

DANIEL GERARD KREEFT

DEVELOPMENT AND IMPLEMENTATION OF A

COMPUTER-AIDED METHOD FOR PLANNING

RESIDENT SHIFTS IN A UNIVERSITY HOSPITAL

Mémoire présenté

à la Faculté des études supérieures et postdoctorales de l’Université Laval

dans le cadre du programme de maîtrise en sciences de l'administration

pour l’obtention du grade de Maître ès sciences (M.Sc.)

OPÉRATIONS ET SYSTÈMES DE DÉCISION

FACULTÉ DES SCIENCES DE L ' A D M I N I S T R A T I ON

UNIVERSITÉ LAVAL

QUÉBEC

2012

© Daniel Kreeft, 2012

Résumé

Ce mémoire propose une formulation pour le problème de confection d'horaire pour

résidents, un problème peu étudiée dans la litérature. Les services hospitaliers

mentionnés dans ce mémoire sont le service de pédiatrie du CHUL (Centre Hospitalier de

l'Université Laval) et le service des urgences de l'Hôpital Enfant-Jésus à Québec.

La contribution principale de ce mémoîre est la proposition d'un cadre d'analyse pour

l’analyse de techniques manuelles utilisées dans des problèmes de confection d'horaires,

souvent décrits comme des problèmes d'optimisation très complexes. Nous montrons qu'il

est possible d'utiliser des techniques manuelles pour établir un ensemble réduit de

contraintes sur lequel la recherche d’optimisation va se focaliser. Les techniques utilisées

peuvent varier d’un horaire à l’autre et vont déterminer la qualité finale de l’horaire. La

qualité d’un horaire est influencée par les choix qu’un planificateur fait dans l’utilisation de

techniques spécifiques; cette technique reflète alors la perception du planificateur de la

notion qualité de l’horaire. Le cadre d’analyse montre qu'un planificateur est capable de

sélectionner un ensemble réduit de contraintes, lui permettant d’obtenir des horaires de

très bonne qualité. Le fait que l'approche du planificateur est efficace devient clair lorsque

ses horaires sont comparés aux solutions heuristiques. Pour ce faire, nous avons

transposées les techniques manuelles en un algorithme afin de comparer les résultats

avec les solutions manuelles.

Mots clés: Confection d’horaires, Confection d’horaires pour résidents, Creation manuelle

d’horaires, Heuristiques de confection d’horaires, Méthodes de recherche locale

 iii

Abstract

This thesis provides a problem formulation for the resident scheduling problem, a problem

on which very little research has been done. The hospital departments mentioned in this

thesis are the paediatrics department of the CHUL (Centre Hospitalier de l’Université

Laval) and the emergency department of the Hôpital Enfant-Jésus in Québec City.

The main contribution of this thesis is the proposal of a framework for the analysis of

manual techniques used in scheduling problems, often described as highly constrained

optimisation problems. We show that it is possible to use manual scheduling techniques to

establish a reduced set of constraints to focus the search on. The techniques used can

differ from one schedule type to another and will determine the quality of the final solution.

Since a scheduler manually makes the schedule, the techniques used reflect the

scheduler’s notion of schedule quality. The framework shows that a scheduler is capable

of selecting a reduced set of constraints, producing manual schedules that often are of

very high quality. The fact that a scheduler’s approach is efficient becomes clear when his

schedules are compared to heuristics solutions. We therefore translated the manual

techniques into an algorithm so that the scheduler’s notion of schedule quality was used

for the local search and show the results that were obtained.

Key words: Timetable scheduling, Resident scheduling, Manual scheduling, Heuristic

schedule generation, Local search methods

 iv

Samenvatting

Deze doctorandusscriptie beschrijft een probleem-formulatie voor het werkrooster van

medische studenten, een probleem waar tot op heden weinig onderzoek naar is gedaan.

De ziekenhuisafdelingen waar mee werd samengewerkt in het kader van deze

doctorandusscriptie zijn de afdeling pediatrie van het CHUL (Centre Hospitalier de

l'Universite Laval) en de eerste-hulp afdeling van het Hôpital Enfant-Jesus in Québec.

Deze doctorandusscriptie stelt een onderzoekskader voor voor de analyse van

handmatige technieken gebruikt in werkrooster-problemen, vaak omschreven als

complexe optimisatie-problemen. We laten zien dat het met behulp van deze technieken

mogelijk is een kleiner aantal restricties, of nevenvoorwaarden, te gebruiken voor de

exploratie van alle mogelijke oplossingen. De gebruikte technieken kunnen verschillen van

werkrooster tot werkrooster maar bepalen de uiteindelijke kwaliteit van de oplossing. Dit

onderzoekskader richt zich op het voorstellingsvermogen dat de planner heeft van

werkrooster-kwaliteit en modeliseert de technieken die een planner gebruikt voor het

handmatig creëren van een werkrooster. Het onderzoekskader laat zien dat een planner in

staat is een beperkt aantal constraints te selecteren en aan de hand hiervan een

werkrooster op te stellen van zeer hoge kwaliteit. Het feit dat de aanpak van een planner

efficiënt is wordt duidelijk als zijn werkroosters worden vergeleken met heuristieke

oplossingen. Wij hebben hiervoor de technieken van het onderzoekskader omgezet in een

een algoritme en rapporteren de met deze methode behaalde resultaten.

Trefwoorden: Werkroosters, Werkroosters medische studenten, Handmatig werkrooster,

Heuristieke zoektechnieken, lokale zoektechnieken.

 v

Acknowledgements

The completion of this Masters thesis has been possible by the advice, ideas and support

of a great number of people. I would therefore like to thank everyone that in some way has

contributed to this thesis. I would also like to thank my trusty computer that has stayed with

me throughout these long hours while I was pounding the keyboard.

I would particularly like to thank Bernard Lamond and Angel Ruiz, in alphabetical order

although both are dear to me, my thesis supervisors at the Université Laval. From the

outset they have put a great trust in me and have helped me see this thesis thru to

completion. I would also like to thank all the residents and hospital management that I

worked with and provided me with the data necessary for this project. I would also like to

thank my lovely wife that has supported me, even in the times where the research

progress was slow. I would also like to thank my parents and my brother, who encouraged

me to continue my studies.

I would finally like to thank my fellow students at the university with whom I have

exchanged a large number of ideas on different aspects of my research. I would also like

to thank everyone at the CIRRELT (Centre interuniversitaire sur les réseaux d’entreprise,

la logistique, et le transport).

Foreword

This thesis is the final result of two years of work as a M.Sc. Student at the CIRRELT

(Centre interuniversitaire sur les réseaux d’entreprise, la logistique, et le transport) under

the supervision of Professors Bernard Lamond and Angel Ruiz. The framework presented

in this thesis has been the subject of a conference paper (Kreeft et al. 2010) entitled:

“Allowing user interaction in timetable scheduling software“, presented at GISEH 2010.

This thesis provides a problem formulation of the resident scheduling problem, a problem

on which very little research has been done. Additionnally, we present a formal framework

for the analysis of manual techniques for creating a schedule, a description that has never

been made within the field of scheduling. It is therefore difficult to directly associate this

thesis to past works of researchers.

Perhaps the most difficult part of this thesis was to observe schedulers at work and

translate our observations; schedulers use techniques that, to the eye of researchers in

operations research in any case, have an impact on schedule quality. However, they are

not capable of quantifying the impact a technique has on schedule quality. The hard part

was therefore to translate our observations into scheduling techniques in such a way that it

formed a clear and concise modelling framework.

 vii

Contents

Résumé .. ii

Abstract .. iii

Samenvatting .. iv

Acknowledgements ... v

Foreword ... vi

Contents .. vii

List of Tables ... 1

List of Figures .. 2

List of Abbeviations .. 4

Glossary ... 5

Chapter I – Introduction .. 11

1.1 Background ... 11

1.2 Objectives and research contribution .. 14
1.3 Structure of the thesis ... 16

Chapter II – Problem definition .. 17

2.1 Introduction ... 17
2.2 Nurse timetable scheduling: a brief tutorial .. 18

2.2.1 Types of nurse rostering problems .. 18
2.2.2 Depicting nursing schedules ... 20
2.2.3 Complexity of nursing schedules ... 21

2.2.4 Basic timetabling notions and framework approaches .. 24
2.2.5 Cyclical and non-cycliclal scheduling ... 24

2.2.6 Definition of hard and soft constraints .. 27
2.2.7 Interactive computing .. 32
2.2.8 Existing decision support systems ... 33

2.3 Literature review ... 35
2.3.1 Resident scheduling literature .. 36

2.3.2 Published literature overviews ... 37
2.3.3 Mathematical programming ... 37

2.3.4 Artificial intelligence methods ... 45
2.3.5 Heuristic methods .. 46
2.3.6 Metaheuristics .. 47

Chapter III – Formulation and solution approach .. 49

3.1 Introduction ... 49
3.2 Problem description .. 50

 viii

3.2.1 Problem dimensions ... 50

3.2.2 Objective function .. 52

3.2.3 Integrity constraints ... 52
3.2.4 Legal constraints .. 55
3.2.5 Hospital constraints .. 61

3.3 Proposed heuristics ... 64
3.3.1 The manual scheduling process and its algorithmic equivalent 64

3.3.2 A knapsack IP-relaxation of the staffing problem ... 70
3.3.3 Lists initialization .. 73
3.3.4 Best-fit decreasing heuristic ... 75
3.3.5 Tabu search algorithm ... 81

Chapter IV – Prototype implementation and validation .. 93

4.1 Introduction ... 93

4.2 Validation of the constraints and prototype .. 94
4.3 Prototype data structure .. 98

Chapter V – Experimental results ... 101

5.1 Introduction .. 101

5.2 Description of instances .. 102
5.3 Parameter calibration .. 103
5.4 Computational results of heuristics ... 109

5.5 Behaviour of manual process and prototype ... 114
5.6 Summary of results ... 116

Chapter VI - Conclusion .. 118

6.1 On the manual scheduling process framework .. 118

6.2 On the prototype development and implementation .. 120
6.3 On the performance of the heuristics ... 121

6.4 Future paths of development .. 121

References .. 123

Appendix A: Formulation for the Resident Scheduling Problem - Chapter 3 130

A.1.1 Integrity constraints .. 131
A.1.2 Legal constraints ... 132

A.1.3 Hospital constraints ... 134

Appendix B: Preliminary test results – Chapter 5 ... 137

Appendix C: Interface description – Chapter 4 ... 140

C.1 Introduction .. 141

C.2 Main screens interface .. 141
C.2.1 Day editor screen ... 142

C.2.1 Shift editor screen ... 145
C.3 Submenus ... 146

C.2.1 New calendar menu ... 146
C.2.2 Open calendar menu ... 147
C.2.3 Resident menu ... 147
C.2.4 Week menu .. 148

 ix

C.2.5 Constraints window ... 149

 1

List of Tables

Table 2.1 Schedule assessment factors ... 20
Table 2.2 Cheang et al.’s list of common occurring constraints ... 31
Table 2.3 Burke et al.’s (2004b) overview of hospital software applied in practice and on

real-life data .. 33

Table 2.4 Warner’s scheduling approaches and criteria ... 40
Table 2.5 Arthur and Ravindran’s minimization objectives ... 40
Table 2.6 Musa and Saxena’s minimization objectives .. 41
Table 2.7 Ozkarahan and Bailey’s minimization objectives .. 42

Table 3.1 Resident Scheduling Problem constraints .. 51
Table 3.2 Rest cycles as described by the legal convention ... 59

Table 3.3 Allowed rest cycle patterns in a resident’s schedule depending on 59
Table 3.4 Forbidden consecutive weekend patterns over two consecutive planning horizons

 .. 61
Table 3.5 Manual scheduling activity, corresponding method and heuristic equivalent 65
Table 3.6 Summary of the solution methods .. 68

Table 3.7 Incremental cost function constraints ... 87
Table 4.1 Penalty values defined by residents for objective function 95

Table 4.2 Performance measures used by schedulers ... 97
Table 4.3 Construction parameters values defined by residents ... 97
Table 5.1 Characteristics of instances used for calibration and computational tests 103

Table 5.2 Test settings for tabu search calibration ... 103

Table 5.3 Average scores for normalized difference from manual schedule for pairs {1}-

{9} (n=5) ... 108
Table 5.4 Average costs of the three algorithms and average time within which the best

solution was found (n=20) .. 110
Table 5.5 Average scores for normalized difference from manual schedule for instances 6-

11 (n=20)... 111

Table 5.6 Percentage of runs where TBI and TBR outperformed M for instances 6-11

(n=20).. 111

file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077877
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077878
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077879
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077879
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077880
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077881
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077882
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077883
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077884
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077885
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077886
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077887
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077887
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077888
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077889
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077890
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077891
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077893
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077892
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077894
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077895
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077896
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077896
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077897
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077897
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077898
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077898
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077899
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077899

 2

List of Figures

Figure 2.1 The division of shifts over a planning period .. 19
Figure 2.2 Example of a Rij matrix nurse roster ... 21
Figure 2.3 Examples of shift patterns ... 25
Figure 2.4 Example of schedule assignment using shift patterns ... 26

Figure 2.5 A piece-wise linear cost function and resulting feasible region 28
Figure 2.6 The general framework for scheduling decision support systems 34
Figure 2.7 Warner and Prawda’s exponential cost function for nursing care shortage 39
Figure 3.1 Manual Scheduling Process framework .. 66
Figure 3.2 General algorithm .. 69

Figure 3.3 Assginment of score to all days of planning period .. 73
Figure 3.4 Example of SFT_LIST .. 73

Figure 3.5 Example of initializing a RSD_LIST .. 75
Figure 3.6 Update of SFT_List for shifts still to be assigned ... 79

Figure 3.7 Update of RSD_List for resident ... 79
Figure 3.8 Updating the individual schedule by adding a shift ... 79F

igure 3.9 Establishing the CDT_LIST by considering all possible exchanges of 1 shift with

all other residents .. 90
Figure 3.10 The resulting unsorted CDT_LIST, before evaluation, once all possible

exchanges have been added .. 91
Figure 4.1 Mathematical model validation decision tree .. 94

Figure 4.2 Decision tree for the design of the prototype .. 96
Figure 4.3 Influence of user-computer interactivity on different elements of the prototype 98

Figure 5.1: Average scores found by tabu search for the pairs {1}-{9} for instances 1-5

with TAST = 500 and n=5 .. 105

Figure 5.2 Solutions found for instance 3 as a function of computation time (s.) for the pairs

{1}-{9} ... 106
Figure 5.3 Average scores returned for instance 3 with TAST = 500s and 95% mean

confidence interval (n=5, t=2.776) ... 107
Figure 5.4 Average scores found by the three heuristics in instances 6-11 (n=20) 110

Figure 5.5 Mean 95%-confidence intervals, UB and LB for TBI for all tested instances .. 113
Figure 5.6 Comparison of 95%- mean Confidence intervals of TBI and TBR for all

instances .. 114
Figure 5.7 Comparison of instance between M and TBI (total staff 23 residents, instance 7)

 .. 114

Figure 5.8 Comparison of instance between M and TBI .. 115
Figure B.I: Comparing performance of tabu search over a range of parameters 137

Figure B.II 95% confidence interval PC1: Instance 1 ... 138
Figure B.III 95% confidence interval PC1: Instance 2 .. 138
Figure B.IV 95% confidence interval PC2: Instance 3 ... 139
Figure B.V 95% confidence interval PC2: Instance 4 .. 139
Figure B.VI 95% confidence interval PC2: Instance 5 ... 140
Figure C.II Prototype main window in schedule days editor view 143

file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077975
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077976
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077977
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077978
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077979
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077980
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077981
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077982
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077983
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077984
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077985
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077986
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077989
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077988
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077987
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077987
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077990
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077990
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077991
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077991
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077992
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077993
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077994
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077995
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077995
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077996
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077996
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077997
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077997
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077998
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314077999
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078000
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078000
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078001
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078001
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078002
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078003
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078004
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078005
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078006
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078007
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078008
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078009

 3

Figure C.III Schedule shift editor view .. 144

Figure C.IV Schedule shift editor view .. 145

Figure C.V New schedule window ... 146
Figure C.VI Open schedule window ... 147
Figure C.VIII Resident editor menu ... 148
Figure C.VII Active resident editor menu .. 148
Figure C.IX Week window ... 149

Figure C.X Constraints window ... 150

file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078010
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078011
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078012
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078013
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078014
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078015
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078016
file:///C:/Users/Daniel/Documents/Mes_Documents/Users/Daniel/Documents/Sciences%20Administration/Recherche/Planification_horaires/Recherche/Memoire/Rapport/DepotFinal/Depot_Final_Memoire_v13_28-12-2011.docx%23_Toc314078017

 4

List of Abbeviations

CIP Coverage Input Problem

CI Coverage Input

OR Operational Research

MSP Manual Scheduling Process

MRS Manually Restricted Space

RAH Resident Assignement Heuristic

RSP Resident Scheduling Problem

TS Tabu Search

 5

Glossary

Sets

I Set of all residents available during the planning period

Il Set of residents belonging to seniority class l

 Set of all wards k

W = {W(1),W(2)…W(K)}

WKD Set of all weekend shifts

(t = {5,6,7},{12,13,14},{19,20,21},{26,27,28})

WKDSET1 Set of weekend shifts of first week of planning period

WKDSET2 Set of weekend shifts of second week of planning period

WKDSET3 Set of weekend shifts of third week of planning period

WKDSET4 Set of weekend shifts of fourth week of planning period

WEEK Set of all week shifts

(t = {1,2,3,4},{8,9,10,11},{15,16,17,18},{22,23,24,25,26})

WEEK1 Set of weekdays of first week of planning period

WEEK2 Set of weekdays of second week of planning period

WEEK3 Set of weekdays of third week of planning period

WEEK4 Set of weekdays of fourth week of planning period

JUNIOR Set of all junior residents

SENIOR Set of all senior residents

PW Set of weekend shifts of last 2 weeks of previous planning period

CW Set of weekend shifts of current planning period

MONDAY Set of all Mondays of planning period

TUESDAY Set of all Tuesdays of planning period

WEDNESDAY Set of all Wednesdays of planning period

THURSDAY Set of all Thursdays of planning period

FRIDAY Set of all Fridays of planning period

SATURDAY Set of all Saturdays of planning period

 6

SUNDAY Set of all Sundays of planning period

Parameters

i Index for resident (i= 1… m)

t Index for day of planning period (t = 1… n)

k Index for wards (k = 1 … K)

RDOit Constant parameter for when resident i requested a day off at day t

Cit Constant parameter for when resident i is on conference at day t

Hit Constant parameter for when resident i is on holiday at day t

MCtk Constant parameter for the minimum number of residents needed at ward k on day t

MAXi Maximum number of shifts resident i can work

 Maximum number of days off a resident can request

 Maximum number of allowed 48-hours rest cycles

Penalty values

PEN_MC Penalty attributed for non-respect of minimum coverage

PEN_MAX Penalty attributed for non-respect of maximum number of shifts

PEN_RDO Penalty attributed for non-respect of requested days-off

PEN_C Penalty attributed for non-respect of conference days

PEN_H Penalty attributed for non-respect of holidays

PEN_EXC_72AFT Penalty attributed for non-respect of resting period after shift

PEN_WKD Penalty attributed for non-respect of maximum number of weekends

PEN_CWKD Penalty attributed for non-respect of maximum number of consecutive

weekends

PEN_DISP
-
 Penalty attributed for unfair dispersion of days (too much easy days)

PEN_DISP
+

Penalty attributed for unfair dispersion of days (too much difficult days)

PEN_TSD
-
 Penalty attributed for unfair dispersion of shifts (too little shifts)

PEN_TSD
+
 Penalty attributed for unfair dispersion of shifts (too much shifts)

PEN_MO Cost attributed when resident i is working a shift on Monday

PEN_TU Cost attributed when resident i is working a shift on Tuesday

PEN_WE Cost attributed when resident i is working a shift on Wednesday

PEN_TH Cost attributed when resident i is working a shift on Thursday

 7

PEN_FR Cost attributed when resident i is working a shift on Friday

PEN_SA Cost attributed when resident i is working a shift on Saturday

PEN_SU Cost attributed when resident i is working a shift on Sunday

PEN_SINGSAT Penalty attributed when a resident works more than one Saturday

PEN_BCON Penalty attributed when a resident works a shift before a conference

PEN_ACON Penalty attributed when a resident works a shift after a conference

PEN_DOC Penalty attributed when a doctor has to replace a resident

Decision variables

xit Variable for when resident i is working at day t

xik Variable for when resident i is allowed to work on department k

x_doct Variable for when doctors are working uncovered shifts

rdoit Variable for when resident i requested a day off at day t

cit Variable for when resident i is in conference at day t

hit Variable for when resident i is on holiday at day t

sjt Variable for when the junior resident j is working at day t

rdo_excit Variable for when the number of requested days off is not respected

c_excit Variable for when the number of conference days is not respected

h_excit Variable for when the number of holidays is not respected

exc_72befit Variable for when the legal resting period of 72 hours before a shift is not respected

exc_72aftit Variable for when the legal resting period of 72 hours after a shift is not respected

disp_scorei Variable for when the availability score of resident i differs from the average score

 Variable for excluding a resident from working the weekend before his holidays

 Variable for excluding a resident from working the weekend after his holidays

Slack variables

 positive and negative slack variables for the total coverage

on the department k

 positive and negative slack variables for the maximum

number of allowed shifts for resident i

 8

 positive slack variables for the number of requested days-

off

 positive and negative slack variables for the number of

conference days

 positive and negative slack variables for the number of

holidays

 positive and negative slack variables for the number of

times the resting period before a shift is not respected

 positive and negative slack variables for the number of

times the resting period after a shift is not respected

 positive and negative slack variables for the number of

times the maximum number of weekend shifts is not

respected

 positive and negative slack variables for the number of

times the maximum number of weekend shifts is not

respected

 positive and negative slack variables for the average score

for days per resident

 positive and negative slack variables for the average

number of shifts worked per resident

 positive and negative slack variables for the number of

times a resident works more than a single Saturday

 positive and negative slack variables for the number of

times a resident works before attending a conference

 positive and negative slack variables for the number of

times a resident works after attending a conference

 9

Tabu search parameters

s* Best known solution found by the tabu search

 Initial solution found by the tabu search

 Potential solution in the candidate list p=1…P

 Best solution on the candidate list choosen from all potential

solutions

 Current solution used in the tabu search

TL Tabu list size

MI Maximum number of iterations of the search

MNI Maximum number of iterations without improvement in the best

known solution

TAST Total available search time

CL Candidate list of all potential solutions

CDT_LIST Name of the candidate list in the prototype’s algorithm

SFT_LIST List of all shifts necessary to ensure full coverage throughout the

planning period

RSD_LIST List that contains the pre-scheduling score for each staff

member calculated using the pre-filled calendar

MAXSFT_LIST List that keeps track of the number of remaining shifts

LIST_SCORELINE List that contains the score of each line of the current solution and

represents
 ().

 Pre-scheduling score of resident i

 Cost attributed when the shift on day t is assigned to a

resident

Intensification and diversification procedures

BAEP procedure (Best Available Exchange Possible)

 10

Procedure used by the tabu search to select the best

available move. This procedure is used in the intensification

process for establishing the candidate list.

PDS procedure (Probabilistic Diversification Strategy)

Procedure used to avoid the iterative procedure of the tabu

search from remaining trapped in a local optimum. This

procedure is used for establishing the candidate list in the

diversification process.

SELECT_LINE procedure Selection procedure that keeps track of the line to

choose.This procedure composes the list of the score of each

resident in a list called LIST_SCORELINE.

 11

Chapter I – Introduction

1.1 Background

A resident is a medical specialist-in-training and during his residency he practices

medicine under direct or indirect supervision of a doctor. In the province of Québec there

are approximately 3000 residents and their schedules are mostly made by hand.

Particularly little help has been provided, in the form of software tools, to support them in

their planning efforts. All activities done by residents are overseen by the FRMQ

(Fédération des médecins résidents du Québec), a provincial instance that serves and

protects the interests of hospital residents. This protection also means that there is a

collective agreement that dictates the working conditions applicable to residents uniformly

throughout the province. Besides the resident’s regular workload of day and night shifts, a

resident still receives education and attends conferences. All of these requirements can

lead to exhausting schedules.

We have found that exhausting schedules are very often due to the fact that resident

schedulers do not have the time to compare alternative schedules which unnecessarily

increases the residents’ work stress. Scheduling software is available in most hospitals

nowadays and has frequently helped to reduce the stress caused by exhausting

schedules1. Computer software leads to an improvement in productivity and allows the

scheduler to consider better alternatives. It should be mentioned that not every department

in a hospital benefits from scheduling software. There only is a potential gain for

departments of reasonable size, where the time spent creating a schedule is a factor that

can be connected to the quality of a schedule. An example of such a time factor was

encountered during our study at the paediatrics department of a hospital where

approximately 30 residents are scheduled on a monthly basis. It should be mentioned that

1
 A literature review by Burke et al (2004b) mentions a number of different software programs that

have been used in real-life in different hospitals

 12

departments with 10 to 18 residents are rather the standard in the Québec context. In such

smaller departments the scheduling effort is less time-consuming.

Until now, computer programs leading to a strong improvement in productivity have only

been considered by larger departments because the scheduling task becomes more

complex. At the paediatrics department, scheduling activities take approximately 8-hours

per month, whereas this would only be 3-hours in a smaller department. Software

therefore can be useful in larger departments saving more than half the time.

The total time of creating a new schedule is not completely spent on assigning the shifts to

residents. A large part of the job consists in adding the initial data, i.e. the names and time-

off requests. In our study we measured the time it took to create a new schedule in two

hospital wards and we found that the total times needed were very different. In the larger

ward this took approximately 8 hours, whereas this only took 2 hours at the smaller ward.

At both wards collecting and adding the initial data took approximately 1 hour. With a

software program the time spent assigning shifts can be brought back to 1 hour in both the

large and small hospital ward. Here, if we suppose that this larger ward would use

scheduling software to create a schedule, the total time would therefore be situated at 2

hours, a 6-hours time saving. At the smaller ward assigning shifts using software could

take as little as 30 minutes. A schedule could therefore be created in 1 ½ hours, a ½-hour

gain.

A missing link often exists in scheduling research between theory and practice when a

research project discusses a real-life problem. When discussing these types of problems

in an article most research projects present three stages. First, the research problem is

defined. Next, a model is formulated to provide a solution to the problem. Finally, an

algorithm is developed and applied to the model. Two questions are not always

addressed:

1. Is the algorithm used by people, other than researchers, to solve other instances of

the real-world problem on a regular basis?

2. What does the program provided to the users look like?

The practical sides of the research project are seldom presented, or often merely

presented as a footnote in the conclusion. It is often hard to verify if the presented results

of the real-life problem were useful in a real-life situation.

 13

In health care there are different employee groups such as nurses, doctors and residents.

Each group is subject to a specific collective agreement that dictates their working

conditions. On top of these legal conditions each hospital department has its own rules for

scheduling employees. When researching the topic of scheduling we therefore have to

partition the problems in different schedule categories each with their own particularities

and each their own employee group.

The resident scheduling problem is a multi-period staff assignment problem with a

predefined number of work-night shifts (of 12- or 24-hours shifts in length) that are

assigned to staff members, while considering departmental staffing needs as well as

residents’ preferences; The different considerations result in a schedule where a resident

works around a single shift per four days, in such a way that a single shift is isolated from

others by blocks of resting days. This type of scheduling problem has hardly been

researched in particular even if their working conditions are different from normal medical

staff. The resident scheduling problem reduces to a simplified nurse scheduling problem

where a set of shifts (typically morning, day, night timeslots) per day are replaced by a

single daily shift and where a normal five day working week is replaced by a single shift

per four days.

This thesis presents a prototype with an integrated optimization method for solving the

resident scheduling problem. In this schedule type day shifts occur according to the same

fixed schedule for all residents. However, when working a night shift, residents are exempt

from active duty in the hospital by the rules of the collective agreement. Nevertheless, they

can be required to be present at their mandatory educational and conference days directly

after a night shift. It occassionnally happens that residents have to accept schedules that

are very exhausting.

 14

1.2 Objectives and research contribution

The objective of this thesis is twofold. First of all we provide a problem formulation for the

resident scheduling problem, a problem on which very little research has been done.

Additionnally, we present a formal framework for the analysis of manual techniques for

creating a schedule, a description that (to our knowledge) has never been made within the

field of scheduling. It is therefore difficult to directly associate this thesis to past works of

researchers. This framework has furthermore translated the manual techniques into an

optimization method that was integrated in the prototype that has resulted from this thesis.

Perhaps the most difficult part of this thesis was to observe schedulers at work and

translate our observations; The hard part was therefore to translate our observations into

scheduling techniques in such a way that it formed a clear and concise modelling

framework. We show that it is possible to use manual scheduling techniques to establish a

reduced set of constraints to focus the search on.

On a secondary level, the intention of this study is to contribute to the field of scheduling

research by clarifying what the scheduler’s notion of schedule quality exactly represents

and integrate this notion in a search algorithm. The techniques used can differ from one

schedule type to another and will determine the quality of the final solution. Since a

scheduler manually makes the schedule, the techniques used reflect the scheduler’s

notion of schedule quality. To analyse the scheduler’ definition of schedule quality and see

how manual techniques influence the schedule quality we present a formal framework for

the Manual Scheduling Process (MSP). We also wished to discover the way in which the

scheduler wishes the search algorithm to perform the search. This model has been

integrated in a prototype in order to investigate the scheduler-software interaction.

The first part of the project involved a literature review and the formulation of a mathe-

matical model. The mathematical model applies to other hospitals across the province of

Québec, with exception of a few constraints. The model can thus be used in other

hospitals without any additional implementation efforts.

 15

The goal of this thesis is to explain a solution approach that uses a methodology derived

from intuitive techniques to build an initial solution and to perform a local search. We have

formalised then programmed into our solving algorithm some of the intuitive ideas that

managers already use to build schedules by hand. From this a heuristic method to build an

initial solution has been conceived. The algorithm tries to improve the initial solution by a

tabu search. It is worth mentioning that, unlike most of the works reported in the literature,

the construction algorithm allows the user to influence the evolution of the schedule. We

will furthermore describe the details of the program and discuss the results that came

forward out of the tests performed with the residents.

The added value of this research project is to show that a project can present theoretical

results as well as discussing the practical advantages software offers to its final users. By

first formulating the problem and presenting the algorithm implemented to find solutions we

wish to follow the normal steps of a research project. Next, we desire to show that our

prototype has allowed the hospitals involved to develop new schedules on a regular basis

and that this is done by a resident scheduler. Furthermore, we also provide a description

of the used prototype.

This project initially started as a pilot project to model the constraints that apply to

residents’ wards in Québec. This led to a second phase in which a prototype of a schedule

generator was developed. It was assumed first that an interface would be of little interest.

However, the schedulers found it difficult to use the prototype without an interface and

therefore interpret the quality of the resulting schedules. A part of the focus of this project

has therefore moved to the development of a user-friendly prototype that could be used by

residents of the Enfant-Jesus and CHUL in Québec City. It aims at providing the residents

schedulers of these hospitals with software capable of producing mathematically optimal

(or at least high quality) schedules. This prototype has been offered to resident schedulers

free of cost in exchange for information on how they use the computer program.

 16

1.3 Structure of the thesis

We will first present the mathematical model and the prototype that was developed as a

result. Chapter II provides a brief tutorial on nurse scheduling as well as a literature review

on papers related to resident and nurse scheduling and optimization methods

implemented in/or tested on real-life instances. The review discusses articles in which

computer systems were implemented in hospitals to illustrate the research that discussed

the pratical side of projects. There is little research available on resident scheduling and it

was therefore deemed more interesting to discuss the literature connected to nurse

scheduling problems to provde an overview of the research in this area. The problem

description, a formal framework of the manual scheduling process and the construction

method and tabu search that we developed from this framework are provided in Chapter

III. Next, Chapter IV explains how the data instances were obtained and how the prototype

and constraints were validated with the resident schedulers. Chapter V describes the

implementation and validation of the prototype with resident schedulers. Finally, Chapter

VI presents the results for the test instances obtained. Future research directions and

conclusions will be presented in Chapter VI.

 17

Chapter II – Problem definition

2.1 Introduction

Given a hospital context, the resident scheduling problem is a multi-period staff

assignment problem with a predefined number of work-night shifts (of 12- or 24-hours

shifts in length) that are assigned to staff members, while considering departmental

staffing needs as well as residents’ preferences; The different considerations result in a

schedule where a resident works around a single shift per four days, in such a way that a

single shift is isolated from others by blocks of resting days. The residents’ problem is

never considered in particular although their working conditions are different from normal

medical staff (nurses, doctors, etc.), for whom a number of literature reviews show that

different solution approaches have been proposed (Bradley and Martin (1991), Jelinek and

Kavois (1992), Ernst et al. (2004)) to deal with their working conditions. For the purpose of

a literature review it is therefore more pertinent to discuss the literature connected to

Nurse Rostering Problems (NRP’s). However, we can consider that the discussed solution

methods are equally valid for resident scheduling problems.

Nurse rostering is defined as the creation of a periodic (weekly, fortnightly, or monthly)

schedule for the nursing staff of one or several wards, subject to constraints that Miller et

al. (1976) called feasibility set- and nonbinding-constraints (also called as hard and soft

constraints), such as legal regulations, personnel policies, nurses preferences and other

hospital specific requirements. The formulation of cost functions and objectives can vary

from one hospital to another. The variation in circumstances has resulted in different NRP-

models and the development of different solution approaches. The resident scheduling

problem can be considered as a reduced nurse scheduling problem where a set of shifts

(typically morning, evening, night timeslots) per day are replaced by a single daily shift and

where a normal five day working week is replaced by a single shift per four days. The

literature review will discuss solution methods for NRP’s because these methods are a

good representation of resident scheduling problems.

 18

There are different reasons that make hospital personnel scheduling problems important.

Making schedules in an effective and efficient way is important because nursing salaries

can account for up to 40 % (Boldy and O’Kane, 1982) of hospital budget costs. There also

are different interest groups that benefit from a good schedule. Warner (1976) was one of

the first to describe hospital staff as an interest group that has something to gain from

good schedules. Sitompul and Randhawa (1990) as well as Oldenkamp and Simons

(1995) mentioned that it direcly affects the care quality a patient receives. For hospital

staff, a better schedule means less stress and more rest. A good schedule improves care

quality for patients, speeding up the patient’s recovery. We can also add the hospital

interests; the hospital is concerned with using as little nursing staff as possible - in order to

keep costs low - while providing a satisfactory level of care. Job satisfaction is often low

when staff works shifts in an irregular way. When a staff member changes from night shift

to day shifts in an irregular manner, he will experience the undesirable effect of ‘jet

fatigue’. Irregular working patterns have a negative impact on circadian rhythms and as

such on job satisfaction of nursing staff

2.2 Nurse timetable scheduling: a brief tutorial

2.2.1 Types of nurse rostering problems

The category to which a scheduling problem-type belongs is determined according to the

addressed problem-type and the application areas covered. The general categories of

personnel scheduling problems that exist have been mapped by Ernst et al. (2004). They

classified the papers according to the type of problem addressed, the application areas

covered and the methods used. Examples of different types of problems are crew

scheduling and days-off scheduling. Examples for the application areas are airlines, call

centres, manufacturing and nurse scheduling. NRP’s formed a category containing over

107 papers. Randhawa and Sitompul (1993) have developed a classification scheme for

nurse scheduling models according to the type of scheduling and the solution approach.

 19

Some of the methods used include mathematical programming, set covering, genetic

algorithms, and simulation.

The description in this review will focus on the criteria that define NRP’s. These criteria can

be directly applied to classify resident problems. Within the category of nurse rostering

problems a schedule can be described by the following characteristics (based on the

terminology defined by Burke et al. (2004b)):

– Planning Period: the time interval over which staff is scheduled. The typical length of a

planning period is 4 weeks;

– Skill Category: staff members have a particular level of qualification, skill or responsibility

which allows them to perform specific tasks, or explicitly prohibits them from doing so;

– Shift Length: Shifts always have a well-defined start and end time. Many rostering

problems are concerned with the three traditional shifts: early (e.g. 6:00 a.m.–2:00pm), late

e.g. 2:00pm –10:00pm), and night (e.g. 10:00pm –6:00am), but two 12-hour shifts also

occur (early 8:00am – 8:00pm, night 8:00pm-8:00am). This is also illustrated in Figure 2.1

– Schedule type: A schedule can be either cyclic or non-cyclic. If a schedule is non-cyclic

staff members can indicate their preferences for working or being off on specific days.

Figure 2.1 shows that throughout the day employees provide a 24-hours coverage by

working early, late or night shifts. In nurse rostering problems this is the most used type of

coverage.

To this day no formal classification has been created for NRP’s. De Causmaecker and

Vanden Berghe (2010) however made an attempt to start the development of a more

general framework for categorizing nurse rostering problems. Osogami and Imai (2000)

Early Late Night

t=1 t=2 t=27 t=28

Figure 2.1 The division of shifts over a planning period

 20

developed an instance generator for the NRP-problem that can handle different

parameters for the mentioned categories. Different instances can be created for sub-

categories from the same data. For example, from the same input data a generator can

create different instances for cyclic and non-cyclic schedules.

The evaluation of personnel scheduling problems could be considered as an element

related to the classification of methods. Timetabling research is sometimes motivated by

the search for higher efficiency but on other occasions by the development of new

methods. When researchers develop new methods a more objective evaluation can be

necessary than the simple measurement of the penalty cost. Oldenkamp and Simons

(1995) proposed five factors to evaluate nurse rostering problems as illustrated in Table

2.1. These factors can be used for the assessment of the solution quality and human-

computer interaction quality and provide a more objective evaluation of the efficiency of

the solution method.

2.2.2 Depicting nursing schedules

A nurse roster is defined as a calendar for a period of t days containing n persons. The

nurse roster can be depicted as a two-dimensional data structure of decision variables.

Figure 2.2 shows an example of a nurse roster, depicted as a Rij matrix schedule, called a

day-view. One dimension contains the set of staff members and the second dimension

contains the set of days in the planning period. As illustrated, each line of the calendar

indicates the schedule for a staff member, referred to as an individual schedule. A nurse

schedule is defined as the list of tasks that is assigned to a specific individual for a time

period. A nurse schedule is the formal term and is also used when referred to resident

schedules’. In Figure 2.2 the days marked by a 1 stand for shifts worked, whereas 3 and 4

respectively indicate conference attendance and holidays on the days. We can read the

Optimality factor Represents the degree in which nursing expertise is distributed over the different shifs

Completeness factor Represents the degree in which the quantitative demands for occupation per shift are met

Proportionality factor Degree with which each nurse have been given about the same amount of day and night shifts

Healthiness factor Degree in which it has been taken of the welfare and health of the nurses

Continuity factor Represents the degree in which there is continuity in the nursing crew during the different shifts

Schedule assessment factors

Table 2.1 Schedule assessment factors

 21

nurse roster as follows: employee R-01 will be on duty Thursday and Sunday, R-02 is on

duty Wednesday and absent for conference attendance on Thursday, Saturday and

Sunday, R-03 is on holiday throughout the entire week.

In research literature the general term schedule is often used to indicate either a nurse

roster or a nurse schedule. During the solution search the term shift pattern is used to

designate an infeasible or feasible nurse schedule. The term “shift patterns” is also used

whenever a timetable is cyclic due to the fact that different patterns are repeated

throughout the schedule.

2.2.3 Complexity of nursing schedules

The criteria presented in §2.2.1 also determine the number of possible alternative

solutions. To explain the number of alternative solutions we introduce the following

variables and parameters and consider them not only to be useful to define nurse

scheduling but also for resident scheduling problems:

Parameters

T: Total number of days of planning horizon

ө: Total number of shifts during a day

W: Total number of different wards

C: Total number of nurses/residents needed

Variables

M: Total number of shifts to be planned

N: Total number of nurses/residents available

Nurse/

Resident
Mon Tue Wed Thu Fri Sat Sun

R-01 0 0 0 1 0 0 1

R-02 0 0 1 3 0 3 3

R-03 4 4 4 4 4 4 4

Figure 2.2 Example of a Rij matrix nurse roster

 22

During each day of a planning horizon several shifts can be planned. Shift lengths and the

length of the planning horizon in the health care area are often determined by trade

unions. The typical length of the planning horizon is T=28. For nurses, the length of each

shift is 8 hours in most cases. The total number of shifts ө is therefore (ө = 3). For

residents, the length is dependent on the type of duty performed.

The parameters T, ө, C and W determine M the total number of shifts of the problem. M

grows for positive values of T, ө, C, and W and increases further if there are several co-

existent shift lengths. E.g. during the day shift more nurses are active but not always on

duty during an entire morning shift; some nurses can work on a part-time basis and only

work half of the afternoon shift. In our project the shift length for residents is 12-hours on

weekdays and 24-hours (ө = 1) on weekends. In our project the following values therefore

apply:

T = 28

ө = 1

W = 1 or 2

C = 2 or more

M = CTөW (2.1)

The decision variable is a binary variable introduced to identify what each staff member

i does on each day t of the planning horizon. This variable defines on-duty shifts (1) and

free shifts (0). This variable will be discussed in further detail in Chapter 3 to allow other

events to be handled simultaneously. On-duty shifts can be defined to include a morning

shift, an afternoon shift and a night shift. Free shifts are more complex since they include

days off, public holidays, vacation leave, study day, unpaid leave, etc.

Miller et al. (1976) defined as “the set of feasible patterns for nurse” /resident i, and the

solution space as the Cartesian product of all feasibility regions . For a

single employee with 4 shifts worked over a period of 28 days, a single feasibility region

contains:

(
)

 ()
 (

)

 ()

 23

However, the number of available solutions that really exists in practice is smaller.

Because there are hard constraints on conferences and holidays, certain days cannot be

considered when assigning a shift. Since not every day can be considered for scheduling a

shift the number of combinations for each of them is lower than theoretically suggested.

The total number of permutations is therefore also lower. If feasibility regions are defined,

each region can be defined as an upper bound for the complexity of the problem.

Another factor in scheduling problems are upper and lower bounds on coverage

constraints. The lower and upper bounds for the number of shifts are generally relaxed for

different reasons, e.g. nurses can work overtime. Practical problems therefore have

different types of coverage for the lower and upper bound and to take into account under-

and overcoverage. Minimum coverage is defined as the minimum staff level to maintain a

ward operational. Desired coverage is defined as the number of employees that hospital

management wishes to have on duty. Overcoverage is defined as the maximum number of

employees that hospital management will have operational at the same time. When these

bounds are taken into account in Equation (2.1) this will become:

Bounds

MC: Minimum coverage

DC: Desired coverage

OC: Overcoverage

MC ≤ DC ≤ CTөW ≤ M ≤ OC (2.2)

Where MC, DC and OC ≥ 0. To solve this problem the number of planned shifts will ideally

be situated between DC and OC. If M is larger than the upper bound OC the hospital will

incur unnecessary extra costs for nursing. If M is below MC a hospital ward will not

operate efficiently or not at all. In reality bounds are formulated so that M will be in

between MC and DC.

 24

2.2.4 Basic timetabling notions and framework approaches

Nurse Rostering problems generally have a constant workforce demand and constant

availability and are therefore considered to be deterministic. Several deterministic models

have been proposed during the last decade in order to resolve a range of diverse

problems of nurse rostering problems.

To become more familiar with scheduling theory it can be useful to consult different

tutorials. De Werra (1985) presents a timetabling tutorial based on graph-coloring

formulations to explain search techniques and complexity issues for the class-teacher

problem and course timetabling. Another introductory tutorial to staff scheduling is given in

Blöchliger (2004) that presents the basic concepts of the scheduling problem and

discusses some facets of staff scheduling. An alternative tutorial written by Ferland et al.

(2001) associates a generalized assignment framework to several problem categories and

illustrates a few scheduling examples, amongst which nurse scheduling.

Basic formulations of personnel scheduling problems are not as widespread as the classic

travelling salesman problem and only a few papers try to address it thru a more general

framework. A good standardized description of personnel scheduling is provided by the

minimum shift design problem (MSD) by Gaspero et al. (2003). Their research provides a

good insight into the theoretical aspects of scheduling and they show that the MSD

reduces to a special case of the minimum edge-cost flow problem. They furthermore prove

that the logarithmic approximation of the problem is NP-hard. Bilgin et al. (2008) also have

attempted to look into complexity and scheduling problems.

2.2.5 Cyclical and non-cycliclal scheduling

As briefly mentioned in §2.2.1 and §2.2.2, schedules can be cyclic scheduling or non-

cyclic. In a cyclic schedule a number of shifts are always grouped together and

nurses/residents rotate from one pattern to another. In cyclic schedules a number of

feasible shift patterns such as those shown in fig 2.1 are used to build a schedule. In a

 25

non-cyclic schedule shifts are considered to be independent and every shift is assigned

individually.

A pattern is a fixed order of shifts and days off. For example, a nurse/resident works

Monday-Friday and is off on the weekend. Figure 2.3 shows three different patterns that

commonly occur in a working week. Suppose that Example 1 is an infeasible pattern

because a nurse cannot be required to work more than five days in a row. Then Example 2

would be a feasible pattern since it contains no more than five working days in a week and

two resting days. Example 3 shows another feasible, (although unwanted) pattern where

the working days are separated on/off days. In cyclic schedules a pattern often contains a

sequence of days on duty followed by days off or the inverse because such patterns are

more easily accepted than separated on/off days.

The notion of cyclic or non-cyclic became an important notion in personnel scheduling

problems because it has an influence on the complexity of a problem. By regrouping a

number of shifts together we can decrease the number of combinations of shifts assigned

to nurses/residents.

Before illustrating the interest of cyclic schedules we first define a number of variables. We

define ST to be the number of shift patterns or shift subsets. We furthermore have:

ST: Number of shift subsets

T: Length of planning horizon (days)

N: Total number of shifts

pi: shift pattern i (i =1…4)

1 2 3 4 5 6 7

1 1 1 1 1 1 1

1 2 3 4 5 6 7

1 1 1 1 0 0 1

1 2 3 4 5 6 7

1 0 1 0 1 0 1

Figure 2.3 Examples of shift patterns

 26

Suppose that we mix a number of patterns together similar to the examples and that we

have to assign all of these patterns to a set of nurses/residents in order to create a

schedule. Now suppose that we put all nurses/residents together in a room and ask them

to distribute the patterns amongst each other. Imagine that the same would have to be

done but each individual shift has to be assigned. Not only would such a distribution likely

take more time but nurses/residents would probably divide the shifts in patterns to assign

the shifts more quickly and have a more favourable working schedule for everyone. The

use of shift patterns has a similar impact. It can reduce the complexity of a problem and it

can result in better work patterns staff.

We can demonstrate this using an example. Say for example that for a hospital ward a

two-week schedule (T= 14) has to be created with N shifts divided in a morning (1) and

evening (2) shift each day. The number of shifts to be assigned if the schedule is non-

cyclic would result in 28 variables. By defining 4 shift patterns it would be possible to

reduce the complexity to 8 variables. For example, we could have the following patterns:

p1 = {Morning: Mon, Tue, Wed, Thu}

p2 = {Night: Mon, Tue, Wed, Thu}

p3 = {Morning: Fri, Sat, Sun}

p4 = {Night: Fri, Sat, Sun}

Using p1, p2, p3, p4 we can obtain full coverage for an entire week. An example of a

solution is illustrated in Figure 2.4. This means that for two weeks we could use the same

patterns twice resulting in 8 variables. The number of variables in a problem is therefore

strongly reduced in a cyclic schedule by grouping together N shifts into ST subsets. In this

example we would end up with N/4 subsets = 28/4 = 8. Instead of scheduling n shifts to m

staff members resulting in ⟨
 ⟩ solutions we end up with ⟨ ⁄

 ⟩ solutions for an employee.

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

1 1 1 1 0 0 0 1 1 1 1 0 0 0

2 2 2 2 0 0 0 0 0 0 0 2 2 2

0 0 0 0 2 2 2 0 0 0 0 1 1 1

0 0 0 0 1 1 1 2 2 2 2 0 0 0

Figure 2.4 Example of schedule assignment using shift patterns

 27

The benefit of this planning method is that nurses know what shift pattern they are

expected to make in advance. The drawback however is that it takes less into account

individual preferences. There is an exchange that takes place between more fairness vs.

less flexibility. Non-cyclic schedules take into consideration individual preferences when

making a timetable. Depending on the problem type and the solution method there will be

a preference for cyclic or non-cyclic schedules. This also depends on the scheduling

practices maintained by hospital management. It can be preferable to maintain a cyclic

schedule for nurses sometimes due to the size of a ward, or the high number of

constraints.

2.2.6 Definition of hard and soft constraints

Constraints are divided into two classes: feasibility set constraints, and nonbinding

constraints. Both are respectively referred to as hard and soft constraints. Miller et al.

(1976) used the following definition for hard and soft constraints: “feasibility set

constraints”, which define the sets of feasible nurse schedules, and nonbinding

constraints, whose violation incurs a penalty cost that appears in the objective function.

The hard constraints must be satisfied at all costs for a schedule to be feasible. Soft

constraints are those that are desirable but which may need to be violated up to a certain

degree in order to obtain a feasible solution. A soft constraint is complemented by

additional side constraints that determine the size of the feasible region by stipulating

upper and lower bounds for the constraint.

To measure the quality of a schedule the relative violation of soft constraints is generally

used. The goal is always to schedule resources to meet the hard constraints while aiming

at a high quality result with respect to soft constraints. Even soft constraints can only be

violated up to a certain level; if an employee has a 35-hour work contract it could still be

acceptable to work 40 hours, or even 50 hours. When this is 80 hours however this would

result in an infeasibility problem. This is why it is necessary to define upper and lower

bounds for soft constraints.

A soft constraint can be represented by a penalty function, a lower and upper

bound/threshold value, as well as a range of acceptable values. In the mentioned example

 28

an acceptable range of values could be 20 – 60 hours. The level of satisfaction of the soft

constraint is visible in the objective function.

Suppose a nurse has a 25-hour contract stipulating that she will be paid even if she is not

on duty throughout the entire week. Legislation could stipulate that the hospital has to pay

a fine if the nurse works more than 40 hours in a single week. Also suppose that legislation

forbids the nurse to work more than 45 hours. Another constraint could be that a ward

needs 40 hours of coverage by a single nurse.

Not scheduling would mean that the hospital pays for unused capacity, while

overscheduling would result in a fine for the hospital. It is therefore necessary to define a

soft constraint and two hard constraints. The first hard constraint could be defined as

follows: A minimum coverage of 40 hours is necessary. The second hard constraint would

be: A nurse cannot work more than 45 hours. The soft constraint then becomes: Limit

overtime for the nurse.

Supposing that all other factors can be neglected and we have to schedule the nurse for

40 hours throughout the entire week. This can be formulated as a cost minimization

function for the hospital in the following linear program (LP):

Figure 2.5 A piece-wise linear cost function and resulting feasible region

 29

C: Number of hours of coverage needed

H: Number of hours worked

ht: Number of hours worked within time period t (1≤ t ≤ 3)

Min: h1 + 10h2 + 20h3

S.T.

C = 40 (2.1)

H-C ≥ 0 (2.2)

h1 ≤ 25 (2.3)

h2 ≤ 15 (2.4)

h3 ≤ 5 (2.5)

H-h1-h2-h3 = 0 (2.6)

h1, h2, h3 ≥ 0 (2.7)

h1, h2, h3 : integer (2.8)

The penalty function h1 +10h2 + 20h3 is intended to minimize the cost of scheduling the

nurse for too many hours. Constraints (2.7) and (2.8) are Integrity constraints. Constraint

(2.1) is considered a hard constraint since the LP would not be feasible if this constraint is

not respected. The constraints (2.3) to (2.6) are considered as a single soft constraint.

More exactly, (2.6) is the actual soft constraint but additional side constraint are necessary

to define the allowed feasible region of the solution. The nurse can work anywhere

between 25 to 45 hours. A soft constraint simply has a larger feasibility region, whereas a

hard constraint only has a single acceptable value.

The resulting cost function is depicted in Figure 2.5. Notice that the objective function is

defined as a piece-wise linear function. In reality Warner and Prawda (1972) reported that

overtime costs show an exponential behaviour due to fines or other reasons.

Different penalty weights are included in the objective function to define the degree of

violation associated to the soft constraint. If the nurse works anywhere beneath 25 hours

the cost would remain constant. Working more than 25 hours means that the hospital

would have to pay supplementary wages for every hour of overtime. If the nurse works

more than 40 hours the hospital also has to pay a fine so the hourly cost would increase

 30

even further. Line W shows the hard constraint for minimum coverage. Line M shows the

legal hard constraint.

Since C = 40 and h1 is bounded to 25 (h1≤ 25 constraint (2.3)) we know that initially (2.6)

will take the following values:

H-C = 0 H = 40 H-h1-h2-h3 =0 25- h2-h3 = 40 h2-h3 = 40-25

 h2-h3 = 15

Since h2 is bounded to 15 we must have h2 = 15 because the penalty cost is lower. If we

solve the LP one variable at a time we will end up the the following optimal solution:

C = 40; h1 = 25; h2 = 15; h3 = 0; Optimal value = 175

In nurse scheduling problems a number of constraints occur on a regular basis.

Constraints are stipulated by hospital management, legislation and staff members. These

constraints can be divided in different categories:

– Hospital (Coverage) Constraints: the number of staff members needed for every skill

category and for every shift during the entire planning period more commonly referred to

as personnel requirements.

 31

 – Time Related Constraints: all the restrictions on personal schedules, such as personal

requests, personal preferences, and constraints on balancing the workload among

personnel.

– Work Regulations Constraints. It sets a number of time related constraints for the

nurses.

– Internal ward constraints: The practices applied by wards, such as attributing Saturday

shifts to more junior staff members. These constraints are most often soft constraints.

Hospital management constraints, e.g. at least 1 nurse and no more than 2 nurses on the

maternity ward during night shifts, are generally hard constraints. This is due to the nature

of constraints. Regulatory constraints are generally also hard constraints because violation

is not allowed. The algorithm also stipulates a number of Integrity constraints that are

necessary for problem formulation. Constraints apply to each staff member.

Cheang et al. (2003) mention a list of constraints that occur commonly, which is illustrated

in Table 2.2. All of these constraints mentioned amount to different levels of cost. In their

ANROM model (Advanced Nurse Rostering Model) Burke et al. (2004b) mention an

extended list of hard and soft constraints that resulted from the development of a general

model for the nurse rostering model.

Coverage Constraints Time Related Constraints

Nurse skill levels and categories Nurses workload (minimum/maximum)

 Shift type(s) assignments (max. shift type, requirements for

each shift types)

Consecutive same working shift (minimum/

maximum/exact number)

Constraints among groups/types of nurses, e.g., nurses not

allowed to work together or nurses who must work together

 Consecutive working shift/days (minimum/

maximum/exact number)

Other requirements in a shorter or longer time period other

than the planning time period, e.g., every day in a shift must

be assigned

 Constraints among shifts, e.g., shifts cannot be assigned to

a person at the same time

Requirements of (different types of) nurses or staff demand

for any shift (minimum/maximum/exact number)

Work Regulations Constraints Internal ward constraints

 Nurses preferences or requirements Shift patterns

Nurses free days (minimum/maximum/consecutive free

days)
Historical record, e.g., previous assignments

Free time between working shifts (minimum)

Holidays and vacations (predictable), e.g., bank holiday,

annual leave

 Working weekend, e.g., complete weekend

Table 2.2 Cheang et al.’s list of common occurring constraints

 32

2.2.7 Interactive computing

A research trend in the field of nurse rostering problems is to give more importance to the

interface used by schedulers and its impact on the quality of a timetable and the therefore

related impacts on theoretical schedule quality and algorithmic performance. The field of

human-computer interaction is a discipline that deals with the design, evaluation and

implementation of such interactive systems.

Interactive computing refers to software that is told by humans what to do and is studied in

different fields (Computer science, Cognitive psychology, Ergonomics, Artificial

intelligence, Linguistics). Human-computer interaction has an impact on the ease-of-use

and the theoretical aspects of a scheduling algorithm. The schedule quality in terms of the

objective function will not end up being optimal because a number of theoretical aspects

are sacrificed to gain an increased ease-of-use.

Throughout the 20th century this human-computer interaction gave rise to artificial

intelligence. This can be done through the interface of a computer program or within the

hard coding.

Expert systems that imitate the behaviour of users are classified as artificial intelligence

systems. In the interface this means that the user can define search options, e.g. the

constraints to be included in the cost function. Interactive interfaces are mentioned by

several researchers as an important consideration for the development of their software

(Burke et al. (2004b), Oldenkamp and Simons (1995)). The impact of these options is

visible in the ease-of-use of the program and productivity of the user.

In the second sense, AI algorithms imitate human intelligence processes. For example,

learning (store information and define rules for the use of this information), reasoning (use

the rules to obtain approximate or definitive conclusions), and self-correction.

 33

2.2.8 Existing decision support systems

Several different programs are already in use in different hospitals. Burke et al. (2004b)

mention a number of programs developed by researchers and in use in hospitals. The

table has been reproduced in Table 2.32. Programs were either implemented in a single or

several hospitals. They also mention algorithms that have been tested on real-life data.

Programs mentioned being used in several hospitals have resulted in the development of

software with interface modules that allow the use of several planning techniques. For a

full reference of all the authors mentioned in Table 2.3, the reader can refer himself to

Burke et al. (2004b). A few further authors that were not covered in their literature review

but who did present scheduling software are: Darmoni et al. (1994), Ozkarahan (1989),

Weil et al. (1994).

These programs contain modules specifically aimed at helping schedulers in performing

their task. The effects computer programs have on schedule-making has become a field of

2
 For a full reference of all the authors mentioned in Table 2.3, the reader can refer himself to Burke

et al. (2004b). A few extra authors that were not mentioned but who did present scheduling
software are: Darmoni et al. (1994), Ozkarahan (1989), Weil et al. (1994).

Not applied in practice but tested on real data Applied in practice

Abernathy et al. (1973) Approaches applied in 1 hospital

Berrada, Ferland, and Michelon (1996) Easton, Rossin, and Borders (1992): staffing

Petrovic, Beddoe and Vanden Berghe (2003) Jaszkiewicz (1997)

Cheng, Lee, and Wu (1996, 1997) Smith and Wiggins (1977)

Okada and Okada (1988) and Okada (1992) Bellanti et al. (2004)

Abdennadher and Schlenker (1999a, 1999b): INTERDIP

de Vries (1987) Approaches applied in multiple hospitals

Warner and Prawda (1972) and Trivedi and Warner (1976) Warner, Keller, and Martel (1990): ANSOS,Warner (1976)

Miller, Pierskalla, and Rath (1976) Jelinek and Kavois (1992): Medicus

Muslija, Gaertner, and Slany (2000) Darmoni et al. (1995) Horoplan

Isken and Hancock (1991, 1998) and Isken (2004) Meisels, Gudes, and Solotorevski (1997): EasyStaff

Jaumard, Semet, and Vovor (1998) Meisels, Gudes, and Solotorevski (1996): TORANIT

Aickelin and Dowsland (2000) and Dowsland (1998) Dowsland and Thompson (2000): CARE

Moz and Pato (2004) Meyer auf’m Hofe (1997): ORBIS Dienstplan

Burke et al. (2001a, 2002, 2003) Burke et al. (2001b, 2001, 1999), De Causmaecker and

Vanden Berghe (2003): PLANE

Table 1. Applicability of the approach

Table 2.3 Burke et al.’s (2004b) overview of hospital software applied in practice and on real-life data

 34

study for human-computer interactivity. Warner (1976) called hand-made schedules the

traditional approach. Nurse scheduling assisted by decision support systems has led to

new methods of interaction. The baseline for decision support systems is that the program

offers a number of different tools that provide information about what problems are

encountered in a schedule to make work easier for schedulers. Roth and Woods (1989)

have investigated the effects of decision support based tools on a cognitive task analysis.

They found that decision support improved the task performance and that the variety of

possible solutions for a specific problem increased. The cognitive tasks performed by

schedulers have been described by Roth and Woods (1989) as well as by Mietus (1994).

As an example of a nurse scheduling system we can mention ANSOS, which is

commercialized in the U.S (Warner, Keller and Martel (1991)). The system is built around

a mathematical programming model. Costs for constraints can be adjusted by individual

users. The program is also mentioned by Burke et al. (2004b) who provide a description of

the four main modules of this system:

- The Position Control Module: keeps track of information for each employee (e.g.

skills, types of shifts, maximum work stretch, etc.)

- The Scheduling Module: Based on all entered information it generates the

schedule.

- The Staffing module: Determines the required staff levels for wards, based on

demand data.

- The Management Reporting Module: Generates different types of reports

Figure 2.6 The general framework for scheduling decision support systems

 35

A general framework that can be extended to other decision support systems is illustrated

in Figure 2.6. The Problem module can be used to create the schedule. The Administration

Module is used in the early stages of the scheduling process to model job requirements.

The tasks in the Adminstration Module include: Define shift-beginning and –ending times,

determine number of staff that can be used in the planning period, enter pre-booked

holidays and requested days-off, etc. The main algorithm for the creation of a schedule is

contained within the Problem Module. This module program deals with counting,

searching for personnel available for a shift, determine available staff, rank the availability

of staff members, etc. Such specific tasks are generally handled by the mentioned

submodules.

Other examples of nurse scheduling decision support systems are the ZKR system

described by Mietus (1994) and the DSS system described by Randhawa and Sitompul

(1993).

2.3 Literature review

In this partial review we present a number of articles that deal with nurse scheduling

problems. Since there is a fairly large amount of literature available on nurse scheduling

we will limit our review to articles in which computer systems were implemented in

hospitals and articles that made a significant contribution to the subject.

Until the 60s, scheduling was mostly done by hand with the use of graphical tools. For an

example off graphical tools and the considerations that have to be made you can consult

Price (1970). Nowadays, methods from mathematical programming, articifial intelligence,

heuristics and metaheuristics have all been employed to solve the nurse scheduling

problems.

A number of trends are visible in the development of this field of research. From 1972 to

1988 researchers explored the subject by formulating appropriate models and

implementing computer programs in hospital environments. The first important

development was in the field of modelling. The research papers published since 1988 all

 36

show similar modelling constraints. These constraints generally consider under- and

overcoverage and nurse’s preferences. The second major development was in the field of

human-computer interactivity. Several authors mentioned that schedulers always made

changes to the final solutions provided by software. Throughout this period programs

always appeared with more and more features. Since 1988 the development of this field

has been marked by new optimization methods and a few efforts to build a more general

framework for nurse scheduling problems.

2.3.1 Resident scheduling literature

The first article that adressed resident scheduling was published by Ozkarahan (1994), to

discuss their working conditions in the United States and propose a model that could be

used as a decision support tool for making changes to working rules. Ozkarahan’s model

(1994) and the one introduced in the present study share similar constraints. Ozkarahan

modelled the requirements of the residency program and the preferences of residents as

to days off, weekends off and on-duty nights for a planning horizon of one week using a

goal programming model.

Sherali et al. (2002) addressed the resident scheduling problem with constraints for ward

staffing levels, skill requirements and residents’ preferences. Their problem was modeled

as a mixed integer program and was supported by different heuristic solution procedures

to handle different scheduling scenarios.

Beliën and Demeulemeester (2006) describe a method using column generation for

scheduling trainees at a Belgian hospital to solve the LP-relaxation of the long-term

scheduling version using a decomposition scheme on the tasks. Cohn et al. (2009) studied

a resident scheduling problem that spanned a 1-year planning period and included 3

different shift types. In addition, residents had to spend a number of time periods in

different hospitals. Constraints concerned ward staffing levels, residency program

requirements and resident preferences. The number of decision variables and constraints

of the model was reduced because certain time periods had to be omitted from the model.

The assignment of shifts in these time periods was done outside of the model. Cohn et al.

(2009) modeled their problem as a goal programming model.

 37

Ozkarahan and Topaloglu (2010) considered a resident scheduling problem over a

planning period of four weeks considering constraints on residency program requirements,

ward staffing levels and residents’ preferences.

2.3.2 Published literature overviews

Over the years several different reviews have been published. Fries (1976) presented an

overview of operations research techniques applied to health care, including scheduling

techniques. Hung (1995) published a review of 128 articles on nurse scheduling. More

recent reviews of the literature dedicated to this type of models are listed in Cheang et al.

(2003) as well as in Burke et al. (2004b). Other literature reviews on hospital staff

scheduling were furthermore performed by Bradley and Martin (1991) as well as Jelinek

and Kavois (1992), and Ernst et al. (2004).

2.3.3 Mathematical programming

Research in mathematical programming has been done both in the general field of

scheduling as well as on subproblems such as the nurse rostering problem. General

scheduling problems have been treated in all fields of mathematical programming: Linear

programming, Integer programming, Mixed-integer programming, Non-linear programming,

Goal programming approaches, and Network programming. Nurse scheduling has been

explored in a more limited number of fields: Integer programming, Mixed-integer

programming, Non-linear programming, and Goal programming approaches.

Articles up to 1988 dealt mostly with the problem formulation. The newer methods that

appeared in this field, have mainly focused on accelerating the search time without having

to compromise the quality, and still obtaining an exact solution.

 38

2.3.3.1 Non-linear programming

Warner and Prawda (1972) formulated a mixed-integer quadratic programming problem

that was field-tested in six wards of a hospital with a cost function formulated to minimize

hospital and legal penalties. They mentioned using a modified version of Balintfy and

Blackburn’s algorithm (Balintfy and Blackburn (1969)), which can be applied to goal-

programming problems, based on a single-goal non-cyclic formulation. To accelerate the

search process they simply used a primal resource-directive approach, decomposing the

problem in quadratic subproblems.

Their problem formulation took into account skill categories and replacement between

categories. Although their algorithm was field-tested they mentioned that they were

insatisfied by the results obtained since a large amount of work still had to be done in

order to provide satisfying schedules.

Before Warner and Prawda (1972) a number of researchers (Wolfe (1964), Wolfe and

Young (1965a), (1965b)) studied nurse scheduling with dynamic staffing levels, assuming

that the question of how high staffing levels should be was an integral part of the

scheduling problem formulation. Warner and Prawda changed this formulation method and

assumed that staffing level determination was independent from the scheduling problem.

They considered that too much staff level constraints had a negative impact on the optimal

solution. Instead they formulated constraints on preferred and minimum staffing levels. A

more pratical reason was that staffing needs were determined in advance by hospital

schedulers. It has led to nurse scheduling being formulated as deterministic problems with

a constant workforce demand and constant availability.Their quadratic formulation was

motivated by the fact that staff shortage costs often occur as an exponential function. As

can be seen in Figure 2.7, they stated that the cost increased exponentially with the level

of shortage, with staff shortage costs becoming zero if staffing levels were fully satisfied.

This exponential behaviour was also described by Aickelin and Dowsland (2000) when

testing a genetic algorithm as well as Berrada et al. (1996). A number of researchers refer

to the mathematical program formulation used by Warner and Prawda (Miller et al. (1976),

Ozkaharan and Bailey (1988), Okada and Okada (1988)) since skill categories and

replacement between departments often occur in practice.

 39

Warner (1976) reformulated the mathematical program of his previous research (Warner

and Prawda (1972)) to include constraints corresponding to shift preferences as requested

by nurses. The original mixed-integer quadratic programming problem solved by Balintfy

and Blackburn’s algorithm went through some modifications to make better use of the 0-1

structure of the model and to incorporate a certain number of improvements for the

developed application. He made use of a heuristic exchange procedure to assign a set of

a priori generated schedules to each nurses’ schedule. The system ended up being

implemented in 16 hospital wards, where the staff sizes ranged from 19 to 47 nurses.

A number of human-computer interactive principles were considered to ease the pratical

use of the program were also mentioned by the author. Even when not all coverage

constraints were necessarily met, the model was designed to solve the problem despite

infeasibility. The program allowed also for minor manual changes by the scheduler.

Warner also mentioned an improvement in productivity with time savings for a 6-week

schedule with 46 nurses. The planning time decreased from 18-24 hours to about 1 hour,

with a CPU time of 40-80 seconds. Warner also noted that a slight increase in the quality

of schedules resulted from the use of the system.

This work has been acknowledged to be one of the first modern day works. His article is

often mentioned for distinguishing three different fields within staff scheduling: staffing,

scheduling and allocation of nurses. We can also note that he described five criteria for the

scheduling problem. These criteria and scheduling approaches are mentioned in Table

Figure 2.7 Warner and Prawda’s exponential cost function for nursing care shortage

 40

2.4. Several articles are indeed direct offspring of Warner’s formulation (Miller et al. (1976),

Ozkaharan and Bailey (1988), Okada and Okada (1988)).

2.3.3.2 Goal programming approaches

Arthur and Ravindran (1981) formulated a nurse rostering problem as a goal-programming

problem which ended up being used by hospital schedulers for building real-life schedules.

The goals used are indicated in Table 2.5. The hospital implementation was possible due

to the fact that the complexity of the problem was very small: The problem describes the

ward over a two-week scheduling period. The total number of variables per nurse was 5

for a two week period.

They constructed their solution with the help of a two-phase algorithm. In the first phase,

the zero-one goal programming algorithm was used to assign shifts to a day-on/day-off

pattern on to obtain an initial solution. The final solution then was created by using a

heuristic procedure affecting the day-on/day-off patterns to nurses. A number of

Traditional Approach The schedules are generated by hand

Cyclical Scheduling
Generally provides good schedules but it is difficult to

address personal requests

Computer Aided

Traditional Scheduling

Allows a faster search for a higher number of good

schedules.

Coverage
Criteria pertaining to scheduling the preferred or required

number of people for a task

Quality
How fair schedules are, judged by the violation of soft

constraints

Stability
How the nurses perceive the schedules (in terms of

consistency, predictable on/off days and weekend work)

Flexibility
How well the system can adapt to changes in the problem

parameters

Cost
How many resources are consumed in making the

decision: e.g. personnel manager’s time or computer time.

Figure 2.1

Warner’s scheduling approaches

Warner’s scheduling criteria

Table 2.4 Warner’s scheduling approaches and criteria

Wgt

Priority 1 Minimum staffing requirements

Priority 2 Desired staffing requirements

Priority 3 Nurses’ preferences

Priority 4 Nurses’ special requests

Objectives (minimization)

Not

mentioned

Figure 2.2
Table 2.5 Arthur and Ravindran’s minimization objectives

 41

assumptions were used to reduce the initial problem’s size, i.e. it was assumed that

substitution between skill classes was not allowed and that each skill class could therefore

be planned independently of the others.

The work of Arthur and Ravindran (1981) is considered an important contribution to nurse

scheduling because they are considered as the first researchers to apply goal

programming to this field. Their work was motivated by the fact that they considered that

single-objective mathematical programming models were not flexible enough in terms of

relative rankings assigned to various types of goals.

In their conclusion they make an interesting reference to human-computer interactivity.

They admitted that the obtained schedule was not the final step in the process but that it

needed to be manually refined by schedulers. Although an algorithm could produce an

optimal schedule that took into account the various objectives, they admitted that

preferences needed to be flexible: Meaning that schedulers should be able to manually

adjust the model’s priorities. This testifies that ease-of-use was considered by researchers

as had been the case with Warner (1976), who allowed manual changes to schedules.

Musa and Saxena (1984) defined a 0-1 goal programming formulation which was solved

by an algorithm based on the ideas presented in Balas’s additive algorithm and coupled to

a problem-specific version of the Garrod and Moore procedure. A test instance resulted in

a formulation of 154 decision variables and 120 constraints for 11 nurses over a two-week

period. For reference, the optimization priorities and their respective weights are given in

Table 2.6. Their formulation was fairly similar to that used by Arthur and Ravindran

concerning coverage requirements, and preference satisfaction. They also mentioned that

the calculation time was approximately 28.3 seconds.

Wgt

Priority 1 Achieve contracted days 9

Priority 2 Achieve minimum number of nurses’s goals 7

Priority 3

Satisfy weekend preferences for full-time nurses, assign at

least one weekend or two days off for full-time nurses, and do

not violate the three-consecutive days off constraint. Achieve

desired number of nurses for patient care

5

Priority 4 Satisfy weekend preferences for part-time nurses 3

Objectives to minimize

Figure 2.3
Table 2.6 Musa and Saxena’s minimization objectives

 42

Their research is mentioned as a reference because it made an advance in the area of

human-computer interactivity / artificial intelligence: It was the first computer program

allowing users to make adjustments to the goals’ relative weights from one period to

another. Their application developed built on the conclusions of Arthur and Ravindran

(1981) who suggested that it would be preferable for users to allow manual changed.

Ozkarahan and Bailey (1988) used a 0-1 GP model with a formulation based on the set-

covering model. Their method used a two-phase system that integrated the time-of-day

(TOD) problem with the Day-Off (DO) problem, as discussed in the initial works of Bailey

(1985). Once both problems were solved to optimality, a heuristic would affect the optimal

work patterns from the DOW problem to the TOD problem. Their decision support system

incorporated several artificial intelligence techniques in the nurse scheduling process. The

goals defined for their model are mentioned in Table 2.7.

In their findings, similarly to Arthur and Ravindran (1981) as well as Musa and Saxena

(1984), it was reported a scheduler makes different changes in the algorithm’s final

solution. Their research was innovative because it integrated artificial intelligence

techniques in the interface of a decision support system to facilitate manual changes (e.g.

to be able to cope with changing assumptions, finding alternative solutions, manually

changing solutions and evaluate different substitutes in case of two conflictive objectives).

In their opinion most systems had shortcomings in the flexibility (i.e. artificial intelligence)

level. As they mention: “In reality, a nurse scheduler would form, perhaps with an AI front

end program, the two or three goals that are psychologically most appealing.”

Wgt

Priority 1
Minimize deviations from the required number of

nurses needed for each day of a weekend

Priority 2
Minimize deviations in both directions from the

limited staff size

Priority 3

Minimize deviations in both directions from the

required number of nurses for Thursday through

Sunday

Objectives (Minimization)

Not

mentioned

Figure 2.6
Table 2.7 Ozkarahan and Bailey’s minimization objectives

 43

It was reported that hospital management was satisfied during implementation because

producing the system-generated schedules was more efficient than the paper-and-pencil

schedules and because over- and understaffing were minized. Nurses also appeared

appreciative of the system because single days on duty, and separated days off were

eliminated.

For their research Berrada et al. (1996) used data taken from a Canadian hospital. In their

works, Berrada et al. (1996) compared a sequential algorithm, an equivalent weights

algorithm and a tabu search algorithm. The sequential and equivalent weight techniques

made use of a branch-and-bound algorithm. They were able to split the problem into three

single-shift problems since each nurse always worked the same shift, thus reducing the

complexity of their model.

Their work provides an interesting comparative on the performance of different algorithms.

They reported a higher CPU time for the tabu search than for the two exact procedures

which they related to the experimental status of their tabu search. It should be noted that

the tabu search also needed to be formulated as a non-linear program, thus resulting in a

higher solution time. The way in which the problems were formulated was different as well;

the deviation measuring constraints had to be formulated as non-linear constraints more

demanding in their solution time. Schedulers were satisfied with most of the results and

even decided to implement some of them.

Azaiez and Al Sharif (2005) used a 0-1 goal program that accounts for hospital objectives

and nurses’ preferences. Their research mentions wards of varying size. They divided a

ward in subgroups according to nurse’s qualifications and workloads. For the mentioned

example of 13 nurses they obtained a problem with 1135 hard constraints and 1068 soft

constraints consisting of 1092 binary decision variables and 2054 non-negative deviation

variables.

They provided interesting information concerning the testing of their model. In most of the

tested cases optimal solutions were obtained. Where this was not the case violations only

occurred for soft constraints with the lowest importance weights. Their largest running time

was approximately 20 minutes for a ward with 22 nurses. They reported that savings of

14% in over-time costs had been obtained over a 6-month testing period. According to

 44

their estimations it would be possible to realize savings of $ 100 000 once implemented.

They also pointed out that one of the problems perceived by the nurses was that less

overtime deprived them of a good source of income.

2.3.3.3 Branch-and-price approaches

Jaumard et al. (1998) presented an exact algorithm that made use of techniques

specifically aimed at accelerating the branching process. Based on a goal-programming

formulation, their aim is to minimize salary costs, nurse preferences, and

experienced/less-experienced staff while satisfying ward coverage. They defined a master

program to find a configuration of schedules and generated new feasible schedules by

solving a resource constrained shortest path problem based on a depth-first process.

Their algorithm was tested on a real-life instance from a Canadian hospital stretching a 6-

week planning horizon with 41 permanent nurses. The system was capable of providing a

linear relaxation solution for the instance concerned in less than 40 minutes. They

mentioned that when the same problem is solved by a partial branch-and-bound it took

approximately 16,5 hrs to get a solution. Creating a paper-and-pencil schedule took a full

working day for the scheduler. In terms of search speed this algorithm could be considered

slow but they made mention of this fact. They explained that the search could be stopped

by the scheduler during any point of the process and still obtain satisfactory feasible

solutions.

In their published research Bard and Purnomo (2005a, 2005b) used a multi-objective

column generation approach that tries to ensure sufficient coverage while taking into

account staff preferences. Their approach allowed for infeasible schedules by the use of

outside nurses to fill up gaps in the schedule. Their algorithm was tested on instances of

up to 100 nurses for a four week planning horizon producing schedules in 10 minutes. To

reduce the size of rows of the model staff demand was expressed in periods rather than

shifts. They generate only columns that are feasible for nurses to reduce the number of

candidate schedules. To build new columns a double swapping heuristic was used where

periods with staff shortages or surpluses were preffered for exchanges. Reports tell us that

the algorithm has been implemented at different hospitals.

 45

In a latter paper Bard and Purnomo (2007) used a Lagrangian decomposition scheme to

lower the number of variables for the same instances. Maenhout and Vanhoucke (2007)

investigated several different branching strategies to speed up the search time for an exact

solution. These papers were not implemented in hospitals but show the trend that takes

place in finding new solving methods for the existing problems.

2.3.4 Artificial intelligence methods

In the 1980’s and later, artificial intelligence techniques for nurse scheduling (declarative

approaches, constraint programming, expert systems) were investigated with some

success. Although it has not resulted in any export systems up-to-date, a number of

different methods have been proposed. Chiaramonte and Chiaramonte (2008) proposed a

heuristic using a competitive agent-based negotiation that focused on nurses’ preferences.

Some of these approaches are still relevant to today’s research issues (Chan and Weil,

(2001); Chiarandini et al. (2000); Meyer auf’m Hofe (1997)).

Weil et al. (1995) presented a constraint programming (CP) model for nurse scheduling

with the purpose of demonstrating the applicability of this technique as both a modelling

and resolution tool. To model the problem they combined object programming and CP

techniques as a tool for which they used ILOG-Solver. They defined an object class called

“nurse” that contains information about the nurses’ identity (name, title, etc…) and the

constrained variables used to generate the schedule.

The scheduling horizon of their work was a 14-day calendar. They tested their system on

two examples. The first one included less than 12 nurses, with a theoretical complexity of

10100. The second problem contained 30 nurses from the same skill class. The problem

contained 420 variables and 1470 constraints and had a theoretical complexity of 10250.

They reported a solution time of 12 seconds.

Okada and Okada (1988) developed a scheduling algorithm based on declarative

programming with help of the logic programming language Prolog that followed a manual-

 46

like method. Okada (1992) built on this method to develop a system that was able to

handle constraints that were specific to different hospitals.

2.3.5 Heuristic methods

Miller et al. (1976) used a cyclic descent algorithm to solve schedules. They considered an

objective function aimed at mimimizing staffing over- and undercoverage and nurse

dissatisfaction in a single-objective formulation. The algorithm starts with an initial

configuration of the schedule. From the nurses on the ward it selects one nurse to improve

the schedule. Only if the algorithm finds a schedule that results in a lower cost, the lowest

present cost and the best schedule are updated. If no cheaper configuration can be found

during I consecutive tests, the algorithm stops.

Their contribution was compared to a branch-and-bound algorithm and contained a good

description of the number of alternative schedules that can be obtained. The example they

mention is when 4 days are given off over a 14-day period. The number of alternative

schedules then amounts to (
) > 1001 schedules. They mentioned that this number is

lower when feasibility set constraints (hard constraints), previous schedules and special

requests are taken into account.

They performed their algorithmic comparison on a 4-nurse problem, over a 20-day period.

The optimal solution was a cost of 7,55 and with the cyclic descent they obtained a 12,3,

with a CPU-time of respectively 10,509 sec vs. 0,367 sec. It should be noted that the

upper-bound in the branch-and-bound algorithm was the final solution generated by the

algorithm and was used to reduce the search time.

The also discuss their results of a general testing phase over a six-month period on groups

of 5-7 nurses. They mentioned that the schedule was equitable over a planning horizon

and that the algorithm generated a lower number of split weekends, something which was

unwanted by the nurses. For the problems tested the generation time was generally

between 2.5 sec. – 8 sec. Their estimation was that each example contained an average of

200 feasible schedules.

 47

2.3.6 Metaheuristics

The group metaheuristics contains a number of different fields. Up-to-date approaches

have been developed using local search and population-based metaheuristics. Methods

presented for local search metaheuristics are limited to tabu search algorithms since only

these have been implemented in decision support systems. Some population-based

algorithms have also been presented although they have currently not been integrated

directly in decision support systems.

2.3.6.1 Tabu search

Burke et al. (1998) developed a decision support system named Plane for Belgian

hospitals. They reported that the number of constraints was higher than encountered in

most literature problems researched. Their objective function formulation focused on the

planning requirements including under- and overstaffing, and taken into account the

preferred requirements. They mention that the cost function could be modelled by the

scheduler himself.

Their system was based on the use of a tabu search with diversification strategies. They

used random initialization to create new schedules and after the tabu search process two

diversification strategies could be used: If necessary they relaxed a number of constraints

to improve the weekend coverage. They also used a greedy shuffle to list all pairs of

moves possible until the list was depleted. They mentioned that this latter technique was

taken from seeing the scheduler at work. Schedulers were often capable to improve the

results of the search by making a small exchange between two staff members.

They compared the performance of their tabu search to a steepest descent (SD) algorithm.

Their results based on an example for a ward with 20 nurses and a planning horizon of 4

weeks showed that the steepest descent method was outperformed by the tabu search.

Their conclusion was that schedulers often put more emphasis on a higher quality solution

than the search time needed.

 48

Dowsland (1998) used the strategic oscillation techniques proposed by Glover and Laguna

(1993) to explore new techniques for solving nurse scheduling problems. Ferland et al.

(2001) also make mention of a tabu search for providing schedules. Burke et al. (2001)

used a hybrid tabu search coupled to a genetic algorithm to explore a solution approach

that produces more robust solutions.

2.3.6.2 Genetic algorithms

A number of papers have been published on the use of genetic algorithms for generating

schedules but none of them have actually been implemented in hospitals. Aickelin and

Dowsland (2000) tested a genetic algorithm on an instance and encountered an

exponential behaviour which diminishes the efficiency of a standard genetic algorithm.

Maenhout and Vanhoucke (2006b) provided a comparison of different crossover operators

for genetic algorithms.

2.3.6.3 Other metaheuristics

Maenhout and Vanhoucke (2005, 2006a) developed experimental algorithms for nurse

rostering problems. They presented an electromagnetism meta-heuristic and a scatter

search algorithm. Goodman et al. (2007) reported a hybrid grasp-knapsack algorithm.

These papers show that newer models have mainly been focused on accelerating the

search process.

 49

Chapter III – Formulation and solution approach

3.1 Introduction

The contribution of this Chapter is twofold. In the first section, it models and presents a

new problem, the Resident Scheduling Problem (RSP), whose main objective is to assign

a set of shifts (typically 12- or 24-hours shifts) to staff members and where an employee

should work around a single shift per four days in order to minimize costs. The Resident

Scheduling Problem is a real-life scheduling problem which arises often in hospitals or in

other contexts where manpower needs to be assigned to shifts to cover non-stop activities.

The second section proposes an efficient method to obtain a good quality solution, called

the Manually Restricted Space (MRS) for the Resident Scheduling Problem. This

construction heuristic, inspired from the manual techniques followed by schedulers,

proposes an initial solution by selecting a region around a reference solution and exploring

neighbouring solutions. The Manually Restricted Space is a space restriction approach

thus providing an initial solution for a neighbourhood-based heuristic; instead of

transforming the solution space, a region is selected around a reference solution.

The concept of delimiting the solution space to be explored is a logical way to deal with

large scale problems. In his doctoral thesis Pecora (2008) defines this concept as the

Restricted Space (RS): “a subspace of the universal set of solutions which has two highly

desirable characteristics (1) it should be small enough to be thoroughly explored and (2) it

should have a high possibility of containing near-optimal solutions.” Several authors can

be referred to as examples of studying the problem structure to reduce the solution space.

Aickelin and Dowsland (2000) used a genetic algorithm to exploit the structure of their

problem. Maenhout and Vaenhoucke (2009) used a branching strategy that branched on

the original variables and progressively fixed the assigments in the individual schedules.

To advocate their approach they mentioned that personnel scheduling problems are

compatible with pricing problems.

 50

The aim of the present study was to deduce the common characteristics and integrate the

schedulers’ knowledge in search methods. To reflect these considerations the manual

techniques used by schedulers were integrated in a formal framework and ultimately led to

the formalisation of the Manual Scheduling Process (MSP). The MSP reflects the

schedulers’ techniques, and their common scheduling behaviour. To integrate the MSP in

a search method the construction heuristic was developed. The construction heuristic was

obtained by combining different OR (Operational Research) heuristics. Finally, this

resulted in the Manually Restricted Space.

3.2 Problem description

The constraints used in this Chapter have been formulated to provide a general model

suitable for residency programs with ward-shifts. However, these constraints can be

modified to take into account different types of residency programs such as resident home-

carers or residents on standby at home. During our testing phase we have encountered

instances where some postulates of this model had to be modified to be able to comply

with hospitals’ regulations. In this chapter not all constraints used within the schedule

planning software will be mentioned to make the model easier to understand. The

complete mathematical model can be found in Appendix A.

3.2.1 Problem dimensions

The characteristics previously described in § 2.2.1 and § 2.2.3 for the nurse scheduling

problem, are the following for the resident scheduling problem:

1. The planning horizon is 28 days;

2. Shifts only have to be planned for night shifts (day shifts are not planned by resident

scheduler’s). During the week shifts start at 8 P.M. and end at 8 A.M. During the weekend

shifts start at 8 A.M. and end at 8A.M. Shift length is therefore 12 hours on weekdays and 24

hours on weekends;

3. There are 1 or more wards for each scheduling problem;

 51

4. Minimum coverage level(MC) per ward: 1 resident;

5. Infeasible solutions are allowed at a cost, replacement shifts are done by doctors.

Weekend shifts are the most difficult to assign because of their 24-hour length. Demand

fluctuation is strong during weekends; on Saturdays demand is at its’ lowest, making it the

most difficult day because, according to residents, it is very monotonous and boring. Also,

note that coverage infeasibility is allowed whenever no resident can be scheduled. If this

occurs, the feasibility of the solution is restored by adding replacement shifts which will be

done by a doctor. However, a doctor that does a night shift leads to a high penalty cost in

the objective function. Therefore, a doctor should only be called upon if necessary. In the

data samples that we gathered the frequency of shifts done by doctors was rather low.

Table 3.1 summarizes the constraints encountered in this problem. The next sections

introduce formulations for each of these constraints groups. The integrity constraints

model the allowable characteristics of the Resident Scheduling Problem. It includes the

number of staff members needed for every skill category and for every shift during the

entire planning period. The legal constraints model all the restrictions on personal

schedules, such as personal requests and personal preferences. The hospital constraints

contain the practices applied by wards, such as attributing Saturday shifts to more junior

staff members and constraints on balancing the workload among personnel. We will use

numerical examples to clarify the main constraints.

Integrity Constraints Internal ward constraints

Required number of residents for each day Proportionate dispersion of days among residents

Maximum of one shift assigned to a person at the same time Proportionate dispersion of total shifts among residents

One day-type assigned to a person at the same time

No more than the maximum number of shifts Respect resting cycles after night shift

Respect requested days off No more than two weekends per scheduling period

Respect congress days No more than two consecutive weekends

Respect holidays

Legal Constraints

Table 3.1 Resident Scheduling Problem constraints

 52

 The characteristics of the numerical example are the following:

 The planning horizon is 28 days

 The hospital has 18 residents working on 2 wards: Emergency and Paediatrics. Resident 1 to 8

can only work at the Emergency ward and resident 11 to 18 at the paediatrics ward. Residents

9 and 10 can work on both wards. At each ward MC = 1

3.2.2 Objective function

The objective function designed for this model uses slack variables to calculate the penalty

cost function. Penalty coefficients are selected to adequately weigh each of the slack

terms. This function is defined as follows:

 ()

 ∑∑

 ∑

∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

Apart from the penalty values the objective function also contains the parameter ϱ which

sets the number of days off to be respected.

3.2.3 Integrity constraints

Integrity constraints define the constraints among shifts and are used for the algorithm

used for the search process.

 53

Required number of residents for each day

Constraint (3.2) has been formulated to handle undercoverage, i.e. allow a shortage in

staff coverage. In some scheduling problems staff shortages can lead to infeasible

solutions. To avoid this from occurring, undercoverage is allowed by defining two different

levels of coverage. The first level is minimum coverage, the smallest number of staff

members that are needed at a ward, and is reflected by the variables containing MC. The

second level is the real coverage level, reflecting the actual number of residents that will

be scheduled on a ward. The deviation between the minimum coverage and real coverage

is measured by
 . We consider every resident i that belongs to the same

department, denoted as ∑ () .

 ∑

 ()

 ()

This constraint furthermore considers that the same shift cannot be assigned twice.

For example, for the 1st day of the planning period constraint (3.2) for the emergency unit

(denoted as k=1) can be written as:

For the paediatrics unit (k=2) this constraint is:

Maximum of one shift assigned to a person at the same time

Since residents can be active on different wards we have to assure that any person cannot

be assigned to more than one shift at a time. Constraint (3.3) considers all different wards

at which a resident can work by defining the summation of all a resident’s shift variables on

different wards.

 54

∑ ()

 ()

For example, the residents 9 and 10 can work on both departments. Therefore for t=1, we

would have to include the following constraints:

One day-type assigned to a person at the same time

Constraints (3.4)-(3.8) set the day-type of a resident on day t. Where the binary variables

in (3.4) and (3.5) will depend on the parameters of the constraints (3.6)-(3.8). The

parameters and variables are mentioned below:

Parameters

RDOit 1 If resident i requested a day off at day t

 0 Otherwise

Cit 1 If resident i is at conference at day t

 0 Otherwise

Hit 1 If resident i is on holiday at day t

0 Otherwise.

Decision variables

xit 1 If resident i is working at day t

0 Otherwise

rdoit 1 If resident i requested a day off at day t

 0 Otherwise

cit 1 If resident i is in conference at day t

0 Otherwise

hit 1 If resident i is on holiday at day t

 0 Otherwise

 ()

 55

 ()

 , , () ()

The problem has been formulated in such a manner that a number of specific day-types

can prohibit a resident from working night shifts on particular days. Constraints (3.4)-(3.8)

are therefore intricately linked to constraints (3.9) and (3.11)-(3.16). These are legal

constraints that set the limitations on day-types. The variables will therefore

also be used in the constraints (3.11) – (3.16) which are intended to assure the respect of

the day-types.

The variables and have not been mentioned in the same equation but rather in

separate equations - (3.4) and (3.5) - for the following reason; it might occur that = 1

but that a resident would have to work despite this value. Therefore, and do not

exclude each other, since it is possible to not assign a day off to a resident who requested

one. On the other hand, and cannot occur simultaneously. We therefore have

to define the constraint (3.5), , to avoid and from

happening simultaneously. For the same reason, we also have to assure that and

 do not occur simultaneously, by defining constraint (3.4), .

The parameters are set to indicate which day-type is valid, if, for example,

on t=5 resident 3 is attending a conference:

 , ,

3.2.4 Legal constraints

No more than the maximum number of shifts allowed per resident

Constraint (3.9) defines the number of shifts allowed, which is proportional to the number

of days of availability of a resident.

 56

∑ ()

 ()

Conferences and holidays are part of the entitled legal days off and diminish the number of

availability days. The parameter MAXi is the maximum number of shifts and is determined

by equation (3.10):

 ⌈
()

 ⌉ ()

The maximum number of legally allowed shifts is 6. This number is multiplied by the ratio

(remaining days/ total duration of planning horizon) to obtain the number of shifts a

resident can work in reality.

Suppose that resident 9 attends a 3-day conference and takes a week of holiday.

Constraint (3.10) then becomes:

 ⌈
()

 ⌉ ⌈ ⌉

Respect requested days off

According to the legal convention a resident is entitled to 2 requested days off per

scheduling period. However, the number of requested free days is generally much higher

than the 2 days allowed. The constraints (3.11) and (3.12) are therefore ment to avoid any

violation of a requested free day and to allow more flexibility to the model because the

resident scheduler sets the number of days off requests that have to be respected. In the

objective function ϱ sets the number of days off to be respected. Any violations to

constraint (3.11) will be inversely penalized with respect to ϱ in the objective function.

Constraint (3.15) has therefore been formulated to handle penalties all requests for days

off.

 ()

∑

 ()

 57

Constraint (3.11) is defined for each resident and each day in order to count the number of

times a requested day off is not respected. Constraint (3.12) is the summation that has

been formulated to determine if less or more than the ϱ requested preferred days have

been respected. If in the objective function ∑

 the penalty will be higher than

for ∑

 . In the former case, less than the requested number of days have

been respected and should therefore be penalized more strictly.

For example, if resident 16 handed in a request form indicating that he wished to be off

during the first weekend of the planning period and if :

Respect conference days

When a resident attends a conference he cannot be expected to work. Constraint (3.13) is

therefore defined for each resident and each day in order to count the number of times a

conference day is not respected. Constraint (3.14) is the summation formulated to count

the number of times a conference day is not respected.

 ()

∑

 ()

For example, the conference resident 9 attended took place during the first week of the

planning period:

 58

Respect holidays

Constraint (3.15) is defined for each resident and each day in order to count the number of

times a holiday is not respected. Constraint (3.16) is the summation that counts the

number of times constraint (3.15) is not respected.

 ()

∑

 ()

When a resident is on holiday the collective agreement does not allow a violation of his

holidays. When leaving on holiday, the resident also has to be off duty the weekend before

and after his week of holidays. This therefore imposes a limitation on the attribution of

weekend shifts to residents. This constraint is mentioned in Appendix A.

For example, the week of holiday resident 9 took was during the last week of the planning

period:

…

Respect resting cycles after night shift

The constraints (3.17)-(3.21) are necessary to respect the different cycles of being on- and

off-duty.

 () () () () ()

 () ()

 () ()

 59

∑

 ()

∑

 ()

The collective agreement prescribes two types of resting cycles, which are illustrated in

Table 3.2. The first cycle type is a 72-hours rest period after each night shift, to allow the

resident’s circadian rhythm to come back to a normal rhythm. However, a second cycle

type allows the limitation of the rest period to 48 hours. The legal convention allows a

resident to work this second cycle type once every period. These cycle types will be

referred to as 72-hours and 48-hours rest cycles respectively. In other words, a resident

will only work a shift once every five days if working only 72-hours cycles. In constraints

(3.20) and (3.21) the number of allowed 48-hours shifts -without incurring any penalties- in

the resident’s working pattern is set by ,. Although the legal convention limits the number

of 48-hours shifts, some wards give residents a second 48-hours shift. This is allowed in

the eyes of the legal convention if the resident accepts this workload. Normally ,

although it could set to be a higher number.

The slack variables
 and

 in (3.18) and (3.19) count the

number of 48-hours resting cycle result and constraints (3.20) and (3.21) force the

summation of ∑

 and ∑

 to penalize all 48-hours resting

cycles over .

A value of that is larger than 1 is unwanted, but cannot always be avoided. Table 3.3

shows the patterns that will be allowed as a function of . For example, if no 48-hours

resting cycles are allowed only pattern 1 would respect constraints (3.17)-(3.21). If =1

pattern 2 would be allowed to occur, whereas this pattern would lead to a penalty if .

1 2 3 4 5 6 7 8 9 10 11 12 13

Pattern 1 Q=0 0 0 1 0 0 0 1 0 0 0 1 0 0

Pattern 2 Q=1 0 0 1 0 0 1 0 0 0 1 0 0 0
Pattern 3 Q=2 0 0 1 0 0 1 0 0 1 0 0 0 0

Table 3.3 Allowed rest cycle patterns in a resident’s schedule depending on

Cycle type 1 2 3 4 5 6 7 8 9 10

48-hours resting cycle 0 0 1 0 0 1 0 0 0 0

72-hours resting cycle 0 0 1 0 0 0 1 0 0 0

Table 3.2 Rest cycles as described by the legal convention

 60

Pattern 2 shows that a resident is working on t=3, is off on t={3,4} and back on duty on

t=6. Such a set of days is a 48-hours rest cycle. If pattern 3 would occur while a

penalty would be attributed. During implementation of the prototype pattern 3 occurred

regularly while If this occured, a resident could only work such a schedule if he

formally accepted it.

No more than two weekends per scheduling period

Constraint (3.22) expresses the limitation on the number of weekend shifts, due to the fact

that weekend shifts are longer.

∑

 ()

Every resident can only be on duty two weekends per scheduling period. Hospital

management also indicated that it was preferable that no resident makes more than a

single Saturday per calendar-period. This constraint is mentioned in Appendix A.

For resident 5 this results in the following constraint:

No more than two consecutive weekends

Constraints (3.23)-(3.27) ensure that a resident cannot work more than two consecutive

weekends during a planning period. This legal constraint also has to be respected during

two consecutive planning horizons.

∑

 ∑

 ()

∑

 ∑

 ∑

 ()

∑

 ∑

 ∑

 ()

∑

 ∑

 ∑

 ()

 ()

 61

The forbidden consecutive weekend patterns are shown in Table 3.2, where PW

represents the set of all weekends of a previous planning horizon, and WKD the set of all

weekends of the current planning horizon. The sets WKDSET1 to WKDSET4 represent

the weekends of weekend 1 to weekend 4. For example, if a resident works two weekend

shifts in set PW, pattern 1 forbids him to work a weekend shift in WKDSET1. The

constraints reflect the patterns 1 to 4. For example, equation (3.26) corresponds to pattern

4. If one of the patterns is present in the schedule constraint (3.27) will penalize the

number of violations.

For example, for resident 8 this constraint should become:

3.2.5 Hospital constraints

The hospital defined a few constraints that were not legally defined but were still

considered to be an important factor in the fairness of each schedule. This third set of

constraints reflects the hospital’s concern that all residents are treated fairly.

19 20 21 26 27 28 5 6 7 12 13 14 19 20 21 26 27 28

Pattern 1

Pattern 2

Pattern 3

Pattern 4

xit = 1 xit = 1 xit = 1

xit = 1 xit = 1 xit = 1

xit = 1 xit = 1 xit = 1

xit = 1 xit = 1 xit = 1

PW WKD

WKDSET1 WKDSET2 WKDSET3 WKDSET4

Table 3.4 Forbidden consecutive weekend patterns over two consecutive planning horizons

 62

Proportionate dispersion of days among residents

Every time constraint (3.28) is violated the dispersion score of resident i will deviate from

the average penalty score.

(∑)

 ()

Each resident has his own dispersion score, defined as the total penalty cost associated to

a shift pattern, formulated in equation (3.29) as:

 ()

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

Suppose that resident 4 works three Tuesday shifts and one Sunday shift. If

and then . If
(∑)

 , resident 4 will work a

better schedule than the average resident which results in a penalty cost. The penalty cost

can be decreased by assigning resident 4 to more shifts or by assigning him to other

shifts.

Proportionate dispersion of total shifts among residents

Constraint (3.30) is ment to ensure a fair distribution of the number of shifts between

residents.

∑ ∑

∑ ∑

 ()

Suppose that the average number of total shifts distributed between residents,
∑ ∑

 = 5

and that we look at the shift pattern of resident 4. Since this resident would work four shifts

in the current schedule his shift pattern would be of from the average shift total resulting in

a penalty.

 63

 64

3.3 Proposed heuristics

This section provides a macro-view of the manual process used by resident scheduler’s

and of the proposed algorithms included in the construction heuristic, which is inspired by

the manual process. From a theoretical perspective, a scheduler has rich knowledge on

the characteristics often found in good solutions and uses his experience to create

schedules. By combining different OR methods – a min-knapsack problem and a best-fit

decreasing heuristic - into a construction heuristic it is possible to imitate the manual

process and focus on the common characteristics of good solutions. The construction

heuristic generates a promising subspace within the feasible solution space, called the

Manually Restricted Space. The initial solution provided by this mechanism is thoroughly

searched to find (hopefully) better solutions by a Tabu Search (TS) procedure. To illustrate

the steps of the Construction Heuristic we will use as example the emergency department

already described (in §3.2.1).

3.3.1 The manual scheduling process and its algorithmic equivalent

 The resident scheduler creates a restricted space by using a Manual Scheduling Process

(MSP) that leads to a solution contained in a feasible subspace. By combining different OR

heuristics it is possible to imitate the manual process and focus on the common

characteristics of good solutions. The combination of heuristics is also an efficient method

to provide a solution in a reasonable amount of time. In this context, using heuristics is

also a good way to ellicitate the schedulers’ considerations, deduce their common

characteristics and integrate this knowledge in search methods, thus recreating a RS

(Restricted Space). Initial interviews led to the formalisation of the MSP and allowed the

distinction of the different activities that were performed. A review of the literature allowed

the identification of heuristic equivalents to these activities. The activities performed by

schedulers are mentioned in Table 3.5 as well as the heuristics used for imitation.

 65

Solving the staffing problem by determining the coverage level needs has been used by

Aickelin and Dowsland (2000) to ensure the satisfaction of coverage constraints. They

used additional dummy (By the authors referred to as ‘bank’) nurses to compensate for

undercoverage and provide initial solutions that were feasible. Ferland et al. (2001) used a

best-fit decreasing heuristic on a nurse-scheduling problem to provide initial solutions of

relatively good quality. We did not find an equivalent heuristic for the activity of conflict

resolution during the construction of the initial solution. This was therefore interpreted

more freely by taking into account one of the main problem characteristics. The challenge

was that 72-hours resting cycles had to be taken into account before and after shifts. A

constraint-verification was therefore introduced to verify if allocating the shift still allowed a

72-hours rest cycle before and after work. The final activity of conflict resolution was a

search for a better solution. In the manual process, the scheduler would go over the

calendar a few more times to see if all shift patterns had been assigned fairly. In

optimization terms there are numerous methods. Nevertheless, a tabu search provided the

best equivalent to the manual process where a move operator performs exchanges in a

neighbourhood, opposed to evolutionary methods that use population-based search

methods.

Activity Method Heuristic equivalent

Determine minimum coverage level needs Calculate number of shifts to work Knap-sack relaxation

Establish initial schedule Choose available resident Best-fit decreasing heuristic (Bin-Packing pb)

Conflict resolution (before search) Visual checks Feasibility check in best-fit decreasing heuristic

Conflict resolution (during search) Exchange with other residents Tabu search

Table 3.5 Manual scheduling activity, corresponding method and heuristic

equivalent

 66

Figure 3.1 Manual Scheduling Process framework

 67

Once the activites had been identified a more formal framework, called the Manual

Scheduling Process (MSP), was developed. This framework is illustrated in Figure 3.1 and

describes the process used by schedulers to manually create a schedule. This process

distinguishes two phases:

- Phase I: coverage input - Residents provide the scheduler with their time-off requests

which he uses to fill an empty calendar;

- Phase II: shift assignment - The scheduler creates the schedule and continues to solve

occuring conflicts until he judges the schedule fair enough.

In simple terms schedulers design an initial schedule in the first phase and in the following

phase they try to improve this schedule to obtain a feasible solution of good quality.

Phase I consists of two main tasks: calendar-creation and parameter determination. Before

executing the task calendar-creation the scheduler gathers all the Unavailability Notices to

create an empty calendar. The calendar-creation is a repeated task of filling in the names

and the availability of each resident. Once this task is completed the scheduler will

determine the ward coverage level together with the average number of shifts residents

will work.

Phase II consists of two parallel tasks: shift assignment and conflict resolution. They are

parallel because a scheduler can simultaneously manage the shift assignment in the

neighbourhood, the evaluation of the schedule, as well as conflict resolving. The first task

is the determination of schedule needs. The first task is shift assignment, a repeated

process of assigning shifts to residents. The conflict resolution is triggered as a parallel task

whenever the shift assignment results in the violation of rules. In phase II the position of the

assigned shifts is subject to different constraints. The scheduler can assign shifts until a

conflict with these constraints occurs. More precisely, the scheduler will start the shift

assignment by selecting a resident. He will verify the number of shifts already assigned to

this resident and decide whether or not affecting the shift to him. Whenever a conflict

arises the scheduler will have to perform a conflict resolution by exchanging shift

assignments with another resident.

 68

The development of the MSP allowed the definition of the different tasks for the prototype.

Table 3.6 provides a summary of the inputs and outputs of the different solution methods

within the prototype. The integer knapsack problem takes the empty calendar information

and determines whether any departments will be short-staffed throughout the planning

horizon. The best-fit decreasing heuristic will receive the information from the integer

knapsack and uses the raw data from the empty calendar and the staffing requirements of

each department to transform it in an initial solution. The raw data consists of two sorted

lists, the SFT- and the RDS-list, The SFT-list contains all the shifts to be assigned

throughout the planning period. The RDS-list contains the residents in increasing order of

pre-scheduling score based on different criteria. The initializaiton of these lists will be

discussed in §3.3.3. The initial solution will be improved by a tabu search that will explore

the different solutions and return the best solution found. The different activites were

integrated in the prototype and the results were presented to schedulers to obtain their

feedback on the quality of solutions.

Method Input Output Objectives

Integer knap-sack Total availability of residents

Number of shifts covered by

residents and number of shifts

covered by doctors

Determine whether there will

be under- or over-coverage

Best-fit decreasing Sorted SFT- and RDS-lists
Initial solution based on users'

parameters

Provide an initial solution of

good quality

Phase II

Search
Tabu search Initial solution

The best solution found with the

tabu search

Explore the solution

thoroughly

Phase I

Initialisation

Table 3.6 Summary of the solution methods

 69

Figure 3.2 General algorithm

 70

 Figure 3.2 presents the general algorithm. This process is organized in three different

phases:

- Phase I: initial data input - The scheduler enters the unavailability information in the

prototype;

- Phase II: restricted space construction – The heuristics described build an initial solution to

obtain the Manually Restricted Space;

- Phase III: Optimization – The tabu search thoroughly explores the Manually Restricted

Space to find, hopefully, better solutions.

In Phase I the information provided by the scheduler is stored in the database. Phase I is

done in the user interface of the prototype that allows user-computer interactivity. This

Phase is similar to Phase I of the MSP.

Phase II of the algorithm is similar to Phase II of the MSP. Four different procedures are

executed in this phase. First of all, the Knapsack procedure determines the number of shifts

necessary to satisfy the covering needs throughout the planning period. Then the

procedure SFT-list initialization is executed resulting in a list that contains all the shifts to be

assigned throughout the planning period. In turn, the procedure RSD-list initialization

creates the availability list of all residents. This list mentions the total number of shifts each

resident can work throughout the planning period. Then, the next task is to assign all shifts

by help of the Best-fit decreasing procedure. In case not all shifts can be assigned to

residents, dummy doctors are assigned to the remaining shifts.

Finally within the algorithm, a tabu search is executed to explore the Manually Restricted

Space and, with any luck, find (near-to)-optimal solutions. The procedures used in the

algorithm will be described in more detail in the following sections.

3.3.2 A knapsack IP-relaxation of the staffing problem

The staffing problem (Staffing Problem) is presented below as a knapsack formulation of a

min-knapsack problem. The resolution of the staffing problem can be used to determine

coverage feasibility. This information is used to determine whether all night shifts

throughout a scheduling period can be covered by residents and if doctors replacing

 71

residents are required. This information is referred to as the Coverage Input (CI). This

approach has been used by Aickelin and Dowsland (2000) to satisfy coverage constraints

and provide better initial solutions. For the staffing problem the resolution corresponds to

the satisfaction of constraints (3.2) and (3.9) (Required number of residents for each period, No

more than the maximum number of shifts allowed per resident). The resolution results in the

creation of an ordered list that contains all residents and the number of shifts they can be

assigned to.

When formulating the Coverage Input as a knapsack problem we have:

Min ai ri + bj sj (3.31)

 ni ri + sj dj ≥ N (3.32)

Where

Parameters

N is the total number of shifts that have to be worked;

ni Is the number of shifts resident i can make, i=1…m;

sj Is the number of shifts doctor j can make, j=1..D;

ai Is the cost associated to scheduling resident i, i=1…m;

bj Is the cost associated to scheduling doctor j, j=1..D.

Decision variables

ri is 1 if resident i is available to work, 0 otherwise;

dj is 1 if doctor j is available to work, 0 otherwise.

To solve the integer problem we relax the Integrity constraint (3.32) on the assignment

variables. N can be considered as the lower bound of the problem. By solving the IP-

relaxation of the problem it is possible to determine whether there will be undercoverage.

Thus, if N - ni* ri ≥ 0, there will be a shortage in residents. By reformulating (3.32) the

number of shifts that doctors have to make can be determined by solving (3.33):

 sj * di ≤ N - ni* ri (3.33)

If at any stage ni* ri – which will provide us with the total number of shifts that can be

covered by residents - is greater than or equal to N, the corresponding scheduling problem

 72

is feasible. Otherwise, if ni* ri is smaller than N, the number of residents available will not

allow the satisfaction of minimum coverage constraints and doctors have to be scheduled

to compensate for undercoverage. A doctor never covers more than a single shift when

standing in. The doctors substitute residents in case of undercoverage and help us to

estimate the total level of undercoverage throughout the scheduling period.

To demonstrate this we will use the characteristics of §3.21 for a numerical example. On

the Emergency ward we had 10 residents available (i=1…10). We will suppose that each

resident is allowed to work 4 shifts (n1=n2=... n18=4). However, we will suppose that

resident 9 can work only up to 2 shifts (n9=2) at the emergency ward and that resident 10

can work only 1 shift on the emergency ward (n10=1). Minimum coverage is 1 resident and

the planning horizon is 28 days. A total number of 28 shifts (N=28) would therefore have to

be worked to ensure sufficient coverage. We will look at the coverage in a simplified

example.

 ni = n1+n2+…n10 = 8*4 +2 +1= 36 shifts

Because ni = 36, we could assume that all shifts to be worked could be assigned and

that the set of solutions ≠ ∅. Therefore, a feasible solution exists that satisfies (3.31) for the

knapsack problem and that constraint (3.32) can be satisfied, therefore:

Min ai ri + bj sj ⇔ ni* ri ≥ N (3.34)

If ni* ri ≥ N is satisfied the following statement is true as well:

 ni* ri ≥ N ⇔ sj * dj = 0 (3.35)

When ni* ri ≥ N for the Emergency department there will not be any undercoverage and

the problem is feasible without needing the help of doctors to work shifts. Otherwise, if sj

* dj ≥ 0 and we would have to solve (3.33). This would mean that there would be a need to

have doctors work shifts. In both cases the solution would give a feasible solution. If

statement (3.34) is satisfied a feasible solution exists where only residents will work,

otherwise a feasible solution will include shifts worked by doctors and residents.

 73

3.3.3 Lists initialization

The construction heuristic starts by initializing the lists of residents and shifts. The first list

to be initialized is the SFT_LIST, the list of all shifts necessary to ensure full coverage

throughout the planning period. Before the start of the best-fit decreasing heuristic, the

difficulty score for each day is already indicated by the scheduler in the prototype, which

will be explained further on. These values will be used to determine the order in which the

shifts are selected to be assigned. This is illustrated in Figure 3.3. This Figure also shows

the complete list of shifts for the emergency ward where the coverage level is 1 employee

and the score that the scheduler gave to them.

For example, the scheduler gave Mondays a weight of 4 points, whereas Saturdays

received 10 points. This means that Saturday shifts are more difficult to assign than

Monday shifts and therefore that violation of Saturday’s constraints will be penalized

harder. Using this information the SFT_LIST is created. For example, the coverage levels

for the emergency and the paediatrics ward are 1 resident each. The SFT_LIST will

therefore contain a single shift for which t =1, ward = emergency and score = 4.

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Day Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Score 4 4 4 2 7 10 7 4 4 4 2 7 10 7

t 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Day Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Score 4 4 4 2 7 10 7 4 4 4 2 7 10 7

6 13 20 27 5 7 12 14 19 21 26 28 1 2

Sat Sat Sat Sat Fri Sun Fri Sun Fri Sun Fri SunMonTue

10 10 10 10 7 7 7 7 7 7 7 7 4 4

3 8 9 10 15 16 17 22 23 24 4 11 18 25

Wed Mon Tue WedMonTue WedMon Tue Wed Thu ThuThu Thu

4 4 4 4 4 4 4 4 4 4 2 2 2 2

SFT_LIST

Figure 3.3 Assginment of score to all days of planning period

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Day Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Score 4 4 4 2 7 10 7 4 4 4 2 7 10 7

t 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Day Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Score 4 4 4 2 7 10 7 4 4 4 2 7 10 7

6 13 20 27 5 7 12 14 19 21 26 28 1 2

Sat Sat Sat Sat Fri Sun Fri Sun Fri Sun Fri SunMonTue

10 10 10 10 7 7 7 7 7 7 7 7 4 4

3 8 9 10 15 16 17 22 23 24 4 11 18 25

Wed Mon Tue WedMonTue WedMon Tue Wed Thu ThuThu Thu

4 4 4 4 4 4 4 4 4 4 2 2 2 2

SFT_LIST

Figure 3.4 Example of SFT_LIST

 74

An example of the SFT_LIST for the emergency ward is illustrated in Figure 3.4. The

SFT_LIST is sorted in decreasing order of the difficulty score. For example, the days t = 6,

13, 20, 27 are the most difficult shifts to assign, which corresponds to the set of Saturday

shifts. The Friday and Sunday shifts are equally difficult and will therefore appear at the

same level of assignement.

Once the list of shifts has been initialized the construction heuristic will create the resident

list (RSD_LIST). The RSD_LIST contains the pre-scheduling score for each staff member

which is calculated using the pre-filled calendar from phase I. The pre-scheduling score is

defined as follows:

 ∑

 ∑

 ∑ ()

Where,

Parameters

pen_c Is the penalty value given to a resident for a day of conference attendance

pen_h Is the penalty value given to a resident for a day of holidays

pen_prper Is the penalty value given to a resident that worked a weekend shift in the

course of the last two weekends of the previous period

Decision variables

cit 1 If resident i was attending a conference during day t

 0 Otherwise

hit 1 If resident i if resident i was on holidays during day t

 0 Otherwise

∑ Is the number of weekend shifts resident i worked during the last two weeks

of the prevous period.

For example, suppose that resident 9 has a week-long holiday and that he worked on a

Sunday during the previous planning period. Let us assume that the scheduler has

decided to set penalty weights as follows:

pen_c = 20; pen_h = 30; pen_pper = 8

Therefore, the resident score will be

Score9 = 30 * 7 + 8 * 1 = 218

 75

The resulting scores for each resident will be sorted in increasing order and saved in a list

called RSD_LIST. An example of how the RSD_LIST is created is illustrated in Figure 3.5.

The first table in Figure 3.5 shows the calculation of the pre-scheduling score for residents

1 to 10. For example, for resident 9 the total pre-scheduling score was 218, the same

score was obtained by resident 5. Their high scores are due to the fact that they are

attending a conference and are on holidays for a week. The table illustrated in Figure 3.5

shows in what way conference attendance, holidays and, previous weekends (PWKD)

affect the pre-scheduling score. These results are used to create the RSD_LIST illustrated

below the table. The RSD_LIST contains the residents in increasing order of pre-scheduling

score. For example, resident 5 and 9 had the highest pre-scheduling score and therefore

will be positioned last in the RSD_LIST. Associated to the RSD_LIST is a secondary list,

called MAXSFT_LIST that contains the number of shifts each resident can work. For

example, resident 1 will not be absent due to conference attendance or holidays, nor did

he work the weekend of the previous period. In a planning period of 28 days he would

therefore be available to work 6 shifts. Hence, a workload of 6 shifts can therefore be

associated to his status.

3.3.4 Best-fit decreasing heuristic

The staffing problem is best described as a shift-assignment formulation where the most

difficult shift is directly assigned to the resident with the most possibilities, i.e. the one

having a lower fairness score. The previous section showed how lists can be created for

Factor

Resident 1 2 3 4 5 6 7 8 9 10

Congress 20 0 0 0 0 0 0 3 3 0 0

Holiday 30 0 0 0 0 7 0 0 0 7 0

PWKD 8 0 1 1 0 1 0 1 1 1 0

Score 0 8 8 0 218 0 68 68 218 0

1 4 6 10 2 3 7 8 5 9

0 0 0 0 8 8 68 68 218 218
RSD_LIST

Figure 3.5 Example of initializing a RSD_LIST

 76

this purpose. This resulted in the list of all residents containing the number of shifts they

can work, as well as a list of all shifts that have to be assigned.

Ferland et al. (2001) used a bin-packing heuristic to assign shifts to hospital staff. One of

such heuristics, a best-fit decreasing heuristic, commonly used for bin-packing problems in

operational research, imitates the shift-assignment phase closely. Using this approach the

list of residents will be considered as the list of bins and their corresponding capacity. In a

bin-packing problem the goal is to pack objects into a finite number of bins of capacity C in

a way that minimizes the number of bins used. The problem can be formulated as follows:

 ∑

 ()

 ∑

 ()

∑

 ()

 { } ()

Where we have,

Indexes

a index for item a (1 ≤ a ≤ vn)

b index for bin b (1 ≤ b ≤ wm)

Parameters

C Maximum storage capacity of each bin

cab Weight of item a in bin b (ca1 = .. = caw)

Decision variables

xab 1 If item a is packed in bin b

 0 Otherwise

yb 1 If bin b is used

 0 Otherwise

When associated to the assignment of shifts, this problem can be solved by a resident-

assignment heuristic (RAH) where the goal is to assign shifts to a finite number of

residents with a maximum workload C in a way that minimizes the number of residents

used. To avoid infeasibility, the second goal is the minimization of the number of doctors

added to the schedule for replacement. By supposing that enough doctors can always be

found to avoid any shortages, all shifts can always be assigned. This problem can be

formulated as follows:

 77

 ∑

 ∑

 ()

 ∑

 ()

∑

 ()

 { } ()

Where we have,

Indexs

j Index for resident i (1 ≤ i ≤ m)

i Index for shift s (1 ≤ s ≤ S)

d Index for doctor d (1 ≤ d ≤ D)

t Index for day t (1≤ t ≤ T)

Parameters

Ci Maximum workload for resident i

csi Workload of shift s for resident i (cs1 = .. = csm)

Decision variables

xsi 1 If shift i is assigned to resident j

 0 Otherwise

yji 1 If resident j is assigned

 0 Otherwise

vdt 1 If doctor d is assigned on day t

 0 Otherwise

The assignment strategy for shifts will be the best fit rule: Choose the assignment that

results in the strongest decrease in workload over all shifts. The algorithm for the RAH can

be described as follows:

o Sort SFT_List in decreasing order

o While there are shifts remaining

 Sort RSD_LIST in increasing order

 Select resident i for whom () for all other residents

 Perform feasibility checks

 Assign shift to resident

 Update from RSD_LIST:

 Eliminate assigned shift from SFT_LIST

o End While

 78

During an iteration of the RAH the following tasks will be executed. The resident with the

highest pre-scheduling score, on top of the SFT_LIST, is affected to the most difficult shift.

Once the shift has been assigned RSD_LIST and MAXSFT_LIST will be updated. The

resident’s score will be updated in RSD_LIST and a shift will be substracted from

his availability in MAXSFT_LIST. RSD_LIST will be sorted again before the re-execution of

the assignment-loop. The RSD_LIST is updated by subtracting the day score of current

shift, in the algorithm denoted as . The difficulty score is the value of the

assigned in the SFT_LIST.

The MAXSFT_LIST keeps track of the number of remaining shifts in order to perform

feasibility check 1.

The feasibility checks were added to the best-fit decreasing heuristic to be capable to

provide a better imitation of the scheduler manual process by trying to avoid conflicts.

Hence, the RAH-algorithm performs the following feasibility checks:

1. Adding the shift does not bring the number of worked shifts above MAXi

2. No shifts have been assigned within a range of 3 days before/after the current day

3. No holidays are situated within a range of 3 days before/after the current day

The feasibility checks are performed directly before the assignment of the shift to a

resident (Assign shift to resident). If the RAH is executed without feasibility checks, conflicts

arising most repeatedly are those concerning shifts that are situated within the 3-day range

before or after the current day and shifts that were scheduled too close to holidays. If

during the feasibility check the number of shifts will fall below 0 for any resident the

assignment-loop will move on to the next resident. In case two residents have the same

number of days available the shift will be allocated according to the position of the resident

in the list.

Planning staff on certain days will result in a higher likeliness that more constraints can be

violated. Hence, RAH can be seen as a technique to reduce the probability that constraints

will be violated. Algorithmically speaking it also has a number of advantages. The solution

space is diminished because only feasible solutions will be considered. Furthermore, two

hard constraints are satisfied from the outset. On each day there will be a sufficient

 79

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

L_1 0

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

L_1 0 0 0 0 0 1 0
Individual schedule

Individual schedule

1 4 6 10 2 3 7 8 5 9 6 13 20 27 5 7 12 14 19 21 26 28 1 2

0 0 0 0 8 8 68 68 218 218 Sat Sat Sat Sat Fri Sun Fri Sun Fri Sun Fri SunMonTue

10 10 10 10 7 7 7 7 7 7 7 7 4 4

3 8 9 10 15 16 17 22 23 24 4 11 18 25

Wed Mon Tue WedMonTue WedMon Tue Wed Thu ThuThu Thu

4 6 10 2 3 7 8 1 5 9 4 4 4 4 4 4 4 4 4 4 2 2 2 2

0 0 0 8 8 68 68 100 218 218

RSD_LIST
SFT_LIST

RSD_LIST

1 4 6 10 2 3 7 8 5 9 6 13 20 27 5 7 12 14 19 21 26 28 1 2

0 0 0 0 8 8 68 68 218 218 Sat Sat Sat Sat Fri Sun Fri Sun Fri Sun Fri SunMonTue

10 10 10 10 7 7 7 7 7 7 7 7 4 4

3 8 9 10 15 16 17 22 23 24 4 11 18 25

Wed Mon Tue WedMonTue WedMon Tue Wed Thu ThuThu Thu

4 6 10 2 3 7 8 1 5 9 4 4 4 4 4 4 4 4 4 4 2 2 2 2

0 0 0 8 8 68 68 100 218 218

RSD_LIST
SFT_LIST

RSD_LIST

Figure 3.8 Updating the individual schedule by adding a shift

Figure 3.7 Update of RSD_List for resident

Figure 3.6 Update of SFT_List for shifts still to be assigned

 80

number of residents, thus satisfying the coverage constraint. The number of allowed shifts

per resident will also remain intact. In such a manner it therefore simultaneously allows the

satisfaction of daily staff level demands as well as the number of shifts allowed for each

staff member.

An example of the steps in the algorithm is illustrated in the Figures 3.6 to 3.8. In the

current example, the RAH will assign the first shift to a resident. As shown in Figure 3.6,

the first shift to be assigned is the Saturday shift of day t=6. The first resident to be

considered will be resident 1 because he has the lowest score and thus the lowest position

in RSD_LIST, as illustrated in the first table of Figure 3.7. Before the shift is assigned the

feasibility checks are performed. Figure 3.8 shows resident 1’s schedule currently as

empty, enabling us to assign him/her a shift. The Saturday shift will therefore be assigned

to resident 1’s schedule, which is updated, as shown in Figure 3.8. The second table in

Figure 3.7 shows how RSD_LIST is updated. For resident 1 the score is updated by the

formula . Once this task is complete RSD_LIST is

sorted so that the next available resident can be selected and the first Saturday shift is

deleted in SFT_LIST.

At the previous stage the question was to know whether there were sufficient residents

available to execute all shifts, as well as obtaining an initial schedule. At the end of this

stage all shifts have to been assigned to residents and we end up with a schedule that is

feasible from the outset.

The methodology of giving a score to both working days and individual employees can be

applied to different fields of timetabling and seems to be a promising way to reduce the

search time. The advantage of the method is that it can be adapted to different types of

situations. It is therefore possible to determine one’s own way of giving a score to a staff

member, or the scheduling difficulty of a day/shift.

 81

3.3.5 Tabu search algorithm

The tabu search (TS) is a descent heuristic using an iterative procedure that prevents the

search of visiting recently explored (tabu) solutions for a number of iterations. The TS

examines solutions moving from one neighbourhood of the current solution to another

neighbourhood. A neighbourhood is defined as the set of solutions differing from the

current one of a given maximal distance. The TS procedure is characterized by the

possibility of moving from the current solution to a neighbour one, even if doing so the

current objective value is deteriorated. This mechanism avoids the search from being

captured into local optima and therefore to leave already explored areas and be guided

towards new areas in the solution space. To forbid revisiting solutions a short-term

memory, called the tabu list, keeps track of the most recent movements. The efficiency of

a tabu search scheme is strongly influenced by the intensification and diversification

strategies (Glover and Laguna (1993)) which are used to find the right balance between

concentrating the search in a given region of the solution space and enlarging the search

throughout the whole space.

The following paragraphs introduce the main elements of the tabu search algorithm that

we designed for the Resident Scheduling Problem, followed by a thorough description of

important implementation issues. We also discuss the diversification strategies used

during the search.

3.3.5.1 Mechanisms of the tabu algorithm

Tabu list: A list of the most recently made moves (or solutions). The number of moves in

the list is determined by the tabu list length, denoted by TL. The list operates on a first-in-

first-out base. The size of the list (TL) can be static or dynamic during the search.

Candidate List: The list of all feasible solutions in the neighbourhood of the current

solution. The TS selects the best move from the candidate list to become the current

solution and proceed with the search.

 82

Intensification and diversification strategies: Local search heuristics spend most of their

search in a limited portion of the search space. To enlarge the search field of view, specific

strategies - included in the algorithmic structure and executed during run-time - are often

used to control and guide the search path. Intensification strategies are used in an

attractive neighbourhood to visit as much close-by neighbourhoods as possible to get the

best solution available in that region. Diversification strategies are aimed at examining

unvisited regions to find solutions that differ significantly from previous explored solutions.

Penalized objective function: The objective function of a solution s is denoted by f(s) and is

calculated by means of the cost function. Since a move from the current solution to a

neighbour one only affects specific, rather small parts of the schedule’s structure, it is

more efficient to evaluate the potential of such a move by computing its incremental cost,

named f’(s), instead of recalculating the total objective cost. Computing incremental costs

requires only a partial evaluation of a schedule so it is less demanding in computational

time and is therefore useful to speed up the search process.

Stopping criteria: Are used to terminate the search process. Usually, the TS algorithm is

stopped after reaching a preset number of iterations set by the user. An alternative

stopping criterion is a predetermined number of iterations during which the current solution

has not been improved. This indicates that the search is not able to find new local optima,

motivating it to terminate the search.

Neighbourhood: Formally, a neighbourhood includes all the solutions that are situated

within a given distance (or which differ in less than a certain number of characteristics)

from the incumbent solution. The original schedule is denoted S and the set of all

neighbour solutions as N(S), N(S) being defined as a subset of the search space. In

practical applications of nurse rostering problems N(S) is defined as the set of all feasible

moves that are possible within the same staff member’s line. Therefore, a single move is

the swap of two cells in the same column between residents i and j. Because exchanging

two days between residents that are not working does not affect the total cost, it is more

efficient to only consider moves between a resident that is already working and a resident

that is not yet working. This is also a useful consideration to diminish the computational

time.

 83

Acceptation criteria: The acceptation of the solution N(S)
t resulting from the search in the

neighbourhood N(S) depends on the cost f’(st
) of this solution. As mentioned earlier, this is

affected by the method used for calculating the cost function.

Although several exploration criteria can be used to select the new solution to move on

from the available solutions in N(S), the most popular strategy in tabu search schemes is

the so called best improvement which consists in selecting the solution having the best

cost within N(S) and that is not tagged as tabu. In a tabu search the acceptation of a new

solution is defined as the acceptation of the best new solution available within N(S). The

best move can either diminish the current cost, or increase it. When we define f(s*) as the

cost function of the best known solution and all K solutions in the candidate list have a cost

function fk(s’) and for all solutions we have fk(s’) f(s*) we will

choose { () () () }, the solution resulting in the lowest differtial cost

increase.

Allowing infeasible solutions: The choice of including feasible or infeasible solutions is

affected by the method used for the cost evaluation. When an infeasible solution is

accepted the cost function is affected by a penalty cost reflecting the degree of infeasibility

of the solution.

3.3.5.2 Tabu algorithm

The elements used in the tabu search are as follows:

N(S): Neighbourhood consisting of all exchanges between resident i and j, where resident i is

working and resident j is not scheduled or requested a day off.

P: Number of exchanges

s
*
: Best known solution

s
c
: Current solution

s
p
: Neighbour solution

s
k
: Best solution on candidate list

 84

The neighbourhood N(S) contains all potential feasible solutions s
p that can be obtained

from the current solution. All of these solutions are enumerated in the list of candidate

solutions that is of length P. Whenever an exchange concerning resident i and j is

performed on sc resulting in sp, the schedule cost will only be affected in the contribution of

these particular residents. The incremental cost functions are therefore computed only on

the contributions of residents i and j, which reduces the computational time of the

evaluation throughout the search.

The general algorithmic structure used to perform the search, given an initial solution, for

the resident scheduling problem is as follows:

1. Choose an initial solution s0 obtained by ManualInit. Set s
c
 = s0

2. From s
c
 select {

 ()
 ()

 ()} as resident, the resident r with the highest

contribution to the cost function, for the coming iteration.

3. Generate the neighbourhood N(S) by forming all the possible solutions, assigning one of

the wards of resident i’s at a time to every other resident, and evaluate () for each s
p

4. Choose the best solution s
p
 in N(S) from the candidate list of potential solutions

5. Set s
c
 = . If then .

6. Return to step 2 until reaching the stop criterion.

The tabu search starts its search from the initial solution s0, obtained by the construction

heuristic. To proceed with the search, the resident r with the highest incremental cost is

selected to generate N(S) from, thus obtaining a candidate list. Next, the TS selects the

best solution available on the candidate list, sk , which becomes the current solution, sc, at

the end of each iteration. In parallel, if the solution sk is better than the best known solution

s*, this solution sk
 becomes the best known solution.

Search intensification is done by occassionnally restarting the search with elite solutions; if

the search does not result in a better solution than s* after MNI iterations, then the search

jumps back to s* and restarts its search. This intensification process is handled by the

BAEP-procedure (Best Available Exchange Possible) that selects the best available move.

To avoid the iterative procedure from remaining trapped in a local optimum the PDS-

procedure (Probabilistic Diversification Strategy) is used for diversification. In this

procedure, the search restarts at s* and is forced in lesser explored neighbourhoods. The

 85

probabilistic tabu search contributes to diminishing the risk of cycling. The parameters and

mechanisms supporting BAEP- and PDS-procedure will be described in more detail in the

following paragraphs.

3.3.5.3 Neighbourhood search technique

The TS establishes the candidate list of potential solutions through a search in a

neighbourhood. The TS exchange heuristic focuses exclusively on exchanges where a

shift can be substituted for another day because these exchanges have the highest

potential of improvement. We define

R as the resident with the worst current score

SFT
R
 as the set of all shifts worked by R

where SFT
r
 N(s

*
). The exchange heuristic collects all elements belonging to SFTr =

{working, working,…,working}. All residents that are still available would be considered for

possible candidate exchanges, except during holidays or conference days.

Suppose we have a schedule with 20 residents. A single, already assigned, shift can be

reassigned to 19 other residents. We can have up to 6 shifts exchanged for a single

resident. The order is of importance in this case and by combination we can have up to 19

x 6! = 13 680 possible combinations with 6 shifts. On a single pass through the

neighbourhood the search would only return 19 x 6 = 114 with 6 shifts.

In the diversification procedure (PDS) the solution is furthermore decomposed into a week

subproblem and a weekend subproblem. Therefore, we define the following sets:

WEEK: The set of weekdays of s*

WKD: The set of weekends of s*

The search is performed in one of both sets while the elements of the other set remain

unchanged. So, the search looks for exchanges in the WEEK-set while keeping the WKD-

set unchanged and inversely in the WKD-set while keeping the WEEK-set intact.

 86

3.3.5.4 Evaluation of the cost function

An exchange is defined as the swap of two cells in the same column between residents i

and j within the same planning horizon. Since the exchanges made by the tabu search

only concern two residents at a time, – only the lines concerned by the exchanges are

evaluated – incremental costs are easily computed, making it unnecessary to reevaluate

the entire solution. In this perspective, the elements used for the cost function are defined

as follows:

 () Total cost function of best known solution s*

 () Total cost function of initial solution

 () Total cost function of neigbour solution s
p

 () Total cost function of current solution s
c

 () Contribution to the cost function of resident r in current solution s

c

 (

) Contribution to the cost function of resident r in neighbour solution s
p
 p=1…P

The value of the cost function of the neighbour solution, (), is obtained by subtracting

the score differential (resulting from the exchanges) from the cost value of the current

solution, (). The score of the current solution is also used to update the score of the

candidate solution. The cost function associated to a neighbourhood move is determined

as:

 () () (
 ()

 ()) (
 ()

 ()) ()

Three outcomes are possible:

1 (
 ()

 ()) (
 ()

 ()) ()

The cost resulting from this exchange will decrease because of an improvement in the

schedule. Therefore () (). In this case, the exchange will decrease the incremental

cost of both residents or the improvement of the incremental cost of one resident will be

higher than the deterioration of the other resident.

 87

2 (
 ()

 ()) (
 ()

 ()) ()

The cost resulting from this exchange will increase because of deterioration in the

schedule. Therefore () (). In this case, the exchange will increase the incremental

cost of both residents or the deterioration of the incremental cost of one resident will be

higher than the improvement of the other resident.

3 (
 ()

 ()) (
 ()

 ()) ()

This results in () (). In this case, the cost value resulting from this exchange will

not change because neither resident will have anything to gain from the change in the

schedule. The improvement of one resident’s incremental cost function could also be

cancelled by the deterioration of one resident’s incremental cost function.

The contribution to the cost function of a resident consists of only those constraints whose

penalty value could be affected by the exchange. These constraints are indicated in Table

3.7. For example, constraints (3.13)-(3.16) could be eliminated from this evaluation

because no exchange will be performed if either resident is attending a conference or is on

holiday the day the intended exchange should be performed. Evaluating the incremental

cost function takes only approximatively 1/m of the evaluation time of that of a complete

evaluation. The total evaluation time is therefore approximately a 2/m factor of the total

evaluation time.

For the evaluation we defined a list called LIST_SCORELINE that contains the score of

each line of the current solution and represents
 ().

Internal ward constraints Legal Constraints

Proportionate dispersion of days among residents No more than the maximum number of shifts

Proportionate dispersion of total shifts among residents Respect requested days off

Respect resting cycles after night shift

No more than two weekends per scheduling period

No more than two consecutive weekends

Table 3.7 Incremental cost function constraints

 88

3.3.5.5 Stopping criteria

The stopping criteria are the maximum number of iterations (MI) and the total available

search time (TAST). The search is stopped as soon as one of them is reached.

3.3.5.6 Soft diversification techniques

The diversification is handled by the PDS-procedure. This diversification procedure is

based on the notion of probabilistic tabu search. Glover and Laguna (1993) note that the

use of probabilities based on past performance, as an underlying measure of

randomization yields efficient and effective means of diversification. During the

probabilistic diversification, the tabu status of neighbourhoods is circumvented and only

the probability of selection of a line is taken into account. The diversification procedure is

called if the search has remained in the same region for MN iterations, which is verified by

evaluating the percentage of change in the total cost of the solution (%) over the last MN

iterations.

To describe the diversification procedure we define

F(i) as the cumulative distribution function

pi as the probability of visiting line (resident) i

vi as the number of times neighbourhood i has been visited

rnd as the random number that is generated at each iteration (uniformly distributed, 0≤

rnd <1)

Where pi is a discrete probability function because vi is a discrete variable and is

determined by (3.49):

∑

 ()

With the cumulative distribution function:

 {

 ()

 89

The probability describes the probability of selection of a line; this probability is inversely

related to the number of times a line has been explored. The chances of a regularly

explored line being revisited are lower if it has been explored regularly. The probability

has been designed to give a higher likeliness to the lines that have not been visited often

to be explored next.

The algorithm for the diversification procedure is as follows:

1. Set s
c
 = s*

2. Generate rnd and select i for which as neighbourhood N(s) for the

coming iteration

3. Generate neighbourhood N(S) from resident i’s schedule and evaluate () for each s
p

4. Choose the best solution s
p
 in N(S) from the candidate list of potential solutions and assign

this solution to

5. Set s
c
 = . If then .

If there is still search time available return to step 2.

At the start of the PDS-procedure the search starts from the best current solution s*,

decomposing the problem in a WEEK solution set containing all week shifts and a WKD

solution set with all weekend shifts. At each iteration, a random number (rnd) is generated.

The line (resident r) to be explored is selected based on rnd and the probability distribution

function of visited neighbourhoods. We therefore choose the xth line from the solution if it

has been rarely visited. From the xth line a candidate list of solutions is generated and the

best solution sk is selected as the current solution for the next iteration.

3.3.5.7 Short term Tabu Search List

For the BAEP-procedure the candidate solutions are obtained at each execution in the

neighbourhood N(s
c
) of the current solution. We define the candidate list as CDT_LIST. All

available residents would be considered for possible candidate exchanges, except when

 90

on holiday or away at a conference. The candidate list is formed of all exchanges leading

to new feasible solutions.

For example let us consider the schedule of resident 3, indicated as whose schedule is

illustrated in Figure 3.9. Let us furthermore assume that he has the worst possible

schedule and that he worked 4 different shifts: on day 6, 13, 18, and 23. In total there are

34 possible exchanges. By iterating through all possible exchanges we obtain the

CDT_LIST. In Figure 3.9 this is illustrated as follows. Each arrow points to the different

exchanges possible with other residents for the considered shift. For example, the

Saturday shift (t=6) is currently worked by resident 3. The arrow pointing to the table

directly below shows all available exchanges with the other residents. The first column

identifies which resident is concerned, the column 2 this resident’s current assignment,

column 3 whether it can be added to the CDT_LIST and column 4 the information that will

be stored in the CDT_LIST.

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

i=3 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

Add Add Add Add

i=1 0 Y i=1 0 Y i=1 0 Y i=1 0 Y

i=2 2 Y i=2 0 Y i=2 0 Y i=2 0 Y

i=4 0 Y i=4 0 Y i=4 0 Y i=4 0 Y

i=5 0 Y i=5 0 Y i=5 2 Y i=5 0 Y

i=6 3 N i=6 0 Y i=6 0 Y i=6 0 Y

i=7 0 Y i=7 0 Y i=7 0 Y i=7 0 Y

i=8 2 Y i=8 2 Y i=8 2 Y i=8 0 Y

i=9 0 Y i=9 0 Y i=9 0 Y i=9 3 N

i=10 0 Y i=10 0 Y i=10 0 Y i=10 0 Y

CDT

i=7;t=23

i=8;t=23

i=10;t=23

i=1;t=23

i=2;t=23

i=4;t=23

i=5;t=23

i=6;t=23

i=9;t=13

i=10;t=13

i=1;t=18

i=2;t=18

CDT

i=4;t=18

i=5;t=18

i=6;t=18

i=7;t=18

i=8;t=18

i=9;t=18

i=10;t=18

i=5;t=13

i=4;t=13

i=2;t=13

i=1;t=13

CDT

i=10;t=6

i=9;t=6

i=8;t=6

i=7;t=6

i=5;t=6

i=4;t=6

i=2;t=6

i=1;t=6

CDT

i=8;t=13

i=7;t=13

i=6;t=13

Figure 3.9 Establishing the CDT_LIST by considering all possible

exchanges of 1 shift with all other residents

 91

For example, let us consider the possible exchanges for t=6. For i=1, the 0 in column 2 in

means that the resident is available and that he can therefore be added to CDT_LIST. For

i=2 the 2 in column 2 means that the resident requested a day off, nevertheless he can be

added to CDT_LIST. Figure 3.9 also shows a few exceptions that cannot be added to

CDT_LIST. For example, for i=6 column 2 is marked 3, meaning that the resident is at a

conference. This excludes resident 6 from being added to the CDT_LIST.

Figure 3.10 shows the resulting CDT_LIST once the algorithm has iterated through all

potential exchanges. This list is still unsorted though. Each candidate solution from

CDT_LIST would be evaluated on the differential between the new line and the old line

resulting in the evaluation of four lines. Let us assume that after evaluation of CDT_LIST

the most interesting potential solution
 would be

 . Since i=6 and t=13, resident 6

would be now scheduled for the shift on day 13 instead of resident 3.

At the end of each iteration the new solution becomes the current solution denoted as s* =

min[s*,
]. The tabu-list will be updated with the positions in the Rij-matrix of the

exchanged shifts.

The tabu search consists of three procedures. The first procedure is SELECT_LINE, which

is a selection procedure that keeps track of the line to choose. This procedure composes

the list of the score of each resident in a list called LIST_SCORELINE. The two other

procedures are the BAEP- and PDS-procedure used for establishing the candidate list.

During the search process a static tabu list of length l keeps track of the last treated line

and is updated at the end of each iteration. The length of the tabu list should always be

inferior to the number of residents on duty so that SELECT_LINE will be able to select a

new line.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

i=1;t=6 i=2;t=6 i=4;t=6 i=5;t=6 i=7;t=6 i=8;t=6 i=9;t=6 i=10;t=6 i=1;t=13 i=2;t=13 i=4;t=13 i=5;t=13 i=6;t=13 i=7;t=13 i=8;t=13 i=9;t=13 i=10;t=13

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

i=1;t=18 i=2;t=18 i=4;t=18 i=5;t=18 i=6;t=18 i=7;t=18 i=8;t=18 i=9;t=18 i=10;t=18 i=1;t=23 i=2;t=23 i=4;t=23 i=5;t=23 i=6;t=23 i=7;t=23 i=8;t=23 i=10;t=23

CDT_LIST

Figure 3.10 The resulting unsorted CDT_LIST, before

evaluation, once all possible exchanges have been added

 92

Suppose that the tabu search is at the beginning of an iteration and that better local optima

are still available but unknown. The first step will be to select the line that has the worst

score from LIST_SCORELINE in the SELECT_LINE-procedure. The next step is to verify if

the line is tabu or not. If so, the SELECT_LINE-procedure will select the next worst line.

Every time a move is tabu another line will be selected and the list will be updated. The

next step is to establish the candidate list that contains all feasible candidate solutions.

This is mainly done throughout the BAEP-procedure. However, after MN iterations without

improvement by the BAEP-procedure the PDS-procedure will establish this list. From the

candidate list the best candidate will be chosen and the current solution will become .

It is can also happen that no better solution will be found after a while into the search. The

different stopping criteria define when the search will end.

 93

Chapter IV – Prototype implementation and validation

4.1 Introduction

The suitability of our developments with the consulted hospitals was strongly dependent

on the architectural design of the software structure. This Chapter therefore explains the

different stages of software development. We begin by describing the first stage with a

focus on the design and the validation process of the mathematical model accomplished in

strong collaboration with the users (resident schedulers). Then, we provide information

about the system development and implementation of the prototype.

As mentioned before, the prototype’s development was executed in two separate stages

that will be referred to as stage I (exploratory research project) and stage II (system

development process) throughout this chapter. The first stage was aimed at formulating a

mathematical model for the resident scheduling problem. During the course of this stage it

was noted that schedulers define/apply a number of constraints that determine the fairness

of individual resident’s schedules that were difficult to define by merely interviews. On

validation of the Resident Scheduling Model (RSP) it was therefore decided to develop a

prototype, to allow the elicitation of further constraints by seeing schedulers in action. The

second stage concerns the system development process. This process was completed by

using an iterative development approach because the users were unable to identify the

requirements of an information system. The learning experience allowed an increase in the

efficiency and user-computer interactivity of earlier versions of the prototype to a level that

allowed real-time usage.

 94

4.2 Validation of the constraints and prototype

To develop the Resident Scheduling Model initial data had to be collected. This data

collection process connected to stage I is illustrated in a decision tree in Figure 4.1. At the

start of this project, data-collection (A) and interviews (B) were conducted in parallel at the

Hôpital Enfant-Jésus and CHUL to obtain the necessary data. The schedulers provided

data samples of implemented solutions and explained the constraints that had to be taken

into account. In both hospitals this led to an initial mathematical model (C) that was

submitted to the schedulers for additional comments. The feedback they provided allowed

the verification of the formulation proposed (E) and led to the revision of several

constraints (F) of the model before the final validation (G).

During the data collection process, we discussed data examples with the resident

schedulers in order to provide estimates for the constraint weights for the legal constraints

and the internal ward constraints. The scheduler’s initial scores for the RSP are indicated

in Table 4.1. Some schedulers had difficulties assigning values to constraints. To make

this more natural they were advised to fill out their preferences on a 1-10 ordinal integer

scale. When comparing the answers given by both hospitals’ residents, we could conclude

that:

Figure 4.1 Mathematical model validation decision tree

 95

Minimum number of residents for each day 100 Resident with more seniority work less weekend shifts 1

Maximum of one shift assigned to a person at the same time N.A. Proportionate dispersion of days among residents 7

One day-type assigned to a person at the same time N.A. Proportionate dispersion of total shifts among residents 7

No more than the maximum number of shifts 100 Avoid shift before congress 3

Respect resting cycles after night shift 100 Avoid shift after congress 1

Assign sufficient resident to wards 100 Avoid 2 short resting cycles per period 8

No shifts outside of skills category 100

Respect requested days off 2 No weekend shift before holidays 8

Respect congress days 10 No weekend shift after holidays 8

Respect holidays 10

Allow 48-hour shift per resident 4

Take into account preferences 2 Doctors cover for residents 2

No more than two weekends per scheduling period 6

No more than two consecutive weekends 4

No more than two Saturdays 6

12.15 Weekends

12.17 Holidays

Legal Constraints

12.19 Undercoverage

12.08 Shifts at ward

Internal ward constraintsIntegrity Constraints

Table 4.1 Penalty values defined by residents for objective function

1. Only a slight variation in the legal constraints weights existed between both

hospitals and all legal constraints were always included in the optimization model;

2. Between both hospitals different internal wards constraints were included and in

shared constraints an amount of variation was visible.

Conclusion 2 concerned four internal ward constraints. The constraint «Residents with more

seniority work less weekend shifts» was only valid in CHUL optimization model. This was also

the case for constraint «Avoid 2 short resting cycles per period». According to schedulers

from the Enfant-Jésus it had never occurred that a resident was required to work two 48-

hours shifts. Nevertheless, they validated the constraint and added a high weight to this

constraint to prevent it from being violated. The schedulers at the Enfant-Jésus were

persuaded that the total number of shifts and the days shifts worked had to be

proportionaley divided among residents, so that all residents were treated with the same

level of fairness. We therefore defined two constraints to ensure this in the model. These

were defined as the the proportionate dispersion of days among residents (constraint 3.28),

and proportionate dispersion of total shifts among residents (constraint 3.30). These

 96

constraints were later on proposed to the CHUL’s schedulers and were validated and were

accorded the same weight as that given by the Enfant-Jésus’s schedulers.

Since schedulers expressed an interest in using software to simplify their work it was

possible to continue the cooperation with both hospitals. At the start of stage II different

alternatives were considered for the software design. These alternatives are illustrated in

Figure 4.2. A choice had to be made between a system with user interface and a simpler

but unfriendly input/output system. Since scheduling tasks required several interactions

with the scheduler, we favoured the use of an interface-based application. The choice of

this type of system was furthermore motivated by the fact that human-interactivity

behavioural observation was an active part of stage II to ellicitate the scheduling process

from schedulers. Hence, the choice fell on a system that allowed a task-based process

capable of handling a synchronous transactional process.

It was observed at this stage that schedulers use specific performance measures when

creating schedules manually. Table 4.2 illustrates the performance measures that were

promoted in stage II. These performance measures have different objectives. For

example, the total number of shifts is used to distribute shifts fairly among residents. The

total number of weekend shifts is used for the fair distribution of weekend shifts among

Figure 4.2 Decision tree for the design of the prototype

 97

Monday 4 Availability (Congres) 20

Tuesday 4 Availability (Holiday) 20

Wednesday 4 Weekend Previous Period 8

Thursday 3 Department 0

Friday 7 Seniority 0

Saturday 9 Category 0

Sunday 6

Initialisation parameters

Difficulty Score Resident Score

Table 4.3 Construction parameters

values defined by residents

residents. Another example is the total number of Tuesdays and the total number of Thursdays.

Since not all weekdays are considered to be of equal importance schedulers exchange

Thursdays and Tuesdays to obtain a fairer distribution

The use of performance measures inspired the development of the construction algorithm.

In the construction algorithm the performance measures were used to establish a priority-

list of the days to be assigned. Together with the performance measures, a list of other

factors that could be taken into account was also suggested to schedulers. The

scheduler’s scores for the importance of these parameters are reported in Table 4.3. It can

be noted that schedulers gave more importance to factors that directly had an impact on

the availability of residents to work shifts. For example, Availability (conference), and

Availability (holiday) received the highest scores. Furthermore, Weekend previous period was

also among the most important factors to users.

 Total number of shifts

 Total number of weekend shifts

 Total number of Mondays

 Total number of Tuesdays

 Total number of Wednesdays

 Total number of Thursdays

 Total number of Fridays

 Total number of Saturdays

 Total number of Sundays

Table 4.2 Performance measures used by schedulers

 98

4.3 Prototype data structure

The design process led to a final model for the prototype which was implemented using

VB.Net. The framework of the prototype encompasses a database and an interface. All

data used in the prototype is stored in the database and the user has access to the

information through the prototype’s interface. Figure 4.4 illustrates the data structure and

interdependent entities of the prototype. The entities are sollicitated in different ways at

run-time. First of all, the user is only allowed access to the Problem data and Constraint

entities thru the interface. The neighbourhood structure entity is defined as the specific

solution obtained return by the algorithm entity, or search method. The neighbourhood

structure is connected to the problem data and constraints since the data held in these two

entities respectively determines the possibility of constraints being violated and the

constraints that apply to the problem. The algorithm entity is responsible for managing all

the data held within the entities Constraints and Problem data and uses this data to find new

solutions. This description results in the following task description for the entities:

The entity Constraints is responsible for executing two tasks:

- Evaluate the penalty cost differential applying to a specific constraint resulting from

a change in the neighbourhood of the current solution

- Count and list all violations of all different constraints

The entity Neighbourhood structure is responsible for accomplishing the following tasks

Figure 4.3 Influence of user-computer interactivity on different elements of the prototype

 99

- Conserve the list of valid constraints within the data structure

- Conserve the penalty cost differential resulting from a change in the neighbourhood

of the current solution and the penalty score of the current solution

The entity Algorithm executes a number of tasks:

- Choose the best improvement for a given exchange given the current solution and

the list of all constraints

- Update and maintain the Neighbourhood structure used throughout the search

- Select the next operation to be performed

- Perform the next operation using the settings of Constraints and the

Neighbourhood structure

- Continue the optimization process until the stopping criterion (MI, TAST) are met.

The design of the prototype data structure took into account different considerations. To

make use of the expertise of the user, we allowed the user to access the different entities

of the prototype. For the schedule creation, the user configures the penalty values of the

optimisation algorithm and modifies the problem data at run-time. For this reason, the

interface has been designed so that the user has access to two entities, the Constraints

entity and the Problem data entity.

To close this chapter we will briefly discuss the insights that we gained from the overall

experience of designing the prototype with the schedulers. The total time of creating a new

schedule is not completely spent on assigning the shifts to residents. A large part of the

job consists of adding the initial data, i.e. the names and time-off requests. In the two

hospitals the time it took to create a new schedule was very different. In the CHUL this

took approximately 8 hours, whereas this would only take 2 hours at the Enfant-Jésus. At

both hospitals collecting and adding the initial data took approximately 1 hour. With a

software program the time spent assigning shifts can be brought back to 1 hour for the

CHUL. Here, if we suppose that the CHUL would use the prototype to create a schedule,

the total time would therefore be situated at 2 hours, a 6-hours time saving. At the Enfant-

Jésus assigning shifts could take as little as 30 minutes. A schedule could therefore be

created in 1 ½ hours, a ½-hour gain. The hospital management of the Enfant-Jésus did not

consider this to be a very large improvement.

 100

On an overall basis the resident schedulers were very glad to discuss the efforts they had

to make to create schedules. They found that the use of a program was an interesting

option. In both hospitals they found the prototype user-friendly and expressed that it would

be useful in their activities. They also found it interesting to learn more about the

scheduling practices that were used in their respective fellow hospitals.

 101

Chapter V – Experimental results

5.1 Introduction

This chapter presents the experimental results in four different parts. We begin by giving a

formal description of the data samples’ (or instances) characteristics that the prototype

was tested on. Next, the parameters of the tabu search are calibrated using a partial set of

these data samples. We furthermore present the results of comparative tests that have

been performed between different algorithms. In the comparative tests the two distinct

elements of the algorithm – the construction mechanism and the tabu search – have been

connected to different mechanisms. The construction mechanism has been hybridized with

a steepest descent search, whereas the tabu search has been simplified using random

initialization. The resulting algorithms have been compared to the manual schedules,

which served as a benchmark set. Lastly, a few manual schedules will be compared to the

schedules provided by the prototype to highlight the differences and similarities between

the constraint violations of both solutions.

The quality of the manual schedules has to be mentioned. Despite the fact that these

schedules were elaborated without optimization tools, not all algorithms are successful in

returning schedules of better quality. Since these manual schedules have been

implemented in reality, their data is a good benchmark to determine whether the presented

prototype could be implemented in real-life situations. If results can be obtained that are

similar to the benchmark it can be concluded that the quality of the prototype’s schedules

is sufficient to meet the requirements of real-life situations. The use of the manual

schedules as benchmark is furthermore motivated by the absence of known optimal

solutions.

The benchmark set was split in two subsets for testing purposes. The first dataset was

used for calibrating the tabu search parameters by cross-testing the parameters, changing

the value of a single parameter while all other parameters remained fixed. The second set

 102

of instances was used to compare the different algorithms and obtain more detailed

conclusions about the efficiency of the algorithm.

The tests were performed on an Intel i5, M430, 2.27 GHz PC under a Windows 7 operating

system. For the calibration tests, or preliminary tests, the total available search time

(TAST) was 500 seconds, approximately 8.3 minutes. During final analysis TAST = 900

seconds, or 15 minutes. This time limit has been choosen to simulate real-life

circumstances. In a hospital environment an acceptable search time is preferably short, for

example 15 minutes. As mentioned for example by Warner (1976) and Burke et al.

(2004b), schedulers usually consider it unnecessary to use a longer search time because

the increments in solution quality become smaller and smaller over time. For example, a

scheduler would accept a schedule obtained after a 15-minutes search knowing that a 30-

minutes search could provide a 1% improvement in quality. In both the calibration and final

tests the solution returned was the best solution found throughout the entire search. In

section 5.3 we will mention the times the prototype needed to find a solution. These times

corresponds to the time within which the best solution was found.

The quality of the schedule is defined by the penalty score of a solution returned by the

algorithm. Since minimization problems are treated, the penalty score is considered to be

a cost and a smaller cost is better.

5.2 Description of instances

The instance’s characteristics are mentioned in Table 5.1. The instances were divided into

the following categories based on their characteristics:

 PC1: Problems with 1 ward;

 PC2: Problems with 2 wards.

For example, in instance 2 a daily coverage of 2 residents on ward 1 was required. Put

differently, this means that enough residents should be available to work 56 shifts

 103

throughout the planning period. Instances 1-5 were used for the calibration tests, whereas

instances 6-11 were used for final testing.

5.3 Parameter calibration

During preliminary testing a number of tests were performed to calibrate the tabu search

parameters. The parameters concerned are the TL, the length of the tabu list, and MNI,

the maximum number of iterations without improvement. Table 5.2 contains the nine pairs

of combinations tested and the range of values used for each parameter. The length of the

tabu list was tested in a range of 10%-30% of the total number of residents. The values of

the maximum number of iterations without improvement were situated between 10 and 50.

For each pair 5 runs were repeated at four run lengths: 30 s., 60 s., 180s. and 300s. The

results presented in this section were obtained for TAST (total available search time) = 300

s. and are averaged over 5 runs.

Preliminary tests were also conducted for larger values of parameter pairs TL and MNI on

several instances in an exploratory testing phase. For example, a pair of parameters

Instance Ward 1
Available

staff

Monthly

needs

Total

available

shifts

Instance Ward 1 Ward 2
Available

staff

Monthly

needs

Total

available

shifts

1 1 9 28 54 4 3 2 25 140 150

2 2 10 56 60 5 4 2 31 168 186

3 2 12 56 72 - - - - - -

6 1 9 28 54 7 3 1 23 112 138

8 1 11 28 66 9 4 1 23 140 138

10 2 13 56 78 11 3 1 26 112 156

PC1 PC2

Table 5.1 Characteristics of instances used for calibration and computational tests

Parameter Values

TL (length) {0.1; 0.2; 0.3}

MNI (iterations) {10; 25; 50}

{1} = {0.1;10}, {2} = {0.1;25}, {3} = {0.1;50},

{4} = {0.2;10}, {5} = {0.2;25}, {6} = {0.2;50},

{7} = {0.3;10}, {8} = {0.3;25}, {9} = {0.3;50}

Table 5.2 Test settings for tabu search calibration

 104

including TL = 0.6 and MNI= 100 was tested. However, these pairs never really provided

better results than the range of values used for the calibration of the parameters. Hence,

the range of values presents a reasonable dispersion of the values that represent efficient

settings for the parameters.

Because there were three values for each parameter, nine pairs had to be tested. For

example for setting {1}, a test was performed for a TL = 10% with a maximum of 10

iterations without improvement. Another test was performed for a TL = 20% with a

maximum of 10 iterations.

The following paragraphs will present the results obtained for the parameter calibration.

First, the average results (over 5 runs of 300 s.) of each pair are presented to provide a

macro-view of the results. During preliminary testing a constant behaviour was observed

throughout all instances. An instance will therefore be described in more detail to provide a

detailed understanding of the most important factors. To conclude this section the

normalized difference of the pairs in respect to the benchmark data will be presented.

Figure 5.1 shows the average results for the different pairs of the construction tabu search

and compares them to our benchmark set. The benchmark data set is illustrated by the

dotted line. Instance 1 shows a very low cost (close to 0), which is significantly different

from the costs of the other solutions. Instance 1 presents the same characteristics as

instance 6. This is due to the fact that none of the residents had any absence (due to

holidays or conference attendance) that could have resulted in potential complications.

Hence, there was a very low probability that planning any staff member would lead to a

penalty cost. For example, in instance 1 the results obtained show a variation of 3.2 to 8

points for the pairs {1} to {9} and the cost of the manual solution was 10 points.

 105

The first observation that can be deduced from figure 5.1 is that instances 1 to 5 show a

homogenous behaviour for the pairs {1}-{9}, i.e. there is a lack of variation between pairs.

This illustrates that the results are not significantly influenced by the different parameters

settings. Based on the fact that homogenous behaviour is observed between all pairs it

can be suggested that none of the pairs dominate the solutions.

The second observation is that the overall performance of the pairs is comparable to the

quality of the benchmark data. For example, in instance 3 the results obtained show a

variation in the range of 5377.2-5673.6 for the pairs {1}-{9} and the cost of the manual

solution is 5580. It can be implied that a solution obtained using no matter which pair

should provide a similar solution quality as the manual schedule.

It is useful to illustrate the first observation with an example, for further discussions. A

variation in the solution quality due to different parameter settings is visible in instance 4.

This data is visible in the table accompanying the graph of Figure 5.1 and plots them out

against the penalty cost of the manual solution, which is illustrated as the dotted line. The

Figure 5.1: Average scores found by tabu search for the pairs

{1}-{9} for instances 1-5 with TAST = 500 and n=5

 106

benchmark penalty cost of the manual solution is indicated in the first line (M) of this

Figure. A number of pairs provide solutions with lower penalty costs than the manual

solution, although some pairs provide solutions of lesser quality (higher costs). When

comparing the average cost of the solutions found by {3} and {4} – respectively 2226.4 and

1698.4 – it appears that MNI contributes to the quality of good solutions, leaving other

parameters unchanged. Nevertheless, the contrary can be concluded by comparing {7}

and {8} – respectively 1656.8 and 1919.6 – where it appears that MNI contributes

negatively to the quality of a good solution.

The absence of variation is also the main factor observed in all instances. To illustrate this

factor in more detail Figure 5.2 shows the average convergence over time towards the

final solutions of instance 3. The lowest three curves in this Figure belong to the pairs {1}-

{3} and show lower costs for the final solutions than the pairs {4}-{9}. At first sight, this

instance seems to be a good example where the variation in the solution quality can be

credited to different parameter settings. For the pairs {1}-{3} the value TL is constant and

the value of MNI is variable. Hence, when considering the running time in this instance, the

variation in the values of MNI has less influence of the performance of the tabu search

than the length of the tabu list.

Figure 5.2 Solutions found for instance 3 as a function

of computation time (s.) for the pairs {1}-{9}

 107

Figure 5.3 shows the 95% mean confidence intervals (α= 0.05, n=5, t= 2,776, for each pair,

after 300 s. search time) for the final results of instance 3 and plots them out against the

penalty cost of the manual solution, which is illustrated as the dotted line. The upper and

lower bounds as well as the mean – respectively UB and LB and Mean - of the pairs are

indicated in the table accompanying Figure 5.3. We can conclude that none of the pairs

dominate because the confidence intervals of pairs {1}-{9} overlap each other. For

example, the means of pairs {1}, {3} and {4} – respectively 5428, 5434, and 5440 – are

very close although the parameters are different. In this instance it can therefore be

asserted that no significant relationship appears between the pairs. Even if Figure 5.2

displays a better performance over time in instance 3 for the pairs {1}-{3}, Figures 5.3

illustrates that no pair demonstrates a dominant behaviour. The conclusion is therefore

that changing parameters values (for the range of retained values) does not have a strong

influence on the cost of the solutions.

The results for instances 1 to 5 are illustrated in detail in Appendix B. Figure B.I illustrates

the time graph for instances 1-5. The 95% mean confidence intervals (α= 0.05; n=5,

t=2.776, for each pair: TAST= 300 s. search time) as well as the results for the different

run-times (30 s., 60 s., 180s. and 300s) as a function of computation time (s.) are

illustrated in Figures B.II-B.VI.

Figure 5.3 Average scores returned for instance 3 with TAST

= 500s and 95% mean confidence interval (n=5, t=2.776)

 108

To conclude the parameter calibration we will consider the normalized difference for each

pair, illustrated in Table 5.3. The first column mentions the instances. The other nine

columns are the average normalized differences of the tested heuristic against the

manually created schedule. The normalized difference is given by the following equation:

 (5.1)

Where Zmc is the penalty score returned by the manually created schedule and Zit is the

score found by tabu search with construction. Each of the rows shows the average results

of the pair on the instance (on 5 runs, after 300 s.). For example, in instance 5 pair {1}

perfomed 6.4% better than the manually created schedule for the real-life period. The

average overall performance of the pairs was between 1.8-15.6% better than the manually

created schedules.

Pair {1} shows the best average performance. Instance 1 was a very small problem with a

low final cost making it possible to find improvements in the range of 20-52%. For pair {3}

the results of instance 1 are 12% worse than the final solution. The tabu search with

construction was able to find better schedules for all instances. As demonstrated in the

previous example, the overall performance for the different parameter pairs does not

suggest a strong dominance of any of these pairs. This is also visible in the normalized

differences among pairs.

For the computational results, in the following section, a TL= 10% and MNI= 25 was

choosen. This was motivated by the fact that a low standard deviation of the penalty cost

Instance {1} {2} {3} {4} {5} {6} {7} {8} {9}

1 20,0% 20,0% -12,0% 36,0% 52,0% 20,0% 20,0% 20,0% 20,0%

2 12,3% 12,3% 11,7% 15,2% 15,3% 15,2% 15,2% 15,2% 15,2%

3 2,7% 3,5% 2,6% 2,5% 1,2% 1,7% -1,7% -1,2% -0,9%

4 11,3% 6,2% 6,2% -10,7% 3,1% -7,7% -24,8% -31,7% -20,5%

5 6,4% 6,5% 6,6% 6,5% 6,5% 6,5% 6,5% 6,4% 6,4%

Total 10,6% 9,7% 3,0% 9,9% 15,6% 7,1% 3,0% 1,8% 4,0%Table 5.3 Average scores for normalized difference from manual schedule for pairs {1}-{9} (n=5)

 109

was obtained for these settings. On the overall performance these settings presented a

robust performance.

5.4 Computational results of heuristics

The construction tabu search is an algorithm that selects an initial reference solution and

then examines subsequent solutions by moving from one neighbourhood to another. The

two procedures in the algorithm were decoupled to test their independent efficiency. To

verify if the tabu search was capable of providing efficient solutions without starting its

search in an initial solution that exploits the problem structure, it was coupled to a random

initialization. To see if the construction mechanism did indeed exploit the problem structure

and resulted in an interesting neighbourhood it was connected to a steepest descent

heuristic. This resulted in the following algorithms:

TBI: Tabu Search with construction method

TBR: Tabu Search with random initialization

SDI: Steepest descent with construction method

All of these algorithms were compared to the benchmark of manual schedules. We

therefore also have:

M: Manually created schedule

 110

The following paragraphs first provide a macro-view of the performance of all methods.

The conclusions drawn from these first results lead to a further comparison of the results

between the TBI and the manual benchmark. For the tabu search, the maximum search

time was set to 900 seconds (15 min.). For all algorithms each test was repeated a total of

20 times and the results presented were averaged over 20 runs.

Figure 5.4 shows the average results for the three heuristics compared to the manually

created schedules. Table 5.4 shows the numerical values for the average results as well

as the average time necessary to find a solution. If the average time is situated below the

TAST (Total available search time) the search was stopped because MNI (Maximum

number of iterations without improvement) was reached.

The TBI - illustrated as ♦ - returns average results that are of the same or better quality as

the benchmark data set. For example, in instances 10 and 11 the gap between TBI and M

Figure 5.4 Average scores found by the three heuristics in instances 6-11 (n=20)

 Instance M TBI time TBR time SDI time

6 948,0 900,3 422,8 948,6 281,2 1180,0 1,0

7 1760,0 1571,3 404,1 3711,3 818,4 1684,0 90,2

8 916,0 814,2 757,4 835,2 264,9 1128,0 1,0

9 656,0 526,0 277,7 2215,5 619,1 1034,0 1,0

10 700,0 684,0 12,8 728,2 229,0 1620,0 1,7

11 1864,0 1834,0 452,4 3719,5 873,9 2592,0 801,0

Table 5.4 Average costs of the three algorithms and average

time within which the best solution was found (n=20)

 111

does not seem to be very large, which is best seen in Table 5.4. On the other hand, this

gap is more significant in instance 7. In most instances, the results found by SDI –

illustrated as▲- are of lesser quality then the benchmark data. The only exception is

instance 7 where SDI returns a cost of 1684 and M a cost of 1760. Finally, the TBR –

illustrated as ■ - returns different results. In some instances (6, 8, 10) its performance was

better or slightly worse than the cost of the solutions in M. In larger instances (7, 9, 11) the

cost of the proposed solutions was much higher than the solutions in M.

Table 5.4 shows that there is a relationship between the performance of TBR and the

search time. Solutions that were close to the benchmark schedules were found in a short

amount of time. On the other hand, bad solutions returned by the TBR show a large

average search time. This is the case for instances 7, 9 and 11. After further investigation

of these instances it was found that the solution returned by the TBR was the solution

obtained once stopping rule of the total available search time (TAST) had been reached,

and that the stopping rule of MNI never resulted in a search termination. This provides an

explanation to the low overall performance by the TBR. The SDI provided solutions in a

short time frame in most instances. The overall quality of these solutions can be

considered low. The conclusion can be drawn that the SDI does not provide a constant

solution quality when tested on a set of problems.

Instance TBI TBR SDI

6 5,03% -0,06% -24,47%

7 10,72% -110,87% 4,32%

8 11,11% 8,82% -23,14%

9 19,82% -237,73% -57,62%

10 2,29% -4,03% -131,43%

11 1,61% -99,55% -39,06%

8,43% -73,90% -45,23%

Instance 6 7 8 9 10 11

TBI ≤ M 100,0% 100,0% 95,2% 100,0% 100,0% 100,0%

TBR≤M 57,1% 0,0% 76,2% 0,0% 66,7% 0,0%

Table 5.5 Average scores for normalized difference from manual

schedule for instances 6-11 (n=20)

Table 5.6 Percentage of runs where TBI and TBR

outperformed M for instances 6-11 (n=20)

 112

The normalized difference for each algorithm compared to the manually created schedules

is given in Table 5.5, based on equation 5.1. The rows show the average results for each

instance. In some instances the gap between the cost of TBI and M was fairly small. For

example, in instance 11 there was only a 1.61% improvement with the use of TBI over M.

The TBR returned results that were of lower quality in. For example, in instance 9 this was

237.73% higher than the cost of M.

Table 5.6 shows the percentage of runs where the TBI and TBR performed better than M.

For the TBI this happened on almost every run. The only exception is instance 8 where

there is a chance that M returns a better result than TBI aprroximately once every 20 runs.

With the TBR this result is variable. For example, in instance 8 the TBR would return a

solution with a lower cost than M about every 3 out of 4 runs, or more exactly 76.2% of the

time.

It can be asserted that the TBI returns the best overall results out of the three algorithms.

The efficiency of the random tabu search shows inconsistencies; the performance of the

TBR seems to be about 5% less good than the results found by the TBI in a number of

instances. Where this does not appear it seems that the fixed time limit of 900 seconds

prevented the TBR from obtaining good results. It can be concluded that the tabu search

has the potential of finding good quality solutions with random initial solutions. To obtain

consistent results however it can be supposed that more optimization time is necessary.

The SDI does not perform well in a general fashion, leading to the conclusion that the

construction method is not efficient. The contribution of this method is merely that the

search time can be reduced in most cases.

Based on these conclusions it is pertinent to provide a more detailed overview of the TBI’s

results and the benchmark. The following section will therefore deal with further results of

the TBI.

Figure 5.5 plots the 95% mean confidence intervals of TBI against the benchmark data set

for the instances used both for the parameter calibration and final testing. The interval

parameters used for calibration (instances 1 to 5) have been mentioned previously. For

final testing we can mention that n=20, α=0.05, t=2.0930 (instance 7 to 11). In instances

1, 2 and 5-10 the confidence interval is situated below the cost of the manual schedules. In

 113

these instances it should be asserted that the means returned by the TBI are significantly

different with a confidence level of = 0.05. In instance 3, 4 and 11 the manual cost is

situated in the upper half of the confidence interval. For example, in instance 4 the

confidence interval is defined as the set of integer solutions situated in the range 1405.8-

2078.2. The mean results of the manual schedules and the TBI are therefore not

necessarily always significantly different.

In a number of instances the variation in the results was fairly low resulting in a short

confidence interval. An example of this is instance 6 where the variation is low. This

suggests that the schedule returned by the TBI was the same or very similar on every run.

For comparison Figure 5.6 illustrates the 95%-confidence intervals (=0.05) for the TBI

and TBR. The dark-coloured intervals belong to the TBR and the light-coloured intervals

belong to the TBI. In some instances the confidence intervals partially overlap each other.

In instances 6, 8 and 10 the TBI confidence interval is situated in the lower half of TBR’s

confidence interval. The large degree of variation in the results of the TBR for the

instances 7, 9 and 11 suggests that better results could have been obtained with longer

running times.

Figure 5.5 Mean 95%-confidence intervals, UB and LB for TBI for all tested instances

 114

5.5 Behaviour of manual process and prototype

Figure 5.7 shows a bar chart comparing a schedule returned by the TBI of instance 7 to

the manual schedule used in real-life. It is interesting to note that the solutions are similar

in appearance. There were 23 residents to be scheduled throughout this scheduling

period. The total cost of the manual schedule was 1760, whereas this was 1533 for the

TBI-schedule. In both cases a large number of constraints were fully satisfied. All

Figure 5.7 Comparison of instance between M and TBI (total staff 23 residents, instance 7)

Figure 5.6 Comparison of 95%- mean Confidence intervals of TBI and TBR for all instances

 115

constraints mentioned in this section are described in Chapter 3. For example, constraints

1-4 did not pose any difficulties for schedulers or the TBI.

In neither schedules it was possible to fully satisfy the constraints 11, 12, 16 and 20.

These constraints stand out in comparison to the other constraints by their high values.

Constraint 11 reflects the constraint 3.9 (No more than the maximum number of shifts allowed

per resident), constraint 12 reflects constraints 3.17-3.21 (Respect resting cycles after night

shift), constraint 16 reflects 3.28 (Proportionate dispersion of days among residents), constraint

20 reflects 3.3- (Proportionate dispersion of total shifts among residents). In both solutions it

was difficult to find a fair dispersion of days and total shifts. The hard constraint 11 was not

fully satisfied in both cases. Ideally, a change would have to occur in the solutions in order

to avoid such circumstances. In both solutions the resting cycles after night shifts had

been shortened. The weight of this constraint was 100. Hence, in the manual solution this

happened 12 times, and in the TBI’s schedule 10 times

In Figure 5.8 an example is illustrated where two different schedules were returned by the

TBI and the manual schedule for a scheduling period (instance 11) where 26 residents

were available. For the manual schedule the total cost was 1864, whereas this was 1734

for the TBI-schedule. As in the previous example, a large number of constraints were fully

satisfied. For example, constraints 1-5 did not lead to any penalty costs in the manual

schedule nor in the TBI’s schedule. In neither schedules constraints 16 and 20 were fully

satisfied. Column 16 in the figure reflects constraint 3.28, the Proportionate dispersion of

days among residents. Column 20 in the figure reflects constraint 3.30, the Proportionate

dispersion of total shifts among residents. It is interesting to note that the proportionate

Figure 5.8 Comparison of instance between M and TBI

(total staff 26 residents, instance 11)

 116

dispersion of total shifts does not seem to differ between both schedules.

The main difference between both schedules is situated in the satisfaction of constraints 9,

10 and 12. Constraints 9 and 10 respectively represent the score for doctors replacing

resident and the score for undercoverage. Constraint 12 corresponds to Constraint 3.17-

3.21, the Respect resting cycles after night shift – constraints. Schedulers show a stronger

aversion to scheduling doctors to avoid undercoverage. Instead, they prefer to shorten the

72-hour cycle after a night shift to ensure sufficient coverage thus leading to a violation of

constraint 20. In the TBI’s schedule doctors replace residents on a number of occasions.

In the prototype the weight of constraint 9 was 100, meaning that 6 shifts were performed

by doctors. The weight of constraint 12 was 100. Hence, there were 14 occurences of

shortened 72-hours resting cycles. For constraint 10 the weight was fixed at 100, meaning

that there was undercoverage 6 days during the scheduling period. We can conclude that

in this instance the penalty weights of the algorithm did not fully reflect the schedulers’

preferences.

Considering the two different results it can be concluded that the same configuration can

lead to different solutions. The solution presented in Figure 5.7 is more likely to be

implemented in a hospital than that in Figure 5.8.

5.6 Summary of results

Comparing the different algorithms to the manually created schedules one gets a good

impression of the quality of the schedules. It should be mentioned that the manual

schedules are of good quality since not all algorithms are able to improve the schedule.

Figure 5.7 shows that the TBI’s and the manual solutions can share a number of

characteristics. This, together with the computational results of the tests seems to suggest

that the TBI should be capable of providing schedules that can be implemented in a real-

life environment. Not all of these solutions were discussed with residents however, so that

it is not possible to say that this really would be the case. The example of Figure 5.8

shows that the results obtained can still be different from the solutions that a scheduler

 117

would want to implement, because the preferences of schedulers’ should be adjusted in

the penalty weights from one situation to another.

It is possible that the TBI can be outperformed by other methods because no proof has

been given that the solutions are optimal. In our tests with the other algorithms the TBI

provided the best overall results. When comparing the TBI with TBR it is shown that both

overlap each other on a number of cases but that the TBI has an average performance of

slightly better quality. The TBI performs better than SDI. This was the case in all different

instances. Manual schedules are often of very good quality and should therefore not be

underrated. Given the fact that the cost gaps of the TBI versus manual schedules can vary

in the range of 1.61%-19.82% the TBI seems to provide results that are more consistent in

quality.

 118

Chapter VI - Conclusion

6.1 On the manual scheduling process framework

The contribution of this thesis to scheduling research was to clarify how manual scheduling

techniques impact schedule quality. As has been mentioned it is difficult to directly

associate this thesis to former works of researchers because, to our knowledge, such a

description has not yet been made within the field of scheduling.

In optimisation methods the quality of a schedule is measured by the relative violation of

soft constraints. The formulation of the objective function is aimed at satisfying all

hard/feasibility constraints and accepting a relative violation of soft constraints whenever

this is needed. The constraints are divided in different categories such as was done by

Cheang et al. (2003) (§ 2.2.6) for example, who divided them into coverage, work

regulations, time related and internal ward constraints. In a general sense, the quality of a

schedule therefore reflects the degree of satisfaction of all the different constraint

categories.

To analyse the techniques that influence a schedule’s quality and see when schedulers

use these techniques to influence the schedule quality - we presented a formal framework

for the Manual Scheduling Process (MSP). This framework was translated into a

scheduling algorithm, the Manually Restricted Space (MRP). The construction heuristic

(decoupled from the tabu search) was a good (although not necessarily efficient) way to

describe these activities. For example, determining the coverage level in the form of a

knapsack formulation of a min-knapsack problem corresponds to constraints 3.2 and 3.9

(Required number of residents for each period, No more than the maximum number of shifts

allowed per resident). The use of a best-fit decreasing heuristic to assign shifts shows that a

scheduler does not assign shifts at random but tries to produce schedules of good quality.

Last of all, we considered the conflict resolution in phase II which corresponds to

 119

constraints 3.17-3.21 (Respect resting cycles after night shift). These steps show that a

scheduler has a highly developed notion of schedule quality and that he has integrated the

satisfaction of constraints in the performance of his activities.

The fact that a scheduler’s approach is efficient became clear when the heuristics were

compared to the manual solutions. It turned out that manual schedules are often of very

high quality and that it was sometimes difficult to find better solutions. From a theoretical

perspective, it was suggested that the MSP can be described as a space restriction

approach. However, we did not provide a formal proof for such a suggestion and we can

therefore only use this term to explain what a scheduler does; by choosing the set of

constraints, which he knows are difficult to satisfy, he restricts the search space. Such a

set of constraints should include not only those constraints described by the MSP but also

constraints for a fair dispersion of shifts (constraints 3.28 and 3.30)

The comparison of manual schedules and solutions by the Tabu Search with construction

method (TBI) shows that a number of constraints were hard to satisfy, whereas the

majority of constraints had a low cost or were not violated at all. This seems to suggest

that the restriction approach could indeed be valid, although no empirical research has

been provided, apart from this thesis that only proposes an analytical method, to describe

such a method. The most difficult constraints were the constraints 3.9 (No more than the

maximum number of shifts allowed per resident), 3.17-3.21 (Respect resting cycles after night

shift), 3.28 (Proportionate dispersion of days among residents) and 3.30. (Proportionate

dispersion of total shifts among residents). If we consider hospital residents as ressources, we

could formulate a reduced set of constraints that fix a limit on the ressources. The optimal

solution that respects this reduced set provides an optimal combination of ressources,

while respecting an inactivity time after each task, and ensuring a proportionate use of all

ressources.

We consider that schedule quality can be measured by the degree of violation of the

existing constraint categories. However, when implementing the prototype resident

schedulers often mentioned that the optimization method did not necessarily result in a fair

distribution of shifts. They considered a schedule fair if all residents worked a

proportionate number of total shifts and if days were divided proportionately among

residents. We therefore defined the constraints 3.28 and 3.30 (Proportionate dispersion of

 120

days among residents, Proportionate dispersion of total shifts among residents) to determine the

fairness of individual resident’s schedules. During the literature review different authors

(consult Blöchliger (2004) for examples) suggested constraints to balance the workload

over a long term period (6 to 12 months), or to take into account preferences. To our

knowledge it is the first time that a model includes constraints that directly measure the

short term fairness of individual schedules. This suggests that the term schedule quality

could be extended to include a category that incorporates constraints on fairness. We

believe that we were able to define these new constraints because we tried to question

resident schedulers directly on how they perform their activities and not necessarily

focused our work on the development of the optimization method.

6.2 On the prototype development and implementation

The prototype’s development and implementation showed that an interface-based

application is suitable for scheduling software. A clear interface also proved to be the key

tool to establish a formal description of the manual scheduling process. For example, we

noticed that schedulers use performance measures for evaluating a schedule. This

observation led to the formulation of the so-called fairness constraints (3.28 and 3.30).

Another important point that came forward was that the implementation of software does

not always have an advantage. This appeared clearly in instance 1, whose manual

schedule measured a cost of 8 which was close to optimal (the lowest possible score

being 0). This instance concerned a small department and the solution returned by the TBI

was of almost equivalent quality. If we consider the total time it would have taken to

develop this solution with the prototype (1 ½ hours) versus the manual schedule (2 hours)

the savings in time would have been approximately half an hour. The potential time-saving

could be interesting for larger hospital departments but not for smaller departments.

 121

6.3 On the performance of the heuristics

The performance of the separate elements of the TBI, the construction mechanism of the

initial solution and the tabu search, was illustrated by coupling these elements to a

steepest descent heuristic and a random initialization. We saw that the TBI obtained the

best overall results and that this was generally in a shorter time span than the other

heuristics. Separated from the construction method, the tabu search (with random

initialization) needed a long search time to obtain good quality solutions and avoid

inconsistent solutions. The construction method helped the tabu search find better

solutions in a shorter search time. The construction method is not an efficient individual

method. However, it provides an upper bound that helps reduce the overall search time.

The results of the manual schedules and the TBI were not necessarily found to be

significantly different. However the performance found in the computational results of the

tests seems to suggest that the TBI should be capable of providing schedules that can be

implemented in a real-life environment. Not all of these solutions were discussed with

residents however, so that it is not possible to say if this really would be the case.

6.4 Future paths of development

The described phases of the manual scheduling framework occur in all different categories

of scheduling problems and the framework in this thesis can therefore be extended to

other fields of scheduling. Because scheduling problems are considered as

overconstrained problems this framework suggests that problems can be simplified and

thus allow for a better use of search time and more efficient approaches. In such an

approach it is beneficial to consider employees as ressources to limit the search to the

reduced set of constraints that allow the optimal combination of ressources, respecting

inactivity time and ensuring a proportionate use of all ressources. An interesting research

avenue is the use of a strongly reduced set of constraints in Artificial Intelligence, where

 122

agents negotiate and exchange a few vital informations. A limited set of constraints could

be used directly by the agents.

The resident scheduling problem discussed in this thesis has been defined for two hospital

departments. However, the constraints encountered, apart from specific hospital

constraints, are uniform across the province of Québec. An interesting research direction

would be the implementation of the developed prototype in a large number of different

hospitals. However, during the writing of this thesis, there were already reports that a

revision of the collective agreement of residents was anticipated in a delay of two to three

years. The implementation of a software program would therefore have to be postponed

by at least several years.

This thesis only proposes a possible method for the analysis of a reduced framework and

shows that some constraints are more likely to be contained in such a framework.

Nevertheless, it does not define the valid range of values for these constraints. The

comparison of the performance of the framework against different established methods

(Mathematical programming, heuristics) would be an interesting research avenue,

because it would establish a clearer definition of the constraints and assist in proving the

performance and efficiency of the MSP framework.

The manner in which the preferences of decision makers are modelled also is an

interesting research subject. For example, is it true that preferences can be modelled by

an objective function that is defined by a weighted sum of penalties for the violations of the

constraints? Would a scheduler use such an approach? If so, on what scale should these

preferences be measured?

 123

References

1. Aickelin, U., K.A. Dowsland (2000). “Exploiting problem structure in a genetic

algorithm approach to a nurse rostering problem” - Journal of Scheduling, Vol. 3, No.

3, pp.139–153.

2. Arthur, J.L., A. Ravindran (1981). “A multiple objective nurse scheduling model”,

IIE Transactions, Vol. 13, No. 1, pp. 55- 60.

3. Azaiez, M.N., S.S. Al Sharif, (2005). “A 0-1 goal programming model for nurse

scheduling” - Computers & Operations Research, Vol. 32, No. 3, pp. 491- 507.

4. Bailey, I. (1985). “Integrated days and shift personnel scheduling” - Computer &

Industrial Engineering, Vol. 9, No. 4, pp. 539-544.

5. Balintfy, J. L., C. R., Blackburn (1969). “Generalized Multiple Choice Programming

with Truncated Block Enumeration” - Operations Research 17, B222.

6. Bard, J.F., H.W. Purnomo (2005a). “Preference scheduling for nurses using column

generation” - European Journal of Operational Research, Vol. 164, No. 2, pp. 510-

534.

7. Bard, J.F., H.W. Purnomo (2005b). “A column generation-based approach to solve

the preference scheduling problem for nurses with downgrading” - Socio-Economic

Planning Sciences, Vol. 39, No. 3, pp. 193-213.

8. Bard, J.F., H.W. Purnomo (2007). “Cyclic preference scheduling of nurses using a

Lagrangian-based heuristic” - Journal of Scheduling, Vol. 10, No. 1, pp. 5-23.

9. Beliën, J., E. Demeulemeester (2006). “Scheduling trainees at a hospital department

using a branch-and-price approach” - European Journal of Operational Research, Vol.

175, pp 258-278.

10. Berrada, I., J.A. Ferland, P. Michelon (1996). “A multi-objective approach to nurse

scheduling with both hard and soft constraints” - Socio-Economic Planning Sciences,

Vol. 30, No. 3, pp. 183-193.

 124

11. Bilgin, B., P. de Causmaecker, B. Rossie, G. vanden Berghe (2008). “Local search

neighbourhoods to deal with a novel nurse rostering model” - Proceedings of Practice

and Theory of Automated Timetabling VII.

12. Blöchliger, I. (2004), “Modelling staff scheduling problems. A tutorial” - European

Journal of Operational Research, Vol. 158, No. 3, pp. 533-542.

13. Boldy, D., C. O’Kane (1982). “Health operational research – A selective overview” -

European Journal of Operational Research, Vol. 10, No. 1, pp. 1-9.

14. Bradley, D., J. Martin (1991). “Continuous personnel scheduling algorithms: A

literature review” - Journal of the Society of Health Systems, Vol. 2, No. 2, pp. 8–23.

15. Burke, E.K., P. De Causmaecker, G. vanden Berghe (1998). “A hybrid tabu search

algorithm for the nurse rostering problem” - Lecture Notes in Computer Science, Vol.

1585, pp. 187–194.

16. Burke, E.K., P. Cowling, P. De Causmaecker, G. vanden Berghe (2001). “A

memetic approach to the nurse rostering problem” - Applied Intelligence, Vol. 15, No.

3, pp. 199- 214.

17. Burke E.K., P. De Causmaecker, G. vanden Berghe, H. van Landeghem (2004b).

“The state of the art of nurse rostering” - Journal of Scheduling, Vol. 7, No. 6, pp. 441–

499.

18. de Causmaecker, P. , G. Vanden Berghe (2010). “Towards a reference model for

timetabling and rostering” – Annals of Operations Research, Vol. 63, pp. 105–128.

19. Chan, P., G. Weil (2001). “Cyclical staff scheduling using constraint logic

programming” - E. K. Burke, W. Erben (eds.), Practice and Theory of Automated

Timetabling, Third International Conference, Konstanz, Springer, Lecture Notes in

Computer Science, Vol. 2079, pp. 159–175.

20. Cheang, B., H. Li, A. Lim, B. Rodrigues (2003). “Nurse rostering problems - a

bibliographic survey” - European Journal of Operational Research, Vol. 151, No. 3,

pp. 447-460.

21. Chiaramonte M. V., L. M. Chiaramonte (2008). “An agent-based nurse rostering

system under minimal staffing conditions” - International Journal of Production

Economics, Vol. 114, No. 2, pp. 697–713.

 125

22. Chiarandini, M., A. Schaerf, and F. Tiozzo (2000). “Solving employee timetabling

problems with flexible workload using tabu search” - E. K. Burke, W. Erben (eds.),

Proceedings of the 3rd International Conference on the Practice and Theory of

Automated Timetabling, pp. 298–302.

23. Cohn A., S. Root, C. Kymissis, J. Esses, N. Westmoreland (2009). “Scheduling

Medical Residents at Boston University School of Medicine”- Interfaces, Vol. 39, No.

3, pp. 186–195.

24. Darmoni S.J., A. Fajner., N. Mahe, A. Leforestier, M. Vondracek (1994).

“Horoplan: computer-assisted nurse scheduling using constrained-based programming”

- Journal of the Society for Health Systems, Vol. 5, pp.41-54.

25. Dowsland, K.A. (1998). “Nurse scheduling with tabu search and strategic oscillation”,

European Journal of Operational Research, Vol. 106, No. 2-3, pp. 393-407. (Strategic

oscillation based on originally: Glover and Laguna, (1993)).

26. Ernst A.T., H. Jiang, M. Krishnamoorthy, B. Owens, D. Sier (2004). “An annotated

bibliography of personnel scheduling and rostering”, Annals of Operations Research –

Vol. 127, No. 1-4, pp. 21–144.

27. Ferland J. A., I. Berrada, I. Nabli, B. Ahiod, P. Michelon, V. Gascon, E. Gagne

(2001). “Generalized assignment type goal programming problem: application to nurse

scheduling” - Journal of Heuristics, Vol. 7, No. 4, pp. 391–413.

28. Fries, B. (1976). “Bibliography of operations research in health-care systems” -

Operations Research, Vol. 24, No. 5, pp. 801–804.

29. Gaspero, L.D., J. Gärtner, G. Kortsarz, N. Musliu, A. Schaerf, W. Slany, (2003)

“The minimum shift design problem: theory and practice”. G. Di Battista, U. Zwick,

Proceedings. of the 11th Annual European Symposium on Algorithms (ESA 2003), No.

2832, Lecture Notes in Computer Science, Springer-Verlag, Berlin-Heidelberg, pp.

593–604. ISBN 3-540-20064-9.

30. Glover, F., M. Laguna (1993). “Tabu Search” - Modern Heuristic Techniques for

Combinatorial Problems – Blackwell Scientific Publications. C. Reeves (Ed.), Oxford

pp. 70- 150.

 126

31. Goodman M. D., K. A. Dowsland, J. M. Thompson (2007). “A grasp-knapsack

hybrid for a nurse-scheduling problem” - Journal of Heuristics, Vol. 15, No. 4, pp. 351-

379.

32. Hung, R. (1995). “Hospital nurse scheduling” - Journal of Nursing Administration,

Vol. 25, No. (7/8), pp. 21–23.

33. Jaumard, B., F. Semet, T. Vovor (1998). “A generalized linear programming model

for nurse scheduling” - European Journal of Operational Research, Vol. 107, No. 1,

pp. 1–18.

34. Jelinek, R., J. Kavois (1992). “Nurse staffing and scheduling: Past solutions and future

directions” - Journal of the Society for Health Systems, Vol. 3, No. 4, pp. 75–82.

35. Kreeft, D., A. Ruiz and B. Lamond (2010), “Allowing user interaction in timetable

scheduling software“, Actes de la 5e Conférence Francophone en Gestion et Ingénierie

des Systèmes Hospitaliers (GISEH 2010), Clermont-Ferrand, France.

36. Maenhout, B., M. Vanhoucke (2005). “An electromagnetism meta-heuristic for the

nurse scheduling problem” - Journal of Heuristics. Vol. 13, No.4, pp. 359-385,

37. Maenhout, B., M. Vanhoucke (2006a). “New computation results for the nurse

scheduling problem: A Scatter Search Algorithm” - Evolutionary Computation in

Combinatorial Optimization, Lecture Notes in Computer Science, Springer-Verlag,

Berlin-Heidelberg, Vol. 3906, pp. 159- 170.

38. Maenhout, B., M. Vanhoucke (2006b). “A comparison and hybridization of crossover

operators for the nurse scheduling problem” - Special Issue on Multidisciplinary

Scheduling: Theory and Applications (MISTA); Guest Editors: Graham Kendall, Lei

Lei and Michael Pinedo – Vol. 159, No. 1, pp. 333-353, Annals of Operations

Research.

39. Maenhout, B., M. Vanhoucke (2007). “Branching strategies in a branch-and-price

approach for a multiple objective nurse scheduling problem”, Journal of Scheduling,

Vol. 13, No. 1, pp. 77-93.

40. Maenhout, B., M. Vanhoucke (2009). “Branching Strategies in a Branch- and- Price

Approach for a Multiple Objective Nurse Scheduling Problem” - Journal of Scheduling,

Vol. 13, No 1, pp. 77-93.

 127

41. Meyer auf’m Hofe, H. (1997), “ConPlan/SIEDAplan: Personnel assignment as a

problem of hierarchical constraint satisfaction” - Proceedings of the Third International

Conference on the Practical Application of Constraint Technology, London, pp. 257–

271.

42. Mietus D.G. (1994). “Understanding planning for effective decision support: a

cognitive task analysis of nurse scheduling” – Doctoral thesis, Rijksuniversiteit

Groningen, Groningen.

43. Miller H.E., P. William, J.R. Gustave (1976). “Nurse scheduling using mathematical

programming” - Operations Research, Vol. 24, No. 5, pp. 857–870.

44. Musa, A.A., U. Saxena (1984). “Scheduling nurses using goal programming

techniques” - IIE Transactions, Vol. 16, No. 3, pp. 216-221.

45. Okada M., M. Okada (1988). “Prolog-based system for nursing staff scheduling

implemented on a personal computer” - Computers and Biomedical Research, Vol. 21,

No. 1, pp. 53–63.

46. Okada, M. (1992). “An approach to the generalised nurse scheduling problem -

Generation of a declarative program to represent institution-specific knowledge” -

Computers and Biomedical Research, Vol. 25, No. 5, pp. 417–434.

47. Oldenkamp, J.H., J.L. Simons (1995). “Quality factors of nursing scheduling” -

Planning and Evaluation, Proceedings AMICE, Vol. 95, pp. 69–74.

48. Osogami, T., H. Imai (2000). “Classification of various neighbourhood operations for

the nurse scheduling problem”, Lecture Notes in Computer Science, Vol. 1969, pp. 72-

83.

49. Ozkarahan, I., J.E. Bailey (1988). “Goal programming model subsystem of a flexible

nurse scheduling support system” - IIE Transactions, Vol. 20, No. 3, pp. 306 - 316.

50. Ozkarahan, I. (1989). “A flexible nurse scheduling support system” - Computer

Methods and Programs in Biomedicine – Vol. 30, No. 2/3, pp.145–53.

51. Ozkarahan, I. (1994). “A scheduling model for hospital residents” - Journal of

Medical Systems, Vol.18, No. 5, pp. 251-265.

52. Ozkarahan, I., S. Topaloglu (2010). “Integration of OR and AI: Medical Residency

Scheduling Application”, International Journal of Computers, Information Technology

and Engineering, Vol. 4, No. 1, pp. 1-17.

 128

53. Pecora, J.E. (2008). “Iterative restricted space search: a solving approach based on

hybridization” – Université Laval, Québec, Doctoral thesis.

54. Price, E. M. (1970). “Techniques to improve staffing” - The American Journal of

Nursing, Vol. 70, No. 10, pp. 2112-2115.

55. Randhawa, S.U., D. Sitompul (1993). “A heuristic-based computerized nurse

scheduling system” - Computers & Operations Research and their Application to

Problems of World Concern: an international journal, Vol. 20, pp. 837- 844.

56. Roth E.M., D.D. Woods (1989). “Cognitive task analysis: an approach to knowledge

acquisition for intelligent system design” - G.Guida and C. Tasso (eds.): Topics in

Expert System Design, Elsevier Science Publ. B.V. (North-Holland).

57. Sherali H. D., M. H. Ramahi, Q. J. Saifee (2002). “Hospital resident scheduling

problem” - Production Planning & Control, Vol. 13, No. 2, pp. 220-233.

58. Sitompul, D., S. U. Radhawa (1990). “Nurse scheduling: a state-of-the-art review” –

Journal of the Society Health Systems, Vol. 2, No. 1, pp. 62- 72.

59. Warner D. M., J. Prawda (1972). “A mathematical programming model for

scheduling nursing personnel in a hospital” - Management Science, Vol. 19, No. 4,

Application Series, Part 1, pp. 411- 422.

60. Warner, D.M. (1976). “Scheduling nursing personnel according to nursing

preferences: A mathematical programming approach”, Operations Research, Vol. 24,

No. 5, pp. 842–856.

61. Warner, M., B.J. Keller, S.H. Martel (1991). “Automated nurse scheduling” -

Journal of the Society for Health Systems, Vol. 2, No. 2, pp. 66–80.

62. Weil, G., K. Heus, P. François (1994). “Informatisation de l'unité de soins du futur,

Gymnaste: Aide à l'élaboration des roulements infirmiers. Du traitement des absences

au management participatif” - Springer Verlag, France, Informatique et Santé

Collection, Vol. 7.

63. Weil, G., K. Heus, P. Francois, M. Poujade (1995). “Constraint programming for

nurse scheduling” - Engineering in Medicine and Biology Magazine, IEEE, Vol. 14,

No. 4, pp. 417–422.

64. de Werra, D. (1985). “An introduction to timetabling” - European Journal of

Operational Research, Vol. 19, No. 2, pp. 151-162.

 129

65. Wolfe, H. (1964). “A multiple assignment model for staffing nursing units” - Johns

Hopkins University, Baltimore, Doctoral thesis.

66. Wolfe, H., J. P. Young (1965a). “Staffing the nursing unit, part 1: Controlled variable

staffing” - Nursing Research, pp. 237- 243.

67. Wolfe, H., J. P. Young (1965b). “Staffing the nursing unit, Part 2: The multiple

assignment technique” – Nursing Research, Vol. 14, No. 4, pp. 299- 303.

 130

Appendix A: Formulation for the Resident Scheduling

Problem - Chapter 3

The mathematical model discussed in this appendix is also discussed in Chapter 3 where

the focus was maintained on the main constraints essential to resident schedules by

excluding several constraints from the description. The model discussed in this Appendix

differs from the initial model by including a penalty for unfeasibility. Unfeasibility occurs

whenever there is undercoverage, a shortage in available residents which has to be

overcome by doctors in real-life. Further constraints included in this Appendix are derived

from the wishes that resident scheduler’s made but were not described in the collective

agreement. The model described in Chapter 3 can be extended to include all of these

constraints. The prototype included all the constraints described in this Appendix.

Objective function

 ()

 ∑ ∑

 ∑

∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑ ∑

 ∑ ∑

 ∑

 131

The objective function defines the penalty values over the slack variables. It includes the

same penalty values as in Chapter 3. New penalty values are PEN_SINGSAT,

PEN_BCON, PEN_ACON and PEN_DOC.

A.1.1 Integrity constraints

Integrity constraints define the constraints among shifts and are used by the algorithm

during the search process. Constraints (3.2)-(3.8) are fully described in Chapter 3.

Required number of residents each day

∑

 ()

 ()

Maximum of one shift assigned to a person at the same time

∑ ()

 ()

One day-type assigned to a person at the same time

 ()

 ()

 , , () ()

Where the following parameters apply

Parameters

RDOit 1 If resident i requested a day off at day t

 0 Otherwise

Cit 1 If resident i is at conference at day t

 132

 0 Otherwise

Hit 1 If resident i is on holiday at day t

0 Otherwise.

Where the parameters are set values of either 0 or 1, the latter meaning in simpler terms

that scheduling a resident on that day will results in a penalty.

And the following decision variables

Decision variables

xit 1 If resident i is working at day t

1 Otherwise

rdoit 1 If resident i requested a day off at day t

 0 Otherwise

cit 1 If resident i is in conference at day t

4 Otherwise

hit 1 If resident i is on holiday at day t

 0 Otherwise

A.1.2 Legal constraints

Constraints (3.9)-(3.27) are fully described in Chapter 3.

No more than the maximum number of shifts

∑ ()

 ()

where

 133

 ⌈
()

 ⌉ ()

Respect requested days off

 ()

∑

 ()

Respect conference days

 ()

∑

 ()

Respect holidays

 ()

∑

 ()

Respect resting cycles after night shift

 () () () () ()

 () ()

 () ()

∑

 ()

∑

 ()

No more than two weekends per scheduling period

∑

 ()

 134

No more than two consecutive weekends

∑

 ∑

 ()

∑

 ∑

 ∑

 ()

∑

 ∑

 ∑

 ()

∑

 ∑

 ∑

 ()

 ()

A.1.3 Hospital constraints

The hospital defined a few constraints that were not legally defined but were still

considered to be a very important factor in the fairness of each schedule. This third set of

constraints reflects the hospital’s concern that all residents are treated fairly. Constraints

(3.28)-(3.30) are described in Chapter 3.

Proportionate dispersion of days among residents

(∑)

 ()

Each resident has his own dispersion score, defined as:

 ()

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 ∑

 135

Proportionate dispersion of total shifts among residents

∑ ∑

∑ ∑

 ()

Junior and senior residents are assigned to the same shift

∑

 ∑

 ()

No more than one Saturday per scheduling period

∑ ∑

 ()

No weekend shift before a week of holidays

∑

 ()

 { }

∑

 ()

 { }

No weekend shift after a week of holidays

∑

 ()

 { }

∑

 ()

 { }

Avoid night shift before conference days

 ()

 136

Avoid night shift after conference days

 ()

Doctors replace residents

 ()

Appendix B: Preliminary test results – Chapter 5

(a) Results for PC1: Instance 1

(c) Results for PC1: Instance 3

(b) Results for PC1: Instance 2

(d) Results for PC2: Instance 4

(e) Results for PC2: Instance 5

 Figure B.I: Comparing performance of tabu search over a range of parameters

 138

Figure B.II 95% confidence interval PC1: Instance 1

Figure B.III 95% confidence interval PC1: Instance 2

 139

Figure B.IV 95% confidence interval PC2: Instance 3

Figure B.V 95% confidence interval PC2: Instance 4

 140

Figure B.VI 95% confidence interval PC2: Instance 5

 141

Appendix C: Interface description – Chapter 4

C.1 Introduction

The following section presents an overview of the prototype’s interface. First, the main

screens of the interface will be defined. Next, the different buttons in the main screen are

described with the help of sceenshots. Finally, the prototype’s submenus will be described.

C.2 Main screens interface

The prototype main interface has two different screens that are associated to the design

stage of the schedule. The main interface can be set to either the Day editor or Shift editor.

If no schedule has been created by the construction tabu search, the main work screen will

be the Day editor. When the heuristic has generated a schedule the main work screen will

be the Shift editor. However, both screens can be used in parallel even if a schedule has

been created. Within the Day editor the user enter the data for the availability of each

resident by specifying for each resident when he will be available or cannot be scheduled.

Figure C.I Example of a schedule

 142

The specificity of the Day editor is that the shifts are not displayed. The Shift editor on the

other hand shows the shifts. The schedule is created from the schedule displayed in the

Day editor.

Figure C.I illustrates an example of a schedule in the Shift editor screen. Field shows the

prototype’s button used for switching between the Day editor and Shift editor screens. Field

 illustrates the line’s that contain the resident’s name, surname and category. Within the

schedule, each line contains the individual’s schedule and each column shows the day of

the planning period. The schedule is colour-coded. All worked shifts are indicated in blue-

grey, days-off in white, requested days-off in yellow, conference days in orange, and

holidays in red.

C.2.1 Day editor screen

Figure C.II shows the Day editor screen. Group contains the start up buttons that allow

the user to start working on a calendar. This can be a new (nouvel horaire button) or

existing calendar (ouvrir horaire button). Group contains the pre-generation edit and

optimization model edit buttons, which are Resident (), Semaine (), and Constraints

().The menus that are accessed by the buttons of groups and will be described

further in this section. Both groups of buttons are available in the Day editor and Shift editor

screens. The group buttons are pre-generation edit buttons that allow the user to edit

the days in the schedule. Finally there are the buttons of group . These buttons are pre-

optimisation buttons, referring to the fact that these buttons can only be used before a

schedule is generated. The user can generate an initial schedule by clicking on the button

Déterminer horaire (). To save the pre-optimisation schedule the user can save the

schedule by clicking on Sauvegarder ().

The group buttons allow the user to edit the colour-codes that were described in Figure

C.I. For example, the button allows the user to label a staff member’s requested days-off

in the schedule. The user can select one or several cells and click on the button. All

selected cells will turn yellow, meaning that a staff member requested to be off. The

button is to indicate the availability of staff. The button is for indicating conference-days.

Finally the button is for indicating holidays.

 - Start-up buttons - Pre-generation edit buttons

 - pre-generation/opt. model buttons - Pre-optimization butons

 - Resident button - Déterminer horaire button

 - Semaine button - Sauvegarder button

 - Contraintes button

Figure C.II Prototype main window in schedule days editor view

 144

Figure C.III Schedule shift editor view

 - Post-generation edit buttons - Visual tools

 - Reoptimisation button - Previous period tool

 - Horaire alternative button - Doctor replacement tool

 - Modification button - General information tool

 - Solution vers Excel button - Individual tools

 - Sauvegarder button -

C.2.1 Shift editor screen

The Shift editor screen is shown in Figure C.III. This screen contains the same group of

buttons - as the Days editor screen. In Figure C.II these are indicated as groups and ,

whereas in Figure C.III these are indicated as and respectively.

Group contains the post-generation edit buttons. The button Reoptimisation ()

relaunches the optimization process using the on-screen schedule in the Shift editor as

starting point for the search. The button Horaire alternative () relaunches the search to

return a schedule of the same relative quality as the on-screen schedule but with an

alternative assignment of shifts to residents. The button Modification () allows the user to

make changes in the assignment of shifts and will have for consequence that the two

buttons presented in Figure C.IV appear on-screen. The button Solution vers Excel ()

exports the schedule in the Shift editor to an excel file. Finally Sauvegarder () saves the

schedule from the Shift editor screen for future reference.

Group presents a number of visual tools to provide the user with a quick information

overview. The first visual tool is the previous period tool () whichs show the individual

schedules that residents worked during the last two weekends preceding the planning

period. The second tool is the doctor replacement tool () that displays all shifts that could

not be covered by residents and were assigned to doctors instead. The two buttons to the

left of allow the user to respectively add and remove doctors to/from the schedule. The

general information tool () shows general information about the schedule. For example,

it provides information about the number of shifts that can still be assigned, the number of

shifts assigned per department and the days where overcoverage or undercoverage

Figure C.IV

Schedule shift

editor view

 146

occurs. The individual tool () provides detailed information about each resident. It

provides the number of shifts worked by a resident and a breakdown of the number of

shifts per weekday.

Button gives access to the buttons shown in Figure C.IV. The user can add shifts to the

schedule with button (Fig C.IV. - Travaillé) selecting the department - from the list in

(Fig. C.IV) - for which he wants to add a shift. He can also remove shifts from the current

schedule with button (Fig. C.IV Effacer).

C.3 Submenus

C.2.1 New calendar menu

The first group of buttons that will be discussed are from group in Figure C.II. By clicking

on button nouvel horaire the new schedule menu appears. This window is shown in Figure

C.V and is used to create a new calendar. The user is asked to provide the start (in) and

end (in) date of the scheduling period. He can then accept (- accepter) both dates and

or decline (- annuler). The choice of the user is subject to 2 limitations. First of all, the

schedule has to start on a Monday. Next, the schedule has to be at least 7 days long. The

implementation of these limitations was necessary because of considerations for the

optimization model.

Figure C.V New schedule window

 147

C.2.2 Open calendar menu

The button ouvrir horaire in the main menu opens up the window shown in Figure C.VI.

This window shows all schedules that have been created previously and have been saved

by the user. The user can open a schedule by double-clicking on any of the existing

schedules or select a schedule and click OK.

C.2.3 Resident menu

Figure C.VII shows the Active resident editor window, which is used to edit, add, or delete

residents within the prototype. This window is accessed by clicking on the Resident button

(Fig C.II). This editor consists of two lists and a submenu. List (active resident list)

shows all residents that are available in the prototype. List (assigned resident list) shows

all residents that are part of the current schedule and are shown in the schedule. Below

the two lists, next to is the resident description. This provides the first and last name of

the resident as well as his seniority, department and category. The button (Corriger) is

used to edit the resident’s information next to .

The roll-down menu at allows the user to add new residents, definitively take them out,

or recuperate previously deleted residents of the active resident list. By clicking on any of

these options in the Resident editor submenu shown in Figure C.VIII appears. The screen

Figure C.VI Open schedule window

 148

shows the adding of residents. For each new resident added the user has to indicate the

resident’s seniority, the department he works on and the category he belongs too. All of

this information can be edited in the Active resident window.

C.2.4 Week menu

The week menu, illustrated in Figure C.IX shows the settings of the construction algorithm.

The user can change the set of values of weekdays under - difficulté d’affectation

(assignment difficulty) - or the set of values attributed to the status of residents under -

paramétrage residents (resident parameters). The details for the department can be adjusted

Figure C.VIII Resident editor menu

Figure C.VII Active resident editor menu

 149

in the boxes , and . The user can adjust the department names (), choose to include

a one or two departments (), and their respective coverage levels ().

C.2.5 Constraints window

Figure C.X shows the constraints window that contains all various constraints and allows

the user to set the search parameters. The set of all legal constraints are shown next to

under Règles convention collective. The computer model constraints are illustrated next to

under Règles pour programme informatique. These constraints are also considered to be the

hard constraints. The set of constraints next to under Règles optionnels, or Optional

constraints, are optional constraints. The user can set different parameters for the search

under Configuration de résolution () or the optimisation configuration the user can specify

the allowed search time, the maximum number of iterations allowed and the number of

iterations without improvement

Figure C.IX Week window

Figure C.X Constraints window

