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Résumé 

 

 

Ce mémoire propose une formulation pour le problème de confection d'horaire pour 

résidents, un problème peu étudiée dans la litérature. Les services hospitaliers 

mentionnés dans ce mémoire sont le service de pédiatrie du CHUL (Centre Hospitalier de 

l'Université Laval) et le service des urgences de l'Hôpital Enfant-Jésus à Québec.    

            

La contribution principale de ce mémoîre est la proposition d'un cadre d'analyse pour 

l’analyse de techniques manuelles utilisées dans des problèmes de confection d'horaires, 

souvent décrits comme des problèmes d'optimisation très complexes. Nous montrons qu'il 

est possible d'utiliser des techniques manuelles pour établir un ensemble réduit de 

contraintes sur lequel la recherche d’optimisation va se focaliser. Les techniques utilisées 

peuvent varier d’un horaire à l’autre et vont déterminer la qualité finale de l’horaire. La 

qualité d’un horaire est influencée par les choix qu’un planificateur fait dans l’utilisation de 

techniques spécifiques; cette technique reflète alors la perception du planificateur de la 

notion qualité de l’horaire. Le cadre d’analyse montre qu'un planificateur est capable de 

sélectionner un ensemble réduit de contraintes, lui permettant d’obtenir des horaires de 

très bonne qualité. Le fait que l'approche du planificateur est efficace devient clair lorsque 

ses horaires sont comparés aux solutions heuristiques. Pour ce faire, nous avons 

transposées les techniques manuelles en un algorithme afin de comparer les résultats 

avec les solutions manuelles. 

 

 

Mots clés: Confection d’horaires, Confection d’horaires pour résidents, Creation manuelle 

d’horaires, Heuristiques de confection d’horaires, Méthodes de recherche locale 
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Abstract 

 

 

This thesis provides a problem formulation for the resident scheduling problem, a problem 

on which very little research has been done. The hospital departments mentioned in this 

thesis are the paediatrics department of the CHUL (Centre Hospitalier de l’Université 

Laval) and the emergency department of the Hôpital Enfant-Jésus in Québec City.  

 

The main contribution of this thesis is the proposal of a framework for the analysis of 

manual techniques used in scheduling problems, often described as highly constrained 

optimisation problems. We show that it is possible to use manual scheduling techniques to 

establish a reduced set of constraints to focus the search on. The techniques used can 

differ from one schedule type to another and will determine the quality of the final solution. 

Since a scheduler manually makes the schedule, the techniques used reflect the 

scheduler’s notion of schedule quality. The framework shows that a scheduler is capable 

of selecting a reduced set of constraints, producing manual schedules that often are of 

very high quality. The fact that a scheduler’s approach is efficient becomes clear when his 

schedules are compared to heuristics solutions. We therefore translated the manual 

techniques into an algorithm so that the scheduler’s notion of schedule quality was used 

for the local search and show the results that were obtained. 

 

 

Key words: Timetable scheduling, Resident scheduling, Manual scheduling, Heuristic 

schedule generation, Local search methods 
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Samenvatting 

 

 

Deze doctorandusscriptie beschrijft een probleem-formulatie voor het werkrooster van 

medische studenten, een probleem waar tot op heden weinig onderzoek naar is gedaan. 

De ziekenhuisafdelingen waar mee werd samengewerkt in het kader van deze 

doctorandusscriptie zijn de afdeling pediatrie van het CHUL (Centre Hospitalier de 

l'Universite Laval) en de eerste-hulp afdeling van het Hôpital Enfant-Jesus in Québec. 

 

Deze doctorandusscriptie stelt een onderzoekskader voor voor de analyse van 

handmatige technieken gebruikt in werkrooster-problemen, vaak omschreven als 

complexe optimisatie-problemen. We laten zien dat het met behulp van deze technieken 

mogelijk is een kleiner aantal restricties, of nevenvoorwaarden, te gebruiken voor de 

exploratie van alle mogelijke oplossingen. De gebruikte technieken kunnen verschillen van 

werkrooster tot werkrooster maar bepalen de uiteindelijke kwaliteit van de oplossing. Dit 

onderzoekskader richt zich op het voorstellingsvermogen dat de planner heeft van 

werkrooster-kwaliteit en modeliseert de technieken die een planner gebruikt voor het 

handmatig creëren van een werkrooster. Het onderzoekskader laat zien dat een planner in 

staat is een beperkt aantal constraints te selecteren en aan de hand hiervan een 

werkrooster op te stellen van zeer hoge kwaliteit. Het feit dat de aanpak van een planner 

efficiënt is wordt duidelijk als zijn werkroosters worden vergeleken met heuristieke 

oplossingen. Wij hebben hiervoor de technieken van het onderzoekskader omgezet in een 

een algoritme en rapporteren de met deze methode behaalde resultaten. 

 

 

Trefwoorden: Werkroosters, Werkroosters medische studenten, Handmatig werkrooster, 

Heuristieke zoektechnieken, lokale zoektechnieken.  
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Foreword 

 

 

This thesis is the final result of two years of work as a M.Sc. Student at the CIRRELT 

(Centre interuniversitaire sur les réseaux d’entreprise, la logistique, et le transport) under 

the supervision of Professors Bernard Lamond and Angel Ruiz. The framework presented 

in this thesis has been the subject of a conference paper (Kreeft et al. 2010) entitled: 

“Allowing user interaction in timetable scheduling software“, presented at GISEH 2010.  

 

This thesis provides a problem formulation of the resident scheduling problem, a problem 

on which very little research has been done. Additionnally, we present a formal framework 

for the analysis of manual techniques for creating a schedule, a description that has never 

been made within the field of scheduling. It is therefore difficult to directly associate this 

thesis to past works of researchers.  

 

Perhaps the most difficult part of this thesis was to observe schedulers at work and 

translate our observations; schedulers use techniques that, to the eye of researchers in 

operations research in any case, have an impact on schedule quality. However, they are 

not capable of quantifying the impact a technique has on schedule quality. The hard part 

was therefore to translate our observations into scheduling techniques in such a way that it 

formed a clear and concise modelling framework. 
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Glossary 
 

Sets 

 

I   Set of all residents available during the planning period 

Il   Set of residents belonging to seniority class l 

    Set of all wards k        

W = {W(1),W(2)…W(K)} 

WKD   Set of all weekend shifts  

( t = {5,6,7},{12,13,14},{19,20,21},{26,27,28}) 

WKDSET1  Set of weekend shifts of first week of planning period 

WKDSET2  Set of weekend shifts of second week of planning period 

WKDSET3  Set of weekend shifts of third week of planning period 

WKDSET4  Set of weekend shifts of fourth week of planning period 

WEEK   Set of all week shifts 

( t = {1,2,3,4},{8,9,10,11},{15,16,17,18},{22,23,24,25,26}) 

WEEK1  Set of weekdays of first week of planning period 

WEEK2  Set of weekdays of second week of planning period 

WEEK3  Set of weekdays of third week of planning period 

WEEK4  Set of weekdays of fourth week of planning period 

 

JUNIOR  Set of all junior residents 

SENIOR  Set of all senior residents 

PW   Set of weekend shifts of last 2 weeks of previous planning period 

CW    Set of weekend shifts of current planning period 

MONDAY  Set of all Mondays of planning period 

TUESDAY  Set of all Tuesdays of planning period 

WEDNESDAY  Set of all Wednesdays of planning period 

THURSDAY  Set of all Thursdays of planning period 

FRIDAY  Set of all Fridays of planning period 

SATURDAY  Set of all Saturdays of planning period 



 6 

 

SUNDAY  Set of all Sundays of planning period 

 

Parameters 

 

i   Index for resident     ( i= 1… m )  

t  Index for day of planning period  ( t = 1… n ) 

k  Index for wards     (k = 1 … K) 

RDOit   Constant parameter for when resident i requested a day off at day t 

Cit   Constant parameter for when resident i is on conference at day t 

Hit   Constant parameter for when resident i is on holiday at day t 

MCtk  Constant parameter for the minimum number of residents needed at ward k on day t 

MAXi  Maximum number of shifts resident i can work 

   Maximum number of days off a resident can request 

   Maximum number of allowed 48-hours rest cycles 

 

Penalty values  

  

PEN_MC  Penalty attributed for non-respect of minimum coverage 

PEN_MAX   Penalty attributed for non-respect of maximum number of shifts 

PEN_RDO  Penalty attributed for non-respect of requested days-off 

PEN_C   Penalty attributed for non-respect of conference days 

PEN_H   Penalty attributed for non-respect of holidays 

PEN_EXC_72AFT Penalty attributed for non-respect of resting period after shift 

PEN_WKD Penalty attributed for non-respect of maximum number of weekends 

PEN_CWKD Penalty attributed for non-respect of maximum number of consecutive 

weekends 

PEN_DISP
-
  Penalty attributed for unfair dispersion of days (too much easy days) 

PEN_DISP
+  

Penalty attributed for unfair dispersion of days (too much difficult days) 

PEN_TSD
-
  Penalty attributed for unfair dispersion of shifts (too little shifts) 

PEN_TSD
+
  Penalty attributed for unfair dispersion of shifts (too much shifts) 

PEN_MO  Cost attributed when resident i is working a shift on Monday 

PEN_TU  Cost attributed when resident i is working a shift on Tuesday 

PEN_WE  Cost attributed when resident i is working a shift on Wednesday 

PEN_TH  Cost attributed when resident i is working a shift on Thursday 
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PEN_FR  Cost attributed when resident i is working a shift on Friday 

PEN_SA  Cost attributed when resident i is working a shift on Saturday 

PEN_SU  Cost attributed when resident i is working a shift on Sunday 

PEN_SINGSAT  Penalty attributed when a resident works more than one Saturday 

PEN_BCON  Penalty attributed when a resident works a shift before a conference 

PEN_ACON  Penalty attributed when a resident works a shift after a conference 

PEN_DOC  Penalty attributed when a doctor has to replace a resident 

 

Decision variables 

 

xit    Variable for when resident i is working at day t  

xik    Variable for when resident i is allowed to work on department k 

x_doct  Variable for when doctors are working uncovered shifts 

rdoit  Variable for when resident i requested a day off at day t 

cit  Variable for when resident i is in conference at day t 

hit  Variable for when resident i is on holiday at day t 

sjt  Variable for when the junior resident j is working at day t 

rdo_excit Variable for when the number of requested days off is not respected 

c_excit  Variable for when the number of conference days is not respected 

h_excit  Variable for when the number of holidays is not respected 

exc_72befit Variable for when the legal resting period of 72 hours before a shift is not respected 

exc_72aftit Variable for when the legal resting period of 72 hours after a shift is not respected 

disp_scorei Variable for when the availability score of resident i differs from the average score 

                       Variable for excluding a resident from working the weekend before his holidays 

                      Variable for excluding a resident from working the weekend after his holidays 

 

 

Slack variables 

 

      
        

   positive and negative slack variables for the total coverage 

on  the department k 

      
        

  positive and negative slack variables for the maximum 

number of allowed shifts for resident i 
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      positive slack variables for the number of requested days-

off  

     
       

  positive and negative slack variables for the number of 

conference days 

     
       

  positive and negative slack variables for the number of 

holidays 

             
                

    positive and negative slack variables for the number of 

times the resting period before a shift is not respected 

             
               

   positive and negative slack variables for the number of 

times the resting period after a shift is not respected 

      
        

    positive and negative slack variables for the number of 

times the maximum number of weekend shifts is not 

respected 

       
         

    positive and negative slack variables for the number of 

times the maximum number of weekend shifts is not 

respected 

       
         

  positive and negative slack variables for the average score 

for days per resident 

      
        

  positive and negative slack variables for the average 

number of shifts worked per resident 

          
            

  positive and negative slack variables for the number of 

times a resident works more than a single Saturday 

       
         

  positive and negative slack variables for the number of 

times a resident works before attending a conference 

       
         

  positive and negative slack variables for the number of 

times a resident works after attending a conference 
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Tabu search parameters 

 

s*     Best known solution found by the tabu search 

      Initial solution found by the tabu search 

      Potential solution in the candidate list   p=1…P 

   Best solution on the candidate list choosen from all potential 

solutions  

       Current solution used in the tabu search 

 

TL    Tabu list size 

MI    Maximum number of iterations of the search 

MNI Maximum number of iterations without improvement in the best 

known solution 

TAST    Total available search time 

CL    Candidate list of all potential solutions  

CDT_LIST    Name of the candidate list in the prototype’s algorithm 

SFT_LIST List of all shifts necessary to ensure full coverage throughout the 

planning period 

RSD_LIST List that contains the pre-scheduling score for each staff 

member  calculated using the pre-filled calendar  

MAXSFT_LIST   List that keeps track of the number of remaining shifts  

LIST_SCORELINE List that contains the score of each line of the current solution and 

represents   
 (  ). 

          Pre-scheduling score of resident i  

                  Cost attributed when the shift on day t is assigned to a 

resident 

 

 

Intensification and diversification procedures 

 

BAEP procedure  (Best Available Exchange Possible) 
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Procedure used by the tabu search to select the best 

available move. This procedure is used in the intensification 

process for establishing the candidate list. 

PDS procedure (Probabilistic Diversification Strategy)  

Procedure used to avoid the iterative procedure of the tabu 

search from remaining trapped in a local optimum. This 

procedure is used for establishing the candidate list in the 

diversification process. 

SELECT_LINE procedure Selection procedure that keeps track of the line to 

choose.This procedure composes the list of the score of each 

resident in a list called LIST_SCORELINE. 
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Chapter I – Introduction 

 

 

1.1  Background 

 

 

A resident is a medical specialist-in-training and during his residency he practices 

medicine under direct or indirect supervision of a doctor. In the province of Québec there 

are approximately 3000 residents and their schedules are mostly made by hand.  

Particularly little help has been provided, in the form of software tools, to support them in 

their planning efforts. All activities done by residents are overseen by the FRMQ 

(Fédération des médecins résidents du Québec), a provincial instance that serves and 

protects the interests of hospital residents. This protection also means that there is a 

collective agreement that dictates the working conditions applicable to residents uniformly 

throughout the province. Besides the resident’s regular workload of day and night shifts, a 

resident still receives education and attends conferences. All of these requirements can 

lead to exhausting schedules.  

 

We have found that exhausting schedules are very often due to the fact that resident 

schedulers do not have the time to compare alternative schedules which unnecessarily 

increases the residents’ work stress. Scheduling software is available in most hospitals 

nowadays and has frequently helped to reduce the stress caused by exhausting 

schedules1. Computer software leads to an improvement in productivity and allows the 

scheduler to consider better alternatives. It should be mentioned that not every department 

in a hospital benefits from scheduling software. There only is a potential gain for 

departments of reasonable size, where the time spent creating a schedule is a factor that 

can be connected to the quality of a schedule. An example of such a time factor was 

encountered during our study at the paediatrics department of a hospital where 

approximately 30 residents are scheduled on a monthly basis. It should be mentioned that 

                                                 
1
 A literature review by Burke et al (2004b) mentions a number of different software programs that 

have been used in real-life in different hospitals 
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departments with 10 to 18 residents are rather the standard in the Québec context. In such 

smaller departments the scheduling effort is less time-consuming.  

 

Until now, computer programs leading to a strong improvement in productivity have only 

been considered by larger departments because the scheduling task becomes more 

complex. At the paediatrics department, scheduling activities take approximately 8-hours 

per month, whereas this would only be 3-hours in a smaller department. Software 

therefore can be useful in larger departments saving more than half the time.  

 

The total time of creating a new schedule is not completely spent on assigning the shifts to 

residents. A large part of the job consists in adding the initial data, i.e. the names and time-

off requests. In our study we measured the time it took to create a new schedule in two 

hospital wards and we found that the total times needed were very different. In the larger 

ward this took approximately 8 hours, whereas this only took 2 hours at the smaller ward. 

At both wards collecting and adding the initial data took approximately 1 hour. With a 

software program the time spent assigning shifts can be brought back to 1 hour in both the 

large and small hospital ward. Here, if we suppose that this larger ward would use 

scheduling software to create a schedule, the total time would therefore be situated at 2 

hours, a 6-hours time saving. At the smaller ward assigning shifts using software could 

take as little as 30 minutes. A schedule could therefore be created in 1 ½ hours, a ½-hour 

gain.  

 

A missing link often exists in scheduling research between theory and practice when a 

research project discusses a real-life problem. When discussing these types of problems 

in an article most research projects present three stages. First, the research problem is 

defined. Next, a model is formulated to provide a solution to the problem. Finally, an 

algorithm is developed and applied to the model. Two questions are not always 

addressed: 

1. Is the algorithm used by people, other than researchers, to solve other instances of 

the real-world problem on a regular basis? 

2. What does the program provided to the users look like? 

The practical sides of the research project are seldom presented, or often merely 

presented as a footnote in the conclusion. It is often hard to verify if the presented results 

of the real-life problem were useful in a real-life situation. 
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In health care there are different employee groups such as nurses, doctors and residents. 

Each group is subject to a specific collective agreement that dictates their working 

conditions. On top of these legal conditions each hospital department has its own rules for 

scheduling employees. When researching the topic of scheduling we therefore have to 

partition the problems in different schedule categories each with their own particularities 

and each their own employee group.  

 

The resident scheduling problem is a multi-period staff assignment problem with a 

predefined number of work-night shifts (of 12- or 24-hours shifts in length) that are 

assigned to staff members, while considering departmental staffing needs as well as 

residents’ preferences; The different considerations result in a schedule where a resident 

works around a single shift per four days, in such a way that a single shift is isolated from 

others by blocks of resting days. This type of scheduling problem has hardly been 

researched in particular even if their working conditions are different from normal medical 

staff. The resident scheduling problem reduces to a simplified nurse scheduling problem 

where a set of shifts (typically morning, day, night timeslots) per day are replaced by a 

single daily shift and where a normal five day working week is replaced by a single shift 

per four days.  

 

This thesis presents a prototype with an integrated optimization method for solving the 

resident scheduling problem. In this schedule type day shifts occur according to the same 

fixed schedule for all residents. However, when working a night shift, residents are exempt 

from active duty in the hospital by the rules of the collective agreement. Nevertheless, they 

can be required to be present at their mandatory educational and conference days directly 

after a night shift. It occassionnally happens that residents have to accept schedules that 

are very exhausting.  
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1.2  Objectives and research contribution 

 

 

The objective of this thesis is twofold. First of all we provide a problem formulation for the 

resident scheduling problem, a problem on which very little research has been done. 

Additionnally, we present a formal framework for the analysis of manual techniques for 

creating a schedule, a description that (to our knowledge) has never been made within the 

field of scheduling. It is therefore difficult to directly associate this thesis to past works of 

researchers. This framework has furthermore translated the manual techniques into an 

optimization method that was integrated in the prototype that has resulted from this thesis. 

 

Perhaps the most difficult part of this thesis was to observe schedulers at work and 

translate our observations; The hard part was therefore to translate our observations into 

scheduling techniques in such a way that it formed a clear and concise modelling 

framework. We show that it is possible to use manual scheduling techniques to establish a 

reduced set of constraints to focus the search on.  

 

On a secondary level, the intention of this study is to contribute to the field of scheduling 

research by clarifying what the scheduler’s notion of schedule quality exactly represents 

and integrate this notion in a search algorithm. The techniques used can differ from one 

schedule type to another and will determine the quality of the final solution. Since a 

scheduler manually makes the schedule, the techniques used reflect the scheduler’s 

notion of schedule quality. To analyse the scheduler’ definition of schedule quality and see 

how manual techniques influence the schedule quality we present a formal framework for 

the Manual Scheduling Process (MSP). We also wished to discover the way in which the 

scheduler wishes the search algorithm to perform the search. This model has been 

integrated in a prototype in order to investigate the scheduler-software interaction. 

 

The first part of the project involved a literature review and the formulation of a mathe-

matical model. The mathematical model applies to other hospitals across the province of 

Québec, with exception of a few constraints. The model can thus be used in other 

hospitals without any additional implementation efforts. 
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The goal of this thesis is to explain a solution approach that uses a methodology derived 

from intuitive techniques to build an initial solution and to perform a local search. We have 

formalised then programmed into our solving algorithm some of the intuitive ideas that 

managers already use to build schedules by hand. From this a heuristic method to build an 

initial solution has been conceived. The algorithm tries to improve the initial solution by a 

tabu search. It is worth mentioning that, unlike most of the works reported in the literature, 

the construction algorithm allows the user to influence the evolution of the schedule. We 

will furthermore describe the details of the program and discuss the results that came 

forward out of the tests performed with the residents.  

 

The added value of this research project is to show that a project can present theoretical 

results as well as discussing the practical advantages software offers to its final users. By 

first formulating the problem and presenting the algorithm implemented to find solutions we 

wish to follow the normal steps of a research project. Next, we desire to show that our 

prototype has allowed the hospitals involved to develop new schedules on a regular basis 

and that this is done by a resident scheduler. Furthermore, we also provide a description 

of the used prototype. 

 

This project initially started as a pilot project to model the constraints that apply to 

residents’ wards in Québec. This led to a second phase in which a prototype of a schedule 

generator was developed. It was assumed first that an interface would be of little interest. 

However, the schedulers found it difficult to use the prototype without an interface and 

therefore interpret the quality of the resulting schedules. A part of the focus of this project 

has therefore moved to the development of a user-friendly prototype that could be used by 

residents of the Enfant-Jesus and CHUL in Québec City. It aims at providing the residents 

schedulers of these hospitals with software capable of producing mathematically optimal 

(or at least high quality) schedules. This prototype has been offered to resident schedulers 

free of cost in exchange for information on how they use the computer program.  
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1.3  Structure of the thesis 

 

We will first present the mathematical model and the prototype that was developed as a 

result. Chapter II provides a brief tutorial on nurse scheduling as well as a literature review 

on papers related to resident and nurse scheduling and optimization methods 

implemented in/or tested on real-life instances. The review discusses articles in which 

computer systems were implemented in hospitals to illustrate the research that discussed 

the pratical side of projects. There is little research available on resident scheduling and it 

was therefore deemed more interesting to discuss the literature connected to nurse 

scheduling problems to provde an overview of the research in this area. The problem 

description, a formal framework of the manual scheduling process and the construction 

method and tabu search that we developed from this framework are provided in Chapter 

III. Next, Chapter IV explains how the data instances were obtained and how the prototype 

and constraints were validated with the resident schedulers. Chapter V describes the 

implementation and validation of the prototype with resident schedulers. Finally, Chapter 

VI presents the results for the test instances obtained. Future research directions and 

conclusions will be presented in Chapter VI.  
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Chapter II – Problem definition  

 

 

2.1  Introduction 

 

Given a hospital context, the resident scheduling problem is a multi-period staff 

assignment problem with a predefined number of work-night shifts (of 12- or 24-hours 

shifts in length) that are assigned to staff members, while considering departmental 

staffing needs as well as residents’ preferences; The different considerations result in a 

schedule where a resident works around a single shift per four days, in such a way that a 

single shift is isolated from others by blocks of resting days. The residents’ problem is 

never considered in particular although their working conditions are different from normal 

medical staff (nurses, doctors, etc.), for whom a number of literature reviews show that 

different solution approaches have been proposed (Bradley and Martin (1991), Jelinek and 

Kavois (1992), Ernst et al. (2004)) to deal with their working conditions. For the purpose of 

a literature review it is therefore more pertinent to discuss the literature connected to 

Nurse Rostering Problems (NRP’s). However, we can consider that the discussed solution 

methods are equally valid for resident scheduling problems. 

 

Nurse rostering is defined as the creation of a periodic (weekly, fortnightly, or monthly) 

schedule for the nursing staff of one or several wards, subject to constraints that Miller et 

al. (1976) called feasibility set- and nonbinding-constraints (also called as hard and soft 

constraints), such as legal regulations, personnel policies, nurses preferences and other 

hospital specific requirements. The formulation of cost functions and objectives can vary 

from one hospital to another. The variation in circumstances has resulted in different NRP- 

models and the development of different solution approaches. The resident scheduling 

problem can be considered as a reduced nurse scheduling problem where a set of shifts 

(typically morning, evening, night timeslots) per day are replaced by a single daily shift and 

where a normal five day working week is replaced by a single shift per four days. The 

literature review will discuss solution methods for NRP’s because these methods are a 

good representation of resident scheduling problems. 
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There are different reasons that make hospital personnel scheduling problems important. 

Making schedules in an effective and efficient way is important because nursing salaries 

can account for up to 40 % (Boldy and O’Kane, 1982) of hospital budget costs. There also 

are different interest groups that benefit from a good schedule. Warner (1976) was one of 

the first to describe hospital staff as an interest group that has something to gain from 

good schedules. Sitompul and Randhawa (1990) as well as Oldenkamp and Simons 

(1995) mentioned that it direcly affects the care quality a patient receives. For hospital 

staff, a better schedule means less stress and more rest. A good schedule improves care 

quality for patients, speeding up the patient’s recovery. We can also add the hospital 

interests; the hospital is concerned with using as little nursing staff as possible - in order to 

keep costs low - while providing a satisfactory level of care.  Job satisfaction is often low 

when staff works shifts in an irregular way. When a staff member changes from night shift 

to day shifts in an irregular manner, he will experience the undesirable effect of ‘jet 

fatigue’. Irregular working patterns have a negative impact on circadian rhythms and as 

such on job satisfaction of nursing staff 

 

 

2.2  Nurse timetable scheduling: a brief tutorial 

 

2.2.1  Types of nurse rostering problems  

 

The category to which a scheduling problem-type belongs is determined according to the 

addressed problem-type and the application areas covered. The general categories of 

personnel scheduling problems that exist have been mapped by Ernst et al. (2004). They 

classified the papers according to the type of problem addressed, the application areas 

covered and the methods used. Examples of different types of problems are crew 

scheduling and days-off scheduling. Examples for the application areas are airlines, call 

centres, manufacturing and nurse scheduling. NRP’s formed a category containing over 

107 papers. Randhawa and Sitompul (1993) have developed a classification scheme for 

nurse scheduling models according to the type of scheduling and the solution approach. 
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Some of the methods used include mathematical programming, set covering, genetic 

algorithms, and simulation. 

 

The description in this review will focus on the criteria that define NRP’s. These criteria can 

be directly applied to classify resident problems. Within the category of nurse rostering 

problems a schedule can be described by the following characteristics (based on the 

terminology defined by Burke et al. (2004b)): 

– Planning Period: the time interval over which staff is scheduled. The typical length of a 

planning period is 4 weeks; 

– Skill Category: staff members have a particular level of qualification, skill or responsibility 

which allows them to perform specific tasks, or explicitly prohibits them from doing so; 

– Shift Length: Shifts always have a well-defined start and end time. Many rostering 

problems are concerned with the three traditional shifts: early (e.g. 6:00 a.m.–2:00pm), late 

e.g. 2:00pm –10:00pm), and night (e.g. 10:00pm –6:00am), but two 12-hour shifts also 

occur (early 8:00am – 8:00pm, night 8:00pm-8:00am). This is also illustrated in Figure 2.1 

– Schedule type: A schedule can be either cyclic or non-cyclic. If a schedule is non-cyclic 

staff members can indicate their preferences for working or being off on specific days.  

 

Figure 2.1 shows that throughout the day employees provide a 24-hours coverage by 

working early, late or night shifts. In nurse rostering problems this is the most used type of 

coverage.  

 

To this day no formal classification has been created for NRP’s. De Causmaecker and 

Vanden Berghe (2010) however made an attempt to start the development of a more 

general framework for categorizing nurse rostering problems. Osogami and Imai (2000) 

Early Late Night

t=1 t=2 t=27 t=28

Figure 2.1 The division of shifts over a planning period 
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developed an instance generator for the NRP-problem that can handle different 

parameters for the mentioned categories. Different instances can be created for sub-

categories from the same data. For example, from the same input data a generator can 

create different instances for cyclic and non-cyclic schedules. 

 

The evaluation of personnel scheduling problems could be considered as an element 

related to the classification of methods. Timetabling research is sometimes motivated by 

the search for higher efficiency but on other occasions by the development of new 

methods. When researchers develop new methods a more objective evaluation can be 

necessary than the simple measurement of the penalty cost. Oldenkamp and Simons 

(1995) proposed five factors to evaluate nurse rostering problems as illustrated in Table 

2.1. These factors can be used for the assessment of the solution quality and human-

computer interaction quality and provide a more objective evaluation of the efficiency of 

the solution method. 

 

2.2.2  Depicting nursing schedules 

 

A nurse roster is defined as a calendar for a period of t days containing n persons. The 

nurse roster can be depicted as a two-dimensional data structure of decision variables. 

Figure 2.2 shows an example of a nurse roster, depicted as a Rij matrix schedule, called a 

day-view. One dimension contains the set of staff members and the second dimension 

contains the set of days in the planning period. As illustrated, each line of the calendar 

indicates the schedule for a staff member, referred to as an individual schedule. A nurse 

schedule is defined as the list of tasks that is assigned to a specific individual for a time 

period. A nurse schedule is the formal term and is also used when referred to resident 

schedules’. In Figure 2.2 the days marked by a 1 stand for shifts worked, whereas 3 and 4 

respectively indicate conference attendance and holidays on the days. We can read the 

Optimality factor Represents the degree in which nursing expertise is distributed over the different shifs

Completeness factor Represents the degree in which the quantitative demands for occupation per shift are met

Proportionality factor Degree with which each nurse have been given about the same amount of day and night shifts

Healthiness factor Degree in which it has been taken of the welfare and health of the nurses

Continuity factor Represents the degree in which there is continuity in the nursing crew during the different shifts

Schedule assessment factors

Table 2.1 Schedule assessment factors 
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nurse roster as follows: employee R-01 will be on duty Thursday and Sunday, R-02 is on 

duty Wednesday and absent for conference attendance on Thursday, Saturday and 

Sunday, R-03 is on holiday throughout the entire week. 

 

In research literature the general term schedule is often used to indicate either a nurse 

roster or a nurse schedule.  During the solution search the term shift pattern is used to 

designate an infeasible or feasible nurse schedule. The term “shift patterns” is also used 

whenever a timetable is cyclic due to the fact that different patterns are repeated 

throughout the schedule.  

 

2.2.3 Complexity of nursing schedules 

 

The criteria presented in §2.2.1 also determine the number of possible alternative 

solutions. To explain the number of alternative solutions we introduce the following 

variables and parameters and consider them not only to be useful to define nurse 

scheduling but also for resident scheduling problems:  

 

Parameters 

T: Total number of days of planning horizon 

ө: Total number of shifts during a day 

W: Total number of different wards 

C: Total number of nurses/residents needed 

 

 

Variables 

M: Total number of shifts to be planned 

N: Total number of nurses/residents available 

 

Nurse/

Resident
Mon Tue Wed Thu Fri Sat Sun

R-01 0 0 0 1 0 0 1

R-02 0 0 1 3 0 3 3

R-03 4 4 4 4 4 4 4

Figure 2.2 Example of a Rij matrix nurse roster 
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During each day of a planning horizon several shifts can be planned. Shift lengths and the 

length of the planning horizon in the health care area are often determined by trade 

unions. The typical length of the planning horizon is T=28. For nurses, the length of each 

shift is 8 hours in most cases. The total number of shifts ө is therefore (ө = 3). For 

residents, the length is dependent on the type of duty performed. 

 

The parameters T, ө, C and W determine M the total number of shifts of the problem. M 

grows for positive values of T, ө, C, and W and increases further if there are several co-

existent shift lengths. E.g. during the day shift more nurses are active but not always on 

duty during an entire morning shift; some nurses can work on a part-time basis and only 

work half of the afternoon shift. In our project the shift length for residents is 12-hours on 

weekdays and 24-hours (ө = 1) on weekends. In our project the following values therefore 

apply: 

T = 28  

ө = 1 

W = 1 or 2 

C = 2 or more 

M = CTөW         (2.1) 

 

The decision variable     is a binary variable introduced to identify what each staff member 

i does on each day t of the planning horizon. This variable defines on-duty shifts (1) and 

free shifts (0). This variable will be discussed in further detail in Chapter 3 to allow other 

events to be handled simultaneously. On-duty shifts can be defined to include a morning 

shift, an afternoon shift and a night shift. Free shifts are more complex since they include 

days off, public holidays, vacation leave, study day, unpaid leave, etc.  

 

Miller et al. (1976) defined     as “the set of feasible patterns for nurse” /resident i, and the 

solution space as the Cartesian product of all feasibility regions                . For a 

single employee with 4 shifts worked over a period of 28 days, a single feasibility region 

contains: 

 

( 
 )   

  

  (   ) 
  (  

 
)   

   

  (    ) 
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However, the number of available solutions that really exists in practice is smaller. 

Because there are hard constraints on conferences and holidays, certain days cannot be 

considered when assigning a shift. Since not every day can be considered for scheduling a 

shift the number of combinations for each of them is lower than theoretically suggested. 

The total number of permutations is therefore also lower. If feasibility regions are defined, 

each region can be defined as an upper bound for the complexity of the problem. 

 

Another factor in scheduling problems are upper and lower bounds on coverage 

constraints. The lower and upper bounds for the number of shifts are generally relaxed for 

different reasons, e.g. nurses can work overtime. Practical problems therefore have 

different types of coverage for the lower and upper bound and to take into account under- 

and overcoverage. Minimum coverage is defined as the minimum staff level to maintain a 

ward operational. Desired coverage is defined as the number of employees that hospital 

management wishes to have on duty. Overcoverage is defined as the maximum number of 

employees that hospital management will have operational at the same time. When these 

bounds are taken into account in Equation (2.1) this will become: 

  

Bounds 

MC: Minimum coverage 

DC: Desired coverage 

OC: Overcoverage 

 

MC ≤ DC ≤ CTөW ≤ M ≤ OC       (2.2) 

 

Where MC, DC and OC ≥ 0. To solve this problem the number of planned shifts will ideally 

be situated between DC and OC. If M is larger than the upper bound OC the hospital will 

incur unnecessary extra costs for nursing. If M is below MC a hospital ward will not 

operate efficiently or not at all. In reality bounds are formulated so that M will be in 

between MC and DC.  
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2.2.4 Basic timetabling notions and framework approaches  

 

Nurse Rostering problems generally have a constant workforce demand and constant 

availability and are therefore considered to be deterministic. Several deterministic models 

have been proposed during the last decade in order to resolve a range of diverse 

problems of nurse rostering problems. 

 

To become more familiar with scheduling theory it can be useful to consult different 

tutorials. De Werra (1985) presents a timetabling tutorial based on graph-coloring 

formulations to explain search techniques and complexity issues for the class-teacher 

problem and course timetabling. Another introductory tutorial to staff scheduling is given in 

Blöchliger (2004) that presents the basic concepts of the scheduling problem and 

discusses some facets of staff scheduling. An alternative tutorial written by Ferland et al. 

(2001) associates a generalized assignment framework to several problem categories and 

illustrates a few scheduling examples, amongst which nurse scheduling.  

 

Basic formulations of personnel scheduling problems are not as widespread as the classic 

travelling salesman problem and only a few papers try to address it thru a more general 

framework.  A good standardized description of personnel scheduling is provided by the 

minimum shift design problem (MSD) by Gaspero et al. (2003). Their research provides a 

good insight into the theoretical aspects of scheduling and they show that the MSD 

reduces to a special case of the minimum edge-cost flow problem. They furthermore prove 

that the logarithmic approximation of the problem is NP-hard. Bilgin et al. (2008) also have 

attempted to look into complexity and scheduling problems.  

 

 

2.2.5 Cyclical and non-cycliclal scheduling 

 

As briefly mentioned in §2.2.1 and §2.2.2, schedules can be cyclic scheduling or non-

cyclic. In a cyclic schedule a number of shifts are always grouped together and 

nurses/residents rotate from one pattern to another. In cyclic schedules a number of 

feasible shift patterns such as those shown in fig 2.1 are used to build a schedule. In a 
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non-cyclic schedule shifts are considered to be independent and every shift is assigned 

individually.  

 

A pattern is a fixed order of shifts and days off. For example, a nurse/resident works 

Monday-Friday and is off on the weekend. Figure 2.3 shows three different patterns that 

commonly occur in a working week. Suppose that Example 1 is an infeasible pattern 

because a nurse cannot be required to work more than five days in a row. Then Example 2 

would be a feasible pattern since it contains no more than five working days in a week and 

two resting days. Example 3 shows another feasible, (although unwanted) pattern where 

the working days are separated on/off days. In cyclic schedules a pattern often contains a 

sequence of days on duty followed by days off or the inverse because such patterns are 

more easily accepted than separated on/off days. 

The notion of cyclic or non-cyclic became an important notion in personnel scheduling 

problems because it has an influence on the complexity of a problem. By regrouping a 

number of shifts together we can decrease the number of combinations of shifts assigned 

to nurses/residents.  

 

Before illustrating the interest of cyclic schedules we first define a number of variables. We 

define ST to be the number of shift patterns or shift subsets. We furthermore have: 

 

ST: Number of shift subsets 

T: Length of planning horizon (days) 

N: Total number of shifts 

pi: shift pattern i ( i =1…4)  

 

1 2 3 4 5 6 7

1 1 1 1 1 1 1

1 2 3 4 5 6 7

1 1 1 1 0 0 1

1 2 3 4 5 6 7

1 0 1 0 1 0 1

Figure 2.3 Examples of shift patterns 
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Suppose that we mix a number of patterns together similar to the examples and that we 

have to assign all of these patterns to a set of nurses/residents in order to create a 

schedule. Now suppose that we put all nurses/residents together in a room and ask them 

to distribute the patterns amongst each other. Imagine that the same would have to be 

done but each individual shift has to be assigned. Not only would such a distribution likely 

take more time but nurses/residents would probably divide the shifts in patterns to assign 

the shifts more quickly and have a more favourable working schedule for everyone. The 

use of shift patterns has a similar impact. It can reduce the complexity of a problem and it 

can result in better work patterns staff. 

 

We can demonstrate this using an example. Say for example that for a hospital ward a 

two-week schedule (T= 14) has to be created with N shifts divided in a morning (1) and 

evening (2) shift each day. The number of shifts to be assigned if the schedule is non-

cyclic would result in 28 variables. By defining 4 shift patterns it would be possible to 

reduce the complexity to 8 variables. For example, we could have the following patterns: 

p1 = {Morning: Mon, Tue, Wed, Thu} 

p2 = {Night: Mon, Tue, Wed, Thu} 

p3 = {Morning: Fri, Sat, Sun} 

p4 = {Night: Fri, Sat, Sun} 

Using p1, p2, p3, p4 we can obtain full coverage for an entire week. An example of a 

solution is illustrated in Figure 2.4. This means that for two weeks we could use the same 

patterns twice resulting in 8 variables. The number of variables in a problem is therefore 

strongly reduced in a cyclic schedule by grouping together N shifts into ST subsets. In this 

example we would end up with N/4 subsets = 28/4 = 8. Instead of scheduling n shifts to m 

staff members resulting in ⟨ 
 ⟩  solutions we end up with ⟨   ⁄

 ⟩ solutions for an employee.  

 

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

1 1 1 1 0 0 0 1 1 1 1 0 0 0

2 2 2 2 0 0 0 0 0 0 0 2 2 2

0 0 0 0 2 2 2 0 0 0 0 1 1 1

0 0 0 0 1 1 1 2 2 2 2 0 0 0

Figure 2.4 Example of schedule assignment using shift patterns 
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The benefit of this planning method is that nurses know what shift pattern they are 

expected to make in advance. The drawback however is that it takes less into account 

individual preferences. There is an exchange that takes place between more fairness vs. 

less flexibility. Non-cyclic schedules take into consideration individual preferences when 

making a timetable. Depending on the problem type and the solution method there will be 

a preference for cyclic or non-cyclic schedules. This also depends on the scheduling 

practices maintained by hospital management. It can be preferable to maintain a cyclic 

schedule for nurses sometimes due to the size of a ward, or the high number of 

constraints. 

 

2.2.6 Definition of hard and soft constraints 

 

Constraints are divided into two classes: feasibility set constraints, and nonbinding 

constraints. Both are respectively referred to as hard and soft constraints. Miller et al. 

(1976) used the following definition for hard and soft constraints: “feasibility set 

constraints”, which define the sets of feasible nurse schedules, and nonbinding 

constraints, whose violation incurs a penalty cost that appears in the objective function. 

The hard constraints must be satisfied at all costs for a schedule to be feasible. Soft 

constraints are those that are desirable but which may need to be violated up to a certain 

degree in order to obtain a feasible solution. A soft constraint is complemented by 

additional side constraints that determine the size of the feasible region by stipulating 

upper and lower bounds for the constraint. 

 

To measure the quality of a schedule the relative violation of soft constraints is generally 

used. The goal is always to schedule resources to meet the hard constraints while aiming 

at a high quality result with respect to soft constraints. Even soft constraints can only be 

violated up to a certain level; if an employee has a 35-hour work contract it could still be 

acceptable to work 40 hours, or even 50 hours. When this is 80 hours however this would 

result in an infeasibility problem. This is why it is necessary to define upper and lower 

bounds for soft constraints. 

 

A soft constraint can be represented by a penalty function, a lower and upper 

bound/threshold value, as well as a range of acceptable values. In the mentioned example 
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an acceptable range of values could be 20 – 60 hours. The level of satisfaction of the soft 

constraint is visible in the objective function. 

 

Suppose a nurse has a 25-hour contract stipulating that she will be paid even if she is not 

on duty throughout the entire week. Legislation could stipulate that the hospital has to pay 

a fine if the nurse works more than 40 hours in a single week. Also suppose that legislation 

forbids the nurse to work more than 45 hours. Another constraint could be that a ward 

needs 40 hours of coverage by a single nurse.  

 

Not scheduling would mean that the hospital pays for unused capacity, while 

overscheduling would result in a fine for the hospital. It is therefore necessary to define a 

soft constraint and two hard constraints. The first hard constraint could be defined as 

follows: A minimum coverage of 40 hours is necessary. The second hard constraint would 

be: A nurse cannot work more than 45 hours. The soft constraint then becomes: Limit 

overtime for the nurse.  

 

Supposing that all other factors can be neglected and we have to schedule the nurse for 

40 hours throughout the entire week. This can be formulated as a cost minimization 

function for the hospital in the following linear program (LP): 

Figure 2.5 A piece-wise linear cost function and resulting feasible region 
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C: Number of hours of coverage needed 

H: Number of hours worked 

ht: Number of hours worked within time period t   (1≤ t ≤ 3) 

 

Min:  h1 + 10h2 + 20h3 

S.T.  

C = 40      (2.1) 

H-C ≥ 0     (2.2) 

h1 ≤  25     (2.3) 

h2 ≤ 15     (2.4) 

h3 ≤ 5     (2.5) 

H-h1-h2-h3 = 0    (2.6) 

h1, h2, h3 ≥ 0    (2.7) 

h1, h2, h3 : integer   (2.8) 

 

The penalty function h1 +10h2 + 20h3 is intended to minimize the cost of scheduling the 

nurse for too many hours. Constraints (2.7) and (2.8) are Integrity constraints. Constraint 

(2.1) is considered a hard constraint since the LP would not be feasible if this constraint is 

not respected. The constraints (2.3) to (2.6) are considered as a single soft constraint. 

More exactly, (2.6) is the actual soft constraint but additional side constraint are necessary 

to define the allowed feasible region of the solution. The nurse can work anywhere 

between 25 to 45 hours. A soft constraint simply has a larger feasibility region, whereas a 

hard constraint only has a single acceptable value.  

 

The resulting cost function is depicted in Figure 2.5. Notice that the objective function is 

defined as a piece-wise linear function. In reality Warner and Prawda (1972) reported that 

overtime costs show an exponential behaviour due to fines or other reasons. 

 

Different penalty weights are included in the objective function to define the degree of 

violation associated to the soft constraint. If the nurse works anywhere beneath 25 hours 

the cost would remain constant. Working more than 25 hours means that the hospital 

would have to pay supplementary wages for every hour of overtime. If the nurse works 

more than 40 hours the hospital also has to pay a fine so the hourly cost would increase 
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even further. Line W shows the hard constraint for minimum coverage. Line M shows the 

legal hard constraint. 

 

Since C = 40 and h1 is bounded to 25 (h1≤ 25 constraint (2.3)) we know that initially (2.6) 

will take the following values: 

H-C = 0   H = 40   H-h1-h2-h3 =0    25- h2-h3 = 40     h2-h3 = 40-25 

  h2-h3 = 15 

 

Since h2 is bounded to 15 we must have h2 = 15 because the penalty cost is lower. If we 

solve the LP one variable at a time we will end up the the following optimal solution: 

C = 40; h1 = 25; h2 = 15; h3 = 0; Optimal value = 175 

 

In nurse scheduling problems a number of constraints occur on a regular basis. 

Constraints are stipulated by hospital management, legislation and staff members. These 

constraints can be divided in different categories:  

– Hospital (Coverage) Constraints: the number of staff members needed for every skill 

category and for every shift during the entire planning period more commonly referred to 

as personnel requirements. 
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 – Time Related Constraints: all the restrictions on personal schedules, such as personal 

requests, personal preferences, and constraints on balancing the workload among 

personnel. 

– Work Regulations Constraints. It sets a number of time related constraints for the 

nurses. 

– Internal ward constraints: The practices applied by wards, such as attributing Saturday 

shifts to more junior staff members. These constraints are most often soft constraints. 

 

Hospital management constraints, e.g. at least 1 nurse and no more than 2 nurses on the 

maternity ward during night shifts, are generally hard constraints. This is due to the nature 

of constraints. Regulatory constraints are generally also hard constraints because violation 

is not allowed. The algorithm also stipulates a number of Integrity constraints that are 

necessary for problem formulation. Constraints apply to each staff member. 

 

Cheang et al. (2003) mention a list of constraints that occur commonly, which is illustrated 

in Table 2.2. All of these constraints mentioned amount to different levels of cost. In their 

ANROM model (Advanced Nurse Rostering Model) Burke et al. (2004b) mention an 

extended list of hard and soft constraints that resulted from the development of a general 

model for the nurse rostering model. 

Coverage Constraints Time Related Constraints

Nurse skill levels and categories Nurses workload (minimum/maximum)

 Shift type(s) assignments (max. shift type, requirements for 

each shift types)

Consecutive same working shift (minimum/ 

maximum/exact number)

Constraints among groups/types of nurses, e.g., nurses not 

allowed to work together or nurses who must work together

 Consecutive working shift/days (minimum/ 

maximum/exact number)

Other requirements in a shorter or longer time period other 

than the planning time period, e.g., every day in a shift must 

be assigned

 Constraints among shifts, e.g., shifts cannot be assigned to 

a person at the same time

Requirements of (different types of) nurses or staff demand 

for any shift (minimum/maximum/exact number)

Work Regulations Constraints Internal ward constraints

 Nurses preferences or requirements Shift patterns

Nurses free days (minimum/maximum/consecutive free 

days)
Historical record, e.g., previous assignments

Free time between working shifts (minimum)

Holidays and vacations (predictable), e.g., bank holiday, 

annual leave

 Working weekend, e.g., complete weekend

Table 2.2 Cheang et al.’s list of common occurring constraints 
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2.2.7 Interactive computing 

 

A research trend in the field of nurse rostering problems is to give more importance to the 

interface used by schedulers and its impact on the quality of a timetable and the therefore 

related impacts on theoretical schedule quality and algorithmic performance. The field of 

human-computer interaction is a discipline that deals with the design, evaluation and 

implementation of such interactive systems. 

 

Interactive computing refers to software that is told by humans what to do and is studied in 

different fields (Computer science, Cognitive psychology, Ergonomics, Artificial 

intelligence, Linguistics). Human-computer interaction has an impact on the ease-of-use 

and the theoretical aspects of a scheduling algorithm. The schedule quality in terms of the 

objective function will not end up being optimal because a number of theoretical aspects 

are sacrificed to gain an increased ease-of-use. 

 

Throughout the 20th century this human-computer interaction gave rise to artificial 

intelligence. This can be done through the interface of a computer program or within the 

hard coding.  

 

Expert systems that imitate the behaviour of users are classified as artificial intelligence 

systems. In the interface this means that the user can define search options, e.g. the 

constraints to be included in the cost function. Interactive interfaces are mentioned by 

several researchers as an important consideration for the development of their software 

(Burke et al. (2004b), Oldenkamp and Simons (1995)). The impact of these options is 

visible in the ease-of-use of the program and productivity of the user. 

 

In the second sense, AI algorithms imitate human intelligence processes. For example, 

learning (store information and define rules for the use of this information), reasoning (use 

the rules to obtain approximate or definitive conclusions), and self-correction. 
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2.2.8 Existing decision support systems 

 

Several different programs are already in use in different hospitals. Burke et al. (2004b) 

mention a number of programs developed by researchers and in use in hospitals. The 

table has been reproduced in Table 2.32. Programs were either implemented in a single or 

several hospitals. They also mention algorithms that have been tested on real-life data. 

Programs mentioned being used in several hospitals have resulted in the development of 

software with interface modules that allow the use of several planning techniques. For a 

full reference of all the authors mentioned in Table 2.3, the reader can refer himself to 

Burke et al. (2004b). A few further authors that were not covered in their literature review 

but who did present scheduling software are: Darmoni et al. (1994), Ozkarahan (1989), 

Weil et al. (1994).  

 

These programs contain modules specifically aimed at helping schedulers in performing 

their task. The effects computer programs have on schedule-making has become a field of 

                                                 
2
 For a full reference of all the authors mentioned in Table 2.3, the reader can refer himself to Burke 

et al. (2004b). A few extra authors that were not mentioned but who did present scheduling 
software are: Darmoni et al. (1994), Ozkarahan (1989), Weil et al. (1994).   

Not applied in practice but tested on real data  Applied in practice

Abernathy et al. (1973) Approaches applied in 1 hospital

Berrada, Ferland, and Michelon (1996) Easton, Rossin, and Borders (1992): staffing

Petrovic, Beddoe and Vanden Berghe (2003) Jaszkiewicz (1997)

Cheng, Lee, and Wu (1996, 1997) Smith and Wiggins (1977)

Okada and Okada (1988) and Okada (1992) Bellanti et al. (2004)

Abdennadher and Schlenker (1999a, 1999b): INTERDIP

de Vries (1987) Approaches applied in multiple hospitals

Warner and Prawda (1972) and Trivedi and Warner (1976) Warner, Keller, and Martel (1990): ANSOS,Warner (1976)

Miller, Pierskalla, and Rath (1976) Jelinek and Kavois (1992): Medicus

Muslija, Gaertner, and Slany (2000) Darmoni et al. (1995) Horoplan

Isken and Hancock (1991, 1998) and Isken (2004) Meisels, Gudes, and Solotorevski (1997): EasyStaff

Jaumard, Semet, and Vovor (1998) Meisels, Gudes, and Solotorevski (1996): TORANIT

Aickelin and Dowsland (2000) and Dowsland (1998) Dowsland and Thompson (2000): CARE

Moz and Pato (2004) Meyer auf’m Hofe (1997): ORBIS Dienstplan

Burke et al. (2001a, 2002, 2003) Burke et al. (2001b, 2001, 1999), De Causmaecker and

Vanden Berghe (2003): PLANE

Table 1. Applicability of the approach

Table 2.3 Burke et al.’s (2004b) overview of hospital software applied in practice and on real-life data 
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study for human-computer interactivity. Warner (1976) called hand-made schedules the 

traditional approach. Nurse scheduling assisted by decision support systems has led to 

new methods of interaction. The baseline for decision support systems is that the program 

offers a number of different tools that provide information about what problems are 

encountered in a schedule to make work easier for schedulers. Roth and Woods (1989) 

have investigated the effects of decision support based tools on a cognitive task analysis. 

They found that decision support improved the task performance and that the variety of 

possible solutions for a specific problem increased.  The cognitive tasks performed by 

schedulers have been described by Roth and Woods (1989) as well as by Mietus (1994). 

 

As an example of a nurse scheduling system we can mention ANSOS, which is 

commercialized in the U.S (Warner, Keller and Martel (1991)).  The system is built around 

a mathematical programming model. Costs for constraints can be adjusted by individual 

users. The program is also mentioned by Burke et al. (2004b) who provide a description of 

the four main modules of this system: 

 

- The Position Control Module: keeps track of information for each employee (e.g. 

skills, types of shifts, maximum work stretch, etc.) 

- The Scheduling Module: Based on all entered information it generates the 

schedule.  

- The Staffing module: Determines the required staff levels for wards, based on 

demand data.  

- The Management Reporting Module: Generates different types of reports 

  

  

Figure 2.6 The general framework for scheduling decision support systems 
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A general framework that can be extended to other decision support systems is illustrated 

in Figure 2.6. The Problem module can be used to create the schedule. The Administration 

Module is used in the early stages of the scheduling process to model job requirements. 

The tasks in the Adminstration Module include: Define shift-beginning and –ending times, 

determine number of staff that can be used in the planning period, enter pre-booked 

holidays and requested days-off, etc.  The main algorithm for the creation of a schedule is 

contained within the Problem Module.  This module program deals with counting, 

searching for personnel available for a shift, determine available staff, rank the availability 

of staff members, etc. Such specific tasks are generally handled by the mentioned 

submodules.  

 

Other examples of nurse scheduling decision support systems are the ZKR system 

described by Mietus (1994) and the DSS system described by Randhawa and Sitompul 

(1993).  

 

 

2.3  Literature review 

 

In this partial review we present a number of articles that deal with nurse scheduling 

problems. Since there is a fairly large amount of literature available on nurse scheduling 

we will limit our review to articles in which computer systems were implemented in 

hospitals and articles that made a significant contribution to the subject.  

 

Until the 60s, scheduling was mostly done by hand with the use of graphical tools. For an 

example off graphical tools and the considerations that have to be made you can consult 

Price (1970). Nowadays, methods from mathematical programming, articifial intelligence, 

heuristics and metaheuristics have all been employed to solve the nurse scheduling 

problems.  

 

A number of trends are visible in the development of this field of research. From 1972 to 

1988 researchers explored the subject by formulating appropriate models and 

implementing computer programs in hospital environments. The first important 

development was in the field of modelling. The research papers published since 1988 all 
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show similar modelling constraints. These constraints generally consider under- and 

overcoverage and nurse’s preferences. The second major development was in the field of 

human-computer interactivity. Several authors mentioned that schedulers always made 

changes to the final solutions provided by software. Throughout this period programs 

always appeared with more and more features. Since 1988 the development of this field 

has been marked by new optimization methods and a few efforts to build a more general 

framework for nurse scheduling problems.   

2.3.1 Resident scheduling literature 

 

 

The first article that adressed resident scheduling was published by Ozkarahan (1994), to 

discuss their working conditions in the United States and propose a model that could be 

used as a decision support tool for making changes to working rules. Ozkarahan’s model 

(1994) and the one introduced in the present study share similar constraints. Ozkarahan 

modelled the requirements of the residency program and the preferences of residents as 

to days off, weekends off and on-duty nights for a planning horizon of one week using a 

goal programming model.  

 

Sherali et al. (2002) addressed the resident scheduling problem with constraints for ward 

staffing levels, skill requirements and residents’ preferences. Their problem was modeled 

as a mixed integer program and was supported by different heuristic solution procedures 

to handle different scheduling scenarios.  

 

Beliën and Demeulemeester (2006) describe a method using column generation for 

scheduling trainees at a Belgian hospital to solve the LP-relaxation of the long-term 

scheduling version using a decomposition scheme on the tasks. Cohn et al. (2009) studied 

a resident scheduling problem that spanned a 1-year planning period and included 3 

different shift types. In addition, residents had to spend a number of time periods in 

different hospitals. Constraints concerned ward staffing levels, residency program 

requirements and resident preferences. The number of decision variables and constraints 

of the model was reduced because certain time periods had to be omitted from the model. 

The assignment of shifts in these time periods was done outside of the model. Cohn et al. 

(2009) modeled their problem as a goal programming model.  
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Ozkarahan and Topaloglu (2010) considered a resident scheduling problem over a 

planning period of four weeks considering constraints on residency program requirements, 

ward staffing levels and residents’ preferences. 

 

 

 

2.3.2 Published literature overviews 

 

Over the years several different reviews have been published. Fries (1976) presented an 

overview of operations research techniques applied to health care, including scheduling 

techniques. Hung (1995) published a review of 128 articles on nurse scheduling. More 

recent reviews of the literature dedicated to this type of models are listed in Cheang et al. 

(2003) as well as in Burke et al. (2004b). Other literature reviews on hospital staff 

scheduling were furthermore performed by Bradley and Martin (1991) as well as Jelinek 

and Kavois (1992), and Ernst et al. (2004). 

 

2.3.3 Mathematical programming 

 

Research in mathematical programming has been done both in the general field of 

scheduling as well as on subproblems such as the nurse rostering problem. General 

scheduling problems have been treated in all fields of mathematical programming: Linear 

programming, Integer programming, Mixed-integer programming, Non-linear programming, 

Goal programming approaches, and Network programming. Nurse scheduling has been 

explored in a more limited number of fields: Integer programming, Mixed-integer 

programming, Non-linear programming, and Goal programming approaches. 

 

Articles up to 1988 dealt mostly with the problem formulation. The newer methods that 

appeared in this field, have mainly focused on accelerating the search time without having 

to compromise the quality, and still obtaining an exact solution.  
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2.3.3.1 Non-linear programming 

 

Warner and Prawda (1972) formulated a mixed-integer quadratic programming problem 

that was field-tested in six wards of a hospital with a cost function formulated to minimize 

hospital and legal penalties. They mentioned using a modified version of Balintfy and 

Blackburn’s algorithm (Balintfy and Blackburn (1969)), which can be applied to goal-

programming problems, based on a single-goal non-cyclic formulation. To accelerate the 

search process they simply used a primal resource-directive approach, decomposing the 

problem in quadratic subproblems.  

 

Their problem formulation took into account skill categories and replacement between 

categories. Although their algorithm was field-tested they mentioned that they were 

insatisfied by the results obtained since a large amount of work still had to be done in 

order to provide satisfying schedules.   

 

Before Warner and Prawda (1972) a number of researchers (Wolfe (1964), Wolfe and 

Young (1965a), (1965b)) studied nurse scheduling with dynamic staffing levels, assuming 

that the question of how high staffing levels should be was an integral part of the 

scheduling problem formulation. Warner and Prawda changed this formulation method and 

assumed that staffing level determination was independent from the scheduling problem. 

They considered that too much staff level constraints had a negative impact on the optimal 

solution. Instead they formulated constraints on preferred and minimum staffing levels. A 

more pratical reason was that staffing needs were determined in advance by hospital 

schedulers. It has led to nurse scheduling being formulated as deterministic problems with 

a constant workforce demand and constant availability.Their quadratic formulation was 

motivated by the fact that staff shortage costs often occur as an exponential function. As 

can be seen in Figure 2.7, they stated that the cost increased exponentially with the level 

of shortage, with staff shortage costs becoming zero if staffing levels were fully satisfied. 

This exponential behaviour was also described by Aickelin and Dowsland (2000) when 

testing a genetic algorithm as well as Berrada et al. (1996). A number of researchers refer 

to the mathematical program formulation used by Warner and Prawda (Miller et al. (1976), 

Ozkaharan and Bailey (1988), Okada and Okada (1988)) since skill categories and 

replacement between departments often occur in practice. 
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Warner (1976) reformulated the mathematical program of his previous research (Warner 

and Prawda (1972)) to include constraints corresponding to shift preferences as requested 

by nurses. The original mixed-integer quadratic programming problem solved by Balintfy 

and Blackburn’s algorithm went through some modifications to make better use of the 0-1 

structure of the model and to incorporate a certain number of improvements for the 

developed application. He made use of a heuristic exchange procedure to assign a set of 

a priori generated schedules to each nurses’ schedule. The system ended up being 

implemented in 16 hospital wards, where the staff sizes ranged from 19 to 47 nurses.  

 

A number of human-computer interactive principles were considered to ease the pratical 

use of the program were also mentioned by the author. Even when not all coverage 

constraints were necessarily met, the model was designed to solve the problem despite 

infeasibility. The program allowed also for minor manual changes by the scheduler. 

Warner also mentioned an improvement in productivity with time savings for a 6-week 

schedule with 46 nurses. The planning time decreased from 18-24 hours to about 1 hour, 

with a CPU time of 40-80 seconds. Warner also noted that a slight increase in the quality 

of schedules resulted from the use of the system.  

 

This work has been acknowledged to be one of the first modern day works. His article is 

often mentioned for distinguishing three different fields within staff scheduling: staffing, 

scheduling and allocation of nurses. We can also note that he described five criteria for the 

scheduling problem. These criteria and scheduling approaches are mentioned in Table 

Figure 2.7 Warner and Prawda’s exponential cost function for nursing care shortage 
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2.4. Several articles are indeed direct offspring of Warner’s formulation (Miller et al. (1976), 

Ozkaharan and Bailey (1988), Okada and Okada (1988)). 

 

2.3.3.2 Goal programming approaches 

 

Arthur and Ravindran (1981) formulated a nurse rostering problem as a goal-programming 

problem which ended up being used by hospital schedulers for building real-life schedules. 

The goals used are indicated in Table 2.5. The hospital implementation was possible due 

to the fact that the complexity of the problem was very small: The problem describes the 

ward over a two-week scheduling period. The total number of variables per nurse was 5 

for a two week period.  

 

They constructed their solution with the help of a two-phase algorithm. In the first phase, 

the zero-one goal programming algorithm was used to assign shifts to a day-on/day-off 

pattern on to obtain an initial solution. The final solution then was created by using a 

heuristic procedure affecting the day-on/day-off patterns to nurses. A number of 

Traditional Approach The schedules are generated by hand

Cyclical Scheduling 
Generally provides good schedules but it is difficult to 

address personal requests

Computer Aided 

Traditional Scheduling 

Allows a faster search for a higher number of good 

schedules.

Coverage
Criteria pertaining to scheduling the preferred or required 

number of people for a task 

Quality
How fair schedules are, judged by the violation of soft 

constraints

Stability
How the nurses perceive the schedules (in terms of 

consistency, predictable on/off days and weekend work)

Flexibility
How well the system can adapt to changes in the problem 

parameters

Cost
How many resources are consumed in making the 

decision: e.g. personnel manager’s time or computer time.

Figure 2.1

Warner’s scheduling approaches

Warner’s scheduling criteria

Table 2.4 Warner’s scheduling approaches and criteria 

 

Wgt

Priority 1 Minimum staffing requirements

Priority 2 Desired staffing requirements

Priority 3 Nurses’ preferences

Priority 4 Nurses’ special requests

Objectives (minimization)

Not 

mentioned

Figure 2.2
Table 2.5 Arthur and Ravindran’s minimization objectives 
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assumptions were used to reduce the initial problem’s size, i.e. it was assumed that 

substitution between skill classes was not allowed and that each skill class could therefore 

be planned independently of the others.  

 

The work of Arthur and Ravindran (1981) is considered an important contribution to nurse 

scheduling because they are considered as the first researchers to apply goal 

programming to this field. Their work was motivated by the fact that they considered that 

single-objective mathematical programming models were not flexible enough in terms of 

relative rankings assigned to various types of goals.  

 

In their conclusion they make an interesting reference to human-computer interactivity. 

They admitted that the obtained schedule was not the final step in the process but that it 

needed to be manually refined by schedulers. Although an algorithm could produce an 

optimal schedule that took into account the various objectives, they admitted that 

preferences needed to be flexible: Meaning that schedulers should be able to manually 

adjust the model’s priorities. This testifies that ease-of-use was considered by researchers 

as had been the case with Warner (1976), who allowed manual changes to schedules. 

 

Musa and Saxena (1984) defined a 0-1 goal programming formulation which was solved 

by an algorithm based on the ideas presented in Balas’s additive algorithm and coupled to 

a problem-specific version of the Garrod and Moore procedure. A test instance resulted in 

a formulation of 154 decision variables and 120 constraints for 11 nurses over a two-week 

period. For reference, the optimization priorities and their respective weights are given in 

Table 2.6. Their formulation was fairly similar to that used by Arthur and Ravindran 

concerning coverage requirements, and preference satisfaction. They also mentioned that 

the calculation time was approximately 28.3 seconds. 

 

Wgt

Priority 1 Achieve contracted days 9

Priority 2 Achieve minimum number of nurses’s goals 7

Priority 3

Satisfy weekend preferences for full-time nurses, assign at 

least one weekend or two days off for full-time nurses, and do 

not violate the three-consecutive days off constraint. Achieve 

desired number of nurses for patient care

5

Priority 4 Satisfy weekend preferences for part-time nurses 3

Objectives to minimize

Figure 2.3
Table 2.6 Musa and Saxena’s minimization objectives 
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Their research is mentioned as a reference because it made an advance in the area of 

human-computer interactivity / artificial intelligence: It was the first computer program 

allowing users to make adjustments to the goals’ relative weights from one period to 

another. Their application developed built on the conclusions of Arthur and Ravindran 

(1981) who suggested that it would be preferable for users to allow manual changed.  

 

Ozkarahan and Bailey (1988) used a 0-1 GP model with a formulation based on the set-

covering model. Their method used a two-phase system that integrated the time-of-day 

(TOD) problem with the Day-Off (DO) problem, as discussed in the initial works of Bailey 

(1985). Once both problems were solved to optimality, a heuristic would affect the optimal 

work patterns from the DOW problem to the TOD problem. Their decision support system 

incorporated several artificial intelligence techniques in the nurse scheduling process. The 

goals defined for their model are mentioned in Table 2.7.  

  

In their findings, similarly to Arthur and Ravindran (1981) as well as Musa and Saxena 

(1984), it was reported a scheduler makes different changes in the algorithm’s final 

solution. Their research was innovative because it integrated artificial intelligence 

techniques in the interface of a decision support system to facilitate manual changes (e.g. 

to be able to cope with changing assumptions, finding alternative solutions, manually 

changing solutions and evaluate different substitutes in case of two conflictive objectives). 

In their opinion most systems had shortcomings in the flexibility (i.e. artificial intelligence) 

level. As they mention: “In reality, a nurse scheduler would form, perhaps with an AI front 

end program, the two or three goals that are psychologically most appealing.” 

 

Wgt

Priority 1
Minimize deviations from the required number of 

nurses needed for each day of a weekend

Priority 2
Minimize deviations in both directions from the 

limited staff size

Priority 3

Minimize deviations in both directions from the 

required number of nurses for Thursday through 

Sunday

Objectives (Minimization)

Not 

mentioned

Figure 2.6
Table 2.7 Ozkarahan and Bailey’s minimization objectives 
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It was reported that hospital management was satisfied during implementation because 

producing the system-generated schedules was more efficient than the paper-and-pencil 

schedules and because over- and understaffing were minized. Nurses also appeared 

appreciative of the system because single days on duty, and separated days off were 

eliminated. 

 

For their research Berrada et al. (1996) used data taken from a Canadian hospital. In their 

works, Berrada et al. (1996) compared a sequential algorithm, an equivalent weights 

algorithm and a tabu search algorithm. The sequential and equivalent weight techniques 

made use of a branch-and-bound algorithm. They were able to split the problem into three 

single-shift problems since each nurse always worked the same shift, thus reducing the 

complexity of their model.  

 

Their work provides an interesting comparative on the performance of different algorithms. 

They reported a higher CPU time for the tabu search than for the two exact procedures 

which they related to the experimental status of their tabu search. It should be noted that 

the tabu search also needed to be formulated as a non-linear program, thus resulting in a 

higher solution time. The way in which the problems were formulated was different as well; 

the deviation measuring constraints had to be formulated as non-linear constraints more 

demanding in their solution time. Schedulers were satisfied with most of the results and 

even decided to implement some of them. 

 

Azaiez and Al Sharif (2005) used a 0-1 goal program that accounts for hospital objectives 

and nurses’ preferences. Their research mentions wards of varying size. They divided a 

ward in subgroups according to nurse’s qualifications and workloads. For the mentioned 

example of 13 nurses they obtained a problem with 1135 hard constraints and 1068 soft 

constraints consisting of 1092 binary decision variables and 2054 non-negative deviation 

variables.  

 

They provided interesting information concerning the testing of their model. In most of the 

tested cases optimal solutions were obtained. Where this was not the case violations only 

occurred for soft constraints with the lowest importance weights. Their largest running time 

was approximately 20 minutes for a ward with 22 nurses. They reported that savings of 

14% in over-time costs had been obtained over a 6-month testing period. According to 
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their estimations it would be possible to realize savings of $ 100 000 once implemented. 

They also pointed out that one of the problems perceived by the nurses was that less 

overtime deprived them of a good source of income. 

 

2.3.3.3 Branch-and-price approaches 

 

Jaumard et al. (1998) presented an exact algorithm that made use of techniques 

specifically aimed at accelerating the branching process. Based on a goal-programming 

formulation, their aim is to minimize salary costs, nurse preferences, and 

experienced/less-experienced staff while satisfying ward coverage. They defined a master 

program to find a configuration of schedules and generated new feasible schedules by 

solving a resource constrained shortest path problem based on a depth-first process.  

 

Their algorithm was tested on a real-life instance from a Canadian hospital stretching a 6-

week planning horizon with 41 permanent nurses. The system was capable of providing a 

linear relaxation solution for the instance concerned in less than 40 minutes. They 

mentioned that when the same problem is solved by a partial branch-and-bound it took 

approximately 16,5 hrs to get a solution. Creating a paper-and-pencil schedule took a full 

working day for the scheduler. In terms of search speed this algorithm could be considered 

slow but they made mention of this fact. They explained that the search could be stopped 

by the scheduler during any point of the process and still obtain satisfactory feasible 

solutions. 

 

In their published research Bard and Purnomo (2005a, 2005b) used a multi-objective 

column generation approach that tries to ensure sufficient coverage while taking into 

account staff preferences. Their approach allowed for infeasible schedules by the use of 

outside nurses to fill up gaps in the schedule. Their algorithm was tested on instances of 

up to 100 nurses for a four week planning horizon producing schedules in 10 minutes. To 

reduce the size of rows of the model staff demand was expressed in periods rather than 

shifts. They generate only columns that are feasible for nurses to reduce the number of 

candidate schedules. To build new columns a double swapping heuristic was used where 

periods with staff shortages or surpluses were preffered for exchanges. Reports tell us that 

the algorithm has been implemented at different hospitals. 
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In a latter paper Bard and Purnomo (2007) used a Lagrangian decomposition scheme to 

lower the number of variables for the same instances. Maenhout and Vanhoucke (2007) 

investigated several different branching strategies to speed up the search time for an exact 

solution. These papers were not implemented in hospitals but show the trend that takes 

place in finding new solving methods for the existing problems.  

 

 

2.3.4 Artificial intelligence methods 

 

In the 1980’s and later, artificial intelligence techniques for nurse scheduling (declarative 

approaches, constraint programming, expert systems) were investigated with some 

success. Although it has not resulted in any export systems up-to-date, a number of 

different methods have been proposed. Chiaramonte and Chiaramonte (2008) proposed a 

heuristic using a competitive agent-based negotiation that focused on nurses’ preferences.  

Some of these approaches are still relevant to today’s research issues (Chan and Weil, 

(2001); Chiarandini et al. (2000); Meyer auf’m Hofe (1997)). 

 

Weil et al. (1995) presented a constraint programming (CP) model for nurse scheduling 

with the purpose of demonstrating the applicability of this technique as both a modelling 

and resolution tool. To model the problem they combined object programming and CP 

techniques as a tool for which they used ILOG-Solver. They defined an object class called 

“nurse” that contains information about the nurses’ identity (name, title, etc…) and the 

constrained variables used to generate the schedule. 

 

The scheduling horizon of their work was a 14-day calendar. They tested their system on 

two examples. The first one included less than 12 nurses, with a theoretical complexity of 

10100. The second problem contained 30 nurses from the same skill class. The problem 

contained 420 variables and 1470 constraints and had a theoretical complexity of 10250. 

They reported a solution time of 12 seconds. 

 

Okada and Okada (1988) developed a scheduling algorithm based on declarative 

programming with help of the logic programming language Prolog that followed a manual-



 46 

 

like method. Okada (1992) built on this method to develop a system that was able to 

handle constraints that were specific to different hospitals.  

 

2.3.5 Heuristic methods 

 

 

Miller et al. (1976) used a cyclic descent algorithm to solve schedules. They considered an 

objective function aimed at mimimizing staffing over- and undercoverage and nurse 

dissatisfaction in a single-objective formulation. The algorithm starts with an initial 

configuration of the schedule. From the nurses on the ward it selects one nurse to improve 

the schedule. Only if the algorithm finds a schedule that results in a lower cost, the lowest 

present cost and the best schedule are updated. If no cheaper configuration can be found 

during I consecutive tests, the algorithm stops.   

 

Their contribution was compared to a branch-and-bound algorithm and contained a good 

description of the number of alternative schedules that can be obtained. The example they 

mention is when 4 days are given off over a 14-day period. The number of alternative 

schedules then amounts to ( 
  ) > 1001 schedules. They mentioned that this number is 

lower when feasibility set constraints (hard constraints), previous schedules and special 

requests are taken into account. 

 

They performed their algorithmic comparison on a 4-nurse problem, over a 20-day period. 

The optimal solution was a cost of 7,55 and with the cyclic descent they obtained a 12,3, 

with a CPU-time of respectively 10,509 sec vs. 0,367 sec. It should be noted that the 

upper-bound in the branch-and-bound algorithm was the final solution generated by the 

algorithm and was used to reduce the search time.  

 

The also discuss their results of a general testing phase over a six-month period on groups 

of 5-7 nurses. They mentioned that the schedule was equitable over a planning horizon 

and that the algorithm generated a lower number of split weekends, something which was 

unwanted by the nurses. For the problems tested the generation time was generally 

between 2.5 sec. – 8 sec. Their estimation was that each example contained an average of 

200 feasible schedules. 
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2.3.6 Metaheuristics 

 

 

The group metaheuristics contains a number of different fields. Up-to-date approaches 

have been developed using local search and population-based metaheuristics. Methods 

presented for local search metaheuristics are limited to tabu search algorithms since only 

these have been implemented in decision support systems. Some population-based 

algorithms have also been presented although they have currently not been integrated 

directly in decision support systems. 

 

2.3.6.1 Tabu search 

 

Burke et al. (1998) developed a decision support system named Plane for Belgian 

hospitals. They reported that the number of constraints was higher than encountered in 

most literature problems researched. Their objective function formulation focused on the 

planning requirements including under- and overstaffing, and taken into account the 

preferred requirements. They mention that the cost function could be modelled by the 

scheduler himself.  

 

Their system was based on the use of a tabu search with diversification strategies. They 

used random initialization to create new schedules and after the tabu search process two 

diversification strategies could be used: If necessary they relaxed a number of constraints 

to improve the weekend coverage. They also used a greedy shuffle to list all pairs of 

moves possible until the list was depleted. They mentioned that this latter technique was 

taken from seeing the scheduler at work. Schedulers were often capable to improve the 

results of the search by making a small exchange between two staff members.  

 

They compared the performance of their tabu search to a steepest descent (SD) algorithm. 

Their results based on an example for a ward with 20 nurses and a planning horizon of 4 

weeks showed that the steepest descent method was outperformed by the tabu search. 

Their conclusion was that schedulers often put more emphasis on a higher quality solution 

than the search time needed.  
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Dowsland (1998) used the strategic oscillation techniques proposed by Glover and Laguna 

(1993) to explore new techniques for solving nurse scheduling problems. Ferland et al. 

(2001) also make mention of a tabu search for providing schedules. Burke et al. (2001) 

used a hybrid tabu search coupled to a genetic algorithm to explore a solution approach 

that produces more robust solutions. 

 

2.3.6.2 Genetic algorithms 

 

A number of papers have been published on the use of genetic algorithms for generating 

schedules but none of them have actually been implemented in hospitals. Aickelin and 

Dowsland (2000) tested a genetic algorithm on an instance and encountered an 

exponential behaviour which diminishes the efficiency of a standard genetic algorithm. 

Maenhout and Vanhoucke (2006b) provided a comparison of different crossover operators 

for genetic algorithms. 

 

2.3.6.3 Other metaheuristics 

 

Maenhout and Vanhoucke (2005, 2006a) developed experimental algorithms for nurse 

rostering problems. They presented an electromagnetism meta-heuristic and a scatter 

search algorithm. Goodman et al. (2007) reported a hybrid grasp-knapsack algorithm. 

These papers show that newer models have mainly been focused on accelerating the 

search process.  
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Chapter III – Formulation and solution approach  
 

 

3.1  Introduction 

 

The contribution of this Chapter is twofold. In the first section, it models and presents a 

new problem, the Resident Scheduling Problem (RSP), whose main objective is to assign 

a set of shifts (typically 12- or 24-hours shifts) to staff members and where an employee 

should work around a single shift per four days in order to minimize costs. The Resident 

Scheduling Problem is a real-life scheduling problem which arises often in hospitals or in 

other contexts where manpower needs to be assigned to shifts to cover non-stop activities.  

 

The second section proposes an efficient method to obtain a good quality solution, called 

the Manually Restricted Space (MRS) for the Resident Scheduling Problem. This 

construction heuristic, inspired from the manual techniques followed by schedulers, 

proposes an initial solution by selecting a region around a reference solution and exploring 

neighbouring solutions. The Manually Restricted Space is a space restriction approach 

thus providing an initial solution for a neighbourhood-based heuristic; instead of 

transforming the solution space, a region is selected around a reference solution.  

 

The concept of delimiting the solution space to be explored is a logical way to deal with 

large scale problems. In his doctoral thesis Pecora (2008) defines this concept as the 

Restricted Space (RS): “a subspace of the universal set of solutions which has two highly 

desirable characteristics (1) it should be small enough to be thoroughly explored and (2) it 

should have a high possibility of containing near-optimal solutions.” Several authors can 

be referred to as examples of studying the problem structure to reduce the solution space. 

Aickelin and Dowsland (2000) used a genetic algorithm to exploit the structure of their 

problem. Maenhout and Vaenhoucke (2009) used a branching strategy that branched on 

the original variables and progressively fixed the assigments in the individual schedules. 

To advocate their approach they mentioned that personnel scheduling problems are 

compatible with pricing problems.  
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The aim of the present study was to deduce the common characteristics and integrate the 

schedulers’ knowledge in search methods. To reflect these considerations the manual 

techniques used by schedulers were integrated in a formal framework and ultimately led to 

the formalisation of the Manual Scheduling Process (MSP). The MSP reflects the 

schedulers’ techniques, and their common scheduling behaviour. To integrate the MSP in 

a search method the construction heuristic was developed. The construction heuristic was 

obtained by combining different OR (Operational Research) heuristics. Finally, this 

resulted in the Manually Restricted Space. 

 

 

3.2  Problem description 

 

The constraints used in this Chapter have been formulated to provide a general model 

suitable for residency programs with ward-shifts. However, these constraints can be 

modified to take into account different types of residency programs such as resident home-

carers or residents on standby at home. During our testing phase we have encountered 

instances where some postulates of this model had to be modified to be able to comply 

with hospitals’ regulations. In this chapter not all constraints used within the schedule 

planning software will be mentioned to make the model easier to understand. The 

complete mathematical model can be found in Appendix A. 

 

3.2.1 Problem dimensions 

 

The characteristics previously described in § 2.2.1 and § 2.2.3 for the nurse scheduling 

problem, are the following for the resident scheduling problem: 

1. The planning horizon is 28 days; 

2. Shifts only have to be planned for night shifts (day shifts are not planned by resident 

scheduler’s). During the week shifts start at 8 P.M. and end at 8 A.M. During the weekend 

shifts start at 8 A.M. and end at 8A.M. Shift length is therefore 12 hours on weekdays and 24 

hours on weekends;  

3. There are 1 or more wards for each scheduling problem; 
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4. Minimum coverage level(MC) per ward: 1 resident; 

5. Infeasible solutions are allowed at a cost, replacement shifts are done by doctors. 

 

Weekend shifts are the most difficult to assign because of their 24-hour length. Demand 

fluctuation is strong during weekends; on Saturdays demand is at its’ lowest, making it the 

most difficult day because, according to residents, it is very monotonous and boring. Also, 

note that coverage infeasibility is allowed whenever no resident can be scheduled. If this 

occurs, the feasibility of the solution is restored by adding replacement shifts which will be 

done by a doctor. However, a doctor that does a night shift leads to a high penalty cost in 

the objective function. Therefore, a doctor should only be called upon if necessary. In the 

data samples that we gathered the frequency of shifts done by doctors was rather low.  

 

Table 3.1 summarizes the constraints encountered in this problem. The next sections 

introduce formulations for each of these constraints groups. The integrity constraints 

model the allowable characteristics of the Resident Scheduling Problem. It includes the 

number of staff members needed for every skill category and for every shift during the 

entire planning period. The legal constraints model all the restrictions on personal 

schedules, such as personal requests and personal preferences. The hospital constraints 

contain the practices applied by wards, such as attributing Saturday shifts to more junior 

staff members and constraints on balancing the workload among personnel. We will use 

numerical examples to clarify the main constraints.  

 

 

 

Integrity Constraints Internal ward constraints

Required number of residents for each day Proportionate dispersion of days among residents 

Maximum of one shift assigned to a person at the same time Proportionate dispersion of total shifts among residents

One day-type assigned to a person at the same time

No more than the maximum number of shifts Respect resting cycles after night shift

Respect requested days off No more than two weekends per scheduling period

Respect congress days No more than two consecutive weekends

Respect holidays

Legal Constraints

Table 3.1 Resident Scheduling Problem constraints 
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 The characteristics of the numerical example are the following: 

 The planning horizon is 28 days 

 The hospital has 18 residents working on 2 wards: Emergency and Paediatrics. Resident 1 to 8 

can only work at the Emergency ward and resident 11 to 18 at the paediatrics ward. Residents 

9 and 10 can work on both wards. At each ward MC = 1  

 

3.2.2 Objective function 

 

The objective function designed for this model uses slack variables to calculate the penalty 

cost function. Penalty coefficients are selected to adequately weigh each of the slack 

terms. This function is defined as follows: 
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Apart from the penalty values the objective function also contains the parameter ϱ which 

sets the number of days off to be respected. 

 

3.2.3 Integrity constraints 

 

Integrity constraints define the constraints among shifts and are used for the algorithm 

used for the search process.  
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Required number of residents for each day 

   

Constraint (3.2) has been formulated to handle undercoverage, i.e. allow a shortage in 

staff coverage. In some scheduling problems staff shortages can lead to infeasible 

solutions. To avoid this from occurring, undercoverage is allowed by defining two different 

levels of coverage. The first level is minimum coverage, the smallest number of staff 

members that are needed at a ward, and is reflected by the variables containing MC. The 

second level is the real coverage level, reflecting the actual number of residents that will 

be scheduled on a ward. The deviation between the minimum coverage and real coverage 

is measured by       
 . We consider every resident i that belongs to the same 

department, denoted as  ∑        ( ) .   

  

 ∑    

    ( )

         
        

                                                                                               (   ) 

 

This constraint furthermore considers that the same shift cannot be assigned twice. 

 

For example, for the 1st day of the planning period constraint (3.2) for the emergency unit 

(denoted as k=1) can be written as: 

                                       
         

 
        

  

For the paediatrics unit (k=2) this constraint is: 

                                         
         

 
          

 

 

Maximum of one shift assigned to a person at the same time 

 

Since residents can be active on different wards we have to assure that any person cannot 

be assigned to more than one shift at a time. Constraint (3.3) considers all different wards 

at which a resident can work by defining the summation of all a resident’s shift variables on 

different wards.    
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∑    ( ) 

 

 

                                                                                                                                        (   ) 

For example, the residents 9 and 10 can work on both departments. Therefore for t=1, we 

would have to include the following constraints: 

              

                

One day-type assigned to a person at the same time     

 

Constraints (3.4)-(3.8) set the day-type of a resident on day t. Where the binary variables 

in (3.4) and (3.5) will depend on the parameters of the constraints (3.6)-(3.8). The 

parameters and variables are mentioned below: 

 

Parameters 

RDOit  1  If resident i requested a day off at day t 

 0 Otherwise 

Cit  1  If resident i is at conference at day t 

 0 Otherwise 

Hit  1 If resident i is on holiday at day t 

0 Otherwise. 

 

Decision variables 

xit    1  If resident i is working at day t  

0 Otherwise 

rdoit  1 If resident i requested a day off at day t 

  0 Otherwise 

cit  1 If resident i is in conference at day t 

0 Otherwise 

hit  1 If resident i is on holiday at day t 

  0 Otherwise 

 

 

                                                                                                                                                  (   ) 
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              ,          ,                                                                                          (   )  (   )  

 

The problem has been formulated in such a manner that a number of specific day-types 

can prohibit a resident from working night shifts on particular days. Constraints (3.4)-(3.8) 

are therefore intricately linked to constraints (3.9) and (3.11)-(3.16). These are legal 

constraints that set the limitations on day-types. The variables               will therefore 

also be used in the constraints (3.11) – (3.16) which are intended to assure the respect of 

the day-types. 

 

The variables     and       have not been mentioned in the same equation but rather in 

separate equations - (3.4) and (3.5) - for the following reason; it might occur that       = 1 

but that a resident would have to work despite this value. Therefore,       and     do not 

exclude each other, since it is possible to not assign a day off to a resident who requested 

one. On the other hand,            and     cannot occur simultaneously. We therefore have 

to define the constraint (3.5),                   , to avoid            and     from 

happening simultaneously. For the same reason, we also have to assure that            and 

    do not occur simultaneously, by defining constraint (3.4),                . 

 

The parameters               are set to indicate which day-type is valid, if, for example, 

on t=5 resident 3 is attending a conference:  

                         

                     

          ,         ,           

 

3.2.4 Legal constraints 

 

No more than the maximum number of shifts allowed per resident 

   

Constraint (3.9) defines the number of shifts allowed, which is proportional to the number 

of days of availability of a resident.  
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Conferences and holidays are part of the entitled legal days off and diminish the number of 

availability days. The parameter MAXi is the maximum number of shifts and is determined 

by equation (3.10):  

      ⌈
(                    ) 

  
   ⌉                                                                                              (    ) 

The maximum number of legally allowed shifts is 6. This number is multiplied by the ratio 

(remaining days/ total duration of planning horizon) to obtain the number of shifts a 

resident can work in reality.  

 

Suppose that resident 9 attends a 3-day conference and takes a week of holiday. 

Constraint (3.10) then becomes: 

      ⌈
(        ) 

  
   ⌉    ⌈       ⌉         

                                   
        

 
      

 

 

Respect requested days off  

       

According to the legal convention a resident is entitled to 2 requested days off per 

scheduling period. However, the number of requested free days is generally much higher 

than the 2 days allowed. The constraints (3.11) and (3.12) are therefore ment to avoid any 

violation of a requested free day and to allow more flexibility to the model because the 

resident scheduler sets the number of days off requests that have to be respected. In the 

objective function ϱ sets the number of days off to be respected. Any violations to 

constraint (3.11) will be inversely penalized with respect to ϱ in the objective function. 

Constraint (3.15) has therefore been formulated to handle penalties all requests for days 

off. 
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 57 

 

Constraint (3.11) is defined for each resident and each day in order to count the number of 

times a requested day off is not respected. Constraint (3.12) is the summation that has 

been formulated to determine if less or more than the ϱ requested preferred days have 

been respected. If in the objective function ∑           
 
      the penalty will be higher than 

for ∑           
 
     . In the former case, less than the requested number of days have 

been respected and should therefore be penalized more strictly.  

 

For example, if resident 16 handed in a request form indicating that he wished to be off 

during the first weekend of the planning period and if    : 

                                 

                                   

                                 

                                

                                                        
          

      

 

 

Respect conference days     

 

When a resident attends a conference he cannot be expected to work. Constraint (3.13) is 

therefore defined for each resident and each day in order to count the number of times a 

conference day is not respected. Constraint (3.14) is the summation formulated to count 

the number of times a conference day is not respected.  

                                                                                                                                           (    ) 

∑        

 

   

     
      

 
                                                                                                               (    ) 

 

For example, the conference resident 9 attended took place during the first week of the 

planning period: 
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Respect holidays     

 

Constraint (3.15) is defined for each resident and each day in order to count the number of 

times a holiday is not respected. Constraint (3.16) is the summation that counts the 

number of times constraint (3.15) is not respected.  

                                                                                                                                           (    ) 

∑        

 

   

       
       

                                                                                                                    (    ) 

When a resident is on holiday the collective agreement does not allow a violation of his 

holidays. When leaving on holiday, the resident also has to be off duty the weekend before 

and after his week of holidays. This therefore imposes a limitation on the attribution of 

weekend shifts to residents. This constraint is mentioned in Appendix A. 

 

For example, the week of holiday resident 9 took was during the last week of the planning 

period: 

                             

                              

… 

                             

                              

                                            
       

       

 

 

Respect resting cycles after night shift 

 

The constraints (3.17)-(3.21) are necessary to respect the different cycles of being on- and 

off-duty.  

  (   )     (   )        (   )    (   )                                                                                 (    ) 

  (   )                                                                                                                             (    ) 

  (   )                                                                                                                              (    ) 
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The collective agreement prescribes two types of resting cycles, which are illustrated in 

Table 3.2. The first cycle type is a 72-hours rest period after each night shift, to allow the 

resident’s circadian rhythm to come back to a normal rhythm. However, a second cycle 

type allows the limitation of the rest period to 48 hours. The legal convention allows a 

resident to work this second cycle type once every period. These cycle types will be 

referred to as 72-hours and 48-hours rest cycles respectively. In other words, a resident 

will only work a shift once every five days if working only 72-hours cycles. In constraints 

(3.20) and (3.21) the number of allowed 48-hours shifts -without incurring any penalties- in 

the resident’s working pattern is set by  ,. Although the legal convention limits the number 

of 48-hours shifts, some wards give residents a second 48-hours shift. This is allowed in 

the eyes of the legal convention if the resident accepts this workload. Normally    , 

although it could set to be a higher number.  

 

The slack variables              
    and              

    in (3.18) and (3.19) count the 

number of 48-hours resting cycle result and constraints (3.20) and (3.21) force the 

summation of ∑              
 
   and ∑              

 
   to penalize all 48-hours resting 

cycles over  . 

 

A value of   that is larger than 1 is unwanted, but cannot always be avoided. Table 3.3 

shows the patterns that will be allowed as a function of  . For example, if no 48-hours 

resting cycles are allowed only pattern 1 would respect constraints (3.17)-(3.21). If  =1 

pattern 2 would be allowed to occur, whereas this pattern would lead to a penalty if    . 

1 2 3 4 5 6 7 8 9 10 11 12 13

Pattern 1 Q=0 0 0 1 0 0 0 1 0 0 0 1 0 0

Pattern 2 Q=1 0 0 1 0 0 1 0 0 0 1 0 0 0
Pattern 3 Q=2 0 0 1 0 0 1 0 0 1 0 0 0 0

Table 3.3 Allowed rest cycle patterns in a resident’s schedule depending on   

Cycle type 1 2 3 4 5 6 7 8 9 10

48-hours resting cycle 0 0 1 0 0 1 0 0 0 0

72-hours resting cycle 0 0 1 0 0 0 1 0 0 0

Table 3.2 Rest cycles as described by the legal convention 
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Pattern 2 shows that a resident is working on t=3, is off on t={3,4} and back on duty on 

t=6. Such a set of days is a 48-hours rest cycle. If pattern 3 would occur while     a 

penalty would be attributed. During implementation of the prototype pattern 3 occurred 

regularly while      If this occured, a resident could only work such a schedule if he 

formally accepted it. 

 

No more than two weekends per scheduling period     

 

Constraint (3.22) expresses the limitation on the number of weekend shifts, due to the fact 

that weekend shifts are longer. 

∑    

     

        
         

                                                                                                 (    ) 

  

Every resident can only be on duty two weekends per scheduling period. Hospital 

management also indicated that it was preferable that no resident makes more than a 

single Saturday per calendar-period. This constraint is mentioned in Appendix A. 

 

For resident 5 this results in the following constraint: 

                          
         

         

 

No more than two consecutive weekends 

 

Constraints (3.23)-(3.27) ensure that a resident cannot work more than two consecutive 

weekends during a planning period. This legal constraint also has to be respected during 

two consecutive planning horizons.  

∑    

    

   ∑    

         

                                                                                                  (    ) 

∑    

  

       

   ∑    

         

 ∑    

          

                                                             (    ) 

∑    

         

  ∑    

         

  ∑    

         

                                                          (    ) 

∑    

         

   ∑    

         

 ∑    

         

                                                         (    ) 

                                       
         

                        (    ) 



 61 

 

 

The forbidden consecutive weekend patterns are shown in Table 3.2, where PW 

represents the set of all weekends of a previous planning horizon, and WKD the set of all 

weekends of the current planning horizon. The sets WKDSET1 to WKDSET4 represent 

the weekends of weekend 1 to weekend 4.   For example, if a resident works two weekend 

shifts in set PW, pattern 1 forbids him to work a weekend shift in WKDSET1. The 

constraints reflect the patterns 1 to 4. For example, equation (3.26) corresponds to pattern 

4. If one of the patterns is present in the schedule constraint (3.27) will penalize the 

number of violations. 

 

For example, for resident 8 this constraint should become: 

                                          

                                           

                    

                     

                                       
         

         

 

 

3.2.5 Hospital constraints 

 

 

The hospital defined a few constraints that were not legally defined but were still 

considered to be an important factor in the fairness of each schedule. This third set of 

constraints reflects the hospital’s concern that all residents are treated fairly.  

19 20 21 26 27 28 5 6 7 12 13 14 19 20 21 26 27 28

Pattern 1

Pattern 2

Pattern 3

Pattern 4

xit = 1 xit = 1 xit = 1

xit = 1 xit = 1 xit = 1

xit = 1 xit = 1 xit = 1

xit = 1 xit = 1 xit = 1

PW WKD

WKDSET1 WKDSET2 WKDSET3 WKDSET4

Table 3.4 Forbidden consecutive weekend patterns over two consecutive planning horizons 
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Proportionate dispersion of days among residents  

 

Every time constraint (3.28) is violated the dispersion score of resident i will deviate from 

the average penalty score.  

                      
          

 
    

( ∑                )

 
                                                        (    )  

Each resident has his own dispersion score, defined as the total penalty cost associated to 

a shift pattern, formulated in equation (3.29) as: 
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Suppose that resident 4 works three Tuesday shifts and one Sunday shift. If          

and          then                 . If 
( ∑                )

 
   , resident 4 will work a 

better schedule than the average resident which results in a penalty cost. The penalty cost 

can be decreased by assigning resident 4 to more shifts or by assigning him to other 

shifts. 

 

Proportionate dispersion of total shifts among residents  

 

Constraint (3.30) is ment to ensure a fair distribution of the number of shifts between 

residents.  
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Suppose that the average number of total shifts distributed between residents,  
∑ ∑    

 
   

 
   

 
 = 5 

and that we look at the shift pattern of resident 4. Since this resident would work four shifts 

in the current schedule his shift pattern would be of from the average shift total resulting in 

a penalty. 
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3.3  Proposed heuristics 

 

 

This section provides a macro-view of the manual process used by resident scheduler’s 

and of the proposed algorithms  included in the construction heuristic, which is inspired by 

the manual process. From a theoretical perspective, a scheduler has rich knowledge on 

the characteristics often found in good solutions and uses his experience to create 

schedules. By combining different OR methods – a min-knapsack problem and a best-fit 

decreasing heuristic -  into a construction heuristic it is possible to imitate the manual 

process and focus on the common characteristics of good solutions. The construction 

heuristic generates a promising subspace within the feasible solution space, called the 

Manually Restricted Space. The initial solution provided by this mechanism is thoroughly 

searched to find (hopefully) better solutions by a Tabu Search (TS) procedure. To illustrate 

the steps of the Construction Heuristic we will use as example the emergency department 

already described (in §3.2.1). 

 

3.3.1 The manual scheduling process and its algorithmic equivalent 

 

 

 The resident scheduler creates a restricted space by using a Manual Scheduling Process 

(MSP) that leads to a solution contained in a feasible subspace. By combining different OR 

heuristics it is possible to imitate the manual process and focus on the common 

characteristics of good solutions. The combination of heuristics is also an efficient method 

to provide a solution in a reasonable amount of time. In this context, using heuristics is 

also a good way to ellicitate the schedulers’ considerations, deduce their common 

characteristics and integrate this knowledge in search methods, thus recreating a RS 

(Restricted Space). Initial interviews led to the formalisation of the MSP and allowed the 

distinction of the different activities that were performed. A review of the literature allowed 

the identification of heuristic equivalents to these activities. The activities performed by 

schedulers are mentioned in Table 3.5 as well as the heuristics used for imitation.  
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Solving the staffing problem by determining the coverage level needs has been used by 

Aickelin and Dowsland (2000) to ensure the satisfaction of coverage constraints. They 

used additional dummy (By the authors referred to as ‘bank’) nurses to compensate for 

undercoverage and provide initial solutions that were feasible. Ferland et al. (2001) used a 

best-fit decreasing heuristic on a nurse-scheduling problem to provide initial solutions of 

relatively good quality. We did not find an equivalent heuristic for the activity of conflict 

resolution during the construction of the initial solution. This was therefore interpreted 

more freely by taking into account one of the main problem characteristics. The challenge 

was that 72-hours resting cycles had to be taken into account before and after shifts. A 

constraint-verification was therefore introduced to verify if allocating the shift still allowed a 

72-hours rest cycle before and after work. The final activity of conflict resolution was a 

search for a better solution. In the manual process, the scheduler would go over the 

calendar a few more times to see if all shift patterns had been assigned fairly. In 

optimization terms there are numerous methods. Nevertheless, a tabu search provided the 

best equivalent to the manual process where a move operator performs exchanges in a 

neighbourhood, opposed to evolutionary methods that use population-based search 

methods. 

Activity Method Heuristic equivalent

Determine minimum coverage level needs Calculate number of shifts to work Knap-sack relaxation

Establish initial schedule Choose available resident Best-fit decreasing heuristic (Bin-Packing pb)

Conflict resolution (before search) Visual checks Feasibility check in best-fit decreasing heuristic

Conflict resolution (during search) Exchange with other residents Tabu search

Table 3.5 Manual scheduling activity, corresponding method and heuristic 

equivalent 
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Figure 3.1 Manual Scheduling Process framework 
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Once the activites had been identified a more formal framework, called the Manual 

Scheduling Process (MSP), was developed. This framework is illustrated in Figure 3.1 and 

describes the process used by schedulers to manually create a schedule. This process 

distinguishes two phases: 

- Phase I: coverage input - Residents provide the scheduler with their time-off requests 

which he uses to fill an empty calendar;  

- Phase II: shift assignment - The scheduler creates the schedule and continues to solve 

occuring conflicts until he judges the schedule fair enough. 

 

In simple terms schedulers design an initial schedule in the first phase and in the following 

phase they try to improve this schedule to obtain a feasible solution of good quality.  

 

Phase I consists of two main tasks: calendar-creation and parameter determination. Before 

executing the task calendar-creation the scheduler gathers all the Unavailability Notices to 

create an empty calendar. The calendar-creation is a repeated task of filling in the names 

and the availability of each resident. Once this task is completed the scheduler will 

determine the ward coverage level together with the average number of shifts residents 

will work.   

 

Phase II consists of two parallel tasks: shift assignment and conflict resolution. They are 

parallel because a scheduler can simultaneously manage the shift assignment in the 

neighbourhood, the evaluation of the schedule, as well as conflict resolving. The first task 

is the determination of schedule needs. The first task is shift assignment, a repeated 

process of assigning shifts to residents. The conflict resolution is triggered as a parallel task 

whenever the shift assignment results in the violation of rules. In phase II the position of the 

assigned shifts is subject to different constraints. The scheduler can assign shifts until a 

conflict with these constraints occurs. More precisely, the scheduler will start the shift 

assignment by selecting a resident. He will verify the number of shifts already assigned to 

this resident and decide whether or not affecting the shift to him. Whenever a conflict 

arises the scheduler will have to perform a conflict resolution by exchanging shift 

assignments with another resident.  
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The development of the MSP allowed the definition of the different tasks for the prototype. 

Table 3.6 provides a summary of the inputs and outputs of the different solution methods 

within the prototype. The integer knapsack problem takes the empty calendar information 

and determines whether any departments will be short-staffed throughout the planning 

horizon. The best-fit decreasing heuristic will receive the information from the integer 

knapsack and uses the raw data from the empty calendar and the staffing requirements of 

each department to transform it in an initial solution. The raw data consists of two sorted 

lists, the SFT- and the RDS-list, The SFT-list contains all the shifts to be assigned 

throughout the planning period. The RDS-list contains the residents in increasing order of 

pre-scheduling score based on different criteria. The initializaiton of these lists will be 

discussed in §3.3.3. The initial solution will be improved by a tabu search that will explore 

the different solutions and return the best solution found. The different activites were 

integrated in the prototype and the results were presented to schedulers to obtain their 

feedback on the quality of solutions. 

Method Input Output Objectives

Integer knap-sack Total availability of residents

Number of shifts covered by 

residents and number of shifts 

covered by doctors

Determine whether there will 

be under- or over-coverage

Best-fit decreasing Sorted SFT- and RDS-lists 
Initial solution based on users' 

parameters

Provide an initial solution of 

good quality

Phase II 

Search
Tabu search Initial solution

The best solution found with the 

tabu search

Explore the solution 

thoroughly

Phase I 

Initialisation

Table 3.6 Summary of the solution methods 
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Figure 3.2 General algorithm 
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 Figure 3.2 presents the general algorithm. This process is organized in three different 

phases: 

- Phase I: initial data input - The scheduler enters the unavailability information in the 

prototype;  

- Phase II: restricted space construction – The heuristics described build an initial solution to 

obtain the Manually Restricted Space; 

- Phase III: Optimization – The tabu search thoroughly explores the Manually Restricted 

Space to find, hopefully, better solutions.  

 

In Phase I the information provided by the scheduler is stored in the database. Phase I is 

done in the user interface of the prototype that allows user-computer interactivity. This 

Phase is similar to Phase I of the MSP.  

 

Phase II of the algorithm is similar to Phase II of the MSP. Four different procedures are 

executed in this phase. First of all, the Knapsack procedure determines the number of shifts 

necessary to satisfy the covering needs throughout the planning period. Then the 

procedure SFT-list initialization is executed resulting in a list that contains all the shifts to be 

assigned throughout the planning period. In turn, the procedure RSD-list initialization 

creates the availability list of all residents. This list mentions the total number of shifts each 

resident can work throughout the planning period. Then, the next task is to assign all shifts 

by help of the Best-fit decreasing procedure. In case not all shifts can be assigned to 

residents, dummy doctors are assigned to the remaining shifts.  

 

Finally within the algorithm, a tabu search is executed to explore the Manually Restricted 

Space and, with any luck, find (near-to)-optimal solutions. The procedures used in the 

algorithm will be described in more detail in the following sections.  

 

3.3.2 A knapsack IP-relaxation of the staffing problem 

 

The staffing problem (Staffing Problem) is presented below as a knapsack formulation of a 

min-knapsack problem. The resolution of the staffing problem can be used to determine 

coverage feasibility. This information is used to determine whether all night shifts 

throughout a scheduling period can be covered by residents and if doctors replacing 
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residents are required. This information is referred to as the Coverage Input (CI). This 

approach has been used by Aickelin and Dowsland (2000) to satisfy coverage constraints 

and provide better initial solutions. For the staffing problem the resolution corresponds to 

the satisfaction of constraints (3.2) and (3.9) (Required number of residents for each period, No 

more than the maximum number of shifts allowed per resident). The resolution results in the 

creation of an ordered list that contains all residents and the number of shifts they can be 

assigned to.  

 

When formulating the Coverage Input as a knapsack problem we have: 

Min   ai ri +    bj sj           (3.31) 

 ni ri +   sj dj ≥ N           (3.32) 

   

Where  

 

Parameters 

N  is the total number of shifts that have to be worked; 

ni Is the number of shifts resident i can make, i=1…m; 

sj Is the number of shifts doctor j can make, j=1..D; 

ai Is the cost associated to scheduling resident i,  i=1…m; 

bj Is the cost associated to scheduling doctor j,  j=1..D. 

 

Decision variables 

ri is 1 if resident i is available to work, 0 otherwise; 

dj is 1 if doctor j is available to work, 0 otherwise. 

 

To solve the integer problem we relax the Integrity constraint (3.32) on the assignment 

variables. N can be considered as the lower bound of the problem. By solving the IP-

relaxation of the problem it is possible to determine whether there will be undercoverage. 

Thus, if N -  ni* ri ≥ 0, there will be a shortage in residents. By reformulating (3.32) the 

number of shifts that doctors have to make can be determined by solving (3.33):  

  sj * di ≤ N -  ni* ri                               (3.33) 

 

If at any stage  ni* ri – which will provide us with the total number of shifts that can be 

covered by residents - is greater than or equal to N, the corresponding scheduling problem 
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is feasible. Otherwise, if  ni* ri is smaller than N, the number of residents available will not 

allow the satisfaction of minimum coverage constraints and doctors have to be scheduled 

to compensate for undercoverage. A doctor never covers more than a single shift when 

standing in. The doctors substitute residents in case of undercoverage and help us to 

estimate the total level of undercoverage throughout the scheduling period.  

 

To demonstrate this we will use the characteristics of §3.21 for a numerical example. On 

the Emergency ward we had 10 residents available (i=1…10). We will suppose that each 

resident is allowed to work 4 shifts (n1=n2=... n18=4). However, we will suppose that 

resident 9 can work only up to 2 shifts (n9=2) at the emergency ward and that resident 10 

can work only 1 shift on the emergency ward (n10=1). Minimum coverage is 1 resident and 

the planning horizon is 28 days. A total number of 28 shifts (N=28) would therefore have to 

be worked to ensure sufficient coverage. We will look at the coverage in a simplified 

example. 

 

 ni = n1+n2+…n10 = 8*4 +2 +1= 36 shifts 

 

Because  ni = 36, we could assume that all shifts to be worked could be assigned and 

that the set of solutions ≠ ∅. Therefore, a feasible solution exists that satisfies (3.31) for the 

knapsack problem and that constraint (3.32) can be satisfied, therefore: 

Min   ai ri +    bj sj ⇔  ni* ri  ≥ N                       (3.34) 

If  ni* ri  ≥ N is satisfied the following statement is true as well: 

 ni* ri  ≥ N ⇔  sj * dj = 0                                      (3.35) 

 

When  ni* ri ≥ N for the Emergency department there will not be any undercoverage and 

the problem is feasible without needing the help of doctors to work shifts. Otherwise, if  sj 

* dj ≥  0  and we would have to solve (3.33). This would mean that there would be a need to 

have doctors work shifts. In both cases the solution would give a feasible solution. If 

statement (3.34) is satisfied a feasible solution exists where only residents will work, 

otherwise a feasible solution will include shifts worked by doctors and residents. 
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3.3.3 Lists initialization 

 

The construction heuristic starts by initializing the lists of residents and shifts. The first list 

to be initialized is the SFT_LIST, the list of all shifts necessary to ensure full coverage 

throughout the planning period. Before the start of the best-fit decreasing heuristic, the 

difficulty score for each day is already indicated by the scheduler in the prototype, which 

will be explained further on. These values will be used to determine the order in which the 

shifts are selected to be assigned. This is illustrated in Figure 3.3. This Figure also shows 

the complete list of shifts for the emergency ward where the coverage level is 1 employee 

and the score that the scheduler gave to them.  

 

For example, the scheduler gave Mondays a weight of 4 points, whereas Saturdays 

received 10 points. This means that Saturday shifts are more difficult to assign than 

Monday shifts and therefore that violation of Saturday’s constraints will be penalized 

harder. Using this information the SFT_LIST is created. For example, the coverage levels 

for the emergency and the paediatrics ward are 1 resident each. The SFT_LIST will 

therefore contain a single shift for which t =1, ward = emergency and score = 4.  

 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Day Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Score 4 4 4 2 7 10 7 4 4 4 2 7 10 7

t 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Day Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Score 4 4 4 2 7 10 7 4 4 4 2 7 10 7

6 13 20 27 5 7 12 14 19 21 26 28 1 2

Sat Sat Sat Sat Fri Sun Fri Sun Fri Sun Fri SunMonTue

10 10 10 10 7 7 7 7 7 7 7 7 4 4

3 8 9 10 15 16 17 22 23 24 4 11 18 25

Wed Mon Tue WedMonTue WedMon Tue Wed Thu ThuThu Thu

4 4 4 4 4 4 4 4 4 4 2 2 2 2

SFT_LIST

Figure 3.3 Assginment of score to all days of planning period 

 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Day Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Score 4 4 4 2 7 10 7 4 4 4 2 7 10 7

t 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Day Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Score 4 4 4 2 7 10 7 4 4 4 2 7 10 7

6 13 20 27 5 7 12 14 19 21 26 28 1 2

Sat Sat Sat Sat Fri Sun Fri Sun Fri Sun Fri SunMonTue

10 10 10 10 7 7 7 7 7 7 7 7 4 4

3 8 9 10 15 16 17 22 23 24 4 11 18 25

Wed Mon Tue WedMonTue WedMon Tue Wed Thu ThuThu Thu

4 4 4 4 4 4 4 4 4 4 2 2 2 2

SFT_LIST

Figure 3.4 Example of SFT_LIST 
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An example of the SFT_LIST for the emergency ward is illustrated in Figure 3.4. The 

SFT_LIST is sorted in decreasing order of the difficulty score. For example, the days t = 6, 

13, 20, 27 are the most difficult shifts to assign, which corresponds to the set of Saturday 

shifts. The Friday and Sunday shifts are equally difficult and will therefore appear at the 

same level of assignement.  

 

Once the list of shifts has been initialized the construction heuristic will create the resident 

list (RSD_LIST). The RSD_LIST contains the pre-scheduling score for each staff member 

which is calculated using the pre-filled calendar from phase I. The pre-scheduling score is 

defined as follows: 

 

            ∑    
 
           ∑    

 
               ∑                                           (    )  

Where, 

 

Parameters 

pen_c Is the penalty value given to a resident for a day of conference attendance 

pen_h Is the penalty value given to a resident for a day of holidays 

pen_prper  Is the penalty value given to a resident that worked a weekend shift in the 

course of the last two weekends of the previous period 

Decision variables 

cit  1  If resident i was attending a conference during day t 

  0 Otherwise 

hit  1  If resident i if resident i was on holidays during day t 

  0 Otherwise 

∑      Is the number of weekend shifts resident i worked during the last two weeks 

of the prevous period.  

 

For example, suppose that resident 9 has a week-long holiday and that he worked on a 

Sunday during the previous planning period. Let us assume that the scheduler has 

decided to set penalty weights as follows:  

pen_c = 20; pen_h = 30; pen_pper = 8 

 

Therefore, the resident score will be  

Score9 = 30 * 7 + 8 * 1 = 218 
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The resulting scores for each resident will be sorted in increasing order and saved in a list 

called RSD_LIST. An example of how the RSD_LIST is created is illustrated in Figure 3.5.  

 

The first table in Figure 3.5 shows the calculation of the pre-scheduling score for residents 

1 to 10. For example, for resident 9 the total pre-scheduling score was 218, the same 

score was obtained by resident 5. Their high scores are due to the fact that they are 

attending a conference and are on holidays for a week. The table illustrated in Figure 3.5 

shows in what way conference attendance, holidays and, previous weekends (PWKD) 

affect the pre-scheduling score. These results are used to create the RSD_LIST illustrated 

below the table. The RSD_LIST contains the residents in increasing order of pre-scheduling 

score. For example, resident 5 and 9 had the highest pre-scheduling score and therefore 

will be positioned last in the RSD_LIST. Associated to the RSD_LIST is a secondary list, 

called MAXSFT_LIST that contains the number of shifts each resident can work. For 

example, resident 1 will not be absent due to conference attendance or holidays, nor did 

he work the weekend of the previous period. In a planning period of 28 days he would 

therefore be available to work 6 shifts. Hence, a workload of 6 shifts can therefore be 

associated to his status.  

 

3.3.4 Best-fit decreasing heuristic 

 

The staffing problem is best described as a shift-assignment formulation where the most 

difficult shift is directly assigned to the resident with the most possibilities, i.e. the one 

having a lower fairness score. The previous section showed how lists can be created for 

Factor

Resident 1 2 3 4 5 6 7 8 9 10

Congress 20 0 0 0 0 0 0 3 3 0 0

Holiday 30 0 0 0 0 7 0 0 0 7 0

PWKD 8 0 1 1 0 1 0 1 1 1 0

Score 0 8 8 0 218 0 68 68 218 0

1 4 6 10 2 3 7 8 5 9

0 0 0 0 8 8 68 68 218 218
RSD_LIST

Figure 3.5 Example of initializing a RSD_LIST 
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this purpose. This resulted in the list of all residents containing the number of shifts they 

can work, as well as a list of all shifts that have to be assigned.  

 

Ferland et al. (2001) used a bin-packing heuristic to assign shifts to hospital staff. One of 

such heuristics, a best-fit decreasing heuristic, commonly used for bin-packing problems in 

operational research, imitates the shift-assignment phase closely. Using this approach the 

list of residents will be considered as the list of bins and their corresponding capacity. In a 

bin-packing problem the goal is to pack objects into a finite number of bins of capacity C in 

a way that minimizes the number of bins used. The problem can be formulated as follows: 

     ∑   
 
                                                                                                                                     (    )  

 
              
 
      ∑       

 
                                                                                                              (    )   

∑    
 
                                                                                                                                          (    )     

         {    }                                                                                                                      (    )  
 

Where we have, 

 

Indexes 

a index for item a (1 ≤ a ≤ vn) 

b index for bin b  (1 ≤ b ≤ wm) 

 

Parameters 

C Maximum storage capacity of each bin  

cab Weight of item a in bin b (ca1 = .. = caw) 

 

Decision variables 

xab 1  If item a is packed in bin b 

 0 Otherwise 

yb 1 If bin b is used 

 0  Otherwise 

 

When associated to the assignment of shifts, this problem can be solved by a resident-

assignment heuristic (RAH) where the goal is to assign shifts to a finite number of 

residents with a maximum workload C in a way that minimizes the number of residents 

used. To avoid infeasibility, the second goal is the minimization of the number of doctors 

added to the schedule for replacement. By supposing that enough doctors can always be 

found to avoid any shortages, all shifts can always be assigned. This problem can be 

formulated as follows: 
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Where we have, 

Indexs 

j Index for resident i   (1 ≤ i ≤ m) 

i Index for shift s  (1 ≤ s ≤ S) 

d Index for doctor d (1 ≤ d ≤ D) 

t Index for day t  (1≤ t ≤ T) 

 

Parameters 

Ci Maximum workload for resident i  

csi Workload of shift s for resident i (cs1 = .. = csm) 

 

Decision variables 

xsi 1  If shift i is assigned to resident j 

 0 Otherwise 

yji 1 If resident j is assigned 

 0  Otherwise 

vdt 1 If doctor d is assigned on day t 

 0  Otherwise 

 

The assignment strategy for shifts will be the best fit rule: Choose the assignment that 

results in the strongest decrease in workload over all shifts. The algorithm for the RAH can 

be described as follows: 

o Sort SFT_List in decreasing order 

o While there are shifts remaining 

 Sort RSD_LIST in increasing order 

 Select resident i for whom         (                ) for all other residents 

 Perform feasibility checks 

 Assign shift to resident 

 Update        from RSD_LIST:  

                                

 Eliminate assigned shift from SFT_LIST 

o End While 
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During an iteration of the RAH the following tasks will be executed. The resident with the 

highest pre-scheduling score, on top of the SFT_LIST, is affected to the most difficult shift. 

Once the shift has been assigned RSD_LIST and MAXSFT_LIST will be updated. The 

resident’s score        will be updated in RSD_LIST and a shift will be substracted from 

his availability in MAXSFT_LIST. RSD_LIST will be sorted again before the re-execution of 

the assignment-loop. The RSD_LIST is updated by subtracting the day score of current 

shift, in the algorithm denoted as                  . The difficulty score is the value of the 

assigned in the SFT_LIST. 

 

The MAXSFT_LIST keeps track of the number of remaining shifts in order to perform 

feasibility check 1.  

The feasibility checks were added to the best-fit decreasing heuristic to be capable to 

provide a better imitation of the scheduler manual process by trying to avoid conflicts. 

Hence, the RAH-algorithm performs the following feasibility checks: 

 

1. Adding the shift does not bring the number of worked shifts above MAXi 

2. No shifts have been assigned within a range of 3 days before/after the current day 

3. No holidays are situated within a range of 3 days before/after the current day  

 

The feasibility checks are performed directly before the assignment of the shift to a 

resident (Assign shift to resident). If the RAH is executed without feasibility checks, conflicts 

arising most repeatedly are those concerning shifts that are situated within the 3-day range 

before or after the current day and shifts that were scheduled too close to holidays. If 

during the feasibility check the number of shifts will fall below 0 for any resident the 

assignment-loop will move on to the next resident. In case two residents have the same 

number of days available the shift will be allocated according to the position of the resident 

in the list.  

 

Planning staff on certain days will result in a higher likeliness that more constraints can be 

violated. Hence, RAH can be seen as a technique to reduce the probability that constraints 

will be violated. Algorithmically speaking it also has a number of advantages. The solution 

space is diminished because only feasible solutions will be considered. Furthermore, two 

hard constraints are satisfied from the outset. On each day there will be a sufficient  
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t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

L_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

L_1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Individual schedule

Individual schedule

1 4 6 10 2 3 7 8 5 9 6 13 20 27 5 7 12 14 19 21 26 28 1 2

0 0 0 0 8 8 68 68 218 218 Sat Sat Sat Sat Fri Sun Fri Sun Fri Sun Fri SunMonTue

10 10 10 10 7 7 7 7 7 7 7 7 4 4

3 8 9 10 15 16 17 22 23 24 4 11 18 25

Wed Mon Tue WedMonTue WedMon Tue Wed Thu ThuThu Thu

4 6 10 2 3 7 8 1 5 9 4 4 4 4 4 4 4 4 4 4 2 2 2 2

0 0 0 8 8 68 68 100 218 218

RSD_LIST
SFT_LIST

RSD_LIST

1 4 6 10 2 3 7 8 5 9 6 13 20 27 5 7 12 14 19 21 26 28 1 2

0 0 0 0 8 8 68 68 218 218 Sat Sat Sat Sat Fri Sun Fri Sun Fri Sun Fri SunMonTue

10 10 10 10 7 7 7 7 7 7 7 7 4 4

3 8 9 10 15 16 17 22 23 24 4 11 18 25

Wed Mon Tue WedMonTue WedMon Tue Wed Thu ThuThu Thu

4 6 10 2 3 7 8 1 5 9 4 4 4 4 4 4 4 4 4 4 2 2 2 2

0 0 0 8 8 68 68 100 218 218

RSD_LIST
SFT_LIST

RSD_LIST

Figure 3.8 Updating the individual schedule by adding a shift 

 

Figure 3.7 Update of RSD_List for resident  

 

Figure 3.6 Update of SFT_List for shifts still to be assigned 
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number of residents, thus satisfying the coverage constraint. The number of allowed shifts 

per resident will also remain intact. In such a manner it therefore simultaneously allows the 

satisfaction of daily staff level demands as well as the number of shifts allowed for each 

staff member.  

 

An example of the steps in the algorithm is illustrated in the Figures 3.6 to 3.8. In the 

current example, the RAH will assign the first shift to a resident.  As shown in Figure 3.6, 

the first shift to be assigned is the Saturday shift of day t=6. The first resident to be 

considered will be resident 1 because he has the lowest score and thus the lowest position 

in RSD_LIST, as illustrated in the first table of Figure 3.7. Before the shift is assigned the 

feasibility checks are performed. Figure 3.8 shows resident 1’s schedule currently as 

empty, enabling us to assign him/her a shift. The Saturday shift will therefore be assigned 

to resident 1’s schedule, which is updated, as shown in Figure 3.8. The second table in 

Figure 3.7 shows how RSD_LIST is updated. For resident 1 the score is updated by the 

formula                                 . Once this task is complete RSD_LIST is 

sorted so that the next available resident can be selected and the first Saturday shift is 

deleted in SFT_LIST.  

 

At the previous stage the question was to know whether there were sufficient residents 

available to execute all shifts, as well as obtaining an initial schedule. At the end of this 

stage all shifts have to been assigned to residents and we end up with a schedule that is 

feasible from the outset.  

 

The methodology of giving a score to both working days and individual employees can be 

applied to different fields of timetabling and seems to be a promising way to reduce the 

search time. The advantage of the method is that it can be adapted to different types of 

situations. It is therefore possible to determine one’s own way of giving a score to a staff 

member, or the scheduling difficulty of a day/shift.  
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3.3.5 Tabu search algorithm 

 

The tabu search (TS) is a descent heuristic using an iterative procedure that prevents the 

search of visiting recently explored (tabu) solutions for a number of iterations. The TS 

examines solutions moving from one neighbourhood of the current solution to another 

neighbourhood. A neighbourhood is defined as the set of solutions differing from the 

current one of a given maximal distance. The TS procedure is characterized by the 

possibility of moving from the current solution to a neighbour one, even if doing so the 

current objective value is deteriorated. This mechanism avoids the search from being 

captured into local optima and therefore to leave already explored areas and be guided 

towards new areas in the solution space. To forbid revisiting solutions a short-term 

memory, called the tabu list, keeps track of the most recent movements. The efficiency of 

a tabu search scheme is strongly influenced by the intensification and diversification 

strategies (Glover and Laguna (1993)) which are used to find the right balance between 

concentrating the search in a given region of the solution space and enlarging the search 

throughout the whole space.  

 

The following paragraphs introduce the main elements of the tabu search algorithm that 

we designed for the Resident Scheduling Problem, followed by a thorough description of 

important implementation issues. We also discuss the diversification strategies used 

during the search. 

 

 

3.3.5.1 Mechanisms of the tabu algorithm 

 

 

Tabu list: A list of the most recently made moves (or solutions). The number of moves in 

the list is determined by the tabu list length, denoted by TL. The list operates on a first-in-

first-out base. The size of the list (TL) can be static or dynamic during the search. 

 

Candidate List: The list of all feasible solutions in the neighbourhood of the current 

solution. The TS selects the best move from the candidate list to become the current 

solution and proceed with the search. 



 82 

 

 

Intensification and diversification strategies: Local search heuristics spend most of their 

search in a limited portion of the search space. To enlarge the search field of view, specific 

strategies - included in the algorithmic structure and executed during run-time - are often 

used to control and guide the search path. Intensification strategies are used in an 

attractive neighbourhood to visit as much close-by neighbourhoods as possible to get the 

best solution available in that region. Diversification strategies are aimed at examining 

unvisited regions to find solutions that differ significantly from previous explored solutions.  

 

Penalized objective function: The objective function of a solution s is denoted by f(s) and is 

calculated by means of the cost function. Since a move from the current solution to a 

neighbour one only affects specific, rather small parts of the schedule’s structure, it is 

more efficient to evaluate the potential of such a move by computing its incremental cost, 

named f’(s), instead of recalculating the total objective cost. Computing incremental costs 

requires only a partial evaluation of a schedule so it is less demanding in computational 

time and is therefore useful to speed up the search process. 

 

Stopping criteria: Are used to terminate the search process. Usually, the TS algorithm is 

stopped after reaching a preset number of iterations set by the user. An alternative 

stopping criterion is a predetermined number of iterations during which the current solution 

has not been improved. This indicates that the search is not able to find new local optima, 

motivating it to terminate the search.  

 

Neighbourhood: Formally, a neighbourhood includes all the solutions that are situated 

within a given distance (or which differ in less than a certain number of characteristics) 

from the incumbent solution. The original schedule is denoted S and the set of all 

neighbour solutions as N(S), N(S) being defined as a subset of the search space. In 

practical applications of nurse rostering problems N(S) is defined as the set of all feasible 

moves that are possible within the same staff member’s line. Therefore, a single move is 

the swap of two cells in the same column between residents i and j. Because exchanging 

two days between residents that are not working does not affect the total cost, it is more 

efficient to only consider moves between a resident that is already working and a resident 

that is not yet working. This is also a useful consideration to diminish the computational 

time.  
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Acceptation criteria: The acceptation of the solution N(S)
t resulting from the search in the 

neighbourhood N(S) depends on the cost f’(st
) of this solution. As mentioned earlier, this is 

affected by the method used for calculating the cost function.  

 

Although several exploration criteria can be used to select the new solution to move on 

from the available solutions in N(S), the most popular strategy in tabu search schemes is 

the so called best improvement which consists in selecting the solution having the best 

cost within N(S) and that is not tagged as tabu. In a tabu search the acceptation of a new 

solution is defined as the acceptation of the best new solution available within N(S). The 

best move can either diminish the current cost, or increase it. When we define f(s*) as the 

cost function of the best known solution and all K solutions in the candidate list have a cost 

function fk(s’) and for all solutions we have fk(s’)   f(s*) we will 

choose    {  (  )   (  )      (  ) }, the solution resulting in the lowest differtial cost 

increase.  

 

Allowing infeasible solutions: The choice of including feasible or infeasible solutions is 

affected by the method used for the cost evaluation. When an infeasible solution is 

accepted the cost function is affected by a penalty cost reflecting the degree of infeasibility 

of the solution.  

 

3.3.5.2 Tabu algorithm 

 

The elements used in the tabu search are as follows: 

 

N(S): Neighbourhood consisting of all exchanges between resident i and j, where resident i is 

working and resident j is not scheduled or requested a day off.  

P: Number of exchanges 

s
*
: Best known solution 

s
c
:  Current solution 

s
p
: Neighbour solution 

s
k
: Best solution on candidate list 
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The neighbourhood N(S) contains all potential feasible solutions s
p that can be obtained 

from the current solution. All of these solutions are enumerated in the list of candidate 

solutions that is of length P. Whenever an exchange concerning resident i and j is 

performed on sc resulting in sp, the schedule cost will only be affected in the contribution of 

these particular residents. The incremental cost functions are therefore computed only on 

the contributions of residents i and j, which reduces the computational time of the 

evaluation throughout the search. 

 

The general algorithmic structure used to perform the search, given an initial solution, for 

the resident scheduling problem is as follows: 

 

1. Choose an initial solution s0 obtained by ManualInit. Set s
c
 = s0  

2. From s
c
 select    {  

 (  )    
 (  )     

 (  )}  as resident, the resident r with the highest 

contribution to the cost function, for the coming iteration.  

3. Generate the neighbourhood N(S) by forming all the possible solutions, assigning one of 

the wards of resident i’s at a time to every other resident, and evaluate  (  ) for each s
p
  

4. Choose the best solution s
p
 in N(S) from the candidate list of potential solutions 

5. Set s
c
 =   . If         then       .  

6. Return to step 2 until reaching the stop criterion.  

 

The tabu search starts its search from the initial solution s0, obtained by the construction 

heuristic. To proceed with the search, the resident r with the highest incremental cost is 

selected to generate N(S) from, thus obtaining a candidate list. Next, the TS selects the 

best solution available on the candidate list, sk , which becomes the current solution, sc, at 

the end of each iteration. In parallel, if the solution sk is better than the best known solution 

s*, this solution sk
 becomes the best known solution.  

 

Search intensification is done by occassionnally restarting the search with elite solutions; if 

the search does not result in a better solution than s* after MNI iterations, then the search 

jumps back to s* and restarts its search. This intensification process is handled by the 

BAEP-procedure (Best Available Exchange Possible) that selects the best available move. 

To avoid the iterative procedure from remaining trapped in a local optimum the PDS-

procedure (Probabilistic Diversification Strategy) is used for diversification. In this 

procedure, the search restarts at s* and is forced in lesser explored neighbourhoods. The 
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probabilistic tabu search contributes to diminishing the risk of cycling. The parameters and 

mechanisms supporting BAEP- and PDS-procedure will be described in more detail in the 

following paragraphs. 

 

3.3.5.3 Neighbourhood search technique 

 

The TS establishes the candidate list of potential solutions through a search in a 

neighbourhood. The TS exchange heuristic focuses exclusively on exchanges where a 

shift can be substituted for another day because these exchanges have the highest 

potential of improvement. We define 

R  as the resident with the worst current score  

SFT
R
   as the set of all shifts worked by R 

 

where SFT
r
   N(s

*
). The exchange heuristic collects all elements belonging to SFTr = 

{working, working,…,working}.  All residents that are still available would be considered for 

possible candidate exchanges, except during holidays or conference days.  

 

Suppose we have a schedule with 20 residents. A single, already assigned, shift can be 

reassigned to 19 other residents. We can have up to 6 shifts exchanged for a single 

resident. The order is of importance in this case and by combination we can have up to 19 

x 6! = 13 680 possible combinations with 6 shifts. On a single pass through the 

neighbourhood the search would only return 19 x 6 = 114 with 6 shifts. 

 

In the diversification procedure (PDS) the solution is furthermore decomposed into a week 

subproblem and a weekend subproblem. Therefore, we define the following sets: 

 

WEEK: The set of weekdays of s* 

WKD: The set of weekends of s* 

 

The search is performed in one of both sets while the elements of the other set remain 

unchanged. So, the search looks for exchanges in the WEEK-set while keeping the WKD-

set unchanged and inversely in the WKD-set while keeping the WEEK-set intact.  
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3.3.5.4 Evaluation of the cost function 

 

An exchange is defined as the swap of two cells in the same column between residents i 

and j within the same planning horizon. Since the exchanges made by the tabu search 

only concern two residents at a time, – only the lines concerned by the exchanges are 

evaluated – incremental costs are easily computed, making it unnecessary to reevaluate 

the entire solution. In this perspective, the elements used for the cost function are defined 

as follows: 

 

 (  )  Total cost function of best known solution s* 

 (  )  Total cost function of initial solution     

 (  )  Total cost function of neigbour solution s
p
 

 (  )  Total cost function of current solution s
c
 

  
 (  )  Contribution to the cost function of resident r in current solution s

c
 

  
 (  

 )  Contribution to the cost function of resident r in neighbour solution s
p
   p=1…P 

 

The value of the cost function of the neighbour solution,  (  ), is obtained by subtracting 

the score differential (resulting from the exchanges) from the cost value of the current 

solution,  (  ). The score of the current solution is also used to update the score of the 

candidate solution. The cost function associated to a neighbourhood move is determined 

as: 

 

  (  )    (  )  (  
 (  )    

 (  ))  (  
 (  )    

 (  ))                                                              (    )   

 

Three outcomes are possible: 

 

1 (  
 (  )    

 (  ))  (  
 (  )    

 (  ))                                              (    )   

The cost resulting from this exchange will decrease because of an improvement in the 

schedule. Therefore  (  )    (  ). In this case, the exchange will decrease the incremental 

cost of both residents or the improvement of the incremental cost of one resident will be 

higher than the deterioration of the other resident.  
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2  (  
 (  )    

 (  ))  (  
 (  )    

 (  ))                                         (    )    

The cost resulting from this exchange will increase because of deterioration in the 

schedule. Therefore  (  )    (  ). In this case, the exchange will increase the incremental 

cost of both residents or the deterioration of the incremental cost of one resident will be 

higher than the improvement of the other resident.  

 

3 (  
 (  )    

 (  ))  (  
 (  )    

 (  ))                                            (    )    

This results in  (  )    (  ). In this case, the cost value resulting from this exchange will 

not change because neither resident will have anything to gain from the change in the 

schedule. The improvement of one resident’s incremental cost function could also be 

cancelled by the deterioration of one resident’s incremental cost function.  

 

The contribution to the cost function of a resident consists of only those constraints whose 

penalty value could be affected by the exchange. These constraints are indicated in Table 

3.7. For example, constraints (3.13)-(3.16) could be eliminated from this evaluation 

because no exchange will be performed if either resident is attending a conference or is on 

holiday the day the intended exchange should be performed. Evaluating the incremental 

cost function takes only approximatively 1/m of the evaluation time of that of a complete 

evaluation. The total evaluation time is therefore approximately a 2/m factor of the total 

evaluation time. 

 

For the evaluation we defined a list called LIST_SCORELINE that contains the score of 

each line of the current solution and represents   
 (  ).  

 

Internal ward constraints Legal Constraints

Proportionate dispersion of days among residents  No more than the maximum number of shifts

Proportionate dispersion of total shifts among residents Respect requested days off

Respect resting cycles after night shift

No more than two weekends per scheduling period

No more than two consecutive weekends

Table 3.7 Incremental cost function constraints 
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3.3.5.5 Stopping criteria 

 

The stopping criteria are the maximum number of iterations (MI) and the total available 

search time (TAST). The search is stopped as soon as one of them is reached.  

 

3.3.5.6 Soft diversification techniques 

 

The diversification is handled by the PDS-procedure. This diversification procedure is 

based on the notion of probabilistic tabu search. Glover and Laguna (1993) note that the 

use of probabilities based on past performance, as an underlying measure of 

randomization yields efficient and effective means of diversification. During the 

probabilistic diversification, the tabu status of neighbourhoods is circumvented and only 

the probability of selection of a line is taken into account. The diversification procedure is 

called if the search has remained in the same region for MN iterations, which is verified by 

evaluating the percentage of change in the total cost of the solution (%) over the last MN 

iterations. 

 

To describe the diversification procedure we define  

F(i) as the cumulative distribution function 

pi as the probability of visiting line (resident) i 

vi as the number of times neighbourhood i has been visited 

rnd as the random number that is generated at each iteration (uniformly distributed, 0≤ 

rnd <1 ) 

  

 

Where pi is a discrete probability function because vi is a discrete variable and is 

determined by (3.49): 

 

         
∑   
 
   

                                                                                                                                 (    )  

 

With the cumulative distribution function: 

      {
        

                     
                                                                                                (    ) 
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The probability    describes the probability of selection of a line; this probability is inversely 

related to the number of times a line has been explored. The chances of a regularly 

explored line being revisited are lower if it has been explored regularly. The probability    

has been designed to give a higher likeliness to the lines that have not been visited often 

to be explored next.  

 

The algorithm for the diversification procedure is as follows: 

1. Set s
c
 = s*  

2. Generate rnd and select i for which                 as neighbourhood N(s) for the 

coming iteration 

3. Generate neighbourhood N(S) from resident i’s schedule and evaluate  (  ) for each s
p
  

4. Choose the best solution s
p
 in N(S) from the candidate list of potential solutions and assign 

this solution to    

5. Set s
c
 =   . If         then       .  

If there is still search time available return to step 2. 

 

At the start of the PDS-procedure the search starts from the best current solution s*, 

decomposing the problem in a WEEK solution set containing all week shifts and a WKD 

solution set with all weekend shifts. At each iteration, a random number (rnd) is generated. 

The line (resident r) to be explored is selected based on rnd and the probability distribution 

function of visited neighbourhoods. We therefore choose the xth line from the solution if it 

has been rarely visited. From the xth line a candidate list of solutions is generated and the 

best solution sk is selected as the current solution for the next iteration. 

 

 

3.3.5.7 Short term Tabu Search List 

 

 

For the BAEP-procedure the candidate solutions are obtained at each execution in the 

neighbourhood N(s
c
) of the current solution. We define the candidate list as CDT_LIST. All 

available residents would be considered for possible candidate exchanges, except when 
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on holiday or away at a conference. The candidate list is formed of all exchanges leading 

to new feasible solutions.   

 

For example let us consider the schedule of resident 3, indicated as whose schedule is 

illustrated in Figure 3.9. Let us furthermore assume that he has the worst possible 

schedule and that he worked 4 different shifts: on day 6, 13, 18, and 23. In total there are 

34 possible exchanges. By iterating through all possible exchanges we obtain the 

CDT_LIST. In Figure 3.9 this is illustrated as follows. Each arrow points to the different 

exchanges possible with other residents for the considered shift. For example, the 

Saturday shift (t=6) is currently worked by resident 3. The arrow pointing to the table 

directly below shows all available exchanges with the other residents. The first column 

identifies which resident is concerned, the column 2 this resident’s current assignment, 

column 3 whether it can be added to the CDT_LIST and column 4 the information that will 

be stored in the CDT_LIST.  

 

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

i=3 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

Add Add Add Add

i=1 0 Y i=1 0 Y i=1 0 Y i=1 0 Y

i=2 2 Y i=2 0 Y i=2 0 Y i=2 0 Y

i=4 0 Y i=4 0 Y i=4 0 Y i=4 0 Y

i=5 0 Y i=5 0 Y i=5 2 Y i=5 0 Y

i=6 3 N i=6 0 Y i=6 0 Y i=6 0 Y

i=7 0 Y i=7 0 Y i=7 0 Y i=7 0 Y

i=8 2 Y i=8 2 Y i=8 2 Y i=8 0 Y

i=9 0 Y i=9 0 Y i=9 0 Y i=9 3 N

i=10 0 Y i=10 0 Y i=10 0 Y i=10 0 Y

CDT

i=7;t=23

i=8;t=23

i=10;t=23

i=1;t=23

i=2;t=23

i=4;t=23

i=5;t=23

i=6;t=23

i=9;t=13

i=10;t=13

i=1;t=18

i=2;t=18

CDT

i=4;t=18

i=5;t=18

i=6;t=18

i=7;t=18

i=8;t=18

i=9;t=18

i=10;t=18

i=5;t=13

i=4;t=13

i=2;t=13

i=1;t=13

CDT

i=10;t=6

i=9;t=6

i=8;t=6

i=7;t=6

i=5;t=6

i=4;t=6

i=2;t=6

i=1;t=6

CDT

i=8;t=13

i=7;t=13

i=6;t=13

Figure 3.9 Establishing the CDT_LIST by considering all possible 

exchanges of 1 shift with all other residents  
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For example, let us consider the possible exchanges for t=6. For i=1, the 0 in column 2 in 

means that the resident is available and that he can therefore be added to CDT_LIST. For 

i=2 the 2 in column 2 means that the resident requested a day off, nevertheless he can be 

added to CDT_LIST. Figure 3.9 also shows a few exceptions that cannot be added to 

CDT_LIST. For example, for i=6 column 2 is marked 3, meaning that the resident is at a 

conference. This excludes resident 6 from being added to the CDT_LIST. 

 

Figure 3.10 shows the resulting CDT_LIST once the algorithm has iterated through all 

potential exchanges. This list is still unsorted though. Each candidate solution from 

CDT_LIST would be evaluated on the differential between the new line and the old line 

resulting in the evaluation of four lines. Let us assume that after evaluation of CDT_LIST 

the most interesting potential solution   
  would be    

 . Since i=6 and t=13, resident 6 

would be now scheduled for the shift on day 13 instead of resident 3.  

 

At the end of each iteration the new solution becomes the current solution denoted as s* = 

min[s*,  
 ]. The tabu-list will be updated with the positions in the Rij-matrix of the 

exchanged shifts.  

 

The tabu search consists of three procedures. The first procedure is SELECT_LINE, which 

is a selection procedure that keeps track of the line to choose. This procedure composes 

the list of the score of each resident in a list called LIST_SCORELINE. The two other 

procedures are the BAEP- and PDS-procedure used for establishing the candidate list. 

During the search process a static tabu list of length l keeps track of the last treated line 

and is updated at the end of each iteration. The length of the tabu list should always be 

inferior to the number of residents on duty so that SELECT_LINE will be able to select a 

new line. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

i=1;t=6 i=2;t=6 i=4;t=6 i=5;t=6 i=7;t=6 i=8;t=6 i=9;t=6 i=10;t=6 i=1;t=13 i=2;t=13 i=4;t=13 i=5;t=13 i=6;t=13 i=7;t=13 i=8;t=13 i=9;t=13 i=10;t=13

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

i=1;t=18 i=2;t=18 i=4;t=18 i=5;t=18 i=6;t=18 i=7;t=18 i=8;t=18 i=9;t=18 i=10;t=18 i=1;t=23 i=2;t=23 i=4;t=23 i=5;t=23 i=6;t=23 i=7;t=23 i=8;t=23 i=10;t=23

CDT_LIST

Figure 3.10 The resulting unsorted CDT_LIST, before 

evaluation, once all possible exchanges have been added 
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Suppose that the tabu search is at the beginning of an iteration and that better local optima 

are still available but unknown. The first step will be to select the line that has the worst 

score from LIST_SCORELINE in the SELECT_LINE-procedure. The next step is to verify if 

the line is tabu or not. If so, the SELECT_LINE-procedure will select the next worst line. 

Every time a move is tabu another line will be selected and the list will be updated. The 

next step is to establish the candidate list that contains all feasible candidate solutions. 

This is mainly done throughout the BAEP-procedure. However, after MN iterations without 

improvement by the BAEP-procedure the PDS-procedure will establish this list. From the 

candidate list the best candidate will be chosen and the current solution    will become   . 

It is can also happen that no better solution will be found after a while into the search. The 

different stopping criteria define when the search will end. 
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Chapter IV – Prototype implementation and validation 

 

 

 

4.1  Introduction 

 

 

The suitability of our developments with the consulted hospitals was strongly dependent 

on the architectural design of the software structure. This Chapter therefore explains the 

different stages of software development. We begin by describing the first stage with a 

focus on the design and the validation process of the mathematical model accomplished in 

strong collaboration with the users (resident schedulers). Then, we provide information 

about the system development and implementation of the prototype.  

 

As mentioned before, the prototype’s development was executed in two separate stages 

that will be referred to as stage I (exploratory research project) and stage II (system 

development process) throughout this chapter. The first stage was aimed at formulating a 

mathematical model for the resident scheduling problem. During the course of this stage it 

was noted that schedulers define/apply a number of constraints that determine the fairness 

of individual resident’s schedules that were difficult to define by merely interviews. On 

validation of the Resident Scheduling Model (RSP) it was therefore decided to develop a 

prototype, to allow the elicitation of further constraints by seeing schedulers in action. The 

second stage concerns the system development process. This process was completed by 

using an iterative development approach because the users were unable to identify the 

requirements of an information system. The learning experience allowed an increase in the 

efficiency and user-computer interactivity of earlier versions of the prototype to a level that 

allowed real-time usage.  
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4.2  Validation of the constraints and prototype 

 

 

To develop the Resident Scheduling Model initial data had to be collected. This data 

collection process connected to stage I is illustrated in a decision tree in Figure 4.1. At the 

start of this project, data-collection (A) and interviews (B) were conducted in parallel at the 

Hôpital Enfant-Jésus and CHUL to obtain the necessary data. The schedulers provided 

data samples of implemented solutions and explained the constraints that had to be taken 

into account. In both hospitals this led to an initial mathematical model (C) that was 

submitted to the schedulers for additional comments. The feedback they provided allowed 

the verification of the formulation proposed (E) and led to the revision of several 

constraints (F) of the model before the final validation (G).  

 
During the data collection process, we discussed data examples with the resident 

schedulers in order to provide estimates for the constraint weights for the legal constraints 

and the internal ward constraints. The scheduler’s initial scores for the RSP are indicated 

in Table 4.1. Some schedulers had difficulties assigning values to constraints. To make 

this more natural they were advised to fill out their preferences on a 1-10 ordinal integer 

scale. When comparing the answers given by both hospitals’ residents, we could conclude 

that: 

Figure 4.1 Mathematical model validation decision tree 
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Minimum number of residents for each day 100 Resident with more seniority work less weekend shifts 1

Maximum of one shift assigned to a person at the same time N.A. Proportionate dispersion of days among residents  7

One day-type assigned to a person at the same time N.A. Proportionate dispersion of total shifts among residents 7

No more than the maximum number of shifts 100 Avoid shift before congress 3

Respect resting cycles after night shift 100 Avoid shift after congress 1

Assign sufficient resident to wards 100 Avoid 2 short resting cycles per period 8

No shifts outside of skills category 100

Respect requested days off 2 No weekend shift before holidays 8

Respect congress days 10 No weekend shift after holidays 8

Respect holidays 10

Allow 48-hour shift per resident 4

Take into account preferences 2 Doctors cover for residents 2

No more than two weekends per scheduling period 6

No more than two consecutive weekends 4

No more than two Saturdays 6

12.15 Weekends

12.17 Holidays

Legal Constraints

12.19 Undercoverage

12.08 Shifts at ward

Internal ward constraintsIntegrity Constraints

Table 4.1 Penalty values defined by residents for objective function 

 

1. Only a slight variation in the legal constraints weights existed between both 

hospitals and all legal constraints were always included in the optimization model; 

2. Between both hospitals different internal wards constraints were included and in 

shared constraints an amount of variation was visible.  

 

Conclusion 2 concerned four internal ward constraints. The constraint «Residents with more 

seniority work less weekend shifts» was only valid in CHUL optimization model. This was also 

the case for constraint «Avoid 2 short resting cycles per period». According to schedulers 

from the Enfant-Jésus it had never occurred that a resident was required to work two 48-

hours shifts. Nevertheless, they validated the constraint and added a high weight to this 

constraint to prevent it from being violated. The schedulers at the Enfant-Jésus were 

persuaded that the total number of shifts and the days shifts worked had to be 

proportionaley divided among residents, so that all residents were treated with the same 

level of fairness. We therefore defined two constraints to ensure this in the model. These 

were defined as the the proportionate dispersion of days among residents (constraint 3.28), 

and proportionate dispersion of total shifts among residents (constraint 3.30). These 
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constraints were later on proposed to the CHUL’s schedulers and were validated and were 

accorded the same weight as that given by the Enfant-Jésus’s schedulers. 

 

Since schedulers expressed an interest in using software to simplify their work it was 

possible to continue the cooperation with both hospitals. At the start of stage II different 

alternatives were considered for the software design. These alternatives are illustrated in 

Figure 4.2. A choice had to be made between a system with user interface and a simpler 

but unfriendly input/output system. Since scheduling tasks required several interactions 

with the scheduler, we favoured the use of an interface-based application. The choice of 

this type of system was furthermore motivated by the fact that human-interactivity 

behavioural observation was an active part of stage II to ellicitate the scheduling process 

from schedulers. Hence, the choice fell on a system that allowed a task-based process 

capable of handling a synchronous transactional process.  

 

It was observed at this stage that schedulers use specific performance measures when 

creating schedules manually. Table 4.2 illustrates the performance measures that were 

promoted in stage II. These performance measures have different objectives. For 

example, the total number of shifts is used to distribute shifts fairly among residents. The 

total number of weekend shifts is used for the fair distribution of weekend shifts among 

Figure 4.2 Decision tree for the design of the prototype 



 97 

 

Monday 4 Availability (Congres) 20

Tuesday 4 Availability (Holiday) 20

Wednesday 4 Weekend Previous Period 8

Thursday 3 Department 0

Friday 7 Seniority 0

Saturday 9 Category 0

Sunday 6

Initialisation parameters

Difficulty Score Resident Score

Table 4.3 Construction parameters 

values defined by residents 

 

residents. Another example is the total number of Tuesdays and the total number of Thursdays. 

Since not all weekdays are considered to be of equal importance schedulers exchange 

Thursdays and Tuesdays to obtain a fairer distribution 

 

The use of performance measures inspired the development of the construction algorithm. 

In the construction algorithm the performance measures were used to establish a priority-

list of the days to be assigned. Together with the performance measures, a list of other 

factors that could be taken into account was also suggested to schedulers. The 

scheduler’s scores for the importance of these parameters are reported in Table 4.3. It can 

be noted that schedulers gave more importance to factors that directly had an impact on 

the availability of residents to work shifts. For example, Availability (conference), and 

Availability (holiday) received the highest scores. Furthermore, Weekend previous period was 

also among the most important factors to users.  

 

 

 Total number of shifts 

 Total number of weekend shifts 

 Total number of Mondays 

 Total number of Tuesdays 

 Total number of Wednesdays  

 Total number of Thursdays 

 Total number of Fridays 

 Total number of Saturdays 

 Total number of Sundays 

Table 4.2 Performance measures used by schedulers 
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4.3  Prototype data structure 

 

 

The design process led to a final model for the prototype which was implemented using 

VB.Net. The framework of the prototype encompasses a database and an interface. All 

data used in the prototype is stored in the database and the user has access to the 

information through the prototype’s interface. Figure 4.4 illustrates the data structure and 

interdependent entities of the prototype. The entities are sollicitated in different ways at 

run-time. First of all, the user is only allowed access to the Problem data and Constraint 

entities thru the interface. The neighbourhood structure entity is defined as the specific 

solution obtained return by the algorithm entity, or search method. The neighbourhood 

structure is connected to the problem data and constraints since the data held in these two 

entities respectively determines the possibility of constraints being violated and the 

constraints that apply to the problem. The algorithm entity is responsible for managing all 

the data held within the entities Constraints and Problem data and uses this data to find new 

solutions. This description results in the following task description for the entities:  

 

The entity Constraints is responsible for executing two tasks: 

- Evaluate the penalty cost differential applying to a specific constraint resulting from 

a change in the neighbourhood of the current solution 

- Count and list all violations of all different constraints 

 

The entity Neighbourhood structure is responsible for accomplishing the following tasks 

Figure 4.3 Influence of user-computer interactivity on different elements of the prototype 
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- Conserve the list of valid constraints within the data structure 

- Conserve the penalty cost differential resulting from a change in the neighbourhood 

of the current solution and the penalty score of the current solution 

 

The entity Algorithm executes a number of tasks: 

- Choose the best improvement for a given exchange given the current solution and 

the list of all constraints 

- Update and maintain the Neighbourhood structure used throughout the search 

- Select the next operation to be performed 

- Perform the next operation using the settings of Constraints and the 

Neighbourhood structure 

- Continue the optimization process until the stopping criterion (MI, TAST) are met. 

 

The design of the prototype data structure took into account different considerations. To 

make use of the expertise of the user, we allowed the user to access the different entities 

of the prototype. For the schedule creation, the user configures the penalty values of the 

optimisation algorithm and modifies the problem data at run-time. For this reason, the 

interface has been designed so that the user has access to two entities, the Constraints 

entity and the Problem data entity.  

 

To close this chapter we will briefly discuss the insights that we gained from the overall 

experience of designing the prototype with the schedulers. The total time of creating a new 

schedule is not completely spent on assigning the shifts to residents. A large part of the 

job consists of adding the initial data, i.e. the names and time-off requests. In the two 

hospitals the time it took to create a new schedule was very different. In the CHUL this 

took approximately 8 hours, whereas this would only take 2 hours at the Enfant-Jésus. At 

both hospitals collecting and adding the initial data took approximately 1 hour. With a 

software program the time spent assigning shifts can be brought back to 1 hour for the 

CHUL. Here, if we suppose that the CHUL would use the prototype to create a schedule, 

the total time would therefore be situated at 2 hours, a 6-hours time saving. At the Enfant-

Jésus assigning shifts could take as little as 30 minutes. A schedule could therefore be 

created in 1 ½ hours, a ½-hour gain. The hospital management of the Enfant-Jésus did not 

consider this to be a very large improvement.  
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On an overall basis the resident schedulers were very glad to discuss the efforts they had 

to make to create schedules. They found that the use of a program was an interesting 

option. In both hospitals they found the prototype user-friendly and expressed that it would 

be useful in their activities. They also found it interesting to learn more about the 

scheduling practices that were used in their respective fellow hospitals. 
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Chapter V – Experimental results 

 

 

 

5.1  Introduction 

 

This chapter presents the experimental results in four different parts.  We begin by giving a 

formal description of the data samples’ (or instances) characteristics that the prototype 

was tested on. Next, the parameters of the tabu search are calibrated using a partial set of 

these data samples. We furthermore present the results of comparative tests that have 

been performed between different algorithms. In the comparative tests the two distinct 

elements of the algorithm – the construction mechanism and the tabu search – have been 

connected to different mechanisms. The construction mechanism has been hybridized with 

a steepest descent search, whereas the tabu search has been simplified using random 

initialization. The resulting algorithms have been compared to the manual schedules, 

which served as a benchmark set.  Lastly, a few manual schedules will be compared to the 

schedules provided by the prototype to highlight the differences and similarities between 

the constraint violations of both solutions.  

 

The quality of the manual schedules has to be mentioned. Despite the fact that these 

schedules were elaborated without optimization tools, not all algorithms are successful in 

returning schedules of better quality. Since these manual schedules have been 

implemented in reality, their data is a good benchmark to determine whether the presented 

prototype could be implemented in real-life situations. If results can be obtained that are 

similar to the benchmark it can be concluded that the quality of the prototype’s schedules 

is sufficient to meet the requirements of real-life situations. The use of the manual 

schedules as benchmark is furthermore motivated by the absence of known optimal 

solutions. 

 

The benchmark set was split in two subsets for testing purposes. The first dataset was 

used for calibrating the tabu search parameters by cross-testing the parameters, changing 

the value of a single parameter while all other parameters remained fixed. The second set 
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of instances was used to compare the different algorithms and obtain more detailed 

conclusions about the efficiency of the algorithm.  

 

The tests were performed on an Intel i5, M430, 2.27 GHz PC under a Windows 7 operating 

system. For the calibration tests, or preliminary tests, the total available search time 

(TAST) was 500 seconds, approximately 8.3 minutes. During final analysis TAST = 900 

seconds, or 15 minutes. This time limit has been choosen to simulate real-life 

circumstances. In a hospital environment an acceptable search time is preferably short, for 

example 15 minutes. As mentioned for example by Warner (1976) and Burke et al. 

(2004b), schedulers usually consider it unnecessary to use a longer search time because 

the increments in solution quality become smaller and smaller over time. For example, a 

scheduler would accept a schedule obtained after a 15-minutes search knowing that a 30-

minutes search could provide a 1% improvement in quality. In both the calibration and final 

tests the solution returned was the best solution found throughout the entire search. In 

section 5.3 we will mention the times the prototype needed to find a solution. These times 

corresponds to the time within which the best solution was found. 

 

The quality of the schedule is defined by the penalty score of a solution returned by the 

algorithm. Since minimization problems are treated, the penalty score is considered to be 

a cost and a smaller cost is better.  

 

5.2  Description of instances 

 

 

The instance’s characteristics are mentioned in Table 5.1. The instances were divided into 

the following categories based on their characteristics: 

 PC1: Problems with 1 ward; 

 PC2: Problems with 2 wards. 

 

For example, in instance 2 a daily coverage of 2 residents on ward 1 was required. Put 

differently, this means that enough residents should be available to work 56 shifts 
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throughout the planning period.  Instances 1-5 were used for the calibration tests, whereas 

instances 6-11 were used for final testing. 

 

 

5.3  Parameter calibration 

 

 

During preliminary testing a number of tests were performed to calibrate the tabu search 

parameters. The parameters concerned are the TL, the length of the tabu list, and MNI, 

the maximum number of iterations without improvement. Table 5.2 contains the nine pairs 

of combinations tested and the range of values used for each parameter. The length of the 

tabu list was tested in a range of 10%-30% of the total number of residents. The values of 

the maximum number of iterations without improvement were situated between 10 and 50. 

For each pair 5 runs were repeated at four run lengths: 30 s., 60 s., 180s. and 300s. The 

results presented in this section were obtained for TAST (total available search time) = 300 

s. and are averaged over 5 runs.  

 

Preliminary tests were also conducted for larger values of parameter pairs TL and MNI on 

several instances in an exploratory testing phase. For example, a pair of parameters 

Instance  Ward 1
Available 

staff

Monthly 

needs

Total 

available 

shifts

Instance Ward 1 Ward 2
Available 

staff

Monthly 

needs

Total 

available 

shifts

1 1 9 28 54 4 3 2 25 140 150

2 2 10 56 60 5 4 2 31 168 186

3 2 12 56 72 - - - - - -

6 1 9 28 54 7 3 1 23 112 138

8 1 11 28 66 9 4 1 23 140 138

10 2 13 56 78 11 3 1 26 112 156

PC1 PC2

Table 5.1 Characteristics of instances used for calibration and computational tests 

 

Parameter Values

TL (length) {0.1; 0.2; 0.3}

MNI (iterations) {10; 25; 50}

{1} = {0.1;10}, {2} = {0.1;25}, {3} = {0.1;50}, 

{4} = {0.2;10}, {5} = {0.2;25}, {6} = {0.2;50}, 

{7} = {0.3;10}, {8} = {0.3;25}, {9} = {0.3;50}

Table 5.2 Test settings for tabu search calibration 
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including TL = 0.6 and MNI= 100 was tested. However, these pairs never really provided 

better results than the range of values used for the calibration of the parameters. Hence, 

the range of values presents a reasonable dispersion of the values that represent efficient 

settings for the parameters.  

 

Because there were three values for each parameter, nine pairs had to be tested. For 

example for setting {1}, a test was performed for a TL = 10% with a maximum of 10 

iterations without improvement. Another test was performed for a TL = 20% with a 

maximum of 10 iterations.   

 

The following paragraphs will present the results obtained for the parameter calibration. 

First, the average results (over 5 runs of 300 s.) of each pair are presented to provide a 

macro-view of the results. During preliminary testing a constant behaviour was observed 

throughout all instances. An instance will therefore be described in more detail to provide a 

detailed understanding of the most important factors. To conclude this section the 

normalized difference of the pairs in respect to the benchmark data will be presented. 

 

Figure 5.1 shows the average results for the different pairs of the construction tabu search 

and compares them to our benchmark set. The benchmark data set is illustrated by the 

dotted line. Instance 1 shows a very low cost (close to 0), which is significantly different 

from the costs of the other solutions. Instance 1 presents the same characteristics as 

instance 6. This is due to the fact that none of the residents had any absence (due to 

holidays or conference attendance) that could have resulted in potential complications. 

Hence, there was a very low probability that planning any staff member would lead to a 

penalty cost. For example, in instance 1 the results obtained show a variation of 3.2 to 8 

points for the pairs {1} to {9} and the cost of the manual solution was 10 points. 
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The first observation that can be deduced from figure 5.1 is that instances 1 to 5 show a 

homogenous behaviour for the pairs {1}-{9}, i.e. there is a lack of variation between pairs. 

This illustrates that the results are not significantly influenced by the different parameters 

settings. Based on the fact that homogenous behaviour is observed between all pairs it 

can be suggested that none of the pairs dominate the solutions. 

 

The second observation is that the overall performance of the pairs is comparable to the 

quality of the benchmark data. For example, in instance 3 the results obtained show a 

variation in the range of 5377.2-5673.6 for the pairs {1}-{9} and the cost of the manual 

solution is 5580. It can be implied that a solution obtained using no matter which pair 

should provide a similar solution quality as the manual schedule. 

 

It is useful to illustrate the first observation with an example, for further discussions. A 

variation in the solution quality due to different parameter settings is visible in instance 4. 

This data is visible in the table accompanying the graph of Figure 5.1 and plots them out 

against the penalty cost of the manual solution, which is illustrated as the dotted line. The 

Figure 5.1: Average scores found by tabu search for the pairs 

{1}-{9} for instances 1-5 with TAST = 500 and n=5 
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benchmark penalty cost of the manual solution is indicated in the first line (M) of this 

Figure. A number of pairs provide solutions with lower penalty costs than the manual 

solution, although some pairs provide solutions of lesser quality (higher costs).  When 

comparing the average cost of the solutions found by {3} and {4} – respectively 2226.4 and 

1698.4 – it appears that MNI contributes to the quality of good solutions, leaving other 

parameters unchanged. Nevertheless, the contrary can be concluded by comparing {7} 

and {8} – respectively 1656.8 and 1919.6 – where it appears that MNI contributes 

negatively to the quality of a good solution.  

 

The absence of variation is also the main factor observed in all instances. To illustrate this 

factor in more detail Figure 5.2 shows the average convergence over time towards the 

final solutions of instance 3. The lowest three curves in this Figure belong to the pairs {1}-

{3} and show lower costs for the final solutions than the pairs {4}-{9}. At first sight, this 

instance seems to be a good example where the variation in the solution quality can be 

credited to different parameter settings. For the pairs {1}-{3} the value TL is constant and 

the value of MNI is variable. Hence, when considering the running time in this instance, the 

variation in the values of MNI has less influence of the performance of the tabu search 

than the length of the tabu list. 

Figure 5.2 Solutions found for instance 3 as a function 

of computation time (s.) for the pairs {1}-{9} 
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Figure 5.3 shows the 95% mean confidence intervals (α= 0.05, n=5, t= 2,776, for each pair, 

after 300 s. search time) for the final results of instance 3 and plots them out against the 

penalty cost of the manual solution, which is illustrated as the dotted line. The upper and 

lower bounds as well as the mean – respectively UB and LB and Mean - of the pairs are 

indicated in the table accompanying Figure 5.3. We can conclude that none of the pairs 

dominate because the confidence intervals of pairs {1}-{9} overlap each other. For 

example, the means of pairs {1}, {3} and {4} – respectively 5428, 5434, and 5440 – are 

very close although the parameters are different. In this instance it can therefore be 

asserted that no significant relationship appears between the pairs. Even if Figure 5.2 

displays a better performance over time in instance 3 for the pairs {1}-{3}, Figures 5.3 

illustrates that no pair demonstrates a dominant behaviour. The conclusion is therefore 

that changing parameters values (for the range of retained values) does not have a strong 

influence on the cost of the solutions.  

 

The results for instances 1 to 5 are illustrated in detail in Appendix B. Figure B.I illustrates 

the time graph for instances 1-5. The 95% mean confidence intervals (α= 0.05; n=5, 

t=2.776, for each pair: TAST= 300 s. search time) as well as the results for the different 

run-times (30 s., 60 s., 180s. and 300s) as a function of computation time (s.) are 

illustrated in Figures B.II-B.VI. 

Figure 5.3 Average scores returned for instance 3 with TAST 

= 500s and 95% mean confidence interval (n=5, t=2.776) 



 108 

 

 

To conclude the parameter calibration we will consider the normalized difference for each 

pair, illustrated in Table 5.3. The first column mentions the instances. The other nine 

columns are the average normalized differences of the tested heuristic against the 

manually created schedule. The normalized difference is given by the following equation: 

 

       
       

   
          (5.1) 

 

Where Zmc is the penalty score returned by the manually created schedule and Zit is the 

score found by tabu search with construction. Each of the rows shows the average results 

of the pair on the instance (on 5 runs, after 300 s.). For example, in instance 5 pair {1} 

perfomed 6.4% better than the manually created schedule for the real-life period. The 

average overall performance of the pairs was between 1.8-15.6% better than the manually 

created schedules.  

 

Pair {1} shows the best average performance. Instance 1 was a very small problem with a 

low final cost making it possible to find improvements in the range of 20-52%. For pair {3} 

the results of instance 1 are 12% worse than the final solution. The tabu search with 

construction was able to find better schedules for all instances. As demonstrated in the 

previous example, the overall performance for the different parameter pairs does not 

suggest a strong dominance of any of these pairs. This is also visible in the normalized 

differences among pairs. 

 

For the computational results, in the following section, a TL= 10% and MNI= 25 was 

choosen. This was motivated by the fact that a low standard deviation of the penalty cost 

Instance {1} {2} {3} {4} {5} {6} {7} {8} {9}

1 20,0% 20,0% -12,0% 36,0% 52,0% 20,0% 20,0% 20,0% 20,0%

2 12,3% 12,3% 11,7% 15,2% 15,3% 15,2% 15,2% 15,2% 15,2%

3 2,7% 3,5% 2,6% 2,5% 1,2% 1,7% -1,7% -1,2% -0,9%

4 11,3% 6,2% 6,2% -10,7% 3,1% -7,7% -24,8% -31,7% -20,5%

5 6,4% 6,5% 6,6% 6,5% 6,5% 6,5% 6,5% 6,4% 6,4%

Total 10,6% 9,7% 3,0% 9,9% 15,6% 7,1% 3,0% 1,8% 4,0%Table 5.3 Average scores for normalized difference from manual schedule for pairs {1}-{9} (n=5) 
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was obtained for these settings. On the overall performance these settings presented a 

robust performance.  

 

 

5.4 Computational results of heuristics 

 

 

The construction tabu search is an algorithm that selects an initial reference solution and 

then examines subsequent solutions by moving from one neighbourhood to another. The 

two procedures in the algorithm were decoupled to test their independent efficiency. To 

verify if the tabu search was capable of providing efficient solutions without starting its 

search in an initial solution that exploits the problem structure, it was coupled to a random 

initialization. To see if the construction mechanism did indeed exploit the problem structure 

and resulted in an interesting neighbourhood it was connected to a steepest descent 

heuristic. This resulted in the following algorithms: 

 

TBI: Tabu Search with construction method 

TBR: Tabu Search with random initialization 

SDI: Steepest descent with construction method 

 

All of these algorithms were compared to the benchmark of manual schedules. We 

therefore also have:  

M: Manually created schedule 
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The following paragraphs first provide a macro-view of the performance of all methods. 

The conclusions drawn from these first results lead to a further comparison of the results 

between the TBI and the manual benchmark. For the tabu search, the maximum search 

time was set to 900 seconds (15 min.). For all algorithms each test was repeated a total of 

20 times and the results presented were averaged over 20 runs. 

 

Figure 5.4 shows the average results for the three heuristics compared to the manually 

created schedules. Table 5.4 shows the numerical values for the average results as well 

as the average time necessary to find a solution. If the average time is situated below the 

TAST (Total available search time) the search was stopped because MNI (Maximum 

number of iterations without improvement) was reached. 

 

The TBI - illustrated as ♦ - returns average results that are of the same or better quality as 

the benchmark data set.  For example, in instances 10 and 11 the gap between TBI and M 

Figure 5.4 Average scores found by the three heuristics in instances 6-11 (n=20) 

 

 

 Instance M TBI time TBR time SDI time

6 948,0 900,3 422,8 948,6 281,2 1180,0 1,0

7 1760,0 1571,3 404,1 3711,3 818,4 1684,0 90,2

8 916,0 814,2 757,4 835,2 264,9 1128,0 1,0

9 656,0 526,0 277,7 2215,5 619,1 1034,0 1,0

10 700,0 684,0 12,8 728,2 229,0 1620,0 1,7

11 1864,0 1834,0 452,4 3719,5 873,9 2592,0 801,0

Table 5.4 Average costs of the three algorithms and average 

time within which the best solution was found (n=20)  
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does not seem to be very large, which is best seen in Table 5.4. On the other hand, this 

gap is more significant in instance 7. In most instances, the results found by SDI – 

illustrated as▲- are of lesser quality then the benchmark data. The only exception is 

instance 7 where SDI returns a cost of 1684 and M a cost of 1760. Finally, the TBR – 

illustrated as ■ - returns different results. In some instances (6, 8, 10) its performance was 

better or slightly worse than the cost of the solutions in M. In larger instances (7, 9, 11) the 

cost of the proposed solutions was much higher than the solutions in M.  

 

Table 5.4 shows that there is a relationship between the performance of TBR and the 

search time. Solutions that were close to the benchmark schedules were found in a short 

amount of time. On the other hand, bad solutions returned by the TBR show a large 

average search time. This is the case for instances 7, 9 and 11. After further investigation 

of these instances it was found that the solution returned by the TBR was the solution 

obtained once stopping rule of the total available search time (TAST) had been reached, 

and that the stopping rule of MNI never resulted in a search termination. This provides an 

explanation to the low overall performance by the TBR. The SDI provided solutions in a 

short time frame in most instances. The overall quality of these solutions can be 

considered low. The conclusion can be drawn that the SDI does not provide a constant 

solution quality when tested on a set of problems.  

 

Instance TBI TBR SDI

6 5,03% -0,06% -24,47%

7 10,72% -110,87% 4,32%

8 11,11% 8,82% -23,14%

9 19,82% -237,73% -57,62%

10 2,29% -4,03% -131,43%

11 1,61% -99,55% -39,06%

8,43% -73,90% -45,23%

Instance 6 7 8 9 10 11

TBI ≤ M 100,0% 100,0% 95,2% 100,0% 100,0% 100,0%

TBR≤M 57,1% 0,0% 76,2% 0,0% 66,7% 0,0%

Table 5.5 Average scores for normalized difference from manual 

schedule for instances 6-11 (n=20) 

 

 

 

Table 5.6 Percentage of runs where TBI and TBR 

outperformed M for instances 6-11 (n=20) 
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The normalized difference for each algorithm compared to the manually created schedules 

is given in Table 5.5, based on equation 5.1. The rows show the average results for each 

instance. In some instances the gap between the cost of TBI and M was fairly small. For 

example, in instance 11 there was only a 1.61% improvement with the use of TBI over M. 

The TBR returned results that were of lower quality in. For example, in instance 9 this was 

237.73% higher than the cost of M. 

 

Table 5.6 shows the percentage of runs where the TBI and TBR performed better than M. 

For the TBI this happened on almost every run. The only exception is instance 8 where 

there is a chance that M returns a better result than TBI aprroximately once every 20 runs. 

With the TBR this result is variable. For example, in instance 8 the TBR would return a 

solution with a lower cost than M about every 3 out of 4 runs, or more exactly 76.2% of the 

time.  

 

It can be asserted that the TBI returns the best overall results out of the three algorithms.  

The efficiency of the random tabu search shows inconsistencies; the performance of the 

TBR seems to be about 5% less good than the results found by the TBI in a number of 

instances. Where this does not appear it seems that the fixed time limit of 900 seconds 

prevented the TBR from obtaining good results. It can be concluded that the tabu search 

has the potential of finding good quality solutions with random initial solutions. To obtain 

consistent results however it can be supposed that more optimization time is necessary. 

The SDI does not perform well in a general fashion, leading to the conclusion that the 

construction method is not efficient. The contribution of this method is merely that the 

search time can be reduced in most cases. 

 

Based on these conclusions it is pertinent to provide a more detailed overview of the TBI’s 

results and the benchmark. The following section will therefore deal with further results of 

the TBI.  

 

Figure 5.5 plots the 95% mean confidence intervals of TBI against the benchmark data set 

for the instances used both for the parameter calibration and final testing. The interval 

parameters used for calibration (instances 1 to 5) have been mentioned previously. For 

final testing we can mention that n=20, α=0.05, t=2.0930 (instance 7 to 11).  In instances 

1, 2 and 5-10 the confidence interval is situated below the cost of the manual schedules. In 
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these instances it should be asserted that the means returned by the TBI are significantly 

different with a confidence level of  = 0.05.  In instance 3, 4 and 11 the manual cost is 

situated in the upper half of the confidence interval. For example, in instance 4 the 

confidence interval is defined as the set of integer solutions situated in the range 1405.8-

2078.2. The mean results of the manual schedules and the TBI are therefore not 

necessarily always significantly different.  

 

In a number of instances the variation in the results was fairly low resulting in a short 

confidence interval. An example of this is instance 6 where the variation is low. This 

suggests that the schedule returned by the TBI was the same or very similar on every run.  

 

For comparison Figure 5.6 illustrates the 95%-confidence intervals (=0.05) for the TBI 

and TBR. The dark-coloured intervals belong to the TBR and the light-coloured intervals 

belong to the TBI. In some instances the confidence intervals partially overlap each other. 

In instances 6, 8 and 10 the TBI confidence interval is situated in the lower half of TBR’s 

confidence interval. The large degree of variation in the results of the TBR for the 

instances 7, 9 and 11 suggests that better results could have been obtained with longer 

running times.  

Figure 5.5 Mean 95%-confidence intervals, UB and LB for TBI for all tested instances  
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5.5 Behaviour of manual process and prototype 

 

 

Figure 5.7 shows a bar chart comparing a schedule returned by the TBI of instance 7 to 

the manual schedule used in real-life. It is interesting to note that the solutions are similar 

in appearance. There were 23 residents to be scheduled throughout this scheduling 

period. The total cost of the manual schedule was 1760, whereas this was 1533 for the 

TBI-schedule. In both cases a large number of constraints were fully satisfied. All 

Figure 5.7 Comparison of instance between M and TBI (total staff 23 residents, instance 7) 

 

 

 

Figure 5.6 Comparison of 95%- mean Confidence intervals of TBI and TBR for all instances 
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constraints mentioned in this section are described in Chapter 3. For example, constraints 

1-4 did not pose any difficulties for schedulers or the TBI.  

 

In neither schedules it was possible to fully satisfy the constraints 11, 12, 16 and 20. 

These constraints stand out in comparison to the other constraints by their high values. 

Constraint 11 reflects the constraint 3.9 (No more than the maximum number of shifts allowed 

per resident), constraint 12 reflects constraints 3.17-3.21 (Respect resting cycles after night 

shift), constraint 16 reflects 3.28 (Proportionate dispersion of days among residents), constraint 

20 reflects 3.3- (Proportionate dispersion of total shifts among residents). In both solutions it 

was difficult to find a fair dispersion of days and total shifts. The hard constraint 11 was not 

fully satisfied in both cases. Ideally, a change would have to occur in the solutions in order 

to avoid such circumstances. In both solutions the resting cycles after night shifts had 

been shortened. The weight of this constraint was 100. Hence, in the manual solution this 

happened 12 times, and in the TBI’s schedule 10 times 

 

In Figure 5.8 an example is illustrated where two different schedules were returned by the 

TBI and the manual schedule for a scheduling period (instance 11) where 26 residents 

were available. For the manual schedule the total cost was 1864, whereas this was 1734 

for the TBI-schedule. As in the previous example, a large number of constraints were fully 

satisfied. For example, constraints 1-5 did not lead to any penalty costs in the manual 

schedule nor in the TBI’s schedule. In neither schedules constraints 16 and 20 were fully 

satisfied.  Column 16 in the figure reflects constraint 3.28, the Proportionate dispersion of 

days among residents. Column 20 in the figure reflects constraint 3.30, the Proportionate 

dispersion of total shifts among residents. It is interesting to note that the proportionate 

Figure 5.8 Comparison of instance between M and TBI 

(total staff 26 residents, instance 11) 
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dispersion of total shifts does not seem to differ between both schedules.  

 

The main difference between both schedules is situated in the satisfaction of constraints 9, 

10 and 12.  Constraints 9 and 10 respectively represent the score for doctors replacing 

resident and the score for undercoverage. Constraint 12 corresponds to Constraint 3.17-

3.21, the Respect resting cycles after night shift – constraints. Schedulers show a stronger 

aversion to scheduling doctors to avoid undercoverage. Instead, they prefer to shorten the 

72-hour cycle after a night shift to ensure sufficient coverage thus leading to a violation of 

constraint 20. In the TBI’s schedule doctors replace residents on a number of occasions. 

In the prototype the weight of constraint 9 was 100, meaning that 6 shifts were performed 

by doctors. The weight of constraint 12 was 100. Hence, there were 14 occurences of 

shortened 72-hours resting cycles. For constraint 10 the weight was fixed at 100, meaning 

that there was undercoverage 6 days during the scheduling period. We can conclude that 

in this instance the penalty weights of the algorithm did not fully reflect the schedulers’ 

preferences. 

 

Considering the two different results it can be concluded that the same configuration can 

lead to different solutions. The solution presented in Figure 5.7 is more likely to be 

implemented in a hospital than that in Figure 5.8.  

 

 

5.6  Summary of results 

 

 

Comparing the different algorithms to the manually created schedules one gets a good 

impression of the quality of the schedules. It should be mentioned that the manual 

schedules are of good quality since not all algorithms are able to improve the schedule. 

Figure 5.7 shows that the TBI’s and the manual solutions can share a number of 

characteristics. This, together with the computational results of the tests seems to suggest 

that the TBI should be capable of providing schedules that can be implemented in a real-

life environment. Not all of these solutions were discussed with residents however, so that 

it is not possible to say that this really would be the case. The example of Figure 5.8 

shows that the results obtained can still be different from the solutions that a scheduler 
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would want to implement, because the preferences of schedulers’ should be adjusted in 

the penalty weights from one situation to another. 

 

It is possible that the TBI can be outperformed by other methods because no proof has 

been given that the solutions are optimal. In our tests with the other algorithms the TBI 

provided the best overall results. When comparing the TBI with TBR it is shown that both 

overlap each other on a number of cases but that the TBI has an average performance of 

slightly better quality. The TBI performs better than SDI. This was the case in all different 

instances. Manual schedules are often of very good quality and should therefore not be 

underrated. Given the fact that the cost gaps of the TBI versus manual schedules can vary 

in the range of 1.61%-19.82% the TBI seems to provide results that are more consistent in 

quality. 
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Chapter VI - Conclusion 
 

 

6.1  On the manual scheduling process framework 

 

 

The contribution of this thesis to scheduling research was to clarify how manual scheduling 

techniques impact schedule quality. As has been mentioned it is difficult to directly 

associate this thesis to former works of researchers because, to our knowledge, such a 

description has not yet been made within the field of scheduling.  

 

In optimisation methods the quality of a schedule is measured by the relative violation of 

soft constraints. The formulation of the objective function is aimed at satisfying all 

hard/feasibility constraints and accepting a relative violation of soft constraints whenever 

this is needed. The constraints are divided in different categories such as was done by 

Cheang et al. (2003) (§ 2.2.6) for example, who divided them into coverage, work 

regulations, time related and internal ward constraints. In a general sense, the quality of a 

schedule therefore reflects the degree of satisfaction of all the different constraint 

categories.   

 

To analyse the techniques that influence a schedule’s quality and see when schedulers 

use these techniques to influence the schedule quality - we presented a formal framework 

for the Manual Scheduling Process (MSP). This framework was translated into a 

scheduling algorithm, the Manually Restricted Space (MRP). The construction heuristic 

(decoupled from the tabu search) was a good (although not necessarily efficient) way to 

describe these activities. For example, determining the coverage level in the form of a 

knapsack formulation of a min-knapsack problem corresponds to constraints 3.2 and 3.9 

(Required number of residents for each period, No more than the maximum number of shifts 

allowed per resident). The use of a best-fit decreasing heuristic to assign shifts shows that a 

scheduler does not assign shifts at random but tries to produce schedules of good quality. 

Last of all, we considered the conflict resolution in phase II which corresponds to 



 119 

 

constraints 3.17-3.21 (Respect resting cycles after night shift). These steps show that a 

scheduler has a highly developed notion of schedule quality and that he has integrated the 

satisfaction of constraints in the performance of his activities.  

 

The fact that a scheduler’s approach is efficient became clear when the heuristics were 

compared to the manual solutions. It turned out that manual schedules are often of very 

high quality and that it was sometimes difficult to find better solutions. From a theoretical 

perspective, it was suggested that the MSP can be described as a space restriction 

approach. However, we did not provide a formal proof for such a suggestion and we can 

therefore only use this term to explain what a scheduler does; by choosing the set of 

constraints, which he knows are difficult to satisfy, he restricts the search space. Such a 

set of constraints should include not only those constraints described by the MSP but also 

constraints for a fair dispersion of shifts (constraints 3.28 and 3.30) 

 

The comparison of manual schedules and solutions by the Tabu Search with construction 

method (TBI) shows that a number of constraints were hard to satisfy, whereas the 

majority of constraints had a low cost or were not violated at all. This seems to suggest 

that the restriction approach could indeed be valid, although no empirical research has 

been provided, apart from this thesis that only proposes an analytical method, to describe 

such a method. The most difficult constraints were the constraints 3.9 (No more than the 

maximum number of shifts allowed per resident), 3.17-3.21 (Respect resting cycles after night 

shift), 3.28 (Proportionate dispersion of days among residents) and 3.30. (Proportionate 

dispersion of total shifts among residents). If we consider hospital residents as ressources, we 

could formulate a reduced set of constraints that fix a limit on the ressources. The optimal 

solution that respects this reduced set provides an optimal combination of ressources, 

while respecting an inactivity time after each task, and ensuring a proportionate use of all 

ressources.  

 

We consider that schedule quality can be measured by the degree of violation of the 

existing constraint categories. However, when implementing the prototype resident 

schedulers often mentioned that the optimization method did not necessarily result in a fair 

distribution of shifts. They considered a schedule fair if all residents worked a 

proportionate number of total shifts and if days were divided proportionately among 

residents. We therefore defined the constraints 3.28 and 3.30 (Proportionate dispersion of 
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days among residents, Proportionate dispersion of total shifts among residents) to determine the 

fairness of individual resident’s schedules. During the literature review different authors 

(consult Blöchliger (2004) for examples) suggested constraints to balance the workload 

over a long term period (6 to 12 months), or to take into account preferences. To our 

knowledge it is the first time that a model includes constraints that directly measure the 

short term fairness of individual schedules. This suggests that the term schedule quality 

could be extended to include a category that incorporates constraints on fairness. We 

believe that we were able to define these new constraints because we tried to question 

resident schedulers directly on how they perform their activities and not necessarily 

focused our work on the development of the optimization method.  

 

 

6.2  On the prototype development and implementation 

 

 

The prototype’s development and implementation showed that an interface-based 

application is suitable for scheduling software. A clear interface also proved to be the key 

tool to establish a formal description of the manual scheduling process. For example, we 

noticed that schedulers use performance measures for evaluating a schedule. This 

observation led to the formulation of the so-called fairness constraints (3.28 and 3.30).  

 

Another important point that came forward was that the implementation of software does 

not always have an advantage. This appeared clearly in instance 1, whose manual 

schedule measured a cost of 8 which was close to optimal (the lowest possible score 

being 0). This instance concerned a small department and the solution returned by the TBI 

was of almost equivalent quality. If we consider the total time it would have taken to 

develop this solution with the prototype (1 ½ hours) versus the manual schedule (2 hours) 

the savings in time would have been approximately half an hour. The potential time-saving 

could be interesting for larger hospital departments but not for smaller departments.  
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6.3  On the performance of the heuristics 

 

 

The performance of the separate elements of the TBI, the construction mechanism of the 

initial solution and the tabu search, was illustrated by coupling these elements to a 

steepest descent heuristic and a random initialization. We saw that the TBI obtained the 

best overall results and that this was generally in a shorter time span than the other 

heuristics. Separated from the construction method, the tabu search (with random 

initialization) needed a long search time to obtain good quality solutions and avoid 

inconsistent solutions. The construction method helped the tabu search find better 

solutions in a shorter search time. The construction method is not an efficient individual 

method. However, it provides an upper bound that helps reduce the overall search time. 

 

The results of the manual schedules and the TBI were not necessarily found to be 

significantly different. However the performance found in the computational results of the 

tests seems to suggest that the TBI should be capable of providing schedules that can be 

implemented in a real-life environment. Not all of these solutions were discussed with 

residents however, so that it is not possible to say if this really would be the case. 

 

 
 

6.4  Future paths of development 

 
 
The described phases of the manual scheduling framework occur in all different categories 

of scheduling problems and the framework in this thesis can therefore be extended to 

other fields of scheduling. Because scheduling problems are considered as 

overconstrained problems this framework suggests that problems can be simplified and 

thus allow for a better use of search time and more efficient approaches. In such an 

approach it is beneficial to consider employees as ressources to limit the search to the 

reduced set of constraints that allow the optimal combination of ressources, respecting 

inactivity time and ensuring a proportionate use of all ressources. An interesting research 

avenue is the use of a strongly reduced set of constraints in Artificial Intelligence, where 
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agents negotiate and exchange a few vital informations. A limited set of constraints could 

be used directly by the agents. 

 
The resident scheduling problem discussed in this thesis has been defined for two hospital 

departments. However, the constraints encountered, apart from specific hospital 

constraints, are uniform across the province of Québec. An interesting research direction 

would be the implementation of the developed prototype in a large number of different 

hospitals. However, during the writing of this thesis, there were already reports that a 

revision of the collective agreement of residents was anticipated in a delay of two to three 

years. The implementation of a software program would therefore have to be postponed 

by at least several years. 

 

This thesis only proposes a possible method for the analysis of a reduced framework and 

shows that some constraints are more likely to be contained in such a framework. 

Nevertheless, it does not define the valid range of values for these constraints. The 

comparison of the performance of the framework against different established methods 

(Mathematical programming, heuristics) would be an interesting research avenue, 

because it would establish a clearer definition of the constraints and assist in proving the 

performance and efficiency of the MSP framework.  

 

The manner in which the preferences of decision makers are modelled also is an 

interesting research subject. For example, is it true that preferences can be modelled by 

an objective function that is defined by a weighted sum of penalties for the violations of the 

constraints? Would a scheduler use such an approach? If so, on what scale should these 

preferences be measured? 
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Appendix A: Formulation for the Resident Scheduling 

Problem - Chapter 3 

 

 

The mathematical model discussed in this appendix is also discussed in Chapter 3 where 

the focus was maintained on the main constraints essential to resident schedules by 

excluding several constraints from the description. The model discussed in this Appendix 

differs from the initial model by including a penalty for unfeasibility. Unfeasibility occurs 

whenever there is undercoverage, a shortage in available residents which has to be 

overcome by doctors in real-life. Further constraints included in this Appendix are derived 

from the wishes that resident scheduler’s made but were not described in the collective 

agreement. The model described in Chapter 3 can be extended to include all of these 

constraints. The prototype included all the constraints described in this Appendix. 
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The objective function defines the penalty values over the slack variables. It includes the 

same penalty values as in Chapter 3. New penalty values are PEN_SINGSAT, 

PEN_BCON, PEN_ACON and PEN_DOC. 

 

 

A.1.1 Integrity constraints 

 

Integrity constraints define the constraints among shifts and are used by the algorithm 

during the search process. Constraints (3.2)-(3.8) are fully described in Chapter 3. 

 

Required number of residents each day    

∑    

    ( )

         
        

                                                                                               (   ) 

 

Maximum of one shift assigned to a person at the same time  

∑    ( ) 

 

 

                                                                                                                                        (   ) 

 

One day-type assigned to a person at the same time  

                                                                                                                                                  (   ) 

                                                                                                                                               (   ) 

              ,          ,                                                                                          (   )  (   )  

 

 

 

Where the following parameters apply 

Parameters 

RDOit  1  If resident i requested a day off at day t 

 0 Otherwise 

Cit  1  If resident i is at conference at day t 
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 0 Otherwise 

Hit  1 If resident i is on holiday at day t 

0 Otherwise. 

 

Where the parameters are set values of either 0 or 1, the latter meaning in simpler terms 

that scheduling a resident on that day will results in a penalty. 

 

And the following decision variables 

 

Decision variables 

 

xit    1  If resident i is working at day t  

1 Otherwise 

rdoit  1 If resident i requested a day off at day t 

  0 Otherwise 

cit  1 If resident i is in conference at day t 

4 Otherwise 

hit  1 If resident i is on holiday at day t 

  0 Otherwise 

 

 

 

A.1.2 Legal constraints 

 

Constraints (3.9)-(3.27) are fully described in Chapter 3. 

 

No more than the maximum number of shifts  

∑    ( ) 

 

   

       
        

                                                                                            (   ) 

where 
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      ⌈
(                    ) 

  
   ⌉                                                                                              (    ) 

 

Respect requested days off      
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                                                                                               (    ) 

       

Respect conference days     
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∑        
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Respect holidays     
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Respect resting cycles after night shift 
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No more than two weekends per scheduling period    

∑    

     

        
         

                                                                                                                 (    ) 
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No more than two consecutive weekends 
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A.1.3 Hospital constraints 

 

The hospital defined a few constraints that were not legally defined but were still 

considered to be a very important factor in the fairness of each schedule. This third set of 

constraints reflects the hospital’s concern that all residents are treated fairly.  Constraints 

(3.28)-(3.30) are described in Chapter 3. 

 

Proportionate dispersion of days among residents  
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Each resident has his own dispersion score, defined as: 
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Proportionate dispersion of total shifts among residents  

∑ ∑    

 

          

 

   

         
        

      
∑ ∑    
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Junior and senior residents are assigned to the same shift 
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No more than one Saturday per scheduling period 
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No weekend shift before a week of holidays 
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No weekend shift after a week of holidays 
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     {              }   
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Avoid night shift before conference days 
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Avoid night shift after conference days 

                       
          

                                                                                  (    ) 

 

Doctors replace residents 

             
                                                                                                                              (    )   



 

Appendix B: Preliminary test results – Chapter 5

(a) Results for PC1: Instance 1 

 

(c) Results for PC1: Instance 3 

 

(b) Results for PC1: Instance 2 

 

(d) Results for PC2: Instance 4 

 

(e) Results for PC2: Instance 5 

 Figure B.I: Comparing performance of tabu search over a range of parameters 
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Figure B.II  95% confidence interval PC1: Instance 1 

 

 

Figure B.III  95% confidence interval PC1: Instance 2 
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Figure B.IV 95% confidence interval PC2: Instance 3 

 

 

Figure B.V 95% confidence interval PC2: Instance 4 
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Figure B.VI 95% confidence interval PC2: Instance 5 
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Appendix C: Interface description – Chapter 4 

 

C.1 Introduction  

 

 

The following section presents an overview of the prototype’s interface. First, the main 

screens of the interface will be defined. Next, the different buttons in the main screen are 

described with the help of sceenshots. Finally, the prototype’s submenus will be described. 

 

 

C.2 Main screens interface 

 

 

The prototype main interface has two different screens that are associated to the design 

stage of the schedule. The main interface can be set to either the Day editor or Shift editor. 

If no schedule has been created by the construction tabu search, the main work screen will 

be the Day editor. When the heuristic has generated a schedule the main work screen will 

be the Shift editor. However, both screens can be used in parallel even if a schedule has 

been created. Within the Day editor the user enter the data for the availability of each 

resident by specifying for each resident when he will be available or cannot be scheduled. 

Figure C.I Example of a schedule 
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The specificity of the Day editor is that the shifts are not displayed. The Shift editor on the 

other hand shows the shifts. The schedule is created from the schedule displayed in the 

Day editor.  

 

Figure C.I illustrates an example of a schedule in the Shift editor screen. Field  shows the 

prototype’s button used for switching between the Day editor and Shift editor screens. Field 

 illustrates the line’s that contain the resident’s name, surname and category. Within the 

schedule, each line contains the individual’s schedule and each column shows the day of 

the planning period. The schedule is colour-coded. All worked shifts are indicated in blue-

grey, days-off in white, requested days-off in yellow, conference days in orange, and 

holidays in red.  

 

C.2.1 Day editor screen  

 

Figure C.II shows the Day editor screen. Group  contains the start up buttons that allow 

the user to start working on a calendar. This can be a new (nouvel horaire button) or 

existing calendar (ouvrir horaire button). Group  contains the pre-generation edit and 

optimization model edit buttons, which are Resident (), Semaine (), and Constraints 

().The menus that are accessed by the buttons of groups  and  will be described 

further in this section. Both groups of buttons are available in the Day editor and Shift editor 

screens. The group  buttons are pre-generation edit buttons that allow the user to edit 

the days in the schedule. Finally there are the buttons of group . These buttons are pre-

optimisation buttons, referring to the fact that these buttons can only be used before a 

schedule is generated. The user can generate an initial schedule by clicking on the button 

Déterminer horaire (). To save the pre-optimisation schedule the user can save the 

schedule by clicking on Sauvegarder (). 

 

The group  buttons allow the user to edit the colour-codes that were described in Figure 

C.I. For example, the  button allows the user to label a staff member’s requested days-off 

in the schedule. The user can select one or several cells and click on the  button. All 

selected cells will turn yellow, meaning that a staff member requested to be off. The  

button is to indicate the availability of staff. The  button is for indicating conference-days. 

Finally the  button is for indicating holidays. 



 

 

 - Start-up buttons     - Pre-generation edit buttons 

 - pre-generation/opt. model buttons  - Pre-optimization butons 

 - Resident button      - Déterminer horaire button 

 - Semaine button     - Sauvegarder button 

 - Contraintes button 

Figure C.II Prototype main window in schedule days editor view 
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Figure C.III Schedule shift editor view 

 

 - Post-generation edit buttons  - Visual tools  

 - Reoptimisation button   - Previous period tool 

 - Horaire alternative button  - Doctor replacement tool 

 - Modification button   - General information tool 

 - Solution vers Excel button  - Individual tools 

 - Sauvegarder button   -  



 

C.2.1 Shift editor screen  

 

The Shift editor screen is shown in Figure C.III. This screen contains the same group of 

buttons - as the Days editor screen. In Figure C.II these are indicated as groups  and , 

whereas in Figure C.III these are indicated as  and  respectively.  

 

Group  contains the post-generation edit buttons. The button Reoptimisation () 

relaunches the optimization process using the on-screen schedule in the Shift editor as 

starting point for the search. The button Horaire alternative () relaunches the search to 

return a schedule of the same relative quality as the on-screen schedule but with an 

alternative assignment of shifts to residents. The button Modification () allows the user to 

make changes in the assignment of shifts and will have for consequence that the two 

buttons presented in Figure C.IV appear on-screen. The button Solution vers Excel () 

exports the schedule in the Shift editor to an excel file. Finally Sauvegarder () saves the 

schedule from the Shift editor screen for future reference.  

 

Group  presents a number of visual tools to provide the user with a quick information 

overview. The first visual tool is the previous period tool () whichs show the individual 

schedules that residents worked during the last two weekends preceding the planning 

period. The second tool is the doctor replacement tool () that displays all shifts that could 

not be covered by residents and were assigned to doctors instead. The two buttons to the 

left of  allow the user to respectively add and remove doctors to/from the schedule. The 

general information tool () shows general information about the schedule.  For example, 

it provides information about the number of shifts that can still be assigned, the number of 

shifts assigned per department and the days where overcoverage or undercoverage 

Figure C.IV 

Schedule shift 

editor view 
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occurs. The individual tool () provides detailed information about each resident. It 

provides the number of shifts worked by a resident and a breakdown of the number of 

shifts per weekday. 

 

Button  gives access to the buttons shown in Figure C.IV. The user can add shifts to the 

schedule with button (Fig C.IV.  - Travaillé ) selecting the department - from the list in   

(Fig. C.IV) - for which he wants to add a shift. He can also remove shifts from the current 

schedule with button  (Fig. C.IV Effacer). 

 

 

C.3 Submenus 

 

C.2.1 New calendar menu 

 

The first group of buttons that will be discussed are from group  in Figure C.II. By clicking 

on button nouvel horaire the new schedule menu appears. This window is shown in Figure 

C.V and is used to create a new calendar. The user is asked to provide the start (in ) and 

end (in ) date of the scheduling period. He can then accept ( - accepter) both dates and 

or decline ( - annuler). The choice of the user is subject to 2 limitations. First of all, the 

schedule has to start on a Monday. Next, the schedule has to be at least 7 days long. The 

implementation of these limitations was necessary because of considerations for the 

optimization model. 

Figure C.V New schedule window 
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C.2.2 Open calendar menu 

 

The button ouvrir horaire in the main menu opens up the window shown in Figure C.VI. 

This window shows all schedules that have been created previously and have been saved 

by the user. The user can open a schedule by double-clicking on any of the existing 

schedules or select a schedule and click OK. 

 

C.2.3 Resident menu 

 

Figure C.VII shows the Active resident editor window, which is used to edit, add, or delete 

residents within the prototype. This window is accessed by clicking on the Resident button 

(Fig C.II ). This editor consists of two lists and a submenu. List  (active resident list) 

shows all residents that are available in the prototype. List  (assigned resident list) shows 

all residents that are part of the current schedule and are shown in the schedule. Below 

the two lists, next to  is the resident description. This provides the first and last name of 

the resident as well as his seniority, department and category. The button  (Corriger) is 

used to edit the resident’s information next to  .  

 

The roll-down menu at  allows the user to add new residents, definitively take them out, 

or recuperate previously deleted residents of the active resident list. By clicking on any of 

these options in  the Resident editor submenu shown in Figure C.VIII appears. The screen 

Figure C.VI Open schedule window 

 



 148 

shows the adding of residents. For each new resident added the user has to indicate the 

resident’s seniority, the department he works on and the category he belongs too. All of 

this information can be edited in the Active resident window.  

 

 

C.2.4 Week menu 

 

The week menu, illustrated in Figure C.IX shows the settings of the construction algorithm. 

The user can change the set of values of weekdays under  - difficulté d’affectation 

(assignment difficulty) - or the set of values attributed to the status of residents under  -

paramétrage residents (resident parameters). The details for the department can be adjusted 

Figure C.VIII Resident editor menu 

 

Figure C.VII Active resident editor menu 
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in the boxes ,  and . The user can adjust the department names (), choose to include 

a one or two departments (), and their respective coverage levels (). 

 

C.2.5 Constraints window 

 

Figure C.X shows the constraints window that contains all various constraints and allows 

the user to set the search parameters. The set of all legal constraints are shown next to  

under Règles convention collective. The computer model constraints are illustrated next to  

under Règles pour programme informatique. These constraints are also considered to be the 

hard constraints. The set of constraints next to  under Règles optionnels, or Optional 

constraints, are optional constraints. The user can set different parameters for the search 

under Configuration de résolution () or the optimisation configuration the user can specify 

the allowed search time, the maximum number of iterations allowed and the number of 

iterations without improvement

Figure C.IX Week window 



 

Figure C.X Constraints window 



 

 


