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Abstract
Artificial Intelligence (Al) has shown competence in helping people with complex cognitive decisions like
air traffic control and playing chess. The goal of this work is to demonstrate that Al can help people with
social decisions. In this work Artificial Intelligence of Social Networks is used to improve human-human
communication, recognizing the social characteristics of human relations in order to achieve a more natural
online communication interface. Can a computer learn to understand the value of communication? It is
shown here that a first attempt at social context classification performs with almost 70% reliability. Could
a computer use this to help a person relate to other people through technology? The addition of social
context to an email interface is shown to have a positive effect in a user's online communication behavior.

Email is a tool that people use practically every day, making an implicit statement about their relationships
with other people, and providing an opportunity for a computer to learn about their social network.
Furthermore, over the years people have come to utilize and depend on email more in their daily lives, but
the tool has hardly changed to help people deal with the overwhelming amount of information. Many of
the social cues that allow people to naturally function with their social network are not inherent or obvious
in Computer Mediated Communication (CMC). This work offers automatic social network analysis as a
means to bring these cues to CMC and to foster the user's coherent understanding of the people and
resources of their communication network.
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1. Introduction x
Can a computer learn to understand the value of

communication? If it did, could it use this to help a person relate to other people

through technology? This work is an attempt at using Artificial Intelligence (AI)

about Social Networks to improve human-human communication, recognizing

social characteristics of human relations in order to design a more natural online

communication interface.

The medium of discussion here is email for two reasons.

1) Email is a tool that people use practically every day, and in this usage

they make an implicit statement about their relationships with other

people. This provides a unique opportunity for a computer to model

some aspects of a user's social network.

2) The way people use email and the information that it presents hasn't

changed significantly since the 1970s, even though demands have grown

as it has become the most widely used internet application [Nielsen].

Computer scientists first started using a program called MAILBOX to swap

messages on the Compatible Time-Sharing System at MIT in the 1960s. Then in

1971, Ray Tomlinson developed the first email application for ARPANET,

SNDMSG and READMAIL. "Mail spooled out like a teletype printout". In

1975, MSG, written by John Vittal, can fairly be called the first modem email

program, with a significant amount of the functionality available in email clients

today. Some features include: forwarding messages, filing messages into folders,

and sorting the display of messages by header information like date or sender,

and automatic addressing of replies, cc, bcc [Stewart].

"It soon became obvious that the ARPANET was becoming a

human-communication medium with very important advantages

over normal U.S. mail and over telephone calls." - J.C.R.

[Licklider]



Years later, almost 30 billion emails are sent everyday (according to the

International Data Corporation), and the tool has hardly changed in its ability to

help people deal with such an overwhelming amount of information. Technology

should do better than this!

This thesis is motivated in part by the following scenario: If you walk into a

meeting or a party or some physical place with a number of people, you instantly

scan the room to see who is there. You automatically make mental notes like "oh

I haven't seen that person in a couple weeks", "I just saw this person", or "there's

a friend talking to someone I haven't met". All of this helps you make an agenda

of how you organize yourself to approach the event and the various people there,

and is an example of how people automatically use social network analysis in

face-to-face interactions.

1.1 Approach

Many of the social cues that allow people to naturally function with their social

network in the above scenario are not inherent or obvious in CMC, which

therefore obfuscates the maintenance and utilization of ones' social network

online. This work submits that computers should perform automatic social

network analysis in order to bring these cues to CMC and to foster the user's

coherent understanding of the people and resources of their communication

network.

A person's social network consists of a set of people (nodes) with whom they

have ties, connections between the nodes, and resources that are exchanged

between the nodes. These resources can be information, influence, emotional

support, and confidence, just to name a few. Here, the term social resources will

mean any resources exchanged between two people in the social network that has

some social significance (solidarity, antagonism, agreement/disagreement, etc.).

1.2 Automatic Social Network Analysis



This work does not attempt to completely analyze of all aspects of a personal

social network, but rather to collect those aspects that are particularly relevant to

enhancing an online communication interface.

There are a few concrete things that are easy for the computer to collect:

structure (who's connected to whom from email traffic), frequency of contact,

symmetry of contact, response times, time spent composing messages in the

client, time spent reading messages in the client. The harder problem remains:

what kinds of social resources are exchanged between the people in the user's

personal social network?

Al can be the solution; a computer program that recognizes the social context of

a message (i.e. informing, inquiring, sharing, planning, intimate, etc.) is in a

better position to determine the value of that communication. It is unreasonable

to expect that a machine will come to be perfect in this respect, but the stance of

this research asks, given an imperfect model of social context, can this be used to

enhance an online communication interface.

A number of Al techniques could attempt such a classification problem; I chose

to try the supervised learning approach, using Support Vector Machines (SVMs).

The reasons for doing so will be discussed in a later chapter. The steps then

include: get a data corpus of email labeled with the social context classes

(informing, inquiring, intimate, planning, ...) to use as training examples for the

pattern recognition; then let the algorithm learn to discriminate between the

classes of email based on various concrete features that it parses out of an email

message (length, emoticons, punctuation, ... ).

As a quick example, here is how the model for informing email is built:

1) For every message in the training corpus where informing = true.

2) Parse the message into a feature set (word counts, punctuation, etc.).

3) Give these input/output pairs to the algorithm as positive examples.

4) Repeat steps 1-3 for the negative examples.



Once the computer has a statistical model of what informing is in terms of email

features, it can classify a new email in the following way: a new email comes in,

parse it into its feature set (word counts, punctuation, length, etc.), give this

feature set to the informing model, and the model returns the likelihood that this

new email is informing.

One of the major components of this project is a Social Network Server, the

SocNetServer. It is the implementation of this automatic social network

analysis:

" It compiles personal social network information for a user based on

email interactions (who they communicate with, frequency, symmetry,

response times).

* It has statistical models of social context of email (the SVMs described

above).

* It has an XML-RPC interface allowing clients to connect to it and ask for

social network information about a user.

1.3 Social Context in an Email Interface

The second question of this research addresses how this automatic social network

analysis, embodied in the SocNetServer, should be used to increase the user's

understanding of their communication network and enhance their experience

communicating online. The other major component of this work is the

DriftCatcher email client, which helps the user catch the drift of what is

happening with their personal communication network. It is an example of an

application, built to utilize the artificial intelligence of the SocNetServer, with the

goal of helping users understand and maintain their social network more

naturally.

* DriftCatcher lets you see email in more than just a temporal context.

e It adds social context cues based on statistical content models and

observations of the user's past behavior.

e It completes the loop by sending informing about user behavior with

their network back to the SocNetServer.



1.4 Contributions

The main contributions of this thesis are the following:

1) Using Al to augment a human-human communication medium: the automatic

personal network analysis of the SocNetServer informs the interface of the

DriftCatcher email client to improve the way a user is able to mind their

relationships.

2) Classification of social resources in email using machine learning techniques

3) The evaluation of 1 and 2.

1.5 Thesis Roadmap

Chapter 2 presents example scenarios of the DriftCatcher/SocNetServer system.

Chapter 3 is a brief overview of relevant theories and prior work.

Chapter 4 details the design and implementation of SocNetServer/DriftCatcher.

Chapter 5 covers the evaluation of the machine learning and the email client.

Chapter 6 sums up the contributions of this work and suggests future work.
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2. Application Scenario
This section goes through a few examples with fictitious

characters to illustrate how users interact with and benefit from the DriftCatcher

email client enabled by the SocNetServer.

2.1 Meet Lori Adler

Dr. Lori Adler is a Research Staff member of the Context-Aware Computing

group at the MIT Media Lab. Lori uses email regularly, and uses it to

communicate with people from all facets of her life. Like many others, Lori

finds that a large part of her day is spent doing "social network maintenance":

building, managing, and keeping track of various social and business

relationships. Moreover, she does a large portion this maintenance over email.

Recently she started using a DriftCatcher email client powered by a

SocNetServer, and has found that it helps her prioritize her email tasks and have

a better understanding of her personal social network.

2.2 Early for a Meeting

Traffic was light this morning, so Lori arrives 15 minutes early for her morning

meeting. Having time to check her email quickly, she opens her inbox to find 10

new messages (Figure 2.1). Using the DriftCatcher CompTime feature (which

shows the average time she spends composing messages to the various senders),

she is able to prioritize the messages based on how much time they are likely to

take her to deal with. Looking at the time bar length indicating the average time

Lori takes to compose messages to the various senders (between 0 and 30

minutes), she quickly selects and responds to message numbers 6 and 9 in plenty

of time for the meeting.



Figure 2.1: Average Compose Time feature

2.3 Reciprocating Response Time

Lori has various response patterns with people in her social network. Her friend

Peter usually responds within a few days, but her colleague Andy usually

responds within a few hours. She would like to reciprocate these response

patterns, and the DriftCatcher client helps her do so with the ResponseTime bar.

The time bar length indicates the time that Lori has left to respond to the

messages (from 0 from 2 weeks). The time allotted for her reply is based on the

response pattern of the sender. Figure 2.2 below shows that Lori has longer to

respond to Peter (message 2) than to Andy (message 3).

Figure 2.2: Response Time feature

2.4 Visualizing Closeness

Lori opens her email and notices that of her first six new messages only one is

from someone she communicates with frequently. As shown in Figure 2.3

below, the DriftCatcher client portrays the symmetry and frequency of



communication in the font size of the sender's name. This lets Lori easily

distinguish frequent versus infrequent relations. In the figure below, Lori can

quickly see that teller@media is a more frequent contact than mres@media.

Figure 2.3: Frequency of Contact

2.5 Visualizing Context

When Lori is trying to decide which messages are most important, sometimes the

subject line is not enough information to determine the social intention of the

sender. The DriftCatcher client helps her by color-coding the messages

according to their social context. In the figure below, Lori is able to see quickly

that most of the messages are informing, but message 1 and message 12 involve

planning and message 10 is an inquiry.

I



Figure 2.4: Message Context

2.6 The Administrative Assistant

David works as a temp, today is his first day on the job at the Media Lab and he

is assigned to sit in for the administrative assistant of the Context-Aware

Computing group. Lori Adler is having a busy day and hasn't been able to check

her email, but she will have some time in a few minutes once she gets out of a

meeting. David is asked to look through her inbox and find a couple of emails

that she should deal with then. Viewing her email with the DriftCatcher email

client makes it easier for David to step into the social context of Lori's inbox.

The name sizes let David know who Lori corresponds with frequently; he looks

at these first. The ResponseTime bar lets David choose messages that are likely

to be more urgent than the others, and the color-coding indicates the intension of

the message so he doesn't pass up a message trying to plan a meeting for later

this afternoon.



3. Background

The theory and rational of this work stems mainly from three

fields: Social Network Analysis, Machine Learning, and Human-Computer

Interaction Design. This chapter goes through the features of these three fields

that directly impact or motivate this work.

3.1 SNA and CMC

Social Network Analysis (SNA) is the study of various aspects of the structure

and behavior of social networks. A person's social network consists of a set of

people (nodes) with whom they have ties, connections between the nodes, and

resources that are exchanged between the nodes. These resources can be

information, influence, emotional support, and confidence, to name a few. This

work, while not a complete social network analysis, attempts to utilize the

theories and findings of social networks as means to improve an online

communication interface. A couple of theories most relevant to the information

collected by the SocNetServer include: social capital [Lin], the amount of

support (of all forms) which can be called upon from the people in your social

network, and strength of weak ties [Granovetter], a group of studies which

indicate that the people most important to you in terms of access to information

and resources are on the outskirts of your social network.

Computer Mediated Communication (CMC) is a field that studies and builds

systems that allow people to communicate through technology; email, instant

messaging, and video conferencing are a few examples of CMC. Over the past

decade, social network scientists have grown interested in computer networks

and to what extent CMC influences social networks. For example, computer

networks are especially suited for the maintenance of relationships between

people who cannot meet frequently; therefore, de-emphasizing the need for

locality in both work and community structure [Wellman].



Measuring Social Resources in CMC

Interaction Process Analysis is an analysis scheme commonly used in studies of

small groups [Bales]. It classifies human-human interaction related to group

dynamics (in face-to-face interactions). Bales' IPA describes a socioemotional

interaction as one that shows solidarity, antagonism, tension, agreement, or

disagreement, and a task-oriented interaction involves giving or receiving

opinions, information or orientation (see table 3.1).

SOCIOEMOTIONAL TASK-ORIENTED

POSITIVE NEGATIVE GIVING RECEIVING

Solidarity Antagonism Suggestion Suggestion

Agreement Disagreement Opinions Opinions

Releasing Tension Showing Tension Orientation Orientation

Table 3.1: The breakdown of Bales IPA.

In this work, the term social resources will mean any resources exchanged

between two people in the social network that has some social significance,

covering the whole spectrum of Bales' IPA. It was not always obvious that the

whole range of Bales' IPA can be expressed in email. Some hypothesized that

the text-based medium of email would be too constraining to afford the exchange

of socioemotional information.

A few people addressed the extent to which socioemotional content is contained

in email. In one study, over 2000 email sentences were labeled, by hand, using a

slightly modified version of the Bales IPA categories. They showed that CMC

does afford the exchange of socioemotional content, and in particular 30% of

sentences in their dataset were of a socioemotional nature [Rice]. Another study

addressed the existence of social context cues in electronic communication, and

discusses how relational cues from face to face communication are translated to

text based communication. They found, for example, that when communicating

over email a person tends to replace a head-nod indicating agreement with a

verbal phrase like 'I definitely agree...' [Walther].



Applications of SNA in CMC

The work of Bonnie Nardi strongly motivates systems, like SocNetServer and

DriftCatcher, which integrate social network analysis with computer-mediated

communication. The NetWORKing ethnographic study looked at how people

utilize social networks in the workplace and concluded that success in today's

distributed business environment is increasingly dependent on the ability to

manage one's social network. They argue that "netWORKing" (the process of

building, maintaining, and activating your social network) is an absolute

necessity in the modem work environment [Nardi].

There have been systems with aspects of social network analysis applied to

computer applications:

" The Referral Web system [Kautz], finds a path between two people in a

social structure using a closeness metric based on web documents.

* Yenta [Foner] is a multi-agent system for matchmaking, based on subject

matter of email messages to suggest matches between users.

" ExpertFinder [Vivacqua] is an agent system that helps people find an

expert to help them in a Java Programming domain.

* [Flores] is a speech-act application that tries to identify patterns of

speech in an organization related to the action that speech tends to

induce.

There are two main qualities that differentiate the work here. Using a personal

network approach; rather than take the point of view of a whole organization or

community this work understands a social network from the point of view of a

single user. Secondly, most of the current applications of social networks and

online communication deal with information flow and task-oriented resources.

The SocNetServer attempts to recognize all of the social resources exchanged

between people in the network in order to better characterize relationships

automatically.

3.2 Machine Learning



The field of Artificial Intelligence (AI) attempts to understand and build

intelligent entities. There is a range of motivations for the people in this field.

Some are motivated by the philosophical challenge of achieving a better

understanding of human intelligence. Others are motivated by the sheer

engineering challenge of building systems that behave intelligently. In this

research and others, it is a practical challenge; the motivation is simply that

intelligent systems will be easier for people to use [Russell].

This research concerns using artificial intelligence to augment a user's ability to

make decisions and perform a task. Specifically, the challenge is that of having a

machine understand the social implications of electronic communication in order

to augment the user's ability to manage their relationships online.

Some Al work that is most relevant to this research is that of social intelligence,

an example of which is Kismet [Breazeal], a robot, which recognizes body

language and verbal tone and responds with appropriate facial expressions, to

have meaningful social exchanges with humans. Essentially this work contends

that computers should model and understand the implicit social context of human

behavior in order to afford a more natural interaction. In the context of this

work, an email system is in a better position to understand how it should behave

if it has some understanding the social intensions and implications of the

messages it handles.

Supervised and Unsupervised Learning

Machine Learning is the study of computer algorithms that improve

automatically through experience [Mitchell]. There are two basic divisions of

machine learning: supervised and unsupervised learning. Techniques that group

instances without a pre-specified label are called unsupervised; for example,

clustering algorithms. A technique is considered supervised when the algorithm

learns the relationship between independent attributes based on a designated

dependent attribute (the label). These systems, are trained by a set of examples,

and learn how to behave from a set of input/output pairs. Supervised learning

can be interpreted as the regression problem of approximating, from sparse data,



a multivariate function.

Machine learning techniques are especially appropriate for problems that are

perceptual and hard to explicitly program into a machine. For example,

computer vision and speech recognition in which it is hard to explain the

underlying behavior of why we behave the way we do. On this note, social

relations and interpreting social context is decidedly perceptual and relatively

hard to describe in certain terms; hence, the motivation for trying a machine

learning approach to the problem of classifying social context over other Al

techniques.

Support Vector Machines

One supervised learning technique is Support Vector Machines (SVMs), which

was first introduced by [Vapnik]. Figure 3.1 shows the basic concept of SVMs:

the algorithm learns a threshold value that maximally separates two classes of

data in a feature space. The most basic model uses a linear threshold function,

but SVMs can also be made to handle classification in which there is no linear

separation of classes by specifying a different function with which to try to

separate the data. Typical non-linear mappings include: a polynomial kernel, the

radial basis function kernel, and the sigmoid kernel [Witten].

Negative Examples -X

Space of posisible inputs

Figure 3.1: A basic linear model Support Vector Machine



It has been shown that some text classification problems are separable using

SVMs. [Joachims] successfully used SVMs to classify the Ohsumed dataset and

a Reuters dataset by topic categories, and was able to do so with less effort than

with other classification methods. In many ways, any machine learning

technique could be framed to handle this classification problem, but there are

features of SVMs that make them a good candidate for the problem. SVMs work

well in a high dimensional feature space; this is good for the case of email

because in fact every word can be a feature. Text is generally a high-dimensional

space, but when you take a specific instance of a document, its feature vector is

likely to be sparse, with most feature frequency counts coming up zero.

3.3 Human-Computer Interaction Design

The two previous sections address the information that might help a CMC

interface, and how a computer might model this information. This section deals

with how this information can be made useful from a Human-Computer

Interaction (HCI) design perspective.

There is a great deal of inspiring work in this field, especially in terms of creative

interface techniques for information representation and retrieval. A couple of

early prototypical works include:

" Muriel Cooper describes an ideal interface she termed "information

landscapes" where a user finds information they need instantly and the

experience of navigating is as useful as the information itself [Abrams].

e SemNet [Fairchild] is a three-dimensional graphical interface that

explores techniques in the presentation of large amounts of data.

The field of information visualization demonstrates the possibility of improving a

user's performance through a graphical interface. Presented in the right way, the

right information can create an instantaneous response from the user, making a

computer interface more natural and intuitive. Inspired by this field, this work

attempts to provide a user with information in a communication interface that

instills a natural social response making them more proficient in their

communication tasks.



Some of the HCI research that is more directly applicable to this work involves

the design and usability of the current desktop interface paradigm. There are

many aspects of usability to consider when designing a new interface, many of

which are addressed in [Neilson]. When making improvements to a current

interface it is important to consider the user's habits with the old interface, and

the pros and cons of changing this interface entirely [Raskin]. The new interface

can have evolutionary changes compared to the old one, thus taking advantage of

the user's familiarity and knowledge of the current interface and hopefully

lowering the learning curve. Alternatively, a revolutionary change in an interface

could be harder to get used to initially, but reap more benefits in the long term.

There are also a number interface design examples specific to electronic

communication, which serve as motivating work:

* Conversation Map [Sac] is a Usenet newsgroup browser that does

automatic content analysis.

e Treetables [Newman] is a tool for visualizing email threads.

" Babble [Erikson], is a communication tool for small- to medium-sized

corporate groups that promotes "social translucence", providing

cues about proximity and activity of other participants.
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4. Design & Implementation
\~7 /

The goal of this research is to understand some aspects of a

user's personal social network and utilize this understanding to augment their

online communication experience. In fulfillment of this goal, the DriftCatcher

email client displays social context information associated with a user's mail.

This social context information comes from the automatic personal network

analysis of the SocNetServer, which has agents that keep track of the various

relationships in each user's personal network, and statistical models of the social

context of email, support vector machines (SVMs), that let it recognize the social

resources exchanged.

SVM
models M

Dispatcher MI

I I
INCOMING MAIL

Fl( johJ

Figure 4.1: System Architecture

The system architecture has three components whose design and implementation

will be detailed in this chapter



1) Processing of incoming mail by Procmail and Perl, which adds to the

mail social context information (provided by the SocNetServer)

2) DriftCatcher email client that utilizes this information

3) SocNetServer, which has agents that aggregate personal network data,

and models of social context, SVMs.

4.1 Incoming Mail Handling

For a user of the DriftCatcher email client, their mail has to be

processed along the way to its final destination on their mail

server. This interception is achieved through the use of

Procmail [van den Burg], a mail processing utility that runs

under Unix. Procmail is a mail-filtering program to help users

filter and sort their mail (by sender, subject line, keywords, etc.). The Procmail

script for this system adds information to every incoming message.

The Procmail script:

1) It parses the message into its various fields (to, from, body, etc.) and

calls a local Perl program that accesses the SocNetServer to get the social

context statistics about this message

2) Adds this extra info to the message header and forwards the mail to its

final destination mail server

To: Jane 0 Jam N SocNetServer To:Jane
From John _Fr____o From: John
Date: July 24, 2002 Date: July 24, 2002
Subject i Subjec Hi!

-- N- !Social Context XNonextIn_ XC, nfeW
SiJane- ubjcct H Information X-Feg

HItJane...

Figure 4.2: Functionality of the Procmail incoming mail script

How does this work for an example user: jane@media.mit.edu?



Jane asks the system administrator of her mail server to make sure that Procmail

is used as her Mail Transfer Agent (this is commonly already the case). Then all

that Jane has to do is copy the Procmail script and Perl program into her home

directory on her mail server. From that point forward the system processes all of

her incoming mail and the extra social context information is added to the

headers of all messages. Jane can then open her mail with the DriftCatcher email

client, that understands these extra header fields, and she sees the message from

John in context.

The low barrier to entry was an important design point of the system. Any user

that puts these scripts on their mail server allows the system to start keeping track

of their personal network and marking their mail with social context information.

This information is then accessible by using DriftCatcher to view their mail. If

they don't use the DriftCatcher client to view their mail, the extra header

information is just ignored and they see their mail, as they would have otherwise.

4.2 Social Context Mail Client: DriftCatcher

With the information that the SocNetServer provides about

a user's personal network, DriftCatcher is in a position to

organize and visualize mail according to social information.

Its intension is to make it easier for the user to see what is

happening in their personal communication network, and

allow them to deal with communication in a social context rather than the current

temporal context of mail browsers.

As mentioned in chapter three, familiarity is an important consideration in

interface design. A number of new email interfaces were considered early in this

work, some of which were a dramatic change from current email clients. The

benefit of a completely new interface is the ability to experiment with the idea of

completely changing the way people use email. However, email is a tool that

people use every day and most have done so for years. With all of that

experience, most users have a familiarity with the tool that allows them to be

very proficient in spite of the tool's downfalls. Therefore, rather than throw



away all of that experience and proficiency, this work makes incremental

changes, adding social context to the basic email interface. The intension is to

increase a user's proficiency at using a tool with which they are already familiar.

The DriftCatcher webmail client is an extension of [Emumail], an open source

webmail client. It is a social context email client that is social in two dimensions.

Dynamic data collection: the client is watching social aspects of the user's

behavior in the application and communicating this to the SocNetServer. The

display: messages with social data in the message header are recognized by the

client and reflected in the way the messages are displayed in the inbox.

Dynamic data collection

An email client is a program that is used on a very regular basis; most people use

email several times a day to communicate with people. This puts it in a prime

position to collect information dynamically about how the user behaves with the

various people in their personal network. It sees how long you spend reading

messages, how long you take to compose messages, how long you take to reply

to a message once it's been read, and a number of other behaviors. In the current

implementation the DriftCatcher client sends information to the SocNetServer

about compose time, and read time along with outgoing messages. The

SocNetServer can then incorporate this into its knowledge of the user's personal

network.

Display Changes

Based on the extra header information expected in the messages, DriftCatcher is

able to display the inbox along social dimensions as well as the typical temporal

dimension.



Figure 4.3: A sample DriftCatcher inbox display

Sender's names are displayed in different font sizes, based on tie strength. The

weak ties are bigger than the strong ties with four resolutions. This mapping is a

direct implementation of the "strength of weak ties" theory mentioned in chapter

three. The theory is that weak ties are better for finding out new information and

gaining access to other networks (which most likely have other resources,

establishing greater social capital). However, a majority of the people in the user

study found this to be counter-intuitive, so the next generation of DriftCatcher

would either reverse this mapping or provide a different indication of tie strength.

With each message, DriftCatcher displays the average time that the user takes to

compose messages to this sender (between 0 and 30 minutes). The compose time

measure is based on messages composed with the DriftCatcher client, and it

times out if the user stops typing for more than two minutes. This is certainly

just a rough estimate since the user may use other clients from time to time, or

compose a message with an external editor and copy the text over.

As shown in Figure 4.3, the left most column is an indication of how much time

there is to respond to this message (between 0 and 2 weeks). The time to respond



encourages reciprocation of the response pattern of the sender. The default time

for a new contact is two weeks, and this changes once a response behavior is

established.

The background color of each message changes to reflect the social context

classification of the content by the SVM models. As indicated in Figure 4.3,

Green=Inquire, Yellow=KeepInTouch, Pink=Interest, Orange=Planning, and

Blue=Inform/Share. One issue with this is conflict resolution: what does the

color do if a message is planning and informing, or interested and inquiring and

supportive, etc.? The information DriftCatcher receives from the message header

is a list of contexts, each with a confidence rating. Currently the client chooses

to display the context with the highest confidence rating; however, it is naYve to

assume that messages fit into only one context. A future goal is to experiment

with the indication of multiple contexts simultaneously, and a few options are

proposed in section 6.2.

4.3 Automatic Personal Network Analysis: The SocNetServer

Figure 4.4: Components of the SocNetServer

The SocNetServer embodies the automatic personal network analysis that

enables the DriftCatcher client described in the previous section. The

SocNetServer has agents that keep track of statistics on the various contacts of

each user's personal network, and statistical models of the social context of



email, support vector machines (SVMs), that let it recognize the social resources

exchanged. It shares intelligence with the outside world through an XML-RPC

interface. This choice of interface made sense for two reasons: the rising

popularity of web services in general, and the lack of dependency on a specific

programming language or platform.

Functionality provided in the XML Interface

Process Incoming Message - Two things happen when a new message is

received. First the social context of the message is calculated with the SVM

classifiers. Then the agent for the recipient is called and alerted that there is a

new message. This agent wakes up and produces information about the

relationship between the recipient and the sender:

* Frequency of contact

* Symmetry of contact

* Response time - how long the user should/could take to respond to this

message, based on the average time this sender takes to respond to the

user, encouraging reciprocation of response time.

* Compose time - average time the user takes to compose a message to

this contact based on information received over time from the

DriftCatcher client.

This information is then returned to the client that made the request. Generally

this function is always called from the Procmail/Perl scripts that put this

information in the message headers, but other applications that are interested in

the information could use this function as well. Examples of such "SocNet"

applications are the Media Connector being developed by Surj Patel at the Media

Lab, and inCall [Thomaz] a context-sensitive phone system.

Process Outgoing Mail - This is invoked from the DriftCatcher client. When a

user sends a message, along with delivering the message, the client also sends the

message and compose time to the SocNetServer. The SocNetAgents need to see

both incoming and outgoing mail in order to do calculations such as frequency

and response time.



The next two sections will go through the two major parts of the SocNetServer.

Addressed first are the agents that aggregate knowledge about an individual

user's personal network. Then second is the design and implementation of the

social context models, SVMs.

4.3.1 Collecting Dynamic Network Info: SocNetAgents

The SocNetAgents comprise the automatic personal network analysis of the

SocNetServer; they keep track of statistics on the dynamics of the relationships in

each user's personal network. There is one agent for every user. When the

SocNetServer receives a request for a user that it doesn't know, it creates a new

agent for this user. The agent's main purpose is to keep track of all the people in

this user's personal network. It does this by having an EmailContact structure for

each person. An EmailContact keeps track of all the mail that goes between the

user and the contact, and various statistics about this particular relationship

(frequency, symmetry, strength, etc.).

The main concern here was privacy. There is a different agent for each user so

that their information is kept and maintained in their private user space on the

mail server. The system could go up another level and analyze and make

information available about the whole communication network, but then the

individual user loses control of the information. In this current implementation,

as a user, the information about your relationship to your boss is only available to

you.

4.3.2 Modeling Social Context of an Email Message: SMVs

As discussed in chapter three, Support Vector Machines are a supervised

machine learning technique. The basic strategy starts with a corpus of emails for

training a classifier. Each email is labeled with metadata pertaining to social

intention. SVM learning techniques are applied to this corpus in order to find

discriminating features and weigh the extent to which social context depends on

these features. These resulting models are used to classify new messages. The



remainder of this section will go through the details of this modeling building

process.

Data Acquisition Alternatives

Acquiring this corpus of training email data is not a trivial task due to privacy

concerns [Rogers]. Ideally it should come from more than one person, and as

much data as possible is needed for best model building success. A number of

alternatives were considered.

One option is to convince people to donate their inbox; a number of friends and

colleagues were willing to help in this way. While this method yields a great

amount of data with various real social interactions online, problems arise since it

is not a closed set of people. With one-sided data, measures such as response

time and symmetry cannot be calculated. Additionally, we would not have the

consent of all the senders in each person's inbox.

There were two opportunities that involved corporate databases of email. One

was a corporate customer relations database. This database would yield a great

amount of data, but very little variance of social context: many examples of

people writing in to someone they have never met before about a work related

problem. The second database was a corporate mail corpus from a Media Lab

sponsor, but only the header information of each message was available, so it

would not work for content modeling.

The only email corpuses available publicly are a number of mailing lists and

newsgroups. Since the intended application of this classification is a private

email application, the training data should ideally be personal mail, not messages

to a mailing list. While public mailing lists do show some variance of

relationship and social context, the belief was that there is not enough variance to

build a discriminating model for the domain of personal email.

The method that was used in the end, constructs a data corpus around a created

social situation. A group of people is asked to volunteer to use a specified email



account and email each other for a month. During this month they get to know

each other both on and offline. As motivation to participate and means of getting

to know each other, a party is thrown once a week for all those participants that

write at least 20 emails to other participants. Theoretically, given enough

participants, at the end of the month there is a large corpus of email, which is a

closed set, and only contains mail from consenting participants.

Throwing Parties

Participation was solicited from students and other members of the MIT

community, and over the course of a few weeks in January these people were

asked to use designated email accounts to communicate with each other. The

participants were notified that their email was being collected but were not told

why. There is a possible bias of the data, in that people might act outside the

norm when they know their email is being collected. However, while not ideal,

this dataset has true socioemotional content and is therefore valid for the purpose

of this research. While we had hoped to get a participation group with more than

twenty people, in the end we had a group of six consistent members and four

intermittent members. Their designated email accounts existed on a server in the

Context-Aware Computing group, and all of the email was parsed and stored in a

database for the remainder of the project.

The participation group contained people that already knew each other and

people who did not. Over the course of the month we held a party every

Thursday, where people who didn't already know each other were able to meet

and start a relationship. Additionally the group was supplied with games and

organizational tasks every week to create some diversity in the email

conversations. Examples of these: riddles they were asked to solve in groups of

3 or 4, those email personality quizzes, organization of the Thursday parties

(when, where, what). At the end of the month, there was a collection of

approximately 550 email message ready to label for use in the statistical model-

building phase.



It is important to note that the members of this constructed personal network

interacted both online and face-to-face, and moreover that the face-to-face

interactions (which were not measured or collected in any way) influence the

content of online interactions. For the purpose of this project, this only makes

the dataset more realistic. A machine attempting to classify social contexts of

email is always going to be missing the knowledge of face-to-face interactions.

Observations and Anecdotal Evidence

Since the mail that these people sent back and forth is the example from which

the machine is going to learn, it is interesting to mention some observations of

the social dynamics of the group. When asked what their motivation was for

coming to the event most people gave one of two answers: "I wanted to meet

new people" and "I was intrigued by the advertisement for the event" (in

appendix). The corpus is therefore made up of email from fairly outgoing and

adventurous people who were all motivated to get to know each other and excited

about interacting with people they'd never met.

Many people used the group mailing alias at first, but then broke off into

personal conversations. This proves the point about how using a newsgroup

corpus misses these more personal interactions.

With a specified minimum number of emails for each week, instigations may not

be very natural. Additionally, the response time and symmetry are unrealistic

since people had other reasons for getting back to everyone quickly.

There was evidence of in-out group behavior. The most explicit example is when

people forwarded mail to each other commenting about other people in the

group. At first the in-group was the two people who already knew each other and

then over the month the in-group grew to about five or six. A recognizable

pattern: person A and person B are of the in-group, person C is in the out-group.

Person A gets an email from person C. Person A responds to person C. Then

soon afterwards, as a separate interaction, forwards the mail from C to B with

comments about C, etc. This behavior stops once C becomes part of the in-



group. Also, some people were intentionally excluded from the in-group.

Pattern: outsider makes an attempt, an inquiry or a suggestion, and the main

group purposely ignores it. So much so that they even talk about the outsider to

each other "did anyone answer her? Good, me either..." Additionally, many of

the members were unanimously upset when a person (non in-group) sent spam.

At the end of the data acquisition phase I still had high expectations of the

modeling accuracy. I was pleased with the variance of online interactions that I

had seen from glancing over the data. The next step involves labeling all the

messages with social context metadata.

Annotation

As mentioned in chapter three, considering how Bales' Interaction Process

Analysis best translates from physical to online interaction inspired the context

labels. Table 4.1 lists the labels along with the operationalizations that were used

by the human coder that annotated the data. Thirty labels were used, expecting

that some might have very few examples. Labeling was revisited and labels were

added after starting the annotation process once and finding that there were

messages that did not quite fit into categories. Figure 4.5 shows the java

annotation application built around these labels. One person used this application

over four days to annotate the data corpus, labeling for less than two hours per

day so as not to suffer fatigue effects.

Ideally, more than one person would annotate the dataset, so the models will be

more likely to apply to the general population. There would then need to be

some coding reliability analysis comparing the similarity of the coders' coding,

and training coders until a reasonable reliability is reached. Additionally after

the labeling is started, there should be periodic reliability testing to maintain

coding consistency, and make sure that they are continuing to behave similarly.



LABEL OPERATION LABEL OPERATION LABEL OPERATION

Urgent Scale of 1-5 relative to Tone Scale 1-5, 3 being Formal Scale 1-5, formality,
the other messages in neutral, is the tone looked at things like:
the set of the message openings and

positive or negative closings and
valence formatting and

names used

Solicit Did the recipient Period Solicited message Com. Unsolicited message,
solicit this message? received advertising

periodically

Invite Message inviting to go Info Telling the recipient Persuade Trying to convince
somewhere or do something, the recipient of
something providing something

information

Inquire Sender is asking the Advice More than Intro Sender is making an
user something informing, this is introduction, of

giving advice, himself or herself or
expecting to someone else
possibly change a
behavior

Keep There's no purpose to Discuss The purpose of this Motivate The purpose of this

Touch this message other message is to message is to
than to maintain motivate the
contact recipient to do

something

Share The sender is Suggest Less formal than Plan The purpose of this
disclosing advice, the sender is message is to plan a
information, less suggesting an action course of action,
informal than to the recipient schedule an event
informing

Thanks Sender expresses Regret Sender expresses Interest Sender expresses
appreciation sorrow interest in the

recipient or the
recipients ideas

Support Sender shows support Intimate The message Demand More
of or solidarity with indicates an intimate confrontational than
the recipient relationship, has persuade, the sender

some self- demands a behavior
disclosure, talks from the recipient
about feelings

Approve Sender shows Disagree Sender shows Polite Sender is going out
agreement with or disagreement with of their way to be
approval of the or disapproval of nice or courteous,
recipient the recipient usually a more

formal message

Concern Sender expresses Playful The message is Rude Opposite of
concern for the playful, fun, or courteous, sender is

recipient, usually seen funny, often seen being rude or crass
with support with keepintouch

Table 4.1: Labels of social context used to annotate the dataset.



Sj soial4science@media mt edu>

-HI everyone,
I dlon'tknow if this is ok or not, but I have decided towrite 20 ematis
to Vou by 7 am so I canjoin you t the party this eveningick so It all

started when) Rich and I were quite bored on the first thursedaya6iAP and
wefound about this socialise for sciense party and decided togol but

somethin~g came up an~d I couldn't come at the very last minute. Afterwards,
Dev and Richard told me that they had lots offun, so i decided to join
again the week after that I was at leadershape and It all got sort of

Figure 4.5: Java application used to annotate the dataset.

Expectations after the annotation phase went down a bit. I realized that there was

simply very little data for a number of the classes (see breakdown in Table 4.2).

There were basically 8 or 9 classes that had a reasonable amount of data for

model building.

100 to 300 examples 40 to 100 examples Fewer than 30 examples

Solicited, Informing, Approve, Playful, Advice, Invitation, Gratitude,
Inquiring, Interest, Keep Discuss, Suggest, Regret, Motivate, Disagree,
in Touch, Share, Needs Response Introduction, Persuade, Demand,
Planning, Supportive, Courteous, Concerned,
Intimate Commercial, Periodical, Rude

Table 4.2: Numbers of messages for each social context label

An Email Feature Set

Now that the data corpus has been collected and labeled, the next phase of the

problem involves extracting feature from email that have social significance and

will be used as the feature set to build a representation of the characteristics of

the social connotation of email. The goal is to be able to classify a particular

piece of mail as belonging to one or more of the social contexts mentioned in the

previous annotation section.



There are a number of features that were believed would vary significantly

depending on the social context and relationship between the sender and the

receiver. These features are parsed from a message; Table 4.3 shows the feature

queries implemented in this system.

Parts of the message Numerical features Ratios

getDate getWordCount getWordToSentenceRatio

getTo getSentenceCount getPunctuationToWordRatio

getCC getNumberEntriesInTO getPositiveEmoticonsRatio

getFrom getNumberEntriesInCC getNegativeEmoticonsRatio

getForwardedFrom getTotalNumberRecipients getDateRelatedWordsRatio

getSubject getNumberOfPositiveEmoticons

getBody getNumberOfNegativeEmoticons

getOldMessage getNumberOfURLs

wasOldMessagelntermingled getNumberOfDateRelatedWords

getAllEmoticons

getAllPunctuation

Table 4.3: Feature extraction functions of the Extractor class.

Implementation of Feature Extraction

Feature extraction is achieved through the implementation of two java classes:

Extractor, a class that encapsulates all of the information about a single piece of

email, and ExtractorManager, a class that contains a group of Extractors and

represents most everything you could want to know about a group of messages.

Extractor has query functions listed in Table 4.3 above, allowing another

application to ask about the [# of sentences], [# of positive emoticons], [# of

URLs mentioned], etc., in a message. ExtractorManager has a set of extractors

(messages) and acts as an interface to information about this group of messages.

Another application is able to ask: "how often does person A talk to person B",

or "how long does person A generally take to respond to person B". With this

group of messages, ExtractorManager is also able to build the graph

representation of a personal social network, given a root person (ego).



Statistical Modeling Approach

The email data corpus is now labeled with social context meta data, and there is

the ability to extract different features about each message. Let the model

building begin. The hypothesis is that there are subsets of features (words,

emoticons, punctuation, etc.) that discriminate between the various classes of

social context (informing, inquiring, planning, etc.).

A number of Al techniques could be used to accomplish such a classification

problem. In the case of Expert Systems, or Rule-Based approaches, we would

get a "social context expert" to give us rules about email and social context (i.e.

when you see "Love," as the closing this is an intimate email). Then we would

write a program that uses these rules to categorize incoming mail. An alternative

to this is a statistical approach. The basis of such Machine Learning approaches

is that maybe there isn't an expert that can list the regularities or patterns of

similarity between the different classes of email. Therefore a reasonable

alternative is to have a computer perform pattern recognition and learn its own

rules.

Supervised learning techniques such as neural networks or support vector

machines are designed to determine the extent to which various features of a

dataset divide it into subclasses. The statistical modeling here uses the weka

[Witten] implementation of support vector machines, which implements the

sequential minimal optimization algorithm, SMO [Platt].

Building SVMs with Weka

Weka is a collection of machine learning algorithms for solving real-world data

mining problems. Weka is open source software issued under the GNU General

Public License. For this project, the algorithms of weka were incorporated into

java code to build models for each of the social contexts from the email dataset

(each of the labels in table 4.2).



Weka Instance
LABEL: Informing- T/F

FEATURE 1: value

W FEATURE 2: value

FEATURE 3: value

Figure 4.6: An SVM model build with weka

The Weka SMO is a java object that, once given a set of Instance objects, builds

a classifier object. An Instance object consists of a feature vector and a class

label. Here is an example of this process for the informing label (see figure):

1) Make each message in the dataset into an Instance object, using the

Extractor code mentioned above to get the feature set for the message.

2) Add the label to the Instance object indicating if this particular Instance

is a positive or negative example of informing.

3) Build the SMO classifier.

4) Test its functionality with 10-fold cross-validation testing.

5) Repeat to find a model with better results, until an acceptable model for

informing is found.

Cross validation testing is where the use of the training set is maximized by using

it all for training and testing. Training happens with 90% of the data, holding

10% of it out for testing. This process repeats ten times using a different 10%

portion each time, and averaging the results.

Classifications Results

There were 8 labels that had enough data to build more than naive models:

Informing, Inquiring, Interest, KeepInTouch, Planning, Sharing, Intimate, and

Supportive. A naive model being a model that is built by saying "in the training

data the majority of examples have this label as true, so I'm going to guess that

any new example is true as well". This is bad because when the model build



comes up with a naive model it means it didn't find any significant correlations

between classes and features, and it will not be generalizable. Mainly this

happened when 1) there wasn't enough data for a particular class or 2) too many

features were used to build the model and there weren't enough examples to

converge to a solution.

The fact that this was a small dataset, made it hard to take advantage of the best

qualities of SVMs. They are particularly good at learning to classify in a large

feature space with sparse data, but this is dependent on there being enough

examples for the algorithm to converge to a solution. A few different techniques

were employed to increase accuracy, given the small dataset. The algorithm

tends to converge faster, or do a better job in general, when it has relatively the

same number of true and false examples. Better models resulted, when the

training set had equal numbers of true and false examples rather than using all

550 email examples. Shrinking the feature space also improved the ability for

the algorithm to converge, and some experimentation was done with various

combinations of the feature set. The final models with the best performance (see

Table 4.4) were built with the following feature set: Sentence terminating

punctuation, the frequency of punctuation used, time and date related words,

URLs, whether or not the old message was included in the new message, and the

frequency of emoticons used.

Class Best Cross-
Label Validation Result
Informing 48
Inquiring 60
Interest 61
KeepInTouch 60

Share 71

Planning 62

Supportive 58
Intimate 68

Table 4.4: Results of Cross-Validation Testing

The extent to which these cross validation results will translate to actual results is

dependent on the extent to which the data corpus is a reflection of the real world.



Given that the accuracy rates were around 60-70%, this doesn't instill a lot of

confidence. On the other hand, let's think about how accurate people are at

determining the social context of an email message. Maybe people don't do

much better; at the very least, there is anecdotal evidence that people get the

social intension of email wrong occasionally. Part of the evaluation phase of this

project will be to compare the failure rate of these models to the failure rates (or

disagreement rates) of human labelers.

It is important to note again that the size of the training data set (550 emails)

indeed lowers the bar for expected accuracy. Given more data, the algorithm

would have more examples from which to build models of context and would

certainly yield better performance. In light of this, 60-70% accuracy should be

viewed as a first attempt that shows good results in spite of sparse data and

motivates future work.

Using these SVMs with the SocNetServer

The final step in the modeling process is to put these eight models of social

context into the SocNetServer. This happens through a class called DriftSVM.

DriftSVM is a serializable object, which means that it can be stored into a text

file and read in at a later time by other programs that want to classify new email

using these models. There is a separate DriftSVM for each of the eight SMO

classifiers that were built. DriftSVM is an interface to the SMO classifier, which

allows the SocNetServer to specify an email message and receive a probability

that the message is of each particular context.



52



5. Evaluation

SocNetServer and DriftCatcher were evaluated on two levels.

* The first phase evaluates the extent to which the machine learning

became successful in recognizing the social context of human

communication. Did the system learn to categorize and label email

similarly to a group of humans?

* The second evaluation phase questions whether or not an email agent

that utilizes social network intelligence enhances online communication.

Do people have a better sense of the value of communication when using

the DriftCatcher client? This is a much more qualitative question and

therefore harder to evaluate. To test this, a group of volunteers were

given a motivation scenario and asked to perform email tasks with a

sample inbox.

The participants, 36 overall, were all from the MIT community, and over half

were students. This experiment was short term, involving people using the client

for less than an hour, yielding data about the immediate effects of the social cues

in the interface. The only longitudinal data is from my personal experience with

the client and is mentioned at the end of this chapter.

5.1 The Message Set

In the evaluation of the DriftCatcher client, participants are asked to do a task

around an email scenario, involving 24 messages, three times. Additionally,

different inboxes are needed each time; therefore, a total of 72 messages are

required (these will be referred to as the message set).

What messages should be in the message set? The belief was that the reality of

the inboxes would be important to the generalizability of any results from this

study. To accomplish this reality, three inboxes were constructed using my

actual email in its original order. Since I have been using the

DriftCatcher/SocNetServer system for a few months, all of my mail is in the



database labeled with the SVM classification output and other social context data

(frequency, symmetry, response time).

The 800+ messages from alockerd@media.mit.edu over the past month, were

divided into 24 message blocks, such that each block is a real snapshot of my

inbox from some point in the month. Three of the blocks were chosen as most

appropriate for the study based on having a variety of message types (the context

labels) and variety of the types of senders (in terms of frequency of contact).

These three inbox snapshots were changed slightly to annonymize the data by

applying the following rules:

* Andrea Lockerd (alockerd@media) changed to Lori Adler

(ladler@media)

* For all personal messages, the names and emails were changed

consistently across all three of the snapshots. For example, Ernesto

Arroyo -> Andy Epson every time it appears in any of the 72 messages.

* For mailing list email and spam, no changes were needed.

5.2 Phase 1: Can a Machine Recognize Social Context?

This first phase evaluates the extent to which the machine learning became

successful in recognizing the social context of human communication. Six

participants were asked to label the message set with the eight main categories of

social context that had the best cross-validation results. The precise instructions

given to them can be found in the appendix. This evaluation addresses the

following questions:

1) To what extent are the participants in agreement with each other about

the message context labeling?

2) To what extent does the participants' labeling agree with the machine's

labeling of message context?

3) To what extent does the first case correlate with the second? The

hypothesis is that the machine will have higher agreement in the cases

where people agree most with each other.



5.3 Phase 1: Results

This classification problem is a little different than others in the sense that the

output is indefinite. When two people are talking about the social intension of an

email message, this might involve some discussion and the two may not end up

agreeing with each other. In this sense, it is unreasonable to expect a machine to

always agree with everyone. This phase of the evaluation illustrates two points

around this topic of similarity and agreement: the level of agreement in message

labeling between different people, and the level of machine-human agreement in

the message labeling. There are 72 messages and 8 labels available for each

message, a total of 576 labeling opportunities.

There were six people that participated in this phase of the evaluation and

labeled, given the same label definitions (these can be found in appendix A), the

entire message set. There was a consensus, either positive or negative, in 473 of

the 576 of the labeling opportunities. Therefore these six people agreed with

each other about the message labeling in 82.1 % of the cases.

Now, the machine performance can be measured against this consensus. The

machine models were used to label the 473 instances in which there was human

consensus. In general, the machine tended to be more generous in giving a

message a particular label, yielding a large quantity of false positives. The

machine labeling agreed with 230 of the cases, 48.6 %, and 89.7 % of the

disagreements were false positives.

According to this study, the machine is "wrong", according to the consensus of

these six people, about half the time. While this does not sound particularly

good, a second way to view the machine-human agreement is whether or not, for

all of the 576 labeling opportunities, any of the six participants agree with the

machine label. In this view the machine does much better. In 67.5 % of the

labels, at least one person agreed with the label given by the machine. This

shows that even though the machine does not always choose the majority answer,

there is often at least one person that would argue that the machine labeling is



correct. This second result is similar to the cross-validation results that indicated

we should expect the models to be about 60-70% accurate.

In light of the small dataset used to build the machine models, these levels of

agreement, while not great, are still promising. Future work that uses a larger

base of examples to train a machine in recognizing social context could certainly

expect to achieve even better results.

5.4 Phase 2: Does Social Network Intelligence Improve a
Communication Interface?

The second evaluation phase questions whether or not an email agent that utilizes

social network intelligence enhances online communication. Do people have a

better sense of the value of communication when using the DriftCatcher client?

To test the DriftCatcher interface and the extent to which the information

provided by the SocNetServer augments an online communication experience, a

group of volunteers were given a motivation scenario and asked to perform email

tasks with sample inboxes from the message set. Participants are given the

following scenario:

You work as a temp; today is your first day as the administrative

assistant for the Context-Aware Computing group at the Media

Lab. One of the people you support, a research staff member,

Dr. Lori Adler, is going to be back from her meetings in 5

minutes. Go through her inbox, which has 24 new messages,

and choose the three messages she should deal with first. Here

are some things that Lori Adler would consider email priorities

(in no particular order):

- People trying to make plans or things that affect her

schedule

" People asking her for something or for advice

" Making timely responses in general, and especially

to people with whom she has a close relationship



This scenario is appropriate for a number of reasons. Having each participant use

their own email or a personalized inbox would be more realistic for them, but

was unreasonable in terms of preparation time, privacy, and comparability of

results. It was decided that the task would involve looking at another person's

inbox and trying to step into the social context of that person. Additionally, five

minutes is not long enough to read all 24 messages, so the participants are

required to browse the inbox and use what is given by the interface to decide

what is important enough to read. This is where the social client is expected to

prove most useful, by giving more context information than just the date, sender,

and subject line.

Each participant does this task of finding the most important/urgent messages

three times, each time with a different inbox from the message set, with the

following variations of the client:

Task 1: use the social mail client; with message context from the human

labelers in evaluation phase one.

Task 2: use the social mail client; with message context from the

machine labels.

Task 3: use the normal mail client; no extra context information.

Order effects are counter balanced by changing the order in which users do the

three tasks. Ten people did each of the three task ordering variations (123, 312,

231), thirty participants total. The precise instructions given to the participants

can be found in the appendix.

The following measures are used to examine quantifiable differences between

using the client with and without social context.

* Total number of messages read.

* Percentage of close relation messages read.

* Percentage of messages read that required a quick response.

0 Percentage of messages read of each of the contexts: informing/sharing,

inquiring, keep in touch, planning, and interest/support.

Hypotheses:



1) The client type would affect the total number of messages a participant

needed to read in order to complete the task.

2) When given the social context information in the client, the participants

will attend to more messages that are related to the task.

5.5 Phase 2: Results

In considering the generalizability of this portion of the evaluation it is important

keep in mind the task that participants were given. Essentially they were given

too much information to deal with in a short period of time, and this study

evaluates the extent to which the social context cues of the DriftCatcher client

help a person make decisions in this situation. Hypothesis 1 was not supported

by the data, and hypothesis 2 was supported. Therefore, while it does not change

the number of messages a user is able to attend to in five minutes, the social

context email client improves a user's ability to make judgments about which

messages are most important to the task at hand.

Measures

The measures that were tested for significant differences between the three client

versions were:

1) totalread: Total number of messages read

2) psclose: % of messages read that were a close relation

3) p-quick: % of messages read that required a quick response

4) p-inquire: % of messages read that were inquiring context

5) p.kit: % of messages read that were keep in touch context

6) p_interest: % of messages read that were interest/support context

7) p-plan: % of messages read that were planning context

8) p-info: % of messages read that were informing context

1-Way ANOVA with Repeated Measures, The Inbox Equivalency Problem

Since each person did each version of the task, the first type of test applied was a

1-way ANOVA with repeated measures. There were no significant differences

found with any of these measures. It was thought this might be due to



inequivalence of the composition of messages in the three different inboxes. For

example Inbox 3 had three times as many messages of the planning context, and

the relative number of message from close ties was imbalanced between the three

as well. So, there were factors other than the client that are affecting the

measures. Figure 5.1 shows a characterization of the inboxes and their

composition equivalence.

Figure 5.1: Composition of the three inboxes.

Further testing was done on each inbox as a separate case, to examine the

differences that the client caused between people using the same set of messages

(this is possible since each inbox has equal numbers of examples with task 1, 2,

and 3; and order effects have already been counter balanced). A 1-way ANOVA

was performed for each inbox for each measure with the client type as the factor,

24 tests in all.

1-Way ANOVA Results with Separate Inboxes

totalread % close % quick % inq % plan % inform

box f(2,27) p> f(2,27) p> f(2,27) p> f(2,27) p> f(2,27) p> f(2,27) p>
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-2 .32 .73 6.1 .01 3.57 .04 .45 .64 23.88 .00 8.71 .00
3 .18 .84 .53 .6 .52 .6 7.1 .00 29.91 .00 18.51 .00

Table 5.1: Results of significant measures

There was no significant difference found in the total number of messages that

were read in completing the task. Therefore having the new interface did not

increase, but also did not decrease the number of messages a person can scan

through and deal with in five minutes.

In two of the three inboxes, having the social client caused there to be a

significant increase in the percentage of messages read that were from a close

relation. With two of the three inboxes, the percentage of messages read that

required a quick response increased significantly when a participant had the

social client. In both of these last two measures, close and quick messages, inbox

3 was the one message set in which the social client did not have a significant

effect. A possible explanation for this is the fact that in this inbox there were a

relatively large number of close and quick messages (see figure 5.1), thus the

likelihood of reading a large number of them was significantly higher than with

the other two.

The remaining measures all concern the percentages of messages read of a

particular context. Measure 5, the keep in touch label, is not relevant since there

weren't actually any examples of this (see figure 5.1), and measure 6, the interest

label, did not produce any significant effect. With the social client, both the

percentage of inquiring messages read and percentage of planning messages read

went up significantly, in at least 2 of the inboxes. The percentage of messages

with the informing context was significantly less with the social client than

without in 2 out of the 3 inboxes (and the difference was almost significant in the

third).

These results support that in fact having the social context mail client helped

people with their task; not by increasing the number of messages they could

attend to, but by increasing the value of the messages they did attend to. In the

instructions (refer to scenario in 5.4), people were asked to pay attention to



scheduling, inquiries, close relations, and timely responses. The data shows that

with the social email client, people read a greater percentage of messages that:

* were from close relations

* needed a quick response

e involved planning

* involved an inquiry

Questionnaire Results

In addition to measuring the participant's behavior with the client, they were also

asked to answer open-ended questions on a printed survey, which adds some

personal qualitative perspective to the statistical findings. A few of the more

interesting answers and answers that were common across a large number of

people are mentioned here.

While many people noted that the correlation of font size and frequency was very

useful, they found the size correlation was counter-intuitive. This is interesting

because we were able to show that even though the user interface technique was

undesirable, the information produced significant effects, increasing

performance. Additionally, one would expect that a more intuitive interface

technique would only improve the effects even more.

It was mentioned that the color mapping was not intuitive and would take more

time to get used to, and in general a number of people mentioned that there was a

learning curve; given more time to get used to the interface they may have found

it even more useful.

Some people mentioned rules that they used to pick out messages related to the

task (times, dates, planning, inquiring, close relations), showing that the task

prompting was effectively consistent.

Generally speaking almost everyone mentioned something about the social

interface of DriftCatcher that changed their behavior and helped them step into

the social context of Lori Adler's inbox.



Recommendations

These results mostly reflect positively on the DriftCatcher client. Two things

will change based on this study related to the user interface: the font size

correlation with the sender's name will be reversed, and the color mapping will

be revisited to consider something more intuitive.

In future studies like this one there are a couple of things that should be done

differently. First, it was found that when multiple inboxes are necessary the

equivalence of the composition becomes a factor. If this exact study were to be

repeated, the three inboxes should be constructed with the same relative number

of each message type, and possibly even with the various types occurring in the

same order. Second, since a large number of people mentioned the learning

curve of the interface, future studies should have a practice round in the

beginning where people are able to become familiar with the interface.

5.6 Personal Observations

I have been using the DriftCatcher/SocNetServer system for all of my email

interactions for over three months. While the designer and builder of a system

are always going to be biased, it's worthwhile to mention some observations of

my own experiences since this is the only longitudinal data about the usability of

this system.

I agree with people from the user study that the context coloring is useful in spite

of the fact that the color mapping is not intuitive. But it really only took about a

week before seeing orange made me think planning, etc.

And surprisingly enough, I actually like the font size mapping. The smaller font

size feels more intimate like a close relation so it is rather intuitive to me. It

might also be that more people would agree with me if they saw their own inbox

arranged this way with sender names that they recognized. But given the



overwhelming majority of people that have objected to this mapping, I think it is

important for it to change in some way.

The most exciting part of using the real system was to get a feeling for how often

I agreed with the machine classification of the context labels. The cross-

validation results reported in chapter four suggested that the classification should

only be about 60% accurate; however, I think the machine classification is

probably right more than 60% of the time. There are a number of reasons this

could be the case. Most messages could be one of many things, so it may be that

even though the message doesn't get classified in the "best" way; it still gets

classified in an "acceptable" way. I may also be attributing a particular context

to a message based on the machine labels. Regardless of what makes the

classification seem more accurate than 60%, it is wrong from time to time which

is relatively annoying and reduces confidence in the system as a whole. The

ability to correct the system would help a great deal. This is addressed in section

6.2, future work.
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6. Conclusion

Can a computer learn to understand the value of

communication? This work has shown that, while not exceptional, as a first

attempt the social context classification did perform with about 68% reliability

(see section 5.3). Could a computer use this to help a person relate to other

people through technology? This work found that the addition of social context

to an email interface had a positive effect (see section 5.5). In this work

Artificial Intelligence (Al) of Social Networks is used to improve human-human

communication, recognizing the social characteristics of human relations in order

to achieve a more natural online communication interface.

Email is a tool that people use practically every day, making an implicit

statement about their relationships with other people, and providing an

opportunity for a computer to learn about their social network. Furthermore,

over the years people have come to utilize and depend on email more in their

daily lives, but the tool has hardly changed to help people deal with the

overwhelming amount of information. Many of the social cues that allow people

to naturally function with their social network are not inherent or obvious in

CMC. This work offers automatic social network analysis as a means to bring

these cues to CMC and to foster the user's coherent understanding of the people

and resources of their communication network.

6.1 Contributions

The main contributions of this thesis are the following:

1) Classification of social resources in email using machine learning

techniques.

2) Using Al to augment a human-human communication medium with:

a. Automatic personal network analysis of the SocNetServer .

b. DriftCatcher email client (informed by the SocNetServer) which

improves the way a user is able to mind their relationships.

3) The evaluation of both 1 and 2.



Modeling Social Context in Email

What kinds of social resources are exchanged between the people in the user's

personal social network? A computer program that recognizes the social context

of a message (i.e., informing, inquiring, sharing, planning, intimate, etc.) is in a

better position to determine the value of that communication.

This work used SVMs to classify the social context of email messages, with the

following steps: collection of an email data corpus, annotation of social context

(informing, inquiring, intimate, planning, ...) , pattern recognition to discriminate

between the classes of email based on various concrete features of an email

message (length, emoticons, punctuation, ... ).

This work introduced a technique for acquiring a corpus of personal email. By

creating a social situation, throwing parties, natural personal email was collected

from a group of volunteers over the course of one month. SVMs were then built

around these examples.

The accuracy of the SVMs models was tested with human labelers. The

experiment also allowed us to look at the level of agreement between people, and

found that they agreed with each other 82% of the time. Considering the

messages in which there was a consensus about the social context among the

human labelers, the machine agrees with that consensus 49% of the time (with

most of its disagreement being false positive). Alternatively, in 68% of all

messages, there is at least one person that would argue that the machine labeling

of social context was correct.

Automatic Social Network Analysis

The SocNetServer is introduced in this work, and is the social network

intelligence of the system. It compiles personal social network information for a

user based on their email interactions (who they communicate with, frequency of

contact, symmetry of contact, response times, time spent composing/reading

messages). It has statistical models of social context of email (the SVMs



described earlier). It also has an XML-RPC interface allowing clients to connect

to it and exchange social network information about a user.

Email with Social Context

The DriftCatcher email client serves as an example of a SocNet application, built

to utilize the artificial intelligence of the SocNetServer, with the goal of helping

users understand and maintain their social network more naturally. The

DriftCatcher email client helps a user catch the drift of what is happening with

their personal communication network.

* DriftCatcher displays email in more than just a temporal context, adding

social context cues based on information from the SocNetServer.

" It completes the loop by sending informing about user behavior back to

the SocNetServer.

An experiment was conducted to measure the extent to which the social context

of the DriftCatcher enhances the email experience. The results of this study

show that having the social context mail client helped people with an email task

that involved stepping into the social context of another person's inbox. In the

task instructions (refer to scenario, in section 5.4), people were asked to pay

attention to scheduling, inquiries, close relations, and timely responses. The data

shows that with the social email client, people read a greater percentage of

messages that:

* were from close relations

* needed a quick response

* involved planning

* involved an inquiry

6.2 Future Work

This work has been challenging and fulfilling and has a number of future

directions. This section recommends work in three areas of this research: the

DriftCatcher email client, the artificial intelligence techniques, and some general

future directions for email research.



DriftCatcher Email Client

Two aspects of the current implementation that warrant further exploration are

the indications of context and tie strength. Currently the message contexts are

indicated with the coloring of messages, and allow only one context to be

depicted at a time. A future goal is to have the flexibility to show that a single

message is more than one context. Some possible solutions here might be to use

more channels of display: color, transparency, patterns, texture. Another idea is

for every context to be displayed as a color bar with each message, and the

relative sizes of these color bars indicate the relative intensity of the various

contexts. Additionally, the tie strength between the user and a particular sender

is currently correlated to the font size of the sender's name. In the future this

correlation should be reversed. Instead of weak ties being larger they should be

smaller. Alternatively, there could be a different indication of tie strength

altogether. Font type might be less drastic and more acceptable indication than

font size.

Another suggestion for a future implementation of the client is a summary

section of the current social context of the inbox. This would be placed in the top

right corner of the screen and example would be:

"Hi, you have 20 unread messages. 5 of them

are inquiring, 2 are planning, 4 are supportive,

etc. Most are from people you don't talk to very

much. 3 are ones that you need to get back to

today."

Recommendations for the Al

The most significant way in which the modeling of social context could be

improved using the current SVM scheme: more training data. There simply were

not enough examples of some of the contexts we would have liked to model. In

the future, if this exact model building technique were to be used, the data

collection event would need at least twice as many volunteers, and the resulting

data corpus should have on the order of thousands of messages. Additionally, the



annotation should happen with multiple people, much like what was done in the

evaluation of this work, where the context label comes from a consensus of many

human coders.

While this would be the way to get better models using the current technique, this

is a very tedious process. Practically, it is hard to find that many volunteers for

the data collection. It is even harder to find enough people who are willing to

tediously label on the order of a thousand messages, never mind that they would

need to be periodically assessed for consistency. Therefore, it is beneficial to

consider other alternatives to the current model-building technique.

One promising direction is to look for opportunities to get the examples and the

annotation from a user's interaction with the client. The direction in which I

would like to take this research is to allow the user to explicitly train the system

by "showing" it different examples of different email contexts. This could be

implemented on top of the current interface by adding a correction module. The

expectation is that this would be the most natural form of training. The system

would make classifications, and if the user feels strongly enough that it is wrong

they will "complain" and thus train the system through correction. Additionally,

in an interface that is changing based on user input it is important for the user to

be able to see that their input is causing a positive change. In the implementation

of the correction interface, there should be a mode where the system shows the

user its new classification of some past examples that were misclassified. This

would allow the user to see the difference their teaching is imposing in the

system.

Another aspect of letting users train the system is to allow for user-defined rules.

While I still believe that a pattern recognition approach is the most promising in

most aspects of the challenge of social context modeling, there are also cases in

which users feel strongly that they know exactly what behavior they want from

the system given a particular situation. Therefore, a good filter-maker would be

enough to make some users happy. It should be complex enough to let the more

advanced user specify regular expressions, but also have the ability to train by



example with a more natural interface of the form: "with messages like

these"..."do this".

Email in General

A common behavior among users seems to be treating the Inbox as a "To Do"

list. A large number of people mentioned this on the user study post

questionnaire, and I've had a number of conversations about email with friends

who mention "oh, you know what I end up doing.. .my inbox is sorta like a to do

list". Currently, I have only anecdotal evidence, but it seems that a large

population of people exhibit a particular behavior that could be more explicitly

supported in an email client. This is currently my biggest interest. I would like

to find out more formally if this is a significant behavior, and experiment with

ways in which this could be supported in an interface to reduce the cognitive load

of having to keep track of everything there is "to do" in your inbox.
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Appendix A: Evaluation Phase 1
(Instructions and Questionnaire) \\x

User Study of the Social Context of Email

July 2002

Participation in this activity is voluntary and you are free to withdraw your consent, and
discontinue participation in this activity at any time without prejudice.

We are conducting research concerning computer-mediated communication (CMC).
The field of CMC is interested in how people interact with and communicate with each
other when there is some technology involved. In the case of this study we are looking
at how people interpret the social context of email messages, and how well people agree
about whether or not an email message is informing, inquiring, planning, sharing, etc.

In this study you will be asked to read through a collection of email, and give each
message various social context labels. The study should take less than one hour to
complete, but you are given no time limit.

You will receive a copy of this consent form, and any inquiries concerning the
procedures should be directed to:

Andrea Lockerd -- alockerd@media.mit.edu -- 617.253.0597

In the unlikely event of physical injury resulting from participation in this research, I understand that

medical treatment will be available from the M.I.T. Medical Department, including first aid emergency

treatment and follow-up care as needed, and that my insurance carrier may be billed for the cost of such
treatment. However, no compensation can be provided for medical care apart from the foregoing. I further

understand that making such medical treatment available; or providing it does not imply that such injury is

the Investigator's fault. I also understand that by my participation in this study I am not waiving any of my

legal rights*. I understand that I may also contact the Chairman of the Committee on the Use of Humans as

Experimental Subjects, M.I.T. 253-6787, if I feel I have been treated unfairly as a subject.

*Further information may be obtained by calling the Institute's Insurance and Legal Affairs Office at 253-
2822.

I agree to the procedures of this activity Date:

Principal Investigator Date:



~ Pre-Study Questionnaire ~

1. When you are reading through your email what would be some
characteristics that would make you call a message each of the following:

a. Informing

b. Sharing

c. Inquiring_

d. Interested

e. Supportive.

f. Planning

g. Intimate

h. Keep in touch

2. How often do people in general get social connotation in email wrong?

Never Seldom Frequently Often

3. How often do you get the social connotation of an email message wrong?

Frequently

.

Never Seldom Often



~ INSTRUCTIONS ~

There is no time limit. You will be giving each email messages up to 8 labels.
Here is a brief explanation of each label.

I n form in g - the message is telling the user something, providing some

information.

Sharing - the purpose of the message is to disclose something; in general this is
more personal than informing or involves some type of self-disclosure.

Inquiring - the message asks something of the recipient.

Interest - the message shows interest in the recipient; gives attention to the

recipient's ideas, or the topic of conversation in general.

Keep in Touch - the purpose of the message is just to maintain contact.

Plan n ing - the purpose of the message is to organize something. In general
this is a message that requires the recipient to look at or change their schedule.

Su p portive - the message shows support, supporting an idea of the recipient
or being supportive of them as a person in general.

Inti m ate - the message is intimate, any message that in some way indicates a
close relationship. For example, an inside joke, or a shared language that is
different from messages with others (particularly in the closings: "Love, Dad")

If you have questions about the labels or need more examples please ask now.

You will be logged into a webmail client that has an inbox full of messages.
Please follow these steps exactly so your answers get logged in the system.

1. Click on the first message in the inbox.
2. Read the message.
3. Scroll down to the bottom and check any context labels that apply (Yes,

you can choose more than one for a single piece of mail, or none if you
believe none apply)

4. Click on the NextMessage button (Note: this is the only way to properly
exit one message and go on to the next. If you accidentally press
something else, notify the experiment administrator to get back on track)

5. Repeat steps 2-4 until you reach the end of the inbox.

DON'T TURN THE PAGE



~ Post-Study Questionnaire ~

1. When you are reading through your email what would be some
characteristics that would make you call a message each of the following:

a. Informing

b. Sharing

c. Inquiring

d. Interested

e. Supportive

f. Planning

g. Intimate

h. Keep in touch

2. Do you think that other people would agree with your labeling?
No Probably Not Maybe Probably Yes

3. Why?

4. Are there any labels that you felt should be available but were not?



Appendix B: Evaluation Phase 2 (Poster,
Instructions and Questionnaires)

.~ -.
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\
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Read Email for my user study

Help me finish my thesis

Get a FREE ticket to Kendall
Cinema!

I need subjects for my user study. It takes less than an hour. Come over to
the Media Lab, read some email using a client that I developed, tell me what
you think, and I'll give you a free movie ticket good for 2 years!

Interested? Send email to...

userstudy @media.mit.edu



Social Context Email Client User Study

July 2002

Participation in this activity is voluntary and you are free to withdraw your consent, and
discontinue participation in this activity at any time without prejudice.

We are conducting research concerning computer-mediated communication (CMC).
The field of CMC is interested in how people interact with and communicate with each
other when there is some technology involved. This study is designed to evaluate a new
email client, DriftCatcher, which has been developed at the Context-Aware Computing
at the MIT Media Lab.

You will be asked to use this email client to perform three short tasks that will take no
longer than 5 minutes each. There will then be questions for you to answer about your
experience.

You will receive a copy of this consent form, and any inquiries concerning the
procedures should be directed to:

Andrea Lockerd -- alockerd@media.mit.edu -- 617.253.0597

In the unlikely event of physical injury resulting from participation in this research, I understand that
medical treatment will be available from the M.I.T. Medical Department, including first aid emergency
treatment and follow-up care as needed, and that my insurance carrier may be billed for the cost of such
treatment. However, no compensation can be provided for medical care apart from the foregoing. I further
understand that making such medical treatment available; or providing it does not imply that such injury is
the Investigator's fault. I also understand that by my participation in this study I am not waiving any of my
legal rights*. I understand that I may also contact the Chairman of the Committee on the Use of Humans as
Experimental Subjects, M.I.T. 253-6787, if I feel I have been treated unfairly as a subject.

*Further information may be obtained by calling the Institute's Insurance and Legal Affairs Office at 253-
2822.

I agree to the procedures of this activity Date:

Principal Investigator Date:



~ Pre-Study Questionnaire ~

1. How many times do you check your email in a day?

2. How big is your inbox?

3. What order do you usually read your messages if you open your inbox
and have more than just a few? By date, by sender, something else?

4. When you walk into a room full of people, pretty quickly you get a sense
of who's there, how you know them, etc. - the social context. When you
open up your email, do you have a good sense of the social context of
your inbox? What are your expectations for a tool that helps with this?

5. How organized is your email?
(Do you folder it? how many folders do you keep? Do you delete mail?)

6. If you want to organize a dinner with a few friends what method of
communication would you be most likely to use?

Email Face to face Phone Other

7. Why?



INSTRUCTIONS
SCENARIO:

You work as a temp. You just got to your first day on the job at the Media Lab
and you're filling in for an administrative assistant of the Context-Aware
Computing group (cac@media). One of the people you support in the group is
the new research staff member, Lori Adler.

TASK: (this will be done 3 times with two different variations of the email client)

Ms. Adler is very busy and hasn't been able to get to her email in the last day or
two, so there are 24 new messages in her inbox. She is currently in a meeting and
will be stopping by in 5 minutes. Spend the next 5 minutes looking through her
email and pick out 3 messages she should deal with between meetings. Here are
some things that Lori Adler would consider email priorities (in no particular
order):

- People trying to make plans or things that affect her schedule
- People asking her for something or for advice
- Making timely responses in general, and especially to people with whom

she has a close relationship

Each of the three times that you complete this task, space will be provided for
you to jot down the message number of each email as you read it, if you go back
and re-read a message please write down its number again. There is also a space
to write down the message numbers of the 3 emails you choose for Lori to deal
with first.



DETAILS ABOUT THE VARIATIONS of the CLIENT:

Normal - this is just a normal webmail client with a standard interface (subject,
sender, date)

Social - this is an enhanced webmail client with the following additional features
that you may find useful in your task. Here is a snapshot of my inbox with the
social client.

1. The frequency of contact is noted in the font size of the sender. More frequent is
smaller. (Win Burleson is a closer contact of mine than Reed Wadley)

2. There is a timer bar on the left hand side, indicating how long I have to
respond to this email (from 0 to 2weeks). This is based on how long the
sender takes to respond to my emails, thus encouraging the reciprocation
of response time.

3. The different colors indicate the social context of the message. (White
indicates that it didn't meet any of the categories) The categories are
listed in their color in the top right corner.

If you have any questions about the instructions ask now...

WAIT FOR ADMINISTRATOR BEFORE GOING ON



TASK = Login as: drift

Ms. Adler is very busy and hasn't been able to get to her email in the last day or
two, so there are 24 new messages in her inbox. She is currently in a meeting and
will be stopping by in 5 minutes. Spend the next 5 minutes looking through her
email and pick out 3 messages she should deal with between meetings. Here are
some things that Lori Adler would consider email priorities (in no particular
order):

- People trying to make plans or things that affect her schedule
- People asking her for something or for advice
- Making timely responses in general, and especially to people with whom

she has a close relationship

Write down the message numbers of emails as you read them

Write down the message numbers of the 3 messages you choose
1.

WAIT FOR ADMINISTRATOR BEFORE GOING ON

using "normal"



TASK = Login as: drift using "social"

Ms. Adler is very busy and hasn't been able to get to her email in the last day or

two, so there are 24 new messages in her inbox. She is currently in a meeting and
will be stopping by in 5 minutes. Spend the next 5 minutes looking through her

email and pick out 3 messages she should deal with between meetings. Here are

some things that Lori Adler would consider email priorities (in no particular
order):

- People trying to make plans or things that affect her schedule
- People asking her for something or for advice
- Making timely responses in general, and especially to people with whom

she has a close relationship

Write down the message numbers of emails as you read them

Write down the message numbers of the 3 messages you choose
1.

2.

3.

WAIT FOR ADMINISTRATOR BEFORE GOING ON



TASK = Login as: drift using "social"

Ms. Adler is very busy and hasn't been able to get to her email in the last day or
two, so there are 24 new messages in her inbox. She is currently in a meeting and
will be stopping by in 5 minutes. Spend the next 5 minutes looking through her
email and pick out 3 messages she should deal with between meetings. Here are
some things that Lori Adler would consider email priorities (in no particular
order):

- People trying to make plans or things that affect her schedule
- People asking her for something or for advice
- Making timely responses in general, and especially to people with whom

she has a close relationship

Write down the message numbers of emails as you read them

Write down the message numbers of the 3 messages you choose
1.

2.

3.

WAIT FOR ADMINISTRATOR BEFORE GOING ON



~ Post-Study Questionnaire ~

1. When you first open up your email, do you have a good sense of the social

context of your inbox? What are your expectations for a tool that helps with this?

2. Did the additional information of the social webmail client change the way

you dealt with the email? If yes, in what way?

3. What did you like or not like about the social webmail interface?

4. How confident do you feel about your choices of what email what most important?
What things did you look for in making the decision?



Appendix C: Message Set Composition

STATS ON EACH DATASET

f req
context
ttr

inbox
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1

1=bigfont 2=med 3=small
1 =inquire 2=keepit 3=interest 4=plan 5=info/share
1 =least 2= <1wk 3= <1 wk 4= <2wks 5= < 2wks 6=2weeks

msg num
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
1
2
3
4
5
6
7
8
9

10

f req
1
1
3
3
3
3
1
3
3
3
3
1
1
1
1
1
1
1
3
2
1
1
1
1
1
1
3
1
1
1
3
2
1
1

M context
5
5
5
5
5
5
5
5
5
5
5
5
5
1
5
5
5
5
5
5
2
1
5
5
4
2
5
2
5
5
5
3
5
5

H context
1
5
4
5
5
5
1
5
5
5
1
5
1
5
1
5
5
5
3
3
5
5
5
5
1
5
5
5
5
5
1
1
5
5

9--0

N'

*



inbox
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

freq M context

SUMMARY OF EACH INBOX

quick

H contextmsg num

inq inter plan infoBox close
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