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Résumé 

 Le choix d’une formulation d’évapotranspiration potentielle (FETP) 

en modélisation hydrologique n’est pas une tâche évidente. Les 

hydrologues optent souvent pour une formulation leur étant familière ou 

pour une déjà disponible dans le modèle utilisé. Ce mémoire examine 

l’influence de la FETP sur la transposabilité temporelle ainsi que le 

comportement du modèle SWAT appliqué à un bassin versant canadien 

soumis à une importante crue printanière. Dans cette optique, 20 FETP 

sont testées en plus des trois FETP déjà incluses dans SWAT. L’étude 

consiste en une analyse de sensibilité de Sobol et une calibration SCE-UA 

sur quatre périodes ayant des caractéristiques climatiques contrastées. 

Les résultats ont montré que la FETP influence la transposabilité 

temporelle de SWAT autant que son comportement en termes de sensibilité 

paramétrique et de jeux de paramètre optimaux. Ces résultats soulignent 

l’importance de choisir une FETP appropriée aux objectifs de modélisation. 
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Potential evapotranspiration 

formulation influence on SWAT 

temporal transposability and 

behaviour: A case study 

B. Maranda and F. Anctil 

Article abstract 

Selecting a potential evapotranspiration formulation (PETF) for 

hydrological modeling is not a trivial task, so hydrologists often opt for a 

familiar formulation or one that is already available within the model they 

use. This paper investigates the influence of PETF on the temporal 

transposability and behaviour of the SWAT model, for a Canadian 

catchment subject to an important spring freshet. For this matter, 20 

PETF are tested in addition to the 3 available in SWAT. The analysis 

consists in a Sobol’ sensitivity analysis and a SCE-UA calibration over four 

climatically contrasted periods. Results show that PETF affects SWAT 

temporal transposability but also its behaviour in terms of parameter 

influence and optimal parameter sets. These results stress the importance 

of selecting a PETF appropriate to one’s modeling objectives. 
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Chapter 1 

Introduction  

Evapotranspiration is an important component of the water budget, 

as about two-thirds of the precipitation over the continents return to the 

atmosphere through evaporation and transpiration (Baumgartner et al., 

1975) – a proportion that varies considerably from one location to the 

other. Potential evapotranspiration (PET) refers to the volume of water 

“that would be possible under ideal conditions of soil moisture and 

vegetation” (Thorthnwaite, 1948). This concept is often exploited in 

hydrological modelling for the simplicity of the PET formulations (PETF), 

which, for some, only require daily air temperature observations.  

Many methods have been used to develop PETF, such as water 

balance, energy balance, aerodynamic theory and empirical regression 

(Rana and Katerji, 2000). In hydrological modeling, it is common to exploit 

PETF taking into account soil water content and plant growth. However, 

the diversity of the proposed approaches opens up the question of their 

influence on water partitioning within a hydrological model. 

Hydrological model sensitivity to PETF has been addressed by 

Andréassian et al. (2004), which concluded that lumped hydrological 

models are sensitive to PETF in terms of optimal parameter sets, based on 

calibration of 62 catchments. Oudin et al. (2005) assessed the impact of 

PETF on hydrological performance – 4 lumped model, 27 PETF and 308 

catchments – and concluded that simple temperature-based formulations 

perform better than more complex ones. Seiller and Anctil (2013) studied 

the relative contribution of natural climate variability, PETF, lumped 
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conceptual models, and snow modules on hydrological projection 

uncertainties and concluded that PETF is the second most important 

contributor to the total uncertainty, after natural climate variability. They 

also pointed out that exploring PETF sensitivity to different model classes 

(conceptual versus physical, lumped versus distributed) would be an 

“important complementary contribution”.  

These findings stress the importance of evaluating the hydrological 

influence of PETF selection. Indeed, the lack of measured 

evapotranspiration data makes it difficult to choose a particular PETF. 

Evaluating the impact of PETF on temporal transposability and model 

behaviour may thus address deficiencies in or improve current 

hydrological modeling practices. 

1.1 Temporal transposability 

Temporal transposability is the capacity of a model to adequately 

simulate a phenomenon in periods with different characteristics, without 

modifying its parameter values or internal structure. Temporal 

transposability of hydrological model has been recognized as a key 

component of model calibration for a long time (Klemeš, 1986). 

Nevertheless, as pointed out by Seiller et al. (2012), hydrologists often 

assume that parameterization of a model is transposable to periods 

climatologically different from their calibration period. Of course, the 

probability that this assumption fails increases in a climate change 

context. Moreover, climatic fluctuations also exist within historical data 

series (Koutsoyiannis, 2011) reinforcing the necessity to verify the 

temporal transposability of a hydrological model calibration. 
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Many studies already demonstrated from different perspectives the 

difficulty for hydrological models to transpose optimal parameter sets 

identified for a specific calibration period to other climatic or hydrological 

conditions. Wagener et al. (2003) demonstrated using a lumped model 

applied to an English catchment that summer and rain storm periods 

needed different values for parameters governing rapid water transfer. 

Choi and Beven (2007) implemented TOPMODEL on a South Korean 

catchment and concluded that optimal parameter sets obtained for some 

specific periods were not suitable for others. More recently, Coron et al. 

(2012) calculated performance losses under contrasting climate conditions 

using three conceptual lumped models, pointing out that “further research 

is needed to apply similar testing procedures with other models”.   

1.2 Objectives 

This study aims to assess PETF influence on temporal 

transposability and behaviour of a SWAT implementation on a Canadian 

catchment. Model behaviour is regarded in terms of parameter sensitivity, 

water partitioning between the hydrological processes and parameter 

identification. Model behaviour includes problematic issues such as model 

overfitting to inputs (PETF) and conditions (calibration periods) not 

necessarily reflected by the model performance. As pointed out by Kirchner 

(2006), an over-parameterized model, such as SWAT, may act as a 

“marionette”, adapting to any kind of calibration data even if the 

underlying premises are unrealistic. This stresses the importance of 

verifying the model reaction to different inputs. This concept is often 

referred as an equifinality problem: the possibility to obtain similar 

performances from dissimilar parameter sets.    
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To the author’s knowledge, temporal transposability has never been 

assessed in terms of SWAT behaviour. Although PETF influence on 

performance has been investigated by Wang et al. (2006) for the 3 PETF 

included in SWAT, no study has been performed for a larger spectrum of 

PETF. Given the popularity of SWAT (more than 1600 publications), 

particularly for climate change impacts on hydrological processes and 

water resources, the authors advocate the need for assessing its temporal 

transposability and PETF sensitivity.  
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Chapter 2 

Material and methods 

The methodology of this study is separated in two steps. The first 

one consists in a sensitivity analysis (SA) of SWAT parameters to the model 

outputs. This step is essential when using an over-parameterized model 

such as SWAT, in order to evaluate which parameters have a more 

significant impact on outputs for the studied watershed. It produces more 

robust calibrations by reducing the number of free parameters. In this 

study, the influence of selecting a particular evapotranspiration 

formulation on parameters sensitivity is also briefly analysed. 

The second step involves calibrating SWAT for 23 different PETF and 

for periods of dissimilar climatic properties. The former allows evaluating 

SWAT sensitivity to the choice of PETF and the latter addresses SWAT 

temporal transposability.   The next sections will present a brief overview 

of materials used for the study.  

2.1 Study area 

The au Saumon catchment (Seiller et al., 2012) is located in the 

Province of Québec, Canada, near the border with the United States of 

America (Figure 1). It is a natural territory, exempt of dams controlling the 

flow of water, that drains 738 km2 mostly consisting of mixed coniferous 

and deciduous forests over limestone, sandstone and shale soils (silt-loam) 

from Ordovician, Silurian and Devonian sedimentary rocks. Its altitude 

ranges between 277 and 1092 m, its mean annual air temperature is 4.5 

°C, and its mean annual precipitation reaches 1284 mm (1975–2003), of 
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which 355 mm is snow, leading to a mean annual discharge of 771 mm. 

Its hydrological regime is characterised by a spring freshet (March to May).  

The Centre d’expertise hydrique du Québec provided the daily 

hydrometeorological data: discharge (m3/s), minimum and maximum air 

temperature (°C), total precipitation (mm), incoming solar radiation 

(W/m2), relative humidity (%) and wind speed (m/s).   

 

Figure 1: Location of the Au Saumon catchment (738 km²; Canada) 

2.2 SWAT 

SWAT (Arnold et al., 1993) is a semi-distributed, physically-based, 

continuous time hydrological model. It is designed to simulate water 

quantity and quality at the watershed and sub-watershed levels on a daily 

or sub-daily basis. Its physical nature provides the capacity to evaluate 
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many different scenarios such as anthropic modification of land uses or 

management practices, implementation of reservoirs or dams as well as 

climate change effects on hydrological processes or pollutant loadings.  

In SWAT, a watershed is divided into sub-basins based on its slopes 

and hydrological network. Each sub-basins is next subdivided into 

hydrological response units (HRUs), which consist of lumped areas with 

unique land cover, soil attributes, and management practices (Neitsch et 

al., 2011). The land phase, depicted by equation (1), is calculated at the 

HRU level while the routing phase is calculated at the sub-basin level 

using Manning’s equation (velocity and flow) and a variant of the kinematic 

wave model (water transfer). 

  0 , , , , ,

1

t

t day i surf i a i seep i LAT i

i

SW SW R Q E w Q


       (1) 

In equation 1, SWt and SW0 represent the soil water content at time 

step t and t0 respectively, Rday the precipitation, Qsurf the surface runoff, Ea 

the actual evapotranspiration, wseep the percolation from the bottom of the 

soil profile, and QLAT the lateral flow. Each term of the summation 

represents a different process or principle. As an example, Qsurf is 

determined by a modified version of the SCS curve number method. 

Following sections will detail water partitioning and evapotranspiration 

calculation in SWAT. A complete description of SWAT is given by Neitsch et 

al. (2011). 

2.2.1 Water partitioning 

The influence of PETF on water partitioning has been evaluated 

based on an extended version of equation (1). Based on Neitsch et al. 
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(2011), the percolation from the bottom of the soil profile (wseep) responds 

to the following relation: 

  , , , , ,

1 1 1

t t t

rchrg i seep i deep i gw i revap i i

i i i

w w w Q w aq
  

        (2) 

where wrchrg represents the recharge entering the shallow aquifer, wdeep the 

water reaching the deep aquifer, Qgw the groundwater flow, wrevap the water 

moving from the shallow aquifer to the soil zone due water deficiencies, 

and Δaq the water content variation in the shallow aquifer. We also have: 

  , , 11 exp 1/ exp 1/rchrg i gw seep gw rchrg iw w w  
              (3) 

where δgw represent the draining time of the overlying geologic formation. 

The latter equation shows that wrchrg summed on a relatively long period 

will approximately be equal to wseep. Combining equations (1) and (2) and 

rearranging gives: 

    , , , , , , ,

1 1

t t

day i i surf i a i deep i gw i revap i i LAT i

i i

R SW Q E w Q w aq Q
 

           (4) 

which represents the relative contribution of hydrological components to 

the total water budget. Equation (4) will be used in section 3.4 to assess 

PETF influence on water partitioning. 

2.2.2 Evapotranspiration 

SWAT proposes three different methods for calculating PET: the 

formulations of Priestley-Taylor, Penman-Monteith and Hargreaves. It also 
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allows imposing daily PET values from an external file, but imposing the 

same PET values to all sub-basins and HRUs.  

 

Figure 2: Schematic representation of actual evapotranspiration calculation in 

SWAT 

Once PET is calculated, Ea is the sum of the evaporation of the water 

intercepted by the canopy (CANEV), the plant transpiration (T), the 
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sublimation of water in the snow pack (SNOEV), and the evaporation of the 

soil water (SEV). As shown in Figure 2, CANEV is the minimum between 

the water stored in the canopy (canstor) and PET. The state variable 

canstor is then calculated as a function of the leaf area index (LAI) on a 

given day, the maximum leaf area index for the plant (LAImx), and the 

maximum amount of water that may be trapped in the canopy (canmx). 

The remaining PET (PETLEFT) is then the difference between PET and 

CANEV. The potential soil evaporation (es_max) is calculated next as a 

function of PETLEFT and the soil cover index (soil_cov) and potential plant 

transpiration (ep_max) as a function of PETLEFT and LAI. Those values are 

also adjusted to make sure that their sum does not exceed PETLEFT. 

Subsequently, T is calculated as a function of ep_max, soil water content 

(SW), the water content at field capacity (FC), the water content at wilting 

point (WP), the plant uptake compensation factor (epco), and the soil depth 

(Sol_Z). In parallel, SNOEV is calculated as the minimum between the 

water in the snow pack (SNO) and es_max. Finally SEV is calculated as a 

function of the remaining potential soil evaporation after SNOEV (es_left), 

SW, FC, and WP.  

In short, Ea calculation is mainly affected by soil cover, plant growth, 

and soil water balance (and PET obviously).  

2.3 PET formulations 

For the purpose of this study, 20 supplementary PETF have been 

added to the SWAT code, for a total of 23. The 20 additional formulations 

have been chosen following Seiller and Anctil (2013) in order to provide a 

large spectrum of PET series. Table 1 presents the selected PETF as well as 

the numbers which will be used herein for reference. Inputs are also 

identified in Table 1 along their mean and variance for the available 29-
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year time series. More details are given in Appendix A for added 

formulations and in SWAT theoretical documentation (Neitsch et al., 2011) 

for formulations included in SWAT. Appropriate empirical coefficients have 

been identified by Seiller and Anctil (2013) for the au Saumon catchment. 

All other needed parameters have been calculated based on Allen et al. 

(2005). 

Table 1: PETF with respective inputs, mean and variance  

(Rs = Incoming solar radiation, RH = Relative humidity, T° = temperature, and U = 

wind speed) 

Formulation name Inputs Mean Variance 

- - (mm) (mm2) 

E01-SWAT_Priestley-Taylor Rs, RH, T° 1.38 3.37 

E02-SWAT_Penman-Monteith RH, T°, U, Rs 1.61 2.55 

E03-SWAT_Hargreaves T° 2.04 2.88 

E04-Penman RH, T°, U, Rs 1.42 1.77 

E05-ASCE RH, T°, U, Rs 1.75 2.01 

E06-Kimberly-Penman RH, T°, U, Rs 1.81 2.56 

E07-Thom-Oliver RH, T°, U, Rs 1.46 1.68 

E08-Thornthwaite T° 1.51 2.50 

E09-Blaney-Criddle T° 2.53 4.21 

E10-Hamon T° 2.06 3.20 

E11-Romanenko RH, T° 1.31 1.73 

E12-Linacre RH, T° 1.86 2.43 

E13-HSAMI-HYDROTEL T° 1.70 3.12 

E14-Kharrufa T° 1.81 4.30 

E15-Wendling T°, Rs 1.72 1.79 

E16-Turc RH, T°, Rs 2.96 7.71 

E17-Jensen-Haise T° 2.66 8.82 

E18-McGuinness-Bordne T° 2.21 4.66 

E19-Doorenbos-Pruitt RH, T°, U, Rs 2.56 4.90 

E20-Abtew RH, T°, Rs 1.97 1.54 

E21-Makkink T° 1.87 4.25 

E22-Oudin T° 1.50 2.15 

E23-Baier-Robertson T° 1.69 3.84 

2.4 SWAT parameters 

SA focuses on SWAT parameters that most affect the streamflow 

according to Abbaspour et al. (2007), Cibin et al. (2010), Neitsch et al. 

(2011), Nossent et al. (2011), and Zhang et al. (2013). 40 parameters are 
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thus retained and classified into 10 categories with respect to their 

associated process. Table 2 presents the symbol for each parameter as well 

as a short description, units, and range used for SA. Parameters 

highlighted in gray correspond to the ones used for calibration.   

Table 2: SWAT parameters used in SA and calibration (in gray) 

Symbol Description Units min max Process 

Canmx Maximum canopy storage mm H20 0.001 10 Evapotranspiration 

Epco Plant uptake compensation 

factor 

- 0.01 1 Evapotranspiration 

Esco Soil evaporation 
compensation coefficient 

- 0.001 1 Evapotranspiration 

Evrch Main channel evaporation 
adjustement factor 

- 0 1 Evapotranspiration 

Alpha_Bf Baseflow recession constant days-1 0.001 1 Groundwater 

Gw_Delay Delay time for aquifer 
recharge 

days 0.001 100 Groundwater 

Gwqmn Threshold water level in 
shallow aquifer for base flow 

mm H20 0.001 1000 Groundwater 

Rchrg_Dp Aquifer percolation coefficient - 0.001 1 Groundwater 

Phu_plt Potential heat units for 
plants 

- -50% +50% Plant growth 

Blai Potential maximum leaf area 
index for plants 

- -50% +50% Plant growth 

Bio_init Total plant biomass  kg/ha -50% +50% Plant growth 

Biomix Biological mixing effeciency - 0 1 Plant growth 

LAI_init Leaf area index of the canopy - 0 10 Plant growth 

Gw_Revap Revap coefficient - 0.02 0.2 wrevap 

Revapmn Threshold water level in 
shallow aquifer for revap 

mm H20 0.001 500 wrevap 

Sftmp Maximum mean air 
temperature for precipitation 
to fall as snow  

°C -3 3 Snow cover 

Sno50cov Fraction of Snocovmx that 
provides 50% cover 

- 0 1 Snow cover 

Snocovmx Threshold depth of snow, 

above which there is 100% 
cover 

mm H20 0 500 Snow cover 

Smfmn Melt factor on December 21 mm H20/day/°C 0.001 10 Snow melt 

Smfmx Melt factor on June 21 mm H20/day/°C 0.001 10 Snow melt 

Smtmp Threshold temperature for 
snowmelt 

°C -5 5 Snow melt 

Timp Snow temperature lag factor - 0.01 1 Snow melt 

Sol_Alb Moist soil albedo - 0.1 1 Soil water 

Sol_AWC Available water capacity - -50% +50% Soil water 
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Table 2: SWAT parameters used in SA and calibration (in gray) (continued) 

Symbol Description Units min max Process 

Sol_K Saturated hydraulic 
conductivity of first soil layer 

mm/ hour -50% +50% Soil water 

Sol_Z Depth from soil surface to 
bottom layer 

mm -50% +50% Soil water 

Slope Average slope of the subbasin m/m -50% +50% Surface runoff 

Cn2 Moisture condition II curve 

number 

- -50% +50% Surface runoff 

Ov_n Manning's value for overland 
flow 

- 0.008 0.5 Surface runoff 

Slsubbsn Subbasin slope length  m -50% +50% Surface runoff 

Surlag Surface runoff lag coefficient hours 0.001 10 Surface runoff 

Ch_K1 Effective hydraulic 
conductivity of tributary 
channels 

mm/ hour 0.01 150 Transmission 
losses 

Ch_K2 Effective hydraulic 
conductivity of main channel 

mm/ hour 0.01 150 Transmission 
losses 

Ch_N1 Manning's value for tributary 
channels 

- 0.005 0.7 Water routing 

Ch_N2 Manning's value for main 
channel 

- 0.01 0.5 Water routing 

Ch_d Depth of water in main 
channel when filled to bank 

m -50% +50% Water routing 

Ch_S1 Average slope of the tributary 
channels 

m/m -50% +50% Water routing 

Ch_S2 Average slope of the main 
channel 

m/m -50% +50% Water routing 

Ch_W1 Average width of tributary 
channel 

m -50% +50% Water routing 

Ch_W2 Width of main channel at top 
of bank 

m -50% +50% Water routing 

 

Since some parameters are distributed, relative changes have been 

used instead of absolute values for those parameters. Limit values (min 

and max) have been chosen according to the SWAT documentation, related 

studies, and personal judgement.  

Even if plant growth does not directly affect channel flow, some 

associated parameters have been included since plant growth affects 

transpiration and evaporation.  
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Note that the wrevap process consists in the amount of water moving 

from the shallow aquifer to the soil zone due water deficiencies and may 

also affect evapotranspiration. The other processes should be self-

explaining. 

2.5 Database structuration 

A structuration of the available data has been performed to identify 

non-continuous climatically contrasted periods and a short continuous 

period statistically similar to the overall database (surrogate of calibration 

data). Note that years 1975 and 1976 have been reserved for the warm-up 

of the model.  

2.5.1 Contrasted calibration data 

The use of non-continuous climatically contrasted periods has first 

been introduced by Klemeš (1986), under the term differential split sample 

test (DSST), for the verification of a model under conditions dissimilar from 

those corresponding to the available record or used for calibration. For this 

study, DSST has been used to assess the temporal transposability of the 

model but also to verify the influence of calibration periods on PETF 

performance.  

The identification of contrasted calibration data focussed on the air 

temperature and the precipitation rate because of their dominant influence 

on many hydrological processes but also because, according to the 

Intergovernmental Panel on Climate Change (IPCC, 2013), changes in 

temperature are virtually certain and changes in precipitation are very 

likely over most land areas during the 21st century.  As SWAT has been 

developed as a continuous time model (long-term yield model, Neitsch et 
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al., 2011), the predicted variability of those climatic components is 

particularly interesting to verify the model’s capacity to adapt to future 

climatic conditions.  

 

Figure 3: Database analysis for calibration in DSST. Every year are plotted 

according to annual mean temperature and annual cumulative precipitation. 

Coloured years are the one used for calibration/validation for the corresponding 

climatic period (green for Dry/Warm, etc.). 

5 non-continuous years for which the climate (yearly average) is 

either Dry/Cold (DC), Dry/Warm (DW), Humid/Cold (HC), or 

Humid/Warm (HW) were selected. Figure 3 presents the analysis results 

for the au Saumon catchment. 
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2.5.2 Surrogate of calibration data  

A short continuous period statistically similar to the overall database 

(surrogate of calibration data) has been identified for SA since, as it will be 

detailed later, 168 000 model evaluations are needed for each PETF, 

making it difficult to perform an analysis based on all the data (1977-

2003) due to computational time issues.  

 

Figure 4: Comparison of climatic component between SA period (1990-1995) and 

complete period (1977-2003). Occurrence (%) corresponds to numbers of days for 

which the hydro-climatic component value is situated in the boundary represented 

by the respective bar.   

This analysis has been carried using a Kolmogorov-Smirnov (KS) test 

with a confidence interval of 95% (alpha=0.05) for each of the climate 

component, comparing the complete period with all possible periods of 4 to 
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10 consecutive years. At the end, the 1990-1995 period was chosen 

because it included at least one year from each group of the differential 

split sample test (DSST, see Figure 3). Figure 4 compares the 1990-1995 

period to the overall database, in percentage of occurrence for the given 

range of x-axis values. Log-scale y-axis allows to represent extreme values. 

Both databases in Figure 4 present similar histograms for every climatic 

component, which supports the performed selection. Only very high 

precipitation rate is not well depicted but those events have a relative 

occurrence of less than 0.2%. 

This segregation methodology assumes that periods with similar 

statistics contain enough information to provide similar results in terms of 

sensitivity of the parameters. Cibin et al. (2010) showed that parameter 

sensitivity can be linked to climatic and hydrological characteristics of the 

catchment. For this reason, a histogram of the streamflow is also drawn to 

account for this hydrological dimension. It shows that flows are also well 

represented by the 1990-1995 period up to about 250 m3/s. Higher flows 

are not well represented but have very low occurrence (0.15%).  

2.6 Parameters sensitivity analysis 

SA allows for a better understanding of the internal structure of a 

model and can lead to a reduction in the number of parameters used for 

calibration.  The reduction is achieved by factor fixing (FF), freezing the 

value of parameters that have only a small influence on the model output, 

or by factor prioritization (FP), where only a limited number of the most 

influential parameters are kept for calibration in order to maximally reduce 

the output uncertainty (Saltelli et al., 2004; Nossent et al., 2011).  
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The present study focussed on FP, as a mean to effectively calibrate 

the model for each PETF without favouring one parameter over another. SA 

has thus been performed individually for each PETF as some recent 

studies revealed that SWAT parameters sensitivity is affected by the time 

series and the watershed (Cibin et al., 2010; Zhang et al., 2013). Section 

3.1 will show that SA is indeed affected by PETF.  

SWAT SA often resorts to the Latin-hypercube one-factor-at-a-time 

(LH-OAT) method (van Griensven et al., 2006), as the algorithm is 

incorporated in the SWAT code. Although this method has the advantage 

of being frugal from a number of simulations point of view, its results are 

more of a qualitative nature than of a quantitative one (Nossent et al., 

2011). As pointed out by Zhang et al. (2013), LH-OAT does not provide 

information on the parameter interactions, with the consequence of 

possibly underestimating the influence of highly-interactive parameters. 

Moreover, Tang et al. (2007) showed that other screening methods such as 

parameter estimation software (PEST) and regional sensitivity analysis 

(RSA) also neglect parameter interactions. As a consequence, screening 

methods are better suited for FF than for FP (Nossent et al., 2011) 

especially for hydrological applications, considering their tendency for 

numerous parameter interactions (Tang et al., 2007).  

Variance-based methods such as Fourrier Amplitude Sensitivity 

Testing (FAST), analysis of variance (ANOVA), and Sobol’/Saltelli (Sobol’, 

2001; Saltelli et al., 2010) account for parameter interactions, which make 

them appropriate for FP (Saltelli et al., 2010).  They also have the 

advantage of being model independent and to potentially capture the full 

range of parameter values (Liburne et al., 2006). 
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Saltelli and Bolado (1998) compared FAST with Sobol’ and concluded 

that the latter, although computationally more expensive, has the 

advantage of providing a unique way to estimate the global effect (effect 

which includes all interaction terms, see section 2.6.1). Tang et al. (2007) 

compared ANOVA and Sobol’ and reported that the latter yielded more 

robust sensitivity rankings. Furthermore, Sobol’ has been successfully 

applied to complex environmental models including SWAT (Cibin et al., 

2010; Nossent et al., 2011; Zhang et al., 2013) and has the advantage of 

working well for models with a high number of parameters (Glen and 

Isaacs, 2012), as well as leading to more easily interpretable outputs 

(Nossent et al., 2011).  

2.6.1 Description of Sobol’’s method 

The following description and notation is adapted from Sobol’ (2001) 

and Saltelli et al. (2010). The Sobol’/Saltelli method is variance-based, 

calculating the relative contribution of a parameter against the total 

unconditional variance of the model output, which can be represented by 

different metrics, although the Root Mean Square Error (RMSE) and the 

Nash-Sutcliffe Efficiency (NSE) are customary in hydrology.  

Considering the following generic model function for which input 

factors X are independent and scaled between 0 and 1. 

    ,...,i ky f X f x x   (5) 

Using an ANOVA representation of (5) (Sobol’, 2001), we get 
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1 2 1

0 1...

1 1 1 1 1 2

...
k k k k k k

i ij ijz k

i i j i i j i z i

f X f f f f f
  

        

          (6) 

where 0f  is a constant corresponding to the expectation value of (5) and 

every other term corresponds to functions relative to the parameters in 

index for which the expected value is zero (a priori unknown functions). 

Indeed, this decomposition exists and is unique only under the 

assumption that the terms in (6) are orthogonal. It can then be rewritten in 

terms of variance under the assumption that the square of (5) is integrable 

  
1 2 1

1...

1 1 1 1 1 2

...
k k k k k k

i ij ijz k

i i j i i j i z i

V Y V V V V
  

        

         (7) 

Equation (7) comes from squaring each term of (6) and its integration on 

every variable from which we have: 

    2 2

0V Y f X dX f   (8) 

 
2

i i iV f dx   (9) 

 
2

ij ij i jV f dx dx   (10) 

Dividing (7) by the total unconditional variance of (5) gives: 

 

1 2 1

1...

1 1 1 1 1 2

1 ...
k k k k k k

i ij ijz k

i i j i i j i z i

S S S S
  

        

         (11) 

The terms in the first summation in (11) correspond to the relative 

contribution of the parameters in index to the total unconditional variance 
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of the model ignoring interactions with other parameters. This term (Si) is 

usually called the main or first order effect. Other terms correspond to the 

contribution of the interactions between indexed terms to the total 

unconditional variance. The total effect of a parameter (STi) corresponds to 

the main effect of this parameter in addition to every interaction which 

includes this parameter. A purely additive model would have a sum of all 

total effects equal to the sum of all main effects and this sum would equal 

1 as equation (11) clearly shows. For a non-additive model, the sum of all 

main effects would be less than 1 and the total effect can theoretically 

range from 1 to positive infinity. 

As for most hydrological models, the analytical solution is impossible 

to achieve, the terms for the main and total effects can be expressed in 

terms of variance of conditional expectation giving: 

 
 

  
 

  
 

| |
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i ii
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S

V Y V Y V Y
     (12) 
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      (13) 

In equation (12), i corresponds to a specific parameter and in equation (13) 

~i corresponds to all parameters but parameter i. A Monte Carlo 

approximation can then be used to approximate those values. For this 

study, the equation proposed by Jansen (1999) (15) has been used, which 

is also the one advocated by Saltelli et al. (2010) for STi. Although 

estimators exist for other order terms, only the main and total effects have 

been calculated for this study as it is customary to compute just two sets 

of indices for FP. 
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If one imagines two independent matrixes A and B (N lines by k 

columns, where N stands for the number of samples and k for the number 

of parameters), we can create k other matrices composed of every column 

of A except the ith ones, which is taken from B. It is then possible to 

calculate the main and total effects of every parameter using:  

         
2

1

1
|

2

N i

i Bjj j
E V Y X f B f A

N 
   (14) 

         
2

~ 1

1
|

2

N i

i Bjj j
E V Y X f A f A

N 
   (15) 

Table 3: Estimator of total variance for total and main indices 

Estimator of V(Y) for Si Estimator of V(Y) for STi 
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Estimators used in this study for the total unconditional variance 

(V(Y)) are grouped in Table 3. Considering that 2N model evaluations are 

needed for f(A) and f(B) and Nk for f(AB
(i)), the total number of model 

evaluations for this method is N(k+2).  
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2.6.2 Sampling 

The two matrixes A and B were sampled independently using Latin-

hypercube sampling (McKay et al., 2000), as it has been used with success 

in hydrology (Tang et al., 2007; Cibin et al., 2010; Zhang et al., 2013). This 

stratified sampling method consists in dividing the range of the k 

parameters into N strata of equal probability (1/N) and randomly sampling 

each stratum. The strata are then shuffled for each parameter, leading to 

N semi-random samples. Note that the different parameter ranges are first 

linearly scaled between 0 and 1. For matrix ( )i

BA , radial sampling was used 

as it surpassed the winding stairs sampling using the estimators reported 

in (14) and (15) (Saltelli et al., 2010). 

Sample size is crucial to the Sobol’/Saltelli method as it determines 

the precision and reliability of the results. Cibin et al. (2010) and Zhang et 

al. (2013) used a sample size of 2000 for the SA of 13 and 28 SWAT 

parameters. Nossent et al. (2011) concluded that a sample size of 2000 

was needed to attain a stable rank for influential parameters out of 26 

SWAT candidates. As the number of parameters used for this study is 

higher (40), a sample size of 4000 was selected, which asks for 168 000 

model evaluations for each PETF (3 864 000 in total).  

2.6.3 Bootstrapping 

Bootstrapping was applied to calculate the 95% confidence intervals 

of the main (Si) and total (STi) effects. All samples were resampled 5 000 

times with replacement. The percentile method was then used to obtain 

the 95% confidence intervals. This method requires a high number of 

samples to achieve a reliable estimate of the intervals which explains why 

5000 (re)samples were used.  
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2.7 Autocalibration 

Autocalibration consists in applying an algorithm to find the global 

or local minima of an objective (cost) function. For this study, a slightly 

modified version of the Shuffled Complex Evolution (SCE) algorithm (Duan 

and Gupta, 1992; Duan et al., 1994) has been used, which already showed 

to be robust (Wang et al., 2010) – this method is also imbedded in the 

SWAT code (Green and van Griensven, 2008). The SCE is a global 

optimization algorithm based on the evolutionary concept. It proceeds in 

five steps that consists in (1) sampling a certain number of points in the 

parameter space and computing the objective function at those points, (2) 

sorting the points according to their objective function values, (3) 

partitioning all points in ngs complexes (sub-populations), (4) evolving 

each complex independently, and finally (5) shuffling every complex 

members. The last four steps are repeated until the convergence criterion 

is attained.  

Calibration has been done on each of the DSST periods as well as on 

the complete period, resulting in 5 calibrations for each PETF. The 

calibration has been performed on the 21 selected parameters (see section 

3.1 hereafter) using the surrogate database. Even if it would have been 

ideal to perform SA for each DSST period, using different parameters 

would have made it impossible to compare parameter values obtained with 

the different calibrations. 

The maximum number of iterations for SCE has been set to 20 000 

and the number of complexes (ngs) to 10. The relatively high number of 

maximum iterations is justified by the high number of parameters and the 

necessity to minimize the impact of the calibration process on the results. 
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The number of members per complex (npg) and the number of members 

per simplex (nps) have been estimated with the following equations: 

  2 min ,16 1npg nopt    (16) 

 min( ,16) 1nps nopt   (17) 

where nopt represents the number of calibrated parameters. The limitation 

on the number of members per complex and simplex is based on the 

incorporated module of SCE in the SWAT code (an external module has 

been used for this study).  

2.8 Metrics 

Two metrics have been retained for this study. The first one is the 

RMSE applied to the square root of the values, used as an objective 

function for SA and calibration – use of the square root of the values 

provides a more equal weight to all flows (Chiew and McMahon, 1994; 

Oudin et al., 2006): 

  
2

, ,1

1 N

sqrt sim i obs ii
RMSE Q Q

N 
   (18) 

where N is the number of observations, Qsim,i is the simulated flow on day i 

and Qobs,i the observed flow on the same day.  

The second metric is the NSE also applied to the square root of the 

values for the same reasons:  
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It ranges from negative infinity to 1 for a model perfectly simulating the 

observations. The NSE is affected by the variance of the observed flows and 

thus provides higher scores when the variance is high and lower ones 

when the variance is low. This makes it difficult to compare values for 

dissimilar periods. However, the use of square root values lowers this 

impact by buffering differences in the variance. 

2.9 Multiple regression analysis 

Multiple regression analysis has been performed on some results. 

This method consists in predicting or explaining the variation of a 

dependent variable from a set of predictor variables (independent 

variables) (Salkind, 2007) in such a way that: 

 0 1 1 2 2 ... k kY x x x           (20) 

where Y corresponds to the dependent variable, xi to a predictor variable, k 

to the number of predictor variables, βi to regression coefficients 

(unknown), and ε to a random error with a mathematical expectation of 

zero. For this study, multiple regression analysis was used to evaluate the 

part of the variability in the dependent variable that could be explained by 

predictor variables. This is evaluated by the well-known coefficient of 

determination (R2) evaluated for multiple predictor variables and given by:  
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where SSR corresponds to the sum of squares for the regression, SST to 

the total sum of squares, j to the number of samples (measurements of Y), 

y to the estimates of the dependant variable with the regression, y to the 

mean value of Y, and yj to samples of Y. R2 represents the part of the 

variance of the dependant variable which can be attributed to the variance 

in the predictor variables. As R2 values tend to always increase when new 

explanatory variables are added even if they only help slightly to explain 

the dependent variable, an adjusted form of R2 is used instead. Unlike the 

common R2, the adjusted R2 may decrease when new independent 

variables are considered. The adjustment consists in weighting the R2 

value by a function of the number of samples and the number of predictor 

variables such that: 

  2 21
1 1adjusted

n
R R

n k

 
   

 
 (22) 

where n corresponds to the number of observations and k to the number of 

predictor variables.  

The t-statistic is also evaluated for every predictor variable to verify 

their pertinence. This statistic consists in testing the null hypothesis that 

the coefficient value is zero against the hypothesis that the coefficient 

value is different from zero. The regression is judged satisfactory when 

related p-values for every predictor variable is below 0.05, meaning that 

there is only a 5% probability that the predictor variable has no effect on 

the dependant variable.   
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It is important to note that the Pearson correlation coefficient (r) is 

used when only one predictor is available, to report the nature (sign) of the 

correlation (positive or negative). The Pearson correlation coefficient is 

calculated by: 

 

  

   
2 2

j jj

j jj j

x x y y
r

x x y y

 


 



 
 (23)
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Chapter 3 

Results 

This section groups results of the SA and of the evaluation of the 

influence of PETF on SWAT performance, temporal transposability, water 

partitioning, and parameterization.  

3.1 Sobol’’s SA 

Figure 5 illustrates the SA results for STi (blue) and Si (red). The 

central mark represents the median value of the 23 PETF, the box edges 

the 25th and 75th percentiles, while the whiskers extend to the extreme 

values. Parameters (abscissa) are ordered according to their median STi 

value and the dotted line illustrates the confidence interval for every PETF.  

Results clearly show that an important portion of the influence of the 

parameters originates from interactions between the parameters. Indeed, 

the sum of STi for all parameters ranges from 1.49 to 1.84 while the sum of 

Si ranges from 0.36 to 0.65, indicating that the model is non-additive, 

which is consistent with findings from Nossent et al. (2011).  

Figure 5 also shows that the aquifer percolation coefficient 

(Rchrg_dp) is by far the most influential parameter. Actually, the expected 

reduction in variance if this parameter would be fixed reaches 40% (Si) of 

the total unconditional model variance and the expected variance that 

would be left, if all parameters but this one would be fixed, reached 57% 

(STi). The difference between the former and the latter comes from the 

interactions between Rchrg_dp and the other parameters. Most SWAT SA 

reported in the literature identified instead the curve number (Cn2) as the 
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most influential (van Griensven et al., 2006; Feyereisen et al., 2007; 

Nossent et al., 2011) while it came second in our analysis. This is certainly 

linked to the au Saumon geology and climate and possibly to the objective 

function based on the square root of the stream flows. During low flows, 

the proportion of the discharge attributed to QGW will be higher than for 

the high flows, since low flows are normally derived from groundwater 

storage (Smakhtin, 2001). To the opposite, surface runoff (QSurf) will gain 

more importance during high flows, which generally coincide with wet or 

melting periods. Cn2 is function of soil permeability, land use, and 

antecedent soil moisture conditions, and mostly serves to calculate QSurf 

from SCS curves. Rchrg_dp corresponds to the portion of aquifer recharge 

which is lost to the deeper aquifer and does not contribute to groundwater 

flow (QGW). High sensitivity for the latter is plausible for the au Saumon 

watershed as recharge tends to come primarily from the upland water 

source. Another explanation could be that low flows are more frequent 

then high flows and that RMSEsqrt tends to give a more equal importance 

to every magnitude of flows, thus attributing more importance to the QGW 

component of the total flow.  

Rchrg_dp is actually the most influential parameter for every PETF 

except for E-16, which provided the highest mean PET (see Table 1). 

However, for this formulation, Cn2 is the most influential parameter. 

Calculating Pearson correlation coefficient (r) between the mean PET and 

Cn2 STi and Si gave 0.88 and 0.93 respectively, which shows that Cn2 

sensitivity is highly influenced by the choice of a PETF, more specifically 

by the quantity of PET. Higher PET leave less water available for runoff as 

the Ea component is applied before the distribution of precipitation 

between Qsurf and the water entering the soil profile. The higher sensitivity 

to Rchrg_dp for low PET (r = -0.67) could be attributed to the fact that more 

water will then reach the aquifer.  
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Figure 5: Main (Si) and total (STi) effect values for every parameters and PETF. 

Boxes include values obtained with every PETF for the corresponding parameter. 

Dotted lines correspond to the 95% confidence interval for every PETF (interval for 

which we are confident at 95% that the indices value of the corresponding 

parameter is situated in this interval for any PETF). 

Other influential parameters, for which sensitivity (STi) is correlated 

to the mean PET, are Revapmn (r = 0.99), Gw_Revap (0.99), Gwqmn (0.97), 

Alpha_bf (-0.94), Ch_N1 (-0.94), Ch_N2 (-0.92), Surlag (-0.92) and Ch_K2   

(-0.91). These results show that PETF impact the hydrological process in 

the model. Note that the routing parameters (Ch_N1 and Ch_N2) and the 

transmission losses (Ch_K2) are negatively correlated to the mean PET, 

which could be explained by the fact that a higher PET reduces the 

availability of water before it is partitioned between soil percolation and 

surface runoff. The sensitivity (STi) of parameters related to wrevap process, 

which influences the water table height in shallow aquifer, and the 
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sensitivity of Gwqmn, which identifies the threshold water table level for 

the base flow to occur, are positively correlated to the mean PET showing 

that dry spells are dominated by groundwater processes. These results 

stress the importance of an adequate representation of Ea, as PETF directly 

impacts the relative importance of hydrological processes in the model.  

Figure 5 also reveals that the au Saumon SWAT implementation is 

mainly affected by surface runoff (CN2, surlag), groundwater and soil 

processes (Rchrg_Dp, Alpha_bf, Gwqmn, Gw_Delay, Gw_Revap, Revapmn, 

Sol_Z, Sol_Awc), transmission losses (Ch_K2, Ch_K1), snow-related 

processes (Smtmp, Sno50cov, Smfmn, Smfmx, Timp, Snocovmx, Sftmp), and 

routing (Ch_N1, Ch_N2). On the other hand, parameters linked to the 

channel dimensions/routing (Ch_W1, Ch_W2, Ch_d, Ch_S1, Ch_S2), to 

plant growth (Phu_plt, Blai, LAI_init, Bio_init, Biomix), and to Ea calculation 

(Canmx, Epco, Esco) only account for a small portion of the total variance. 

The fact that parameters linked to plant growth and Ea calculations are 

less sensitive, and will thus be excluded from the calibration, leaves less 

flexibility for the model to adapt to different PETF, as they directly affect Ea 

calculations. This does not discriminate our analysis as a different study 

in which SA would have been applied before calibration would also have 

excluded those parameters (for this watershed obviously). 

The criteria used here for FP is to preserve at least 90% of the total 

variance of the model for every PETF, in order not to favour one 

formulation over another, while  keeping a small number of parameters for 

the calibration. This way, a parameter may be preserved even if only one 

PETF requires it for its sum of STi to exceed 90%. At the end, 21 

parameters were kept (Table 2). 
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3.2 Simulated hydrographs 

Figure 6 presents the daily inter-annual hygrographs obtained after 

calibration for each DSST series. Flow has also been smoothed by using 7-

days mean flow to improve visibility. The blue and red lines represent, 

respectively, the observed flow and simulated flow for the PETF with the 

best results in terms of NSEsqrt, which corresponds to E-01 for DC and DW, 

E-21 for HC and E-23 for HW. The dark gray shading represents 

hygrograms of the corresponding calibration period for every PETF and the 

light gray shading includes hygrograms of all calibration periods for every 

PETF (validated in the corresponding period). This figure shows that the 

model adequately represents the observed hygrogram. One can also see 

that the highest flows occur during the HC period, which makes sense as 

peaks flow are always attained for this basin during the spring freshet. 

Indeed, HC favours higher snow water equivalent levels.  

An interesting result from this figure is that simulated flows seem 

more sensitive to PETF on dry periods than on wet periods which is 

notable by the larger flow envelop for dry periods. This could be due to the 

fact that during dry periods, a good distribution of water between the 

different hydrological processes is necessary considering the limited 

quantity of water available. During wet periods when water is less limited 

and when aquifer recharge culminates, the model can, for example, 

counterpart the effect of higher (lower) PET values by letting less (more) 

water going to the deep aquifer recharge, which is not possible when the 

water is limited. Moreover, one can see that for the DW and DC periods, 

the larger sensitivity to PETF seem to occur during the melting period 

(April) as well as in November, which might be counter-intuitive as higher 

PET values are obtained during summer. This observation confirms the 

impact of the variation of calibration parameterization between the 
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different PETF having a yearlong effect. We can also see that the period of 

calibration (light gray shading) also seems to produce the highest 

variability during the melting period, showing a high sensitivity of the 

snow melt module to the period of calibration.  

 

Figure 6: Observed and simulated flow for each validation period. Blue line is the 

observed flow and red line is the simulated flow for the PETF with the best 

performance in the corresponding validation period. Dark gray envelop includes 

flow series for every PETF in the corresponding validation period and light gray 

envelop includes flow series for every calibration periods and PETF in the 

corresponding validation period. 

The following sections present results from calibration on each DSST 

periods from different perspectives. The influence of the PETF and 

calibration period on performance is discussed first, followed by the 

influence on hydrological process. The influence of PETF and calibration 

period on parameterization of the model is presented last.  
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3.3 Temporal transposability 

Calibration has been performed for all PETF and five datasets: 4 

DSST and all observations (COMP). Validation performances (NSEsqrt) are 

plotted per DSST period in Figure 7 where the best performance is 

achieved, as expected, when validating over the same DSST period for 

which calibration was made. Figure 7 hence illustrates the performance 

lost due to the temporal transposability of the model and selection of a 

“suboptimal” PETF. The blue inverted triangles correspond to the 

calibration in DC, the red circles to DW, the green diamonds to HC, the 

black squares to HW and the pink right-oriented triangles to COMP. The 

gray bars represent the variation of performance due to the calibration 

periods for a specific PETF and validation period.  

As it would be very demanding to evaluate a confidence interval for 

each calibration period and for each PETF, it has been calculated only for 

E-01 and on the entire dataset (see Figure 7). The selection of this period is 

based on the assumption that a higher number of points (days) will result 

in a less robust calibration (for the same calibration method). The E-01 

formulation has been chosen because it gave good results for each period 

of calibration and because it showed the highest level of interaction 

between parameters in SA (STi = 1.84). We assume that a higher level of 

interaction between the parameters leads to a higher potential of 

equifinality and thus potentially to a less robust calibration. The 

confidence interval has been calculated based on 27 calibrations for the  

E-01 formulation on the entire period. The 27 calibrations have been done 

by randomly changing the random seed number as to get different 

calibration pathways. The confidence interval corresponds directly to the 

difference between the maximum and minimum values for those 
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calibrations. The horizontal dotted line in Figure 7 corresponds to this 

interval. 

 

Figure 7: Values of NSEsqrt for every PETF and validation periods. Every type of 

points correspond to a calibration period (blue inverted triangles refer to calibration 

in Dry/Cold (DC), etc.). Error bar extended with horizontal dotted line corresponds 

to 27 calibrations with E-01 on the complete period (1977-2003). PET formulation 

numbers refer to those from Table 1. 

3.3.1 Performances in calibration 

Globally, the best performances (at least twice on the four best 

ranks) are achieved by E-01, E-14, E-17, E-21 and E-23 and the worst (at 

least twice on the four worst ranks) by E-02, E-11, E-12, E-16 and E-20 

when validating on the same periods as the calibration. It is interesting to 

see that 4 out of the 5 formulations which show globally the best 

performances are only temperature dependant which is consistent with 
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findings from Oudin et al. (2005). Also, 3 out of 5 formulations which show 

globally the worst performances need at least three inputs (RH, T°, Rs) and 

the two others, two inputs (RH, T°). It is although reassuring that the 

formulations giving the best performances for a given 

calibration/validation period also give good performances for the other 

calibration/validation periods, showing that relative PETF performance is 

not much affected by calibration periods (when validating in the same 

period).  

3.3.2 Performances in validation 

As expected, the best results are achieved when the calibration 

period is the same as the validation period and the worst (in most cases) 

when the calibration period is the opposite climate in terms of DSST. This 

confirms the relevance of performing a DSST prior to a climate projection 

in order to assess the uncertainty due to the possible modification in 

climate statistics. On the other hand, we can also see that the calibration 

on the COMP period gives almost every time the second best calibration, 

which means that choosing a sufficiently long period for calibration can 

effectively result in a more robust calibration and possibly to more reliable 

results in a projection context. Also, as in Figure 6, we can see that, 

globally, the sensitivity to PETF is similar to the sensitivity to the chosen 

calibration period. Indeed, the mean difference of performance between the 

best PETF and worst PETF for the different validation periods is 0.084 and 

the mean difference between the best and worst performance of a given 

PETF for all PETF and all validation periods is 0.087. In comparison, the 

mean value of the difference between the best and worst performance for 

the 27 calibrations of E-01 when validating over the four DSST periods 

gives 0.014. This clearly shows that the variability in performance is 

mainly due to the PETF and the calibration periods and not from the 

calibration process. 
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Even if the sensitivity to the calibration periods and PETF is similar, 

we can see that it varies from one validation period to another. Indeed, it is 

clear from the results illustrated in Figure 7 that the variation in NSE due 

to the calibration period for the validation in HC is smaller compared to 

other validation periods. Based on the mean difference between the 

maximum and minimum values of the NSEsqrt for each PETF, we get values 

of 0.12, 0.08, 0.05 and 0.09, respectively for DC, DW, HC, and HW. This 

means that the HC period is indeed less sensitive to the calibration periods 

than the other validation periods. This might be due to the bad 

transposability of parameterization issued from the calibration in the HW 

period. Even for the HC and DW periods, this calibration period often 

performs as bad or even in some case worse than the calibration in the 

complete opposite climate in terms of DSST. Moreover, when validating 

with the COMP period (not shown here), the HW period performs almost 

always the worst. As DW and HC still have more affinity with the HW 

period (temperature or precipitation being statistically closer) than the DC 

period, this could explain the lower sensitivity to calibration for the DW 

and HC periods. Parameterization results (section 3.5) will effectively show 

that the HW period shows extreme values (relative to other periods) for 

many parameters, particularly for those related to groundwater and snow 

module. It is necessary to nuance these results by the fact that the NSE 

criterion is weighted by the variance of the observed flow.  Indeed, a very 

large variance of the observed flow will tend to tamper the variability when 

calculating the NSE, since a higher numerator will be needed to obtain the 

same absolute variation in NSE. 

The sensitivity to PETF was found higher for dry periods than for 

humid ones. Indeed, the differences between the maximum and minimum 

NSEsqrt for a given calibration and validation period and for all PETF are 

0.14, 017, 0.06 and 0.08, respectively for DC, DW, HC and HW. This 
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higher sensitivity to PETF in dry periods may be explained by the limited 

quantity of water during those periods, resulting in the need for a better 

representation of Ea. Indeed, we think that when water is somehow limited, 

the model has less adaptability as, trivially, no process creates water, thus 

no parameter can virtually add water to the model when needed.  

In terms of robustness (inter-PETF worst performance comparison 

for a given validation period), we can see that the formulations giving the 

best results when validating in the same period as the calibration period 

are not necessarily the ones showing more robustness. As an example, the 

E-09 formulation ranks 18th for the calibration and validation in DC, but 

occupy the 3rd rank for the calibration on HW and validation on DC, the 

latter rank corresponding to the robustness of E-09. This shows that the 

choice of PETF is non-trivial as the relative performance of a formulation in 

calibration does not necessarily reflect the relative performance of this 

formulation when validating on an opposite period in terms of DSST. 

3.3.3 Hypothesis concerning inter-PETF performance variability 

In an attempt to explain the performance variability between PETF, 

Figure 8 presents the daily mean inter-annual values of PET, Ea as well as 

every component of Ea as described in Figure 2. The line colors go from 

green for the best PETF in terms of performance to red for the worst one. 

Note that the y-axis scale is different for the PET-related graphic than for 

the other components in order to improve readability. Based on Figure 8, 

the poor performance of some PETF is attributed to winter PET production. 

Indeed, we see that the best formulations are those who produce low 

winter PET. As this figure shows, winter PET translates into winter Ea, 

especially CANEV and SEV, which lowers summer water availability to 

TRANSP, hence producing not enough Ea in summer. We can see that 
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some PETF producing a lot of PET in summer and giving mediocre results 

actually produce relatively low Ea in summer. Figure 8 clearly shows that 

this lower Ea is due to lower values of transpiration (T) for those PETF, 

which may result from lower soil moisture content or a lower LAI resulting 

from water stress (water stress is correlated to the ratio of T and ep_max). 

Another cause for lower performance may come from the fact that some 

formulations produce summer PET that is too low for the model to 

correctly reproduce summer flows.  

 

Figure 8: Daily inter-annual mean component values of Ea for every PETF (one line 

per PETF) on the complete period (1977-2003). Formulation performances go from 

green for best PETF to red for worst PETF (NSEsqrt). 

3.4 Water partitioning 

Figure 9 illustrate water partitioning based on equation (4) in COMP 

(1977-2003) for every PETF (x-axis) and DSST. PETF are drawn in 
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descending order of performance while the white dotted line illustrates the 

PETF relative performance from 0 (worst) to 1 (best). The panels of Figure 9 

correspond to different periods of calibration although the water balance is 

always calculated on COMP. The panel entitled Calibration in COMP (E1 

only) groups the 27 repetitions of the E-01 calibration on COMP, 

illustrating the influence of the calibration process on water partitioning. 

The sum of every component on total precipitation ranged from 1.0001 to 

1.0003 for every formulation and DSST, confirming that the balance is 

effectively closed. 

Figure 9 shows the clear influence of PETF and DSST on the 

partition of water. Indeed, for a given calibration period, the absolute 

difference in Qsurf contribution to the total water balance between PETF is 

6% for the best case (DC) and 10.8% for the worst case (DW). Relative to 

the mean value of the fraction of this component for the same periods 

(shown in parenthesis thereafter), we get a value of 15% for the best case 

(DC) and 28% for the worst case (DW). As a comparison, the same 

component gives a difference of 3.6% (8.9%) for the 27 calibrations on the 

same PETF.  For Qgw, which is another important contributor to total flow, 

we get 5% (40.8%) in the best case (COMP) and 10.6% (69.8%) in the worst 

case (DW), while the same component gives 3% (24.8%) for the 27 

calibrations on the same PETF. This shows that the uncertainty arising 

from the PETF is not negligible. Repeating the same exercise, but 

considering the effect of the calibration period, led to a maximum 

difference of 13.5% (34.5%) for Qsurf and 15.7% (129.1%) for Qgw.   



42 
 

 

Figure 9: Hydrological component fraction for different calibration periods with relative 

performance (white dotted line) of every PETF. Bar colors (stacked) correspond to specific 

hydrological component as a fraction of total precipitation in the complete period (1977-

2003). The lower right-end graph corresponds to results of the 27 calibrations with E-01 

formulation in the complete period. 

Figure 9 also reveals that the relative importance of the Qgw 

component is higher when calibrating over dry periods than for humid 

ones: the groundwater flow gain in importance for dry periods. Calibrating 

the model in those periods seems to result in a parameterization favouring 

the groundwater flows.  

Finally, Figure 9 shows that there is no clear relation between the 

volume of evapotranspiration and the performance of the PETF. The 

performance of PETF is thus mainly linked to the production of PET in 

winter and not to its volume. Calculating the adjusted coefficient of 

23 17 22 14 13 1 21 8 18 3 10 6 4 9 16 7 15 5 2 19 12 20 11
0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n
 o

r 
re

la
ti
v
e
 p

e
rf

o
rm

a
n
c
e

Calibration in DC

 

 

E
a

w
DEEP

w
REVAP SW+AqSt Q

GW
Q

LAT
Q

SURF

23 14 17 21 1 8 18 22 10 13 9 4 7 6 3 12 15 19 5 16 2 20 11
0

0.2

0.4

0.6

0.8

1

Calibration in DW

21 23 1 7 8 4 17 22 14 18 10 9 6 3 19 5 2 15 16 13 12 20 11
0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n
 o

r 
re

la
ti
v
e
 p

e
rf

o
rm

a
n
c
e

Calibration in HC

1 17 23 21 10 18 4 9 3 22 19 14 8 13 15 6 7 16 5 20 2 12 11
0

0.2

0.4

0.6

0.8

1

Calibration in HW

23 1 14 21 17 8 18 22 6 4 10 3 7 15 5 9 13 12 2 19 16 20 11
0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n
 o

r 
re

la
ti
v
e
 p

e
rf

o
rm

a
n
c
e

PET formulation number

Calibration in COMP

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

PET formulation or repetition number

Calibration in COMP (E1 only)



43 
 

determination (R2
adjusted) between the NSEsqrt and the contribution of each 

component to the water budget shows that, for DC (R2
adjusted=0.64) and DW 

(R2
adjusted=0.71), performance is mostly correlated to wdeep and wrevap, while 

for HC performance, it is mostly correlated to QLAT and Qsurf (R2
adjusted=0.51) 

and, for HW, to Qsurf (R2
adjusted =0.52). This, again, supports the idea that 

dry events are more driven by groundwater flow and wet events are more 

driven by surface flow.  

3.5 Parameterization 

The influence of PETF and DSST on parameterization explains much 

of the presented results. Figure 10 illustrates the values of the calibrated 

parameters for all conditions tested. Again, the blue inverted triangles 

identifies DC calibration, the red circles DW, the green diamonds HC, the 

black squares HW and the pink right-oriented triangles COMP. The gray 

bars illustrate the DSST variation for each PETF. Finally, red lines 

illustrate the variability arising from the 27 calibrations of E-01 on COMP. 

3.5.1 PETF influence 

Figure 10 reveals a very large variability in parameter values, 

although some are more constant. Calculating the variance of values 

scaled from 0 to 1 with their respective boundaries and taking the mean 

value of this variance for every calibration identifies parameters with the 

highest inter-PETF variability: Gw_revap (9.0x10-2), Gw_Delay (7.8x10-2), 

Ch_N1 (5.1x10-2), and Revapmn (4.8x10-2). On the other hand, parameters 

showing lower variability are Alpha_Bf (5.1x10-6), Ch_K1 (1.0x10-3), Surlag 

(1.9x10-3), Smfmx (2.1x10-3), and Smtmp (2.4x10-3). Higher variability does 

not necessarily mean that this parameter is more influenced by PETF as it 

might as well be caused by the calibration process due to a lesser 
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sensitivity of the parameter, to an imperfect calibration or to interaction 

between parameters (equifinality).  

To evaluate the impact of the calibration process on the variance of 

the parameters, a KS test has been performed between the series of 

parameter values from the 27 calibrations of E-01 with the COMP period 

and the 23 calibrations on different PETF for the same period. Results 

from this test, in terms of p-values, are grouped in Table 4. From the four 

parameters showing the highest variability, only Gw_revap, Gw_Delay, and 

Revapmn are significantly (p-values inferior to 0.05) linked to the PETF. 

Gw_revap is associated to wrevap, Gw_Delay to the time delay in aquifer 

recharge, and Revapmn to the water level threshold of shallow aquifer for 

wrevap to occur. This result is quite interesting as Gw_revap and Revapmn 

are the only parameters directly used to calculate wrevap and also showed 

to be highly correlated to mean PET in the SA, meaning that it is highly 

influenced by the PETF. This result is expected as this process is 

associated to the volume of water moving into the soil in response to water 

deficiencies that will consequently impact the water availability in the soil 

layers. Higher PET might thus cause higher water deficiencies favouring 

wrevap but also limit the percolation from the soil layers, limiting wrevap as 

the aquifer recharge will be lower (wrevap only occurs if the amount of water 

in aquifer is higher than Revapmn). Calculating Pearson correlation 

coefficient (r) between the mean PET and the mean wrevap for different PETF 

over the COMP period gives -0.54, suggesting that the second effect of 

PETF on wrevap (percolation limitation followed by wrevap limitation) is more 

important than the first effect (higher deficiencies followed by higher wrevap) 

for this case. No explanation has been found for the relation between 

Gw_Delay and PETF.  
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Figure 10: Parameter values comparison for every calibration period and every PETF. Each type of point corresponds to a specific 

calibration period (red circle for calibration in Dry/Warm (DW), etc.). 
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Other parameters that do not show very high variability but are 

significantly influenced by PETF are Rchrg_Dp (p = 7.78x10-6), Sno50cov 

(2.4x10-10), and Timp (2.4x10-4). As explained earlier, Rchrg_Dp directly 

affects the fraction of the aquifer recharge that is transmitted to the deep 

aquifer. It is thus expected that this parameter is influenced by PETF, as 

higher (lower) PET results in less (more) water for deep aquifer recharge. 

Indeed, the Pearson correlation coefficient (r) between this parameter 

values and the mean PET for the COMP period gives -0.67, showing that 

higher (lower) PET effectively results in lower (higher) Rchrg_Dp values, and 

thus to a lower (higher) portion of aquifer recharge transmitted to the deep 

one. Influence of PETF on Sno50cov and Timp is difficult to assess as those 

parameters are snow-related.  

Cn2 is also correlated to the mean PET (r = 0.89). As explained in 

section 3.1, PETF producing more PET leave less water available to 

partitioning, as Ea is applied beforehand. A positive correlation between 

Cn2 and mean PET is thus expected since, when less water is available to 

the partitioning, higher Cn2 values will be needed to produce a similar 

surface runoff. 

3.5.2 DSST influence 

Table 4 also identifies the highest significant difference for all DSST 

pairs (if any). For example, 6 KS tests have been performed for Rchrg_Dp, 

i.e. all combinations of the 4 DSST. For this parameter, the lowest p-value 

(2.20x10-6) occurs with DW/HW, showing that this parameter is mainly 

affected by precipitation. Indeed, as shown in Figure 10, this parameter 

culminates for almost all PETF in HW, while it is the opposite in DW. The 

parameter is also almost always higher in HC than in DC.  
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Table 4: Statistical analysis of parameter values for the different calibration periods and PETF. Every p-value corresponds to results from 

Kolmogorov-Smirnov tests. P-values of second column correspond to comparison between associated parameter values obtained with the 

27 calibrations of E-01 and with all PETF in the complete period. P-values of the fourth column correspond to comparison between 

associated parameter values for the pair of calibration period showing the largest significant difference. See section 2.9 for R2adjusted 

meaning. 

Parameter 

name 

p-value 

comparing E-01 
calibrations to 

all PETF ones 

DSST Pair 

showing the 
largest significant 

difference 

p-value for 

this pair 

R2adjusted for the 

evaluation of 
interaction between 

parameters 

Number of 

parameter 
used in 

R2adjusted 

Correlated parameters 

Rchrg_Dp 7.78x10-07 DW/HW 2.20x10-06 0.64 3 Cn2, Ch_N1, Sol_Awc 

Cn2 1.21x10-02 DC/HC 4.18x10-07 0.75 4 Ch_K2, Ch_N1, Gw_Delay, Sol_Z 

Ch_K2 2.42x10-02 - 9.58x10-02 0.72 4 Cn2, Ch_N1, Gw_Delay, Gw_Revap 

Surlag 1.43x10-01 - 9.58x10-02 0.98 2 Ch_N1, Gw_delay 

Alpha_Bf 5.76x10-02 HC/DW 4.28x10-02 0.00 0 - 

Gwqmn 1.25x10-01 DC/HW 4.18x10-07 0.60 2 Cn2, Revapmn 

Smtmp 5.95x10-02 HC/HW 2.48x10-11 0.94 4 Smfmn, Smfmx, Snocovmx, Timp 

Ch_K1 3.17x10-01 DC/HC 4.18x10-07 0.26 2 Surlag, Ch_N1 

Sno50cov 2.40x10-10 DC/HC 1.13x10-08 0.85 4 Gw_Delay, Smfmx, Gw_Revap, Snocovmx 

Smfmn 1.75x10-03 DC/HC 2.10x10-10 0.91 4 Smtmp, Smfmx, Snocovmx, Timp 

Smfmx 7.14x10-01 HC/HW 2.48x10-11 0.91 4 Smfmn, Smtmp, Snocovmx, Timp 

Timp 2.40x10-04 DC/HW 2.48x10-11 0.73 4 Smfmn, Smtmp, Smfmx, Snocovmx 

Ch_N1 8.17x10-01 - 3.60x10-01 0.98 4 Surlag, Gw_delay 

Snocovmx 3.17x10-01 DC/HC 4.28x10-02 0.92 4 Smfmn, Smtmp, Smfmx, Timp 

Gw_Delay 2.40x10-04 DC/HW 6.55x10-04 0.79 4 Cn2, Ch_K2, Ch_N1, Sol_Awc 

Gw_Revap 7.35x10-04 - 1.95x10-01 0.73 3 Rchrg_Dp, Ch_K2, Sol_Awc 

Ch_N2 3.54x10-01 DC/HW 4.28x10-02 0.00 0 - 

Sftmp 1.04x10-02 DC/HW 2.48x10-11 0.33 3 Smtmp, Smfmx, Sol_Z 

Revapmn 8.56x10-03 - 9.58x10-02 0.61 2 Gwqmn, Sol_Z 

Sol_Z 4.04x10-02 DC/HW 2.20x10-06 0.64 3 Cn2, Ch_N1, Sol_Awc 

Sol_Awc 4.61x10-02 HC/DW 6.55x10-04 0.56 3 Gwqmn, Gw_Delay, Sol_Z 
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This is explained by the fact that, during dry periods, less water is 

available for deep aquifer recharge, resulting in lower Rchrg_Dp. During 

wet events, more water is available and favours higher Rchrg_Dp. This also 

explains why, when calibrating on a dry period and validating on COMP, 

wdeep correlation to performance increases. Indeed, COMP/DW and 

COMP/HW give p-values of 6.4x10-3 and 9.6x10-2 respectively, showing 

that only DW values are significantly different than those for the COMP 

period. 

A similar analysis for Cn2 reveals why, for humid periods, Qsurf is 

more correlated to the performance than any other water budget 

component. Indeed, as already mentioned, Cn2 is associated to 

permeability, land use, and antecedent soil moisture conditions, and is 

mainly used to calculate the surface runoff (QSurf). In this case, the lowest 

p-value (4.18x10-7) occurs with DC/HC, showing that this parameter is, as 

Rchrg_dp, mainly affected by precipitation. COMP/DC and COMP/HC give 

p-values of 2.0x10-1 and 2.2x10-6 respectively, stating the importance of 

selecting a calibration period statistically similar to the projection one. 

Otherwise, parameterization might need to be dynamically updated as a 

function of the climate conditions, as already pointed out by Cibin et al. 

(2010). 

The impact of air temperature is also shown in Figure 10, notably for 

snow parameters Smtmp, Smfmx, Timp, and Sftmp. Smtmp and Sftmp are 

the snowmelt threshold temperature and mean temperature at which 

precipitation is equally likely to be liquid or solid. Smfmx and Timp are the 

melt factor for June 21st and snow temperature lag factor.  

As an example, for Smtmp, values are always higher for warmer 

periods than for colder ones, indicating that snow melt occurs at lower 
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temperature for colder periods than for warmer ones. Indeed, looking back 

at Figure 6, we notice that for warm periods higher flows are obtained in 

February and Mars when using calibration of other periods (pale gray 

envelop) which could be attributed to lower Smtmp values. It is although 

difficult to explain and demonstrate how snow melt parameters act on 

hygrographs because of the high level of interaction (as will be showed 

below) between them. It is nevertheless clear that calibrating on different 

climatic periods affects snow parameters.  

Gwqmn is also influenced by the calibration period – the lowest p-value 

(4.18x10-7) occurs with DC/HW. It is the threshold water level in the 

shallow aquifer for base flow (Qgw) to occur. Its lower DC values explain 

why QGW account for a higher proportion of the water budget than for 

humid periods. High values are also obtained in DW, but this could be 

explained by other parameters which tend, in DW, to favour shallow 

aquifer recharge. Indeed, Cn2 values are then relatively lower and favour 

recharge. We can detect in DW that Rchrg_Dp is very low for most PETF, 

which diminishes the water transferred to the deep aquifer and favours 

higher water content in the shallow aquifer, explaining higher Gwqmn, 

even if a high QGW contribution to the water budget is observed.  

3.5.3 Equifinality 

As shown above, evaluating the impact of PETF and calibration 

periods is relatively easy but evaluating calibrated parameter values 

impact on hydrological processes, to get a better understanding of those 

impacts, is way more complicated. This is partially due to the fact that 

parameters interact with each other, which has been clearly shown in SA. 

These interactions can also cause higher variability in parameter values as 

interactive parameters can compensate each other. As the variability in 
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parameterization is very high for the 27 COMP calibrations of E-01 (Figure 

10), the part of the variability which may be attributed to parameter 

interactions has been evaluated by calculating the adjusted coefficient of 

determination (R2
adjusted) for combinations of up to 4 parameters (i.e. 

regression of a parameter value with up to 4 predictor variables) for 

parameter values issued from these 27 E-01 calibrations. The limitation of 

4 predictors is based on Knofczynski and Mundfrom (2008), which 

suggested that, for a good prediction level with R2 of at least 0.7, the 

number of samples should be 25 (27 samples used for this study). 

Combinations with the highest R2
adjusted have been retained.  Also, only the 

combinations with p-values lower than 0.05 (t-statistic) for every predictor 

have been kept.  

Table 4 shows the R2
adjusted for every parameter and for the best 

combination and also presents the number of parameters used in the 

regression. For parameters with R2
adjusted lower than 0.7, the maximum 

number of parameters used for the regression has been lowered. Finally, 

parameters with R2
adjusted values lower than 0.6 have been judged 

nonsignificant as a higher number of samples would then be required 

(R2
adjusted in red). Parameters with R2

adjusted = 0 have no combination of 

predictors resulting in p-values lower than 0.05 (t-statistic). It is important 

to note that the part of variability of the parameters which is not explained 

by interactions, may be attributed to an imperfect calibration process.  

These results will not be discussed in details here as this is not 

directly linked to our objectives, but are presented to justify and explain 

the high variability in parameterization resulting from the 27 COMP 

calibrations of E-01, as well as to justify the difficulty putting in relation 

parameterization as well as water partitioning. It is indeed interesting to 

see that, for many parameters, at least 70% of the variability can be 
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attributed to interactions with other parameters. Moreover, we can see that 

snow-related parameters have very high R2
adjusted especially Smtmp (0.94), 

Smfmn (0.91), and Smfmx (0.91). This might seem trivial as those 

parameters are all used in snowmelt routines but it shows that calibrating 

multiple parameters with interactions between them and used for the 

same purpose (evaluating snow melt, for example) creates an equifinality 

problem making it difficult to assess the impact of calibration periods or 

PETF for such a complex model. Another interesting result taken from 

Table 4 is the strong correlation between Surlag and Ch_N1. In fact, 

calculating the correlation only between these two parameters gives an R2 

value of 0.96. This result shows how much parameters can compensate 

one another. This strong correlation is explained by the fact that Surlag 

(surface runoff lag coefficient) affects the release delay of surface runoff to 

the main channel, while Ch_N1 is the Manning coefficient used to calculate 

the time of concentration of tributary channels. Both parameters thus 

have a similar effect on the hydrological processes and may thus 

compensate each other. Finally, one may note again that Gwqmn is 

correlated with Cn2, confirming the hypothesis of interaction stated 

earlier.  

3.5.4 Partial conclusion 

This section showed how difficult it can be to decipher a complex 

model like SWAT. Indeed, the impact of PETF and calibration periods is 

easy to assess in terms of performance but the problem of equifinality 

makes it difficult to identify how and why these impacts occur. For 

example, it has been possible to relate that calibrating on a dry season 

produces a higher groundwater flow contribution to the water balance 

than when calibrating on wet years (for a validation in the same period), 

but explaining this finding based on the parameterization turned out 

difficult because of the length of the causal chain and the fact that many 
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factors included in this chain compensate each other (for example, Cn2 

affects precipitation partitioning, many parameter influence the volume of 

water percolating through the shallow aquifer, others dictate how much 

water ‘revap’, more affect groundwater flow, etc.). This equifinality problem 

also shows how a physical model can, in some ways, act as a black box as 

some influential parameters which are difficult or even impossible to 

measure interact with other parameters, making it hard to prove that we 

obtain good results for the right reasons and that processes simulated by 

the model really represent the physical reality of the catchment.  
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Chapter 4 

Conclusion & recommendations 

4.1 Conclusion 

4.1.1 Sensitivity analysis 

SA has been performed on each of 23 PETF using Sobol’ method. The 

results showed that: 

o PETF directly influences the parameter sensitivity such that, for 

formulations leading to lower mean PET, the model relies more on 

surface processes, while it relies more on groundwater processes for 

the opposite; 

o the au Saumon catchment is mainly influenced by parameters 

related to surface runoff, groundwater and soil processes, 

transmission losses, snow-related routines, and routing. On the 

other hand, parameters linked to channel dimensions, plant growth, 

and Ea calculation account for a much smaller percentage of the total 

model variance.  

4.1.2 DSST performance 

Five calibrations, one for each of the 4 climatologically contrasted 

periods (DSST) and one for the complete data set (1977-2003), have been 

performed for each PETF (23) resulting in a total of 115 calibrations. The 

analysis of the performance brought the following observations: 
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o four out of five PETF leading to the best performance are 

temperature-based while the worst ones need two inputs or more; 

o the variability in performance due to PETF (average of 8.4% in NSE) 

and calibration period (average of 8.7% in NSE) are similar and about 

6 times higher than the one associated to the calibration process;  

o validating in HC and DW showed less sensitivity to calibration 

periods in terms of performance than when validating in DC and HW;  

o dry periods are more sensitive to PETF than humid ones in terms of 

performance;  

o the relative performance of a PETF in calibration does not necessarily 

reflect the relative performance of this formulation when validating 

on an opposite DSST period; 

o the reason of a PETF showing a worse performance seems to be 

mainly correlated to the winter PET production, which results to 

higher Ea in winter and lower transpiration (T) in summer; 

o performances for all DSST reveal that, for the au Saumon catchment, 

E-01 and E-23 PETF should be preferred and E-11 and E-20 

formulations should be avoided. It is interesting to note that E-23 

was developed specifically for Canadian catchments based on linear 

regressions, showing the pertinence of using locally developed 

formulations for evapotranspiration modelling. Studies on other 

Canadian catchments would be necessary to support this 

conclusion, although Seiller et al. (2012) arrived at a similar 

conclusion for the same watershed, but resorting to 20 lumped 

hydrological models. 
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4.1.3 Water partitioning 

An equation has been derived from SWAT theoretical documentation to 

assess the influence of PETF on water partitioning. Looking at the relative 

contribution of different hydrologic processes to the total water budget, the 

following observations were made: 

o the relative importance of the groundwater flow to the total water 

budget is higher when calibrating on dry periods than on humid ones 

(for the same validation period); 

o PETF causes an absolute variation in surface runoff (Qsurf) and base 

flow (Qgw) contributions to the total water budget ranging respectively 

from 6% to 10.8% and from 5% to 10.6% depending on the 

calibration periods, from which about 3.6% (Qsurf) and 3% (Qgw) could 

be attributed to the calibration process. Including the impact of the 

calibration periods gives a maximum absolute variation of 13.5% and 

15.7% respectively for Qsurf and Qgw; 

o performance is more linked to groundwater components (wdeep and 

wrevap) for dry periods and more linked to surface component (Qsurf) 

for humid ones.  

4.1.4 Parameterization 

Optimal parameter sets issued form the 115 calibrations have been 

analyzed. The main conclusions from this analysis were that: 

o PETF affects groundwater-related parameters (Gw_Delay, Revapmn, 

Gw_revap, Rchrg_Dp), snow-related parameters (Sno50cov, Smfmn, 

Timp, Sftmp), and Cn2; 
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o the period of calibration affects parameterization: Rchrg_Dp and Cn2 

are more influenced by precipitation while Smtmp, Smfmx, Timp, and 

Sftmp by temperature; 

o the high level of interactions is reflected in the high correlation 

between parameters of the 27 COMP calibrations with E-01. Indeed, 

the fact that there is such a high variation in parameters and small 

variation in the objective function shows that the effects of many 

parameters compensate one another. This equifinality problem shows 

how a physical model can, in some ways, act as a black box, as some 

influential parameters that are difficult or even impossible to 

measure interact with others, making it hard to ascertain that we 

end up with good results for the right reasons and that the processes 

simulated by the model represent the physical reality of the 

catchment. 

4.2 Recommendations 

PETF influences performance and the hydrological processes 

simulated by the model. Fluctuation in the parameterization suggests that 

for a good representation of the actual evapotranspiration, the model must 

be reliable in terms of water partitioning. This might translate in 

developing novel methods for actual evapotranspiration calculations and 

going through extensive testing to guarantee the ability to correctly 

simulate the evapotranspiration processes under dissimilar climatic 

conditions (spatial and temporal). Applying a similar methodology to other 

catchments could also provide a deeper understanding of the reasons why 

some PETF perform better than others.   

Many results illustrate that parameterization identified for specific 

conditions (calibration periods) shows specificity related to those 
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conditions, suggesting the necessity of dynamically adapting the model. 

This could be performed by applying DSST parameter sets as a function of 

the climatic conditions encountered during simulation in order to reduce 

uncertainties due to the specificity of the calibration dataset. As we 

normally calibrate a model to reflect the specificity of a watershed, it seems 

also logical to dynamically adapt model parameters as a function to the 

specificity of the simulated periods.  
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E11 : Romanenko (1961) 2

a a

s

T e
PET  4.5 1 1

25 e
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E12 : Linacre (1977)  
 a

a d

a

500 T 0.006z
15 T T

100 LatPET  
80 T


 




 

               

     ( )

with Lat thelatitudeof thestationand

z thealtitude m
 

E13 : Hydro-Québec - HSAMI  

 

max min

max min

PET  0.02978 T T

9
exp 0.019 T T 64

5

 

  
   

  

 

E14 : Kharrufa (1985) 
1.3

a

DL
PET  0.34 100. .T

365 12

 
  

 
 

E15 : Wendling – WASim (1975)  

 

s

a
k k

PET 1  00R 1.1 α

T 22
93.f . ,   f    0.8

150 T 123
with

 

 
    

 

E16 : Turc (1955)   sa

a

R 1 α 24T1
PET 1  000. . . .c

λρ T 15 1.3

  
  

 
 

50 RH
 c 1  for RH 50% 

70

1      50%

with

c for RH


  

 

 

E17 : Jensen and Haise (1963) 
e aR T

PET 1  000. .
λρ 40

  

E18 : McGuinness and Bordne 

(1972) 
e aR T 5

PET 1  000. .
λρ 68


  

E19 : Doorenbos and Pruitt (1977) 
sR1

PET  K. . 0.3
λ γ


 


 

2

2

RH RH
 K 1.066 0.13 0.045U 0.02 U

100 100

RH
0.00315 0.0011U

100

with    

 
  

 

 

E20 : Abtew (1996) 
 sR

PET  0.53 1 α .1000
λρ

   

E21 : Makkink (1957) 
sR1

PET 0.61. . . 0.012 100
λ γ 58.5

 
   

  
 

E22 : Oudin (2005) 
e aR T 5

PET 1  000. .
λρ 100


  

E23 : Baier and Robertson (1965)  max max min

e

PET  0.157T 0.158 T T

0.109R 5.39
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PET Potential Evapotranspiration (mm.day-1) 

Δ Slope of vapor pressure curve (kPa.°C-1) 

λ Latent heat of vaporization (MJ.kg-1) 

ρ Water density (=1000 kg.L-1) 

da Air density (kg.m-3) 
γ Psychrometric constant (kPa.°C-1) 

es Saturation vapour pressure (kPa) 

ea Actual vapour pressure (kPa) 

ra Aerodynamic resistance (s.m-1) 

rs Surface resistance of reference crop (= 70 s.m-1) 

U Wind speed 2 m above soil surface (m.s-1) 
Ta Air temperature (°C) 

Td Dew point temperature (°C) 

Tmax Maximum air temperature (°C) 

Tmin Minimum air temperature (°C) 

Re Extraterrestrial radiation (MJ.m-2.day-1) 
Rs Global short-wave radiation (MJ.m-2.day-1) 

Rn Net incoming solar radiation (MJ.m-2.day-1) 

RH Relative humidity (%) 

DL Day length (h.day-1) 

α Surface albedo (-) 

JD Julian day (ordinal date) 
Cp Air specific heat capacity (= 1.013.10-3 MJ.kg-1.°C-1) 

  

 


