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ABSTRACT

A new GARCH-type model for autoregressive conditional volatility, skewness, and kurtosis is

proposed. The approach decomposes returns into their signs and absolute values, and specifies the

joint distribution by combining a multiplicative error model for the absolute values, a dynamic

binary choice model for the signs, and a copula function for their interaction. The conditional

volatility and kurtosis are determined by innovations following a folded (or absolute) Student-

t distribution with time-varying degrees of freedom, and separate time variation in conditional

return skewness is achieved by allowing the copula parameter to be dynamic. Model estimation

is performed with Bayesian methods using an adaptive Markov chain Monte Carlo algorithm. An

empirical application to the returns on four major international stock market indices illustrates the

statistical and economic significance of the new model for conditional higher moments.
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1 Introduction

Consider a daily financial return at time t, denoted by Rt, which is assumed to be continuously

distributed. It is quite common in empirical studies to see models of the form:

Rt = σtεt, (1)

where the conditional variance σ2
t is specified as a generalized autoregressive conditional het-

eroskedasticity (GARCH) model. In GARCH models à la Bollerslev (1987), the innovation εt

in (1) is assumed to be distributed according to a symmetric Student-t distribution with ν degrees

of freedom. Such a model implies that the conditional distribution of Rt has a time-varying vari-

ance, but a mean and skewness of zero, and constant kurtosis. Recognizing that returns may in

fact be better characterized by a conditional distribution with time-varying asymmetry and tail

heaviness can have important implications for many problems in finance, e.g. for asset allocation,

value-at-risk calculations, or the valuation of contingent claims.

Several studies consider the modeling of conditional moments beyond order two. For instance,

Harvey and Siddique (1999) propose a model based on a non-central Student-t distribution that

allows for time-varying conditional variance and skewness. They apply their model to the daily

returns on several stock market indices and find that autoregressive conditional skewness plays

an important role in return dynamics. This approach allows for time variation in the conditional

skewness, but it still assumes a constant kurtosis. Brooks et al. (2005) (BBHP) develop a model

for autoregressive conditional kurtosis by allowing the degrees-of-freedom parameter of a central

Student-t distribution to vary over time. The resulting model permits the kurtosis to vary separately

from the variance, but cannot produce asymmetric returns. So while Harvey and Siddique focus on

the third moment at the expense of the fourth, the BBHP approach focuses on the fourth moment

at the expense of the third. Brooks et al. (2005) argue that it is more important to allow for time

variation in the conditional kurtosis.

Jondeau and Rockinger (2003) propose an approach for the joint modeling of conditional skew-

ness and kurtosis. Their starting point is the generalized Student-t distribution proposed by Hansen

(1994) which introduces an additional parameter that imparts asymmetry. Jondeau and Rockinger

propose specifications for the dynamics of the degrees-of-freedom and asymmetry parameters, and

show how these values map into the usual coefficients of skewness and kurtosis. This approach is

very restrictive as the dynamics of skewness and kurtosis cannot be disentangled from each other.

Indeed, variation in the asymmetry parameter necessarily entails changes in both the third and

fourth moments. As Jondeau and Rockinger (2003) explain, the tight link between skewness and

kurtosis, in addition to restrictions on the underlying parameters, makes estimation of this model

very difficult; see also the discussion in Jondeau et al. (2007, §5.5) for more on this point. León et al.

(2005) (LRS) propose a completely different GARCH-type model that circumvents the problems

of the Jondeau-Rockinger approach. The LRS model is based on a Gram-Charlier series expansion
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of an assumed normal density function for the innovation terms in (1), truncated at the fourth

moment. The result is a more flexible specification in the sense that it allows for time variation

in skewness and/or kurtosis, in addition to autoregressive conditional variances. The empirical

results presented by LRS suggest the presence of conditional skewness and kurtosis in daily stock

index returns. The potential shortcoming of the LRS approach, however, is that it requires the

truncation of the Gram-Charlier expansion and may thus provide a poor approximation to the true

return distribution (Del Brio and Perote, 2012).

In this paper, we propose a new and very flexible approach to modeling conditional higher mo-

ments. Following Anatolyev and Gospodinov (2010), our approach starts by decomposing returns

into their signs and absolute values. The joint distribution of return signs and absolute values is

then obtained by combining a multiplicative error model for the absolute returns, a dynamic binary

choice model for the signs, and a copula joining function for their interaction. Here the innovations

follow a folded (or absolute) Student-t distribution with time-varying degrees of freedom, which

allows for autoregressive conditional return kurtosis. Separate time variation in conditional return

skewness is achieved by allowing the copula parameter to have its own autoregressive dynamics. The

equations governing the dynamics of second, third, and fourth conditional moments are very similar

to those of the usual GARCH framework. We refer to the resulting models as “unfolded” GARCH

models, as the approach takes a folded distribution for the absolute returns and transforms it into a

distribution for the returns themselves by joining their signs with the absolute values. The BBHP

model is a special case of this approach that obtains under the independence copula specification,

which in turn nests the Bollerslev (1987) specification with constant conditional kurtosis. Another

interesting feature of the proposed copula model is that the conditional expectation of returns need

not be zero, since its (possibly time-varying) value depends on the interaction between signs and

absolute return values.

The rest of the paper is organized as follows. Section 2 describes the proposed methodology by

first presenting the models for the marginal distributions of signs and absolute return values, and the

copula model for their interaction. The likelihood function is then derived, followed by a discussion

of how to compute the model-implied conditional mean, variance, skewness, and kurtosis. Section

3 presents our Bayesian estimation method based on the adaptive Markov chain Monte Carlo

(MCMC) scheme of Gerlach et al. (2011) and Chen et al. (2012). Section 4 begins by presenting

some simulation results about the performance of the MCMC sampler for posterior inference with

the proposed model. This section then moves on to an empirical analysis of the daily returns on

four major international stock market indices. For comparison purposes, we consider several other

models that are close to our proposed specification, including the BBHP and LRS models. We

evaluate the relative performance of the competing models using both in-sample and out-of-sample

statistical comparisons. In addition, we provide evidence regarding the economic significance of

these models in the context of a risk management application. Section 5 concludes.
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2 Model description

Consider again the daily financial return Rt in (1), but now observe that it can be decomposed as

Rt = |Rt| sign(Rt)

= |Rt| (2St − 1) , (2)

where St = I[Rt > 0] and I[A] is the indicator function of event A. Our model specifies marginal

distributions for |Rt| and St, and a copula for the interaction of these two random variables.

Observe also that with this approach the mean of Rt need not be exactly zero every day. Indeed,

the decomposition in (2) implies that µt = E(Rt |Ft−1) is given by

µt = 2ξt − E(|Rt| |Ft−1), (3)

where ξt = E(|Rt|St |Ft−1) is the expected cross-product of |Rt| and St, and the expectations

are conditional on Ft−1, the information set available at time t − 1. The conditional distribution

of St is of course Bernoulli B(pt |Ft−1), where pt denotes the conditional probability Pr(Rt >

0 |Ft−1) = E(St |Ft−1). The next subsections describe the models for pt and |Rt|, and the copula

model specifications. Observe first that if Rt is symmetrically distributed around zero, then |Rt|
and St are independent and pt = 1/2 (Randles and Wolfe, 1979, Lemma 2.4.2). In this case,

E(St |Ft−1) = 1/2 and hence µt = 0. If on the contrary |Rt| and St are not independent, then

the distribution of Rt is asymmetric and µt may change over time depending on how |Rt| and St

interact. Since µt is free in this context, we proceed by specifying the uncentered moments of Rt

and then show how to find the model-implied centered moments.

2.1 Marginal distributions

The absolute value of the return appearing in (2) is modeled in multiplicative form as

|Rt| = λt |εt|, (4)

where λt is Ft−1-measurable and |εt| follows an absolute distribution, also called a folded distribution

by Leone et al. (1961) and Psarakis and Panaretos (1990) who introduce the folded normal and

Student-t distributions, respectively. To better understand these so-called “folded” distributions,

suppose there exists an underlying random variable εt whose conditional distribution given Ft−1 is

continuous and symmetric around zero. Let gεt(x |Ft−1) and Gεt(x |Ft−1) denote the conditional

density and distribution functions, respectively, of εt. Folding gεt(x |Ft−1) at x = 0 results in the

distribution of the random variable |εt| whose conditional distribution function is defined as

F|εt|(x |Ft−1) = 2Gεt(x |Ft−1)− 1, for x ≥ 0, (5)
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which, upon differentiation, is equivalent to f|εt|(x |Ft−1) = 2gεt(x |Ft−1), x ≥ 0, in terms of the

conditional probability density functions. It is also easy to see that the even moments of |εt| and

εt are identical.

We assume that the random term |εt| in (4) is independent and identically distributed (i.i.d.)

as a folded Student-t variate with degrees-of-freedom parameter νt, conditional on Ft−1. The

conditional second and fourth moments of (4) are then given by

m2,Rt = λ2
t

νt
(νt − 2)

, (6)

m4,Rt = λ4
t

3ν2
t

(νt − 2)(νt − 4)
, (7)

respectively. Rearranging (6) shows that λt can be expressed as

λt =

(
m2,Rt

(νt − 2)

νt

)1/2

, (8)

which, upon substitution in (7), can then be used to find that

νt =
2(2m4,ε∗t

− 3)

m4,ε∗t
− 3

, (9)

where |ε∗t | = |εt|
√

(νt − 2)/νt is the innovation term in (4) standardized to have a second moment

equal to unity. These last two equations show that the dynamics of νt and λt are determined by

those of m2,Rt and m4,ε∗t
= m4,Rt/m

2
2,Rt

, which may be modeled separately with the restriction that

νt > 4 to ensure the existence of the fourth moment in (7) and hence that of the second moment

in (6). Observe that these requirements also guarantee that λt > 0 in (4).

Similarly to Brooks et al. (2005) who model time-varying conditional variance and kurtosis,

we parameterize the conditional second and fourth moments, m2,Rt and m4,ε∗t
, as GARCH-type

processes, expressed as

m2,Rt = ω0 + ω1R
2
t−1 + ω2m2,Rt−1 ,

m4,ε∗t
= δ0 + δ1

R4
t−1

m2
2,Rt−1

+ δ2m4,ε∗t−1
,

with the following restrictions to ensure positivity and stationarity: ω0, δ0 > 0, ω1, ω2, δ1, δ2 ≥ 0,

and ω1 + ω2 < 1, δ1 + δ2 < 1. Observe from (9) that νt → ∞ implies that m4,Rt/m
2
2,Rt
→ 3,

the standardized fourth moment of the folded normal distribution. The parameters describing

the marginal distribution of |Rt| are grouped into θ1 = (ω0, ω1, ω2, δ0, δ1, δ2), with the additional

restriction 4 < νt < 30 to ensure a proper posterior density (Bauwens and Lubrano, 1998).

As we already mentioned, the conditional distribution of St is Bernoulli B(pt |Ft−1) with proba-

bility mass function fSt(v |Ft−1) = pvt (1−pt)1−v, where pt = Pr(Rt > 0 |Ft−1). Following Anatolyev
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and Gospodinov (2010), we parametrize pt as a dynamic logit model of the form

pt =
exp(θt)

1 + exp(θt)
(10)

with

θt = ϕ0 + ϕ1R
2
t−1 + ϕ2St−1 + ϕ3θt−1,

which resembles a GARCH equation. The inclusion of R2
t−1 on the right-hand side is motivated

by the work of Christoffersen and Diebold (2006) who show that volatility dynamics can generate

time variation in Pr(Rt > 0 |Ft−1). It is interesting to note that the dynamic logit model can be

rewritten as

log
pt

1− pt
= ϕ0 + ϕ1R

2
t−1 + ϕ2St−1 + ϕ3 log

pt−1

1− pt−1
,

making clear how the (log of the) odds that Rt > 0 at time t depend on their lagged values. We

stack all the parameters into θ2 = (ϕ0, ϕ1, ϕ2, ϕ3) and impose |ϕ2|, |ϕ3| < 1 to ensure stationary

dynamics. See de Jong and Woutersen (2011) for more on dynamic binary choice models.

2.2 Joint distribution

In order to construct the bivariate distribution of Yt = (|Rt|, St)′, we appeal to the theory of copulas;

see, e.g. Trivedi and Zimmer (2005) and Patton (2012) for recent surveys. Specifically, it is well

known that a conditional meta-distribution can be created as

FYt(u, v |Ft−1) = C
(
F|Rt|(u |Ft−1), FSt(v |Ft−1)

∣∣Ft−1

)
,

where F|Rt|(u |Ft−1) and FSt(v |Ft−1) are the conditional distribution functions of |Rt| and St,

respectively, and C(w1, w2 |Ft−1) is a conditional copula distribution function with dependency

parameter αt. From Anatolyev and Gospodinov (2010), the joint conditional density/mass function

of |Rt| and St is given by

fYt(u, v |Ft−1) = f|Rt|(u |Ft−1)%t
(
F|Rt|(u |Ft−1)

)v(
1− %t

(
F|Rt|(u |Ft−1)

))1−v
, (11)

where %t(z) = 1 − ∂C(z, 1 − pt |Ft−1)/∂w1. Observe that (11) is a product of the marginal

density of |Rt| and the “deformed” Bernoulli mass of St whose success probability is given by

%t
(
F|Rt|(u |Ft−1)

)
, which need not equal pt.

The copula parameter measures the dependence between |Rt| and St. Indeed, recall that if Rt

is symmetric, then |Rt| and St are independent. On the other hand, negative (positive) skewness

means that the dependence between |Rt| and St is negative (positive). To capture the potentially

time-varying conditional return skewness, we parameterize the copula parameter as

αt = b0 + b1|Rt−1|(1− St−1) + b2αt−1, (12)
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which is an example of what Manner and Reznikova (2012) call an “observation driven” copula

model. Here the forcing variable is |Rt−1|(1 − St−1), which equals |Rt−1| when Rt−1 is negative,

and zero otherwise. This choice is motivated by the fact again that if daily returns are skewed, then

we expect it to be mostly left skewness. The parameters of (12) are regrouped in θ3 = (b0, b1, b2).

Depending on the copula, additional restrictions may be needed to ensure that αt is admissible.

Below we list four choices of bivariate copulas that will be used in the empirical application. Since

they are well known, we only give very brief descriptions.

Frank copula. The conditional Frank copula is

C(w1, w2 |Ft−1) = − 1

αt
log

(
1 +

(e−αtw1 − 1)(e−αtw2 − 1)

e−αt − 1

)
,

where αt < 0 (αt > 0) implies negative (positive) dependence. As αt → 0, the Frank copula

approaches the independence copula, C(w1, w2) = w1w2. Therefore we define the function %t(z)

appearing in (11) as

%t(z) =


(

1− 1−e−αt(1−pt)
1−eαtpt eαt(1−z)

)−1
, for αt 6= 0,

pt, for αt = 0.

Farlie-Gumbel-Morgenstern copula. The conditional Farlie-Gumbel-Morgenstern (FGM) cop-

ula is

C(w1, w2 |Ft−1) = w1w2

(
1 + αt(1− w1)(1− w2)

)
where αt ∈ [−1, 1] and αt < 0 (αt > 0) implies negative (positive) dependence. Note that this

copula only permits modest dependence, which is not restrictive in our application. The %t(z)

function appearing in (11) is given as

%t(z) = 1− (1− pt)
(
1 + αtpt(1− 2z)

)
,

with %t(z) = pt when αt = 0, i.e. when the marginals are independent. In order to ensure that

αt ∈ [−1, 1], we follow Almeida and Czado (2012) and reparametrize the FGM copula dynamics as

αt =
exp(2φt)− 1

exp(2φt) + 1
,

with φt = b0 + b1|Rt−1|(1− St−1) + b2φt−1 instead of (12).

Rotated Clayton copulas. The conditional Clayton copula is given by

C(w1, w2 |Ft−1) = (w−αt1 + w−αt2 − 1)−1/αt ,
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where αt > 0. The Clayton copula tends to the independence copula as αt → 0. The %t(z) function

appearing in (11) is thus given as

%t(z) =

 1−
(

1 + (1−pt)−αt−1
z−αt

)−1/αt−1
, for αt > 0,

pt, for αt = 0.

The Clayton copula cannot account for negative dependence. Since we expect daily financial returns

to exhibit negative skewness, if at all, we follow Patton (2012) and consider rotated Clayton copulas.

A 90◦ rotation results by flipping the first variable so that (1−W1,W2) is distributed as a Clayton

copula with parameter αt. Large values of αt then imply stronger negative dependence and tail

dependence in the second quadrant (i.e. as w1 → 1 and w2 → 0) rather than the third quadrant

as for the usual Clayton copula. A 270◦ rotation of the Clayton copula also implies negative

dependence, but with tail dependence in the fourth quadrant (i.e. as w1 → 0 and w2 → 1). We use

RC90 and RC270 to denote these rotated Clayton copulas and both are considered in our empirical

application. Here we impose the restriction αt > 0 via the reparametrization αt = exp(φt) with

φt = b0 + b1|Rt−1|(1− St−1) + b2φt−1 instead of (12).

2.3 Special cases

We call the developed model for Rt an unfolded GARCH (UnGARCH) model as it “unfolds” |Rt|
into Rt = |Rt|(2St−1), where |Rt| = λt|εt| with the scale and copula parameters (λt, αt) determined

by GARCH-type processes.

The UnGARCH model nests three other GARCH specifications. Indeed, if St is i.i.d. B(1/2),

then the model innovations follow symmetric Student-t distributions and Rt is governed by the

autoregressive conditional kurtosis model of Brooks et al. (2005) given here as

Rt = λtεt, εt |Ft−1 ∼ tνt , (13)

λt =

(
σ2
t

(νt − 2)

νt

)1/2

(14)

σ2
t = ω0 + ω1R

2
t−1 + ω2σ

2
t−1, (15)

kt = δ0 + δ1
R4
t−1

σ4
t−1

+ δ2kt−1, (16)

νt =
2(2kt − 3)

kt − 3
, (17)

where tνt denotes a Student-t distribution with νt degrees of freedom. The BBHP specification is a

special case of the UnGARCH model which occurs when |Rt| and St are joined by the independence

copula (αt = 0) and when ϕi = 0, i = 0, ..., 3, so that pt = 1/2 in (10). If furthermore νt in (17) is

7



constant over time so that δ1 = δ2 = 0, then the model becomes a GARCH specification with i.i.d.

innovations according to a symmetric Student-t distibution à la Bollerslev (1987). And when the

degrees of freedom tend to infinity, the Student-t distribution collapses to the normal one.

In the empirical application presented in Section 4, we estimate the UnGARCH model allowing

for a time-varying conditional return skewness and we formally compare it to the nested BBHP

specification in (13)–(17) which imposes conditional return symmetry each time period.

2.4 Likelihood function

Assuming a folded Student-t distribution for |εt| means that the conditional density of |Rt| is given

by

f|Rt|(x |Ft−1) =
2

λt

Γ
(
νt+1

2

)
√
νtπ Γ

(
νt
2

) (1 +
x2

λ2
t νt

)− νt+1
2

, for x ≥ 0, (18)

where the leading term 1/λt is the Jacobian factor which arises from (4) upon taking the deriva-

tive of |εt| with respect to |Rt|. The corresponding conditional distribution function is simply

F|Rt|(x |Ft−1) = F|εt|(x/λt |Ft−1), x ≥ 0, where the latter distribution function is given by (5).

The complete set of model parameters is Θ = (θ1,θ2,θ3), comprising the parameters of: (i) the

marginal distribution of |Rt|, (ii) the marginal distribution of St, and (iii) the copula distribution.

Given a sample of returns r1, ..., rT , which yield the realizations y =
(
(|r1|, s1), ..., (|rT |, sT )

)
, the

sample likelihood function can be computed from (11) as

L(y|Θ) =
T∏
t=1

%t
(
F|Rt|(|rt| |Ft−1)

)st{1− %t
(
F|Rt|(|rt| |Ft−1)

)}1−st
f|Rt|(|rt| |Ft−1), (19)

where Θ belongs to Ξ, a set of values satisfying the model’s restrictions. With the Bayesian

inference approach, we follow Geweke (1988, 1989) and impose any model restrictions that take the

form of inequalities through the prior; i.e., we retain only the draws that satisfy the inequalities

when sampling the posterior distribution.

2.5 Conditional mean, variance, skewness, and kurtosis

In this subsection, we explain how to compute the model-implied conditional mean, variance,

skewness, and kurtosis of returns. Recall from (3) that in order to compute the conditional

mean µt = E(Rt |Ft−1), we need ξt and E(|Rt| |Ft−1). The latter term is found from (4) as

E(|Rt| |Ft−1) = λtE(|εt| |Ft−1) with λt given by (8) and where

E(|εt| |Ft−1) = 2

√
vt
π

Γ
(
vt+1

2

)
Γ
(
vt
2

)
(vt − 1)

is found in Psarakis and Panaretos (1990). The term ξt is given by Anatolyev and Gospodinov

(2010) as

ξt =

∫ +∞

0
uf|Rt|(u |Ft−1)%t

(
F|Rt|(u |Ft−1)

)
du,
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which must be evaluated numerically. Upon the change of variable z = F|Rt|(u |Ft−1), this integral

can be rewritten as

ξt =

∫ 1

0
F−1
|Rt|(z |Ft−1)%t(z)dz, (20)

where F−1
|Rt|(z |Ft−1) is the quantile function of F|Rt|(u |Ft−1). From (5), we have that

F−1
|Rt|(z |Ft−1) = λtG

−1
εt

(
z + 1

2
|Ft−1

)
,

where G−1 is the quantile function of a Student-t distribution with νt degrees of freedom.

With µt in hand, the conditional variance of Rt is computed as

Var(Rt |Ft−1) = m2,Rt − µ2
t , (21)

where m2,Rt is given directly by (6). In turn, it is then straightforward to numerically evaluate the

usual coefficients of conditional skewness and kurtosis via

Sk(Rt |Ft−1) = E

[(
Rt − µt
σt

)3

|Ft−1

]
, (22)

Ku(Rt |Ft−1) = E

[(
Rt − µt
σt

)4

|Ft−1

]
, (23)

where σt =
√

Var(Rt |Ft−1) is the conditional standard deviation of Rt. In our empirical applica-

tion, we evaluate (20), (22), and (23) by Monte Carlo integration once the parameter estimates are

obtained.

3 Bayesian inference

The UnGARCH model is highly non-linear and also depends on the absolute value and indicator

functions, which introduce kinks and discontinuities into the sample likelihood function in (19).

This feature makes it very difficult to use classical methods for maximum likelihood estimation

and inference, so we instead prefer to use Bayesian MCMC methods to learn about the model

parameters. Given the sample realizations, y, the posterior distribution takes the usual form:

p(Θ|y) ∝ L(y|Θ)π(Θ), where L(y|Θ) is the sample likelihood function and π(Θ) is the prior

distribution. The prior distribution is taken as uniform over Ξ, the admissible parameter space.

Just like Vrontos et al. (2002) and Ausin and Lopes (2010), we also found that MCMC mixing

can be improved and the computational cost reduced by using simultaneous updating of the highly

correlated parameter groups at each Metropolis-Hastings (MH) step. In the terminology of Chib

and Greenberg (1995), our approach is therefore based on a “block-at-a-time” MH sampler which

updates successively the parameter blocks comprising Θ = (θ1,θ2,θ3).
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We implement the MH sampler according to the adaptive scheme of Gerlach et al. (2011) and

Chen et al. (2012) which combines the random walk MH and the independent kernel MH algorithms,

each based on a mixture of multivariate normal distributions. The random walk part of this scheme

is designed to allow occasional large jumps, perhaps away from local modes, thereby improving the

chances that the Markov chain will explore the posterior distribution. Let Θ−i denote the vector

Θ excluding the block θi.

Starting at k = 1 with Θ[1] = (θ
[1]
1 ,θ

[1]
2 ,θ

[1]
3 ), the K1 random walk MH iterations for Θ proceed

as follows:

Step 1. Increment k by 1 and set Θ[k] equal to Θ[k−1].

Step 2. For i = 1, 2, 3 in turn, generate θpi as

θpi = θ
[k]
i + ε, ε ∼ ρN(0,diag{ci}) + (1− ρ)N(0, τdiag{ci}),

and replace θ
[k]
i in Θ[k] by θpi with probability min(ζi, 1), where

ζi =
L(y |θpi ,Θ

[k]
−i)π(θpi ,Θ

[k]
−i)

L(y |Θ[k])π(Θ[k])
.

Step 3. If k < K1, go to Step 1.

Upon completion, these first K1 iterations yield the burn-in sample. Following Chen et al. (2012),

we set ρ = 0.95, τ = 100, and tune the vectors of positive numbers ci so that the empirical

acceptance rate lies in the range (0.2, 0.45). Tuning is done every 100 iterations by increasing each

element in ci when the acceptance rate in the last 100 iterations is higher than 0.45, or decreasing

ci when this rate is lower than 0.2.

At the end of the first K1 iterations, the burn-in sample mean µi and covariance matrix Σi of θi

with corresponding lower triangular Cholesky factor Σ
1/2
i are computed for i = 1, 2, 3. The MCMC

sampling scheme then continues for K2 additional iterations according to the following independent

MH steps:

Step 4. Increment k by 1 and set Θ[k] equal to Θ[k−1].

Step 5. For i = 1, 2, 3 in turn, generate θpi as

θpi = µi + Σ
1/2
i ε, ε ∼ ρN(0, I) + (1− ρ)N(0, τI),
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and replace θ
[k]
i in Θ[k] by θpi with probability min(ζi, 1), where now

ζi =
L(y |θpi ,Θ

[k]
−i)π(θpi ,Θ

[k]
−i) q(θ

[k]
i )

L(y |Θ[k])π(Θ[k]) q(θpi )
,

q(θi) ∝ ρ exp

{
−1

2
(θi − µi)

′Σ−1
i (θi − µi)

}
+

(1− ρ)

τdim(θi)/2
exp

{
− 1

2τ
(θi − µi)

′Σ−1
i (θi − µi)

}
.

Step 6. If k < K1 +K2, go to Step 4.

Observe that the use of Σi in Step 5 accounts for the posterior correlation among the elements of

θi, thereby improving the efficiency of the Markov chain.

In the illustrations presented next we set K1 = 30, 000 for the burn-in sample and K2 = 30, 000

with a thinning of 2 for the second sample, resulting in posterior samples comprising 15,000 draws.

The convergence of the second-step Markov chains is assessed in the empirical application using

the Geweke (1992) test. For each parameter, we also assess the accuracy of its posterior mean

by computing the numerical standard error (NSE) according to the batch-means method (Ripley,

1987).

4 Illustrations

Before we apply the proposed model to actual data, we first present in this section the results of

some simulation experiments about the performance of the adaptive MCMC sampler for posterior

inference with the UnGARCH model. The developed model is then illustrated with an empirical

application to the daily returns on four major international stock market indices: the Standard &

Poor’s (S&P) 500 (US), the FTSE 100 (UK), the DAX (Germany), and the CAC 40 (France).

4.1 Simulation results

We consider the UnGARCH model specified in turn with the Frank, FGM, RC90, and RC270

copulas. The true model parameters were set to values close to the posterior means obtained with

the S&P 500 returns, and we consider sample sizes T = 1500 and T = 3000. Starting the recursions

at zero, we simulated 50,000 returns and retained only the last T to mitigate the effects of the initial

values. To see how we simulate data from the UnGARCH model, consider the Frank copula as

an example. Given the simulated returns and parameter values at time t − 1, the next simulated

return R̃t is obtained according to the following steps:

Step 1. Compute p̃t, m̃2,Rt , m̃4,ε∗t
, ν̃t, λ̃t, and α̃t.
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Step 2. Draw z̃ ∼ U [0, 1] and let |ε̃t| = G−1
(
z̃+1

2

)
, where G−1 is the quantile function of a

Student-t distribution with ν̃t degrees of freedom

Step 3. Compute

%̃t =


(

1− 1−e−α̃t(1−p̃t)
1−eα̃tp̃t eα̃t(1−z̃)

)−1
, if α̃t 6= 0,

p̃t, if α̃t = 0.

and set S̃t = I[ũ < %̃t], where ũ ∼ U [0, 1].

Step 4. Compute R̃t = λ̃t|ε̃t|(2S̃t − 1).

These simulation steps exploit the structure of the joint density/mass function in (11). In particular,

observe that Pr[S̃t = 1] = %̃t in Step 3, which brings about the conditional dependence between

|R̃t| and S̃t. The other UnGARCH specifications simply use a different copula function in this step.

Table 1 reports the simulation results, where for each model parameter value we report the

true value used to generate the data, the means (of the posterior means) as well as the root

mean squared error (RMSE) across replications. The overall picture that emerges from Table 1 is

that the estimates appear quite accurate.1 We have also observed that in many cases the posterior

distributions appear skewed but still with most of the density concentrated near the true parameter

values. This can be gleaned from Table 1 by comparing the true parameter values with the average

estimates. We see that the posterior means are relatively close on average to the true parameter

values. The RMSEs indicate the relative accuracy of these estimates, which, as expected, improves

as the sample size increases.

4.2 Empirical results

In this section, we apply the UnGARCH model to the daily returns on the S&P 500, FTSE 100,

DAX, and CAC 40. Returns were defined as 100 log(Pt/Pt−1), where Pt is the closing value of

the index on day t, and these returns were computed over the sample period covering January 4,

1999 to October 12, 2012. Owing to different holidays, the resulting samples sizes vary slightly

across countries so that T = 3469 (S&P 500), 3480 (FTSE 100), 3513 (DAX), 3525 (CAC 40). The

time series of daily prices and log returns are shown in the top two panels of Figures 9–12, and

some summary statistics are reported in Table 2. As usual, volatility clustering effects (typically

associated with periods of falling security prices) can be seen from the time-series plots and the

summary statistics reveal evidence of excess kurtosis in the unconditional distribution of returns.

The unconditional distributions of S&P 500 and FTSE 100 returns appear negatively skewed, while

those of the DAX and CAC 40 returns show a small degree of positive skewness.

1Additional evidence (available upon request) shows the convergence of the Markov chain. Our results indicated

a good mixing performance with the Markov chain moving rather fluidly as it explored the parameter space.
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4.2.1 Alternative models

For comparison purposes, we also include in our empirical application several other models that

are close to our proposed specification. Recall that if returns are conditionally symmetric each

time period, then the general UnGARCH specification collapses to the autoregressive conditional

kurtosis model proposed by Brooks et al. (2005) in (13)–(17). The nested BBHP version of our

model is therefore an interesting benchmark to see how well these restrictions hold in the data.2

We also consider the non-nested specification proposed by León et al. (2005) who model au-

toregressive conditional heteroskedasticity, skewness, and kurtosis by assuming a series expansion

of the normal density function. As in White et al. (2012), the adopted LRS specification is given

by

Rt = σtεt, εt |Ft−1 ∼ GC4(0, 1), (24)

σ2
t = ω0 + ω1R

2
t−1 + ω2σ

2
t−1, (25)

st = γ0 + γ1
R3
t−1

σ3
t−1

+ γ2st−1, (26)

kt = δ0 + δ1
R4
t−1

σ4
t−1

+ δ2kt−1, (27)

where GC4(0, 1) is a Gram-Charlier density of order 4. This density is found by taking a Gram-

Charlier series expansion of the standard normal density function and truncating at the fourth

moment to obtain:

gεt(x |Ft−1) = φ(εt)ψ(εt),

ψ(εt) = 1 +
st
3!

(ε3
t − 3εt) +

kt − 3

4!
(ε4
t − 6ε2

t + 3),

where φ(·) is the standard normal probability density function. Observe that the function g(·) is

not a well-defined density since it need not integrate to one and ψ(·) could be negative. In order

to solve these problems, León et al. (2005) take the square of ψ(·) and then normalize it. The

resulting conditional GC4(0, 1) density function for εt takes the form:

fεt(x |Ft−1) = φ(x)ψ2(x)/Γt,

Γt = 1 +
s2
t

3!
+

(kt − 3)2

4!
,

2The proposed UnGARCH model was further compared with the GARCH model of Bollerslev (1987), the GJR-

GARCH model of Glosten et al. (1993), and the EGARCH model of Nelson (1991). In order to save space those

results are not included here, but they remain available upon request.
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which yields the conditional density of Rt in (24) as fRt(x |Ft−1) = fεt(x/σt |Ft−1)/σt. See Del

Brio and Perote (2012) for a recent discussion and further references on Gram-Charlier densities.

Our UnGARCH model is a natural extension of Anatolyev and Gospodinov (2010) (AG)

whereby we introduce the notion of a folded distribution while accommodating the idea of autore-

gressive conditional kurtosis, suggested by Brooks et al. (2005). Another interesting comparison is

thus between the UnGARCH model and AG’s original decomposition model, which does not ex-

plicitly account for a time-varying conditional kurtosis. The AG model also begins with the return

decomposition in (2) but then specifies

|Rt| = ψt
ηt

Γ(1 + κ−1)
,

where the positive multiplicative error ηt follows a Weibull distribution with shape parameter κ > 0

(Anatolyev and Gospodinov, 2010, §3.3). The scaling by Γ(1+κ−1) ensures that E(|Rt| |Ft−1) = ψt.

This conditional expectation is parameterized as

log(ψt) = ω0 + ω1 log(|Rt−1|) + ω2 log(ψt−1) (28)

and, as before, the conditional distribution of St is B(pt |Ft−1) with pt given by (10). We close the

AG model by specifying the joint distribution for (|Rt|, St)′ exactly as we did in Section 2.2 for the

UnGARCH model, i.e. |Rt| and St are joined using copula functions (Frank, FGM, RC90, RC270)

with parameter αt governed by (12). We examine the original AG model with constant copula

parameters (b1, b2 zero) and then we relax this restriction to allow for a time-varying conditional

return skewness, as in the UnGARCH model. We use AG-Con and AG-TV, respectively, to denote

these models.

The MCMC approach described in the previous section was used for all the competing models.

Tables 3–8 report the estimation results for each model, where the entries are the posterior means

of each parameter and the associated NSEs are shown in parentheses. The numbers in square

brackets are the values of the Geweke (1992) test statistic. If the output of the Markov chain

is compatible with stationarity, then this statistic follows a standard normal distribution. The

generally insignificant values in Tables 3–8 indicate that convergence to the stationarity distribution

was achieved.

Table 3 shows the estimation results for the BBHP and LRS models. The estimated parameters

of the conditional variance processes in (15) and (25) are similar to what is typically obtained with

heavy-tailed GARCH models.3 The parameter estimates for the conditional kurtosis equations in

(16) and (27), however, tell a different story. In the LRS specification, the parameter δ1 on lagged

3The GARCH model with Student-t innovations shows that the persistence of shocks to volatility (as measured

by the estimate of ω1 + ω2) is close to one, with the estimate of ω2 (≈ 0.90) much greater than that of ω1 (≈ 0.09).

The estimates of the degrees-of-freedom parameter ν vary from about 5 to 13, which is comparable to the estimates

obtained by Luger (2012) with classical methods.
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fourth powers of the standardized returns is close to zero, while the parameter δ2 on the lagged

kurtosis coefficient is higher in value. On the contrary, the BBHP specification yields estimates

of δ1 larger than those of δ2, which itself appears to play a role in the kurtosis equation. These

findings are in line with those obtained by León et al. (2005) and Brooks et al. (2005). Turning to

the conditional skewness equation in (26), we see a similar pattern as before: the estimate of γ1 is

close to zero, while that of γ2 is larger, and again this finding agrees with León et al. (2005).

Tables 4–7 show the Bayesian estimation results with the UnGARCH model using the returns

on the S&P 500, FTSE 100, DAX, and CAC 40, respectively. Focusing on the posterior means in

these tables, we see that the parameter estimates of the conditional second moment m2,Rt resemble

those of the conditional variance σ2
t seen in Table 3 with the BBHP and LRS models. Indeed, we see

that ω̂1 ≈ 0.09 and ω̂2 ≈ 0.90 across all four indices. We also notice that the parameter estimates of

the conditional fourth moment m4,ε∗t
are very close to those of the conditional kurtosis kt in Table

3 for the corresponding return series. These findings are to be expected when the conditional mean

of daily returns is close to zero. Observe also in Tables 4–7 that the estimates of the parameters

describing the conditional second and fourth moments are quite similar across copula specifications.

Again this is not surprising since the dependence between |Rt| and St is expected to be weak if

the returns tend to be only weakly conditionally asymmetric. Looking at the estimates of the

parameters of pt in (10), we see that they too are very similar across copula specifications. In this

equation, the lagged squared return seems to play a small role, whereas the estimates of ϕ2 and

ϕ3 tend to be much larger in magnitude and of opposite signs so that log(pt/(1 − pt)) depends

negatively on St−1, and positively on its own lagged value. The posterior means of the parameters

of the copula equation in (12) assign a lesser role to |Rt−1|(1 − St−1) compared to the relatively

greater one played by the lagged value of the copula parameter itself, in all copula specifications.

Figures 1–4 show the fitted conditional variance (volatility), skewness, and kurtosis series for

the BBHP, LRS, and UnGARCH-Frank models and for each stock market index. The skewness

and kurtosis plots exhibit large spikes in their values. This is to be expected given the definitions

in (22) and (23) which show that the coefficients of skewness and kurtosis can become arbitrarily

large, depending on how small σt in the denominator becomes. It is interesting to note that the

large negative (positive) spike in skewness (kurtosis) in Figure 1 occurred on February 27, 2007, the

day when HSBC Bank wrote down its holdings of subprime mortgage-backed securities, which was

the first major subprime-related loss to be reported. In Figures 2–4, we also see a large negative

(positive) spike in skewness (kurtosis) occurring on January 21, 2008 in the FTSE 100, DAX, and

CAC 40 series. This was precisely when the French bank Société Générale lost 4.9 billion euros

closing out positions that resulted from the allegedly unauthorized transactions of Jérôme Kerviel,

a trader with Société Générale at the time (Reuters). The European stock markets were hit hard

with the FTSE 100, DAX, and CAC 40 losing around 5 to 7% on that single day.

Table 8 reports the estimation results for the AG models with constant and time-varying Frank
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copulas.4 The parameter estimates of the conditional expectation in (28) resemble those of a daily

GARCH equation, i.e. the estimates of ω1 are around 0.04 and the estimates of ω2 are around

0.95. This is not surprising since absolute values depend on the variance of the distribution. For

example, under normality we have E(|Rt| |Ft−1) = σt
√

2/π. Comparing each market at a time, we

notice that the AG and UnGARCH models yield broadly consistent estimates for the dynamic logit

model describing the dynamics of St, at least for the AG models with time-varying copulas. In the

constant copula cases, it is interesting to note the generally negative values of α̂ which is indicative

of negative skewness in the conditional return distribution. As an illustration, Figures 5–8 show

the series of fitted volatility and conditional skewness from the AG models with a Frank copula

applied to the S&P 500 returns. The apparent similarity between the volatilities of the AG-Con

and AG-TV models is explained by the fact that the estimated copula parameter b1 in (12) is quite

small. This concurs with the evidence of weak serial dependence in the conditional skewness of

returns already revealed in Figures 1–4 by the LRS and UnGARCH models.

In addition to the levels and returns of each stock market index, Figure 9–12 show the fitted

series for: (i) the conditional mean, Et−1(Rt) = E(Rt |Ft−1); (ii) the parameter αt of the Frank

copula; and (iii) the probability pt = Pr(Rt > 0 |Ft−1). In all four markets, we see that declining

stock prices are accompanied by increased return volatility, higher values of αt, and smaller values

of pt. Recall that αt captures the dependence between |Rt| and St, so that an increase in αt

corresponds to an increase in return skewness when all else is held constant. This finding of positive

or less negative αt being associated with lower stock prices is broadly consistent with the results

of Conrad et al. (2013). But here we see that periods where return skewness would increase due

to increasing αt are offset by the decreasing pt. The net effect on the conditional mean is different

across markets. Looking at the S&P 500 and FTSE 100 around 2009 we see that Et−1(Rt) was

more volatile but also holding at larger positive value for sustained periods, perhaps in anticipation

of the market upturn. On the other hand, the DAX and CAC 40 reveal more negative values for

Et−1(Rt) during that time.

4.2.2 Specification tests

A correct model specification translates into a set of conditional moment restrictions, which in

turn means that their unconditional counterparts should hold true. Following Nelson (1991) and

Brooks et al. (2005), we test for correct model specification by applying the tests of Newey (1985)

to appropriately standardized returns. Of course, the appropriate standardization depends on the

model used to filter the returns. Indeed if a return series is correctly filtered, then it should have

mean zero, unit variance, and be free of serial correlation. Otherwise, the model is misspecified in

some regard.

4The AG model estimation results with the other copulas are omitted.
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As in Brooks et al. (2005), we test the model specifications by assessing nine moment conditions:

E[zt] = 0,

E[ztzt−j ] = 0, for j = 1, 2, 3, 4,

E [wtwt−j ] = 0, for j = 1, 2, 3, 4,

where the standardized UnGARCH returns are

zt = |εt| − E(|εt|) =
Rt

(2St − 1)λt
− 2D(νt)νt

νt − 1
, (29)

wt = ε2
t −

νt
νt − 2

, (30)

with the normalizing function

D(νt) =
Γ
(
νt+1

2

)
Γ
(
νt
2

)√
πνt

,

which follows from the properties of the folded Student-t distribution (Psarakis and Panaretos,

1990). Note that D(ν) is the normalizing constant of the usual Student-t density.

For the BBHP model in (13)–(17), the moment conditions are defined with

zt = εt =
Rt
λt
,

while wt is still given by (30). When testing the LRS model in (24)–(27), we replace (29) and (30)

by

zt = εt =
Rt
σt
,

wt = z2
t − 1,

and for the AG model the returns are filtered according to

zt =
ηt

Γ(1 + κ−1)
− 1 =

Rt
(2St − 1)ψt

− 1,

wt =
η2
t

Γ(1 + κ−1)2
− Γ

(
1 +

2

κ

)/
Γ

(
1 +

1

κ

)2

.

The results of the moment specification tests are presented in Tables 9–12, where for each of

the nine selected moment conditions the tables report the corresponding sample analogues as well

as the test statistics in parenthesis. If the examined model has fully captured the dynamic features

represented by the moment conditions, then the associated test statistics follow a χ2(1) distribution;

asterisks are used in the tables to denote cases of significance at the 5% and 1% levels. As expected,

the findings vary a great deal across models and markets.
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For the S&P 500 (Table 9), the tests statistics for E[ztzt−1] = 0 are significantly different

from zero under each model specification. A similar result is found for the moment condition

E[wtwt−1] = 0, except for the AG models which seem to pass this test. In sharp contrast, however,

the AG models appear misspecified according to almost all the other moment conditions while the

other models generally pass the specification tests. The evidence about the AG model failing to

satisfy most of the moment criteria shows up also in Tables 10–12 with the FTSE 100, DAX, and

CAC 40. Indeed, the AG model consistently fails five or more of the nine moment tests in these

markets. The UnGARCH models seem to improve further upon the LRS and BBHP specifications.

In the case of the FTSE 100 (Table 10), for instance, the UnGARCH is the only model to pass all

specification tests. And with the CAC 40 (Table 12), the UnGARCH model with the Frank and

RC90 copulas also passes unblemished. By looking simply at the total number of moment conditions

satisfied over all four markets, we see that among all the model specifications the UnGARCH seems

to best capture the features of the data.

Of course, the conditional moments tests may not detect all potential sources of misspecifica-

tion. So after the formal model comparisons presented next, we also evaluate the out-of-sample

forecasting performance of the competing models.

4.2.3 Model comparisons

In order to formally compare the different model specifications, we use the reversible jump MCMC

(RJMCMC) method of So et al. (2005) and Chen et al. (2006) which they adapted from Green (1995)

to the case of GARCH-type models. The RJ sampler can be viewed as an extension of the MH

algorithm to more general state spaces. The RJMCMC method estimates posterior probabilities

between pairs of competing models by allowing jumps between (possibly non-nested) models of

different dimensions inside an MCMC sample. To explain the pairwise comparison method, let

M1 denote the LRS model and M2 the UnGARCH-Frank model, for example. The parameters of

M1 are Θ1 = (θ11,θ12,θ13) with θ11 = (ω0, ω1, ω2), θ12 = (γ0, γ1, γ2), and θ13 = (δ0, δ1, δ2). The

parameters of M2 are Θ2 = (θ21,θ22,θ23) with θ21 = (ω0, ω1, ω2, δ0, δ1, δ2), θ22 = (ϕ0, ϕ1, ϕ2, ϕ3),

and θ23 = (b0, b1, b2). As in Chen et al. (2006), we create a one-to-one bijective transformation

between the two models by defining u1 = Θ2 and u2 = Θ1; see also Vrontos et al. (2002). This

implies that the Jacobian determinant of the transformation from (Θ1,u1) to (u2,Θ2) equals 1,

and it also ensures the necessary dimension-matching condition: dim(Θ1) + dim(u1) = dim(u2) +

dim(Θ2).

To apply the RJMCMC method we must choose prior probabilities of a jump from model Mi

to Mj , denoted as j(Mi,Mj). The output from the independent MH sampler can then be used to

obtain a full probabilistic description of the posterior probabilities of each model, in addition to the

posterior distributions of the individual model parameters. Specifically, after the first K1 random

walk MH burn-in steps, we start at k = 1 from model M1 with initial parameters Θ
[1]
1 and the RJ
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sampler then proceeds along the following steps until k equals K2:

Step 1. Generate Θp
2 in M2 from the proposal density q1(u1), and accept the jump from M1

to M2 with probability min(℘, 1), where

℘ =
L(y|M2,Θ

p
2)π(Θp

2|M2) p(M2) j(M1,M2) q2(Θ
[k]
1 )

L(y|M1,Θ
[k]
1 )π(Θ

[k]
1 |M1) p(M1) j(M2,M1) q1(Θp

2)
.

Increment k by 1. If the jump from M1 to M2 was accepted, set Θ
[k]
2 equal to Θp

2 and go

to Step 2. Otherwise, update Θ
[k−1]
1 to Θ

[k]
1 within M1 according to the independent MH

scheme and go to Step 1.

Step 2. Generate Θp
1 in M1 from the proposal density q2(u2), and accept the reverse jump

from M2 back to M1 with probability min(℘, 1), where now

℘ =
L(y|M1,Θ

p
1)π(Θp

1|M1) p(M1) j(M2,M1) q1(Θ
[k]
2 )

L(y|M2,Θ
[k]
2 )π(Θ

[k]
2 |M2) p(M2) j(M1,M2) q2(Θp

1)
.

Increment k by 1. If the jump from M2 to M1 was accepted, set Θ
[k]
1 equal to Θp

1 and go

to Step 1. Otherwise, update Θ
[k−1]
2 to Θ

[k]
2 within M2 according to the independent MH

scheme and go to Step 2.

Upon completion, the number of times out of K2 that each model is chosen provides an estimate

of its posterior probability, Pr(Mi|y). Here we set j(M1,M2) = j(M2,M1) = 1 to allow jumps

between models at each iteration. The priors π(Θi|Mi) appearing in the expressions for ℘ are again

taken as uniform over their respective parameter spaces, and we set the prior model probabilities as

p(Mi) = 1/2, i = 1, 2. Following Chen et al. (2006), the joint proposal densities qi(ui) are chosen as

the product of the independent normal proposal distributions built up during the first K1 random

walk MH steps. See Hastie and Green (2012) for a recent and more detailed presentation of the

RJMCMC method.

Table 13 presents the estimated posterior model probabilities of the models listed in the column

heading versus each model listed on the rows, in turn. So with the S&P 500 returns for example,

the UnGARCH-Frank model has a posterior probability estimate of 0.85 when compared to the

UnGARCH-FGM model. We see immediately that the UnGARCH models are strongly preferred

to the AG models, with posterior model probabilities of 1. The UnGARCH specifications are also

generally preferred to the LRS and BBHP models. The notable exceptions occur when the RC270

copula is used, which tends to find far less support relative to the other competing models. Indeed,

with FTSE 100, DAX, and CAC 40 returns, the UnGARCH-RC270 versus LRS comparison yields

posterior probabilities of only 0.03, 0.06, and 0.18, respectively; and UnGARCH-RC270 versus

BBHP yields 0.09, 0.10, 0.08, respectively.
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These findings clearly show that the choice of copula matters for UnGARCH model selection.

With these data, the general conclusion is that there is little support for tail dependence in the

fourth quadrant. Among the UnGARCH specifications, the Frank copula, closely followed by the

FGM copula, which both allow positive and negative dependence, seems to find the strongest

support across all four markets.

4.2.4 Out-of-sample forecasting results

In this section we evaluate the out-of-sample forecasting performance of the competing models.

Specifically, we examine their ability to predict the conditional mean and quantiles of the one-day-

ahead return distribution. The forecasts are obtained using a rolling data window of size 2000 and

updating the model parameter estimates every month, which leaves the period from July 2, 2007

to October 12, 2012 for evaluation.5

Conditional mean predictions. A distinguishing feature of the AG and UnGARCH models is

that they both predict a time-varying conditional mean µt = E(Rt |Ft−1), which corresponds to

the optimal forecast of Rt under a quadratic loss function. It is therefore interesting to compare

the return forecasts from these models. Table 14 shows the out-of-sample forecasting results under

both quadratic and absolute loss functions. Specifically, we report losses relative to the “no change”

benchmark associated with a random walk model of asset prices, so that a ratio less (greater) than

1 indicates that a model has a smaller (larger) loss than the benchmark. We see that the models

actually have ratios close to one, which is not very surprising as daily returns have a conditional

mean that does not deviate far from zero. Nevertheless, the UnGARCH models seem to perform

slightly better than their AG counterparts. Indeed, the UnGARCH-Frank specification achieves

the smallest losses on average across the four markets.

We formally tested these out-of-sample predictions in the context of a standard Mincer-Zarnowitz

regression (Mincer and Zarnowitz, 1969) taking the form

Rt = a0 + a1µ̂t + εt,

where Rt is the actual market return at time t and µ̂t is the conditional mean return predicted at

time t − 1. If the forecasts are unbiased, then a0 = 0 and a1 = 1. Table 15 reports the results

for the variety of AG and UnGARCH models. The AG specifications appear at odds with the

unbiasedness hypothesis. Indeed, 21 of the 32 AG models have p-values ≤ 5%. In sharp contrast,

only 3 of the 16 UnGARCH models (UnGARCH-RC270 with S&P 500, FTSE 100, and CAC 40

returns) reject the null hypothesis at this level.

Value-at-risk predictions. The Basel II Accord on banking regulations specifies the value-at-risk

(VaR) as the preferred measure of market risk for calculating minimum capital requirements. For a

5Following standard practice, the estimates are based on the posterior means. Even though this approach is

efficient, it ignores the parameter uncertainty captured by the rest of the posterior distribution.
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given probability level and a certain time horizon, the VaR of a portfolio is defined as the threshold

value such that the loss suffered by the portfolio over the given horizon will only exceed it with the

stated probability. For example, if p denotes the probability level, then the one-day VaR on a long

position is defined via

Pr (Rt ≤ V aRpt |Ft−1) = p,

which makes clear that the V aRpt corresponds to the p 100% conditional quantile of Rt. We use

each of the competing models to forecast V aRpt over the evaluation period setting p = 1%, 5%. The

VaR forecasts are obtained analytically for the BBHP model, whereas Monte Carlo simulations are

used with the LRS, AG, and UnGARCH models to obtain the one-day-ahead conditional return

distributions.

A commonly used criterion to compare VaR models is the violation rate p̂, defined as the

number of VaR exceedances (violations) divided by the evaluation sample size. The VaR forecasting

performances are summarized by reporting the ratios p̂/p for each model, which ideally should be

close to one. Otherwise if p̂/p < 1, then loss estimates are too conservative (higher than actual),

while a ratio p̂/p > 1 means that actual losses are underestimated. Table 16 shows the results,

where the entries in bold indicate the model whose ratio p̂/p is closest to one. The results depend

on the nominal p. Indeed, for p = 0.05 the violation ratio of the BBHP model comes closest to one,

while for the more extreme value p = 0.01 the best model is the UnGARCH-RC90. It is interesting

to observe the consistency of these performances across the four markets. We further assess the

VaR forecasts with the unconditional coverage (UC) test of Kupiec (1995), the conditional coverage

(CC) test of Christoffersen (1998), and the dynamic quantile (DQ) test of Engle and Manganelli

(2004) using four lags. These tests are quite standard in the VaR forecast evaluation literature; see

Kuester et al. (2006) for details. Following Gerlach et al. (2011), we summarize the test outcomes

in Table 17 by reporting the number of test rejections at the 5% significance level over the four

markets. Here the bold entries indicate the model achieving the lowest number of rejections. The

UnGARCH-RC90 specification is seen to perform remarkably well, with only three rejections across

markets and values of p.

We next investigate the economic significance of the various models by comparing their implied

capital charges under the Basel Accord. For model comparison purposes, we follow McAleer and

da Veiga (2008) and da Veiga et al. (2012) and compute the market risk capital charges according

to

cc∗ = min
(
cc(3 + k), V aR0.01

t−1

)
,

where cc = 1
60

∑60
i=1 V aR

0.01
t−i is the average 1% VaR over the last 60 days. The multiplicative

factor k is a penalty imposed when the number of VaR violations (over the last 250 days) becomes

excessive. The specific values for each “penalty zone” are given in Table 18. A bank falling in the

green zone is deemed to have an adequate model and does not incur a penalty. Once in the yellow

zone, however, banks are required to hold more capital in reserve as protection against losses in
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their trading portfolios. If a bank’s internal model results in too many VaR violations and enters the

red zone, regulators may require the bank to adopt a standardized approach which can lead to even

higher capital charges. Obviously, a high capital charge is undesirable as it reduces profitability.

It is important to note that the capital charge calculation depends on both the penalty and the

forecasted VaR.

The results of the regulatory backtesting are summarized in Table 19. For each model and

market, we report the average capital charge and penalty incurred over the last 250 trading days,

as well as the proportion of time spent in each penalty zone. Due to the initial window of size

250, these backtesting results cover the period from June 2, 2008 to October 12, 2012 (about 1100

trading days). For the S&P 500, the UnGARCH models yield the lowest capital charges. Among

these, the UnGARCH-RC90 specification performs remarkably well with an average penalty of 0.17

and VaR forecasts falling in the green zone 60% of the time.

In the case of the FTSE 100, the UnGARCH-Frank model achieves the lowest capital charge

(10.95) with VaR forecasts comfortably falling in the green zone 69% of the time and never in the

red zone. The UnGARCH models are clearly favoured by the DAX returns. For instance, the

UnGARCH-FGM model delivers an average capital charge of 11.97 while spending 93% of the time

in the green zone. Finally, with the CAC 40, the VaR forecasts from the UnGARCH specifications

with rotated Clayton copulas are 98% of the time in the green zone, while the resulting average

capital charges are among the lowest attained by all the models.

5 Conclusion

This paper has proposed a new and flexible GARCH-type model for autoregressive conditional

higher moments based on a decomposition of returns into their signs and absolute values. The

approach combines models for the marginal distributions of signs and absolute values, and a copula

for their interaction. The novelty of this approach is that return skewness is determined via the cop-

ula function, which may evolve separately over time from the conditional kurtosis itself determined

through the degrees of freedom of the folded Student-t distribution. Under the independence copula

structure, the model reduces to the autoregressive conditional kurtosis specification of Brooks et al.

(2005). Furthermore, if the degrees-of-freedom parameter is constant, then the model becomes a

GARCH specification à la Bollerslev (1987). The conditional expectation of returns under the

proposed copula approach may vary over time, since it is determined by the interaction between

the signs and absolute values of returns.

We adopted a Bayesian approach using MCMC sampling for estimation and inference. This

choice was motivated by the fact that the likelihood function is rather complicated and not ev-

erywhere differentiable owing to the presence of the absolute value and indicator functions. We

found that a Bayesian approach with non-informative priors gave satisfactory results. We also
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illustrated the proposed UnGARCH model along with a host of alternative specifications through

an application to the daily returns on four major international stock market indices for the period

from January 4, 1999 to October 12, 2012. The results of in-sample conditional moment tests show

that among all the considered models the UnGARCH seems to best capture the features of the

daily returns. A formal Bayesian in-sample model comparison further shows that the new model

is generally favoured over the competing models. The results obtained with the new copula model

reveal interesting patterns for the model-implied conditional expectation of returns, particularly

during the recent global financial crisis.

The out-of-sample analysis demonstrated that the UnGARCH model for conditional higher mo-

ments offers forecasting improvements over the competing specifications. Specifically, we examined

the predictive ability of the time-varying conditional mean from the new model using standard

Mincer-Zarnowitz regressions, and the forecasts were found to be generally compatible with the

unbiasedness hypothesis. We also illustrated the economic significance of the various models with

a risk management application focused on value-at-risk forecasting. The results of a regulatory

backtesting exercise show that the proposed UnGARCH model improves upon the other competing

models by yielding low average capital charges while being subject to relatively fewer penalties.
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Table 2. Summary statistics of daily log-returns (in percentages)

Mean Std. Dev. Max Min Skewness Kurtosis

S&P 500 0.004 1.342 10.957 -9.469 -0.151 10.064

FTSE 100 -0.001 1.291 9.384 -9.264 -0.119 8.418

DAX 0.011 1.613 10.797 -7.433 0.030 6.808

CAC 40 -0.004 1.553 10.595 -9.472 0.029 7.468

Table 3. Estimation results for the BBHP and LRS models

Model ω0 ω1 ω2 δ0 δ1 δ2 γ0 γ1 γ2

Panel A: S&P 500 returns

BBHP 0.013 0.090 0.904 3.334 0.731 0.063

(0.005) (0.011) (0.010) (0.106) (0.084) (0.017)

[-0.422] [-0.725] [0.812] [-0.706] [-0.163] [-0.041]

LRS 0.016 0.088 0.901 2.510 0.003 0.260 -0.067 0.008 0.228

(0.006) (0.018) (0.016) (0.193) (0.004) (0.530) (0.015) (0.004) (0.073)

[-0.480] [0.101] [-0.190] [-0.498] [-0.282] [0.528] [-1.247] [-0.862] [-0.969]

Panel B: FTSE 100 returns

BBHP 0.017 0.114 0.879 2.801 0.474 0.123

(0.001) (0.002) (0.002) (0.016) (0.006) (0.009)

[0.650] [0.397] [-0.349] [-1.508] [-0.446] [1.916]

LRS 0.015 0.101 0.889 2.981 0.002 0.055 -0.049 0.002 0.558

(0.004) (0.005) (0.006) (0.008) (0.001) (0.004) (0.012) (0.001) (0.035)

[1.846] [1.423] [-2.337] [0.555] [0.361] [-2.654] [-0.972] [-0.553] [-1.518]

Panel C: DAX returns

BBHP 0.022 0.095 0.899 3.093 0.675 0.042

(0.006) (0.007) (0.008) (0.040) (0.035) (0.019)

[0.068] [-0.129] [0.154] [-0.645] [0.321] [1.239]

LRS 0.022 0.083 0.907 2.778 0.009 0.122 -0.056 0.002 0.350

(0.008) (0.006) (0.008) (0.058) (0.006) (0.032) (0.011) (0.004) (0.029)

[0.274] [-0.259] [0.354] [0.201] [-1.786] [-0.160] [-0.875] [0.727] [-0.519]

Panel D: CAC 40 returns

BBHP 0.021 0.094 0.901 2.470 0.553 0.229

(0.006) (0.008) (0.009) (0.043) (0.024) (0.021)

[0.475] [-0.551] [0.364] [-0.283] [0.443] [0.297]

LRS 0.021 0.086 0.905 2.554 0.004 0.199 -0.097 0.001 -0.187

(0.010) (0.014) (0.015) (0.099) (0.005) (0.055) (0.030) (0.009) (0.105)

[0.994] [1.393] [-2.095] [2.372] [1.324] [-0.306] [-0.856] [-1.294] [-0.408]

Notes: This table reports the posterior means of each parameter, and the associated NSEs are shown in

parentheses. The numbers in square brackets are the values of the Geweke (1992) convergence test statistic.
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Table 8. Estimation results for the AG model

ω0 ω1 ω2 κ ϕ0 ϕ1 ϕ2 ϕ3 α b0 b1 b2

Panel A: Constant Frank copula: S&P 500 returns

0.019 0.043 0.947 1.115 0.242 -0.025 -0.251 0.507 -0.279

(0.023) (0.035) (0.040) (0.039) (0.032) (0.131) (0.042) (0.107) (0.038)

[−0.151] [-0.135] [0.191] [-1.068] [0.573] [-0.435] [-1.191] [-0.397] [-0.830]

Panel B: Time-varying Frank copula: S&P 500 returns

0.019 0.045 0.945 1.114 0.235 0.021 -0.250 0.499 -0.274 0.210 0.376

(0.018) (0.027) (0.031) (0.031) (0.051) (0.179) (0.042) (0.094) (0.086) (0.104) (0.130)

[−0.229] [-0.767] [0.331] [−0.083] [-1.023] [0.244] [0.564] [-0.024] [-1.024] [1.110] [-0.872]

Panel C: Constant Frank copula: FTSE 100 returns

0.020 0.049 0.940 1.169 0.093 -0.018 -0.095 0.503 -0.040

(0.027) (0.044) (0.052) (0.041) (0.044) (0.128) (0.058) (0.086) (0.060)

[0.139] [0.082] [-0.041] [-0.883] [-1.073] [-0.700] [0.993] [0.370] [0.699]

Panel D: Time-varying Frank copula: FTSE 100 returns

0.020 0.049 0.940 1.169 0.094 -0.023 -0.095 0.507 -0.068 0.101 0.323

(0.020) (0.031) (0.035) (0.039) (0.045) (0.151) (0.055) (0.101) (0.054) (0.084) (0.107)

[−1.597] [-1.086] [0.798] [−0.469] [-1.390] [-0.599] [0.254] [-0.073] [-0.249] [0.835] [0.765]

Panel E: Constant Frank copula: DAX returns

0.019 0.037 0.951 1.115 0.149 0.008 -0.065 0.496 -0.194

(0.025) (0.035) (0.043) (0.053) (0.046) (0.159) (0.061) (0.102) (0.050)

[1.065] [1.074] [-1.062] [0.741] [0.293] [-0.791] [-0.324] [0.347] [0.740]

Panel F: Time-varying Frank copula: DAX returns

0.020 0.039 0.948 1.118 0.150 -0.046 -0.072 0.500 -0.135 -0.001 0.314

(0.023) (0.031) (0.038) (0.055) (0.030) (0.197) (0.056) (0.094) (0.073) (0.080) (0.122)

[0.888] [0.912] [-0.881] [0.476] [-0.398] [-1.202] [-0.742] [-0.762] [-0.908] [0.800] [-1.052]

Panel G: Constant Frank copula: CAC 40 returns

0.019 0.041 0.949 1.151 0.112 -0.045 -0.158 0.502 0.036

(0.017) (0.025) (0.031) (0.053) (0.041) (0.109) (0.049) (0.079) (0.052)

[0.866] [0.591] [-0.608] [0.335] [-0.022] [0.797] [0.531] [0.196] [0.503]

Panel H: Time-varying Frank copula: CAC 40 returns

0.021 0.045 0.942 1.154 0.109 0.003 -0.154 0.488 0.033 -0.019 0.318

(0.016) (0.023) (0.032) (0.048) (0.021) (0.159) (0.032) (0.086) (0.058) (0.058) (0.110)

[0.201] [0.135] [0.017] [−0.306] [-0.229] [1.156] [0.324] [-1.841] [-0.349] [0.739] [0.942]

Notes: This table reports the posterior means of each parameter, and the associated NSEs are shown in parentheses. The numbers in

square brackets are the values of the Geweke (1992) convergence test statistic.
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Table 13. Posterior model probabilities

UnGARCH: S&P 500 UnGARCH: FTSE 100

Frank FGM RC90 RC270 Frank FGM RC90 RC270

UnGARCH-FGM 0.854 0.835

UnGARCH-RC90 0.937 0.876 0.934 0.536

UnGARCH-RC270 0.998 0.996 0.976 0.995 0.993 0.972

BBHP 0.999 0.996 0.970 0.373 0.949 0.860 0.839 0.094

LRS 0.998 0.997 0.981 0.945 0.975 0.972 0.912 0.027

AG-Con-Frank 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AG-Con-FGM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AG-Con-RC90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AG-Con-RC270 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000

AG-TV-Frank 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AG-TV-FGM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AG-TV-RC90 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000

AG-TV-RC270 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000

UnGARCH: DAX UnGARCH: CAC 40

Frank FGM RC90 RC270 Frank FGM RC90 RC270

UnGARCH-FGM 0.566 0.856

UnGARCH-RC90 0.726 0.556 0.934 0.579

UnGARCH-RC270 0.994 0.988 0.970 0.996 0.992 0.969

BBHP 0.989 0.979 0.937 0.102 0.985 0.976 0.925 0.083

LRS 0.991 0.983 0.943 0.062 0.993 0.990 0.951 0.184

AG-Con-Frank 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AG-Con-FGM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AG-Con-RC90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AG-Con-RC270 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000

AG-TV-Frank 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AG-TV-FGM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AG-TV-RC90 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000

AG-TV-RC270 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000

Notes: The entries correspond to the posterior probabilities of the models listed in the column headings

versus each model listed on the rows, in turn.
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Table 14. Out-of-sample forecasting results

S&P 500 FTSE 100 DAX CAC 40

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

UnGARCH-Frank 0.981 0.997 0.994 0.998 1.004 1.005 0.992 1.000

UnGARCH-FGM 0.996 1.001 0.995 0.998 1.005 1.005 0.994 1.001

UnGARCH-RC90 1.007 1.004 0.998 0.999 1.009 1.006 1.000 1.003

UnGARCH-RC270 1.019 1.011 1.006 1.004 1.008 1.003 1.008 1.002

AG-Con-Frank 0.999 1.001 1.015 1.005 1.012 1.005 0.997 1.001

AG-Con-FGM 1.041 1.009 1.019 1.003 1.012 1.004 0.999 1.001

AG-Con-RC90 1.020 1.008 1.008 1.002 1.005 1.004 1.021 1.008

AG-Con-RC270 1.027 1.004 0.998 0.999 1.004 1.003 1.036 1.011

AG-TV-Frank 1.034 1.007 0.996 0.999 1.009 1.004 0.995 1.003

AG-TV-FGM 1.011 1.004 1.018 1.012 1.010 1.003 0.995 1.001

AG-TV-RC90 1.037 1.005 1.005 1.003 1.004 1.003 0.998 1.002

AG-TV-RC270 1.053 1.027 1.009 1.006 1.013 1.008 1.008 1.005

Notes: The entries are ratios computed as the RMSE (MAE) for each model’s forecast relative to the cor-

responding loss of the “no change” benchmark forecasts associated with a random walk model. A ratio less

(greater) than 1 indicates that the model has a smaller (larger) loss than the benchmark. The smallest relative

losses are shown in bold.
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â
0

â
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â
1

p
-v

a
lu

e

U
n
G

A
R

C
H

-F
ra

n
k

-0
.0

1
3

0
.6

2
2

0
.5

3
9

-0
.0

5
9

1
.2

3
6

0
.4

2
2

-0
.0

1
5

0
.2

2
1

0
.0

7
8

-0
.0

6
8

0
.9

2
4

0
.2

3
1

(0
.0

4
0
)

(0
.3

7
0
)

(0
.0

4
6
)

(0
.5

0
6
)

(0
.0

4
1
)

(0
.2

4
7
)

(0
.0

4
8
)

(0
.5

9
3
)

U
n
G

A
R

C
H

-F
G

M
-0

.0
1
0

0
.5

3
1

0
.5

2
0

-0
.0

6
2

1
.2

4
6

0
.3

6
7

-0
.0

1
5

0
.2

2
5

0
.1

4
7

-0
.0

6
6

0
.8

6
7

0
.2

2
3

(0
.0

4
0
)

(0
.4

4
1
)

(0
.0

4
4
)

(0
.4

0
8
)

(0
.0

4
1
)

(0
.2

4
6
)

(0
.0

4
7
)

(0
.5

5
6
)

U
n
G

A
R

C
H

-R
C

9
0

0
.0

0
2

0
.2

3
4

0
.1

9
8

0
.0

0
3

0
.9

3
0

0
.9

9
1

-0
.0

0
6

0
.1

2
6

0
.0

9
2

-0
.0

2
9

0
.0

6
7

0
.4

9
5

(0
.0

3
7
)

(0
.4

3
6
)

(0
.0

3
4
)

(0
.6

9
3
)

(0
.0

4
2
)

(0
.2

9
2
)

(0
.0

4
2
)

(0
.4

9
7
)

U
n
G

A
R

C
H

-R
C

2
7
0

-0
.0

1
0

-0
.2

3
7

0
.0
2
2

-0
.0

3
0

-0
.8

9
6

0
.0
5
0

-0
.0

0
5

0
.0

3
8

0
.0

6
1

-0
.0

4
7

-0
.5

0
3

0
.0
2
1

(0
.0

3
8
)

(0
.4

5
2
)

(0
.0

3
9
)

(0
.7

8
3
)

(0
.0

3
9
)

(0
.2

0
9
)

(0
.0

4
2
)

(0
.5

4
5
)

A
G

-C
o
n
-F

ra
n
k

-0
.0

9
6

1
.2

6
5

0
.1

4
5

-0
.0

0
3

-0
.1

5
1

0
.0
0
1

-0
.0

1
9

0
.1

1
6

0
.0
0
2

-0
.1

0
7

1
.0

1
8

0
.0

6
1

(0
.0

5
1
)

(0
.5

1
3
)

(0
.0

3
5
)

(0
.3

1
7
)

(0
.0

4
9
)

(0
.3

2
1
)

(0
.0

5
3
)

(0
.3

7
6
)

A
G

-C
o
n
-F

G
M

0
.0

0
7

-0
.2

6
1

0
.0
0
6

0
.0

0
5

-0
.3

6
8

0
.0
1
4

-0
.0

0
7

-0
.0

0
3

0
.0
1
2

-0
.0

7
6

0
.7

0
5

0
.0

9
2

(0
.0

3
8
)

(0
.4

2
7
)

(0
.0

3
8
)

(0
.4

9
2
)

(0
.0

4
5
)

(0
.3

8
4
)

(0
.0

5
5
)

(0
.5

7
9
)

A
G

-C
o
n
-R

C
9
0

-0
.0

3
8

1
.6

9
3

0
.3

3
0

-0
.0

1
0

-0
.0

1
4

0
.3

2
8

-0
.0

1
1

0
.0

9
6

0
.0
3
6

-0
.0

4
3

-0
.1

2
4

0
.0
1
6

(0
.0

4
3
)

(0
.5

1
0
)

(0
.0

3
9
)

(0
.7

0
7
)

(0
.0

4
9
)

(0
.4

1
9
)

(0
.0

4
0
)

(0
.4

5
9
)

A
G

-C
o
n
-R

C
2
7
0

-0
.0

0
5

-0
.1

2
0

0
.0
0
9

-0
.0

2
5

0
.6

9
9

0
.4

7
7

-0
.0

2
6

0
.3

0
3

0
.0
3
4

-0
.0

4
8

-0
.5

9
8

0
.0
0
0

(0
.0

3
7
)

(0
.3

6
5
)

(0
.0

3
7
)

(0
.3

7
9
)

(0
.0

4
9
)

(0
.3

4
5
)

(0
.0

4
2
)

(0
.1

7
7
)

A
G

-T
V

-F
ra

n
k

0
.0

0
4

-0
.1

5
6

0
.0
0
3

-0
.0

7
1

1
.0

1
2

0
.1

8
7

-0
.0

3
3

0
.2

7
5

0
.0
0
0

-0
.1

0
3

1
.0

9
9

0
.1

0
5

(0
.0

4
0
)

(0
.3

7
5
)

(0
.0

4
7
)

(0
.3

5
3
)

(0
.0

5
3
)

(0
.2

2
1
)

(0
.0

5
7
)

(0
.4

7
1
)

A
G

-T
V

-F
G

M
-0

.0
2
2

0
.2

2
7

0
.0
1
3

-0
.0

3
2

0
.2

4
0

0
.0
0
0

-0
.0

3
3

0
.2

2
5

0
.0
0
0

-0
.0

5
4

0
.3

0
1

0
.0
1
0

(0
.0

4
4
)

(0
.3

5
0
)

(0
.0

4
2
)

(0
.1

7
4
)

(0
.0

4
5
)

(0
.1

7
6
)

(0
.0

4
3
)

(0
.3

0
6
)

A
G

-T
V

-R
C

9
0

0
.0

0
0

-0
.1

9
1

0
.0
0
5

-0
.0

2
4

0
.3

5
7

0
.0
0
8

-0
.0

3
5

0
.3

8
5

0
.0
0
0

-0
.0

5
1

0
.8

4
7

0
.3

4
2

(0
.0

3
7
)

(0
.3

7
2
)

(0
.0

4
1
)

(0
.2

6
5
)

(0
.0

4
9
)

(0
.1

7
0
)

(0
.0

4
5
)

(0
.3

6
0
)

A
G

-T
V

-R
C

2
7
0

-0
.0

6
6

-0
.7

0
4

0
.0
0
0

-0
.0

1
5

-0
.1

1
1

0
.0

9
9

-0
.0

2
0

-0
.1

4
0

0
.0
0
0

-0
.0

4
0

0
.0

7
9

0
.1

0
1

(0
.0

3
8
)

(0
.2

9
3
)

(0
.0

4
1
)

(0
.5

5
4
)

(0
.0

4
3
)

(0
.2

7
9
)

(0
.0

4
5
)

(0
.4

3
1
)

N
o
te
s:

T
h

is
ta

b
le

re
p

o
rt

s
es

ti
m

a
te

s
o
f

th
e

in
te

rc
ep

t
(a

0
)

a
n

d
sl

o
p

e
(a

1
)

p
a
ra

m
et

er
s

in
M

in
ce

r-
Z

a
rn

o
w

it
z

re
g
re

ss
io

n
s

o
f

re
a
li
ze

d
re

tu
rn

s
o
n

th
e

m
ea

n
re

tu
rn

s

p
re

d
ic

te
d

fr
o
m

th
e

d
iff

er
en

t
m

o
d

el
s.

N
ew

ey
-W

es
t

H
A

C
st

a
n

d
a
rd

er
ro

rs
a
re

sh
o
w

n
in

p
a
re

n
th

es
es

a
n

d
th

e
re

p
o
rt

ed
p

-v
a
lu

es
co

rr
es

p
o
n

d
to

W
a
ld

te
st

s
o
f

th
e

jo
in

t

h
y
p

o
th

es
is
a
0

=
0
,
a
1

=
1
.

T
h

e
p

-v
a
lu

es
≤

5
%

a
re

sh
o
w

n
in

b
o
ld

.

40



Table 16. VaR violation ratios

p = 0.01 p = 0.05

S&P 500 FTSE 100 DAX CAC 40 S&P 500 FTSE 100 DAX CAC 40

BBHP 0.38 0.37 0.44 0.22 0.86 0.90 0.86 0.84

LRS 1.50 0.75 0.67 0.66 1.88 1.89 1.79 1.95

UnGARCH-Frank 1.88 1.72 1.33 1.77 1.41 1.47 1.43 1.67

UnGARCH-FGM 1.73 1.87 1.18 1.55 1.41 1.53 1.42 1.62

UnGARCH-RC90 1.50 1.05 1.03 1.03 1.22 1.36 1.24 1.42

UnGARCH-RC270 1.95 1.65 1.26 1.25 1.37 1.38 1.32 1.52

AG-Con-Frank 2.33 1.20 2.00 1.33 1.53 1.53 1.51 1.56

AG-Con-FGM 2.10 1.27 1.92 1.25 1.50 1.54 1.46 1.58

AG-Con-RC90 1.88 1.35 1.55 1.18 1.40 1.39 1.29 1.45

AG-Con-RC270 1.88 1.20 1.55 1.18 1.38 1.42 1.40 1.42

AG-TV-Frank 2.10 1.27 1.70 1.18 1.55 1.53 1.55 1.50

AG-TV-FGM 2.70 3.60 2.29 2.51 1.70 1.89 1.60 1.65

AG-TV-RC90 1.73 1.57 1.55 1.18 1.50 1.42 1.51 1.45

AG-TV-RC270 1.95 1.22 1.70 0.86 1.50 1.50 1.27 1.37

Notes: This table reports the ratios p̂/p with bold entries indicating the model whose ratio is closest to one.

Table 17. Counts of VaR test rejections across the 4 markets

p = 0.01 p = 0.05

UC CC DQ UC CC DQ

BBHP 4 3 1 1 1 0

LRS 1 1 1 4 4 4

UnGARCH-Frank 3 3 3 3 2 3

UnGARCH-FGM 2 2 2 3 2 3

UnGARCH-RC90 0 0 1 0 1 1

UnGARCH-RC270 2 1 2 3 3 3

AG-Con-Frank 2 2 2 4 3 4

AG-Con-FGM 2 2 2 4 4 4

AG-Con-RC90 1 1 1 4 3 4

AG-Con-RC270 1 1 1 4 4 4

AG-TV-Frank 2 2 2 4 3 4

AG-TV-FGM 4 4 4 4 4 4

AG-TV-RC90 1 1 1 4 3 4

AG-TV-RC270 2 2 2 4 4 4

Notes: Significance is counted at the 5% level and bold entries

indicate the model with the lowest number of rejections for each test.
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Table 18. Penalty structure

Zone Number of violations k

Green 0–4 0

Yellow 5 0.40

6 0.50

7 0.65

8 0.75

9 0.85

Red 10+ 1

Notes: The number of VaR violations is

calculated over the last 250 trading days.
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(a) BBHP model
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(b) LRS model
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(c) UnGARCH-Frank model
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Figure 1. Model-implied conditional moments: S&P 500 returns
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(a) BBHP model
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(b) LRS model
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(c) UnGARCH-Frank model
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Figure 2. Model-implied conditional moments: FTSE 100 returns
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(a) BBHP model
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(b) LRS model
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(c) UnGARCH-Frank model
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Figure 3. Model-implied conditional moments: DAX returns
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(a) BBHP model
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(b) LRS model
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(c) UnGARCH-Frank model
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Figure 4. Model-implied conditional moments: CAC 40 returns
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(a) AG-Con-Frank model
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Figure 5. AG model-implied conditional moments: S&P 500 returns
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(a) AG-Con-Frank model
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Figure 6. AG model-implied conditional moments: FTSE 100 returns
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(a) AG-Con-Frank model
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Figure 7. AG model-implied conditional moments: DAX returns
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(a) AG-Con-Frank model
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Figure 8. AG model-implied conditional moments: CAC 40 returns
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Figure 9. Time series of Et−1(Rt), αt, and pt: S&P 500 returns
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FTSE 100 Index
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Figure 10. Time series of Et−1(Rt), αt, and pt: FTSE 100 returns
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Figure 11. Time series of Et−1(Rt), αt, and pt: DAX returns
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Figure 12. Time series of Et−1(Rt), αt, and pt: CAC 40 returns
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