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ABSTRACT

A new GARCH-type model for autoregressive conditional volatility, skewness, and kurtosis is
proposed. The approach decomposes returns into their signs and absolute values, and specifies the
joint distribution by combining a multiplicative error model for the absolute values, a dynamic
binary choice model for the signs, and a copula function for their interaction. The conditional
volatility and kurtosis are determined by innovations following a folded (or absolute) Student-
t distribution with time-varying degrees of freedom, and separate time variation in conditional
return skewness is achieved by allowing the copula parameter to be dynamic. Model estimation
is performed with Bayesian methods using an adaptive Markov chain Monte Carlo algorithm. An
empirical application to the returns on four major international stock market indices illustrates the

statistical and economic significance of the new model for conditional higher moments.
JEL classification: C11, C22, C58

Keywords: Conditional skewness and kurtosis; Direction-of-change model; Absolute returns; Folded
distribution; Copula model; Adaptive MCMC.

*Corresponding author. Tel.: +1 418 656 2131 ext. 6229.

E-mail addresses: xliu@uca.edu (X. Liu), richard.luger@fsa.ulaval.ca (R. Luger).



1 Introduction

Consider a daily financial return at time ¢, denoted by R;, which is assumed to be continuously

distributed. It is quite common in empirical studies to see models of the form:

Rt = O¢&¢, (1)

where the conditional variance o? is specified as a generalized autoregressive conditional het-

eroskedasticity (GARCH) model. In GARCH models a la Bollerslev (1987), the innovation e
in (1) is assumed to be distributed according to a symmetric Student-t distribution with v degrees
of freedom. Such a model implies that the conditional distribution of R; has a time-varying vari-
ance, but a mean and skewness of zero, and constant kurtosis. Recognizing that returns may in
fact be better characterized by a conditional distribution with time-varying asymmetry and tail
heaviness can have important implications for many problems in finance, e.g. for asset allocation,
value-at-risk calculations, or the valuation of contingent claims.

Several studies consider the modeling of conditional moments beyond order two. For instance,
Harvey and Siddique (1999) propose a model based on a non-central Student-¢ distribution that
allows for time-varying conditional variance and skewness. They apply their model to the daily
returns on several stock market indices and find that autoregressive conditional skewness plays
an important role in return dynamics. This approach allows for time variation in the conditional
skewness, but it still assumes a constant kurtosis. Brooks et al. (2005) (BBHP) develop a model
for autoregressive conditional kurtosis by allowing the degrees-of-freedom parameter of a central
Student-t distribution to vary over time. The resulting model permits the kurtosis to vary separately
from the variance, but cannot produce asymmetric returns. So while Harvey and Siddique focus on
the third moment at the expense of the fourth, the BBHP approach focuses on the fourth moment
at the expense of the third. Brooks et al. (2005) argue that it is more important to allow for time
variation in the conditional kurtosis.

Jondeau and Rockinger (2003) propose an approach for the joint modeling of conditional skew-
ness and kurtosis. Their starting point is the generalized Student-¢ distribution proposed by Hansen
(1994) which introduces an additional parameter that imparts asymmetry. Jondeau and Rockinger
propose specifications for the dynamics of the degrees-of-freedom and asymmetry parameters, and
show how these values map into the usual coefficients of skewness and kurtosis. This approach is
very restrictive as the dynamics of skewness and kurtosis cannot be disentangled from each other.
Indeed, variation in the asymmetry parameter necessarily entails changes in both the third and
fourth moments. As Jondeau and Rockinger (2003) explain, the tight link between skewness and
kurtosis, in addition to restrictions on the underlying parameters, makes estimation of this model
very difficult; see also the discussion in Jondeau et al. (2007, §5.5) for more on this point. Leén et al.
(2005) (LRS) propose a completely different GARCH-type model that circumvents the problems

of the Jondeau-Rockinger approach. The LRS model is based on a Gram-Charlier series expansion



of an assumed normal density function for the innovation terms in (1), truncated at the fourth
moment. The result is a more flexible specification in the sense that it allows for time variation
in skewness and/or kurtosis, in addition to autoregressive conditional variances. The empirical
results presented by LRS suggest the presence of conditional skewness and kurtosis in daily stock
index returns. The potential shortcoming of the LRS approach, however, is that it requires the
truncation of the Gram-Charlier expansion and may thus provide a poor approximation to the true
return distribution (Del Brio and Perote, 2012).

In this paper, we propose a new and very flexible approach to modeling conditional higher mo-
ments. Following Anatolyev and Gospodinov (2010), our approach starts by decomposing returns
into their signs and absolute values. The joint distribution of return signs and absolute values is
then obtained by combining a multiplicative error model for the absolute returns, a dynamic binary
choice model for the signs, and a copula joining function for their interaction. Here the innovations
follow a folded (or absolute) Student-t distribution with time-varying degrees of freedom, which
allows for autoregressive conditional return kurtosis. Separate time variation in conditional return
skewness is achieved by allowing the copula parameter to have its own autoregressive dynamics. The
equations governing the dynamics of second, third, and fourth conditional moments are very similar
to those of the usual GARCH framework. We refer to the resulting models as “unfolded” GARCH
models, as the approach takes a folded distribution for the absolute returns and transforms it into a
distribution for the returns themselves by joining their signs with the absolute values. The BBHP
model is a special case of this approach that obtains under the independence copula specification,
which in turn nests the Bollerslev (1987) specification with constant conditional kurtosis. Another
interesting feature of the proposed copula model is that the conditional expectation of returns need
not be zero, since its (possibly time-varying) value depends on the interaction between signs and
absolute return values.

The rest of the paper is organized as follows. Section 2 describes the proposed methodology by
first presenting the models for the marginal distributions of signs and absolute return values, and the
copula model for their interaction. The likelihood function is then derived, followed by a discussion
of how to compute the model-implied conditional mean, variance, skewness, and kurtosis. Section
3 presents our Bayesian estimation method based on the adaptive Markov chain Monte Carlo
(MCMC) scheme of Gerlach et al. (2011) and Chen et al. (2012). Section 4 begins by presenting
some simulation results about the performance of the MCMC sampler for posterior inference with
the proposed model. This section then moves on to an empirical analysis of the daily returns on
four major international stock market indices. For comparison purposes, we consider several other
models that are close to our proposed specification, including the BBHP and LRS models. We
evaluate the relative performance of the competing models using both in-sample and out-of-sample
statistical comparisons. In addition, we provide evidence regarding the economic significance of

these models in the context of a risk management application. Section 5 concludes.



2 Model description
Consider again the daily financial return R; in (1), but now observe that it can be decomposed as

R, = |Ry|sign(Ry)
= R (25:-1), (2)

where S; = I[R; > 0] and [[A] is the indicator function of event A. Our model specifies marginal
distributions for |R;| and S;, and a copula for the interaction of these two random variables.
Observe also that with this approach the mean of R; need not be exactly zero every day. Indeed,

the decomposition in (2) implies that p; = E(R; | §—1) is given by

e = 2§ — E(|Rt| |3’t—1), (3)

where & = E(|R¢|S;|Si—1) is the expected cross-product of |R;| and S;, and the expectations
are conditional on §;_1, the information set available at time ¢ — 1. The conditional distribution
of S; is of course Bernoulli B(p;|§i—1), where p; denotes the conditional probability Pr(R; >
0]&¢—1) = E(St|St—1). The next subsections describe the models for p; and |Ry|, and the copula
model specifications. Observe first that if R; is symmetrically distributed around zero, then |R;|
and S; are independent and p; = 1/2 (Randles and Wolfe, 1979, Lemma 2.4.2). In this case,
E(S¢|$i—1) = 1/2 and hence p; = 0. If on the contrary |R;| and S; are not independent, then
the distribution of R; is asymmetric and p; may change over time depending on how |R;| and S;
interact. Since p; is free in this context, we proceed by specifying the uncentered moments of R;

and then show how to find the model-implied centered moments.

2.1 Marginal distributions

The absolute value of the return appearing in (2) is modeled in multiplicative form as
[ Bl = A lee], (4)

where ) is §;—1-measurable and |e;| follows an absolute distribution, also called a folded distribution
by Leone et al. (1961) and Psarakis and Panaretos (1990) who introduce the folded normal and
Student-t distributions, respectively. To better understand these so-called “folded” distributions,
suppose there exists an underlying random variable €; whose conditional distribution given §;—_1 is
continuous and symmetric around zero. Let g, (x|§:—1) and Ge, (x| §t—1) denote the conditional
density and distribution functions, respectively, of ;. Folding g¢., (x| §¢—1) at = 0 results in the

distribution of the random variable || whose conditional distribution function is defined as

F\at\(x | gt—l) - 2G5t(x ‘ gt—l) —1, forz > 0, (5)



which, upon differentiation, is equivalent to fi.,|(7|Fi-1) = 29, (2 |St-1), * > 0, in terms of the
conditional probability density functions. It is also easy to see that the even moments of |e;| and
€; are identical.

We assume that the random term |g;] in (4) is independent and identically distributed (i.i.d.)
as a folded Student-t variate with degrees-of-freedom parameter 14, conditional on F; 1. The
conditional second and fourth moments of (4) are then given by
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respectively. Rearranging (6) shows that \; can be expressed as

= (om0 2) 0

which, upon substitution in (7), can then be used to find that
2(2m475; - 3)

) 9
P (9)

Vy =

where |gf| = |ei|v/ (vt — 2) /14 is the innovation term in (4) standardized to have a second moment
equal to unity. These last two equations show that the dynamics of 1, and ); are determined by
those of mg g, and Myer = M4 R, / m% Ry» which may be modeled separately with the restriction that
vy > 4 to ensure the existence of the fourth moment in (7) and hence that of the second moment
in (6). Observe that these requirements also guarantee that A; > 0 in (4).

Similarly to Brooks et al. (2005) who model time-varying conditional variance and kurtosis,
we parameterize the conditional second and fourth moments, mg g, and my.:, as GARCH-type

processes, expressed as

2
mo R, = wo+wily_|+wamar, ,
R4
t—1
Myer = 0o+ 01 poo domaer |,
2,Rt—1

with the following restrictions to ensure positivity and stationarity: wg,dg > 0, wi,ws,d1,09 > 0,
and w1 + wy < 1, 01 + 02 < 1. Observe from (9) that v, — oo implies that m4’Rt/m§7Rt — 3,
the standardized fourth moment of the folded normal distribution. The parameters describing
the marginal distribution of |R;| are grouped into 81 = (wp,w1,ws, do, d1,02), with the additional
restriction 4 < v, < 30 to ensure a proper posterior density (Bauwens and Lubrano, 1998).

As we already mentioned, the conditional distribution of S; is Bernoulli B(p; | §¢—1) with proba-

bility mass function fs, (v | 1) = p¥(1—p¢)! =Y, where p; = Pr(R; > 0| F;_1). Following Anatolyev



and Gospodinov (2010), we parametrize p; as a dynamic logit model of the form

exp(6
Pt = p( t)

1+ exp(6y) (10)

with
0 = o + <P1R?_1 + p2Si—1 + w30:—1,

which resembles a GARCH equation. The inclusion of R? | on the right-hand side is motivated
by the work of Christoffersen and Diebold (2006) who show that volatility dynamics can generate
time variation in Pr(R; > 0|J;—1). It is interesting to note that the dynamic logit model can be

rewritten as
Pt—1

1—pi1’
making clear how the (log of the) odds that R; > 0 at time ¢ depend on their lagged values. We

D
log T tp = o + golRf_l + ©2.5i—1 + p3log
- Mt

stack all the parameters into 82 = (o, 1, p2, ¢3) and impose |2, |p3] < 1 to ensure stationary

dynamics. See de Jong and Woutersen (2011) for more on dynamic binary choice models.

2.2 Joint distribution

In order to construct the bivariate distribution of Y; = (|Ry|, S¢)’, we appeal to the theory of copulas;
see, e.g. Trivedi and Zimmer (2005) and Patton (2012) for recent surveys. Specifically, it is well

known that a conditional meta-distribution can be created as
Fy,(u,v|Fi-1) = C(Fr, (w|§i-1), Fs,(v] Fr—1) | Fe-1),

where Fig, (u|§i—1) and Fs,(v|§;—1) are the conditional distribution functions of [R;| and S,
respectively, and C(wq,ws|F¢—1) is a conditional copula distribution function with dependency
parameter oy. From Anatolyev and Gospodinov (2010), the joint conditional density/mass function
of |R| and S; is given by
Sy (0] Fi-1) = firy (w| Fe-1) ot (Fg, (u] Stfl))v(l — 0t (Fig,) (ul 3t71)))1iva (11)
where g,(z) = 1 — 0C(2,1 — p¢|Fi—1)/O0w1. Observe that (11) is a product of the marginal
density of |R;| and the “deformed” Bernoulli mass of S; whose success probability is given by
Ot (F]Rt‘(u | &_1)), which need not equal p;.
The copula parameter measures the dependence between |R;| and S;. Indeed, recall that if Ry
is symmetric, then |R¢| and S; are independent. On the other hand, negative (positive) skewness
means that the dependence between |R;| and S; is negative (positive). To capture the potentially

time-varying conditional return skewness, we parameterize the copula parameter as

ar =bo+ b1|Ri—1|(1 — Si—1) + bacve—1, (12)



which is an example of what Manner and Reznikova (2012) call an “observation driven” copula
model. Here the forcing variable is |R;—1|(1 — Si;—1), which equals |R;_1| when R;_; is negative,
and zero otherwise. This choice is motivated by the fact again that if daily returns are skewed, then
we expect it to be mostly left skewness. The parameters of (12) are regrouped in 03 = (bg, b1, ba).
Depending on the copula, additional restrictions may be needed to ensure that «; is admissible.
Below we list four choices of bivariate copulas that will be used in the empirical application. Since

they are well known, we only give very brief descriptions.

Frank copula. The conditional Frank copula is

1 e~ w1 _ 1) (g~ xwW2 _ |
Ol n i) = = o (14 )

where oy < 0 (o > 0) implies negative (positive) dependence. As a; — 0, the Frank copula
approaches the independence copula, C(w,w2) = wjws. Therefore we define the function g;(z)
appearing in (11) as

1— lfe_at(l_pt)eoct(l—z)

pe, for ap = 0.

for oy # 0,

Farlie-Gumbel-Morgenstern copula. The conditional Farlie-Gumbel-Morgenstern (FGM) cop-
ula is

Cwr, wa | Fr—1) = wiwz (1 + (1 — wy)(1 — wo))

where oy € [—1,1] and oy < 0 (o > 0) implies negative (positive) dependence. Note that this
copula only permits modest dependence, which is not restrictive in our application. The g;(2)

function appearing in (11) is given as

or(2) =1 = (1= pe) (1 4 cupe(1 = 22)),

with g¢(z) = py when oy = 0, i.e. when the marginals are independent. In order to ensure that

ay € [—1,1], we follow Almeida and Czado (2012) and reparametrize the FGM copula dynamics as

o — exp(2¢y) — 1
t exp(2¢;) + 1’

with ¢ = by + bl‘Rt_l‘(l - St—l) + bo¢y_1 instead of (12).
Rotated Clayton copulas. The conditional Clayton copula is given by

Cwr, wa | Feo1) = (wy ™ +wy ™ — 1)~



where oy > 0. The Clayton copula tends to the independence copula as ay — 0. The g;(z) function
appearing in (11) is thus given as

1- (1 NRpC D
o(2) = S

—l/at—l
> ,  for ay >0,

pe,  for ap = 0.

The Clayton copula cannot account for negative dependence. Since we expect daily financial returns
to exhibit negative skewness, if at all, we follow Patton (2012) and consider rotated Clayton copulas.
A 90° rotation results by flipping the first variable so that (1 — Wy, Ws) is distributed as a Clayton
copula with parameter ;. Large values of a; then imply stronger negative dependence and tail
dependence in the second quadrant (i.e. as wy — 1 and wy — 0) rather than the third quadrant
as for the usual Clayton copula. A 270° rotation of the Clayton copula also implies negative
dependence, but with tail dependence in the fourth quadrant (i.e. as w; — 0 and we — 1). We use
RC90 and RC270 to denote these rotated Clayton copulas and both are considered in our empirical
application. Here we impose the restriction oy > 0 via the reparametrization oy = exp(¢¢) with
¢t = by + b1|Ry—1|(1 — St—1) + bar—1 instead of (12).

2.3 Special cases

We call the developed model for R; an unfolded GARCH (UnGARCH) model as it “unfolds” |R;]|
into Ry = |R¢|(2S;—1), where |R¢| = A\¢|e¢| with the scale and copula parameters (¢, o) determined
by GARCH-type processes.

The UnGARCH model nests three other GARCH specifications. Indeed, if S; is i.i.d. B(1/2),
then the model innovations follow symmetric Student-¢ distributions and R; is governed by the

autoregressive conditional kurtosis model of Brooks et al. (2005) given here as

Ry = Meu, e Fim1 ~ tu, (13)
_ o)\ 1/2
N = <gg (v >) (14)
147
0} = wo+wR: | +uwaoly, (15)
R}
ki = 00+ Zl+52k3t71, (16)
Ot—1
2(2k;, — 3)
_ 17
Vy kt —3 ) ( )

where ¢, denotes a Student-¢ distribution with 14 degrees of freedom. The BBHP specification is a
special case of the UnGARCH model which occurs when |R;| and S; are joined by the independence
copula (a; = 0) and when ¢; =0, i =0, ..., 3, so that p, = 1/2 in (10). If furthermore v; in (17) is



constant over time so that 4; = d = 0, then the model becomes a GARCH specification with i.i.d.
innovations according to a symmetric Student-¢ distibution a la Bollerslev (1987). And when the
degrees of freedom tend to infinity, the Student-t distribution collapses to the normal one.

In the empirical application presented in Section 4, we estimate the UnGARCH model allowing
for a time-varying conditional return skewness and we formally compare it to the nested BBHP

specification in (13)—(17) which imposes conditional return symmetry each time period.

2.4 Likelihood function

Assuming a folded Student-t distribution for |¢;] means that the conditional density of |Ry| is given
by

vi+1

9 F(l/t2+1) 1:2 _ t2
Q)= —~ |1+ —=— fi >0 18
f|Rt|(w|3t 1) )‘t\/VTWF(VQt)< +)\%Vt> , for x > 0, (18)

where the leading term 1/); is the Jacobian factor which arises from (4) upon taking the deriva-
tive of |e;| with respect to |R¢|. The corresponding conditional distribution function is simply
Fip, (x| Si-1) = Fl.,|(x/ | Fi-1), x > 0, where the latter distribution function is given by (5).
The complete set of model parameters is ®@ = (01, 02, 83), comprising the parameters of: (i) the
marginal distribution of | Ry, (ii) the marginal distribution of S;, and (iii) the copula distribution.
Given a sample of returns 71, ...,77, which yield the realizations y = ((|r1],s1), ..., (|rr|, s7)), the

sample likelihood function can be computed from (11) as

T —s,
L(1©) = [T ov(Fr (Il 150-00) " {1~ e (Fia (el 1§-0) ) Fog (el 1§e0). (19)
t=1

where ©® belongs to =, a set of values satisfying the model’s restrictions. With the Bayesian
inference approach, we follow Geweke (1988, 1989) and impose any model restrictions that take the
form of inequalities through the prior; i.e., we retain only the draws that satisfy the inequalities

when sampling the posterior distribution.

2.5 Conditional mean, variance, skewness, and kurtosis

In this subsection, we explain how to compute the model-implied conditional mean, variance,
skewness, and kurtosis of returns. Recall from (3) that in order to compute the conditional
mean p; = FE(Ry|Fi—1), we need & and E(|R;||&:i—1). The latter term is found from (4) as
E(|Rt| | §t—1) = MeE(Jet] | §t—1) with A; given by (8) and where

V¢ vl
E(let] | §t-1) = 2\/;F(1;§(22}11)
5 ) (vt

is found in Psarakis and Panaretos (1990). The term & is given by Anatolyev and Gospodinov
(2010) as

+oo
&:/o ufig, (w] Fe-1) ot (Fir, (u|Fe-1))du,

8



which must be evaluated numerically. Upon the change of variable z = Fig,|(u|§t-1), this integral

can be rewritten as

1
&= [ FalGI5ma)d: (20)

where F‘Eh(z | §t—1) is the quantile function of Fig,|(u|§t-1). From (5), we have that

_ 1 (z2+1
FRi,(zst_l)—AtG;( 5 \st_l),

where G~ is the quantile function of a Student-¢ distribution with 14 degrees of freedom.

With p; in hand, the conditional variance of R; is computed as
Var(Ry | §i-1) = ma,r, — 17, (21)

where mg g, is given directly by (6). In turn, it is then straightforward to numerically evaluate the

usual coefficients of conditional skewness and kurtosis via

Ry —m\° ]
Sk(RHStfl) = F <0't> |St71 ) (22)

I Ry — e \* ]
Ku(R;|§t-1) = E () | St-1] 5 (23)

gt

where oy = y/Var(R; | §:—1) is the conditional standard deviation of R;. In our empirical applica-
tion, we evaluate (20), (22), and (23) by Monte Carlo integration once the parameter estimates are

obtained.

3 Bayesian inference

The UnGARCH model is highly non-linear and also depends on the absolute value and indicator
functions, which introduce kinks and discontinuities into the sample likelihood function in (19).
This feature makes it very difficult to use classical methods for maximum likelihood estimation
and inference, so we instead prefer to use Bayesian MCMC methods to learn about the model
parameters. Given the sample realizations, y, the posterior distribution takes the usual form:
p(®Oly) x L(y|®)n(®), where L(y|®) is the sample likelihood function and 7(®) is the prior
distribution. The prior distribution is taken as uniform over =, the admissible parameter space.
Just like Vrontos et al. (2002) and Ausin and Lopes (2010), we also found that MCMC mixing
can be improved and the computational cost reduced by using simultaneous updating of the highly
correlated parameter groups at each Metropolis-Hastings (MH) step. In the terminology of Chib
and Greenberg (1995), our approach is therefore based on a “block-at-a-time” MH sampler which

updates successively the parameter blocks comprising ® = (01, 64, 63).



We implement the MH sampler according to the adaptive scheme of Gerlach et al. (2011) and
Chen et al. (2012) which combines the random walk MH and the independent kernel MH algorithms,
each based on a mixture of multivariate normal distributions. The random walk part of this scheme
is designed to allow occasional large jumps, perhaps away from local modes, thereby improving the
chances that the Markov chain will explore the posterior distribution. Let ®_; denote the vector

® excluding the block 6;.
Starting at k = 1 with @1 = (0[11] , 0[21], 0%1]), the K; random walk MH iterations for ® proceed

as follows:
Step 1. Increment k£ by 1 and set e equal to ek,

Step 2. For i = 1,2,3 in turn, generate 6% as
0! =0\ +e, e~ pN(0,diag{c;}) + (1 — p)N(0, 7diag{c;}),
and replace 0?] in ®* by 0” with probability min(;, 1), where

[ _ Lwlor. e @67, o)
" Ly|eWyx(e)

Step 3. If k£ < Ky, go to Step 1.

Upon completion, these first K iterations yield the burn-in sample. Following Chen et al. (2012),
we set p = 0.95, 7 = 100, and tune the vectors of positive numbers ¢; so that the empirical
acceptance rate lies in the range (0.2,0.45). Tuning is done every 100 iterations by increasing each
element in ¢; when the acceptance rate in the last 100 iterations is higher than 0.45, or decreasing
¢; when this rate is lower than 0.2.

At the end of the first K iterations, the burn-in sample mean p; and covariance matrix 3; of 6;
with corresponding lower triangular Cholesky factor 2; /% are computed for i = 1,2,3. The MCMC
sampling scheme then continues for Ky additional iterations according to the following independent

MH steps:
Step 4. Increment k£ by 1 and set e equal to ek,

Step 5. For i = 1,2,3 in turn, generate 6% as

0;10:}1@‘}'211/253 €NPN(07I)+(1_/))N(O>TI)’

10



and replace 0£k] in ©F by 0” with probability min(;, 1), where now

L(y| 67,0 x(67, @) ¢(01")

7

T T Ly e e ge)
009 o pesp{~5 (0~ ) 57 0 - 1)

(1-p) 1 I w—1
+Tdim(0i)/2 XPY 7o (i — ;) ;7 (0: — ) ¢ -

Step 6. If £ < K1 + K>, go to Step 4.

Observe that the use of 3J; in Step 5 accounts for the posterior correlation among the elements of
0;, thereby improving the efficiency of the Markov chain.

In the illustrations presented next we set K1 = 30,000 for the burn-in sample and Ky = 30,000
with a thinning of 2 for the second sample, resulting in posterior samples comprising 15,000 draws.
The convergence of the second-step Markov chains is assessed in the empirical application using
the Geweke (1992) test. For each parameter, we also assess the accuracy of its posterior mean
by computing the numerical standard error (NSE) according to the batch-means method (Ripley,
1987).

4 Illustrations

Before we apply the proposed model to actual data, we first present in this section the results of
some simulation experiments about the performance of the adaptive MCMC sampler for posterior
inference with the UnGARCH model. The developed model is then illustrated with an empirical
application to the daily returns on four major international stock market indices: the Standard &
Poor’s (S&P) 500 (US), the FTSE 100 (UK), the DAX (Germany), and the CAC 40 (France).

4.1 Simulation results

We consider the UnGARCH model specified in turn with the Frank, FGM, RC90, and RC270
copulas. The true model parameters were set to values close to the posterior means obtained with
the S&P 500 returns, and we consider sample sizes T' = 1500 and 7" = 3000. Starting the recursions
at zero, we simulated 50,000 returns and retained only the last T to mitigate the effects of the initial
values. To see how we simulate data from the UnGARCH model, consider the Frank copula as
an example. Given the simulated returns and parameter values at time ¢ — 1, the next simulated

return Ry is obtained according to the following steps:

Step 1. Compute py, Mo r,, Maer, Ut i, and é.

11



Step 2. Draw Z ~ U[0,1] and let |&;| = G~ (3}), where G~ is the quantile function of a

Student-t distribution with 7, degrees of freedom

Step 3. Compute

R |
(1 e t) it £,
B ifd; =0

and set S; = I[i < §], where @ ~ U0, 1].

Step 4. Compute R; = A\ |&|(25, — 1).

These simulation steps exploit the structure of the joint density /mass function in (11). In particular,
observe that Pr[St = 1] = 9¢¢ in Step 3, which brings about the conditional dependence between
\Rt\ and S;. The other UnGARCH specifications simply use a different copula function in this step.

Table 1 reports the simulation results, where for each model parameter value we report the
true value used to generate the data, the means (of the posterior means) as well as the root
mean squared error (RMSE) across replications. The overall picture that emerges from Table 1 is
that the estimates appear quite accurate.! We have also observed that in many cases the posterior
distributions appear skewed but still with most of the density concentrated near the true parameter
values. This can be gleaned from Table 1 by comparing the true parameter values with the average
estimates. We see that the posterior means are relatively close on average to the true parameter
values. The RMSEs indicate the relative accuracy of these estimates, which, as expected, improves

as the sample size increases.

4.2 Empirical results

In this section, we apply the UnGARCH model to the daily returns on the S&P 500, FTSE 100,
DAX, and CAC 40. Returns were defined as 100log(P;/P,—1), where P, is the closing value of
the index on day t, and these returns were computed over the sample period covering January 4,
1999 to October 12, 2012. Owing to different holidays, the resulting samples sizes vary slightly
across countries so that 7' = 3469 (S&P 500), 3480 (FTSE 100), 3513 (DAX), 3525 (CAC 40). The
time series of daily prices and log returns are shown in the top two panels of Figures 9-12, and
some summary statistics are reported in Table 2. As usual, volatility clustering effects (typically
associated with periods of falling security prices) can be seen from the time-series plots and the
summary statistics reveal evidence of excess kurtosis in the unconditional distribution of returns.
The unconditional distributions of S&P 500 and FTSE 100 returns appear negatively skewed, while
those of the DAX and CAC 40 returns show a small degree of positive skewness.

! Additional evidence (available upon request) shows the convergence of the Markov chain. Our results indicated

a good mixing performance with the Markov chain moving rather fluidly as it explored the parameter space.
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4.2.1 Alternative models

For comparison purposes, we also include in our empirical application several other models that
are close to our proposed specification. Recall that if returns are conditionally symmetric each
time period, then the general UnGARCH specification collapses to the autoregressive conditional
kurtosis model proposed by Brooks et al. (2005) in (13)—(17). The nested BBHP version of our
model is therefore an interesting benchmark to see how well these restrictions hold in the data.?

We also consider the non-nested specification proposed by Leén et al. (2005) who model au-
toregressive conditional heteroskedasticity, skewness, and kurtosis by assuming a series expansion
of the normal density function. As in White et al. (2012), the adopted LRS specification is given
by

Ry = oyer, e Fim1 ~ GC4(0,1), (24)

0 = wo+wi R} | +wyo? y, (25)
R3

St = Y0+ Nt +72si-1, (26)
Ot 1
R,

ki = 6o+ 01— + d2ki1, (27)
041

where GCy(0,1) is a Gram-Charlier density of order 4. This density is found by taking a Gram-
Charlier series expansion of the standard normal density function and truncating at the fourth

moment to obtain:

9. (@ [Fi—1) = dle)y(er),

ky —
4!

S 3
Pler) = 1+ 25(ef —3e) + (e} — 67 +3),

3!

where ¢(-) is the standard normal probability density function. Observe that the function g(-) is
not a well-defined density since it need not integrate to one and (-) could be negative. In order
to solve these problems, Leén et al. (2005) take the square of 1(-) and then normalize it. The

resulting conditional GC4(0, 1) density function for e; takes the form:

fol@|Bim1) = o)y (z)/Ty,

57 n (ke —3)°
3! 4! 7

2The proposed UnGARCH model was further compared with the GARCH model of Bollerslev (1987), the GJR-
GARCH model of Glosten et al. (1993), and the EGARCH model of Nelson (1991). In order to save space those

results are not included here, but they remain available upon request.

I'sr = 1+

13



which yields the conditional density of R; in (24) as fgr,(x|&:i—1) = fe,(x/0¢|Fi—1)/0+. See Del
Brio and Perote (2012) for a recent discussion and further references on Gram-Charlier densities.
Our UnGARCH model is a natural extension of Anatolyev and Gospodinov (2010) (AG)
whereby we introduce the notion of a folded distribution while accommodating the idea of autore-
gressive conditional kurtosis, suggested by Brooks et al. (2005). Another interesting comparison is
thus between the UnGARCH model and AG’s original decomposition model, which does not ex-
plicitly account for a time-varying conditional kurtosis. The AG model also begins with the return

decomposition in (2) but then specifies

Ui
Ry = py—~="
[ ¢tr(1+ml)’

where the positive multiplicative error 7; follows a Weibull distribution with shape parameter x > 0
(Anatolyev and Gospodinov, 2010, §3.3). The scaling by I'(1+x~!) ensures that E(|R|| §i—1) = v

This conditional expectation is parameterized as

log(¥t) = wo + w1 log(|Ri-1|) + w2 log(¢1—1) (28)

and, as before, the conditional distribution of S; is B(p; | §t—1) with p; given by (10). We close the
AG model by specifying the joint distribution for (| R;|,S;) exactly as we did in Section 2.2 for the
UnGARCH model, i.e. |R;| and S; are joined using copula functions (Frank, FGM, RC90, RC270)
with parameter a; governed by (12). We examine the original AG model with constant copula
parameters (b1, be zero) and then we relax this restriction to allow for a time-varying conditional
return skewness, as in the UnGARCH model. We use AG-Con and AG-TV, respectively, to denote
these models.

The MCMC approach described in the previous section was used for all the competing models.
Tables 3-8 report the estimation results for each model, where the entries are the posterior means
of each parameter and the associated NSEs are shown in parentheses. The numbers in square
brackets are the values of the Geweke (1992) test statistic. If the output of the Markov chain
is compatible with stationarity, then this statistic follows a standard normal distribution. The
generally insignificant values in Tables 3-8 indicate that convergence to the stationarity distribution
was achieved.

Table 3 shows the estimation results for the BBHP and LRS models. The estimated parameters
of the conditional variance processes in (15) and (25) are similar to what is typically obtained with
heavy-tailed GARCH models.? The parameter estimates for the conditional kurtosis equations in

(16) and (27), however, tell a different story. In the LRS specification, the parameter §; on lagged

3The GARCH model with Student-t innovations shows that the persistence of shocks to volatility (as measured
by the estimate of w1 + w2) is close to one, with the estimate of ws (& 0.90) much greater than that of w1 (= 0.09).
The estimates of the degrees-of-freedom parameter v vary from about 5 to 13, which is comparable to the estimates
obtained by Luger (2012) with classical methods.
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fourth powers of the standardized returns is close to zero, while the parameter do on the lagged
kurtosis coefficient is higher in value. On the contrary, the BBHP specification yields estimates
of §; larger than those of 2, which itself appears to play a role in the kurtosis equation. These
findings are in line with those obtained by Ledn et al. (2005) and Brooks et al. (2005). Turning to
the conditional skewness equation in (26), we see a similar pattern as before: the estimate of v; is
close to zero, while that of v, is larger, and again this finding agrees with Leén et al. (2005).

Tables 4-7 show the Bayesian estimation results with the UnGARCH model using the returns
on the S&P 500, FTSE 100, DAX, and CAC 40, respectively. Focusing on the posterior means in
these tables, we see that the parameter estimates of the conditional second moment my g, resemble
those of the conditional variance o7 seen in Table 3 with the BBHP and LRS models. Indeed, we see
that w1 = 0.09 and @y ~ 0.90 across all four indices. We also notice that the parameter estimates of
the conditional fourth moment My ey are very close to those of the conditional kurtosis k; in Table
3 for the corresponding return series. These findings are to be expected when the conditional mean
of daily returns is close to zero. Observe also in Tables 4-7 that the estimates of the parameters
describing the conditional second and fourth moments are quite similar across copula specifications.
Again this is not surprising since the dependence between |R;| and S; is expected to be weak if
the returns tend to be only weakly conditionally asymmetric. Looking at the estimates of the
parameters of p; in (10), we see that they too are very similar across copula specifications. In this
equation, the lagged squared return seems to play a small role, whereas the estimates of @2 and
3 tend to be much larger in magnitude and of opposite signs so that log(p;/(1 — p;)) depends
negatively on S;_1, and positively on its own lagged value. The posterior means of the parameters
of the copula equation in (12) assign a lesser role to |R;_1|(1 — S¢—1) compared to the relatively
greater one played by the lagged value of the copula parameter itself, in all copula specifications.

Figures 1-4 show the fitted conditional variance (volatility), skewness, and kurtosis series for
the BBHP, LRS, and UnGARCH-Frank models and for each stock market index. The skewness
and kurtosis plots exhibit large spikes in their values. This is to be expected given the definitions
in (22) and (23) which show that the coefficients of skewness and kurtosis can become arbitrarily
large, depending on how small o; in the denominator becomes. It is interesting to note that the
large negative (positive) spike in skewness (kurtosis) in Figure 1 occurred on February 27, 2007, the
day when HSBC Bank wrote down its holdings of subprime mortgage-backed securities, which was
the first major subprime-related loss to be reported. In Figures 2—4, we also see a large negative
(positive) spike in skewness (kurtosis) occurring on January 21, 2008 in the FTSE 100, DAX, and
CAC 40 series. This was precisely when the French bank Société Générale lost 4.9 billion euros
closing out positions that resulted from the allegedly unauthorized transactions of Jérome Kerviel,
a trader with Société Générale at the time (Reuters). The European stock markets were hit hard
with the FTSE 100, DAX, and CAC 40 losing around 5 to 7% on that single day.

Table 8 reports the estimation results for the AG models with constant and time-varying Frank
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copulas.* The parameter estimates of the conditional expectation in (28) resemble those of a daily
GARCH equation, i.e. the estimates of w; are around 0.04 and the estimates of wy are around
0.95. This is not surprising since absolute values depend on the variance of the distribution. For
example, under normality we have E(|R;||§:—1) = 011/2/7. Comparing each market at a time, we
notice that the AG and UnGARCH models yield broadly consistent estimates for the dynamic logit
model describing the dynamics of S, at least for the AG models with time-varying copulas. In the
constant copula cases, it is interesting to note the generally negative values of & which is indicative
of negative skewness in the conditional return distribution. As an illustration, Figures 5-8 show
the series of fitted volatility and conditional skewness from the AG models with a Frank copula
applied to the S&P 500 returns. The apparent similarity between the volatilities of the AG-Con
and AG-TV models is explained by the fact that the estimated copula parameter b; in (12) is quite
small. This concurs with the evidence of weak serial dependence in the conditional skewness of
returns already revealed in Figures 1-4 by the LRS and UnGARCH models.

In addition to the levels and returns of each stock market index, Figure 9-12 show the fitted
series for: (i) the conditional mean, Fi_1(R:) = E(R:|F¢—1); (ii) the parameter a; of the Frank
copula; and (iii) the probability p; = Pr(R; > 0|F¢—1). In all four markets, we see that declining
stock prices are accompanied by increased return volatility, higher values of «y, and smaller values
of p;. Recall that a; captures the dependence between |R;| and S;, so that an increase in «ay
corresponds to an increase in return skewness when all else is held constant. This finding of positive
or less negative ay being associated with lower stock prices is broadly consistent with the results
of Conrad et al. (2013). But here we see that periods where return skewness would increase due
to increasing oy are offset by the decreasing p;. The net effect on the conditional mean is different
across markets. Looking at the S&P 500 and FTSE 100 around 2009 we see that F;_1(R;) was
more volatile but also holding at larger positive value for sustained periods, perhaps in anticipation
of the market upturn. On the other hand, the DAX and CAC 40 reveal more negative values for
E;_1(R;) during that time.

4.2.2 Specification tests

A correct model specification translates into a set of conditional moment restrictions, which in
turn means that their unconditional counterparts should hold true. Following Nelson (1991) and
Brooks et al. (2005), we test for correct model specification by applying the tests of Newey (1985)
to appropriately standardized returns. Of course, the appropriate standardization depends on the
model used to filter the returns. Indeed if a return series is correctly filtered, then it should have
mean zero, unit variance, and be free of serial correlation. Otherwise, the model is misspecified in

some regard.

4The AG model estimation results with the other copulas are omitted.
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As in Brooks et al. (2005), we test the model specifications by assessing nine moment conditions:

E[Zt] = 0,
Elziz—j] = 0, for j =1,2,3,4,
Ewawi—j] = 0, for j =1,2,3,4,

where the standardized UnGARCH returns are

Rt 2D(I/t)1/t
&t = ‘Et|_E(|€t’): (2St71)>\t - v — 1 ) (29)
2 Yt
= — 30
wy Et v — 27 ( )
with the normalizing function
T ve+1
D(Vt) — ( 2 )

F (%) v
which follows from the properties of the folded Student-t distribution (Psarakis and Panaretos,
1990). Note that D(v) is the normalizing constant of the usual Student-¢ density.

For the BBHP model in (13)-(17), the moment conditions are defined with

while wy is still given by (30). When testing the LRS model in (24)—(27), we replace (29) and (30)
by

Ry
2t = &=,
Ot
wy = zt2—1,

and for the AG model the returns are filtered according to

R
5 = L—l: t

(14 k1) (25, — )by

n? 2 1\?
t

= ————— T (1+—|/T{1+4+—] .
W 1+ k1) ( K) / ( /€>

The results of the moment specification tests are presented in Tables 9-12, where for each of

L,

the nine selected moment conditions the tables report the corresponding sample analogues as well
as the test statistics in parenthesis. If the examined model has fully captured the dynamic features
represented by the moment conditions, then the associated test statistics follow a x?(1) distribution;
asterisks are used in the tables to denote cases of significance at the 5% and 1% levels. As expected,

the findings vary a great deal across models and markets.

17



For the S&P 500 (Table 9), the tests statistics for E[z;z:—1] = 0 are significantly different
from zero under each model specification. A similar result is found for the moment condition
Elwwi—1] = 0, except for the AG models which seem to pass this test. In sharp contrast, however,
the AG models appear misspecified according to almost all the other moment conditions while the
other models generally pass the specification tests. The evidence about the AG model failing to
satisfy most of the moment criteria shows up also in Tables 10-12 with the FTSE 100, DAX, and
CAC 40. Indeed, the AG model consistently fails five or more of the nine moment tests in these
markets. The UnGARCH models seem to improve further upon the LRS and BBHP specifications.
In the case of the FTSE 100 (Table 10), for instance, the UnGARCH is the only model to pass all
specification tests. And with the CAC 40 (Table 12), the UnGARCH model with the Frank and
RC90 copulas also passes unblemished. By looking simply at the total number of moment conditions
satisfied over all four markets, we see that among all the model specifications the UnGARCH seems
to best capture the features of the data.

Of course, the conditional moments tests may not detect all potential sources of misspecifica-
tion. So after the formal model comparisons presented next, we also evaluate the out-of-sample

forecasting performance of the competing models.

4.2.3 Model comparisons

In order to formally compare the different model specifications, we use the reversible jump MCMC
(RIMCMC) method of So et al. (2005) and Chen et al. (2006) which they adapted from Green (1995)
to the case of GARCH-type models. The RJ sampler can be viewed as an extension of the MH
algorithm to more general state spaces. The RJIMCMC method estimates posterior probabilities
between pairs of competing models by allowing jumps between (possibly non-nested) models of
different dimensions inside an MCMC sample. To explain the pairwise comparison method, let
M denote the LRS model and My the UnGARCH-Frank model, for example. The parameters of
M, are ®; = (011,012,013) with 011 = (wo,w1,w2), €12 = (70,71,72), and 813 = (dp,d1,d2). The
parameters of My are @y = (621,022, 023) with 021 = (wg, w1, ws, o, 01, 92), 22 = (o, ¥1, Y2, 3),
and O3 = (bo,b1,b2). As in Chen et al. (2006), we create a one-to-one bijective transformation
between the two models by defining u; = @2 and us = ©1; see also Vrontos et al. (2002). This
implies that the Jacobian determinant of the transformation from (@1,u1) to (ug2, ®2) equals 1,
and it also ensures the necessary dimension-matching condition: dim(®;) + dim(wu;) = dim(u2) +
dim(®y).

To apply the RIMCMC method we must choose prior probabilities of a jump from model M;
to Mj, denoted as j(M;, M;). The output from the independent MH sampler can then be used to
obtain a full probabilistic description of the posterior probabilities of each model, in addition to the
posterior distributions of the individual model parameters. Specifically, after the first K; random

walk MH burn-in steps, we start at £ = 1 from model M; with initial parameters G)[l” and the RJ
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sampler then proceeds along the following steps until k£ equals Ka:

Step 1. Generate ©% in M from the proposal density g;(u1), and accept the jump from M
to My with probability min(gp, 1), where
. k
_ L(y[Ms, ©8) m(©5|My) p(My) j(M, My) g>(©}))

L(y|My, 0y r(@M |01y) p(My) (Mo, My) 1 (©8)

Increment £ by 1. If the jump from M; to Ms was accepted, set @gﬂ equal to ©% and go

to Step 2. Otherwise, update @[lk_l] to @gk] within M7 according to the independent MH
scheme and go to Step 1.

Step 2. Generate ®F in M; from the proposal density ¢2(u2), and accept the reverse jump
from M, back to M; with probability min(gp, 1), where now
. k
_ L(y[M1, ©F) m(©F|My) p(My) (Mo, My) g1 (©})

L(y|My, ©F) 1(@F |My) p(My) (M, M) go(©F)

Increment £ by 1. If the jump from My to M; was accepted, set @gk} equal to ©) and go

to Step 1. Otherwise, update @[Qk_l] to @gk] within Ms according to the independent MH
scheme and go to Step 2.

Upon completion, the number of times out of Ky that each model is chosen provides an estimate
of its posterior probability, Pr(M;|y). Here we set j(Mi, Ms) = j(Ms, M1) = 1 to allow jumps
between models at each iteration. The priors 7(@;|M;) appearing in the expressions for p are again
taken as uniform over their respective parameter spaces, and we set the prior model probabilities as
p(M;) =1/2,i = 1,2. Following Chen et al. (2006), the joint proposal densities ¢;(u;) are chosen as
the product of the independent normal proposal distributions built up during the first K; random
walk MH steps. See Hastie and Green (2012) for a recent and more detailed presentation of the
RJMCMC method.

Table 13 presents the estimated posterior model probabilities of the models listed in the column
heading versus each model listed on the rows, in turn. So with the S&P 500 returns for example,
the UnGARCH-Frank model has a posterior probability estimate of 0.85 when compared to the
UnGARCH-FGM model. We see immediately that the UnGARCH models are strongly preferred
to the AG models, with posterior model probabilities of 1. The UnGARCH specifications are also
generally preferred to the LRS and BBHP models. The notable exceptions occur when the RC270
copula is used, which tends to find far less support relative to the other competing models. Indeed,
with FTSE 100, DAX, and CAC 40 returns, the UnGARCH-RC270 versus LRS comparison yields
posterior probabilities of only 0.03, 0.06, and 0.18, respectively; and UnGARCH-RC270 versus
BBHP yields 0.09, 0.10, 0.08, respectively.
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These findings clearly show that the choice of copula matters for UnGARCH model selection.
With these data, the general conclusion is that there is little support for tail dependence in the
fourth quadrant. Among the UnGARCH specifications, the Frank copula, closely followed by the
FGM copula, which both allow positive and negative dependence, seems to find the strongest

support across all four markets.

4.2.4 Out-of-sample forecasting results

In this section we evaluate the out-of-sample forecasting performance of the competing models.
Specifically, we examine their ability to predict the conditional mean and quantiles of the one-day-
ahead return distribution. The forecasts are obtained using a rolling data window of size 2000 and
updating the model parameter estimates every month, which leaves the period from July 2, 2007
to October 12, 2012 for evaluation.®

Conditional mean predictions. A distinguishing feature of the AG and UnGARCH models is
that they both predict a time-varying conditional mean pu; = E(R;|$i—1), which corresponds to
the optimal forecast of R; under a quadratic loss function. It is therefore interesting to compare
the return forecasts from these models. Table 14 shows the out-of-sample forecasting results under
both quadratic and absolute loss functions. Specifically, we report losses relative to the “no change”
benchmark associated with a random walk model of asset prices, so that a ratio less (greater) than
1 indicates that a model has a smaller (larger) loss than the benchmark. We see that the models
actually have ratios close to one, which is not very surprising as daily returns have a conditional
mean that does not deviate far from zero. Nevertheless, the UnGARCH models seem to perform
slightly better than their AG counterparts. Indeed, the UnGARCH-Frank specification achieves
the smallest losses on average across the four markets.

We formally tested these out-of-sample predictions in the context of a standard Mincer-Zarnowitz

regression (Mincer and Zarnowitz, 1969) taking the form
Ry =ao+a1ju + &,

where R; is the actual market return at time ¢ and ji; is the conditional mean return predicted at
time ¢t — 1. If the forecasts are unbiased, then ag = 0 and a; = 1. Table 15 reports the results
for the variety of AG and UnGARCH models. The AG specifications appear at odds with the
unbiasedness hypothesis. Indeed, 21 of the 32 AG models have p-values < 5%. In sharp contrast,
only 3 of the 16 UnGARCH models (UnGARCH-RC270 with S&P 500, FTSE 100, and CAC 40
returns) reject the null hypothesis at this level.

Value-at-risk predictions. The Basel II Accord on banking regulations specifies the value-at-risk

(VaR) as the preferred measure of market risk for calculating minimum capital requirements. For a

SFollowing standard practice, the estimates are based on the posterior means. Even though this approach is

efficient, it ignores the parameter uncertainty captured by the rest of the posterior distribution.
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given probability level and a certain time horizon, the VaR of a portfolio is defined as the threshold
value such that the loss suffered by the portfolio over the given horizon will only exceed it with the
stated probability. For example, if p denotes the probability level, then the one-day VaR on a long
position is defined via

Pr(R; < VaRl|Fi—1) = p,

which makes clear that the VaR! corresponds to the p100% conditional quantile of R;. We use
each of the competing models to forecast VaRY over the evaluation period setting p = 1%, 5%. The
VaR forecasts are obtained analytically for the BBHP model, whereas Monte Carlo simulations are
used with the LRS, AG, and UnGARCH models to obtain the one-day-ahead conditional return
distributions.

A commonly used criterion to compare VaR models is the violation rate p, defined as the
number of VaR exceedances (violations) divided by the evaluation sample size. The VaR forecasting
performances are summarized by reporting the ratios p/p for each model, which ideally should be
close to one. Otherwise if p/p < 1, then loss estimates are too conservative (higher than actual),
while a ratio p/p > 1 means that actual losses are underestimated. Table 16 shows the results,
where the entries in bold indicate the model whose ratio p/p is closest to one. The results depend
on the nominal p. Indeed, for p = 0.05 the violation ratio of the BBHP model comes closest to one,
while for the more extreme value p = 0.01 the best model is the UnGARCH-RC90. It is interesting
to observe the consistency of these performances across the four markets. We further assess the
VaR forecasts with the unconditional coverage (UC) test of Kupiec (1995), the conditional coverage
(CC) test of Christoffersen (1998), and the dynamic quantile (DQ) test of Engle and Manganelli
(2004) using four lags. These tests are quite standard in the VaR forecast evaluation literature; see
Kuester et al. (2006) for details. Following Gerlach et al. (2011), we summarize the test outcomes
in Table 17 by reporting the number of test rejections at the 5% significance level over the four
markets. Here the bold entries indicate the model achieving the lowest number of rejections. The
UnGARCH-RC90 specification is seen to perform remarkably well, with only three rejections across
markets and values of p.

We next investigate the economic significance of the various models by comparing their implied
capital charges under the Basel Accord. For model comparison purposes, we follow McAleer and
da Veiga (2008) and da Veiga et al. (2012) and compute the market risk capital charges according
to

cc¢® = min (cc(3 + k), VaR}),
where cc = 6—10 2?21 VaR??'_OZ-1 is the average 1% VaR over the last 60 days. The multiplicative
factor k is a penalty imposed when the number of VaR violations (over the last 250 days) becomes
excessive. The specific values for each “penalty zone” are given in Table 18. A bank falling in the
green zone is deemed to have an adequate model and does not incur a penalty. Once in the yellow

zone, however, banks are required to hold more capital in reserve as protection against losses in
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their trading portfolios. If a bank’s internal model results in too many VaR violations and enters the
red zone, regulators may require the bank to adopt a standardized approach which can lead to even
higher capital charges. Obviously, a high capital charge is undesirable as it reduces profitability.
It is important to note that the capital charge calculation depends on both the penalty and the
forecasted VaR.

The results of the regulatory backtesting are summarized in Table 19. For each model and
market, we report the average capital charge and penalty incurred over the last 250 trading days,
as well as the proportion of time spent in each penalty zone. Due to the initial window of size
250, these backtesting results cover the period from June 2, 2008 to October 12, 2012 (about 1100
trading days). For the S&P 500, the UnGARCH models yield the lowest capital charges. Among
these, the UnGARCH-RC90 specification performs remarkably well with an average penalty of 0.17
and VaR forecasts falling in the green zone 60% of the time.

In the case of the FTSE 100, the UnGARCH-Frank model achieves the lowest capital charge
(10.95) with VaR forecasts comfortably falling in the green zone 69% of the time and never in the
red zone. The UnGARCH models are clearly favoured by the DAX returns. For instance, the
UnGARCH-FGM model delivers an average capital charge of 11.97 while spending 93% of the time
in the green zone. Finally, with the CAC 40, the VaR forecasts from the UnGARCH specifications
with rotated Clayton copulas are 98% of the time in the green zone, while the resulting average

capital charges are among the lowest attained by all the models.

5 Conclusion

This paper has proposed a new and flexible GARCH-type model for autoregressive conditional
higher moments based on a decomposition of returns into their signs and absolute values. The
approach combines models for the marginal distributions of signs and absolute values, and a copula
for their interaction. The novelty of this approach is that return skewness is determined via the cop-
ula function, which may evolve separately over time from the conditional kurtosis itself determined
through the degrees of freedom of the folded Student-¢ distribution. Under the independence copula
structure, the model reduces to the autoregressive conditional kurtosis specification of Brooks et al.
(2005). Furthermore, if the degrees-of-freedom parameter is constant, then the model becomes a
GARCH specification a la Bollerslev (1987). The conditional expectation of returns under the
proposed copula approach may vary over time, since it is determined by the interaction between
the signs and absolute values of returns.

We adopted a Bayesian approach using MCMC sampling for estimation and inference. This
choice was motivated by the fact that the likelihood function is rather complicated and not ev-
erywhere differentiable owing to the presence of the absolute value and indicator functions. We

found that a Bayesian approach with non-informative priors gave satisfactory results. We also

22



illustrated the proposed UnGARCH model along with a host of alternative specifications through
an application to the daily returns on four major international stock market indices for the period
from January 4, 1999 to October 12, 2012. The results of in-sample conditional moment tests show
that among all the considered models the UnGARCH seems to best capture the features of the
daily returns. A formal Bayesian in-sample model comparison further shows that the new model
is generally favoured over the competing models. The results obtained with the new copula model
reveal interesting patterns for the model-implied conditional expectation of returns, particularly
during the recent global financial crisis.

The out-of-sample analysis demonstrated that the UnGARCH model for conditional higher mo-
ments offers forecasting improvements over the competing specifications. Specifically, we examined
the predictive ability of the time-varying conditional mean from the new model using standard
Mincer-Zarnowitz regressions, and the forecasts were found to be generally compatible with the
unbiasedness hypothesis. We also illustrated the economic significance of the various models with
a risk management application focused on value-at-risk forecasting. The results of a regulatory
backtesting exercise show that the proposed UnGARCH model improves upon the other competing

models by yielding low average capital charges while being subject to relatively fewer penalties.
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Table 2. Summary statistics of daily log-returns (in percentages)

Mean Std. Dev. Max Min Skewness Kurtosis

S&P 500 0.004 1.342  10.957 -9.469 -0.151 10.064
FTSE 100 -0.001 1.291 9.384 -9.264 -0.119 8.418
DAX 0.011 1.613 10.797 -7.433 0.030 6.808
CAC 40 -0.004 1.553  10.595 -9.472 0.029 7.468

Table 3. Estimation results for the BBHP and LRS models

Model wo w1 wo do 01 d2 Yo oGt Y2

Panel A: S&P 500 returns

BBHP  0.013  0.090 0904 3334 0731  0.063
(0.005)  (0.011) (0.010) (0.106) (0.084)  (0.017)
[-0.422] [-0.725] [0.812] [-0.706] [-0.163] [-0.041]

LRS 0.016  0.088 0901 2510  0.003 0260 -0.067 0008  0.228
(0.006)  (0.018) (0.016) (0.193) (0.004) (0.530) (0.015) (0.004)  (0.073)
[-0.480] [0.101] [-0.190] [-0.498] [-0.282] [0.528] [-1.247] [-0.862] [-0.969]

Panel B: FTSE 100 returns

BBHP 0017  0.114 0879 2801 0474  0.123
(0.001)  (0.002) (0.002) (0.016) (0.006)  (0.009)
[0.650]  [0.397] [-0.349] [-1.508] [-0.446] [1.916]

LRS 0015  0.101  0.889 2981  0.002  0.055 -0.049  0.002  0.558
(0.004)  (0.005)  (0.006) (0.008) (0.001) (0.004) (0.012) (0.001)  (0.035)
[1.846]  [1.423] [-2.337] [0.555] [0.361] [-2.654] [-0.972] [-0.553] [-1.518]

Panel C: DAX returns

BBHP  0.022  0.095 0899  3.093 0675  0.042
(0.006)  (0.007)  (0.008) (0.040)  (0.035)  (0.019)
[0.068] [-0.129] [0.154] [-0.645] [0.321]  [1.239]

LRS 0.022 0083 0907 2778  0.009  0.122  -0.056  0.002  0.350
(0.008)  (0.006)  (0.008) (0.058) (0.006) (0.032) (0.011) (0.004) (0.029)
[0.274] [-0.259] [0.354] [0.201] [-1.786] [-0.160] [-0.875] [0.727] [-0.519)]

Panel D: CAC 40 returns

BBHP  0.021  0.094 0901 2470 0553  0.229
(0.006)  (0.008) (0.009) (0.043) (0.024)  (0.021)
(0.475]  [-0.551]  [0.364] [-0.283] [0.443]  [0.297]

LRS 0.021 008  0.905 2554  0.004 0199  -0.097  0.001  -0.187
(0.010)  (0.014) (0.015)  (0.099) (0.005) (0.055) (0.030) (0.009)  (0.105)
(0.994]  [1.393] [-2.095] [2.372] [1.324] [-0.306] [-0.856] [-1.294] [-0.408]

Notes: This table reports the posterior means of each parameter, and the associated NSEs are shown in

parentheses. The numbers in square brackets are the values of the Geweke (1992) convergence test statistic.
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Table 8. Estimation results for the AG model

wo w1 w2 K ©®o Y1 P2 ©3 o bo b1 b2

Panel A: Constant Frank copula: S&P 500 returns

0019 0043 0947 1115 0242  -0.025 -0.251  0.507  -0.279
(0.023)  (0.035) (0.040)  (0.039)  (0.032) (0.131) (0.042) (0.107) (0.038)
[-0.151] [-0.135] [0.191]  [-1.068]  [0.573] [-0.435] [-1.191] [-0.397] [-0.830]

Panel B: Time-varying Frank copula: S&P 500 returns

0.019 0045  0.945 1114 0235 0021  -0.250  0.499 0274 0210  0.376
(0.018)  (0.027) (0.031)  (0.031)  (0.051) (0.179) (0.042)  (0.094) (0.086)  (0.104)  (0.130)
[-0.229] [-0.767] [0.331] [—0.083] [-1.023] [0.244]  [0.564] [-0.024] [1.024] [1.110] [-0.872]

Panel C: Constant Frank copula: FTSE 100 returns

0020  0.049 0940  1.169  0.093  -0.018 -0.095  0.503  -0.040
(0.027)  (0.044) (0.052)  (0.041)  (0.044) (0.128) (0.058) (0.086)  (0.060)
(0.139]  [0.082] [-0.041] [-0.883] [-1.073] [-0.700] [0.993]  [0.370]  [0.699]

Panel D: Time-varying Frank copula: FTSE 100 returns

0.020  0.049  0.940 1.169  0.094  -0.023  -0.095  0.507 -0.068  0.101  0.323
(0.020)  (0.031) (0.035)  (0.039)  (0.045) (0.151) (0.055) (0.101) (0.054)  (0.084)  (0.107)
[-1.597] [-1.086] [0.798] [—0.469] [-1.390] [-0.599] [0.254]  [-0.073] [-0.249]  [0.835]  [0.765)]

Panel E: Constant Frank copula: DAX returns

0019 0037  0.951 1115 0.149  0.008  -0.065  0.496  -0.194
(0.025)  (0.035) (0.043)  (0.053)  (0.046) (0.159) (0.061) (0.102)  (0.050)
[1.065]  [1.074] [-1.062] [0.741]  [0.293] [-0.791] [-0.324] [0.347]  [0.740]

Panel F: Time-varying Frank copula: DAX returns

0.020 0.039  0.948 1118 0150  -0.046  -0.072  0.500 -0.135  -0.001  0.314
(0.023)  (0.031) (0.038)  (0.055)  (0.030) (0.197)  (0.056)  (0.094) (0.073)  (0.080) (0.122)
[0.888]  [0.912] [-0.881] [0.476]  [-0.398] [-1.202] [-0.742] [-0.762] [-0.908] [0.800] [-1.052]

Panel G: Constant Frank copula: CAC 40 returns

0019 0041 0949  1.151  0.112  -0.045 -0.158  0.502  0.036
(0.017)  (0.025) (0.031)  (0.053)  (0.041) (0.109) (0.049) (0.079) (0.052)
(0.866]  [0.591] [-0.608] [0.335]  [-0.022] [0.797] [0.531] [0.196]  [0.503]

Panel H: Time-varying Frank copula: CAC 40 returns

0.021 0.045  0.942 1154 0109  0.003  -0.1564  0.488 0.033  -0.019  0.318
(0.016)  (0.023) (0.032)  (0.048)  (0.021) (0.159) (0.032)  (0.086) (0.058)  (0.058)  (0.110)
[0.201]  [0.135] [0.017] [—0.306] [-0.229] [1.156] [0.324] [-1.841] [-0.349]  [0.739]  [0.942]

Notes: This table reports the posterior means of each parameter, and the associated NSEs are shown in parentheses. The numbers in

square brackets are the values of the Geweke (1992) convergence test statistic.
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Table 13. Posterior model probabilities

UnGARCH: S&P 500 UnGARCH: FTSE 100

Frank FGM RC90 RC270 Frank FGM RC90 RC270

UnGARCH-FGM 0.854 0.835
UnGARCH-RC90 0.937  0.876 0.934 0.536
UnGARCH-RC270 0.998 0.996 0.976 0.995 0993 0.972
BBHP 0.999 0.996 0.970 0.373 0.949 0.860 0.839 0.094
LRS 0.998 0.997 0.981 0.945 0975 0972 0.912 0.027
AG-Con-Frank 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AG-Con-FGM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AG-Con-RC90 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000
AG-Con-RC270 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000
AG-TV-Frank 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AG-TV-FGM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AG-TV-RC90 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000
AG-TV-RC270 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000
UnGARCH: DAX UnGARCH: CAC 40

Frank FGM RC90 RC270 Frank FGM RC90 RC270

UnGARCH-FGM 0.566 0.856

UnGARCH-RC90 0.726  0.556 0.934 0.579
UnGARCH-RC270 0.994 0.988 0.970 0.996 0.992 0.969

BBHP 0.989 0979 0937  0.102 0.985 0976 0925  0.083
LRS 0.991 0983 0943  0.062 0.993 0990 0951 0.184
AG-Con-Frank 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
AG-Con-FGM 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
AG-Con-RC90 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
AG-Con-RC270 1.000 1.000 1.000  0.999 1.000 1.000 1.000  1.000
AG-TV-Frank 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
AG-TV-FGM 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000
AG-TV-RC90 0.999 0.999 0.999  0.999 1.000 1.000 1.000 1.000
AG-TV-RC270 1.000 1.000 1.000  0.999 1.000 1.000 1.000 1.000

Notes: The entries correspond to the posterior probabilities of the models listed in the column headings

versus each model listed on the rows, in turn.
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Table 14. Out-of-sample forecasting results

S&P 500 FTSE 100 DAX CAC 40

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

UnGARCH-Frank 0.981 0.997 0.994 0.998 1.004 1.005 0.992 1.000
UnGARCH-FGM 0.996 1.001 0.995 0.998 1.005 1.005 0.994 1.001
UnGARCH-RC90 1.007 1.004 0.998 0.999 1.009 1.006 1.000 1.003
UnGARCH-RC270  1.019 1.011 1.006 1.004 1.008  1.003 1.008 1.002
AG-Con-Frank 0.999 1.001 1.015 1.005 1.012 1.005 0.997 1.001
AG-Con-FGM 1.041 1.009 1.019 1.003 1.012 1.004 0.999 1.001
AG-Con-RC90 1.020 1.008 1.008 1.002 1.005 1.004 1.021 1.008
AG-Con-RC270 1.027 1.004 0.998 0.999 1.004 1.003 1.036 1.011
AG-TV-Frank 1.034 1.007 0.996 0.999 1.009 1.004 0.995 1.003
AG-TV-FGM 1.011 1.004 1.018 1.012 1.010 1.003 0.995 1.001
AG-TV-RC90 1.037 1.005 1.005 1.003 1.004 1.003 0.998 1.002
AG-TV-RC270 1.053 1.027 1.009 1.006 1.013 1.008 1.008 1.005

Notes: The entries are ratios computed as the RMSE (MAE) for each model’s forecast relative to the cor-
responding loss of the “no change” benchmark forecasts associated with a random walk model. A ratio less
(greater) than 1 indicates that the model has a smaller (larger) loss than the benchmark. The smallest relative

losses are shown in bold.
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Table 16. VaR violation ratios

p=0.01 p=0.05

S&P 500 FTSE 100 DAX CAC 40 S&P 500 FTSE 100 DAX CAC 40

BBHP 0.38 0.37 0.44 0.22 0.86 0.90 0.86 0.84
LRS 1.50 0.75 0.67 0.66 1.88 1.89 1.79 1.95
UnGARCH-Frank 1.88 1.72 1.33 1.77 1.41 1.47 1.43 1.67
UnGARCH-FGM 1.73 1.87 1.18 1.55 1.41 1.53 1.42 1.62
UnGARCH-RC90 1.50 1.05 1.03 1.03 1.22 1.36 1.24 1.42
UnGARCH-RC270 1.95 1.65 1.26 1.25 1.37 1.38 1.32 1.52
AG-Con-Frank 2.33 1.20 2.00 1.33 1.53 1.53 1.51 1.56
AG-Con-FGM 2.10 1.27 1.92 1.25 1.50 1.54 1.46 1.58
AG-Con-RC90 1.88 1.35 1.55 1.18 1.40 1.39 1.29 1.45
AG-Con-RC270 1.88 1.20 1.55 1.18 1.38 1.42 1.40 1.42
AG-TV-Frank 2.10 1.27 1.70 1.18 1.55 1.53 1.55 1.50
AG-TV-FGM 2.70 3.60 2.29 2.51 1.70 1.89 1.60 1.65
AG-TV-RC90 1.73 1.57 1.55 1.18 1.50 1.42 1.51 1.45
AG-TV-RC270 1.95 1.22 1.70 0.86 1.50 1.50 1.27 1.37

Notes: This table reports the ratios p/p with bold entries indicating the model whose ratio is closest to one.

Table 17. Counts of VaR test rejections across the 4 markets

p=0.01 p=0.05

UC CC DQ UC CC DQ

BBHP 4 3 1 1 1 0
LRS 1 1 1 4 4 4
UnGARCH-Frank 3 3 3 3 2 3
UnGARCH-FGM 2 2 2 3 2 3
UnGARCH-RC90 0 0 1 0 1 1
UnGARCH-RC270 2 1 2 3 3 3
AG-Con-Frank 2 2 2 4 3 4
AG-Con-FGM 2 2 2 4 4 4
AG-Con-RC90 1 1 1 4 3 4
AG-Con-RC270 1 1 1 4 4 4
AG-TV-Frank 2 2 2 4 3 4
AG-TV-FGM 4 4 4 4 4 4
AG-TV-RC90 1 1 1 4 3 4
AG-TV-RC270 2 2 2 4 4 4

Notes: Significance is counted at the 5% level and bold entries

indicate the model with the lowest number of rejections for each test.
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Table 18. Penalty structure

Zone Number of violations k
Green 04 0
Yellow 5 0.40
6 0.50
7 0.65
8 0.75
9 0.85
Red 10+ 1

Notes: The number of VaR violations is

calculated over the last 250 trading days.
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Figure 1. Model-implied conditional moments: S&P 500 returns
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Figure 2. Model-implied conditional moments: FTSE 100 returns
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Figure 3. Model-implied conditional moments: DAX returns
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Figure 4. Model-implied conditional moments: CAC 40 returns
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(a) AG-Con-Frank model

\olatility

= —
S
=
]
= -
=
[ —
= —
T T T T T T T
2000 2002 2004 2006 2008 2010 2012
Time
(b) AG-TV-Frank model
Volatilty Skewness
s - W
o
Q -
=
s 4
=
0
o
s 4
<«
B T T T T T T T
2000 2002 2004 2006 2008 2010 2012
Time
9
i
Zoomed Skewness
S
S
w9 =T
=
S
0
o4 =
s -
T T T T T T T ' T T T T T T T
00 02 004 V06 A8 00 12 2000 2002 2004 2006 2008 2010 2012

Time Time

Figure 5. AG model-implied conditional moments: S&P 500 returns
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Figure 6. AG model-implied conditional moments: FTSE 100 returns
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Figure 7. AG model-implied conditional moments: DAX returns
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Figure 8. AG model-implied conditional moments: CAC 40 returns
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Figure 10. Time series of F;_1(R:), oy, and py: FTSE 100 returns
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Figure 11. Time series of F;_1(R:), at, and p;: DAX returns
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Figure 12. Time series of E;_1(R;), ay, and p;: CAC 40 returns
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