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RÉSUMÉ 

Les fenêtres intelligentes présentent un potentiel important quant à la réduction de la 
consommation d’énergie dans les bâtiments et permettent d’assurer le confort visuel des 
occupants. Depuis le début des années 90, la recherche sur les technologies de fenêtres 
intelligentes s’est accentuée tant au niveau des technologies elles-mêmes qu’au niveau des 
types de contrôle qu’on peut leur appliquer pour gérer le plus efficacement possible le 
rayonnement solaire qui les traverse. Plusieurs laboratoires de recherche tels que le Lawrence 
Berkeley National Laboratory (LBNL) se sont penché sur la question. L’évolution de la 
recherche dans ce domaine démontre toute la complexité associée à l’évaluation rigoureuse 
des performances des fenêtres intelligentes. De par sa capacité à gérer le rayonnement solaire, 
il va de soi que ce genre de technologies nécessite la connaissance du rayonnement solaire 
incident pour faciliter la prise de décision quant au contrôle à apporter. Étant donnés les coûts 
des technologies de capteurs de rayonnement solaire existantes et la limitation de certains 
quant à leur précision (lors de fluctuations du spectre électromagnétique et/ou des 
températures ambiantes), l’utilisation de capteurs de rayonnement solaire dédiés au contrôle 
de fenêtre intelligente est donc limitée. Par ailleurs, les connaissances sont encore limitées 
concernant les conditions permettant d’optimiser le contrôle de ce genre de technologies en 
termes d’énergie et de confort. L’objectif général de cette thèse est d’élargir les 
connaissances scientifiques sur le potentiel des technologies de fenêtres électrochromes 
quant à leur capacité à augmenter la performance énergétique et le confort des occupants 
dans les bâtiments. 
 
Dans un premier temps, un nouveau type de capteur de rayonnement solaire à faible coût est 
présenté. Ce capteur utilise la différence de température entre une surface blanche et une 
surface noire pour estimer le flux solaire radiatif traversant les ouvertures d’un bâtiment. Les 
mesures de rayonnement solaire sont corrélées aux températures de surfaces à l’aide un 
modèle thermique du capteur en 1D. Deux différents modèles de capteur sont présentés et les 
résultats obtenus sont comparés aux mesures solaires de référence obtenues par un 
pyranomètre. Il a été démontré que les modèles de capteurs présentent des précisions 
suffisantes pour un contrôle efficace. Finalement, il est observé que la période de calibration 
des capteurs requiert minimalement une demi-journée de mesures sous des conditions de ciel 
clair incluant le midi solaire. 
 
Dans un deuxième temps, l’impact des stratégies de contrôle de fenêtre intelligente sur la 
consommation énergétique globale est évalué. L’état des fenêtres intelligentes nécessaire à 
toute heure de la journée pour permettre une minimisation de la consommation d’énergie 
globale tout en respectant les contraintes reliées au confort thermique et visuel est déterminé 
à l’aide d’une stratégie d’optimisation basée sur des algorithmes génétiques. Ce contrôle 
quasi-optimal est alors comparé à d’autres approches qui peuvent être adaptées à des 
applications en temps réel, soit des contrôles fondés sur des règles et un modèle de contrôle 
prédictif. Les impacts de la masse thermique et de la puissance du système d’éclairage installé 
sont également analysés. Les résultats montrent que les quatre stratégies de contrôle à l’étude 
présentent une consommation énergétique similaire avec des écarts de consommation globale 
variant de 4% à 10%. Cette étude illustre que des stratégies de contrôle plus simple 
permettent d’obtenir des résultats satisfaisants. 
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Finalement, une analyse de sensibilité basée sur une grande variété de combinaison de 
paramètres de design est réalisée. Des résultats énergétiques et de confort pour un total de 
7680 scénarios sont obtenus et utilisés dans cette analyse considérant l’effet principal des 
paramètres de design du bâtiment. L’influence relative des paramètres est présentée et les 
différents designs améliorant les résultats sont déterminés. Les résultats montrent que la 
meilleure économie d’énergie avec fenêtres intelligentes se trouve dans des climats chauds 
avec une exposition élevée aux rayons solaires. La présence de fenêtres intelligentes 
influence principalement la charge de refroidissement maximale et agit comme une solution 
alternative à la masse thermique en termes de réduction potentielle de cette charge maximale. 
Bien que le choix de la stratégie de contrôle ait un impact limité sur l’économie d’énergie 
réalisée et la réduction de la charge maximale, l’analyse permet de constater que ce paramètre 
a un impact encore plus important sur le confort visuel. L’utilisation de fenêtres intelligentes 
ne semble pas influencer grandement le confort thermique à l’intérieur de la zone. 
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ABSTRACT 

Smart windows present a huge potential in terms of energy consumption reduction in 
buildings while also offering the possibility to assure occupants’ visual comfort. Since the 
early nineties, research in the field of smart windows gains a lot of interest on both the 
technologies and the controls that could be applied on such technologies to manage more 
efficiently solar gains passing through these windows. Many different well-known entities 
such as the Lawrence Berkeley National Laboratory invested efforts in this field and 
demonstrated the great complexity related to the thorough evaluation of smart window 
performances. Given its capacity to manage solar radiation, it makes sense to benefit from 
solar radiation measurements to control efficiently such technology. However, the costs and 
other technical related limitations reduce the potential to use readily available solar sensors 
for smart window control. Moreover, general knowledge is still limited regarding the 
conditions leading to optimal control decisions of smart windows. The main objective of this 
thesis was to gain a better understanding of how electrochromic windows could lead to 
improved performances in terms of energy consumption and thermal comfort 
 
First, a new design of low cost solar sensor is proposed. The sensor uses the difference in 
temperature of white and black surfaces to estimate the solar heat flux through building 
openings. Results of solar radiation measurements are obtained through a correlation based 
on a 1D thermal model of the sensor. Two designs of the sensor are presented and obtained 
results compared with solar measurements of a high precision pyranometer. It was shown 
that the new sensors present sufficient accuracy for smart window control applications. 
Finally, it was observed that ideal sensors calibration period should consider at least half a 
day of measurements, including solar peak time, and should be done during clear sky 
conditions. 
 
Then, the impact of the applied control strategy on the overall energy consumption is 
investigated. The hour-by-hour state of the smart windows required to minimize overall 
energy consumption while respecting constraints related to comfort is determined through an 
optimization strategy based on genetic algorithms. This quasi-optimal control is compared to 
other approaches that could be applied in real-time applications, i.e. rule-based controls and 
a model predictive control. The impacts of thermal mass and installed light power density 
are also analyzed. Results show that the four control strategies under study presented similar 
energy consumption with differences in total energy consumption ranging from 4% to 10%. 
This study illustrates that simpler control strategies can also lead to satisfying results. 
 
Finally, a sensitivity analysis based on a large number of different combinations of design 
parameters is performed. Results related to energy and for a total of 7680 scenarios were 
obtained and used in this analysis considering the Main effect of the building parameters. 
The relative influence of the parameters is presented and the different designs improving the 
outputs are determined. Results have shown that the greatest total energy savings considering 
EC windows are for warmer climates with higher solar radiation exposures. The presence of 
an EC window mostly influences the cooling peak load and acts as an alternative solution to 
thermal mass from the perspective of peak reductions. While the choice of the specific 
window control strategy is having a limited impact on the energy savings and peak load 
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reductions, the analysis revealed that this parameter has a larger impact on the visual comfort. 
The use of smart window does not appear to greatly influence the thermal comfort within the 
zone. 
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f  Front side of sensor surface 
fl  Floor 
gains  Internal gains 
gap  Insulated glazing unit argon gap 
glass  Window glass panes 
heat  Heating 
i  Interior walls and zone air thermal node 
in  Indoor 
iw  Interior wall layer of the exterior building wall (gypse) 
iw2  Thermal node between the middle and interior wall layers 
k  kth time step in MPC control (Chapter 4) 
k  kth building parameter (Chapter 5) 
L  Light output 
light  Artificial lighting system 
LW  Wall section of the building façade below the glazing 
max  Maximum 
min  Minimum 
mw  Middle wall layer of the exterior building wall (insulation) 
n  Number of possible designs for parameter k 
nat  Natural light illuminance 
o  Over maximum temperature setpoint 
out  Outdoor (Chapter4) 
out  Exterior conditions (Chapter 5) 
P  Light power input 
p  pth prediction time step 
rad  Radiative (Chapter 3) 
rad  Radiative heat transfer (Chapter 4) 
ref  Reference measurements 
req  Requirement 
sum  Summer conditions 
SW  Smart Window glazing 
SW1  Exterior glass pane of the smart window glazing 
SW2   Interior glass pane of the smart window glazing 
t  tth time step in ideal modulating control 
u  Under minimum temperature setpoint 
UW  Wall section of the building façade above the glazing 
sol  Solar 
st  Storage 
state  State of transparency 
surr  Surrounding surfaces 
tot  Total 
v  Vertical 
W  White surface 
w  Exterior wall of the building zone (Chapter 4) 
w  Window (Chapter 5) 
win  Winter conditions  
z  Zone 
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zone  Zone air node 
1%  Annual cumulative frequency of occurrence exceeding the given dry bulb 

temperature  
99%  Annual cumulative frequency of occurrence exceeding the given dry bulb 

temperature 
 
Greek symbols 
α   Absorptivity 
ε   Emissivity 
ρ   Density, kg/m3 
σ  Stefan-Boltzmann constant (σ = 5.670·10−8), W/m2·K4 (Chapter 4) 
σ  Standard deviation (Chapter 5) 
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CHAPTER 1 INTRODUCTION 
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1.1 Mise en contexte 

Dans le contexte environnemental actuel [1], la conception et les procédures d’opération des 

bâtiments sont de plus en plus orientées vers des concepts intégrés [2]. La conception intégrée 

dans le domaine des bâtiments suppose une étroite communication entre les différents 

intervenants de manière à, entre autres, harmoniser l’aspect esthétique, optimiser la 

communication entre les systèmes et favoriser le confort des occupants. Un bâtiment 

intelligent [3][4], dont la notion fait généralement référence à la capacité d’un bâtiment de 

remplir efficacement tous les objectifs de sa conception, est donc le résultat d’une conception 

intégrée réussi. De nos jours, le terme « intelligent » est très populaire en ce qui concerne les 

différents éléments des bâtiments. Parmi ces éléments, les termes qu’on retrouve 

fréquemment dans la littérature dans le domaine des bâtiments sont, entre autres, les réseaux 

intelligents [5][6][7][8], les enveloppes intelligentes [9][10], les fenêtres intelligentes 

[11][12][13][14][15][16] et, de façon plus générale, les matériaux intelligents [15][17]. La 

notion d’intelligence dans les bâtiments a donc fait l’objet de plusieurs recherches 

scientifiques au courant des dernières années/décennies et plusieurs nouvelles technologies 

ont, par le fait-même, vu le jour.  

 

On compte plusieurs technologies récentes dont l’objectif principal est de réduire la 

consommation énergétique du bâtiment [18][19]. Entre autres, plusieurs nouvelles 

technologies sont apparues dans le domaine de l’enveloppe du bâtiment (enveloppes 

intelligentes). Bien que l’enveloppe des bâtiments ait longtemps été considérée comme étant 

un élément passif, l’avancement des connaissances dans ce domaine présente aujourd’hui un 

portrait différent [9][10], dû à la flexibilité et la capacité d’adaptation (aspect intelligent) que 

les technologies émergentes présentent [21][22][23][24][25]. 

 

Parmi ces technologies, les fenêtres intelligentes présentent un potentiel important quant à la 

réduction de la consommation d’énergie et des coûts qui y sont rattachés [26]. Il sera toutefois 

possible de tirer profit de ce potentiel uniquement lorsque des stratégies de contrôle efficaces 

en temps réel basées sur une compréhension approfondie des comportements en jeux seront 

développées et intégrées au système d’automatisation du bâtiment. En effet, la nouveauté des 

technologies de fenêtre intelligente présente une différence de maturité entre les technologies 
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elles-mêmes et l’existence de systèmes de contrôle/gestion et des connaissances quant à leurs 

différents comportements dans le but de minimiser la consommation énergétique globale tout 

en assurant un confort visuel et thermique pour les occupants. 

 

La notion de fenêtre intelligente fait référence aux produits de vitrage appliqués à la 

fenestration des bâtiments dont les propriétés optiques sont modulables et auxquels un 

contrôle  logique est appliqué. Ce contrôle permet de réduire la consommation d’énergie en 

chauffage/climatisation [27] ainsi que d’augmenter le confort visuel (minimiser 

l’éblouissement) [28]. Une fenêtre intelligente correspond typiquement à une fenêtre 

comportant une unité scellée dans laquelle on insère un filtre à opacité variable (propriétés 

optiques modulables). Typiquement, dans l’industrie de la fenestration, le filtre à opacité 

variable est installé sur la surface de verre #2 (voir Figure 1.1) afin de maximiser les 

performances énergétiques et augmenter le confort thermique. 

 
Figure 1.1 : Représentation d’une fenêtre intelligente typiquement utilisée dans les bâtiments 

 

Certaines définitions considèrent que la notion de fenêtre intelligente fait référence aux 

technologies dont la modulation est due à l’application d’un courant électrique, alors que 

d’autres définitions sont plus générales et incluent aussi les autres stimuli tels que la 

luminosité, la chaleur, etc. Les types de fenêtres intelligentes incluent les vitrages de type : 

1. Électrochromes [29] (Propriétés optiques modulées par une tension électrique via des 

réactions chimiques); 
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2. À cristaux liquides [30] (Propriétés optiques modulées par une tension électrique via 

l’orientation des cristaux liquides); 

3. « SPD » [31] (Propriétés optiques modulées par une tension électrique); 

4. Gasochromes [32] (Propriétés optiques modulées par le taux d’hydrogène); 

5. Thermochromes [33]. (Propriétés optiques modulées par la température). 

Les propriétés opto-thermiques contrôlées par les fenêtres intelligentes sont : 

1. Le coefficient de gain thermique solaire (SHGC) : en modulant le flux solaire 

pénétrant dans le bâtiment, la fenêtre contrôle une partie des gains thermiques de 

celui-ci; 

2. La transmission de la lumière visible : similairement, la quantité et la qualité de la 

lumière naturelle disponible sera affectée par le contrôle de la fenêtre. 

Les avantages des fenêtres intelligentes, comparativement aux fenêtres passives, sont 

notamment [12]:  

1. La réduction de la consommation d’énergie pour les charges de chauffage, de 

climatisation et d’éclairage; 

2. L’amélioration du confort thermique et visuel des occupants; 

3. La réduction des coûts initiaux de la mécanique du bâtiment (réduction des pics de 

consommation énergétique). 

La technologie de fenêtre électrochrome présentant le plus grand potentiel quant à ses 

applications dans les bâtiments, les travaux réalisés dans le cadre de cette thèse se concentrent 

plus particulièrement sur cette technologie. La Figure 1.2  illustre un exemple de fenêtres 

électrochromes installées au Collège de Grove City en Pennsylvanie. Ces fenêtres sont 

contrôlées pour minimiser les gains solaires et offrir des espaces intérieurs confortables.  
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Figure 1.2 :  Fenêtres électrochromes à l’état clair (à gauche) et dans un état coloré (à droite). 

Crédit: Sage Electrochromics 
 

1.2 Revue de la littérature 

Depuis la fin des années 1980, les chercheurs de la Environmental Energy Division du 

Lawrence Berkeley National Labatory (LBNL), aux États-Unis, ont mené des travaux 

importants au sujet des performances énergétiques des fenêtres intelligentes, et plus 

particulièrement des fenêtres électrochromes. Les premières recherches [34][35] réalisées par 

les chercheurs de LBNL ont porté sur l’évaluation des performances des fenêtres 

électrochromes et des facteurs d’importances tels les propriétés optiques, le confort 

thermique et visuel, les stratégies de contrôle, l’aspect esthétique et l’analyse économique 

associée aux surcoûts initiaux et aux économies récurrentes. Les conclusions, basées 

majoritairement sur des modélisations numériques de technologies idéalisées, ont démontré 

que les fenêtres intelligentes  peuvent offrir des bénéfices en termes d’économies d’énergie 

et permettent d’éviter le sur dimensionnement initial des systèmes HVAC (Heating, 

Ventilating and Air Conditioning). Dans les mêmes années, ils ont aussi démontré que la 

stratégie de contrôle des fenêtres intelligentes basée sur la luminosité présente les meilleures 

performances globales [27]. 

 

Vers la fin des années 1990, l’avancement des technologies électrochromes permet aux 

chercheurs de LBNL de réaliser différentes analyses numériques de performances 

énergétiques basées sur les propriétés optiques mesurées des technologies disponibles sur le 
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marché [36]. Les résultats sont présentés pour différentes villes aux USA, soient Phoenix, 

Miami et Madisson. Les résultats pour des bâtiments commerciaux indiquent que les 

performances énergétiques globales sont améliorées lorsqu’un contrôle linéaire de l’état de 

transmission des fenêtres électrochromes est utilisé afin de fournir une luminosité minimale. 

Des résultats similaires sont aussi présentés pour des applications résidentielles [37] ou pour 

des bâtiments dominées par le chauffage [38]. Dans leurs conclusions, les auteurs 

mentionnent l’importance de pousser plus loin les recherches sur les stratégies de contrôle 

prenant en compte davantage de paramètres (radiation solaire incidente directe, radiation 

transmisse totale et directe, température de l’air ambient, etc). Les chercheurs de LBNL ont 

également mis en évidence que l’état de la fenêtre électrochrome offrant un confort visuel 

idéal peut potentiellement entrer en conflit avec l’état qui offre des performances 

énergétiques optimales [39]. Les résultats ont démontré que les fenêtres intelligentes avaient 

l’avantage de pouvoir offrir un confort visuel amélioré en raison de leur capacité d’adaptation 

de la transmission de la lumière visible et que les recherches futures devraient considérer le 

compromis entre confort et performances énergétiques.  

 

Au cours des dernières années, les chercheurs de LBNL ont étudié des stratégies de contrôle 

plus évoluées [40] pour lesquelles l’optimisation énergétique est contrainte par l’aspect du 

confort visuel. Les résultats obtenus leur permettent de soumettre à la Commission de 

l’Énergie de la Californie une première méthode de design de bâtiments intégrant des fenêtres 

électrochromes [41]. Ce travail illustre bien le fait que les fenêtres électrochromes nécessitent 

la mise en place d’un système (capteurs, communication, etc) et que les coûts associés à ce 

genre de technologies sont encore très élevés. Enfin, une évaluation de l’influence du contrôle 

humain sur les performances énergétiques optimales (contrôle automatisé) a été menée en 

2012. Les résultats démontrent qu’un contrôle automatisé adapté au confort thermique et 

visuel des occupants diminue grandement le risque que les occupants veuillent prendre le 

contrôle de l’opacité des fenêtres. Par rapport à un bâtiment de référence sans fenêtres 

intelligentes, ces résultats présentent des économies d’énergie potentielles de l’ordre de 50% 

et une diminution de la pointe de consommation de l’ordre de 35%. 
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De façon générale, dans l’ensemble de leurs recherches, les chercheurs de LBNL rappellent 

qu’encore aujourd’hui, les stratégies avancées de contrôle prédictif offriraient des avantages 

potentiels considérables, mais présentent des difficultés quant à leur développement en raison 

des effets transitoires dus aux changements non anticipés des demandes énergétiques, les 

variations climatiques et les taux d’occupation/inoccupation, du déphasage temporel des 

charges radiatives associées à la masse thermique du bâtiment ainsi que des paramètres du 

système HVAC tels que les performances ou les délais temporels associés au système de 

distribution d’air. Ces propos illustrent bien l’importance de la poursuite de la recherche de 

ce domaine. 

 

Par ailleurs, plusieurs autres groupes ont mené des recherches parallèlement à LBNL. Parmi 

les résultats les plus pertinents, on retrouve, chronologiquement, les résultats présentés dans 

les paragraphes qui suivent. 

 

En 1993, Kim et Jones [42] soulignent les avantages de l’intégration de systèmes 

informatiques de gestion de l’énergie des bâtiments. Parmi ces avantages, on compte, 1- La 

possibilité d’incorporer des fonctions avancées telles que les fonctions proportionnelles, 

intégrales ou dérivatives, 2- la possibilité de considérer plusieurs signaux d’entrée, 3- la 

possibilité d’archiver, récupérer et analyser l’information et, 4- la possibilité d’appliquer une 

logique booléenne aux algorithmes de contrôle. Dans leur article, Kim et Jones présentent 

une logique de contrôle basée sur le confort visuel, l’éclairage naturel et les besoins du 

système HVAC. Les notions de contrôle prédictif sont brièvement discutées en ce qui 

concerne l’éclairage naturel. Bien que la logique proposée soit très pertinente, cette dernière 

ne considère pas l’effet du déphasage temporel de la charge radiative absorbée par la masse 

thermique du bâtiment et les impacts qui y sont associés à l’égard de la réduction optimale 

de la consommation énergétique.  

 

En 2000 [43] et 2001 [44], Karlsson et ses collègues présentent des résultats de performance 

énergétique similaires à ceux de LBNL [36]. Une stratégie de contrôle des fenêtres 

intelligentes basée sur le taux d’occupation et faisant intervenir la récupération de chaleur, 

un système HVAC contrôlable et des sondes de température, éclairage et d’occupation est 
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proposé. Cette stratégie est d’ailleurs déposée sous la forme d’un brevet au cours de 2001 

[45]. 

 

En 2002, Davies [46] présente une stratégie de contrôle de fenêtres intelligentes dont l’aspect 

novateur provient d’une stratégie combinée faisant intervenir la variation d’opacité de la 

technologie de fenêtre intelligente sous la forme de sous-éléments contrôlables et 

l’intervention de systèmes d’ombrage passifs. Dans ses conclusions, Davies mentionne qu’il 

y a encore de la recherche à faire pour développer des algorithmes de contrôle plus 

intelligents qui devront prendre en considération, entre autres, les critères d’acceptabilité des 

occupants, l’environnement du bâtiment et la complexité du contrôle associée au délais de 

transition plutôt longs qu’offre les fenêtres électrochromes. 

 

Au courant de la même année, Lee et DiBartolomeo [47] présentent les défis et/ou 

problématiques associés à l’intégration des fenêtres électrochromes aux bâtiments. Parmi ces 

considérations, les auteurs soulignent le fait que 1- Le contrôle de la transmission de la 

lumière naturelle via les fenêtres électrochromes n’assure pas le confort visuel des occupants, 

2 – Il existe une adéquation entre la nécessité d’avoir une réponse rapide de la technologie 

pour assurer le confort et les temps de réponse qu’offrent les technologies existantes, 3- La 

durabilité des technologies en fonction du climat et du nombre de cycle est à évaluer de façon 

indépendante et, 4- Les technologies existantes ne respectent pas nécessairement la neutralité 

du spectre solaire, ce qui peut engendrer des inconforts visuels ou physiologiques [48]. 

 

En 2003, Gugliermetti and Bisegna [49] développent une approche de contrôle qui intègre la 

confort visuel et l’efficacité énergétique. Les résultats obtenus montrent que le fait de 

contrôler dans le but d’offrir un confort visuel ne détériore pas considérablement les 

performances par rapport à un contrôle uniquement axé sur les performances énergétiques. 

Les auteurs mentionnent aussi le fait qu’un contrôle progressif des fenêtres électrochromes 

et des systèmes d’éclairage présente des avantages énergétiques par rapport aux stratégies de 

contrôle à deux états (c’est-à-dire : « on/off »). 
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En 2004, Assimakopoulos et al. [50] présentent une stratégie de contrôle avancée basée sur 

les principes d’un « adaptive neuro-fuzzy inference system » (ANFIS). Ce type de système 

fait intervenir un système de contrôle utilisant une logique floue combiné à un mécanisme 

d’autorégulation basé sur les données/résultats antérieurs. En bref, c’est une stratégie 

permettant au système de logique floue d’apprendre dans le but d’optimiser le contrôle. En 

2007, la suite de leurs travaux [51] leur a permis de comparer 10 différents types de stratégies 

de contrôle, la stratégie de contrôle la plus évoluée étant celle présentée dans leur article en 

2004. Les résultats de ces avancements ont montré que la stratégie de contrôle la plus efficace 

était la stratégie à deux états basée sur une luminosité minimale à obtenir à l’intérieur. Leur 

stratégie neuro-floue (la plus évoluée), bien que très performante aussi, ne s’est pas imposée 

comme étant la plus performante dû au fait que l’intervalle de variation potentielle des 

valeurs de SHGC entre les états extrêmes des fenêtres électrochromes existantes à l’époque 

n’était pas suffisant pour profiter du plein potentiel de la stratégie de contrôle. Une analyse 

similaire sur les nouvelles technologies de fenêtres intelligentes existantes en 2013 telles que 

celles offertes commercialement [12] pourrait potentiellement permettre de mettre de l’avant 

la technologie neuro-floue présentée. Toutefois, certaines recherches expliquent que les 

algorithmes neuro-flouent présentent généralement des incertitudes relativement grandes et 

donc, la combinaison de ce genre d’algorithme à une stratégie basée sur un système expert 

pourrait potentiellement offrir des résultats encore plus intéressants [10]. 

 

En 2005, Gugliermetti et Bisegna [52] comparent les résultats de différentes stratégies de 

contrôle (à deux états et variations linéaires des états) sur des fenêtres électrochromes et des 

systèmes de stores automatisés basées sur la luminosité intérieure. Les résultats présentés 

démontrent que la meilleure combinaison technologie/stratégie de contrôle dépend 

grandement du climat, de la latitude et de l’orientation de la façade considérée. 

 

En 2006, Galasiu et Veitch présentent une revue de la littérature de l’aspect du confort visuel 

par rapport à l’éclairage naturel. En bref, les résultats pertinents sont que les occupants 

préfèrent généralement travailler dans un climat offrant un apport en lumière naturelle plutôt 

que de la lumière artificielle. Par ailleurs, il semble que les contrôles automatiques de l’apport 

en lumière naturelle ne soient généralement pas bien acceptés/utilisés par les occupants. Les 
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auteurs mentionnent l’importance de prendre en considération l’acceptabilité des occupants 

envers les stratégies de contrôle qui seront développées dans le futur. Dans la même année, 

Clear et ses collègues [53] présentent les résultats d’une étude d’acceptabilité des fenêtres 

électrochromes faite sur plus d’une quarantaine de sujets dans des conditions de travail de 

bureau. Les résultats sont que les fenêtres éléctrochromiques améliorent le confort visuel, 

mais que davantage de recherches sur les algorithmes de contrôle doivent être réalisées dans 

le but de satisfaire les occupants des bâtiments tout en minimisant la consommation 

énergétique puisqu’autrement, les occupants auront tendance à prendre manuellement le 

contrôle des fenêtres, réduisant ainsi les économies potentielles. 

 

En 2009, Piccolo et Simone [28] présentent une étude sur le confort visuel que peuvent 

procurer les fenêtres électrochromes en basant les stratégies de contrôle sur des indices 

d’éblouissement. Les conclusions sont qu’il est possible d’offrir un confort visuel tout en 

optimisant la consommation énergétique pour des fenêtres orientées vers le sud. Pour une 

orientation des fenêtres à l’ouest, dû à l’inclinaison du soleil en période de rayonnement 

direct, le confort visuel n’est atteignable qu’en ajustant les fenêtres à un très faible taux de 

transmission, impliquant donc la nécessité d’utiliser beaucoup d’éclairage artificiel et donc 

de consommer davantage d’énergie. 

 

En 2010, Jonsson et Roos [54] utilisent des outils de simulations numériques pour évaluer le 

potentiel de quatre différentes stratégies de contrôle, soient 1) Une stratégie qui vise à 

optimiser les charges de chauffage et climatisation, 2) Une stratégie qui considère une 

occupation complète de jour, 3) Une stratégie qui considère le taux d’occupation et 4) Une 

stratégie qui limite le rayonnement horizontal afin d’éviter les situations d’éblouissement. 

Ces stratégies sont évaluées pour différentes façades, avec plusieurs compositions d’unités 

scellées et à différentes localisation géographiques. Tout comme Gugliermetti et Bisegna en 

2005, la conclusion des auteurs est que les stratégies et compositions optimales diffèrent 

grandement selon l’orientation et la localisation géographique. En guise d’ouverture, les 

auteurs mentionnent que le développement de modèles simplifiés serait un outil extrêmement 

utile pour les architectes et designers de bâtiment afin de sélectionner les meilleurs produits 

et stratégies. 
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La littérature permet de réaliser qu’il reste encore place à des travaux de recherche qui 

permettraient de comprendre de quelle façon et sous quelles conditions le contrôle de ces 

nouvelles technologies de l’enveloppe permettrait d’offrir des performances optimales. La 

dynamique des transferts de chaleur et de la consommation énergétique dans les bâtiments 

est très complexe de par la grande quantité de facteurs qui l’influencent comme, par exemple, 

les conditions climatiques, les propriétés des matériaux, les systèmes mécaniques, la quantité 

et le type d’éclairage artificiel, les gains internes et les types et horaires d’occupation. Ces 

facteurs sont interdépendants, et donc, il est nécessaire de les considérer simultanément dans 

le développement des stratégies de contrôle optimales de fenêtres intelligentes. Par ailleurs, 

il est évident que ces facteurs peuvent grandement différer en fonction de la localisation 

géographique, de la vocation et des normes de construction en vigueur. La solution optimale 

de contrôle des technologies de fenêtres intelligentes n’est donc pas unique, mais doit plutôt 

prendre en considération le contexte dans lequel le bâtiment est construit. À cet égard, peu 

de résultats de recherches sur l’optimisation permettent aux concepteurs de bâtiments de 

s’orienter dans le développement de séquences de contrôle adaptées. 

 

Certains travaux d’optimisation avec logiciels de simulation ont déjà été menés afin d’évaluer 

les performances optimales que les fenêtres intelligentes pourraient avoir dans des conditions 

données [26][27]. Ces simulations utilisent des données climatiques horaires connues pour 

toute l’année, et donc, les résultats obtenus présentent la limite théorique en termes de 

performances énergétiques atteignables. En situation réelle de contrôle des bâtiments, les 

conditions climatiques des heures à venir ne sont pas connues, ce qui entraine une incertitude 

dans la décision de contrôle optimale à prendre, d’où la pertinence d’approfondir les 

recherches dans ce secteur. 

 

L’intégration de systèmes de fenêtres intelligentes dans les bâtiments présente encore bien 

des défis et offre, par le fait-même, des opportunités afin d’approfondir la recherche dans le 

domaine. Par exemple, plusieurs travaux ont portés sur l’amélioration des technologies de 

fenêtres électrochomes elles-mêmes, mais peu de travaux ont été réalisés afin de développer 

des outils de mesure (tels que des capteurs de rayonnement solaire) adaptés aux besoins de 
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ce genre de technologies et qui permettraient de réduire les coûts globaux liés à l’intégration 

de ce genre de systèmes. Par ailleurs, les connaissances sont encore limitées quant à la 

performance potentielle des différentes stratégies de contrôle plus évoluées (et à la fois plus 

complexes). Enfin, pour faciliter l’intégration de ce genre de technologie à plus grande 

échelle, il serait intéressant de généraliser les conclusions des recherches précédentes en 

considérant simultanément une plus grande quantité de variables de design tout en utilisant 

les propriétés des fenêtres intelligentes les plus à jour. 

 

1.3 Objectifs 

L’objectif général de cette thèse est d’élargir les connaissances scientifiques sur le potentiel 

des technologies de fenêtres électrochromes quant à leur capacité à augmenter la performance 

énergétique et le confort des occupants (visuel et thermique) dans les bâtiments. Pour ce faire, 

le projet a été élaboré autour des trois axes de recherche suivants :  

1. Développement d’un capteur de rayonnement solaire intégré à faible coût intégré au 

système de fenestration et permettant de contrôler efficacement les diverses 

technologies de fenêtres intelligentes; 

2. Étude comparative de la performance de différents types de contrôle (optimaux et 

heuristiques) des fenêtres intelligentes quant à la consommation énergétique et au 

confort visuel et thermique; 

3. Étude de la sensibilité des paramètres de design des bâtiments avec fenêtres 

intelligentes. 

Le développement d’un design de capteur de rayonnement solaire est associé au contenu 

présenté au Chapitre 3. Le contrôle des fenêtres intelligentes ayant principalement un impact 

sur le rayonnement solaire, la mesure du rayonnement solaire s’avère une information 

particulièrement utile en termes de contrôle. Les objectifs spécifiques pour cet axe sont les 

suivants : 

1.i Développer une corrélation entre la différence de température de surfaces 

(blanches et noires) et le rayonnement solaire incident à l’aide d’un modèle 

thermique en 1D; 
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1.ii Concevoir différents designs de capteur de rayonnement solaire thermique 

intégrés au vitrage; 

1.iii Élaborer une procédure d’étalonnage expérimentale des capteurs de rayonnement 

solaire à l’aide du modèle thermique; 

1.iv Évaluer la précision des designs de capteur de rayonnement solaire ainsi que la 

sensibilité du processus de calibration. 

Le deuxième axe de recherche concernant l’étude comparative entre les contrôles optimaux 

et heuristiques est couverte au Chapitre 4 de cette thèse ainsi qu’à l’Annexe A1. Les objectifs 

spécifiques associés à cet axe sont les suivants : 

2.i Développer un modèle de bâtiment représentatif d’un espace bureau périphérique 

(modèle thermique dans TRNSYS et modèle visuel dans Daysim/Radiance);   

2.ii Développer un type de contrôle pour fenêtres intelligentes avec modèle prédictif 

dans Matlab; 

2.iii Définir des stratégies de références (contrôle de base dans TRNSYS et contrôle 

optimal par algorithmes génétiques dans MATLAB) pour des fins de 

comparaison avec le contrôle prédictif; 

2.iv Évaluer la viabilité des stratégies de contrôle à l’étude pour des applications en 

temps réel; 

2.v Évaluer l’amélioration potentielle des performances des stratégies de contrôle par 

rapport aux références de l’industrie; 

Enfin, le troisième axe de recherche portant sur la sensibilité des paramètres de design des 

bâtiments avec fenêtres intelligentes est couvert au Chapitre 5 de cette thèse ainsi qu’à 

l’Annexe A2. Les objectifs spécifiques pour cet axe sont les suivants : 

3.i Accroître la compréhension de l’influence simultanée de différents paramètres 

de design (paramètres de construction, occupation, charges internes, contrôle 

et/ou climat) sur les performances énergétiques et le confort des occupants; 

3.ii Développer des procédures simples permettant d’évaluer le potentiel des fenêtres 

intelligentes; 
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3.iii Faire ressortir les tendances de designs favorisant l’intégration de fenêtres 

intelligentes dans les bâtiments; 
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CHAPTER 2 METHODOLOGY 
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This chapter introduces the different concepts and engineering tools used in the following 

chapters. Section 2.1 presents the building model and software used in the building 

simulations of Chapters 4 and 5. Section 2.2 introduces the basic concept of Model Predictive 

Control (MPC) and details the building model implemented in the MPC controller of Chapter 

4. Finally, Section 2.3 details the different engineering tools used for optimal smart window 

control in Chapter 4. 

 

2.1 Building model and software 

To assess the performance of smart windows on energy and comfort, a representative office 

building zone was defined and used in the building simulations of Chapters 4 and 5. While 

some values of the design parameters under study varied between Chapters 4 and 5, the 

building model (presented in Figure 2.1) remained the same. The building model is defined 

by a box-shaped office zone with 100 m2 of floor area. The main building design parameters 

were related to the location, the orientation, the Window-to-Wall ratio (WWR), the thermal 

mass, the internal gains and the smart window state. 

 
Figure 2.1: Building model description and software. 
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As illustrated in Figure 2.1 the thermal considerations were implemented in TRNSYS (with 

the Type 56). While many other powerful building simulation tools such as ESP-r, Energy 

Plus or DOE-2 are also based on largely validated concepts and are readily available [55], 

this work relies on TRNSYS since this software has a modular structure, can easily 

communicate with Matlab (through Type 155) and presents a great flexibility to develop 

complex systems such as smart window control systems. The daylight and artificial light 

considerations were pre-calculated in Daysim and Radiance, respectively, and then 

implemented in TRNSYS as user inputs.  

 

Since this work focused on the performance of smart windows, a particular attention was 

devoted to the smart window modeling. Hence, the Window software (developed by the 

Windows and Daylighting group at Lawrence Berkeley National Laboratory) was used to 

model four different states of opacity of a recent electrochromic window technology from 

Sage Electrochromics inc. For consistency, the glazing properties were obtained with the 

version 6.3.74 of Window (which was the most recent version at the time this work was 

initiated) and were used for every simulation of this work. The optical properties of the 

different electrochromic states were all imported in Window using the International Glazing 

Database (IGDB). The IGDB IDs for the four states of interest in this work were 8902 to 

8905. The glazing properties obtained in Window software for the electrochromic glazing 

were imported in the TRNSYS Type 56 (WinID pool). The appropriate glazing properties 

were then selected in TRNSYS at every time step (1 hour time step) based on the smart 

window control strategy. 

 

Different heuristic (rule based control (RBC)) and optimal (based on genetic algorithm (GA) 

or model predictive control (MPC)) control strategies were studied for the control of the 

electrochromic window. While all the RBCs were directly implemented in TRNSYS, the GA 

and MPC controllers were complex algorithms developed in Matlab and were 

communicating with TRNSYS for control decisions. 
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2.2 Model Predictive Control (MPC) 

The MPC relies on the principle of receding horizon and involves an objective function to be 

minimized (or maximized) [56]. In MPC, the optimal control is obtained by the minimization 

of some performance criterion (based on predictions) over a fixed finite horizon, i.e. a 

prediction horizon Hp. The predictions over that fixed finite horizon are obtained with the 

help of an internal model of the system to be represented. The internal model is generally a 

representation of the reality based on a simplified model. 

 

In this work, a smart window controller based on MPC was developed. The system to be 

represented by the controller internal model is the building model. The following sections 

detail the internal building model (developed in Matlab) implemented within the controller 

as well as the verification performed to assess its accuracy (comparison of behaviors with the 

real building, i.e. TRNSYS model). For clarity, one should note that the building model 

developed in Matlab refers to the controller model (simplified model) and the TRNSYS 

model refers to the real system to be controlled. 

2.2.1 MPC internal building model description 

The internal building model implemented in the MPC consists of a simplified resistance-

capacitance thermal model of the TRNSYS building zone (Figure 2.2). In order to be applied 

in a real-time application, the controller model needs to run fast so that optimization of the 

control is possible based on the predictions of this model.  

 

Given the goal of the work presented in Chapter 4, the smart window is modelled in detail 

with 2 glass panes each having their own solar absorption and transmission properties based 

on data obtained from IGDB.  Since the building zone’s thermal inertia is concentrated in the 

concrete floor, the interior surrounding surfaces are lumped together with the air node 

(Tin/Twalls) in the controller model. As assumed in the TRNSYS building model (simple 

mode), this model supposes that, while the floor receives all the direct (geosurf = 1) and part 

of the diffuse solar radiation, all other interior surfaces only receiving diffuse solar radiation 

based on absorption-transmission weighted area ratios. Convection between the interior 

surfaces and the zone air was considered, while long wave radiation exchange between the 

different surfaces completes the energy balance in the building zone. 
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Figure 2.2: Controller building model for the MPC. 

 

The convective portion of occupant and appliance heat gains (Qgains,conv) is directly applied 

to the zone air node, while the radiative portion (Qgains,radi, Qgains,rade and Qgains,,radf) is 

distributed over the zone interior surfaces according to their respective weighted ratio of their 

area to the total interior surfaces area. 

 

The number of capacitances nfl for the thermal mass of the zone floor is determined from 

[57]: 

 2
fl

4RCn
πΔt

≥
 

(2.1) 

which results in two capacitances in the present case to accurately represent the 0.1016 m 

concrete slab of the building zone.  Representing the floor with one capacitance was 

insufficient to accurately describe the transient heat storage in the floor, while more than two 

capacitances did not result in significant improvement to the model predictions, while 

increasing the time required for optimization. 
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The energy balance for each node of the controller model results in a discrete state-space 

model of the building zone with 15 nodes and 6 capacitances, and thus, a set of equations of 

the form: 

 ( ) ( )( ) ( ) ( )( ) ( )i i
i i j c

ij

x t+ t -x t 1C = x t+ t -x t+ t +f( t
t R

)U + t
∆

∆ ∆ ∆
∆  

(2.2) 

which could be rewritten as 

 ( )AX t + t - B = 0∆  
(2.3) 

with: 
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(2.7) 

with f(Uc) being a function containing the control inputs as well as the different disturbance 

inputs (Tout; Qsol,direct; Qsol,diff). 

2.2.2 MPC building controller model verification 

The controller model of the zone (Section 2.1) was validated against the results of the 

TRNSYS simulation model using a 2-step approach: steady-state and dynamic validations. 

The focus of this comparison was to evaluate the ability of the simplified thermal model to 

correctly represent the heat flows to keep the zone temperature at a required set point. 

 

First the steady-state output of the controller model was compared with the corresponding 

measurement signal from the TRNSYS building. Three cases with different boundary 
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conditions for Tout and Qsol are simulated in this first validation step, as shown in Table 2.1. 

The chosen outdoor temperatures, exterior convection coefficients and solar fluxes are 

aligned with the NFRC design conditions for winter and summer. Interior convection 

coefficients were fixed to 5 W/m2K.  The ventilation is activated at design conditions and all 

internal heat gains from lighting, people and appliances are set to zero.  The window is kept 

at its clearest state. 

Table 2.1: Steady-state validation results (W/m² floor area) 

Design condition 

Qheat [W/m²] Qcool [W/m²] 

TRNSYS 
Controller 

model 
TRNSYS 

Controller 

model 

Winter 33.0 33.0 0 0 

Summer 0 0 7.8 8.1 

Summer with Qsol 0 0 83.0 82.4 

 

The validation results in Table 2.1 show that the model within the controller was able to 

accurately reproduce the required heating and cooling loads.  In summer conditions, without 

and with solar radiation, the controller model showed a small error for the cooling load of, 

respectively, +3.8% and −0.7%, which is considered acceptable. This error mainly comes 

from the simplifications of the controller window model and the linearization of the building 

model. 

 

In the second validation phase the controller model was simulated offline using measured 

TRNSYS values as input values for the observer (Figure 2.3).  This validation approach was 

used since the controller model is always applied in a closed loop situation, with 

measurement feedback from the building.  The TRNSYS model was simulated for a whole 

year with the window kept at its clearest state.  The heating and cooling loads were controlled 

to keep the zone temperature Ti between 20°C and 23°C at all time, with the heating and 

cooling system having perfectly modulating and unlimited thermal power, so the temperature 

set point is always met.  This eliminates all degrees of freedom and constraints of the MPC 

optimizer, reducing it to a perfect set point tracker. At each time step, the building controller 
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model is updated with the measured TRNSYS values, the observer (Figure 2.3) is used to 

estimate the unmeasured temperatures (Tew,cl, Tewl, Tmw,cl, Tiwl, Tiw,cl, T1, T2, Tfl1, Tfl2) of the 

controller model.  The MPC calculates Qk+p|k (forecasted heating and/or cooling energy 

demands (at times k + p, for p = 1 to Hp), measured at time k), where Qk+1|k is registered and 

the process moves to the next time step.  The registered Qk+1|k-vector (k = 0…8759) is 

compared to the system heating and cooling load measured by the TRNSYS model, using 

the Nash-Sutcliff model efficiency coefficient (NS) to estimate the fit:  

 ( )

( )

n 2
TRNSYS,n MPC,n

i=1
n 2

TRNSYS,n TRNSYS,n
i=1

Q Q
NS=1-

Q Q

−

−

∑

∑
 

 

(2.8) 

A NS-coefficient value of 1 means that the model is able to reproduce the measured output 

exactly. On the other hand, a value of 0 means that the controller model can only predict the 

heat flows as accurately as the average of the measured values. 

 
Figure 2.3: Dynamic validation scheme. 
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Figure 2.4 presents the monthly heating and cooling energy for both models and demonstrates 

that the heating load is overestimated by 2 % by the controller model (5.2 kWh/m2 with the 

Matlab model compared to 5.1 kWh/m2 with the TRNSYS model), while the annual cooling 

load is overestimated by 3 % by the controller model (65.1 kWh/m2 with the Matlab model 

compared to 63.3 kWh/m2 with the TRNSYS model). Moreover, the NS-coefficients are 

0.980 and 0.994 for respectively Qheat and Qcool, which means that the controller model is 

able to predict the dynamic behavior of the building with a high accuracy. 

 
Figure 2.4: Validation result for Qheat and Qcool. 

 

Both validation steps showed that the simplified building model was sufficiently accurate in 

order to serve as a controller model for the building zone. However, further studies should 

be dedicated to the assessment of the accuracy of the controller model for a longer horizon. 

2.3 Optimization tools 

This section introduces the two main optimization tools (i.e. Genetic algorithms and 

YALMIP/Gurobi) used in this work to obtain optimal control decisions for SW. Both tools 

aimed at minimizing the energy consumption of the building zone considering the same 

objective function (total energy consumption) and constraints (minimal light requirements 
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on the workplane during occupancy hours). The adaptation of these tools for the purpose of 

this work is presented in the following subsections. 

2.3.1 Genetic algorithms 

Genetic algorithms (GAs) are well known optimization algorithms that have gained a lot of 

interest in the field of heat transfer problems in the last decades [58]. As illustrated in Figure 

2.5, an initial random population of individuals is first generated. A set of design variables 

(i.e., the SW state at each time step) represents an individual. Then, the objective function of 

each individual is evaluated based on the simulation results. Cross-over between individuals 

occurs with more probability of reproduction for best individuals. Mutations are then applied 

randomly to the offspring. A new generation is created from the offspring and from the few 

best individuals of the previous population (which is called an elitist strategy). The process 

is repeated until convergence of the criterion (i.e. maximal number of generations and/or 

maximal number of generations without improvements). 
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Figure 2.5: The main steps of a typical GA obtained from [58]. 

 

The use of GAs in this thesis was mainly driven by the fact that GAs are global optimization 

solvers (they cover the entire design space) that readily manage discrete design variables 

(such as SW states). However, one should note that GAs typically involve a large number of 

simulations that are quite computationally expensive. In the field of building simulation, too 

long computational times limit the use of GAs for real time applications (such as SW control). 

For this reason, the reader should keep in mind that the use of GAs in this work serves to 

establish the optimal achievable level of performance against which real-time strategies 

could be compared. To achieve such optimal control for SW, a controller based on GAs 

assuming a perfect building model representation and perfect weather forecast (i.e. one 

perfectly knows the future weather parameters) was considered. 
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2.3.2 YALMIP/Gurobi 

While the previous section on GAs was used in this work to represent the best case scenario 

for SW control (hardly applicable for real time control), a second optimization approach was 

also used to assess the potential of a real-time optimal SW controller (the MPC controller 

detailed in Chapter 4). This second approach combines the use of the YALMIP [59] 

optimization toolbox and Gurobi optimizer. These tools take advantage of the linear 

programming to provide short computational times (required for real-time control). YALMIP 

is a readily available toolbox designed to develop control oriented semidefinite programming 

(SDP) models for convex optimization (linear optimization). The Matlab building model 

described in the previous section (illustrated in Figure 2.2), was linearized and defined with 

YALMIP for optimization of the SW control. The optimization solver called by YALMIP is 

Gurobi, a widely used state-of-the-art optimization tool for mathematical programming that 

contains a YALMIP compatible linear programming solver. Both YALMIP and Gurobi 

present a modeling language fully compatible with Matlab (matrix-oriented interfaces for 

Matlab). 
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CHAPTER 3 DEVELOPMENT AND ASSESSMENT OF A LOW 

COST SENSOR FOR SOLAR HEAT FLUX 

MEASUREMENTS IN BUILDINGS 
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Abstract 

This paper presents a new type of low cost solar sensor, i.e. a black and white sensor (BWS). 
The BWS uses the difference in temperature of a white surface (solar energy highly reflected) 
and a black surface (solar energy highly absorbed) to estimate the solar heat flux through 
building openings. Results are obtained through a correlation based on a thermal model of 
the sensor.  The correlation contains calibration factors determined from an initial on-site 
calibration. Results of estimated solar heat flux with two designs of the BWS over two 
different periods of time were compared with solar measurements of a high precision 
pyranometer. The two designs of BWS have shown mean weighted relative errors over the 
sampling periods under 4% for the daily integrated solar energy measured. Finally, a 
sensitivity analysis of the calibration period was conducted and it was observed that ideal 
calibration period should consider at least half a day of measurements, including solar peak 
time, and should be done during clear sky conditions. 
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Résumé 

Cet article présente un nouveau type de capteur de rayonnement solaire à faible coût, c.-à-d. 
un capteur à surfaces noires et blanches (BWS). Le BWS utilise la différence de température 
entre la surface blanche (réflexion élevée de l’énergie solaire) et la surface noire (absorption 
élevée de l’énergie solaire) pour estimer le flux solaire radiatif traversant les ouvertures d’un 
bâtiment. Les résultats sont obtenus avec une corrélation basée sur un modèle thermique du 
capteur. La corrélation comprend des facteurs d’étalonnage obtenus via un étalonnage initial 
effectué sur place. Les flux solaires obtenus à l’aide de deux modèles de BWS sur des 
périodes de temps différentes sont comparés aux mesures solaires de référence obtenus par 
un pyranomètre. Les modèles de BWS ont tous deux présenté une erreur relative moyennée 
en dessous de 4% pour la mesure de l’énergie solaire quotidienne. Finalement, une analyse 
de la sensibilité de la période de calibration est réalisée et il est observé que la période idéale 
requiert minimalement une demi-journée de mesures sous des conditions de ciel clair 
(incluant la période de rayonnement solaire maximale). 
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3.1 Introduction 

With the considerable amount of available technologies in the field of active building 

envelopes [60][61][62] and the continuously increasing interest of owners to enhance the 

energy efficiency of their buildings, a lot of opportunities emerge to develop efficient sensors 

and control algorithms. Among others, windows with efficiently controlled dynamic glazing 

offer a high potential to control solar heat gain and minimize heating, cooling and lighting 

loads [26][40]. To control such technologies efficiently, accurate values of solar heat gains 

entering the building should be measured. Since the need for these solar sensors will increase 

with the degree of control and intelligence in smart buildings [4], the trade-off between their 

cost and their accuracy will become even more relevant. 

 

Photovoltaic detectors that have been integrated in various types of irradiance measurement 

systems [63][64] are typically chosen for solar heat flux measurements because of their 

relatively accessible prices and ease of use [65]. However, they are sensitive to the spectral 

distribution and ambient temperature [66][67]. In general, these sensors will experience 

temperature fluctuation. Also, since a wide variety of spectrally selective coatings are offered 

for glass [12], the spectral distribution of solar irradiance passing through different windows 

will be inconsistent between different glazing configurations. For these reasons, errors could 

be introduced when illumination and temperature conditions are different from those under 

which the device was calibrated. On the other hand, pyranometers [68] offer more accurate 

results under various skies (broadband solar heat flux) and ambient air temperatures. There 

exist different types of thermopile pyranometers [69] such as all black or black and white 

pyranometers. However these devices are also considerably more expensive.  

 

In order to obtain more accurate results at low costs under any type of sky conditions, this 

paper covers the development of two different designs of a low-cost broadband BWS 

constructed of common and inexpensive materials. This sensor is composed of two surfaces 

with different absorptive properties (a highly reflective white surface and a highly absorptive 

black surface). Instantaneous solar heat flux measurements are obtained through an on-site 

calibrated correlation based on the temperature difference between those two surfaces. The 

two sensor designs analyzed in this paper were initially developed for smart window control 
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purpose. However, it is worth noticing that the sensor designs and calibration methodology 

presented in this paper are general enough that they could be used to calibrate sensors for 

other applications or spectral profiles (for ex.: IR lamps). 

3.2 Sensor description and thermal model 

The BWS design consists of two thin metal plates with paint coatings of different solar 

absorptivity values: one highly absorptive coating (i.e.: black painted surface) and one highly 

reflective coating (i.e.: white painted surface). The painted metal plates are positioned next 

to each other on the same parallel plane with the painted surfaces (front surfaces) facing the 

exterior of the building. Temperature sensors are installed at the center of the back side of 

each metal plate. The high thermal conductivity of the metal plates ensures great accuracy of 

the surface temperature readings by the temperature sensors by distributing the temperature 

uniformly over the entire plate area (enabling a 1D heat transfer analysis at the center of the 

surfaces, where temperature sensors are positioned). The back sides of the metal plates are 

covered by an insulating material to limit heat transfer through the sensor and could act as 

the support of the sensor. Figure 3.1 illustrates a generic design of the sensor. Depending on 

the purpose of the sensor, many different variations in size and spacing between the painted 

surfaces could be considered in order to respond to particular needs. In all cases, the design 

should consider some type of thermal break between the two plates to limit heat transfer 

between them. 

 
Figure 3.1: Generic representation of the sensor. 

 

To calculate solar heat flux from surface temperature readings, the BWS needs a correlation 

based on a thermal model that could be calibrated on-site to properly adjust the thermal 
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parameters of interest. The present thermal analysis considers a 1D energy balance at the 

black and white surfaces of the sensor (front surfaces), as shown in Eqs. (3.1) and (3.2), 

respectively. The model considers the absorbed solar energy, radiative and convective heat 

fluxes at the front surface, conductive heat flux through the back of the sensor and the thermal 

capacity (heat storage) of the sensor:  

 B sol rad,W conv,f cond st,Bα G = Q +Q +Q +Q  (3.1) 
   
 W sol rad,W conv,f cond st,Wα G = Q +Q +Q +Q  (3.2) 

Figure 3.2 illustrates a cross-section of the sensor, representative of both the black and white 

surfaces, to illustrate the different heat flux contributions of Eqs. (3.1) and (3.2).  

 
Figure 3.2: Heat balance at the sensor surfaces (cross-section view). 

 

Considering spectrally integrated optical properties, a lumped capacitance model, see 

Chapter 5 of [70], for the sensor thermal capacity and identical values for the black and white 

surfaces regarding (i) view factors with surrounding surfaces, (ii) convection coefficient 

(natural convection coefficients on B&W surfaces were estimated, see Chapter 9 of [70], and 

presented sufficiently small differences to be neglected) and (iii) far-infrared emissivities, 

the energy balances become: 

 4 4 B
B Surr conv B zoneB sol

T(T T ) h (T T ) C
t

kG ) (
L

α +
∂

= σε − + − − +
∂B zoneT  T  

(3.3) 
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 4 4 W
W Surr conv W zoneW sol

T(T T ) h (T T ) C
t

kG ) (
L

α +
∂

= σε − + − − +
∂W zoneT  T  

(3.4) 

Subtracting Eq. (3.3) from Eq. (3.4), one achieves an expression for the total solar irradiance 

on the sensor as a function of the black and white surface temperature measurements: 

 t t 1 t t 1
4 4 B B W W

W conB W

s l
W

v

o
B

B
k (T T ) (T T )(T T ) h (T T )

G
C

L
)( t

t

− −− − −
σε − + − −+

α
=

−α

+
∆B WT  T

 

(3.5) 

Note that the temporal derivatives of the temperature have been discretized to achieve this 

equation. Eq. (3.5) can be rewritten by grouping physical parameters into constants that it 

will be possible to adjust in order to fit the model with the measurements: 

 t t 1 t t 1
4 4 B B W W

s Bl B WWo
(T T ) (T T )A (T T ) B(T T CG

t
)

− −− − −
= σ − + − +

∆
 

(3.6) 

where εA =
−B W

 
α α

is the “radiative” term, 
conv

B
h +

=
−B W

k
L

α α
is the “convective” term and 

C =
−B W

Ct
α α

 is the “thermal capacity” term. The calibration factors A, B and C of Eq. (3.6) 

can then be determined using measured values for 𝑇𝑇𝐵𝐵, 𝑇𝑇𝑊𝑊 in combination with reference 

measurements for solar heat flux. The following section presents two different sensor designs 

that were calibrated for solar irradiance measurements using Eq. (3.6). 

3.3 Experimental setups 

The two designs of BWS presented in this paper were tested in the MoWiTT (Mobile 

Window Thermal Test) facility [71], located at Lawrence Berkeley National Laboratory 

(LBNL) in Berkeley, CA.  

 

Sensors, both facing the exterior, were either located in the interior of the MoWiTT facility 

(Large Sensor) or within the interior air filled cavity of the glazing unit (Small Sensor). Both 

sensors were positioned parallel to the glazing in order to receive the total hemispheric solar 

energy that passed through the whole glazing system (and not the frame). The glazing unit 

was composed, from outside to inside, of 2.2 mm Cardinal loE 180 glass / exterior sealed 
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cavity of 11.7 mm 90% argon filled / 2 mm Cardinal clear glass / interior unsealed cavity of 

28.5 mm air filled / 2.2 mm Cardinal i89 glass. The glazing unit was installed in a Pella 

Designer Series Fixed Casement window frame. Table 3.1 presents the window properties 

under standard NFRC conditions. Center-of-glass (COG) results of Table 3.1 refer to COG 

results while Overall results consider the overall window with frame. The installed window 

had dimensions of 0.914 m width by 1.219 m height (3 ft by 4 ft) and was oriented to the 

south. Measurements were taken during the month of August for the large sensor and during 

the month of September for the small sensor. 

Table 3.1: Description of the window optical and thermal properties under standard 
NFRC conditions 

 

Table 3.2 presents the considered materials, equipment and design parameters for both 

sensors. The large sensor was located at approximately 0.1 m from the interior surface of the 

glazing (Figure 3.3). Results for the large sensor are presented in Section 3.1. The small 

sensor, located in the interior glazing cavity (see Figure 3.4), was positioned at approximately 

2 mm from the interior surface of the center glass pane to limit the effect of natural convection 

of the air cavity at the sensor surfaces. The small sensor also had the advantage to be located 

in such a way that it could still read solar irradiance when the window shade is down. Results 

for this sensor are presented in Section 3.2. Both sensors were centered with the window 

width and located at the sill edge of glass area.  
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The Hobo temperature logger (large sensor temperature measurements) uses a 2.5 V 

excitation and the measurement is made between the thermistors and a fixed resistor (voltage 

divider). The Ohm to Celsius measurement conversions were managed by the HOBOware. 

On the other hand, the Labjack (small sensor temperature measurements) has a built-in 10 

μA fixed current source. Several thermistors were chained in series with this current source 

including the thermistors of the small black and white sensor. The voltage drop across each 

thermistor was measured using the A/D (analog to digital) input channels (measured each 

voltage step in the resistor chain and subtracted to get each sensor). The thermistors resistance 

of the BWS were calculated with Ohms law from the known current and measured voltage 

drops. The Ohm to Celsius conversion was then achieved using parameters from the 

manufacturer’s technical datasheet (B parameter equation). However, since the published B 

parameter equation parameters were found to be less accurate than desired, a second order 

polynomial fit was applied on top of it based on a sensor calibration (5 to 50°C in a controlled 

water bath Neslab RTE-221 against reference PRT probes read by an Azonix A1011). 

 
Figure 3.3: Large sensor – viewed from the exterior through the glazing. 
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Table 3.2: Description of the sensors 

Sensor type Metal 
plates T° sensors B&W 

coatings 
Insulated 
backing 

Sensor assembly 
dimensions 

Data 
logger 

Small sensor 

Material: TTF3A103F34D1BY 
thermistors 
sandwiched between 
two copper foils 
(conductivity of ~ 
400 W/mK) with 
conductive epoxy 
Loctite 3873 
(conductivity of 1.25 
W/mK) 
 
Tolerance: ± 1% in 
the range (-40°C to 
100°C) 

Black Paint: 1.5 mm 
thick 
acrylic 

Overall thickness: Labjack 
T7-
PRO 

Copper Rustoleum 
flat black 
enamel 
paint 
(aerosol 
spray can) 

3.65 mm 
Thickness: Overall width: 
0.076 mm 57.8 mm 

Width: White Paint: Overall height 
22.8 mm Rustoleum 

flat white 
enamel 
paint 
(aerosol 
spray can) 

13 mm 
Height Notes: Copper 

embedded T° 
sensors were 
stuck to acrylic 
with a 1 mm 
double stick foam 
tape. The same 
foam tape was 
stuck to the 
backing of the 
acrylic too, to 
increase 
insulation.  B&W 
metals plates 
separated by a 
11.4 mm gap. 

8.6 mm 

Large sensor 

Material: Onset TMC6-HD 
thermistors taped on 
metal plates with 
aluminum foil tape 
(conductivity of ~ 
220 W/mK) 
 
Tolerance: ±0.25°C 
in the range (0°C to 
50°C) 

Black Paint: 13.5 mm 
thick EPS 
foam 
(k≈0.34 
W/mK) 

Overall thickness: Onset 
Hobo 
U12-
013 

Aluminum Rustoleum 
flat black 
enamel 
paint 
(aerosol 
spray can) 

14.5 mm 
Thickness: Overall width: 
0.77 mm 217 mm 

Width: White Paint: Overall height 
106 mm flat bright 

white 
primer 

101 mm 
Height Notes: B&W 

metals plates 
separated by a 5 
mm gap. 

99 mm 
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Figure 3.4: Small sensor – viewed from the exterior through the glazing. 

 

The pyranometer (Kipp and Zonen CM11 [72]) used for calibration was positioned inside 

the room just above the large sensor (vertically mounted). Its accuracy corresponds to 

maximum errors in the hourly radiation totals of 3%. 

3.3.1 Calibration method 

This section presents the methodology used to calibrate the factors A, B and C in Eq. (3.6) 

for both types of sensors. 

 

Readings of the temperature sensors for the black and white surfaces were taken on a one 

minute basis over the entire period of calibration. In the study, both sensors were calibrated 

considering daylight hours of a single day (a sensitivity analysis regarding the calibration 

period is presented in Section 3.3). 

 

Calibration factors are optimized over the entire calibration period (m time steps) in Matlab 

with the interior-point algorithm of the fmincon solver [73]. The error function S to be 

minimized is defined as:  

 2
sol,i ref,i

1

(G -G= )S
=
∑

m

i

 
(3.7) 

where Gsol is the solar heat flux calculated from Eq. (3.6) and Gref is the solar heat flux 

measured with the pyranometer. Bounds of the calibration factors are presented in Table 3.3.  

Table 3.3: Bounds for the fitting constants A, B and C in Eq. (3.6) 

Inferior 
limit   

Calibration 
factors   

Superior 
limit 

0 ≤ A ≤ 5 
0 ≤ B ≤ 100 
0 ≤ C ≤ 2500 
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In developing the sensor, it was found that the sensor design and its position relative to the 

exterior could affect the ability of the sensor to estimate the solar flux, and that this should 

be taken into account in the calibration. For example, Figure 3.5 illustrates partial shading of 

the black surface of the large sensor due to the window frame and setback. The black surface 

in Figure 3.5 is mostly exposed to diffuse solar irradiance while the white surface is 

completely exposed to diffuse and direct solar irradiance. Since the same amount of solar 

irradiance is required on both surfaces for Eq. (3.6) to give accurate results, data collected 

when partial shading occurred was not considered in the analysis presented in the following 

section. Also, since solar transmittance varies significantly between different glazing types, 

one should keep in mind that the calibration method presented in this section should be 

performed again whenever the glazing is different. 

 
Figure 3.5: Partial shading of the sensor. 

 

3.4 Results 

3.4.1 Large interior sensor 

Since the large sensor was located in the interior of the room, its setback from the exterior 

wall of the facility created partial shading during some time intervals. In the present case, it 

was found that partial shading occurred from 9:45AM to 11:00AM and from 14:45 to 16:00. 

As mentioned earlier, data collected during these time intervals was not considered for the 

analysis. 
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The calibration period was during daylight hours of August 20th, 2014. The resulting 

optimized calibration factors were found to be A = 3.42 W/m2K4, B = 2.00 W/m2K, C = 

2500.00 J/m2K. Results of solar heat flux were then estimated from the correlation up to 

August 27th, 2014 (range of incident angles varying between approximately 63° and 90°). 

Figure 3.6 presents the scatter plot of the solar heat flux obtained with Eq. (3.6) over the 

entire period of measurements versus measurements obtained from the pyranometer. From 

Figure 3.6, we can see that the correlation offers a good agreement with the reference values 

(1:1 slope) with 86% of calculated solar irradiance values being within ±10 W/m2 of the 

reference values, 11% being between ±10 W/m2 and ±20 W/m2, and only 3% of occurrence 

being over ±20 W/m2. 

 
Figure 3.6: Large sensor solar irradiance obtained from the correlation, Eq. (3.6), as a function 

of the pyranometer measurements. 
 

Since for several applications one will be interested in the integrated values of solar energy 

entering the building over a certain period of time [74] rather than in instantaneous solar 

intensities, it is relevant to make sure that the correlation can give accurate time integrated 

results. Figure 3.7 illustrates the daily integrated solar energy values calculated with the 

calibrated correlation and measured by the pyranometer. 
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Figure 3.7: Large sensor integrated solar energy measurements on a daily basis. 

 

From Figure 3.7 we can see that the BWS gives extremely accurate values for solar energy 

passing through the window with a mean weighted relative error of 1.5%. The mean weighted 

relative error is defined by: 

 sol,i ref,i
1

ref

|E -E |
EError= ·100

=∑n

i

n
 

(3.8) 

On an hourly basis, the mean weighted relative error is 3.7%. As previously said, the 

presented results do not consider hours of partial shading. In some applications (e.g. real time 

control with solar heat flux input), the large sensor design would not be appropriate because 

of the lack of reliable data during extended periods of time. Furthermore, since the large 

sensor design is quite bulky, material costs are not minimized and it cannot be easily 

integrated in between window glass panes for more permanent measurement applications. 

For these reasons, a smaller sensor was designed and tested, as presented in the next sub-

section.  

3.4.2 Small sensor integrated into the glazing unit 

Since small sensor setback from the exterior wall plane was significantly lower than the one 

for the large sensor, partial shading hours were different. The setback was actually small 

enough to consider all data collected between 8:00 and 17:00. 

 

The calibration period was during daylight hours of September 18th, 2014. The resulting 

optimized calibration factors were found to be A = 1.99 W/m2K4, B = 47.35 W/m2K, C = 

1963.30 J/m2K. Results of solar heat flux were then estimated from the correlation up to 
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September 23rd, 2014 (range of incident angles varying between approximately 53° and 90°). 

Figure 3.8 presents the scatter plot of the solar heat flux obtained with Eq. (3.6) over the 

entire period of measurements versus measurements obtained from the pyranometer. From 

Figure 3.8, we can see that, as for the large sensor, the correlation offers a good agreement 

with the reference values with 74% of calculated solar irradiance values being within ±10 

W/m2 of the reference values, 18% being between ±10 W/m2 and ±20 W/m2, and only 8% of 

occurrence being over ±20 W/m2.  

 
Figure 3.8:  Small sensor solar irradiance obtained from the correlation, Eq. (3.6), as a function 

of the pyranometer measurements. 
 

Figure 3.9 illustrates the daily integrated solar energy values calculated with the calibrated 

correlation and measured by the pyranometer. From Figure 3.9 we can see that the BWS 

gives extremely accurate values for solar energy passing through the window glazing with a 

mean weighted relative error (eq. 3.8) of 2.9%. The same analysis, but on an hourly basis, 

gave a mean weighted relative error of 3.9%. 
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Figure 3.9: Small sensor integrated solar energy measurements on a daily basis. 

 

Based on these results, instantaneous solar heat flux measurements obtained with the small 

sensor are less accurate than the ones obtained with the large sensor (solar irradiance values 

being 86% within ±10 W/m2 for the large sensor compared to 74% for the small sensor). 

Integrated energy results present the same behavior between the two sensor designs with 

smaller differences in results (daily and hourly mean weighted relative errors being, 

respectively, 1.5% and 3.7% for the large sensor compared to 2.9% and 3.9% for the small 

sensor). The loss of accuracy of the small sensor could be explained by two major reasons. 

First, the small sensor is located in the window IGU that experiences higher variations in 

convection coefficient (fluctuating ambient temperature). Also, because of its size and shape, 

the small sensor is more sensitive to the thermal edge effects (temperature gradients parallel 

to the plane of the black and white surfaces) that have not been considered in the model (Eq. 

(3.6)). This reduction in accuracy for the small sensor is however compensated by its larger 

flexibility in terms of periods where collected solar heat flux data is reliable (periods without 

partial shading). The small sensor thus presents a very good tradeoff between accuracy and 

real-time control purpose since results are accurate enough for many applications and give 

reliable inputs for real-time control applications. 

3.4.3 Effect of the calibration period 

While calibrating the BWS, it is necessary to make sure that the calibration period is 

sufficient to ensure a good accuracy for the correlation when solar conditions change 

(variations in solar intensity and/or spectral distribution). For example, we can observe 

important changes of solar irradiance measured by the pyranometer from one day to another 

(see Figure 3.10). The first two days of measurements in Figure 3.10b (Sept. 18th and 19th) 
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present high solar irradiance values with some lower values scattered throughout the day 

(more importantly during the morning of Sept. 18th). These two days could be defined as 

partially cloudy days. The following two days (Sept. 20th and 21st) present very low solar 

irradiance values and are defined as overcast days. Finally, the last two days (Sept. 22nd and 

23rd) present a very smooth variation of solar irradiance measurements with high solar 

intensity at noon and could be defined as clear sky days. Furthermore, solar irradiance 

changes from hour to hour in part because of sun’s position. It is thus relevant to analyze the 

influence of the moment of the day when the calibration period is defined as well as the day 

itself (type of sky conditions). For this reason, this section presents different calibration 

periods considered to fit the constant of Eq. (3.6). In other words, for each calibration day, 

one set of A, B and C is thus determined. Then, the resulting models were used to verify 

whether they were able to predict solar irradiance for all days for which measurements with 

the pyranometer were available (including the calibration day, i.e. between August 20th and 

August 27th 2014 for the large sensor and between Sept. 18th and Sept. 23rd 2014 for the small 

sensor). 
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Figure 3.10: Solar heat flux measured by the pyranometer between 8:00 AM to 5:00 PM from a) 

August 20th, 2014 to August 27th, 2014 and b) September 18th, 2014 to September 
23rd, 2014. 

 

Figure 3.11 presents the influence of the calibration period on the BWS precision by 

considering different days and calibration period. The term “BWS precision” represents the 

percentage of calculated irradiance values obtained with the calibrated correlation that are 

within 10 W/m2 compared to the measurements of the pyranometer. Each point in Figure 

3.11 represents the BWS precision for a calibration period starting at 9:00AM and stopping 

at the calibration period stop time (x-axis). Figure 3.11a and Figure 3.11b present results for 

the large and small sensors, respectively. From Figure 3.11, we observe, for both sensor 

designs, that the precision increases as the calibration period increases and stabilizes when 

calibration period reaches 1:00PM (calibration period of 5 hours), i.e. after half a day of solar 

measurements, including the solar peak. Also, we observe that partially cloudy days (i.e. 
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August 22nd and 25th for the large sensor and Sept. 18th and 19th for the small sensor) and 

overcast days (August 20th for the large sensor and Sept. 20th and 21st for the small sensor) 

present a BWS precision that is more sensitive to the calibration period. On the other hand, 

clear sky days (August 21st, 23rd, 24th, 26th and 27th for the large sensor and Sept. 22nd and 

23rd for the small sensor) present more stable results and higher precision. It is thus 

recommended, based on this sensitivity analysis, to choose a day with clear sky conditions 

for the “on-site” calibration. Also, as mentioned in the previous section, it is clear from Figure 

3.11 that the sensor design influences its accuracy (large sensor precision of 93% compared 

to 76% for the small sensor). 

 

 
Figure 3.11: BWS precision (i.e. a) large sensor and b) small sensor) as a function of the 

calibration period stopping time (considering a calibration starting time of 8:00 AM) 
and of the calibration day. 
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3.5 Conclusions 

This paper presents a new type of low cost solar sensor, i.e. a black and white sensor that 

calculates instantaneous solar heat flux based on a 1D heat transfer model. The heat transfer 

model contains calibration factors defining the radiative, convective/conductive and 

capacitive parameters of the sensor. 

 

In the present study the sensor was calibrated on-site with a reference pyranometer prior to 

measurements. However, to increase the ease of use, it would be relevant in the future to 

develop a procedure allowing off-site or lab calibration of the sensor.  

 

Two different designs of sensor were presented, i.e. a large sensor located in the interior of 

building and a small sensor located into the interior glazing cavity of a triple pane glazing. 

Both sensors have shown satisfactory accuracy for solar heat flux measurements. Among the 

two designs tested, the large sensor was more accurate, mainly due to the fact that it was 

exposed to more stable conditions and edge effects were limited. However, it is shown that 

the large sensor measurements are limited to more restricted periods of time since partial 

shading is occurring during extended periods of time (which is not the case for the small 

sensor). Moreover, if window shading is down, the large sensor could not continue to 

measure solar irradiance while the small sensor could. Different sizes and locations could 

thus be used in order to suit different applications, but further studies must be conducted in 

order to assess edge effects for very small sizes of the sensor black and white surfaces. 

 

Since this study presents results gathered over a particular period of the year, further studies 

should determine the long term performance of the sensors calibration. 

 

Finally, since photosensors are largely used for solar irradiance measurements, future 

research should compare this kind of sensor to conventional silicon sensors in order to define 

more precisely the pros and cons of both types (e.g., spectral sensitivity, cost, lifetime, etc.). 
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CHAPTER 4 REDUCED ENERGY CONSUMPTION AND 

ENHANCED COMFORT WITH SMART WINDOWS: 

COMPARISON BETWEEN QUASI-OPTIMAL, 

PREDICTIVE AND RULE-BASED CONTROL 

STRATEGIES 
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Abstract 

Smart windows are used to reduce energy consumption and improve thermal and visual 
comfort mainly by controlling the solar flux entering into a building. This article presents a 
simulation study in which the impact of the applied control strategy on the overall energy 
consumption (heating, cooling and lighting) is investigated. A commercial building located 
in Montreal (Canada) with south-oriented integrated electrochromic windows is modeled. 
The hour-by-hour state of the smart windows required to minimize overall energy 
consumption while respecting constraints related to thermal and visual comfort is determined 
through an optimization strategy based on genetic algorithms (GA). Then, this quasi-optimal 
control is compared to other approaches that could be applied in real-time applications: (i) 
two types of rule-based controls (RBC), i.e. RBC1 and RBC2 and (ii) a model predictive 
control (MPC). The impacts of thermal mass and installed light power density are also 
analyzed. Results show that the four control strategies under study presented similar energy 
consumption with differences in total energy consumption ranging from 4% to 10%. While 
more complex controllers such as MPC could potentially lead to improved performances 
considering more design variables, complex models and extensive commissioning, this study 
illustrates that simpler control strategies such as RBC2 can also lead to satisfying results. 
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Résumé 

La fenestration intelligente est utilisée pour réduire la consommation d’énergie et améliorer 
le confort thermique et visuel par le contrôle des flux solaires qui pénètrent un bâtiment. Cet 
article présente une étude numérique d’une telle technologie où l’impact des stratégies de 
contrôle sur la consommation énergétique globale (chauffage, refroidissement, éclairage) est 
évalué. Le modèle est constitué d’un bâtiment commercial situé à Montréal (Canada) 
comprenant une fenestration électrochrome sur une façade orientée au sud. L’état des fenêtres 
intelligentes nécessaire à toute heure de la journée pour permettre une minimisation de la 
consommation d’énergie globale tout en respectant les contraintes reliées au confort 
thermique et visuel est déterminé à l’aide d’une stratégie d’optimisation basée sur des 
algorithmes génétiques (AG). Ce contrôle quasi-optimal est alors comparé à d’autres 
approches qui peuvent être adaptées à des applications en temps réel : (i) deux types de 
contrôles fondés sur des règles (RBC), c.-à-d. RBC1 et RBC2 et (ii) un modèle de contrôle 
prédictif (MPC). Les impacts de la masse thermique et de la puissance du système d’éclairage 
installée sont également analysés. Les résultats montrent que les quatre stratégies de contrôle 
à l’étude présentent une consommation énergétique similaire avec des écarts de 
consommation globale variant de 4% à 10%. Bien que des contrôleurs plus complexes 
comme le MPC peuvent mener à l’amélioration des performances en considérant plus de 
variables de design, des modèles plus sophistiqués ainsi qu’une mise en service rigoureuse, 
cette étude illustre que des stratégies de contrôle plus simple comme le RBC2 permettent 
d’obtenir des résultats satisfaisants. 
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4.1 Introduction 

A tradeoff between energy performance and visual comfort has to be made when selecting 

the window type, position and size in a building [75]. Ochoa et al. [75] state that introducing 

solar shading technologies considerably enlarge the search space in this field of research. 

Moreover, if solar shading control strategies are considered, it further increases the 

complexity of such an optimal design exercise.   

 

When investigating the potential of smart window technologies [13], i.e. glazing technologies 

offering controllable optical properties, the determination of the control strategy is often 

recognized as a crucial factor in achieving the required performance [27]. Nowadays, the 

flexibility (large dynamic range [76]) of existing smart window technologies offers great 

control opportunities and challenges. Selkowitz et al. [77] present the challenges and 

opportunities related to dynamic control of smart windows that are judged as essential 

considerations in the application of smart façade technologies. The SW state influences 

illuminance levels, electricity consumption for artificial lighting and solar and lighting 

thermal loads in the building zone. These aspects should all be taken into account in order to 

properly assess the impact of control strategies on energy savings and on the visual and 

thermal comfort of occupants. 

 

Several authors showed that the effect of smart window control strategies on energy 

consumption is largely influenced by the type of building zones and control strategy 

parameters used.  Often daylight optimization strategies are applied to control smart 

windows.  In a field study, Lee et al. [40] monitored a lighting energy reduction of 26% ± 

15% and a cooling load reduction of 7 ± 4% with electrochromic windows controlled in 

various ways so as to optimize daylight while avoiding glare compared to a spectrally 

selective low-e window.  Lee and Tavil [78] analyzed among other parameters the effect of 

control strategies based on vertical plane incident solar radiation and work plane natural 

illuminance control, and identified illuminance and glare based strategies as the best to 

decrease annual energy consumption.  Shehabi et al. [79] concluded that dynamic prismatic 

optical element window coatings controlled to maximize performance and energy savings 
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available from daylighting controls could increase lighting energy savings by 85% compared 

to conventional daylight controls.  

 

Assimakopoulos et al. presented a novel advanced control strategy based on an adaptive 

neuro-fuzzy inference system [51]. Results of that study revealed that the developed control 

strategy, although presenting a good performance, needed a higher range of possible SHGC 

values for it to fully take advantage of the complexity of the strategy. Nowadays, the 

advances in smart window technologies [12] could potentially justify the integration of such 

advanced control strategy in smart window control systems.  

 

The various studies dedicated to improving smart window control strategies brought up to 

light the main challenges for a large-scale integration of smart window in current buildings. 

Among others, the main challenges in the development of efficient controllers are the 

occupancy type and the occupant’s acceptance [46], the transient effects of unanticipated 

energy demand fluctuations, the radiative thermal load shift due to building thermal mass 

[35], the influence of the climate and façade orientations [54] and the HVAC parameters such 

as part-load performance or time delays introduced by air distribution systems [35]. 

Furthermore, intrinsic properties of the different smart window technologies [54] such as the 

required switching time between possible states or the variation of the spectral distribution 

of the visible transmittance [80] should be added up in the considered parameters for 

enhanced smart window controls. 

 

In this paper, a building model with predefined geometry and material properties was used 

to explore the effect of different state-of-the-art control strategies on energy consumption for 

heating, cooling and lighting and on thermal discomfort, while taking into account the effect 

of the smart window state on the natural illuminance on the work plane. The intent of this 

work is to assess the performance of viable control solutions for real-time control of smart 

windows. The most promising rule-based controllers [81] and a model based predictive 

controller [82] are proposed as applicable real-time control strategies and compared to a 

quasi-optimal reference case based on genetic algorithms. 
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4.2 Building model 

4.2.1 Building location, geometry and construction 

A typical commercial building was considered in the present work. A 100 m2 office zone of 

the building was modeled (6-sided box model of 10 m by 10 m by 3 m), with one exterior 

south-facing wall. The exterior building façade is composed of an electrochromic smart 

window (the upper 2/3 of the façade area) and an opaque exterior wall (concrete siding, 

lightweight frame filled with mineral wool insulation and gypsum indoor finishing) with an 

overall U-value of 0.45 W/m2K. The other five faces of the box model were defined as 

adiabatic surfaces to represent identical building zones surrounding the considered zone. 

Internal walls are modelled as light weight walls. Two types of floor construction were 

considered, i.e.: a 10 cm concrete floor slab (CCr=191 kJ/m2K) and a 10 cm cross-laminated 

timber floor (CCLT=81 kJ/m2K), representing different values of internal thermal mass (high 

versus medium).  In this study, direct solar gains were assumed to be uniformly distributed 

on the floor. On the other hand, diffuse solar gains were distributed according to absorption-

transmission weighted area ratios for all other surfaces. The building model was developed 

in TRNSYS. 

 

Simulations were realized considering EnergyPlus weather data (epw file) for the city of 

Montreal, Canada. Since smart window technologies energy benefits are mostly associated 

to cooling load and peak demand reductions [54], the simulation period considered in this 

study covers the months of June and July. While the hours simulated during the month of 

June were used as a warm up period [83], all hours of the month of July were used for the 

analysis. A time step of one hour was used in all simulations. 

4.2.2 Properties of smart window 

The smart window considered in this study is a double glazing electrochromic window whose 

optical properties can be varied by an applied voltage [12]. The electrochromic layer was 

applied on the surface 2, i.e. the internal surface of the external glazing, in order to limit 

undesired solar heat gains from absorbed and reemitted heat as well as to increase thermal 

comfort. Four possible SW states, from clear (S1) to dark (S4), have been included in the 

model. Table 4.1 provides the SW center of glazing properties at normal incidence. While 
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properties at normal incidence of Table 4.1 are presented for readers’ benefits, one should 

note that the model uses the complete and detailed properties, varying with incidence angle, 

obtained in the IGDB (International Glazing Database). 

 

In the model, every time the state of the window is changed, the corresponding properties of 

that new state are also applied to the window. Since the time steps (one hour) considered in 

the simulation results are greater than the time required to switch from one state to the other 

(about 5 minutes considering an ideal window designed with a sufficient amount of bus bars) 

[81], it was assumed that window properties over a time step were constant. 

Table 4.1: Smart window center-of-glazing properties 
Smart window states U-Value 

[ W/m2K ] 
SHGC 

[ - ] 
Tvis 
[ % ] 

Tsol 
[ % ] 

State 1 (S1) (bleached) 1.63 0.47 62.1 38.1 
State 2 (S2) 1.63 0.17 21.2 8.6 
State 3 (S3) 1.63 0.11 5.9 2.4 
State 4 (S4) (fully tinted) 1.63 0.09 1.5 1.0 

 

4.2.3 Gains and schedules 

Internal gains are related to artificial lighting, occupancy (10 occupants doing moderate 

office work) and equipment. Table 4.2 presents the building zone heat gains as well as their 

respective radiative and convective fractions. Based on the purpose of this work, only 

sensible heat has been considered in the model. A remaining 120 W during off-occupancy 

hours was considered for appliances in standby mode. 

Table 4.2: Building zone heat gains 

Gain Types Heat Gains 
[ W] 

Convective 
Fraction 

[ % ] 

Radiative 
Fraction 

[ % ] 
Occupants (10) 730 30 70 
Equipment 800 30 70 
Light 748 41 59 

 

The building lighting model calculates the illuminance distribution on interior surfaces of the 

building considering combined daylight and artificial light. In order to offer proper 

illuminance on the work plane (0.8 m height from the floor level), a light sensor has been 
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positioned at the center of the room width and 7 meters depth from the glazed wall. The 

sensor is represented in Figure 4.1 by the circled “S” label. The illuminance requirement 

(WPreq) on the sensor has been set to 500 lux [84] during occupancy hours. Although more 

visual comfort considerations could have been included [85][86], this approach to quantify 

visual comfort was deemed sufficient to capture the main tradeoffs that are studied in this 

paper, given that the present work is more specifically oriented towards reducing energy 

consumption. Further studies should consider more exhaustive visual comfort models and 

their impacts on control strategies and building energy consumption. 

a)  b)  

 
Figure 4.1: (a) Artificial lighting system disposition (Top view), (b) 3D representation of the 

zone natural and artificial light sources. 
 

The daylight calculations were performed with DAYSIM [87]. A table was built with the 

natural illuminance on a work plane, at each hour and for all the four possible states of the 

window. Using this look-up table, it was possible during the thermal simulation to 

straightforwardly find the amount of natural light on the work plane, provided that the state 

of the window is known. 

 

Radiance was used for the artificial lighting calculations [88]. Two types of artificial lighting 

systems were considered for the study, i.e. a conventional T8 lamps lighting system and a 

LED system [89]; see Table 4.3 for details.  

 

Figure 4.1 illustrates the lamp distribution over the ceiling surface (identical for both 

systems). Similarly to the natural light calculation, a look up table was built for both lighting 
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systems directly in Radiance considering the artificial illuminance on the work plane for 

different lighting powers. The dimming control strategy used in this paper, summarized in 

Table 4.3, is similar to the EnergyPlus Continuous/OFF dimming control [90]. In Table 4.3, 

LLD refers to the Lumen Lamp Depreciation factor and LDD refers to the Luminaire Dirt 

Depreciation factor. 

 

Table 4.3: Artificial lighting systems 

Nominal LPD 10.2 W/m2 ( T8 lamps) and 4.4 W/m2 ( LED system)  

Ballast factor (T8 lamps) 0.86 

GDF 0.81 (GDF = LDD · LLD = 0.9 ·0.9) 

Wpsp 500 lux 

Daylight zone  

dimming control ( ) ( )L L P,min L,min L,m

L

P P,min L L,min

L,mi i Ln n

0 0
     

1
0

11

f
f f f f

ff f f f ff
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In the end, the total illuminance is simply the summation of the natural and artificial 

illuminances. DAYSIM and Radiance generated look up tables were used for all four control 

algorithms. 

 

To represent a typical transient variation of internal gains and lighting requirements in office 

buildings, schedules have been created.  

 

Figure 4.2 presents the schedule of electronic appliances, occupancy and work plane light 

requirement for week days. For simplicity, the only internal gains considered during week-

ends were the electronic appliances at 15% of their maximal power usage. 
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Figure 4.2:  Week days schedule for equipment and occupancy (left axis) and work plane lighting 

requirement (right axis). 
 

4.2.4 HVAC&R system 

It was considered that the calculated heating load Qheat and cooling load Qcool acted directly 

on the air node of the building model, and were satisfied instantly by the HVAC system. 

Heating and cooling loads, Qheat and Qcool respectively, were determined by TRNSYS models 

except for the MPC controller. In the latter case, heating and cooling loads were determined 

within the controller building model (see Section 4.3.1). The cooling system considers a 

constant coefficient of performance (COP) of 3. A direct electric heating system is 

considered. The indoor temperature was allowed to vary between 21°C and 25°C during 

occupancy. Outside of the occupancy hours, these temperature limits are respectively 

lowered and raised by 3°C. Based on summer design conditions, the cooling system was 

sized to provide a maximum power of 8300 W considering the smart window at its clearest 

state. That cooling system was able to meet the cooling requirements for all hours under 

study. A constant air volume ventilation system was installed. The volume flow rate of 

outside air was roughly estimated at 340 m3/h (200 cfm). A heat exchanger was used to 

transfer heat between the air exhaust and make up air with 60 % efficiency. 

4.3 Implemented control strategies 

Three types of control strategies are presented below. First, rule-based controllers (heuristic) 

are described in Section 4.3.1. Second, the optimal control is determined by a genetic 
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algorithm (GA) in Section 4.3.2 to establish the best scenario. Finally, a model predictive 

control (MPC) is detailed in Section 4.3.3. It should be noted that the rule-based control 

strategies of Section 4.3.1 do not involve any optimization whatsoever. On the other hand, 

the two other controllers minimize an objective function, as described below (Sections 4.3.2 

and 4.3.3). 

4.3.1 Rule-based control 

Different rule-based strategies have previously been tested for the control of smart windows 

[54]. Rule-based control relies on predefined instructions (e.g., “if… then…”) based on the 

difference between measured and set-point values.  

 

Two rule-based control strategies were considered in this work. The first rule-based 

controller (RBC1) was designed to adjust the smart window state (control variables) in order 

to maximize daylight on the light sensor (‘S’ in Figure 4.1) without over-lighting during 

occupancy hours: if the light sensor reading exceeded the 500 lux threshold, the SW was 

switched to the next darker state that reduces the illuminance level below 500 lux. In the next 

time step (1 hour) this position is re-evaluated. During off-occupancy hours, this RBC1 

controller was designed to set the smart window at its clearest state (S1). The second rule-

based controller (RBC2) follows the same behavior as RBC1 during occupancy hours, 

however it was designed to switch to the darkest state (S4) during off-occupancy hours for 

which solar gains are still present. This second type of controller was proposed to potentially 

offer a more energy-efficient strategy during cooling season. 

4.3.2 Procedure to determine optimal control – Genetic Algorithms (GA) 

Given the state of the smart window at each hour of a certain period of time, it is possible to 

simulate the building thermal behavior over that time frame with the model described in 

Section 4.2 (TRNSYS building model). An optimization strategy was elaborated to 

determine the optimal state of the window at each hour. In this procedure, the states of the 

smart window over each time step (one hour) are the design variables. The objective is to 

minimize the overall energy consumption, which is: 

 Cool
Tot Heat Light

QQ = Q + + Q
COP

 (4.1) 
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Constraints were invoked to consider visual comfort during occupancy (WPreq), as mentioned 

before. 

 

The objective function was minimized with genetic algorithms (developed in Matlab) 

assuming a perfect building model representation, a perfect weather forecast (i.e. one 

perfectly knows the future weather parameters during the optimization) and perfect 

occupation forecast. A set of design variables (i.e., the SW state at each time step) represents 

an individual. An initial random population of individuals is first generated. Then, the 

objective function of each individual is evaluated with Eq. (4.1), based on the simulation. 

Cross-over between individuals occurs with more probability of reproduction for best 

individuals. Mutations are then applied randomly to the offspring. A new generation is 

created from the offspring and from the few best individuals of the previous population 

(which is called an elitist strategy). The process is repeated until convergence. More 

information on genetic algorithms can be found in [58]. Table 4.4 presents the tuning and 

convergence parameters of the genetic algorithms that were considered in this work. 

Table 4.4: Parameters of the Genetic Algorithm 
Parameters Value Units 

Number of phenotypes per generation 40 - 
Maximum number of generations 75 - 
Number of generations with unchanged QTot before 

convergence 30 - 

Proportion of children per generation 80 % 
Children mutation probability 5 % 
Number of chromosomal crossovers 2 - 

 

Formal optimization using genetic algorithms is generally quite computationally expensive 

[91]. For this reason, a procedure was developed to reduce computational time. In practice, 

the energy demand at a given time step depends only on what happened in the few previous 

hours or days. In other words, the SW state at a time step has influence only over a limited 

number of future hours. In order to take advantage of that, the optimization was first 

performed over the first 24h of the simulation period to determine the best SW states for each 

hour of that period of time. Then, the optimization was repeated for the following 24 hours 

considering the previous results applied to past hours, and so on, until the SW state at each 
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time step was optimized. Typically, it took 0.5 h to perform a 24 h period of optimization 

with that procedure on a 64 bits system with 2.80 GHz Intel Core i7 CPU and 8G of memory.  

 

By definition, genetic algorithms involve probabilistic processes. As a consequence, two runs 

can potentially lead to two different optimization results. Although they have been able to 

successfully identify global optima in many situations, genetic algorithms can thus lead to 

local optima or nearly optimal individuals. The term quasi-optimal is used in this work to 

highlight this fact when required. 

4.3.3 Model based predictive control (MPC) 

First used in the chemical process industry, MPC is control approach currently used in a large 

variety of industrial applications [92]. MPC refers to a class of control algorithms that use an 

explicit model of a system to predict its future response over a finite-time horizon. At each 

control time step, the MPC algorithm optimizes the sequence of control values over the 

prediction horizon Hp based on the predictions of the model. In other words, the best control 

as predicted by the model is applied to the system. The first input of that optimal sequence 

(the control input at the current time) is sent to the system and the process is then repeated 

for the next control decision. In its standard form, the optimization is performed online (in 

real time) within the controller [93]. 

 

MPC has gained a lot interest in the past few years in building related applications [94] [95]. 

In this paper, a space-state resistance-capacitance building model developed in Matlab 

(called the “controller model”) [26] is used within the controller as the model representation 

of the real building (the real building being represented by the TRNSYS model in this study). 

The best real time control inputs, Uc, of the HVAC system, lighting system and smart window 

(i.e. Qheat or Qcool, Fulight and the window state, respectively) are obtained for each hour (time 

step = 1 h) based on the minimization of the total energy consumption of the building zone 

(electricity for heating, cooling and lighting, see Eq. (4.1)) considering a 24 h prediction 

horizon (Hp = 24). One should refer to Section 2.2 of Chapter 2 for technical details and 

model verification of the controller model. 
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The MPC consists of three distinct parts: the observer, the predictor and the optimizer. The 

work flow of the MPC is presented in Figure 4.3. It is assumed that all the control inputs (Uc) 

and disturbance inputs (Ud = [Tout, Qsol,direct, Qsol,diff]) are fully measurable. In Figure 4.3, the 

accentuation (^) on the parameters refers to the estimation (for building states x) or 

predictions (for building temperature outputs Y and disturbances Ud). At time step k, sensors 

of the building measure different temperatures (Yk|k, i.e. measurement values of time k 

measured at time k), of the zone and building envelope (i.e. TRNSYS generated data used as 

"sensor" data for the MPC model feedback loop) that are fed to the observer. Using the 

MATLAB controller model, the observer estimates the unmeasured building temperature 

states (subset of x�k|k) based on the measurements Yk|k, Uc and Ud (both assumed to be 

perfectly measurable) as well as on the complete set of measured and estimated state 

temperatures of the previous step (x�k|k−1). In parallel, the predictor predicts, for the next Hp 

time steps, disturbance inputs (Tout; Qsol,direct; Qsol,diff). The MPC then calculates, based on the 

predictions and set point requirements (rk+p|k), the model control inputs for the next control 

time step Uc,k+1|k that minimize the cost function J (including electricity and discomfort costs 

of the building zone), according to: 

 
( )

Hp
cool,p

heat,p light,p HVAC u,p o,p DC
p=1

Q
min Q + +Q F +J =

COP
DC +DC F

  
  
  

∑  (4.2) 

subject to the constraints presented in Table 4.5. FHVAC and FDC are tuning parameters 

used to weight the different considerations (energy and comfort) of the objective function 

[96]. In this study, these parameters were kept constant, i.e.: FHVAC = 1e-4 and FDC = 5. These 

parameters were sized based on the maximum estimated values, over a one hour time step, 

for energy and discomfort, i.e. 10000 Wh and 0.2Kh, respectively, in order to have a balanced 

cost between both considerations (Eq. (4.2)) 
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Figure 4.3: Model based predictive control architecture. 

 

In this article, a control horizon Hc = 1 was chosen. A control horizon of Hc implies that the 

control inputs are allowed to fluctuate only over Hc of the Hp time steps during the 

optimization. It was chosen to implement the thermal discomfort as a soft constraint, i.e. as 

an element of the cost function instead of a hard constraint of the type Tset,min ≤ Tin ≤

Tset,max, creating a more robust MPC implementation.  Using this approach, in the rare 

occasions when Qheat or Qcool are too small to keep Tin within the requested temperature range, 

the optimization routine will still find a solution, even when the cost factor FDC is set to a 

higher value. 

Table 4.5: MPC constraints 
Constraints Units 

AX(k+1)  ̶  B = 0 (see section 4.3.1 for more details) W 
X(0)k = x�k|k (see section 4.3.1 for more details) K 
Qheat ≤ Qheat,max = 3295   W 
Qcool ≤ Qcool,max = 8304 W 
Electricity use for heating : Eheat,k = Qheat,k W 
Electricity use for cooling : Ecool,k = Qcool,k / COP (COP=3) W 
Electricity use for lighting: Elight W 
Discomfort cost ‘too cold’: DCu,k = (Tset,min - Tin,k) · ∆t Kh 
Discomfort cost ‘too warm: DCo,k = (Tin,k - Tset,max) · ∆t Kh 

 

The MPC controller was developed in MATLAB and the optimization procedure was 

handled by the YALMIP toolbox and the mixed-integer linear programming solver Gurobi. 
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4.4 Results 

As mentioned previously, simulations were performed on an hourly basis for the months of 

June (warm-up period without any SW control, i.e. passive clear SW state S1) and July 

(period of analysis where SW states were defined by the different controllers under study).  

4.4.1 Hour-by-hour SW states 

Figure 4.4 presents the hourly SW states for the four controllers under study and the three 

different types of floor/lighting system configurations. Note that for concision, only the first 

week of July, which is considered “typical”, is reported in that figure, and that the first day 

reported is a Sunday. Figure 4.4a, 4.4b and 4.4c illustrate quite different behaviors in terms 

of SW state evolution for the different controllers. Because of their nature, the rule-based 

controllers RBC1 and RBC2 present the exact same profiles of SW states for the three 

different floor/lighting configurations. On the other hand, SW states obtained from the GA 

and MPC controllers present different behaviors depending on the particular floor/lighting 

configuration. In Figure 4.4a, GA and MPC controllers with the LED system tend to set the 

SW state to S2 or a darker state over a longer period of time during occupancy hours 

compared to the controllers with a T8 lamps system (Figure 4.4b). This behavior is mainly 

due to the fact that the higher efficiency of the LED system (Figure 4.4a) calls for less 

daylight penetration for optimal control based on the overall energy consumption.  
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Figure 4.4:  Hourly results of smart window states for the first week of July for the different 

control strategies considering a) a concrete floor and LED lighting system (Cr-LED), 
b) a concrete floor and T8 lighting system (Cr-T8) and c) a CLT floor and T8 lighting 
system (CLT-T8). 

 

In all cases, one could also realize that the SW state profiles vary from one day to another. 

Of course, these variations come from a great combination of factors such as solar radiation 

and outdoor temperature. For example, the fourth day of the week (hours 72 to 95) presents 

lower solar radiation values (overcast day). For these hours and during occupancy, all 

controllers of Figure 4.4 limit the number of hours at darker SW state since solar gains are 

limited and daylighting tends to be maximized to limit lighting costs. 
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From Figure 4.4, we also realize that only two controllers (GA and RBC2) set the SW state 

to S4 during weekday hours with solar presence and non-occupancy, i.e. early and late 

daylight hours. This behavior minimizes cooling loads by keeping zone air and thermal mass 

temperatures to lowest values outside occupancy hours. 

 

Figure 4.5 presents the occurrence (percentage) of each SW state for every hour of the full 

month of July considering the three types of floor/lighting configuration (Cr-LED in Figure 

4.5a, Cr-T8 in Figure 4.5b and CLT-T8 in Figure 4.5c). Figure 4.5a and b confirm the fact 

that GA and MPC SW state profiles are adapted based on the artificial lighting system 

performance. Increasing the performance of that system will reduce the occurrence of the 

clearest SW state during occupancy to limit the cooling loads associated to undesired solar 

gains. These results highlight the fact that the full possible range of SW properties is further 

exploited with higher efficiency lighting systems. From Figure 4.5, it is also clear that the 

RBC1 controller, which is uniquely driven by daylight control, never uses the two darkest 

states of the SW, meaning that this type of control does not take fully advantage of the 

flexibility of SW technology. On the other hand, GA, MPC and RBC2 present between 10% 

and 31% of hours with the SW states at the darkest state S4, mostly occurring during non-

occupancy hours as illustrated in Figure 4.4. GA and RBC2 are the two controllers that 

present the highest percentage of hours at the darkest states S3 and S4. 

 
Figure 4.5:  Percentage of occurrence for each SW state for every hour of the entire month of July 

considering a) Cr-LED, b) Cr-T8 and c) CLT-T8. 
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4.4.2 Respect of zone air temperature setpoints 

While GA, RBC1 and RBC2 controllers considered air temperature setpoint requirements as 

hard constraints to be met at all time, MPC controller considered these setpoint requirements 

as soft constraints. This MPC particularity, designed for robustness, resulted in some hours 

outside setpoint requirements. Figure 4.6 presents the zone temperature overhead compared 

to setpoint requirements with the MPC. As illustrated in Figure 4.6, even if some hours 

present positive overhead temperature values, these overhead values are kept to fairly low 

values since too high values involve high cost penalty factors (DCo as presented in Table 

4.5). While GA, RBC1 and RBC2 present 0 Kh as a thermal discomfort index (defined as the 

sum of the discomfort cost, see Table 4.5, of every hour), the thermal discomfort indices for 

MPC Cr-LED, MPC Cr-T8 and MPC CLT-T8 were 8.3 Kh, 10.5 Kh and 69.5 Kh, 

respectively. At the light of these results and as illustrated in Figure 4.6, the thermal 

discomfort index for the CLT building is higher compared to the indices for the concrete 

floor. One potential explanation is that the internal model of the MPC (validated for the 

concrete floor) presents higher estimation errors with CLT slab. These estimation errors 

imply that the predictions are somewhat less accurate and that the cooling system reactions 

are not fast enough to keep the zone temperature within the setpoints. However, one should 

note that air temperature increase of 0.5-0.8 K from the set-point is within the throttling range 

of thermostats in real building applications. Hence, even if the MPC results show slight 

deviations from the set point, all options would give similar indoor air temperature values in 

a practice. 
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Figure 4.6: Zone temperature overhead compared to setpoint requirements with MPC. 

 

4.4.3 Energy consumption and peak loads 

Figure 4.7 presents the cooling, lighting and total energy consumption for the three different 

floor/lighting configurations. Figure 4.7a and b show that the trade-off between cooling and 

lighting energy consumption is quite different from one controller to the other. For the Cr-

LED configuration, all controllers required around 0.35 kWh/m2 of lighting energy but 

present different values of cooling (from 1.59 kWh/m2 for the RBC2 up to 1.78 kWh/m2 for 

the RBC1) resulting in total energy consumption of 1.95 kWh/m2, 2.04 kWh/m2, 2.13 

kWh/m2 and 1.94 kWh/m2 for the GA, MPC, RBC1 and RBC2, respectively. Based on these 

results, the RBC2 controller presents the best overall energy consumption results of all 

controllers. In theory, the GA controller was considered as the optimal controller reference. 

However, as mentioned previously, due to the probabilistic nature of GAs, only a quasi-

optimal controller reference was identified in the present case. Further simulations were 

performed with the GA controller with less restrictive parameters (higher values for 

phenotypes per generation, maximum number of generation and time steps considered, i.e. 

50, 100 and 48, respectively) to determine if better results could be obtained. Indeed, total 

energy consumption from those new simulations with the GA controller resulted in slightly 

better results than those obtained and presented in this section. However, the computational 

time required to obtain those new results was more than tripled compared to simulations with 
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GA parameters presented in Table 4.4. These results highlight the fact that the GA controllers 

should really be considered as “quasi-optimal” rather than “optimal” if reasonable 

computational times are targeted, but that this nearly optimal reference is sufficient to 

evaluate how good the other controllers are in terms of “optimality”. 

 
Figure 4.7: Energy consumption for a) cooling, b) lighting and c) total. 

 

Furthermore, these results illustrate the fact that higher efficiency lighting systems reduce 

the need for complex controllers since the RBC2 controller achieves results that are as good 

as the quasi-optimal strategy. For the T8 lighting system (Cr-T8 and CLT-T8), the GA 

controller presents the lowest total energy consumption, followed by RBC2, MPC and RBC1, 

in order of performance. For all floor/lighting configurations, the difference in energy 

consumption performance varies from 4 % to 10% between the best and the worst case 

scenarios. In the light of these results, one could realize that, even if some controllers present 

slightly better results, all the state-of-the-art control strategies under study in this paper 
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present quite good performance in terms of energy efficiency. In other words, when the 

expertise for complex control implementation or the available budget is limited, buildings 

with SW technologies could be designed with a simple control strategy such as RBC1 or 

RBC2 and still offer very promising energy performance. 

 

These results reveal that for the situation studied in this paper, with an office zone in summer 

situation, having thermal mass in the floor that is only passively interacting with the occurring 

heat flows, does not seem to create the required circumstances for MPC to outperform 

simpler controllers, although this strategy has been shown to be capable of dealing with 

complex thermal interactions for which it is beneficial to increase the controller intelligence. 

 

 Figure 4.8a, 4.8b and 4.8c show, respectively, the cooling, lighting and total peaks loads for 

the month July. Even if peak loads were not considered in the optimization objectives, it is 

interesting to see that the different control strategies also present different values of peak 

loads. For example, the GA controller with Cr-T8 configuration presents the highest cooling 

peak load (Figure 4.8a) of all controllers, but also presents the lowest overall energy 

consumption peak load (Figure 4.8c). Since some energy pricing strategies in the commercial 

sector include peak loads, future research should also assess the relative performance of the 

different controllers considering a more complex objective function that also considers peak 

loads. 
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Figure 4.8: Peak loads for a) cooling, b) lighting and c) total for the month of July. 

 

4.5 Conclusions 

This paper presents and compares four state-of-the-art control strategies, i.e. controllers 

based on genetic algorithms, model predictive control and two similar types of rule-based 

controls. A building zone with smart windows was modelled in TRNSYS and a 

corresponding controller model was set up for the MPC. 

 

All the results were analyzed during the month of July for a building located in Montreal, 

Canada. Results showed that all controllers under study were capable of handling the 

complex energy balance within the zone with varying temperature set points, controllable 

heating and cooling systems, controllable smart windows, lighting modulation and variations 

of heat loads (outdoor temperature, solar radiation and internal gains). The four analyzed 
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controllers presented different behaviors resulting in differences in terms of the total energy 

consumption (maximal differences between controllers of 4% to 10%). The ruled-based 

controller RBC2 (control based on daylight during occupancy hours and on cooling loads 

minimization during non-occupancy hours) presented the best real-time control strategy with 

results closest to quasi-optimal results obtained by the GA controllers. It was shown that the 

efficiency of the artificial lighting system impacts the relative performance between the 

different controllers. In the model under study, adopting a more efficient artificial lighting 

system resulted in a drop of relative performance between controllers. 

 

In terms of comfort and energy performance, results for MPC showed that the performance 

of the controller relies on the accuracy of its internal building model. The investigated 

situation (i.e., a single office zone in summer conditions) was relatively simple, and did not 

offer sufficient flexibility in terms of temperature set points, thermal mass loading or 

unloading, multi-zone interactions, etc., so that the increased intelligence of the MPC was 

not that useful compared to simpler controllers. Future research should focus on the 

assessment of MPC model sensitivity as well as on the development of parametrization 

procedures for efficient MPC control for different construction types and geometries. 

Metamodeling [97] could also be used to predict the building dynamics. 

 

The GA and MPC controllers based their control actions on a simple objective function 

aiming at minimizing the total (cooling/heating + lighting) energy consumption. While the 

MPC controller presented good performances, the limited number of design variables and 

the simplicity of the zone considered did not allow it to out stand compared to rule-based 

controller RBC2. Since GA and MPC algorithms are powerful tools that could easily accept 

more complex objective functions or scenarios, they present the potential to level up the 

control decisions to higher levels that include other optimization variables. For example, in 

this paper the peak load reduction in energy cost strategies was mentioned. Further studies 

should broaden the assessment of the MPC and GA controllers’ performance considering 

more complex objective functions that include interactions with other zones and with the 

electromechanical systems. Since these strategies are more difficult and costly to implement 
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compared to rule-based strategies, it is likely that they will stand out from simpler control 

strategies only in situations involving complex systems, interactions, and objective functions. 

 

It should be mentioned that several assumptions were made in this study (representative 

office zone, fixed occupancy and loads schedules, specific façade orientation and building 

location, simplified visual and thermal comfort analysis), and therefore, conclusions should 

be interpreted and generalized cautiously. Nevertheless, this work provided an overview of 

the potential of different control strategies for smart window control and a methodology to 

compare these strategies. 
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CHAPTER 5  OFFICE BUILDINGS WITH ELECTROCHROMIC 

WINDOWS: A SENSITIVITY ANALYSIS OF DESIGN 

PARAMETERS ON ENERGY PERFORMANCE, AND 

THERMAL AND VISUAL COMFORT 
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Abstract 

In this paper, a representative office building zone with an electrochromic (EC) glazed façade 
was simulated in TRNSYS and Radiance/Daysim for a large number of different 
combinations of design parameters (i.e. location, façade orientation, window control, 
window-to-wall ratio, internal gains, thermal mass and envelope air tightness). Results of 
energy consumption, peak energy demand, useful daylight index (UDI) and predicted 
percentage of persons dissatisfied (PPD) for a total of 7680 scenarios were obtained and used 
in a sensitivity analysis considering the Main effect of the building parameters. The relative 
influence of the parameters is presented and the different designs improving the outputs are 
determined. Results have shown that the greatest total energy savings considering EC 
windows are for warmer climates with higher solar radiation exposures. The presence of an 
EC window mostly influences the cooling peak load and acts as an alternative solution to 
thermal mass from the perspective of peak reductions. While the choice of the specific 
window control strategy is having a limited impact on the energy savings and peak load 
reductions, the analysis revealed that this parameter has a larger impact on the visual comfort 
(UDI). The use of smart window does not appear to greatly influence the thermal comfort 
within the zone (small impact on the PPD). 
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Résumé 

Dans cet article, une zone à bureaux typique incluant une fenestration électrochrome (EC) en 
façade est modélisé dans TRNSYS et Radiance/Daysim pour simuler une grande variété de 
combinaison de paramètres de design (c.-à-d. la localisation, l’orientation de la façade, le 
control des fenêtres, le pourcentage de fenestration, les gains internes, la masse thermique 
ainsi que l’étanchéité à l’air de l’enveloppe). La consommation d’énergie, la pointe de 
consommation, l’indice de lumière naturelle utile (UDI) et la prédiction du pourcentage 
d’insatisfaction (PPD) pour un total de 7680 scénarios sont obtenues et utilisé dans une 
analyse de sensibilité considérant l’effet principal des paramètres de design du bâtiment. 
L’influence relative des paramètres est présentée et les différents designs améliorant les 
résultats sont déterminés. Les résultats montrent que la meilleure économie d’énergie en 
considérant des fenêtres EC se trouve dans des climats chauds avec une exposition élevée 
aux rayons solaires. La présence d’une fenêtre EC influence principalement la charge de 
refroidissement maximale et agit comme une solution alternative à la masse thermique en 
termes de réduction potentielle de cette charge maximale. Bien que le choix de la stratégie 
de contrôle ait un impact limité sur l’économie d’énergie réalisée et la réduction de la charge 
maximale, l’analyse permet de constater que ce paramètre a un impact encore plus important 
sur le confort visuel (UDI). L’utilisation de fenêtres intelligentes ne semble pas influencer 
grandement le confort thermique à l’intérieur de la zone (faible impact sur le PPD). 
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5.1 Introduction 

Smart windows (SW) are window technologies offering a control flexibility in terms of solar 

heat gains, daylight and glare in building perimeter zones. This flexibility is achieved through 

their capacity to adapt their optical properties (ranging from a clear state to a fully colored 

state) through different type of stimuli such as gas concentration, temperature, solar radiation 

or an applied voltage. Among the most promising SW technologies, electrochromic (EC) 

windows (whose tinted states are controlled by an applied voltage) provide views to the 

outside regardless of their colored states, limit glare [53] and are seen as the most reliable 

and promising technologies in the field of energy-efficient window technologies [12]. 

 

Although current EC window technologies are offering a great range of properties [12] [14] 

[98] [99], the use such technologies also requires a good understanding of the appropriate 

control to be implemented as well as an established communication network with other 

relevant systems (such as with the artificial lighting or HVAC systems) [14]. With the 

increasing interest toward EC technologies in the last decades, outcomes from numerical and 

field studies on the topic were published and has led to the diffusion of early-market design 

guidance information [41]. 

 

Early numerical simulations of office buildings compared a spectrally selective low-E 

window technology with EC technologies (reflective and idealized) in a cooling dominated 

location [27]. Three control strategies were considered, i.e. control based on daylight, on 

solar radiation or on space load. Results revealed that the total energy savings could be 

achieved by using EC windows compared to the conventional low-E windows and that the 

daylight control was offering the best overall energy performance. Similar simulation results 

were also obtained in other studies considering other locations [36], residential applications 

[37] or heating dominated climates [38]. 

 

A field study [100] analyzed the performance of electrochromic windows controlled in 

various ways so as to optimize daylight while avoiding glare compared to a spectrally 

selective low-e window. This study monitored lighting energy reduction of 26% ± 15% and 

a cooling load reduction of 7 ± 4%. 
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A recent study on advanced control strategies [101] for smart windows also has shown that 

heuristic controls give quite good energy and comfort performance compared to quasi 

optimal controllers based on genetic algorithms and model predictive control. Heuristic 

controls thus seem to be so far the best trade-off control strategies in terms of ease of 

implementation versus potential benefits (energy and comfort wise). 

 

Nowadays, the advances in the field of EC windows have led to new field studies combining 

EC technologies with other complementary technologies such as photovoltaic cells [102] or 

ventilated façades [103]. 

 

Despite evidence that smart windows can enhance building performance in specific 

scenarios, there is still a lack of general and systematic design guidelines to introduce smart 

windows in building designs. In particular, based on literature, it is difficult to establish which 

building designs are the most improved by using smart windows, and to what extent. 

Sensitivity analysis techniques have recently been gaining a lot of attention in order to 

identify the most influential design variables in terms of building performance [104]. For 

example, a recent study has presented an uncertainty and sensitivity analysis of energy and 

visual performances for an office building with external venetian blind shading in a hot-dry 

climate [105]. It was found that glazing design parameters such as the window-to-wall ratio 

(WWR), the glazing type, the blind orientation and the slat angle were the most influential. 

Another study combined sensitivity analysis and simulation-based optimization in order to 

optimize the thermal and energy performance of residential buildings in the Argentine littoral 

region [106]. The case under study has proven that this approach could drastically improve 

the thermal and energy performance. These examples highlight the fact that sensitivity 

analysis techniques emerge as a useful tool for building design process, but no precedent was 

found in which they were used for building designs with smart windows. 

 

The main objective of this study is to provide decision-making information on building 

design with efficiently controlled electrochromic windows. In this paper, a sensitivity 

analysis is presented to assess the relative effect of the main building design parameters on 
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energy and comfort improvements related with the use of a smart window. Section 5.2 

introduces the building energy and daylight models and the sensitivity analysis technique that 

was developed for the present work. A series of simulations in which several building design 

variables were varied simultaneously was performed. Based on the concept of "Main effect", 

the most significant variables influencing energy consumption, peak demand and comfort in 

the presence of SW are reported in Section 5.3. 

5.2 Methodology 

5.2.1 Simulation software 

In this study, energy and comfort performance data were obtained for office buildings using 

TRNSYS, a state-of-the-art and flexible transient system simulation tool [107]. The 

TRNSYS built-in multi-zone building model (Type 56) offers the possibility to adapt the 

window properties at every simulation time step through a variable window ID feature. This 

feature facilitates the assessment and comparison of different smart window control 

strategies. While the building thermal model (section 5.2.3), the thermal comfort model 

(section 5.2.4) and the control strategies (section 5.2.6) were directly implemented within 

TRNSYS, the daylight and artificial light simulations (section 5.2.5) were performed with 

Daysim [87] and Radiance [88], respectively, and inputted into TRNSYS in the form of 

lookup tables. Batch files for parametric study and the post-processing of results were 

implemented within MATLAB. A simulation time step of one hour was used in this work. 

5.2.2 Climates 

Simulation results were obtained for ten US and Canadian locations (see Table 5.1) selected 

to cover a wide range of climates. EnergyPlus weather data files (.epw files) were used for 

simulations. Table 5.1 presents annual heating and/or cooling features for each location, i.e. 

heating degree days (HDD) and averaged end-use energy consumption (total (Etot), heating 

(Eheat) and cooling (Ecool)) as well as their respective standard deviations (σ). Only the energy 

required for heating, cooling and lighting was included in the total energy consumption. 

Energy and standard deviation results in Table 5.1 are presented per unit of floor area. HDD 

values were calculated from the same weather data files that were used for simulations. 

Averaged values for Etot, Eheat and Ecool and their standard deviations were obtained over a 

series of building designs for a given location (city) as explained later. Note that the values 
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of Etot in Table 1 might appear to be small compared to typical total energy intensity of the 

current Canadian and American building stocks, but it should be mentioned that it only 

includes the sensible energy required for the heating, cooling and lighting of a high-

performance modern building. In this study, latent loads were not considered since SWs only 

affect sensible loads. 

 

Table 5.1: Climate information 
 HDD Etot σE,tot Eheat σE,heat Ecool σE,cool 

Locations [°C] [kWh/m2] [kWh/m2] [kWh/m2] 

US locations (ASHRAE 90.1 zones) 
 

Atlanta, GA (3A) 1673 34.3 10.5 1.5 1.9 23 8.8 

Chicago, IL (5A) 3429 35.2 6.7 9.0 7.4 16 6.7 

Miami, FL (1A) 68 43.5 12.8 0.0 0.0 34 10.0 

New-Orleans, LA (2A) 707 37.7 11.8 0.3 0.4 28 9.3 

San Francisco, CA (3C) 1557 28.5 12.0 0.1 0.3 19 9.5 

Washington, D.C. (4A) 2293 32.6 8.6 3.0 3.5 20 7.9 

        
Canadian locations (ASHRAE 90.1 zones) 

 
Calgary, AB (7) 5147 37.0 7.3 13.2 9.7 13.6 7.4 

Montreal, QC (6A) 4493 37.5 7.6 12.5 9.6 14.9 6.9 

Toronto, ON (6A) 4089 35.6 7.1 11.8 9.4 13.5 6.1 

Vancouver, BC (5A) 3020 28.0 7.3 3.6 4.0 13.9 7.0 

 

5.2.3 Building model 

Building geometry and construction 

A representative six-sided box-shaped office zone of the building was modeled with 100 m2 

of floor area, i.e. 10 m width (W) by 10 m depth (D), and a ceiling height of 3 m (H). The 

plenum zone was not modeled. Four different orientations (north, east, south and west) were 

simulated for the exterior façade wall. The façade is composed of an electrochromic smart 

window (see Section 5.2.6 for further details on the smart window system and properties) 

and an opaque exterior wall (concrete siding, lightweight frame filled with mineral wool 
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insulation and gypsum indoor finishing) with a U-value of 0.45 W/m2K. All other surface 

boundary conditions of the model (internal walls, floor and ceiling) were modeled 

considering identical zone conditions for adjacent zones. In this study, direct solar gains were 

assumed to be uniformly distributed on the floor (geosurf = 1). On the other hand, diffuse 

solar gains were distributed according to absorption-transmission weighted area ratios for all 

surfaces (TRNSYS simple model). 

Three different window-to-wall ratios (WWR = 0.33, 0.50 and 0.67) were considered in the 

study. For every façade configuration, the window width corresponded to the zone width (10 

m) and the window sill was located at 1 m above the floor.  

 

Two building façade air tightness ratings (rated at 75 Pa [108]) were considered in this study, 

i.e. a modern air tight construction (0.5 ACH) and a leakier envelope construction (2 ACH). 

Hourly infiltration rates were calculated in the model based on the façade rating adjusted 

with weather data such as outside air temperature (Tout) and wind speed [109]. 

 

The concrete floor slab thicknesses was varied between two values, i.e.: 0.038 m (1.5 inch) 

and 0.254 m (10 inches) (i.e. C=71.53 kJ/m2K and 476.86 kJ/m2K, respectively). These two 

floor constructions were selected to represent different values of the effective thermal mass 

of the zone (low versus high). 

 

Gains and schedules 

Internal gains account for artificial lighting, occupancy and equipment. Based on the purpose 

of this work, only sensible heat has been included in the model. Two scenarios were studied 

for internal gains, i.e. low internal gains and high internal gains [110]. Table 5.2 presents the 

building zone heat gains as well as their respective radiative and convective fractions for the 

low and high internal gain scenarios, respectively.  

Table 5.2: Low and High internal gains (net sensible) 

 
Radiative                 

[W] 

Convective  

[W] 

Total                    

[W] 

Total/floor 

area [W/m2] 

 
Low High Low High Low High Low High 
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Equipment 350 1050 150 450 500 1500 5 15 

Lighting 188 375 130 261 318 636 3 6 

Occupants (5) 263 525 113 225 375 750 4 8 

Total 800 1950 393 936 1193 2886 12 29 

 

To represent a typical transient variation of internal gains and lighting requirements in office 

buildings, week schedules have been created based on the ASHRAE 90.1 (Table G-I) 

schedules for office occupancy. The only internal gains considered during week-ends were 

the electronic appliances at 15% of their maximal power usage. 

 

Lighting system 

Two types of artificial lighting systems were considered for the study. The first type of 

lighting system relies on sixteen T8 lamps (64 W of nominal power per lamp) (lamp 

dimensions of 0.54 m width × 1.15 m long) uniformly distributed over the ceiling. Based on 

the technological advances in the field of artificial lighting [89], a second high-efficiency 

lighting system has also been simulated. For simplicity, this system presents the same lamp 

dimensions and position as for the first lighting system; however the T8 lamps are replaced 

by a more efficient LED system consuming half the power of the T8 lamps for the same 

illuminance output (32 W of nominal power per LED lamp). While the T8 lamps lighting 

system is part of the high internal gains scenario presented in the previous subsection (High 

gains in Table 5.2), the LED lighting system is considered in the low internal gains scenario 

(Low gains in Table 5.2).  Artificial lighting system properties are summarized in Table 5.3. 

The daylight zone dimming control presented in Table 5. is based on the workplane 

illuminance setpoint (Wpsp). The required artificial light output fraction ( Lf ) is calculated to 

respect Wpsp. The light power input fraction is then obtained based on the value of Lf .  Figure 

5.1 illustrates the artificial lighting system layout. Note that specifications of Table 5.3 were 

used to define lightning gains of Table 5.2. To obtain lightings gains of Table 5.2, one should 

also consider the heat to return factor. 

Table 5.3: Artificial lighting systems 
Nominal LPD 10.2 W/m2 ( T8 lamps) and 4.4 W/m2 ( LED system)  
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Ballast factor (T8 lamps) 0.86 

GDF 0.81 (GDF = LDD · LLD = 0.9 ·0.9) 
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a) b)  
Figure 5.1:  (a) Artificial lighting system disposition (Top view), (b) 3D representation of the 

zone natural and artificial light sources simulated with Daysim and Radiance, 
respectively. 

 

HVAC system 

It was assumed that the calculated heating load Qheat and cooling load Qcool acted directly on 

the air node of the building model, and were satisfied instantly by the HVAC&R system. The 

cooling system considers a constant coefficient of performance (COP) of 3. The indoor 

temperature was allowed to vary between 21°C and 25°C during occupancy, based on the 

acceptable ranges of temperatures provided in ASHRAE 55-2013. Outside of the occupancy 

hours, these temperature limits are respectively lowered and raised by 3°C. The heating and 

cooling systems were sized to meet the heating/cooling requirements at all time. The required 

flow rate of outside air was calculated based on the ASHRAE 62.1-2016 standard with the 

breathing zone outdoor airflow calculations considering an outdoor airflow rate per person 

of 2.5 L/s-pers, an outdoor airflow rate per unit area of 0.3 L/s-m2 and a zone air distribution 
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effectiveness (Ez) of 0.8. A heat exchanger was used to recover heat between the air exhaust 

and make up air with 60 % efficiency. Note that all the heating and cooling energy needs 

reported in this paper are the energy consumed to satisfy the thermal loads and not the thermal 

loads themselves.  

 

5.2.4 Thermal comfort model 

The thermal comfort was assessed through the calculation of the Predicted Percentage of 

Dissatisfied (PPD) as defined in the 7730 ISO Standard [111]. Occupants’ conditions 

(clothing, metabolic rate and relative air velocity) for typical winter and summer seasons 

were defined based on ASHRAE 55 requirements and are summarized in Table 5.4. The only 

difference between winter and summer conditions is the clothing number since people’s 

clothing is influenced by the surrounding conditions [112]. In this work, values of PPD were 

calculated at each time step for both the winter (PPDwin) and summer clothing conditions 

(PPDsum). The actual PPD indicator at each time step was then chosen between PPDwin and 

PPDsum based on the corresponding daily averaged PPD offering the smallest percentage of 

dissatisfaction. This approach captures the occupants’ decisions to adapt their clothing based 

on the surrounding conditions.  

Table 5.4: Winter and summer conditions fort thermal comfort 
  Winter conditions Summer conditions 

Clothing factor [clo] 1.0 0.5 

Metabolic rate [met] 1.1 1.1 

Relative air velocity [m/s] 0.1 0.1 

 

The calculation of the PPD also involves the zone air temperature and the mean radiant 

temperature (TMR), which are both calculated through the TRNSYS model internal 

calculations. This model assumes that TMR is the area weighted mean surface temperature of 

all surfaces of the zone. Although this model would only give a rough approximation of the 

actual TMR within a specific zone, this approach is widely used in practical engineering 

applications [113] and gives results accurate enough to evaluate the level of thermal comfort 

within the zone. 
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5.2.5 Lighting monitoring and visual comfort model 

To offer proper lighting on the workplane (at a 0.8 m height from the floor level) in terms of 

minimal illuminance requirements, a light sensor has been positioned at the center of the 

room width and at a 3 m depth from the glazed wall (represented by the “S” symbol in Figure 

5.1). Illuminance measurements on this sensor are defined as the representative values for 

the workplane of the daylight zone (Dz). The luminosity requirement (WPreq) on the sensor 

has been set to 500 lux [84] during occupancy hours. For both lighting system types (T8 and 

LED), the lamps were controlled in two separate groups (i.e. the lamps of the daylight zone 

and the lamps of the back zone). While the back zone lamps were fully switched on at all 

time during occupancy hours, the lamps of the daylight zone were dimmed in a fashion 

similar to the EnergyPlus Continuous/OFF dimming control [90] to assure minimal visual 

comfort requirements while taking advantage of daylight whenever possible (see Table 5.3 

for further details regarding the daylight zone dimming control). The index used to assess the 

visual comfort (through useful daylight levels) in the building zone is the Useful Daylight 

Illuminance (UDI). In this work, the UDI is defined as the percentage of hours of the working 

year where daylight illuminance values on the workplane fall between 100 lx and 2000 lx, 

inclusively. The higher the UDI, the more likely it is that occupants feel comfortable from 

the visual standpoint. 

 

While daylight is desired in building zones to improve occupant’s visual comfort, natural 

light could also cause visual discomfort such as glare in situations of overabundance. Many 

indicators have been developed in the past to assess the glare potential in perimeter buildings 

zones [114]. In this paper, the glare potential was assessed with a maximal illuminance 

setpoint of 2000 lx [115]. Situations where illuminance values were over 2000 lx on more 

than 20% of the workplane in the daylight zone area were considered as periods of visual 

discomfort caused by glare. 

5.2.6 Window system and control strategies 

The smart window modeled in this study has a 1.63 W/m2K U-value. The double glazing 

includes an electrochromic layer whose optical properties can be varied by an applied voltage 
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[12]. The electrochromic layer was applied on the surface 2, i.e. the internal surface of the 

external glazing, in order to limit undesired solar heat gains from absorbed and reemitted 

heat as well as to increase thermal and visual comforts. Four possible states of opacity, from 

clear to dark, have been included in the model. Table 5.5 provides the SW center of glazing 

Solar Heat Gain Coefficient (SHGC), visible transmittance (Tvis) and solar transmittance 

(Tsol) properties at normal incidence. While properties at normal incidence of Table 5.5 are 

presented for readers’ benefits, one should note that the model uses the complete and detailed 

angle dependent properties available in the IGDB (International Glazing Database available 

online) and obtained through the use of Berkeley Lab WINDOW software. 

Table 5.5: Smart window center-of-glazing properties 

Smart window states 
SHGC 

[ - ] 

Tvis 

[ % ] 

Tsol 

[ % ] 

State 1 (S1) (bleached) 0.47 62.1 38.1 

State 2 (S2) 0.17 21.2 8.6 

State 3 (S3) 0.11 5.9 2.4 

State 4 (S4) (fully tinted) 0.09 1.5 1.0 

 

In the model, every time the state of the window is changed, the corresponding properties of 

that new state are also applied to the window. Since the time step (one hour) considered in 

the simulation results is greater than the time required to switch from one state to the other 

(about 5 minutes considering an ideal window designed with a sufficient amount of bus bars) 

[81], it was assumed that window properties over a time step were constant. 

 

In this paper, three main types of rule based control (RBC) strategies were considered (i.e. 

RBC based on  daylight [51][100], incident vertical solar radiation (incident on the zone 

façade)  [51][116] and net window heat flux [117]) and are explained in the following 

subsections. Table 5.6 presents the main parameters considered in each RBC strategy. As 

illustrated in Table 5.6, every RBC considers glare control as defined in Section 5.2.5. Each 

type of RBC also considers either two or four possible states for control, i.e.: a 2 state 

(clear/dark) control and 4 state (clear/dark + 2 intermediary states) control.  
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Table 5.6: Smart window rule-based control (RBC) strategies 

RBC ID RBC type RBC setpoints Glare control 
Possible 

SW states 

RBC1 
Daylight Wpnat,max = 500 lx illmax,Dz = 2000 lx 

2 states 

RBC2 4 states 

RBC3 

Iv 

Iv,max =  95 W/m2 

illmax,Dz = 2000 lx 

2 states 

RBC4 Iv,max =  315 W/m2 4 states 

RBC5 
Iv,min =  63 W/m2 

Iv,max = 95 W/m2 
2 states 

RBC6 
Iv,min =  63 W/m2 

Iv,max = 315 W/m2 
4 states 

RBC7 
qnet Tave = 23°C illmax,Dz = 2000 lx 

2 states 

RBC8 4 states 

 

In this paper, the use of a controlled smart window refers to a smart window considering a 

control logic based on one of the RBCs presented in Table 5.6. 

 

Daylight (RBC1 and RBC2) 

In these cases, the SW state decisions were based on a three level control scheme as illustrated 

in Figure 5.2. First of all, the controller evaluates if the building zone is in cooling mode or 

not. For occupancy hours where the building is in cooling mode, a control trade-off appears 

between the undesired solar heat gains and the desired natural light. In such situations, the 

control is based on the selected RBC strategy. The RBC strategies aim at selecting a SW state 

allowing some natural light to enter into the zone (to increase daylight and reduce lighting 

energy) while trying to limit overheating (to reduce cooling loads) and glare. Outside 

occupancy hours, the trade-off disappears and the controller selects the colored SW state, S4, 

to limit cooling loads as much as possible. On the other hand, when the building is not in 

cooling mode, the SW controller is set to maximize daylight/solar heat gains. In such 

situations, while the bleached SW state, S1, is selected during non-occupancy hours, the 

clearest state that respects glare requirements (see Section 5.2.5) is selected during occupancy 

hours. 
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Figure 5.2: Daylight and Iv RBC schemes. 

 

The daylight control strategies (i.e. RBC1 and RBC2 in Table 5.6) monitor the daylight 

illuminance on the workplane (sensor "S" Figure 5.1) and select the SW state that maximizes 

it without over lighting (Wpnat,max = 500 lx) to limit heat gains within the zone. One should 

note that glare control has priority over daylight control (i.e., if glare occurs in a situation 

where daylight on the workplane is not maximized, the SW state will still change to a darker 

state that meets glare control requirements). The daylight controls strategies work identically 

for both the 2 state and 4 state controls. 

 

Iv – incident vertical solar radiation (RBC3 to RBC6) 

The SW state decisions were based on the three level control scheme illustrated in Figure 

5.2. However, in this case, the RBC (i.e. RBC3 to RBC6 in Table 5.6) is based on the vertical 

solar radiation (Iv) incident on the zone façade. The SW state is selected based on setpoints 

for Iv. For the 2 state control, only one setpoint (Iv,max) is defined. If Iv is greater than Iv,max, 

the SW state is switched to the colored state S4. Otherwise (Iv ≤ Iv,max), the SW state is set to 

the bleached state S1. For the 4 state control, two setpoints (Iv,min = 63 W/m2 and Iv,max) were 

defined. While bleached state is selected when Iv ≤ Iv,min, the colored state is selected when 

Iv > Iv,max. The two intermediate state are chosen (linear interpolation) when Iv falls between 

the two threshold setpoints. In this work, two values for Iv,max were studied (i.e., Iv,max = 95 

W/m2 and Iv,max = 315 W/m2) [27]. As for the daylight control, glare control has priority over 

the control on Iv for this type of RBC. 

 

RBC based on incident solar radiation are seen are very promising heuristic control strategies 

due to their relatively simple control scheme and potentially inexpensive solar radiation 

sensors [118]. 
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Net window heat flow control (RBC7 and RBC8) 

This type of RBC bases its decisions according to the net heat flow, qnet, passing through the 

window: 

 qnet = Uw·(Tout – Tz) + SHGC·I (5.1) 

where Uw is the overall window heat transfer coefficient, Tout and Tz are the exterior and 

interior air temperatures, SHGC is the overall window solar heat gain coefficient and I is the 

total incident solar radiation. 

 

In the net heat flow control [117], the state of the SW is selected based on qnet, the zone 

temperature (Tz) and the average temperature value between the minimum and maximum 

zone temperature setpoints (Tave = (Tz,min + Tz,max)/2). If Tz ≤ Tave, the space is considered to 

be in heating mode (closer to heating) and the state offering the higher qnet will be selected. 

On the other hand, for Tz > Tave, the space is considered to be in cooling mode and the SW 

state offering the lowest qnet will be selected. 

 

While the heat transfer coefficient (Uw) of some dynamic window technologies such as blinds 

within the glazing could be influenced by the state of the window [117], the heat transfer 

coefficient of the EC window considered in this work remains the same regardless of the 

window color state. This being said, one could state that the net heat flow as defined in Eq. 

(5.1) will thus always be larger for state S1 compared to state S2, and for state S2 compared 

to state S3 and so on. The net heat flow control algorithm as described above thus simplifies 

as follows. For the 2 state control, the bleached state S1 is selected for Tz ≤ Tave and the 

colored state S4 is selected for Tz > Tave. For the 4 state control, the bleached state S1 is 

selected for Tz ≤ Tz,min, S2 is selected for Tz,min < Tz ≤ Tave, S3 is selected for Tave < Tz ≤ 

Tz,max, and the colored state S4 is selected for Tz > Tz,max. Similarly to the daylight and solar 

radiation RBC control types, the glare control for this type of RBC has priority over the net 

heat flow control decisions. 
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5.3 Sensitivity analysis – Main effect 

In this paper, a sensitivity analysis was performed to assess the effect of the principal design 

parameters (X) on different outputs (Y) for buildings with smart windows. Table 5.7 presents 

the eight building parameters (N = 8) under study. These parameters were selected based on 

the fact that they are common design parameters and/or relevant parameters related to smart 

windows. While other design parameters (such as the building envelope or other solar 

shading devices) could have been included in this study, the authors limited to eight the 

number of parameters given the scope of this study and the extensive amount of simulations 

involved. While the 4th parameter (ID = 4) in Table 5.7 is considered in the analysis to assess 

the influence of replacing a reference window (represented by the passive clear state S1) by 

a controlled SW (with RBC), the 5th parameter can be used to compare the RBCs against 

each other. Each parameter (e.g., location, orientation, etc.) has been attributed an ID (k) and 

has a finite number (nk) of possible values (e.g., the orientation is the second parameter (k = 

2) with nk = n2 = 4 possible values, i.e. north, east, south and west). All possible combinations 

of the different parameters were simulated. Given the number of possible values for each 

parameter, a total of 7680 simulations were thus performed. Depending on the parameter 

under study, those 7680 simulation results are then organized into different subsets for the 

analysis.  

 

 

 

 

 

 

 

Table 5.7: Building design parameters studied in the sensitivity analysis 

ID (k) Parameter (X) Possible values Numbe
r of Sk 
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designs 
(nk) 

1 Location (City) Atlanta | Chicago | Miami 
| New-Orleans | San 
Francisco | Washington | 
Calgary | Montreal | 
Toronto | Vancouver 

10 768 

2 Orientation (Ori) North | East | South | West 4 192
0 

3 Window to wall ratio (WWR) 0.33 | 0.50 | 0.67 3 256
0 

4 Presence of a smart window (SW) Yes | No 2 384
0 

5 SW rule-based controls (RBC) RBC1 to RBC8 8 960 
6 Internal gains (IG) Low | High  2 384

0 
7 Thermal mass Low | High  2 384

0 
8 Air tightness ratings at 75Pa (I75) 0.5 ACH | 2 ACH 2 384

0 
 

The analysis was based on the Main effect [119], i.e. a global sensitivity index that focuses 

on how the building parameters (X) influence the simulation outputs (Y). The main effect of 

the kth parameter (xk) on Y is denoted MEk(Y). To obtain MEk(Y), the 7680 simulations are 

separated according to the xk values into nk groups. In other words, all simulations with the 

same xk values are gathered together. The average of the outputs Y in each group is then 

calculated: 

 ,
1

1Y Y
k

kj kj

s

x i x
ikS =

= ∑
 

(5.2) 

where 
kj

S

i,x
1

Y
k

i=
∑ includes all the simulation results (i = 1, 2…, Sk) with the jth possible value 

for xk. Note that Sk is the number of sample in the group over which the outputs are averaged, 

i.e. Sk = 7680/nk. The Main effect for this parameter xk is then obtained by taking half the 

difference between the maximum and the minimum values of the nk calculated Y kjx : 
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Measured outputs (Y) 

The outputs of interest for the sensitivity analysis, listed in Table 5.8, include energy 

consumption (total, heating, cooling and lighting), peak energy demand (total, heating and 

cooling) as well as visual and thermal comfort indices, i.e., UDI and PPD, respectively. 

Table 5.8: Measured output for sensitivity analysis 
Outputs (Y) Units 

Energy improvements 
 

    Total energy consumption (TE)  [kWh/m2] 

    Heating energy consumption (HE)  [kWh/m2] 

    Cooling energy consumption (CE)  [kWh/m2] 

    Lighting energy consumption (LE)  [kWh/m2] 

Peak load improvements 
 

    Total peak energy demand (TPED)  [W/m2] 

    Heating peak energy demand (HPED)  [W/m2] 

    Cooling peak energy demand (CPED)  [W/m2] 

Visual comfort improvements 
 

    Useful Daylight index (UDI) [%] 

Thermal comfort improvements 
 

    Predicted percentage of dissatisfied (PPD) [%] 

 

The goal of this paper being to assess the performance of SW regarding comfort and energy, 

every model output (obtained with smart window control) has been compared to a base case 

scenario considering exactly the same set of design parameters except for the controlled SW 

that is replaced by a conventional passive window (state S1 at all time). The output 

measurements used for the sensitivity analysis are thus improvements (or reductions, 
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depending on the resulting signs). For example, if the total energy consumption improvement 

for a specific set of building parameters is reported as  ̶ 10 kWh/m2, one should understand 

that this specific configuration with a SW actually gives a 10 kWh/m2 savings compared to 

the reference case with a passive window. Negative output values are beneficial in terms of 

energy, peak and PPD results (savings and thermal comfort improvements, respectively) but 

are detrimental for UDI (decrease of daylight availability). In this sense, the parameter ID 4 

represents the improvements of the best SW control compared to the base case. One should 

also keep in mind that the results of the outputs presented in this section are representative 

for perimeter zones of office buildings only. 

 

The sensitivity analysis is divided into three subsections (Sections 5.4 to 5.6). Results are 

presented in a similar fashion for every subsection, i.e. ME results are presented first. Based 

on the ME results, further explanations are then given for the most influential parameters 

(relatively high values of ME). While the sign of the output measurements could be 

interpreted as improvements or deteriorations, as explained in the previous paragraph, one 

should keep in mind that the sign of ME results is always positive by definition (i.e. ME 

represents the spread between maximum and minimum averaged outputs). The ME could 

thus illustrate if a parameter has a lot of influence or not for a specific output; however it 

cannot explain alone how the variation of a parameter influences the outputs. Such 

explanations are obtained by the subsequent analysis guided by the ME results.  

 

Section 5.4 presents the results related to the energy use (total, heating, cooling and lighting). 

The total energy use is the summation of the heating, cooling and lighting energy. Section 

5.5 presents the results related to the peak energy demand (total, heating and cooling). The 

total peak energy demand is defined as the peak load including heating, cooling and lighting. 

Finally, Section 5.6 presents the results related to visual and thermal comfort (i.e. UDI and 

PPD, respectively). 

5.4 Main effects of building parameters on energy use reduction 

Figure 5.3 illustrates the ME of the eight parameters on the different energy use outputs. As 

one would expect, the location (city), the façade orientation (ori) and the window to wall 

ratio (WWR) are among the most influential parameters (high ME values) regarding the total, 
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heating and cooling energy use outputs (illustrated in Figure 5.3a, b and c). That being said, 

Figure 5.3 also shows that the presence of a well controlled smart window (SW) has as much 

influence as these other parameters on the total and cooling energy outputs, which highlights 

the relevance of considering with care the integration of smart windows during the design of 

a building. While the presence of a smart window (SW) has a great effect on the total energy 

output, the choice of the specific rule-based control strategy (RBC) also has an effect on the 

reduction of the total energy consumption, but it is relatively limited. This effect on total 

energy is mainly driven by the lighting energy (high value of MERBC(LE) as illustrated in 

Figure 5.3d). Figure 5.3d also illustrates that the artificial lighting energy is mostly affected 

by the parameters related to smart windows (SW and RBC) and the light system itself (LED 

versus T8 lamps considered in the internal gains (IG) parameters). On the other hand, the 

thermal mass and the building tightness present quite small effects (small ME results) on all 

types of energy use outputs, i.e. the energy benefit of using a SW is not influenced by thermal 

mass or air tightness. In Figure 5.3, one could observe that any parameter of influence for the 

total energy use (Figure 5.3a) is explained by one or more of its components (i.e. heating, 

cooling and lighting energy, Figure 5.3 b, c and d, respectively). One should also note that 

the scale is greater for the cooling outputs (MEk(CE)) compared to the heating and lighting 

outputs (MEk(HE) and MEk(LE), respectively). In other word, using a SW impacts mostly 

on the energy consumption for cooling. 
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Figure 5.3:  Main effect of parameters (model inputs) on change in energy consumption due to 

using a SW for a) total energy, b) heating, c) cooling and d) lighting. 
 

Keeping in mind that the simulation results refer to the energy difference for buildings with 

SW compared to the same buildings with passive windows, a deeper analysis of the energy 

use outputs revealed that all the heating and lighting simulation results were positive values 

(i.e. increase of energy consumed due to using a SW) and that cooling results were all 

negative values (i.e. decrease in energy consumed due to using a SW). Since the base case 

scenarios consider the clear state of the SW at all time and because the use of SWs could 

a) 

 

 

 

 

b) 

 

 

 

 

 

c) 

 

 

 

 

d) 
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only lead to equal or darker states compared to the base cases, it thus makes sense that equal 

or lower values for heat gains and daylight are to be expected. These results reveal that the 

use of smart windows reduce cooling energy use, but also tend to increase the heating and 

lighting energy use (by limiting heat gains and daylight). These opposite trends resulted in 

84.5% of the 7680 scenarios under study giving negative values of total energy use outputs 

(i.e. a reduction of the total energy consumption). While some situations where SWs were 

introduced (15.5 %) would lead to more energy being consumed, one should note that the 

integration of smart windows into building design generally leads to improvements in terms 

of total energy use. In this work, the building simulations resulting in the highest increase of 

total energy consumed were mostly occurring for building zones located in northern climates 

(such as Calgary, Montreal, Toronto and Chicago) with low internal gains and/or high 

infiltration rates. A particular attention should thus be paid during the design process to make 

sure that the design with SWs actually improves the overall energy performance. The 

following paragraphs provide additional indicators to support design decisions through the 

analysis of averaged total energy results. 

 

Figure 5.4 presents the total energy savings for building zones with the smart windows 

averaged per city as a function of their respective HDD. The purpose of relating energy 

savings to HDD instead of the cities in Figure 5.4 is to extend the conclusions to a climate 

related parameter rather than specific cities. As illustrated in Figure 5.4, the reduction of the 

total energy use is larger for lower HDD values. Said differently, the warmer the climate is, 

the higher the benefits are to use smart windows in terms of overall energy use. The relatively 

linear relation between the total energy savings and HDD is represented by the red line in 

Figure 5.4. The ME of the city of Figure 5.3a is explained through the difference between 

the extreme results illustrated in Figure 5.4 (i.e. difference between TEave for Miami (HDD 

= 68°C-days) and TEave Montreal (HDD = 4493°C-days)). Note that the same approach was 

also applied to the cooling degree days (CDD), but was not shown in this work for the sake 

of brevity. While the linear relationship with CDD was very similar to the one presented in 

this work with HDD, the fitting presented a higher residual. 
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Figure 5.4:  Total energy consumption reduction due to using a SW (averaged per city) as a 

function of the HDD 
 

Figure 5.5 presents the averaged total energy savings for the four different façade 

orientations. As previously observed [26], Figure 5.5 shows that SW are offering larger 

benefits for east, south and west façades (savings of about 5 kWh/m2) compared to the north 

façade (0.7 kWh/m2 savings). The ME of the orientation in Figure 5.3a is explained in Figure 

5.5 by the difference between the TEave for the north and the south façades. 
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Figure 5.5: Total averaged energy use reduction due to using a SW for each orientation 

 

Figure 5.6 presents the averaged total energy savings for the eight different smart window 

RBCs. Regardless of the control input (daylight, solar radiation or heat flow), the 2 state 

control strategies (RBC1, RBC3, RBC4 and RBC7) present lower total energy savings than 

their 4 state counterparts (i.e. RBC2, RBC5, RBC6 and RBC8). Overall, RBC2 and RBC6 

(daylight with 4 states and Iv with 4 states with 63-315 W/m2) give the greatest total energy 

savings with averaged savings on total energy use of 5.72 kWh/m2 and 5.42 kWh/m2, 

respectively. The integration of SW into office building design should thus consider at least 

4 state controllers to benefit from the flexibility of the SW technology and should also 

integrate a control algorithm based on daylight or incident solar radiation. The ME of the 

RBC in Figure 5.3a is explained in Figure 5.6 by the difference between the TEave for RBC2 

and RBC7. 
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Figure 5.6: Total averaged energy use reduction due to using a SW for each RBC 

 

Figure 5.7 presents the averaged total energy savings for the three different WWRs. As 

illustrated, the higher the WWR, the greater is the potential of total energy savings if 

controlled SWs are installed. However, even if the previous statement is true in general (or 

on average), one could anticipate based on the previous conclusions that some specific 

scenarios with high WWR would not lead to any savings (e.g. north building façades for 

colder climates). The ME of the WWR in Figure 5.3a is explained in Figure 5.7 through the 

difference between the TEave for WWR = 0.67 and WWR = 0.33. 
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Figure 5.7: Total averaged energy reduction due to using a SW for each WWR 

 

5.5 Main effects of building parameters on energy peak reduction 

Figure 5.8 illustrates the ME of the eight parameters on the peak energy demand. While the 

location (City) has the most influence on the total peak demand (Figure 5.8a), other 

parameters such as the façade orientation (Ori), the presence of a smart window (SW), the 

window to wall ratio (WWR) and the thermal mass (TM) also present a significant influence 

on the heating and cooling peak loads. As for the energy use outputs of the previous section 

(Section 5.4), the presence of a SW (control on the solar heat gains) has an influence on the 

heating and cooling peak loads (mostly cooling). On the other hand, the type of SW control 

(RBC) has a negligible impact on the heating and cooling peak loads. 
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Figure 5.8:  Main effect of the parameters (model inputs) on change in peak energy demand due 

to using SW for a) Total, b) Heating and c) Cooling) 
 

As for the energy outputs, the reader should keep in mind that the peak energy demand 

outputs refer to the difference of peak demand between buildings using a SW and the same 

building designs with a passive window (passive state S1). Figure 5.9 presents the total 

averaged peak energy demand outputs for each city. In Figure 5.9, one could observe that the 

integration of a SW involves an increased total peak demand for some locations (positive 

values) and a peak reduction for other locations (negative values). This behavior is mainly 

explained by the fact that the annual peaks could occur either during the heating or cooling 

period. Since controlled SWs can increase heating loads, but reduce cooling loads (as 

mentioned in Section 5.4), locations for which the annual peak occurs during a heating period 

see their total peak increase and locations having their peak during the cooling period see 

their total peak decrease. The spread between the results for Miami and Montreal in Figure 

5.9 explains the MEk(TPED) value of the city in Figure 5.8a. 

a) 

 

 

 

 

b) 

 

 

 

c) 
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Figure 5.9: Total reduction (or increase) of averaged peak energy demand for each city 

 

The individual assessment of the heating and cooling peaks gives valuable information for 

sizing these systems. From Figure 5.10a, one could note that the heating peak load is slightly 

increased for all cities (since SWs tend to limit solar heat gains). The integration of SW could 

thus likely force the heating system to be slightly larger compared to the base case scenario. 

However, Figure 5.10b revealed that cooling peak loads are reduced which means that the 

cooling system could be downsized accordingly compared to the base case scenario. All in 

all, the integration of SW into building design could thus potentially lead to net initial cost 

savings considering for the HVAC systems. However, further studies on the topic should be 

carried on to properly assess the impact of SW on HVAC systems costs. 
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Figure 5.10:  Averaged peak energy demand reduction (or increase) for each city (i.e. a) heating 

peak increase and b) cooling peak reduction) 
 

The influence of the orientation, the SW control type and the WWR on total peak reduction 

presents a behavior very similar to the one of the total energy presented in the previous 

section. In terms of the orientation, the peak savings are greater for the east, south and west 

façades. As for the SW control type, the peak is more affected (higher savings) by the fact 

that a controlled SW is present (compared to the base case scenario) than by the difference 

between the different types of RBC (with RBC2 offering the best averaged total peak 

reduction, i.e. 1.18 W/m2). Finally, the higher the WWR, the higher the peak reductions are 

when a controlled SW is considered. 

 

Figure 5.11 presents the reduction of total averaged peak energy demand due to using a SW 

for the two values of thermal mass. Based on the results of Figure 5.11, one could realize that 

adding smart windows into building designs with lower thermal mass leads to greater peak 

reductions compared to designs with higher thermal mass. This behavior is explained by the 

fact that the thermal mass smooths out the cooling energy demand (time shifting of the 

a) 

 

 

 

 

 

 

b) 
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radiative gains) even when no SW is used. This being said, including a SW properly 

controlled in a building design reduces the importance of having a high thermal mass 

to achieve a high level of performance regarding energy. 

 
Figure 5.11: Averaged peak energy demand reduction for the two thermal mass designs 

 

5.6 Main effects of building parameters on visual and thermal comfort improvements 

Figure 5.12 illustrates the ME of the eight building parameters on the visual and thermal 

comfort. One could observe that the presence of a SW influences the visual and thermal 

comfort indicators (UDI and PPD), as illustrated in Figure 5.12a and b respectively. 

However, while the RBC has a low effect on the PPD (Figure 5.12b), it has the greatest 

influence on the UDI (Figure 5.12a). Considering absolute ME values, one could realize that 

the use of smart windows in building designs could largely influence the visual comfort 

(MEk(UDI) up to 36.8% in Figure 5.12a). On the other end, even if some parameters (such 

as the city or the presence of a SW) are influencing thermal comfort, the MEk(PPD) values 

only vary by up to 1.5%, thus revealing that SWs have a lot more influence on the visual 

comfort than on the thermal comfort. While the thermal model in this study was kept simple, 
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further studies could focus on more detailed thermal comfort models to assess the impact of 

the use of SW on thermal comfort. 

 
Figure 5.12:  Main effect of the parameters on change in visual and thermal comfort due to using 

a SW (i.e. a) UDI and b) PPD, respectively) 
 

Figure 5.13 presents the averaged UDI changes due to the SW for the eight RBCs. As 

illustrated, only two types of RBC actually improve the UDI on average, i.e. RBC2 and RBC6 

that are both four state controllers with their control either based on daylight on the workplane 

and incident solar radiation, respectively. The analysis of the simulation results revealed that 

the RBC2 strategy leads to 89% of the scenarios improving the UDI compared to the base 

case (all other scenarios leading to the same values of UDI compared to the base case). In all 

cases for RBC2, scenarios leading limited UDI improvements or no UDI improvements at 

all were for north oriented façades and/or building façades with a low WWR (i.e. WWR = 

33%). In such situations, a conventional passive window offers almost as much useful 

daylight on the workplane as a controlled SW would (with RBC2 control). However, in 

situations where the façade is facing east, south or west and for higher values of WWR, the 

daylight on the workplane exceeds more often the upper range limit of 2000 lx. In these 

situations, the use of a SW with RBC2 enables to maintain the daylight illuminance level on 

the workplane within the acceptable limits. The behavior for RBC6 is similar to RBC2, 

although performances are reduced. RBC6 strategy also leads to UDI deteriorations 

compared to the base case for north façades and the lowest WWR ratio. As mentioned 

a) 

 

 

 

 

b) 
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previously, in order to keep the computational time and the length of the paper acceptable, 

results presented in this study are limited to building designs without overhangs. As presented 

in previous studies [78], overhangs combined with smart windows can further reduce glare. 

It is thus expected that ME results would have been reduced if the analysis was considering 

overhangs in the base case. 

 
Figure 5.13: Averaged UDI reduction (or increase) for the eight RBC 

 

5.7 Conclusions 

This paper presents the sensitivity analysis of different design building parameters on energy 

and comfort indicators for buildings with electrochromic SWs. A representative office 

building zone was modeled considering an exterior glazed wall exposed to ambient 

conditions and all other surfaces (interior walls, ceiling and floor) exposed to adjacent zones 

with identical zone conditions.  

 

The building parameters considered in the analysis were the location (10 different cities in 

Canada and in the U.S.), the façade orientation (north, east, south or west), the presence of a 

smart window and its applied control (8 different types of RBC), the WWR (33%, 50% or 

75%), the internal gains density (low and high), the thermal mass (low and high) as well as 

the building air tightness (thigh and leaky envelopes). Simulations were performed for every 

combination of the aforementioned parameters, leading to a total of 7680 scenarios. Results 
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for every scenario were compared to their respective reference case considering a passive 

window. Improvements or degradation of performance presented in this work are with 

respect to the reference scenarios. 

 

The sensitivity analysis was performed considering the ME of the building parameters on the 

energy consumption savings (total, heating, cooling and lighting), the peak energy demand 

reductions (total, heating, and cooling), the increase of useful daylight index (UDI) and the 

reduction of predicted percentage of dissatisfied (PDD). The ME was used to target the most 

influential parameters. 

 

It was shown that the presence of SWs has quite a considerable influence on the energy 

consumption results (mainly on the total, cooling and lighting energy consumptions). The 

SW actually has as much influence on the change of total and cooling energy consumptions 

as the location, the façade orientation or the WWR. While SWs tend to slightly increase 

heating and lighting energy consumption by limiting solar gains and daylight, they provide 

considerable cooling savings. These behaviors resulted in total energy savings for 

approximately 85% of the scenarios under study, with the remaining 15% of the scenarios 

leading to energy consumption deteriorations (occurring for south facing building zones 

located in northern climates with low internal gains and/or high infiltration rates). The 

greatest total energy savings considering SWs are to be expected for warmer climates, for 

east, south or west façades and for high WWR values. While the different RBCs have very 

little impact on the heating and cooling, they influence the total energy consumption through 

the lighting loads. The RBC strategies RBC2 and RBC6 were found to be the most 

performant in terms of energy savings. 

 

The analysis of the ME results on the peak energy demands revealed that the presence of a 

smart window mostly influences the cooling peak loads and that the choice of the RBC 

strategy has very little impact on the peak reduction. Due to the fact that SWs limit solar 

gains and that the annual peak load could occur either during the heating or cooling season, 

the integration of SW involves an increased annual total peak demand for colder climates 

and an annual peak reduction for warmer climates. In all cases, the use of a SW leads to 



 

108 
 

increased heating and reduced cooling peak loads (compared to the reference scenarios). It 

was also shown that adding smart windows into building designs with lower thermal mass 

leads on average to greater peak reductions compared to designs with higher thermal mass. 

While the choice of the RBC is having a limited impact on the energy savings and an even 

lower impact on the peak loads, the ME analysis revealed that this parameter has a very large 

impact on the UDI. Only two RBC strategies, i.e. RBC2 and RBC6, were found to offer 

visual comfort improvements (on average) compared to the reference scenarios with passive 

windows (with RBC2 outperforming RBC6). As for thermal comfort, the results showed that 

the use of smart windows has a limited effect on PPD. 

 

The results presented in this work aim at helping the decision-making related to 

electrochromic SWs in the building design process. While total energy savings, peak load 

reductions and visual/thermal comfort indicators were assessed in this paper, further studies 

using a similar approach should include additional relevant decision making information 

regarding SW. Among other, future studies should include the relative effect of overhang 

designs [120], active load management window strategies [121], integrated control strategies 

[122] and should consider the economic challenges related to the integration of smart 

windows. The main effect of the building variables on the total cost (initial and operational) 

could also be studied. 

 

While this work focused on the decision-making related to electrochromic SWs in the 

building design process, the methodology developed in this work could be applied to 

alternative technologies such as dynamically controlled shading systems. Further studies 

could focus a comparison of such technologies.  
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CHAPTER 6 CONCLUSIONS 
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The main objective of this thesis was to gain a better understanding of how electrochromic 

windows could lead to improved performances in terms of energy consumption and thermal 

comfort. To achieve this goal, this work was elaborated around three main research areas in 

order to address questions that have so far been left open regarding the design and the 

performance of window embedded solar sensors, the performance of advanced control 

systems for smart windows, and the sensitivity analysis of the main building design 

parameters on energy and comfort. The main contributions that this work brought to the 

scientific community in the field of smart window control are presented in Sections 6.1 to 

6.3. Future perspectives based on the outcomes of this work are presented in Section 6.4. 

6.1 Development and assessment of a low cost sensor for solar heat flux measurements in 

buildings 

Smart windows are known for their capacity to manage solar heat gains. Hence, it makes 

sense in terms of control to measure the actual solar radiation passing through the windows. 

This information could thus directly serve as an input for SW control. While different types 

of solar radiation sensors offering good accuracies are readily available on the market (such 

as photovoltaic detectors or pyranometers), these sensors are either quite sensitive to spectral 

distribution or to ambient temperature or are very expensive. For the aforementioned reasons, 

it is unlikely that these types of solar sensor would be broadly used in real building 

applications such as smart window control. A solution to this issue was presented in Chapter 

3 with the proposition of a new type of low cost solar sensor, i.e. a black and white sensor 

that calculates instantaneous solar heat flux based on a 1D heat transfer model. 

 

With the help of the 1D heat transfer model developed in Matlab, an efficient procedure was 

proposed to calibrate the sensor. Once calibrated, the results (comparison of the experimental 

measurements to reference measurements obtained with a pyranometer) have shown that the 

two proposed designs of this new type of sensor were presenting a good accuracy regardless 

of the sky conditions for both instantaneous readings and daily integrated values. This work 

has thus brought new knowledge in the field of dedicated solar sensors through the 

proposition of a new type of low cost sensor independent of spectral profile that could be 

embedded in building envelope components such as windows. This sensor technology is now 
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currently used in a research project funded by the U.S. Department of Energy (DE-FOA-

0000823) and led by the Lawrence Berkeley National Laboratory. 

 

While this sensor was originally developed to monitor solar radiation for efficient control of 

smart windows, this technology could also be used for other applications or spectral profiles.  

6.2 Reduced energy consumption and enhanced comfort with smart windows: 

Comparison between quasi-optimal, predictive and rule-based control strategies 

While electrochromic windows could offer different optical properties that are readily known 

based on their state, a better understanding of the appropriate state to be considered at any 

time to optimize energy and comfort is still required. The different building considerations 

(thermal and visual) make the problem of SW control a very complex one. However, with 

the increased performance of actual computers and the large amount of optimization methods 

available, the possibility to implement more sophisticated real-time control strategies has 

now become a reality.  

 

In Chapter 4, four state-of-the-art control strategies are presented and compared to assess the 

performance of viable control solutions for real-time control of smart windows. The most 

promising heuristic controllers and a more sophisticated model based predictive controller 

are proposed as applicable real-time control strategies and are compared to a reference case 

based on genetic algorithms. This work provided an overview of the potential of different 

control strategies for smart window control and a methodology to compare these strategies. 

The GA and MPC controllers were totally new control strategies developed by the authors. 

It was shown that the energy performances of the MPC are limited by both the internal model 

simplifications and the form of the objective function. The results reveal that, for the situation 

studied in this work, having thermal mass in the floor that is only passively interacting with 

the occurring heat flows does not seem to create the required circumstances for MPC to 

outperform simpler controllers. It was also shown that the efficiency of the artificial lighting 

system impacts the relative performance between the different controllers. In the model under 

study, adopting a more efficient artificial lighting system resulted in a drop of relative 

performance between controllers. In a context where systems are getting increasingly 
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complex and difficult to compare, this work brings a better understanding on how SW control 

strategies behave one against the others. 

6.3 Office buildings with electrochromic windows: a sensitivity analysis of design 

parameters on energy performance, and thermal and visual comfort 

In Chapter 5, decision-making information on building design with efficiently controlled 

electrochromic windows is provided. In order to assess the influence of the major building 

design parameters on energy performance and comfort, a sensitivity analysis is performed 

considering simultaneously a large number of design parameters. Given the extensive 

number of design parameters under study, this work greatly contributed to generalize the 

outcomes related to potential energy and comfort improvements related to the integration of 

smart windows into building designs. Furthermore, the proposed methodology to generate 

decision-making information based on the Main Effect sensitivity analysis method provided 

results corroborated with many previous related studies. This being said, the methodology 

proposed in this work is thus of great interest for future studies aiming to generate reliable 

decision-making information.  

 

Among the most relevant outcomes in terms of decision-making information, it was shown 

that the presence of SWs has quite a considerable influence (as much as the building location, 

the façade orientation or the WWR) on the energy consumption results and that the greatest 

total energy savings considering SWs are to be expected for warmer climates, for east, south 

or west façades and for high WWR values. It was also shown that adding smart windows into 

building designs with lower thermal mass leads to greater peak reductions when compared 

to designs with higher thermal mass. The ME analysis furthermore revealed that the SW 

control strategy has a very large impact on the UDI, i.e. only two strategies out of eight under 

study were actually found to offer visual comfort improvements compared to the reference 

scenarios. As for thermal comfort, the results indicated that the use of smart windows has a 

limited effect on PPD. All these outcomes are seen as great improvements in terms of 

additional knowledge when evaluating whether or not it is relevant to invest additional effort 

to efficiently integrate SW into building designs. Indeed, many factors such as the budget 

allocated for SW could limit the relative percentage of window being SW for a given project. 
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Therefore, the outcomes presented in this work are a great step towards the improvement of 

such design decisions. 

6.4 Future perspectives 

Many questions were raised in the process of realizing the different steps of this thesis. While 

many of these questions were answered through the conclusions of this work, some questions 

remain open and offer great research perspectives to even further increase the knowledge in 

the field of smart window control. The most promising perspectives are presented in the 

following paragraphs. 

6.4.1 Black and White sensor improvements 

As presented in Chapter 3, the work on the solar sensor gave very promising results and its 

usefulness is confirmed by the fact that some of the best research groups are using it in their 

research projects. However, some limitations detailed in this work, such as partial shading 

due to the recess of the solar sensor, could be addressed in order to improve the sensor design. 

For example, designs considering repetitive patterns of black and white surfaces instead of 

only one pair of black and white surface could lead to improved measurements in partial 

shading situations. Moreover, the numerical model developed being 1D, further studies could 

be conducted in order to assess edge effects for very small sizes of the sensor’s black and 

white surfaces. As for the calibration, long term performance and different locations could 

be considered to potentially improve and generalize the calibration method. Finally, since 

photo sensors are largely used for solar irradiance measurements, future research could also 

compare this kind of sensor to conventional silicon sensors in order to define more precisely 

the pros and cons of both types (e.g., spectral sensitivity, cost, lifetime, etc.). 

6.4.2 Development of efficient SW control strategies 

Chapter 4 explores the performance of newly developed optimal control strategies (GA and 

MPC) based on relatively simple objective function and constraints. This initial work should 

be seen as a first step in the development process of advanced SW controllers. Since these 

controllers are capable of dealing with complex thermal interactions for which it is beneficial 

to increase the intelligence, further studies could broaden the assessment of the MPC and GA 

controllers’ performance by considering more complex objective functions could include, for 

example, interactions with other zones and/or with the electromechanical systems. The 
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objective function could also consider the combined contribution of the energy and peak load 

rather than the total energy only. Moreover, the complexity of the optimal control decisions 

and human interactions is such that field studies could be performed to corroborate outcomes 

obtained from the aforementioned numerical study propositions. 

6.4.3 Generalization of the effect of design parameters on energy performance and comfort 

for buildings with SW. 

In Chapter 5, annual energy savings, peak load reductions and visual/thermal comfort 

indicators were assessed while considering the principal design parameters and state-of-the-

art heuristic SW control strategies. However, as presented in Chapter 4, there is an increasing 

interest in the field of SW to include complexity in controls and considerations to improve 

benefits. For these reasons, further studies using an approach similar to the one presented in 

Chapter 5 could include additional relevant decision making information regarding SW, such 

as the relative effect of overhang designs, active load management window strategies, or 

integrated control strategies. The main effect of the building variables on the total cost (initial 

and operational) could also be included (or be studied in parallel) to increase knowledge in 

terms of economic considerations related to SW. 
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Appendix A1: Smart Windows Control Strategies for Building Energy 

Savings in Summer Conditions: A Comparison between 

Optimal and Model Predictive Controllers 

 

Abstract 

Advanced control strategies for smart windows (SW) are discussed in this paper. Since smart 

windows are used both to reduce energy consumption and to improve thermal and visual 

comfort, the optimal solar flux passing through the window is the result of a complex trade-

off between daylighting and heat flow balance. A typical office building zone is modeled in 

TRNSYS with an integrated electrochromic smart window. Two types of advanced SW 

controllers, i.e. (i) a genetic algorithm based controller and (ii) a model predictive control 

based controller, are studied and compared to a base case scenario. The advanced controllers 

evaluate the hour-by-hour state of the smart window required to minimize the overall energy 

consumption (heating, cooling, lighting) while respecting constraints related to thermal and 

visual comfort. Results have shown that the two controllers, while presenting different 

control strategies, offer very similar and promising results in terms of energy savings and 

peak load reductions. Finally, opportunities resulting from the present work are discussed. 
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A1.1 Introduction 

Smart windows (SW) [12] retained the attention of many researchers over the years since the 

early 90s. Research was initially oriented toward the development of potential technologies 

and the evaluation of the thermal and optical performance of idealized SW [123]. Then, 

simple control strategies applied to real SW technologies have been simulated and it was 

showed that SW could reduce the peak loads and the overall energy consumption compared 

to conventional “passive” glazings [35]. Later on, the notion of visual comfort was added in 

the control strategies in order to increase the market acceptance [54]. 

 

Nowadays, althought there are still many research projects on the development of materials 

offering enhanced performances for smart windows [124], the focus on smart windows is 

moving toward a deeper understanding of the optimal use of the existing SW technologies. 

With the increasing amount of available data (current weather and/or weather forcasts) and 

the highly sofisticated building energy management systems available [125], it is now 

possible to think about the optimal implementation of control systems for active façades such 

as SW.  

 

The main purpose of this paper is to investigate the performance of two different SW 

controllers, i.e. a controller based on a genetic algorithm (GA) strategy and a controller based 

on a model predictive control (MPC) strategy. Since literature reveals that SW present higher 

energy savings in hot climates [126], this study is focused on the analysis of these control 

strategies during summer conditions. 

A1.2 building model 

The building model considered in the present work represents a typical single zone office 

space developed in TRNSYS [113] with Type 56. All simulations were performed with a 

time step of one hour. Since the focus of this work is about control strategies in summer 

conditions, the simulation period covered the months of June and July. While the hours 

simulated during the month of June were used as a warm up period as suggested by [83], 

every hours of the month of July were used for the analysis presented in the next sections. 

The building was located in the city of Montreal (Quebec), Canada, with EnergyPlus weather 

data for Montreal (.epw file) being used as the weather file.  



 

126 
 

 

The building geometry consists of a 10 m (32.8 ft) × 10 m (32.8 ft)  × 3 m (9.8 ft)  (width (L) 

× depth (P) × height (H)) building zone with a south facing exterior wall (see Figure A1.1). 

The exterior wall considers a 10 m (32.8 ft)  wide (L) by 2 m (6.6 ft)  high (Hsw) double 

insulated unit electrochromic SW [12] on the upper part of the wall and an opaque wall (U-

Value = 0.45 W/m2K (0.08 Btu/hr-ft2-°F) at the bottom (the wall construction being, from 

outside to inside: concrete siding, lightweight frame and gypsum indoor finishing). The 

thermal mass is accounted for in the envelope and in the floor (0.10 m (4 in) concrete floor 

slab). All other surfaces were defined as adiabatic interior surfaces. For the sake of 

illustration, Table A1.1 provides the SW center of glazing properties at normal incidence. 

However, the model uses the complete and detailed properties varying with the angle of 

incidence obtained in the IGDB.  

 

Figure A1.1: Building zone dimensions. 
 

Table A1.1: Smart Window Center-of-Glazing Properties 
Smart window states U-Value SHGC Tvis Tsol 

 [ W/m2K ] [ Btu/h-ft2-°F] [ - ] [ % ] [ % ] 

State 1 (S1) (bleached) 1.63 0.287 0.47 62.1 38.1 

State 2 (S2) 1.63 0.287 0.17 21.2 8.6 

State 3 (S3) 1.63 0.287 0.11 5.9 2.4 

State 4 (S4) (fully 
tinted) 1.63 0.287 0.09 1.5 1.0 

 

Gains and Schedules 

Internal gains include artificial lighting, people and equipment. Table A1.2 presents the 

building zone heat gains with their radiative and convective fractions. Only sensible heat has 

been considered in the model. 
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Table A1.2: Building Zone Heat Gains 

Gain Types Max. Heat Gains Convective 
Fraction Radiative Fraction 

 [ W] [ Btu/hr] [ % ] [ % ] 
Occupants 

(10) 730 2491 30 70 

Equipment 800 2730 30 70 

Light 352 1201 41 59 

 

As presented in Table A1.2, the zone could accept up to 10 occupants (73W/occupant (249 

Btu/hr/occupant)) and contains a power density of 8 W/m2 (2.54 Btu/hr-ft2) (floor area) for 

office equipment. The building lighting model calculates the illuminance distribution on 

interior surfaces of the zone considering daylight and artificial light from the lighting system 

(eight T8 lamps of 55 W (188 Btu/hr) each, i.e.: 440 W (1501 Btu/hr) totals). The artificial 

lighting system considers a 20 % heat to return. Illuminance levels from daylight were 

calculated using Daysim simulation software [87]. On the other hand, illuminance levels 

from the artificial lighting system were directly calculated from Radiance [88] and 

considered lamps uniformly distributed over the ceiling area. Since this paper was designed 

to compare SW control strategies, a simplified representation of the lighting system was 

considered, i.e.: a linear relation between lighting and power (no ballast factor and standby 

power loss considered). In order to offer proper luminosity on the work plane, a sensor has 

been set in the middle of the room’s width and at two thirds of the room’s depth (from the 

glazed wall). The minimal required luminosity at the sensor is labeled WPreq and has been 

set to 500 lux (46.5 fc) during occupancy hours [84]. The installed artificial lighting system 

is assumed to provide only the necessary amount of artificial light to meet the illuminance 

requirements during occupancy hours (dimmable system to prevent over lighting). 

Occupancy and work plane lighting requirements are presented in Figure A1.2.  
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Figure A1.2: Week days schedule for occupancy (left axis) and work plane lighting requirement 

(right axis). 

HVAC&R System 

The HVAC&R system is simplified to a convective heating load Qheat and a cooling load 

Qcool that act directly on the air node of the building model.  The indoor minimal and maximal 

temperature set points are 21°C (69.8 °F) and 25°C (77 °F) which are respectively lowered 

and raised by 3°C (5.4°F) outside the occupation hours. The system sizing considered the 

maximum heating and cooling loads for the building with the smart window in its clearer 

state (33 W/m2 (10.5 Btu/hr-ft2) and 83 W/m2 (26.3 Btu/hr-ft2)  (floor area), respectively). A 

constant air volume ventilation system was installed.  The volume flow rate was roughly 

estimated at 340 m3/h (200 cfm). A heat exchanger was used to transfer heat between the air 

exhaust and make up air with 60 % efficiency. 

A1.3 Smart window Control strategies 

Base Case Scenario 

The SW base case controller considers a SW set at its clearest state (S1) at all time. This 

passive approach is used to define the reference energy consumption of the building zone. It 

represents the energy consumption of an office building zone whose envelope is composed 

of a typical passive low-E window (low-E on surface #2). No shading system is installed in 

the base case. The control strategies presented in the following subsections are all compared 

to this base case scenario in order to assess the benefits of advanced control strategies. 

Genetic Algorithm 

The purpose of the genetic algorithm controller (optimal control) is to establish the possible 

minimum overvall energy consumption of the zone (heating, cooling and artificial lighting) 

[127]. Results of other control strategies, such as MPC, could then be compared to the results 

achieved with the GA in order to assess their performance. To achieve such optimal control 
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for active SW, a controller based on a genetic algorithm [58] assuming a perfect building 

model representation and perfect weather forecast (i.e. one perfectly knows the future 

weather parameters) have been used. The algorithm minimizes an objective function (in this 

case, the overall energy consumption) by evaluating a certain number (population) of 

different combinations (phenotypes) of the design variables (SW state at each time step). The 

initial population evolves generation by generation by keeping the phenotypes of a generation 

that give the best results and by creating the following generation from those phenotypes and 

newly created ones (children) by crossovers and mutations. 

 

The design variables involved are thus the SW states at each simulated hour where sunlight 

is available. To minimize computational time, hourly artificial lighting variables have not 

been considered as design variables, but rather as values adjusted to meet requirements 

depending on the SW state, the lighting control strategy and the lighting set point.  

 

The objective function to minimize is the overall energy consumption (QTot), in Wh/m2 

(Btu/ft2) of floor area, defined as: 

 
 

(A1.1) 

where QHeat is the total energy consumed for heating in [Wh/m2] (Btu/ft2), QCool is the total 

heat removal required for cooling in [Wh/m2] (Btu/ft2), COP is the coefficient performance 

of the cooling system (COP = 3 in this case) and QLight is the total lighting energy 

consumption in [Wh/m2] (Btu/ft2). Constraints of minimal light requirements were defined. 

 

Optimization parameters and convergence criteria used for the optimization runs are 

presented in Table A1.3. It is important to understand that the GA optimization is not 

intended for real-time control of SW since the required computational time is too long for 

such applications. It serves here only to establish the optimal achievable level of performance 

with an “optimal control” against which real-time strategies could be compared. 
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Table A1.3: Parameters of the Genetic Algorithm 
Parameters Value Units 

Number of phenotypes per generation 40 - 
Maximum number of generations 75 - 
Number of generations with unchanged QTot value before 

convergence 30 - 

Proportion of children per generation 80 % 
Children mutation probability 5 % 
Number of chromosomal crossovers 2 - 

 

Model Predictive Control (MPC) 

In the MPC approach (see Figure A1.3), a linearized internal model (based on a simplified 

space-state resistance-capacitance thermal model of the building developed in Matlab [26] 

runs as a closed-loop observer of the building states ( ) in parallel to the “real” process 

(TRNSYS model). These states are then used to calculate the predictions Ŷ of the building 

outputs T over the prediction horizon Hp. These predictions are then optimized considering 

the possible design variables (SW states) in order to minimize Qtot (Eq. (A1.1)) over the entire 

prediction horizon. Uc represents the inputs to supply to the building energy management 

system (heating/cooling loads, lighting load and SW state). The optimization environement 

used in this work was YALMIP with the GUROBI Solver. The optimization constraints were 

the minimum lighting requirements (hard constraints), the HVAC&R system maximal 

capacities (hard constraints) and the temperature setpoints (soft constraints). The MPC 

controller includes the observer, the predictor and the optimization procedure. In this work, 

the prediction horizon considered in the MPC controller was 24 hours. 

 
Figure A1.3: Model based predictive control architecture. 

 

Besides the optimization solvers, the MPC controller is different from the GA controller by 

the fact that it contains an internal model that is different from the “real” process and 

introduces model errors in the predictions. For this reason, the states of the internal model 

are updated at each time step with the measured outputs of the TRNSYS model in order to 
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maintain convergence. As presented in Figure A1.3, the architecture of the MPC controller 

is developed for real-time control applications. However, as for the GA controller, prefect 

weather forecast is used in the MPC controller in order to assess its maximal performances. 

A1.4 Results 

A comparison of the base case scenario, the GA and the MPC controllers is illustrated in the 

following subsections on a monthly and an hourly basis. From the results, one could clearly 

see that the two advanced controllers show considerable savings. 

Monthly Results 

Table A1.4 presents results of energy consumption (cooling, lighting and total) as well as the 

maximum peak load for the month of July. Fan power was not considered in the results 

analysis presented in this section. Table A1.4 illustrates the fact that GA and MPC controllers 

reduce the overall energy consumption by 33% and 32 % respectively, compared to the base 

case scenario. For both the GA and the MPC controllers, this overall energy reduction is the 

result of a trade-off between cooling energy consumption (36% and 35% decrease, 

respectively, compared to the base case) and lighting energy consumption (approximatively 

0.22 kWh/m2 (70 Btu/ft2) increase in both cases). Total energy savings are mainly explained 

by the fact that the darker states of the SW reduce dramatically the solar heat gains entering 

the building while forcing the artificial lighting system to operate a little more to respect 

illuminance requirements. Table A1.4 also illustrates cooling peak load reductions of 26% 

and 25% for the GA and MPC, respectively, compared to the base case. This reduction in 

peak load suggests that buildings equipped with SW and advanced controllers could be 

designed with smaller cooling equipment, thus reducing equipment initial costs. 

Table A1.4: Results - Month of July 

SW controllers 

Cooling energy 

consumption  

Lighting energy 

consumption   

Total energy 

consumption   
Cooling Peak load  

[kWh/m2] [Btu/ft2] [kWh/m2] [Btu/ft2] [kWh/m2] [Btu/ft2] [W/m2] [Btu/hr-ft2] 

Base case 7.49 2375 0.10 32 7.59 2407 47.16 14.95 

GA 4.76 1509 0.32 101 5.08 1611 35.03 11.11 

MPC 4.81 1525 0.33 105 5.14 1630 35.27 11.18 
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Montly results presented in Table A1.4 also illustrates the fact that the two advanced 

controllers present very similar results in term of energy consumption and cooling peak load. 

The MPC thus seems a very promising type of controller for real-time SW control 

applications. 

Hourly Results 

In order to present representative hourly results for the month of July, results for each hour 

between July 16th (Monday) and July 22nd (Sunday), inclusively, are presented in Figure 

A1.4.  

 
Figure A1.4: Hourly results from July 16th (Monday) to July 22nd (Sunday), inclusively: (a) 

Window states, (b) Cooling loads and (c) Zone temperature. 
 

The SW states presented in Figure A1.4a show that the GA and MPC controllers have a quite 

different control approach during weekday off-occupancy hours. During these hours with 

sunlight (early morning and evening), the GA controller tends increase the opacity of the SW 

in order to limit as much as possible solar heat gains (even if solar intensities are very low) 

while the MPC waits for higher solar intensities to select darker states. This difference of 

control strategies impacts the total energy consumption results for the GA and MPC in Table 
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A1.4 and is visible in Figure A1.4b. During occupied weekday hours both the GA and MPC 

select the state S2 (Figure A1.4a) as the best trade-off between cooling and lighting loads. 

During the weekend (no occupancy and illuminance requirements), both the GA and MPC 

limit the cooling loads (Figure A1.4b) by setting the SW states to darker states (Figure 

A1.4a). Again, the control strategies of the GA and MPC are different. The GA sets the SW 

states to clearer states, but for a longer period of time (including hours of low solar intensities) 

compared to the MPC. In Figure A1.4c, the profiles of zone temperature reveal that while the 

base case and GA controllers respect the comfort conditions at all time (25°C (77 °F) 

maximum during occupancy hours), the soft constraints of the MPC controller tolerate slight 

deviations from the temperature requirements. This violation of the constraints is mainly due 

to the fact that the MPC controller contains model errors. 

A1.5 Conclusions 

This paper presents the performance comparison of two advanced SW controllers aiming to 

optimize energy savings and peak loads reduction. The developed controllers were based on 

either a genetic algorithm or a model predictive control strategy. Results of a base case 

scenario considering a SW at its clearest sate at all time were also considered as the reference 

values. All results were analyzed considering summer conditions (month of July) for the city 

of Montreal and were based on a typical office building zone with a south oriented façade 

modeled in TRNSYS. 

 

The analysis of the different control strategies allowed assessing the fact that advanced 

control strategies could potentially offer energy savings (cooling + lighting) of the order of 

33% and peak load reduction of about 26% while maintaining temperature set points and lux 

levels to maintain a comfortable built environment. It was shown that the MCP yields to a 

total energy consumption very similar to the theoretically optimal control of the GA. 

Therefore, the MPC controller is thus a promising type of controller for real-time SW control 

applications. Results have also shown that different control strategies could lead to similar 

overall results. 

 

In future work, it would be important to release some of the assumptions that were made in 

this work. For example, further studies could consider a conventional shading system 
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installed to the base case scenario as well as a higher lighting power density for a more 

realistic comparison with advanced control strategies. Also, MPC controllers should be tested 

by taking into account uncertainties such as that of the weather forecast or occupancy with 

simulations covering a complete year and different façade orientations. Furthermore, the 

performance of MCP controllers should also be compared to rule based control strategies, 

which are often easier to implement but not as efficient. 
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Appendix A2: Pre-design tools and procedures for efficient integration 

of smart windows 

Abstract 

In this paper, design tools are proposed to architects, engineers and other building 

professionals involved in the pre-design stage of a project, in order to facilitate the integration 

of smart windows into the envelope. Smart window technologies can influence the building 

energy performance and the occupants’ visual comfort. Therefore, it is of prime importance 

for building professionals to possess sufficient tools and knowledge to evaluate properly the 

pros and cons of smart windows. One of the aspects complicating the analysis is that the 

overall performance of smart windows is largely influenced by how they are operated, and 

by a variety of parameters such as the building features (thermal mass, etc.), the occupants, 

etc. A numerical model was developed to simulate the dynamic modeling of a zone, with a 

façade occupied by a smart window, and was coupled to an optimization toolbox to determine 

the optimal control of the opacity. This work thus helps to gain a better understanding of how 

smart window opacity states and their control affect the overall energy performance of 

buildings. Finally, modeling strategies as well as preliminary control guidelines to assess 

energy performance of buildings with smart windows are proposed based on this analysis. 

  



 

136 
 

A2.1 Introduction 

In early stage of building design, a good estimate of heating, cooling and lighting demands 

is required in order to assess the performance of the design. Nowadays, for environmental 

and economic reasons, enhanced building technologies are developed and integrated into 

designs to reduce energy consumption. Actually, many envelope components have evolved 

from previously passive [128] to active technologies often qualified of “smart” [9].  

 

Among these technologies, smart windows [12] present opportunities to reduce building 

energy consumption by controlling solar heat gains. However, the complexity of heat transfer 

interactions in buildings can make optimal control of such technologies quite complex to 

reduce efficiently the energy consumption while maintaining at the same time occupants’ 

comfort. 

 

Research in the field of smart windows was initiated in the late 80s and early 90s by the 

Environmental Energy Division of the Lawrence Berkeley National Laboratory. At that time, 

results were presented mainly for idealized electrochromic [35][123] windows and 

demonstrated a potential regarding energy loads reduction and the possibility to reduce the 

size of the mechanical systems. Later, the evolution of smart window technologies enabled 

the assessment of the performance of real electrochromic glazings in different climates and 

with different simple control strategies [49]. Results confirmed that real smart windows 

present energy consumption reduction opportunities and showed that better performances are 

obtained when daylight is maximized to achieve visual requirements. Today, research on 

smart windows is highly oriented towards more complex and efficient control strategies 

optimizing the trade-offs between solar gains and daylight requirements [54]. Despite the 

work conducted up to now, it is usually agreed that more research on smart window dynamics 

is required to develop more efficient predictive control strategies and to offer more simplified 

tools to architects and building designers, in order to truly benefit from the potential of these 

technologies. 

 

This paper presents a model to simulate a perimeter zone with smart windows, and 

optimization results of the overall building energy consumption considering the control of 



 

137 
 

the smart window and artificial lighting system. The objectives of this work are: 1- Increase 

the understanding of the effect on energy performance of relevant parameters related to 

design, control or climate, 2- Assess the relevance of advanced control on a smart 

window/artificial lighting combined system, 3- Develop tools (procedures) to evaluate 

properly smart window potential benefits and design strategies for building perimeter zones. 

A2.2 Methodology 

Building model description 

A building model was developed to calculate the overall energy consumption (i.e., heating, 

cooling and artificial lighting demands). Thus, the model considers a building located in 

Montreal, Québec, Canada, and is subdivided into a lighting model created in Matlab [26] 

and a thermal model developed in TRNSYS. Both lighting and thermal considerations are 

based on previously validated models [26][129].  

 

To limit computational time, the building model considers a single perimeter zone (5 m width 

× 5 m depth × 3 m height) maintained at a constant temperature (Tin=20°C) with a double 

glazed south façade and five interior adiabatic surfaces. The floor surface is a massive 0.254 

m thick concrete slab and all other surfaces are modeled with non-massive materials. Surface 

and floor properties are presented in Table A2.1.  

Table A2.1: Surface and floor properties  
Values Units 

Surface solar and IR emissivities 
  

εwindow 0.84 - 

εinterior surfaces 0.90 - 
   

Floor slab properties 
  

cp,floor 837 J/kgK 

ρfloor 2243 kg/m3 

kfloor 1.73 W/mK 

 

Since todays’ architecture values building designs with highly glazed façades [130], the 

exterior wall is modeled with a window-to-wall ratio (WWR) of 1, even though it is known 
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that buildings with WWR between 0.3 and 0.5 consume less energy [131][132]. 

Consequently, results presented with WWR=1 should be considered as an upper limit in 

terms of energy performance enhancement provided by smart windows since smaller WWR 

will reduce the influence of smart windows on the overall energy consumption. 

 

The smart window considered in the model is a double pane insulated glass unit (IGU) 

electrochromic (EC) window with four possible states of opacity. The IGU has 6 mm thick 

glass panes and a 12.7 mm gap (90% argon/10% air). EC layer is located on surface 2 of the 

IGU (i.e. interior surface of the exterior glass pane). Table A2.2 presents center-of-glazing 

values for each state, obtained from the International Glazing DataBase (IGDB) via the 

Window6 software. Note that the simulation model actually uses detailed angular values of 

the glazing properties, but incident values are reported in Table A2.2 for the sake of 

comparison between the different states. 

Table A2.2: Center-of-glazing properties of a smart window  
 
Smart window states 

U-Value 
W/m2K 

SHGC 
- 

Tvis 
% 

Tsol 
% 

State 1 (S1) (bleached) 1.63 0.47 62.1 38.1 
State 2 (S2) 1.63 0.17 21.2 8.6 
State 3 (S3) 1.63 0.11 5.9 2.4 
State 4 (S4) (fully tinted) 1.63 0.09 1.5 1.0 

 

Internal gains are related to artificial lighting, occupancy and equipment. They are 

summarized in Table A2.3, with their radiative and convective fractions. Only sensible heat 

has been considered in the model. 

Table A2.3: Internal gains 
 
 
Gain types 

Heat 
gains 
W/h 

Convective 
fraction 

% 

Radiative 
fraction 

% 
Occupants (3) 219 30 70 
Equipment 200 30 70 
Light 200 41 59 
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As presented in Table A2.3, gains for occupants consider 3 occupants doing moderate office 

work (73W/h/occupant). Furthermore, lighting gains consider a heat-to-return percentage of 

20% that is thus not accounted for in the energy balance. 

 

The building lighting model calculates the illuminance distribution on interior surfaces of the 

building considering combined daylight and artificial light. In order to offer proper 

luminosity on the workplane, a sensor has been set in the middle of the room’s width and at 

two thirds of the room’s depth (from the glazed wall). The minimal required luminosity at 

the sensor is labeled WPreq and has been set to 500 lux [84] during occupancy hours. Although 

more visual comfort considerations could have been included, the aims of the ongoing 

research are more energy-oriented. Further studies will consider more exhaustive visual 

comfort models and their impacts on control strategies and building energy consumption. 

 

To represent a typical transient variation of internal gains and lighting requirements in office 

buildings, schedules have been created. Figure A2.1 presents the schedule of occupancy and 

workplane light requirement for week days. The use of miscellaneous equipment follows the 

same pattern as occupancy. For simplicity, internal gains are set to zero at all time during 

week-ends. 

 
Figure A2.1: Week days schedule for occupancy and workplane lighting requirement. 
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Control systems 

The two building systems designed to control solar heat gains and lighting on the workplane 

are the smart window and the artificial lighting systems. Figure A2.2 illustrates the influence 

of the control systems on the overall energy consumption. 

Smart window solar 
flux control

Artificial lighting 
system control

Smart window state Daylight balance on 
interior surfaces

Resulting solar heat 
gains

Resulting artificial 
light heat gains

Building energy balance – Overall energy 
consumption

 
Figure A2.2: Systems control scheme. 

 

Many different control strategies could be used [49] in order to achieve energy savings and 

visual comfort. To assess the relative effectiveness of different strategies, overall energy 

consumption results have been obtained considering the design control parameters presented 

in Table A2.4. 

Table A2.4: Active systems control types  
Smart window Artificial lighting 

Control types 
SW-1S LCS1 
SW-4S LCS2  

LCS3 
 

In Table A2.4, there are two types of control for the smart window and three types for the 

artificial lighting. For the smart window, all control types begin with “SW” (standing for 

Smart Window) and are followed by a term “#S” defining the number of possible opacity 

states: 
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- 1S refers to a passive glazing, i.e. no control. The window remains at the same state (S1, 

S2, S3 or S4) during the entire simulation; 

- 4S refers to four possible states, i.e. Clear, Fully tinted and two other intermediary states 

as presented in Table A2.2. 

For the artificial lighting system, all control types begin with “LCS” (standing for Lighting 

Control System) and are followed by a number referring to the complexity of the control 

strategy: 

- LCS1 refers to a basic artificial light control system always “On” during occupancy 

hours; 

- LCS2 refers to an active control that can turn On/Off the lighting system depending on 

available daylight at the workplane sensor; 

- LCS3 refers to an advanced artificial light control system that adjusts artificial light 

power to supply enough visible light at the workplane sensor during occupancy hours 

without over lighting (dimmer). 

Simulation results presented in this paper were obtained by considering the 13 control 

strategy combinations of Table A2.5. 

Table A2.5: List of control strategy combinations for simulations 
Strategy combination # SW Light 

1 SW-1S State 1 (S1) LCS1 
2 SW-1S State 2 (S2) LCS1 
3 SW-1S State 3 (S3) LCS1 
4 SW-1S State 4 (S4) LCS1 
5 SW-1S State 1 (S1) LCS2 
6 SW-1S State 2 (S2) LCS2 
7 SW-1S State 3 (S3) LCS2 
8 SW-1S State 4 (S4) LCS2 
9 SW-1S State 1 (S1) LCS3 

10 SW-1S State 2 (S2) LCS3 
11 SW-1S State 3 (S3) LCS3 
12 SW-1S State 4 (S4) LCS3 
13 SW-4S (optimization) LCS3 

 

The first strategy combination of Table A2.5 is the base case scenario considering a passive 

window having the properties of State 1 of the EC window, with lights “On” during all 
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occupancy hours. This scenario has been set as the base case since it represents a typical 

perimeter building office with a passive low-e (εEC,layer=0.147) double insulated glazing unit 

with only manual control for light. Combinations 2 to 12 allow determining the optimal 

passive state as a function of the lighting strategy. Finally, combination 13 considers 

optimization runs (see the following section for details about the optimization procedure) that 

evaluate optimal hourly smart window states to minimize overall energy consumption with 

four possible SW states (States 1 to 4). Optimization runs consider a totally bleached SW 

state (State 1 in Table A2.2) between sunset and sunrise. 

Optimization procedure 

Before analyzing the behavior of a combined smart window/artificial lighting system, one 

must first determine which control gives optimal results. To obtain such control for active 

SW strategies (i.e., strategy 13 of Table A2.5), a genetic algorithm [58] has been used. This 

algorithm minimizes an objective function (in this case, the overall energy consumption) by 

evaluating a certain number (population) of different combinations (phenotypes) of the 

design variables (SW State at each time step). The initial population evolves generation by 

generation by keeping the phenotypes of a generation that give the best results and by creating 

the following generation from those phenotypes and newly created ones (children) by 

crossovers and mutations.  

 

The design variables involved are thus the SW states at each simulated hour where sunlight 

is available. To minimize computational time, hourly artificial lighting variables have not 

been considered as design variables, but rather as values adjusted to meet requirements 

depending on the SW state, LCS and the lighting set point. 

 

The objective function to minimize is the overall energy consumption ( OECC ), in Wh/m2 of 

floor area, defined as: 

 
Cool

Tot Heat Light
QQ (Q Q )
COP

= + +  
(A2.1) 
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where HeatQ  is the total energy consumed for heating in [Wh/m2], CoolQ  is the total energy 

consumed for cooling  in [Wh/m2], COP is the coefficient performance of the cooling system 

and LightQ is the total lighting energy consumption in [Wh/m2]. 

 

Optimization parameters and convergence criteria used for the optimization runs are 

presented in Table A2.6. 

Table A2.6: Parameters of the Genetic Algorithm 
Number of phenotypes per generation 40 

 

Maximum number of generations 2000 
 

Number of generations with unchanged OECC  value before convergence 250 
 

Proportion of children per generation 80 % 
Children mutation probability 4 % 
Number of chromosomal crossover 1 

 

 

A2.3 Results 

Effect of light control strategy with fixed opacity state 

To integrate properly smart windows into building designs, one must first understand the 

behavior of each possible state of smart windows over a complete year. This way, the state 

leading to the lowest energy consumption could be determined for each season as a function 

of the lighting strategy.  

 

Figures A2.3 to A2.5 present, for the artificial lighting controls LCS1, LCS2 and LCS3 

respectively, the overall energy consumption for a typical day of each season for the four 

different fixed SW states (passive mode, i.e. no control is applied to the SW). These figures 

also present the approximate yearly behavior (average) for each state which is the average of 

the results for each typical day. 
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Figure A2.3: Effect of window passive opacity state on building loads with light control LCS1. 

 
Figure A2.4: Effect of window passive opacity state on building loads with light control LCS2. 

 
Figure A2.5: Effect of window passive opacity state on building loads with light control LCS3. 
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From Fig. A2.3, we realize that a passive window with the sate S1 (clear state) combined 

with artificial lighting always on during office hours (LCS1) offers the lowest energy 

consumption values for January and April (where outside temperature values are lower, i.e.: 

mean daily temperatures around -13°C and 0°C, respectively) while passive windows with 

states S4 and S3 offer the lowest values for July and October (where outside temperature 

values are higher, i.e.: mean daily temperatures around 19°C and 8°C, respectively).  

 

In Figure A2.4, it is observed that the on/off control strategy (LCS2) for the artificial lighting 

system has the following effects compared to the situation with lights always turned on 

(LCS1): 1 – There are now changes for January and April, 2- The best passive state changes 

from S4 to S2 in July and from S3 to S1 in October. Figure A2.5 (with LCS3) exhibits similar 

trends compared to Figure A2.4 (LCS2). 

 

Regardless of the lighting control strategy considered, Figs. A2.3, A2.4 and A2.5 show that 

even if different passive states are more adapted for different seasons, S1 seems to be the 

most appropriate state for a passive use on an annual basis for the building considered. To 

benefit from optimally varying window properties at all time, a building designer must 

integrate a smart window control to reduce energy consumption.  

 

To assess the increase in performance associated to different controls, one could use the 

behavior obtained from those figures in a building simulation software to evaluate more 

precisely benefits of smart windows by dividing passive states by season. For example, if a 

designer is interested in a building with lighting control LCS1, he/she could run a simulation 

over a year using S1 for days of winter and spring seasons and S4 and S3 for summer and 

fall respectively. This procedure applied to the present building reduces the yearly energy 

consumption from 150.64 kWh/m2 (S1-LCS1) to 143.71 kWh/m2 (S1winter-

spring+S4summer+S3fall-LCS1), which corresponds to a reduction of about 4.6% only by 

considering a simplified control with four opacity changes per year. The same procedure 

applied for lighting control LCS3 reduces the yearly energy consumption from 118.16 

kWh/m2 (S1-LCS3) to 111.01 kWh/m2 (S1winter-spring-fall+S2summer –LCS3), which corresponds 

to savings of about 6.1%. 
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Effect of smart window control on building loads 

The procedure presented in the previous section based on optimal seasonal SW states to 

approximate SW thermal performance could be followed for a particular project by building 

designers for a preliminary evaluation of potential savings. For designers interested to assess 

more precisely potential savings, a procedure taking into account more finely the modularity 

of smart windows should be elaborated. This section presents avenues that might offer 

solutions with this respect. 

 

Figure A2.6 reports the results of a full hour-by-hour optimization of the SW opacity, 

combined with the advanced lighting control (LCS3). As presented in the previous section, 

S1 represents the most efficient passive state over a complete year for the building 

considered. For this reason, the three S1 results of the previous section are repeated in Figure 

6 for the sake of comparison.  

 
Figure A2.6:  Effect of smart window opacity state control with lighting control LCS3 on building 

energy consumption compared to passive states. 
 

From Figure A2.6, we can observe that the hourly control (optimization) of the smart window 

brings more energy savings, with average reductions of the energy consumption of 22.3%, 

5.2% and 4.9 % compared with S1-LCS1, S1-LCS2 and S1-LCS3, respectively. 

 

Moreover, it is clear from Figure A2.6 that the highest energy consumption reduction is 

happening during the hot season (July) which corroborates results of other studies on the 

subject [38]. In July, reductions of the energy consumption are 57%, 18% and 18% compared 
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with S1-LCS1, S1-LCS2 and S1-LCS3, respectively. Savings for S1-LCS2 and S1-LCS3 are 

the same since daylight illuminance values on the workplane are higher than the required set 

point for all hours in both cases. 

 

Compared to passive season control (S1winter-spring-fall+S2summer –LCS3), hourly 

control optimization (SW4S-LC3) of the smart window brings average reductions of the 

energy consumption of about 1.8%, meaning that the simplified seasonal control approach 

could provide a fairly good estimation of smart window potential. 

 

Figure A2.7 presents results for July of hourly opacity states optimized to reduce the overall 

energy consumption and its influences on cooling, heating and lighting loads compared to 

S1-LCS3 (best passive state over all seasons) and S2-LCS3 (best passive state for summer). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure A2.7:  Hourly results for a typical day of July – a) Cooling loads, b) Heating loads, c) 
lighting loads and d) Smart window optimized opacity state. 
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(Fig. A2.7b); it is increased slightly during evening and at night compared to S1-LCS3 due 

to the fact that the thermal mass of the floor slab has not received as much solar energy during 
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gains. Furthermore, heating load results highlight the fact that a 24 hours period does not take 

into consideration the charging and discharging of the thermal mass for hours previous to the 

simulation start time. Finally, for the artificial lighting demand (Fig. A2.7c), some hours 

require additional artificial lighting since less daylight reaches the workplane compared to 

S1-LCS3. Compared to S2-LCS3, less artificial lighting is required due to higher visible 

transmittance states at some hours. 

 

From the results presented in this section, it is thus clear that an efficient hourly control of 

SW states provide higher savings than passive states. This being said, simple procedures shall 

be offered to building designers in order to roughly evaluate SW performance based on an 

optimal or nearly optimal control. The following guidelines are preliminary avenues that are 

proposed to address this need. They are based on the observations of optimized opacity such 

as that presented in Figure A2.7. The following optimal SW behaviors can be noted: 

- At night (solar radiation = 0 W/m2)  Switch to state S1 

- While Qheating,S1 > 0  Switch to S1 to allow as much solar radiation as possible in the 

building 

- While Qcooling,S1 > 0 AND Workplane lighting requirement  = 0 lux  Switch to S4 

Otherwise, i.e. when there is a cooling load at a given time (Qcooling,S1 > 0) and also a 

workplane lighting requirement larger than 0, the optimal state of the SW, Sopt, varies. Based 

on the optimization results, it was found that the best SW state was mostly correlated with 

the total solar irradiation incident on the window, Gtot. The approximate range of Gtot for 

which the optimal state is S1 is reported in the first line of Table A2.7, for each season. 

Similarly, the next lines of this table correspond to the range of Gtot for which the best state 

is S2, S3 or S4. 
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Table A2.7: Range of total façade incident solar radiation for which the best SW state 
is as indicated, during cooling hours with a lighting requirement of 500 lux. 

Optimal 
SW state Winter 

Gtot [W/m2] 
Spring                Summer 

 
Fall 

S1 All values 0 - 
225 

0 - 100 0 - 110 

S2 - 225 
and 
over 

100 and 
over 

110 and 
over 

S3 - - - - 
S4 - - - - 

 

Table A2.7 also reveals that the range of Gtot for which each state is optimal depends on the 

season considered. In other words, there are other aspects than just total solar incident 

irradiation to consider. For example, the indoor-to-outdoor temperature difference also 

affects to some respect which state is best at a given time. 

 

Further studies will focus on the development of a more general correlation for the optimal 

state selection considering Gtot, the exterior-to-interior temperature difference, and internal 

gains. To ensure that the procedure and guidelines presented in this section are applicable to 

different building projects, annual simulations for different types of building, orientations 

and climates should be conducted. Further research will cover these elements. 

A2.4 Discussions and conclusions 

This paper presents thermal and daylight analysis results based on simulations for south 

perimeter building zones located in Montreal.  

 

Considering an approach with passive opacity states (i.e., no optimized hour-by-hour changes 

of opacity), we determined the energy consumption as a function of the opacity state, the 

climate and the lighting strategy. The bleached state was better during cold exterior 

temperatures while darker states were preferred for warmer seasons. However, regardless of 

the selected artificial lighting control strategy, the bleached state is preferred to other darker 

passive states over an annual basis for climates as in Montreal. Considering these results, a 

preliminary design assessment procedure was proposed for designers. The procedure consists 

in calculating the building energy consumption with glazing properties for all passive states 
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for a typical day of each season to evaluate which passive state is best (season by season). 

Then, a calculation combining these results could be performed, using the best selected 

passive state at each season to estimate total energy consumption with the integration of smart 

windows at a given season. Annual energy savings could thus be estimated compared to a 

base case building. It was found that this approach can provide a fairly good estimate of the 

SW performance on an annual basis. 

 

To assess the relevance of advanced active SW control strategies, a genetic algorithm 

optimized hour-by-hour the opacity of a SW. Results have shown that optimal control is 

desirable mostly for warmer seasons and could offer savings between 5% and 22% compared 

to the best yearly passive state, depending on the artificial lighting strategy. Also, since the 

highest savings have been obtained for the summer, a more detailed results comparison have 

been made with the best yearly state (S1) and the best passive summer state (S2). It was 

shown that optimized control outperforms the passive state S1 mostly by reducing cooling 

loads and the passive state S2 mostly by reducing heating and lighting loads. Preliminary 

guidelines for control have been proposed based on the results of optimization. These 

guidelines consider the optimal state selection at each hour depending on heating or cooling 

conditions, lighting requirements and total solar radiation incident on the glazing. 

 

As mentioned previously, reported results are relevant for South oriented perimeter zones of 

an office building, in a moderate climate. For different climates and/or façade orientations, 

one could follow the methodology presented in this article to obtain a relevant assessment of 

SW in terms of building energy consumption. Further studies will examine the influence of 

relevant building parameters (façade orientation, thermal mass, COP of systems, acceptable 

interior T° ranges, and other climates) on optimal results. More generic performance 

indicators and procedures will be developed for predesign of buildings with integrated SW. 
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