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Abstract—A honey bee (Apis mellifera Linnaeus; Hymenoptera: Apidae) queen’s life 1 

expectancy is strongly dependent on the number of sperm she obtains by mating with drones 2 

during nuptial flights.  Unexplained replacement of queens by the colony and young queens 3 

showing sperm depletions have been reported in North America, and reduced drone fertility has 4 

been a suspected cause. The aim of this study was to evaluate drone reproductive qualities 5 

during the queen-rearing season, from May to August. Drones from two different genetic lines 6 

were reared six times during the 2012 beekeeping season at our research centre in Québec 7 

(Canada). Semen volume as well as sperm number and viability were assessed at the ages of 8 

14, 21, and 35 days. Results showed 1) a greater proportion of older drones with semen at the 9 

tip of the genitalia after eversion; 2) an influence of rearing date on semen production; and 3) 10 

no influence of drone genetic line, age or time of breeding on sperm viability. These results 11 

highlight the necessity of better understanding drone rearing and how it can be improved to 12 

ensure optimum honey bee queen mating. 13 

  14 
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Résumé—La durée de vie de la reine de l’abeille (Apis mellifera Linnaeus; Hymenoptera: 15 

Apidae) est dépendante du nombre de spermatozoïdes qu’elle acquiert durant les vols nuptiaux. 16 

Des remplacements de reines ainsi que de jeunes reines ayant épuisé leurs réserves de 17 

spermatozoïdes sont rapportés en Amérique du Nord et des problèmes de fertilité chez les faux-18 

bourdons sont suspectés. Le but de cette étude était d’évaluer les qualités reproductives du 19 

faux-bourdon durant la saison de production des reines abeilles de mai à août. Des faux-20 

bourdons de deux lignées différentes ont été élevés à six reprises au cours de la saison apicole 21 

2012 au Centre de recherche en sciences animales de Deschambault, Québec (Canada). Le 22 

volume de sperme, le nombre de spermatozoïdes et la viabilité ont été évalués aux âges de 14, 23 

21 et 35 jours de vie. Les résultats montrent que 1) le volume de sperme augmente avec l’âge 24 

des faux-bourdons testés; 2) le moment de l’élevage influence la production du sperme et 3) le 25 

nombre de spermatozoïdes et la viabilité des gamètes ne semblent pas influencés par la lignée 26 

génétique, l’âge ou le moment de l’élevage. Cette étude souligne la nécessité d’en connaître 27 

davantage sur l’élevage des faux-bourdons afin d’obtenir des reines abeilles adéquatement 28 

fécondées.  29 

30 
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Introduction 31 

The polyandrous mating system of the European honey bee, Apis mellifera Linnaeus 32 

(Hymenoptera: Apidae), is unique among domesticated animals (Koeniger 1990; Tarpy and 33 

Page 2000). Young queens make 1–3 nuptial flights to a drone congregation area (Schlüns et 34 

al. 2005; Tarpy and Page 2000). A study by Baudry et al. (1998), reported the presence of 35 

thousands of drones from 238 colonies in a single day at the congregation area.  On average, 36 

14 drones mate with the queen and then die (Estoup et al. 1995). Once she has mated, the 37 

queen returns to the hive with approximately 80–90 million spermatozoa in her lateral oviducts 38 

(Woyke 1962). An average of 4–7 million spermatozoa received over the course of all matings 39 

reaches the spermatheca (Laidlaw and Page 1984), where they are stored until used by the 40 

queen (Roberts and Mackensen 1951; Woyke 1962). In recent years, high numbers of deficient 41 

queens, i.e., with incidence of early supersedure, unexplained death, premature drone egg 42 

laying, or interruption of egg laying, have been reported worldwide (Camazine et al. 1998; 43 

Rhodes 2008; vanEnglesdorp and Meisner 2010). Epidemiological surveys from the United 44 

States of America and Canada have identified poor queen quality as one of the main concerns 45 

for the honey-bee industry (vanEngelsdorp et al. 2010, 2011; vanEngelsdorp and Meisner 46 

2010). According to Tarpy et al. (2012) the quality of commercially produced queens is linked 47 

to the production of large amounts of viable brood and the mating health of a queen can be 48 

assessed by investigating how well a queen was mated. These researchers found that queens 49 

had an average of 4.37 million stored sperm in their spermathecae with an average viability of 50 

83.7%.  51 
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Their results also showed significant variations in viable sperm in the spermatheca of 52 

commercially produced queens in the United States of America, with some queens having less 53 

than 20% live sperm.  In Australia, Rhodes et al. (2010) investigated sperm quality of honey-54 

bee drones and found a low number of mature drones and a relatively low average number of 55 

sperm per drone. They suggested poor drone reproductive qualities may contribute to the low 56 

number of sperm in the spermatheca of commercially-produced queens. 57 

Multiple factors have been found to affect mating health of queens: rearing conditions 58 

or queen age at mating can affect the number of sperm migrating to the spermatheca (Cobey, 59 

2007). Moreover, the mating success of queens has been linked to male numbers and sperm 60 

quality at the drone congregation area (Cobey 2007; Nur et al. 2012). Several studies have 61 

shown that drone age, rearing date and genetic origin affect semen properties (Woyke and 62 

Jasinski 1978; Locke and Peng 1993; Zaitoun et al. 2009). Woyke and Jasinski (1978) showed 63 

that the number of spermatozoa entering the spermatheca of inseminated queens tends to 64 

decrease as drone age increases; 4097 million spermatozoa were found in queens’ 65 

spermatheca inseminated with semen from two-week old drones, compared to 3175 million in 66 

queens inseminated with semen from nine-week old drones. Zaitoun et al. (2009) found that 67 

colonies produced drones from February to July in the semiarid conditions of Jordan. They also 68 

found that drones reared in May (swarming period) weighed more and had the highest sperm 69 

counts, higher fertility levels (defined as the presence of semen after manual eversion of drones) 70 

as well as less sperm abnormalities than drones sampled during the rest of the year. Drone 71 
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genetics seem to influence most aspects of sperm production and properties (Rhodes et al. 72 

2010), including semen volume and number of sperm produced by each drone. 73 

In northern climates such as that of eastern Canada, beekeeping is characterised by a 74 

long overwintering period, followed by one of the shortest active seasons for the honey bee 75 

(May to September) around the world. The races commonly bred have been selected for several 76 

features essential for high survival rates in this climate. To our knowledge, no information on 77 

drone reproductive qualities in northern climates exists, despite the particularities of these 78 

environmental conditions.  79 

During summer beekeeping season of 2013, we actively sampled drones from honey-80 

bee colonies. The aim of this study was to evaluate semen quality of drones with different 81 

genetic origins, at different ages and at different seasonal breeding periods. Differences in 82 

semen production and sperm qualities are expected in relation to these variables. Our prediction 83 

was that sperm from young drones would be of highest quality during the swarming period.   84 



Andrée Rousseau 7 

Materials and methods 85 

 Drone rearing and sampling  86 

This study was conducted at the Centre de Recherche en Sciences Animales de 87 

Deschambault (CRSAD, Deschambault, 46°40'26.85''N, 71°54'54.39''W), Québec, Canada. 88 

Mature drones were obtained from honey-bee colonies with open-mated queens belonging to 89 

two different lines: hybrid Italian stock n = 4 colonies (Rustique Apiculture, Saint-Camille, 90 

Québec, Canada) and Buckfast stock n = 4 colonies (Keld Branstrup, Ruds Vedby, Denmark).  91 

All colonies were fed sucrose syrup 1:1 and protein supplement patties (Global Patties Inc., 92 

Airdrie, Alberta, Canada standard 15% pollen patty) during April before the beginning of drone 93 

rearing. 94 

Six successive batches of drones were bred during the 2012 beekeeping season (1 and 95 

14 May, 12 and 20 June, 18 and 28 July). Drones were obtained by isolating each queen for 48 96 

hours within a queen exclusion cage which allowed nurse bees to feed the queen freely. Each 97 

cage held a drone brood cell frame placed in the centre of the brood chamber. After this period, 98 

queens were freed from the excluder cage and drone broods were removed and replaced in the 99 

centre of the brood chamber. Upon emergence, 300 young drones were marked with a water-100 

based Uni Poscapen (Mitsubishi Pencil Co. Ltd., Tokyo, Japan)on their upper thorax and returned 101 

to their respective colonies. Different colours were used to distinguish different drone cohorts 102 

within each colony.  Marked drones were released in the honey super and prevented from 103 

leaving their colony by placing a queen excluder between the brood chamber and the honey 104 
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super, which allowed workers to move freely between the two, while confining drones to the 105 

honey super. 106 

Thirty marked drones were collected at 14, 21, and 35 days after emergence for semen 107 

analysis. When captured, drones were kept alive in a flight cage with young nurse bees and a 108 

small incandescent light until evaluation (within one hour). In this cage, drones were able to fly 109 

and defecate, which helps initiate semen ejaculation (Collins 2004).  110 

 111 

Semen volume 112 

Semen collection was accomplished by manual eversion of sexual organs as described 113 

by Woyke (2008). We selected this technique because it has been used in several studies 114 

assessing properties of drone semen (Collins and Donoghue 1999; Rhodes et al. 2010; Gençer 115 

et Kahya 2011; Nur et al. 2012) and is also commonly practiced for semen collection in 116 

instrumental insemination of honey-bee queens (Harbo 1985; Mackensen and Tucker 1970). 117 

An initial vertical pressure on the head of the drone with the thumb and index finger 118 

produced partial eversion of the endophallus. Subsequent horizontal pressure from the anterior 119 

to the posterior of the abdomen resulted in full eversion of the genitals. In mature drones, semen 120 

is cream-coloured and found at the tip of the genitalia on a bed of white mucus. Using a Harbo 121 

Large Capacity Syringe (GS 1100, Fisher Scientific, Ottawa, Ontario, Canada), semen was 122 

collected from five drones in each colony for each combination of drone breeding date and age. 123 

Semen was collected only from drones producing at least 0.2 μL (the minimum amount required 124 
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for the syringe) and volume was recorded to the nearest 0.1 μL. Care was taken to avoid mucus 125 

collection. Semen from each drone was stored in a separate glass capillary tube until sperm 126 

quality analysis could be performed later on the same day; i.e., within 12 hours of collection.          127 

  128 

Sperm count 129 

Sperm count was conducted using a Neubauer Improved Haemacytometer, BS.748 130 

(Hawksley Technology, Lancing, United Kingdom, depth 0.1 mm, 1/400 mm2). A semen 131 

volume of 0.2 μL was diluted in 1.5 mL Tris buffer in a sterile Eppendorf and gently mixed by 132 

inversion (dilution factor = 7500). Sperm were counted in five squares (0.1 mm3 = 0.1 μL) at 133 

the four corners and centre of each end of the haemocytometer, and counts were repeated 134 

three times (with new slide preparations) under a light microscope at 400x magnification for a 135 

total number of sperm in 15 squares for each drone.   To obtain sperm numbers per drone, 136 

the following formula was applied:  137 

Sperm cells per drone = (n sperm cells in 15 squares x dilution factor 7500 x semen volume) \ 1.5 138 

 139 

Sperm viability 140 

Sperm viability was assessed the day of semen collection using a Live/Dead Sperm 141 

Viability Kit (L-7011, Life Technology Inc., Burlington, Ontario, Canada and a modified version 142 

of the method used by Collins and Donoghue (1999).  For each drone pool, we used 0.2 µL of 143 
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semen for the sperm count; the rest of the semen was diluted for the viability test in an individual 144 

Eppendorf containing 40 μL Tris buffer and mixed gently.  After allowing SYBR-14 and 145 

propidium iodide to thaw and come to room temperature, 1.5 μL of SYBR-14 was added to the 146 

semen dilution, mixed and allowed to stain 10 minutes. An additional 1.5 μL was added, mixed 147 

and allowed to stain 10 more minutes. In a separate analysis of each individual semen sample, 148 

1.5 μL of stained semen solution was diluted in 1.5 μL Tris buffer and mixed gently. A drop of 149 

this solution was placed on a slide preparation and sperm viability was assessed using a Zeiss 150 

Observer Z1 microscope equipped with fluorescence filters. For each slide, five different fields 151 

of view were observed (200x), photographed and saved. Five slides of coloured semen were 152 

prepared per drone. Each spermatozoid was scored as either alive (green), or, if sperm had lost 153 

membrane integrity, dead (red). For each drone, the mean viability percentage was obtained 154 

from the five slides.  155 

 156 

Statistical analysis 157 

The probabilities of semen presence after manual eversion were compared across 158 

drone genetic lines, breeding dates and drone ages using a mixed logit model with repeated 159 

measures.  Measurements were taken from drones across all breeding dates and drone ages 160 

in each colony, the latter being the experimental units for drone genetic lines.  We integrated 161 

this variability between colonies by using data on individual drones instead of means data for 162 

each colony, and added a 4th error term in the model (four error terms: line, rearing date, age 163 
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and sampling error, which integrate the variability of pseudo repetitions). Values of semen 164 

volume, sperm count, and sperm viability were analysed using a mixed Ancova model with the 165 

same repeated measurements. For each response variable, the best transformation was 166 

chosen among the Box-Cox family to meet the assumptions of the model.  In the particular case 167 

of sperm viability, angular transformation was chosen, the recommended transformation for 168 

percentage variables (Sokal and Rohlf 1995).   169 

When a significant effect was found in any analysis, multiple comparisons were 170 

performed using the protected Fisher’s least significant difference (LSD) method.  The normality 171 

assumption was tested using the Shapiro-Wilk’s statistic, while the homogeneity of variances 172 

was verified using traditional residuals plots.  All analyses were performed at the 0.05 level of 173 

significance, and models were adjusted to data using SAS software (release 9.4; SAS Institute 174 

Inc., Cary, North Carolina, United States of America,) via the Glimmix and Mixed procedures.   175 

  176 



Andrée Rousseau 12 

Results 177 

 Drone rearing 178 

Drones were bred in six batches for each colony between 1 May 1 and 28 July 2012. 179 

Since drones from the 28 July cohort reached the age of 14 days in September, when colonies 180 

expulse drones in preparation for overwintering, too few were available for evaluation, and the 181 

cohort was excluded from statistical analyses. Also, a colony in the hybrid Italian stock (Québec 182 

line) died at the beginning of the experiment. Initial analysis showed no significant difference 183 

between genetic lines for all variables, thus colonies from both lines were pooled for added 184 

statistical strength.  While the experiment had a total of 105 treatment combinations (7 colonies 185 

x 5 breeding dates x 3 drone ages), observations were only available for 72 of them, mainly due 186 

to poor rearing success in the first rearing cohort of both genetic lines. Several variance 187 

components of the model that were estimated to 0 were removed from the model. Because of 188 

the missing data pattern and problems with estimation of some variance components, degrees 189 

of freedom were estimated using the Kenward-Roger method (Kenward and Roger 1997).  190 

 191 

Manual eversion 192 

We sampled and manually everted 472 marked drones from May to August 2012.  Of 193 

these drones, 55.3% produced a sufficient amount of semen to be collected with the Gilmont 194 

syringe and were used for semen evaluation (Table 1). Statistical analysis showed that the 195 

proportion of drones releasing semen after manual eversion was dependent on drone age (F2,450 196 
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=3.94; P = 0.020; Fig. 1).  The interaction between drone age effect and breeding date effect 197 

was non-significant (F8,450= 1.93; P = 0.054). Multiple comparisons made to evaluate the 198 

significant effect of drone age showed that fewer 14-day old drones produced at least 0.2 μL of 199 

semen (63.5 ± 8.5%) than 35-day old drones (87.8 ± 6.2%).   200 

 201 

Semen volume 202 

For drones that released semen after manual eversion (n = 261 or 55.3% of total drones 203 

sampled), the mean semen volume was 1.01 ± 0.03 μL, ranging from 0.4–2.4 μL. Results 204 

showed that semen volume was influenced by the combined effect of drone age and breeding 205 

date (F8,15.7 = 2.97; P = 0.031; Fig. 2). At 14 and 35 days old, there was no difference in semen 206 

volume throughout the drone rearing season (F4,21 = 0.44; P = 0.776 and F4,15.1 = 2.25; P = 0.112 207 

respectively).  208 

 209 

Sperm count 210 

Of the total number of drones with semen after eversion (n = 261), 177 produced at 211 

least 0.2 μL of semen. These drones had an average total sperm count of 1.80 ± 1.65 million 212 

(range 0.008–7.77) spermatozoa. There was no significant effect of any source of variation on 213 

sperm count (Table 2.) 214 

 215 
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Sperm viability  216 

The mean percentage of sperm viability was 64.2 ± 1.07 % (range 36.79–86.66). There 217 

was no observable effect of drone line (F1,128 = 0.49; P = 0.485),  breeding date (F4,128 = 0.43; 218 

P =  0.788) or drone age (F2,128 = 0.31; P = 0.736) on sperm viability (Table 2). 219 

  220 
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Discussion 221 

The purpose of this study was to assess the drone semen quality of different genetic 222 

lines, at different ages and reared at several periods during the beekeeping season in Québec, 223 

Canada. Our data showed that age, and rearing date have an impact on semen volume but not 224 

on sperm count or viability. One key finding of this study is that a large proportion of mature 225 

drones failed to release semen by manual eversion, as previously observed by Rhodes et al.  226 

2010. 227 

We did not find differences in measured variables between the two genetic lines. 228 

Rhodes et al. (2010) examined the influence of genetics on semen production in the honey bee 229 

and found differences in semen volume between lines. They were even able to identify a line of 230 

drones producing higher volumes of semen. This observation is interesting for honey-bee 231 

breeding because adequate queen fecundation is dependent on the volume of semen produced 232 

by each drone, and migration of sperm into the spermatheca is dose dependent (Cobey 2007). 233 

Furthermore, a drone’s number of descendants is maximised by semen production (Schlüns et 234 

al. 2003). The four major Québec queen breeders maintain between four and six different 235 

maternal lines and there is an unknown number of lines coming from queen imports from Hawaii, 236 

New Zealand, Chile, and California. We selected only two honey-bee lines available from among 237 

those in our breeding program (10–14), and we recommend that more research be conducted 238 

on a wider range of honey-bee lines in order to verify whether honey bees could be bred for 239 

higher drone fertility. 240 



Andrée Rousseau 16 

Sexual maturation of drones is attained at the age at which sperm has completed 241 

migration from the testes to the seminal vesicles and when mucus glands are fully developed 242 

(Rhodes 2008). In our study, the higher proportion of 35-day old drones with semen after manual 243 

eversion compared to 14-day-old drones (respectively 87% and 64%) shows that not all 14-day-244 

old drones can expulse semen after manual eversion.  According to several authors who used 245 

this technique, drones aged 10–21 days are mature, and semen properties are most suitable 246 

for queen insemination (Woyke and Jasinsky 1978; Harbo and Williams 1987). Nevertheless, 247 

our findings indicate that a large proportion of young drones do not release semen through 248 

manual eversion.  The efficiency of the technique in the case of young drones requires further 249 

investigation, particularly in commercial queen breeding open-mating areas, where there is a 250 

greater natural variety of drones.  251 

In-hive drone containment and its impact on semen expulsion also require further 252 

investigation. In our study, only a small proportion of marked drones survived 35 days in 253 

confined hives (from 0 to 2.82%), as observed by Rhodes et al. (2010). Under field conditions, 254 

the estimated life span of Apis mellifera drones is 20–40 days (Page and Peng 2001). The 255 

confinement of drones during the rearing period could have reduced drone survival through 256 

flight deprivation and absence of defecation during their development as suggested by Laidlaw 257 

(1979). In our study, drones were able to fly and defecate only when removed from rearing 258 

colonies and placed within the flight cage. Due to the cumulative effect of these disturbances, 259 

only a few of the 35-day-old drones were available for semen analysis.  260 
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We found that only a low proportion of drones, 53%, produced the 0.2 µL of semen 261 

required for collection and analysis. Rhodes et al. (2010) and others (Collins and Pettis 2001; 262 

Andersen 2004) found a similarly low proportion of drones (40.6%) aged 14–35 days with 263 

sufficient semen production for analysis, and expressed doubts about the capability of these 264 

drones to mate with a queen in nature. Woyke (2008) studied manual eversion and suggested 265 

that the pressure inside the partly everted endophallus is probably too weak to provoke further 266 

eversion and release of semen for drones arrested at the partly everted stage but did not find 267 

drones showing a total eversion without releasing semen. This phenomenon requires further 268 

investigation to determine whether drones not releasing semen after manual eversion are able 269 

to mate with the queen, and if so, whether semen is transferred into the oviducts. The effect of 270 

age on proportion of drones with semen may also be due to a bias in sampling. Only a few 271 

drones survived to 35 days, and we could expect that these were the fittest individuals. The 272 

higher proportion found with semen may be due to the fact that the strong individuals who 273 

survived longer may also be those with the highest proportion having semen. 274 

The mean sperm count we measured (1.80 ± 1.65 million) was highly variable and 275 

within the range obtained in several previous studies (Andersen 2004; Koeniger et al. 2005; 276 

Rhodes et al. 2010; Gençer and Kahya 2011; Nur et al. 2012). Because of this variance, a 277 

higher number of sampled drones and a second year of data could have provided us with more 278 

accurate information on the influence of drone age on sperm number.  279 

Based on our findings, the proportion of drones with semen after manual eversion 280 

seems to fluctuate during the beekeeping season in eastern Canada. This variability has also 281 
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been observed in Australia (Rhodes et al. 2004) and in Jordan (Zaitoun et al. 2009). We found 282 

lower proportions of drones with semen in early May and mid-June (respectively 43% and 72%). 283 

Interestingly, semen volume was also lowest at these two breeding dates. We speculate that 284 

changes in the active season of semen production might be explained by the same factors 285 

affecting drone production. A honey-bee colony regulates male production throughout the 286 

growing season according to environmental factors such as colony size and food availability 287 

(Lee and Winston 1987; McNally and Schneider 1994; Boes 2010). Because drones are more 288 

costly for the colony to produce than workers (Seeley 2002; Hrassnigg and Crailsheim 2005), 289 

colonies reduce drone production during a period in which limited resources are available in 290 

their environment (Rowland and McLellan 1987). Honey bees rarely face a total dearth of pollen 291 

in their environment, but are rather confronted with variability of pollen resources, abundance, 292 

type and diversity across both time and space (Di Pascale et al. 2013). In early May in Québec, 293 

honey bees can benefit from several blooming shrubs and trees, as well as a few indigenous 294 

wild plant sources of pollen and nectar, including the ubiquitous dandelion (Taraxacum Wiggers, 295 

Asteraceae). However, the pollen and nectar of the majority of melliferous plants are available 296 

only in June and July in Québec (Chabot 1948), and only 32 of the 143 main melliferous species 297 

flower during May, compared to 64 in June and 88 in July. None of the crops considered 298 

important melliferous plants for the honey bee, such as alfalfa (Medicago sativa Linnaeus, 299 

Fabaceae), white clover (Trifolium repens Linnaeus, Fabaceae) or buckwheat (Fagopyrum 300 

Miller, Polygonaceae), flower in May. Resource availability for honey-bee colonies could have 301 

influenced drone’s production of semen during the season, and further research on dietary 302 

effects on drones is needed. In this regard, it is important to note that we encountered great 303 
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difficulty rearing drones in early spring and late summer. Apparently, even if drone production 304 

is forced by caging a queen in a drone frame, workers will not rear drones when there is a 305 

shortage of resources, especially pollen, which can lead workers to cannibalise the brood 306 

(Schmickl and Crailsheim 2001), a phenomenon we observed with drones from the first 307 

breeding date (1 May).  308 

Results obtained for sperm viability are of concern due to the generally low rates found 309 

(mean 64.2 ± 1.07%) throughout the active season. Previous studies on drone sperm viability 310 

have shown means ranging between 70 and 90% (Locke and Peng 1993; Rhodes 2008; Nur et 311 

al. 2012). According to Collins (2000), queens inseminated with semen with 42.5% sperm 312 

viability resulted in reduced numbers of worker brood. Many factors could have contributed to 313 

reduced sperm viability: drone semen is sensitive to bacterial infection (Andere et al. 2011), and 314 

contamination can significantly reduce its viability (Locke and Peng 1993). Collins (2004) also 315 

found that the act of collecting semen in a syringe can injure sperm and reduce its viability. 316 

Sturüp et al. (2013) found that drones exposed to a slight temperature increase from 35–39 °C 317 

resulted in reduced sperm viability. Even semen samples evaluated shortly after collection may 318 

have been damaged or contaminated, thereby reducing viability. The possible impact of the 319 

generalized poor sperm viability observed here on queen fertility problems identified by the 320 

industry also requires closer investigation. 321 

In conclusion, this study demonstrated that semen volume of drone honey bees in 322 

eastern Canada fluctuates during the short beekeeping season, and that drones reared in spring 323 

(May) show the lowest fertility levels.  We recommend that queen breeders test drones for 324 
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semen quality, to ensure mating with the highest possible reproduction levels at commercial 325 

queen bee mating apiaries. 326 
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 473 

 474 

Fig. 1. Mean proportion of drones with semen at the tip of the endophallus after manual 475 

eversion for the three ages (in days) (± se). Different letters indicate significant difference (F 476 

2,450 = 3.94; P = 0.020). 477 
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 478 

Fig. 2. Mean semen volume per drone (μL) for the three different ages (in days) and five 479 

rearing dates (± se) (F 8,15.7) = 2.97; P = 0.031). 480 
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Table 1. Number of drones marked at emergence and proportion of drones with semen after manual eversion at various ages. 

Rearing date  

Number of 

drones marked 

at emergence 

Proportion of drones with semen after manual 

eversion 

14                        21                       35 

Number of marked drones 

surviving to 35 days 

      

1 May 830 21/85 (24.7%) 25/84 (29.8%) 5/9 (55.6%) 9/830 (1.08%) 

      

14 May 597 21/23 (91.2%) 19/29 (65.5%) 13/14 (92.9%) 14/597 (2.35%) 

      

12 June 900 22/38 (57.9%) 17/27 (63.0%) 19/24 (79.2%) 24/900 (2.67%) 

      

20 June 972 26/51 (51.0%) 33/38 (86.8%) 10/12 (83.3%) 12/972 (1.23%) 

      

18 July 355 10/15 (66.7%) 11/13 (84.6%) 9/10 (90.0%) 10/355 (2.82%) 

      

 Total of drones with semen after manual eversion: 261/472 (55.3%) 
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Table 2. Results of the single factor ANOVA with repeated measurements for proportion of drones with semen, volume of semen, sperm 

count per drone, and sperm viability. 

 

 

Effect 

 

Proportion of drones 

with semen 
Volume of semen Number of sperm Sperm viability 

 

df 

 

F P 

 

df 

 

F P 

 

df 

 

F P 

 

df 

 

F P 

 

Drone Line 

 

1, 9.4 0.10 0.7595 1, 23.5 0.13 0.7197 1, 5.8 0.30 0.6060 1, 128 0.49 0.4850 

Rearing date 4, 8.4 1.71 0.2359 4, 18.1 3.80 0.0206 4, 73.6 1.24 0.3010 4, 128 0.43 0.7883 

Drone 

line*Rearing 

date 

 

4, 7.1 

 

0.24 0.9041 4, 18.2 1.49 0.2467 4, 55.4 0.46 0.7659 4, 128 1.18 0.3217 

Drone age 2, 450 3.94 0.0202 2, 16.5 2.89 0.0839 2, 153 0.64 0.5275 2, 128 0.31 0.7364 

Drone line* 

Drone age 
2, 450 0.73 0.4835 2, 15 4.13 0.0371 2, 152 0.67 0.5128 2, 128 0.59 0.5567 

Rearing date* 

Drone age 
8, 450 1.93 0.0535 8, 15.7 2.97 0.0313 8, 152 1.76 0.1814 6, 128 0.89 0.5059 


