samples). Afterimputation, 96.4% of the missing genotypes imputed in this fashion
proved to be accurate. Using a combination of three bioinformatics pipelines, we uncovered
~92K SVs (deletions, insertions, inversions, duplications, CNVs, and translocations), and
estimated that over 90% of these were accurate. Finally, we noticed that the duplication of
certain genomic regions explained much of the residual heterozygosity at SNP loci in otherwise
highly inbred soybean accessions. This is the first time that a comprehensive description of
both SNP haplotype diversity and SV has been achieved within a regionally relevant subset of

a major crop.
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VL3 Introduction

Genetic variation describes the occurrence of DNA sequence differences among individuals of
the same species (Hedrick 2011). Genetic variation is highly advantageous in an evolutionary
sense as it enhances adaptability and survival of a population in the face of changing
environmental conditions and other unexpected circumstances (Hedrick 2011; Dobzhansky
1970). Genetic variation can be broadly divided into two major categories: nucleotide and
structural variations. Nucleotide variants are usually defined as encompassing single or
multiple nucleotide variants (SNPs, MNPs) and small insertions/deletions (indels), whereas
structural variants (SVs) represent larger rearrangements of various types [deletions,
insertions, inversions, translocations, duplications, and copy number variations (CNVs)]
(Tuzun et al. 2005). The advent of Next-Generation Sequencing (NGS) technologies have
provided an exceptional opportunity to systematically detect both nucleotide and structural

variants in plant and animal genomes (EI-Metwally et al. 2014; Hall 2007; Church 2006).

NGS has facilitated greatly the development of methods to genotype very large numbers of
nucleotide variants such as single nucleotide polymorphisms (SNPs) (Goodwin et al. 2016).
In a complementary approach, NGS has been exploited to simultaneously identify and
genotype informative SNPs, without the need for any prior knowledge of these polymorphic
loci, using complexity reduction approaches such as genotyping-by-sequencing (GBS) (Davey
et al. 2011). Finally, decreased whole-genome sequencing (WGS) costs have made it possible
to sequence entire genomes of numerous individuals, cultivars or accessions of the same

species (Zhang et al. 2001; Zhou et al. 2015; Gudbjartsson et al. 2015).

NGS technologies now allow large quantities of high-quality DNA sequence data to be
generated at modest cost (Zhang et al. 2001). However, despite considerable advances in
algorithm development, the processing of these massive amounts of sequence data into high-
quality variant calls remains challenging (Muir et al. 2016). To date, several tools have been
developed to discover and genotype nucleotide variants, while SV detection and calling
algorithms are relatively recent (Hwang et al. 2015). Decoding the raw sequencing data into
a catalogue of nucleotide variants and genotype calls requires two essential steps: read
mapping and variant/genotype calling. First, reads are aligned against a reference genome,
variable sites are identified and genotypes at those sites are determined (Nielsen et al. 2011).
In addition to calling SNPs and small indels, however, bioinformatics tools have been
developed to allow the discovery and genotyping of larger sequence variants (Layer et al.
2014; Chen et al. 2009; Abyzov et al. 2011). To date, three major strategies have been
exploited to identify structural variants from aligned reads: depth of coverage, paired-end
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mapping and split read mapping. Depth of coverage is designed to detect changes in the
number of reads that align to a given region in the genome. A reduction or an increase in this
coverage can suggest that a deletion or an increase in the copy number of a sequence has
occurred in a given individual compared to the reference genome. When paired-end
sequencing is used, it can be assumed that the two sequences that form a pair originate from
a single DNA fragment, and thus lie in close proximity on an opposite strand of the reference
genome. In the paired-end mapping approach, when paired reads deviate from this
expectation, either because they map to sites that are too far apart or are no longer on
opposite strands, this suggests that the individual sample from which these paired reads were
generated differed from the reference genome in some structural fashion. Finally, in the case
of split reads, this strategy exploits the fact all structural rearrangements generate
breakpoints that are analogous to “scars”. The “scars” produce sequence reads that contain
base pairs that are not contiguous in the reference genome. If two portions of a single
sequence read align to different places in the reference genome, this suggests that a

rearrangement has occurred (Marroni et al. 2014).

To date, the genetic dissection of complex traits in plants and animals has relied almost
exclusively on nucleotide variants either as markers of a closely-associated mutation or as
the direct causal mutation. In recent years, several studies have illustrated the functional
impact of SVs in human disease, plant phenotypes and disease resistance (Carvalho et al.
2016; Cook et al. 2012). Therefore, no characterization of genetic diversity is complete

without the description of both nucleotide and structural variation.

In this study, we describe the WGS of 102 short-season soybean accessions to identify both
nucleotide and structural variants using a combination of several bioinformatics tools. We
then measure the accuracy of these variants through validation experiments and describe
their distribution in the soybean genome. We also show the impact of joint analysis of
nucleotide and structural variants in elucidating the cause of residual heterozygous genotypes

observed in inbred lines that are expected to be fixed at all loci.
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VI.4 Materials and methods

VI.4.1 Soybean accessions

In this study, we used three collections of soybean samples. A first panel of 441 accessions
(cultivars/advanced breeding lines) was subjected to genotyping-by-sequencing (GBS; ApeKI
protocol) (Elshire et al. 2011; Sonah et al. 2013) and SNPs were called using the Fast-GBS
pipeline (Torkamaneh et al. 2017a). Based on a cladogram produced using these data, a
second panel comprising 102 elite accessions (Supplementary Table VI.1) were selected to
capture the diversity among this collection of short-season soybean and were used for WGS
(Supplementary Figure VI.1). Finally, a set of 89 accessions (mostly advanced breeding lines
harboring traits of interest) was genotyped by GBS, as described above, and added to the
collection of 441 accessions to produce a third panel totaling 530 soybean accessions on which

we tested the accuracy of imputation at untyped loci (see below for details).

VI.4.2 Whole-genome seguencing

Ilumina Paired-End libraries were constructed for 102 elite accessions (panel 2 described
above) using the KAPA Hyper Prep Kit (Kapa Biosystems, Wilmington, Massachusetts, USA)
following the manufacturer’s instructions (KR0961 - v5.16). Samples were sequenced using
the Illumina HiSeq 2500 platform at the Centre Hospitalier de I'Université Laval (CHUL) in
Quebec, QC, Canada.

VI.4.3 Choice of WGS analytical pipeline

Two SNP-calling pipelines were used: SOAPsnp (Li et al. 2009) and Fast-WGS, a new pipeline
that we have developed (see details in Supplementary Text 1). Every effort was made to call
SNPs under comparable conditions. The final variant catalogue was prepared using Fast-WGS.
Then we downloaded the catalogue of sequence variants of Glycine spp. from dbSNP (build
147), to compare and identify the novel variants detectedin this study.

V1.4.4 Genotype accuracy

The SoySNP50K iSelect BeadChip has been used to genotype the entire USDA Soybean
Germplasm Collection (Song et al. 2015). The complete dataset for 19,652 G. max and G.

soja accessions genotyped with 42,508 SNPs was downloaded from Soybase (Grant et al.
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2010). Of these accessions, 19 were in common with the collection of 102 short-season
soybean lines characterized here via WGS. For these 19 accessions, we extracted their
genotype calls at all SNP loci for which data were available. This large set of SoySNP50K
genotype calls (>600K) was directly compared with the WGS-derived SNP calls (obtained

using one or the other pipeline) using an in-house script.

VI1.4.5 Imputation

To impute missing data in the WGS dataset, we used BEAGLE v5 (Browning and Browning
2007) with the parameters described in Torkamaneh et al. (2015). Imputed genotypes at loci
in common with the SoySNP50K array were directly compared to those called using the chip.
The WGS SNP data from 101 of the 102 resequenced lines were also used as a reference
panel to impute missing data onto a collection of 530 accessions (panel 3) previously
genotyped with ~150K GBS-derived SNPs. The remaining line was kept out of the reference
panel to determine how accurately data at untyped loci (present in the WGS data but absent
from the GBS catalogue) could be imputed in this line. We performed five such permutations
where a single line was kept aside to estimate imputation accuracy. For these lines purposely
excluded from the reference panel, we compared the imputed genotypes against the

genotypes called at these same loci following WGS.

VI.4.6 Population genetics, LD, and tag SNP selection

Population structure was estimated using the Bayesian inference implemented in
fastSTRUCTURE (Raj et al. 2014). Five runs were performed for each number of populations
(K) set from 1 to 12. The most likely K value was determined by the log probability of the
data (LnP(D)) and delta K, based on the rate of change in LnP(D) between successive K
values. A neighbour- joining tree was built using MEGA6 (Tamura et al. 2013) with 100
bootstraps. Principal-component analysis (PCA) was performed using TASSEL v5 and GAPIT
(Bradbury et al. 2007; Lipka et al. 2012) in three dimensions. For tag SNP selection, we used
PLINK (Purcell et al. 2007) to calculate linkage disequilibrium (LD) between each pair of SNPs
within a sliding window of 50 SNPs and we removed all but one SNP that were in perfect LD

(LD = 1); the remaining SNPs were deemed tag SNPs.

VI1.4.7 Annotation and GO analysis
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Functional annotation of nucleotide variation was done by SnpEFF and SnpSift (Cingolani et
al. 2012) using G. max reference genome [Gmax_275 (Wm82.a2.v1)] (Schmutz et al. 2010).
Genes containing variants predicted to have a large functional impact were selected from the
annotation file. To obtain the description of these genes we used Phytozome (Goodstein et al.
2012) and SoyBase (Grant et al. 2010). For gene ontology (GO) analysis we used the Singular
Enrichment Analysis (SEA) method implemented in agri-GO (Zhou et al. 2010).

VI.4.8 Structural variant calling and genotyping

To discover a comprehensive catalogue of SVs from WGS data we used three tools: LUMPY
(Layer et al. 2014), BreakDancer (Chen et al. 2009) and CNVnator (Abyzov et al. 2011). We
used SVtyper (Chiang et al. 2015) and svtools (Larson et al. 2016) for calling the presence
or absence of SVs in individual accessions. The raw calls were filtered for 1) the estimated
read-depth ratio (<0.75), 2) the number of spanning read pairs (>10), 3) regions around
centromeres (+/- 1Kb) and 4) regions around assembly gaps (+/- 50bp). The read-depth
(RD) ratio was calculated as the average RD of the samples that supported the SV divided by
the average RD of the samples that did not support the SV. The site list was prepared by
using an 80% reciprocal overlap (RO) threshold, a maximum breakpoint offset of 250 bp and
a genotype quality (phred scaled) >30. Inversions were filtered such that the minimum ratio
of genotyped to ungenotyped samples was >0.4 and the fraction of inversions supporting
pairs in carriers was >0.3. The translocation calls located in syntenic regions were removed.

VI.4.9 Annotation of structural variants

Functional annotation of SVs was done using an in-house Python script. We used the G. max
v2 annotation file to create a genic reference panel in which we recorded the genomic region
spanned by each gene. Similarly, we created a file for each SV in which the positions of both
breakpoints (start and end) were noted. To detect SVs that had a likely functional impact on
genes, we proposed four possible scenarios; (1) a SV was located inside a gene, (2) a SV
began in an intergenic region (upstream) and terminated in a gene, (3) a SV began in a gene
and terminated in an intergenic region (downstream), and (4) a SV encompassed the gene
completely (Supplementary Figure VI.5). Using this program, we compared the intervals

spanned by SVs with genic intervals to identify partial or complete overlaps.

VI.4.10 Validation of structural variants
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We selected two known SVs in known maturity genes (E3 and E4) and 38 random SVs with a
focus on translocations and inversions for a PCR-based validation. Primers were designed
using Primer3Plus (Untergasser et al. 2007), and their specificity was examined using BLAST
on the NCBI and SoyBase databases (Supplementary Table VI.5). Williams82 was used as the
reference (control) for PCR. For estimation of breakpoint precision, the PCR products were

sequenced using Sanger sequencing.

VI.5 Results

VI.5.1 Nucleotide variation

VI.5.1.1 Discovery and genotyping

We selected 102 Canadian short-season elite soybean accessions for whole-genome
sequencing based on a prior genetic analysis containing a larger set of accessions (n=441)
that had been genotyped with ~80K SNPs using a genotyping-by-sequencing (GBS) approach
(Supplementary Figure VI.1). This collection of 102 samples was selected based on genetic
distance to cover genetic diversity of short-season soybean germplasm. The accessions were
sequenced using Illumina short-read technology (100- or 125-bp reads) to a median depth of
11x (Supplementary Table VI.1). A total of 1.02x10° high-quality trimmed reads (Phred
quality score > 32) were used to call nucleotide variation in this dataset. On average, a
coverage of at least 1x was achieved for 956 Mb (excluding gaps), thus covering 97.6% of
the G. max genome sequence.

To date, all variant calling from WGS data in soybean has been performed using the SOAPsnhp
pipeline. Prior to conducting large-scale variant calling on all accessions, however, we first
tested the performance and speed of four genotyping pipelines/tools: Fast-WGS (developed
in-house, see description in Supplementary Text 1), SOAPsnp, GATK HC and SAMtools on a
subset of only 10 accessions. All four called a similar number of SNPs (~1.7M) and indels
(~270K), but vast differences were observed in terms of the time needed to complete this
analysis (23h, 61h, 581h and 238h, respectively) on the same server (Linux, 48 CPU, 1 Tb
RAM). Based on these results, we chose to conduct an analysis on the entire set of accessions
only with the two fastest pipelines: Fast-WGS and SOAPsnp. We then analyzed the complete
set of reads (for all accessions) with these two pipelines under the same variant-calling
conditions. As shown in Table VI.1, Fast-WGS called slightly more (7.2%) total variants due
either to base substitutions (SNPs and MNPs) or small indels (4,998,229 vs 4,636,634). Of
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these, close to 1M variants were identified as novel polymorphisms not previously recorded
in dbSNP among the Glycine spp. (Supplementary Text 2).

To assess and compare the quality of genotype calls, we compared our WGS data with the
SoySNP50K array data for 19 accessions for which these data were available. Globally, more
than 600K genotype calls (35,481 SNP loci x 19 samples) could be compared in this fashion,
of which 0.25% were presumed to be indels when no genotype (missing data) was indicated
for a given site in a given accessionin the SoySNP50K data. As can be seen in Table VI.2, the
quality of the genotype calls made using Fast-WGS was higher for all three types of genotype
calls; the degree of concordance with the calls made on the SoySNP50K array increasing by
between 2.6 and 6.8% relative to those observed for the SOAPsnp data. This analysis
suggests that a higher level of genotypic accuracy could be obtained for the soybean SNP

datasets currently available by using the Fast-WGS pipeline.

The SNP dataset obtained using Fast-WGS contained 9% missing data. We wanted to test
how accurately these could be imputed. After imputation of these missing data, we compared
the imputed genotypes with the subset of corresponding genotypes obtained using the
SoySNP50K array. As can be seen in Table VI.3, there were 635 shared genotypes which
could be compared in this fashion, 41 of which were heterozygous while the remainder (594)
were homozygous. We found a high level of concordance between these two datasets, with
98.8 and 92.7% of homozygous and heterozygous genotypes having been correctly imputed,
respectively. Taken together (original calls + imputed calls) across all three types of variants,
we found that 99.6% (672,005/674,139) of the genotypes obtained using the Fast-WGS
pipeline (including imputed data) proved to be in agreement with the genotypes obtained at
loci in common with the SoySNP50K array.

VI.5.1.2 Variant annotation and prediction of their functional impact

We grouped sequence variants into five categories based on the observed minor allele
frequency (MAF). As can be seen in Figure VI.1la, 35% of sequence variants were present in
up to 10 samples ([0.0-0.1[) and 14% were present at an almost equal frequency with the
other allele ([0.4-0.5[). Almost half of these variants were present in the immediate vicinity
of genes (up/downstream regions (5 kb before and after gene), 47%) or further removed
from genes (intergenic regions, 40%), while exonic and intronic regions contained only 2%
and 9% of variants, respectively (Figure VI.1b). Also splice sites contained very few variants
with only 0.1% of the total.
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We then grouped all observed sequence variants into four categories based on the predicted
functional impact of the observed mutation: i) high (0.071%) variants, which are predicted
to have a disruptive impact on the protein, probably leading to protein truncation, loss of
function or triggering nonsense-mediated decay; ii) moderate (1.341%), non-disruptive
variants that might change the protein effectiveness (missense variants and in-frame
deletions); iii)) low (1.1%), mostly harmless or unlikely to change protein behavior
(synonymous variants); and iv) modifier (97.48%), non-coding variants. Figure VI.2 presents
the frequency distribution of these four predicted functional impact categories of the mutant
(alternative) allele. All four of these categories of mutations showed a similar distribution with
most mutations being present at relatively low frequency (< 20%) and only a small subset

being present at high frequency (>80%).

From a functional standpoint, we were particularly interested in the subset of mutations
predicted to have a large impact. Although these represent only a small fraction of all
sequence variants (0.071%), this still corresponds to 4,113 variants in 3,064 genes. Of these
variants 2,279 were SNPs, 230 MNPs, and 1,604 indels. Although only 12% of the sequence
variants were indels, they were over-represented in this category, owing to their tendency to
shift the reading frame when they occurin exons. Thus, indels represented 39% of the 4,113
functionally high impact variants. In total, we detected 1,418 frameshift, 1,378 splice
receptor/donor, 1,251 stop-gained, and 185 start/stop lost variants. As expected, the largest
proportion of these variants (35.5%, 1,461/4,113) were present at a low frequency (<10%).
On the other hand, a total of 331 mutations in 238 genes (7.8%) were present in the vast
majority of these soybean lines (frequency =0.8) (Supplementary Figure VI.2). Owing to the
lack of any significant enrichment in terms of GO annotation (data not shown), we
investigated the functional annotation of these genes individually using public databases
(Supplementary Table VI.2). Using the SoyBase and Phytozome databases we found that of
238 genes, 31 had no annotation nor evidence of expression, we considered these genes as
possible pseudogenes. Among the remaining 207 genes, which had annotation and expression
profile, we found at least one other functional copy for 177 genes, while the final 30 genes
seemed to be unique genes. We suggest that nonsynonymous mutations in these 30 unique
genes for which there was evidence of transcriptional activity would be expected to impact
plant function significantly in short-season soybean. Indeed, Glyma.10g221500 (GmGlIa) is
the gene underlying the maturity locus E2. The mutation in exon 10 of this gene is the known

causal variant for the e2 allele. As the lines characterized in this work are all adapted to a
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short growing season, it makes perfect sense that these are fixed for a non-functional allele
that contributes to earliness.

VI.5.1.3 Population genetics, LD, haplotypes and untyped-genotype imputation

To provide a comprehensive understanding of the population structure among this set of
short-season soybean lines, we performed three analyses using SNP data: 1) a phylogenetic
tree (neighbor-joining method) with G. soja as an outlier; 2) a principal component analysis
(PCA); and 3) a STRUCTURE analysis using different K values to detect evidence of admixture
in this collection (Supplementary Figure VI.3). The neighbor-joining tree, based on all pairwise
genetic distances among the 102 soybean accessions, showed many distinct branches with
G. soja as a clear outlier (Supplementary Figure VI.3a). Principal component analysis (PCA)
also showed that the accessions seemed to form approximately five divergent groups (circled)
(Supplementary Figure VI.3b). Similarly, using fastSTRUCTURE, the most likely number of
subpopulations (K) was five, with most accessions showing some degree of admixture
(Supplementary Figure VI.3c). This collection of soybean accessions is composed of lines
belonging to different maturity groups (MGs ranging from 000 to I). We tested whether these
defined subpopulations could correspond to different MGs, but this did not prove to be the

case (data not shown).

The extent of linkage disequilibrium (LD) can provide a measure of haplotype diversity in a
population. We calculated all pairwise LD (r2 and D") for sequence variants and we found high
levels of LD among short-season soybeans. The average distance over which LD decayed
below 0.2 in this population was ~150 kb. Using these LD data, we identified 1.7 million tag
SNPs based on haplotypes. To determine if a good level of saturation of both variants and
haplotypes had been achieved among elite short-season soybean using this collection of
accessions, we analyzed randomly selected subsets of samples of increasing size (N=12, 24,
44, 64, 84, and 102). As illustrated in Figure VI.3, the number of variants discovered did not
increase much beyond 80 accessions. Interestingly, the number of tag SNPs (haplotypes)
reached a plateau much faster; the vast majority of haplotypes having been discovered within
the first set of approximately 40-50 accessions. These results suggest that the current dataset
offers an exhaustive characterization of the variants and haplotypes present in the elite

Canadian soybean germplasm.

To test how well this reference panel of variants could serve as a reference panel to impute

missing data in datasets derived from lower density genotyping tools, we used a set of ~150K
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GBS-derived SNPs called on a set of 530 short-season soybean accessions from Canada. This
set of 530 included all 102 accessions characterized by WGS. All tag SNPs that were present
in the reference panel but were absent from the GBS-derived dataset (~1.5M SNPs) were
imputed onto the GBS dataset. To allow us to estimate the accuracy of this imputation at
previously untyped loci, the WGS data from a single accession (among the 102) were left out
of the reference panel. Then, the imputed genotypes at untyped loci (not present in the GBS
dataset) were compared to the actual genotypes revealed through WGS. Five such
permutations were done by randomly selecting one accession for removal from the reference
panel and imputation. On average, 96.4% of the missing genotypes imputed in this fashion
proved to be imputed correctly. As for the 3.6% that were inaccurately imputed, these
variants were located in regions with a high degree of haplotype diversity (i.e. low level of
LD) and included several rare haplotypes that are difficult to correctly impute. Overall, this
dataset provides an excellent reference panel for highly accurate imputation of untyped loci

in elite short-season soybean.

VI.5.2 Structural variation

VI.5.2.1 Exploration and characterization

To produce a comprehensive catalogue of large SVs (deletions, duplications, inversions,
translocations, and CNVs), we used a combination of three bioinformatics tools: LUMPY,
BreakDancer and CNVnator. LUMPY using jointly multiple SV signals (read-pair, split-read and
read-depth) was able to identify nearly all SV classes except interchromosomal translocations,
while BreakDancer (paired-end SV detection method) was unable to detect small inversions
and tandem duplications. CNVnator precisely discover and genotype CNVs (deletions,
insertions and duplication) from depth-of-coverage by mapped reads. Using a combination of
different tools allowed us to detect all classes of SVs, and also to do a cross-validation between
outputs of these tools. Among the four types of SVs that were called by three tools (deletions,
insertions, inversions, and duplications), 91, 87, 86, and 83% of all SVs were called by at
least two tools. Thanks to the large predominance and high degree of concordance of deletions
and insertions, the mean weighted concordance for these variants reached 89.6%. This result
suggests that this catalogue of SVs is highly reproducible using various SV-calling tools. We
produced a unified catalogue of SVs called by at least two of these three bioinformatics tools
and these are described in Table VI.4. This catalogue comprises 63,556 deletions, 16,442

insertions, 2,865 duplications, 4,221 inversions, 1,435 copy-number variants, and 3,313
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translocations (intra- or interchromosomal). Despite the fact that the size of these SVs
spanned a broad range (10 bp to 3 Mb), these rearrangements were typically rather small.
Indeed, the median size of the SVs varied between 106 bp (deletions) to 5.6 kb (CNVs). The
breakpoints for these SVs could be defined with a variable level of resolution (ranging from 0
to 35 bp) depending on the type of SV. We estimated that deletions, the most abundant type
of SV, affected 11.2 Mb (1.1%) of the soybean genome across all accessions examined. This
catalogue of SVs is the first comprehensive characterization and classification of SVs in

soybean and it illustrates the significance of the “footprint” of SVs on the soybean genome.

VI.5.2.2 Distribution and annotation of SVs

For illustrative purposes, we plotted the distribution of SVs on a single representative soybean
chromosome, Chr 10 (Figure VI.4). To capture the full range of variant densities (no. of
variants/window), a logarithmic scale was used. While the most abundant variants were
distributed all along the length of this chromosome, CNVs seemed to cluster in certain regions.
On the other hand, we saw no correlation between the number of SVs per chromosome and
chromosome length (Supplementary Figure VI.4). To annotate and identify the potential
functional impact of these SVs, we used an in-house script to identify genes residing within
intervals defined by the SV breakpoints (for deletions, duplications and CNVs) or genes in
which breakpoints were located (for inversions and translocations) (see M&M and
Supplementary Figure VI.5 for details). Table VI.5 shows the number and proportion of the
SVs which affected genic regions. In total, 19,424 deletions, 6,762 insertions, 2,023
duplications, 2,286 inversions, 995 CNVs, and 246 translocations impacted genic regions.
Overall, 34.5% (31,735/91,832) of SVs were identified as affecting genes and all or almost
all of these would be expectedto have a strong impact on the function of these genes. Of this
number, duplications and CNVs most often affected genic regions (70.6% and 69.3%,
respectively), while translocations were the least likely to affect genes (8.2%). These results
show that a much higher proportion of SVs are likely to have functional consequences than

was the case for smaller variants (SNPs, MNPs and small indels).

VI.5.2.3 Validation of SVs and breakpoint

To estimate the sensitivity and the precision of the results, we selected 40 SVs of different
sizes and frequencies within the population for PCR-based experimental validation. The SVs

called on the basis of WGS reads were confirmed by PCR in 80% (32/40) of the cases
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(Supplementary Table VI.3). In all eight cases where we could not confirm a SV by PCR, these
were relatively rare, occurring in less than 7% of the lines. The mean size of these rare and
unconfirmed SVs was also much larger than that of the successfully validated SVs (815 kp vs
8 kp). Interestingly, four PCR-validated SVs were shared by all 102 lines of this collection,
suggesting one of three possibilities: 1) these variants are fixed in this particular set of short -
season soybean, 2) the cultivar used to produce the reference genome (Williams 82) is
atypical in its genome structure in these areas, or 3) the reference genome is imperfectly
assembled in these regions. We examined the predicted breakpoints defining these SVs by
performing Sanger sequencing on PCR amplicons spanning such breakpoints. Sanger

sequencing results also confirmed the identified breakpoints at the nucleotide level.

Finally, we sought to examine if we could detect previously described SVs and if these were
accurately called in the various accessions. At the E3 (GmPhyA3) locus, some early-flowering
accessions are known to carry the e3-tr allele characterized by a 15.5-kb deletion that leads
to a truncated and non-functional phytochrome. Similarly, at the E4 (GmPhyA2) locus, many
early accessions carry the e4(SORE-1) allele characterized by the insertion of a 6.2-kb
retroelement. In previous work, allele-specific primers had been used to precisely identify the
alleles present at these two loci for 50 of the soybean lines used here and, in all cases, the
SVs called on the basis of the WGS reads coincided perfectly with the PCR results
(Supplementary Table VI.4, Supplementary Figure VI.6). In addition to a large degree of
overlap between the SVs discovered by the three tools used, we were able to perform direct

validation of some SVs that are highly relevant to breeders of short-season soybean.

VI.5.2.4 SVs and residual heterozygosity in soybean

Soybean elite lines are presumed to be highly inbred and, therefore, homozygous.
Nonetheless, 3.2% of all genotypes were called heterozygous and, interestingly, a similar
proportion was also called as heterozygous using the SoySNP50K array. We wanted to
investigate the source of these heterozygous genotypes. Based on their distribution in the
genome, these heterozygous genotypes could be qualified as dispersed or clustered. The latter
group was almost systematically called heterozygous by both WGS and the array. In contrast,
dispersed heterozygous genotypes, although less abundant (~25% of all heterozygous calls),
tended not to be in agreement. Therefore, it was possible that some genomic feature could
cause both WGS and the array to falsely call heterozygotes. We hypothesized that duplications
and CNVs could be involved. As shown in Figure VI.5a, we saw that in the genomic regions

showing a cluster of heterozygous calls, evidence of a duplication or CNV could be found in
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the form of “excess” read coverage and extended across the same interval affected by
heterozygosity. Accessions with the duplicated (or more) genomic segment invariably showed
an abnormally high level of heterozygosity, while accessions with a single copy of this segment
(as in the reference genome) showed a very low “background” level of heterozygosity (<1%)
as seen elsewhere in the genome (Figure VI.5b). These results show that most residual
heterozygosity observed in inbred lines is likely artefactualand the result of duplicated regions
leading both the WGS and arrays to make erroneous heterozygous calls. The remaining
(dispersed) heterozygous calls (<1% of all called genotypes) are likely a specific artefact of
SNP calling based on WGS data. This observation of a tight link between duplicated regions
and the occurrence of heterozygous SNP calls provided us with yet another opportunity to
test the validity of our SV calls. We found that 89% of genomic regions that were indicated
as being duplicated in specific accessions (based on SV-calling tools) coincided with regions
showing a high level of heterozygosity in the same accessions. This result suggests that close
to 90% of the duplications/CNVs called existed in the same set of accessions as those for

which heterozygous calls were made.

VI.6 Discussion

A first key element to come out of this work is that SVs are a highly important contributor to
DNA sequence differences in the soybean genome. We identified ~5M nucleotide and only
~92K SVs among 102 soybean accessions. At the first glance, there were 54-fold more
nucleotide variants than SVs. In terms of the extent of their “fingerprint” or impact on the
genome, however, SVs accounted for a greater proportion of the total nucleotide differences
compared to nucleotide variants. Considering only “large” deletions (>10 bp), the former
affected more than 1% of the soybean genome compared to less than 0.5% (4.35M SNPs and
MNPs/1.1 Gb) for the nucleotide variants. Thus, the large deletions seem to affect two times
more bases compared to all nucleotide variants in the soybean genome. Similarly, Sudmant
et al. (2015) demonstrated that, in human genomes, a median of 8.9Mb of sequence are
affected by SVs, compared to 3.6Mbp for SNPs. This illustrates the importance of
characterizing SV, in addition to the nucleotide variants, in the sequenced genomes as these
collectively make a very large contribution to the differences that distinguish various

accessions within a species.

Beyond the simple quantitative contribution of SNPs and SVs, in terms of nucleotides affected

per genome, it is also important to consider the functional impact of these various types of

polymorphism. As described in this study (Figure VI.1 and Table VI.5), only 2% of nucleotide

variants are located in coding regions, and barely 0.071% (4,113) were predicted to have a
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high functional impact. In striking contrast, 34.5% of SVs or their breakpoints (close to 32k
SVs) overlapped completely or partially with genic regions. As a result, a much larger number
of genes may be affected functionally by SVs compared to SNPs. Currently, this very
significant portion of functionally relevant genomic variation has been, for the most part,
ignored in work aiming to identify variants underlying or in close proximity to variants
responsible for the phenotypes of interest. Recently, in humans, Sudmant et al. (2015)
demonstrated that SVs are enriched in haplotypes identified by genome-wide association
studies and exhibit up to 50-fold enrichment among expression quantitative trait loci. In
addition, these estimates of the impact of SVs on gene function are likely conservative as
Lower et al. (2009) showed that SVs can affect the expression of genes up to 300 kb away
from the variant whereas the effect of SNPs is generally much more local. We suggest that
the collection of SVs identified in this study will help to dissect the genetic basis of important

agronomic traits in soybean.

With the increasing cost-effectiveness of whole-genome sequencing projects, the amount of
sequence information available to call variants can only increase with time. This requires a
constant improvement in the efficiency and speed of SNP-calling tools to allow for the timely
analysis of increasingly large amounts of sequence data. In addition, while many studies have
reported on nucleotide variation in soybean and numerous other species, in our opinion, too
little emphasis has been placed on assessing the accuracy of the resulting data. In this study,
we used and compared a new bioinformatics analytical pipeline, Fast-WGS, that is able to
efficiently and highly accurately call all three types of nucleotide variants (SNPs, MNPs and
indels). In addition to being significantly more rapid (3.2 fold) than SOAPsnp, it resulted in a
significantly more accurate dataset, especially with regards to small deletions. In previous
studies, lower levels of genotype-calling accuracy (92-98%) have been reported, and only
for SNPs (Hwang et al. 2015), whereas using Fast-WGS achieved similar or higher levels of
accuracy for MNPs and indels. We suggest that using Fast-WGS to process existing WGS data
would represent an improvement in the quality and quantity of nucleotide variants available

to the research community.

In spite of extensive advancement of sequencing technologies and bioinformatics tools for
sequence variant detection, the study of SVs has remained limited to human research
(Sudmant et al. 2015; Stankiewicz et al. 2010; Lam et al. 2010). The main reason for this
limitation is the fact that SVs are large-scale DNA rearrangements that present computational
and biocinformatics challenges (Ye et al. 2016). We called SVs using a combination of three

different tools; LUMPY, BreakDancer and CNVnator. These tools use one or a combination of
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two to three major referenced-based mapping approaches (read depth, paired read or split
read) to detect SVs (Layer et al. 2014; Chen et al. 2009; Abyzov et al. 2011). It is likely that
none of these approaches by itself is sufficient to uncover all SVs (Carvalho et al. 2016). As
reported previously, each approach has different strengths and weaknesses in SV detection,
which depends on the type of SV or the properties of the underlying sequence at the SV locus
(Tattini et al. 2015). Using a combination of different tools is important for several reasons;
i) algorithms using a split-read approach can define rearrangement breakpoints, ii) algorithms
exploiting read-depth data have the highest breakpoint resolution for smaller SVs, iii) a
paired-read approach is highly powerful, but lower quality mapping assignments in repetitive
regions is challenging and accurate prediction of SV breakpoints depends on very tight
fragment size distributions (Quin