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Résumé 

La performance des cuves d’électrolyse utilisées dans la production d’aluminium 

primaire par le procédé Hall-Héroult est fortement influencée par la qualité des anodes de 

carbone. Celles-ci sont de plus en plus variables en raison de la qualité décroissante des 

matières premières (coke et braie) et des changements de fournisseurs qui deviennent de 

plus en plus fréquents afin de réduire le coût d’achat et de rencontrer les spécifications des 

usines. En effet, les défauts des anodes, tels les fissures, les pores et les hétérogénéités, 

causés par cette variabilité, doivent être détectés le plus tôt possible afin d’éviter d’utiliser 

des anodes défectueuses dans les cuves et/ou d’apporter des ajustements au niveau du 

procédé de fabrication des anodes. Cependant, les fabricants d’anodes ne sont pas 

préparés pour réagir à cette situation afin de maintenir une qualité d'anode stable. Par 

conséquent, il devient prioritaire de développer des techniques permettant d’inspecter le 

volume complet de chaque anode individuelle afin d’améliorer le contrôle de la qualité des 

anodes et de compenser la variabilité provenant des matières premières. 

Un système d’inspection basé sur les techniques d’analyse modale et d’acousto-

ultrasonique est proposé pour contrôler la qualité des anodes de manière rapide et non 

destructive. Les données massives (modes de vibration et signaux acoustiques) ont été 

analysées à l'aide de méthodes statistiques à variables latentes, telles que l'Analyse en 

Composantes Principales (ACP) et la Projection sur les Structures Latentes (PSL), afin de 

regrouper les anodes testées en fonction de leurs signatures vibratoires et acousto-

ultrasoniques. Le système d'inspection a été premièrement investigué sur des tranches 

d'anodes industrielles et ensuite testé sur plusieurs anodes pleine grandeur produites sous 

différentes conditions à l’usine de Alcoa Deschambault au Québec (ADQ). La méthode 

proposée a permis de distinguer les anodes saines de celles contenant des défauts ainsi 

que d’identifier le type et la sévérité des défauts, et de les localiser. 

La méthode acousto-ultrasonique a été validée qualitativement par la tomographie à 

rayon-X, pour les analyses des tranches d’anodes. Pour les tests réalisés sur les blocs 

d’anode, la validation a été réalisée au moyen de photos recueillies après avoir coupé 

certaines anodes parmi celles testées. 
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Abstract 

The performance of the Hall-Héroult electrolysis reduction process used for the 

industrial aluminium smelting is strongly influenced by the quality of carbon anodes, 

particularly by the presence of defects in their internal structure, such as cracks, pores and 

heterogeneities. This is partly due to the decreasing quality and increasing variability of the 

raw materials available on the market as well as the frequent suppliers changes made in 

order to meet the smelter’s specifications and to reduce purchasing costs. However, the 

anode producers are not prepared to cope with these variations and in order to maintain 

consistent anode quality. Consequently, it becomes a priority to develop alternative methods 

for inspecting each anode block to improve quality control and maintain consistent anode 

quality in spite of the variability of incoming raw materials. 

A rapid and non-destructive inspection system for anode quality control is proposed 

based on modal analysis and acousto-ultrasonic techniques. The large set of vibration and 

acousto-ultrasonic data collected from baked anode materials was analyzed using 

multivariate latent variable methods, such as Principal Component Analysis (PCA) and 

Partial Least Squares (PLS), in order to cluster the tested anodes based on vibration and 

their acousto-ultrasonic signatures. The inspection system was investigated first using slices 

collected from industrial anodes and then on several full size anodes produced under 

different conditions at the Alcoa Deschambault in Québec (ADQ). It is shown that the 

proposed method allows discriminating defect-free anodes from those containing various 

types of defects. In addition, the acousto-ultrasonic features obtained in different frequency 

ranges were found to be sensitive to the defects severities and were able to locate them in 

anode blocks.  

The acousto-ultrasonic method was validated qualitatively using X-ray computed 

tomography, when studying the anode slices. The results obtained on the full size anode 

blocks were validated by means of images collected after cutting some tested anodes.   
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Foreword  

This thesis consists of seven chapters and four appendices. In the first chapter, the 

recent progresses in anode quality control as well as non-destructive methods applied to the 

inspection of anode materials are described. In addition, the possible defects that may occur 

in the anodes and the different techniques that may be used to detect those are discussed 

and compared in order to select the best candidates. The second chapter focuses on the 

methods used in this thesis. The principles of modal analysis and acousto-ultrasonic are 

presented first, followed by the signal and image analysis methods, the numerical modal 

analysis, and a background on the multivariate latent variable methods. Chapters 3 to 6 

consist of the four articles published or to be published in international scientific journals. 

The last chapter contains general conclusions, a discussion of industrial benefits, and 

recommendations for future work. The following subsections explain the contributions of 

each article in the field as well as the contribution of the candidate to each article. 

 

Chapter 3: 

The sensitivity of the acousto-ultrasonic signals to the various defects present in 

carbon anode materials is investigated in this chapter. This mainly concerns the detection 

and identification of internal defects like pores and cracks using the attenuation of the 

mechanical waves propagating through the material. The investigation was conducted on 

slices cut from a full-size baked anode. Each slice was virtually subdivided into 6 vertical 

corridors. The set of so-called corridors were excited by an acoustic (mechanical) wave at 

a given frequency and its response (attenuated wave) was recorded. This process was 

repeated sequentially using 7 different excitation frequencies. A method was proposed to 

process the acousto-ultrasonic response signals obtained from various anode slices in order 

to extract a large set of potentially relevant acoustic features representing the material’s 

attenuation behavior. The approach used in this research was to compute as many features 

as possible to capture all aspects of the material response. Since the large number of 

features were highly collinear, multivariate statistical methods were used for analyzing them. 

Pruning of the set of features in order to simplify the analysis was not considered in this 

thesis, but should be examined in future work to simplify the practical application of the 

method. The presence of defects inside different parts and their identification was therefore 
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revealed by applying Principal Component Analysis (PCA) to the matrix of acoustic features, 

and by analyzing the clustering patterns of 6 different subsections (called corridors) within 

each anode slice. The acoustic features were found to be sensitive to the presence of cracks 

and pores within the materials and were able to discriminate between them. These results 

were validated qualitatively using images of X-ray computed tomography that revealed the 

internal morphology of each anode slice included in this work.  

This work published in:  

- M. Ben Boubaker, D. Picard, J. Tessier, H. Alamdari, M. Fafard, C. Duchesne, The 

Potential of Acousto-Ultrasonic Techniques for Inspection of Baked Carbon Anodes, 

Metals, Vol. 6 (7), 151, 2016, 1-13. 

 Some of the results were also presented in:  

- M. Ben Boubaker, D. Picard, J. Tessier, H. Alamdari, M. Fafard, C. Duchesne, Inspection 

of baked carbon anodes using acoustic techniques, Proceedings of 33rd International 

ICSOBA Conference, Dubai, UAE, 2015, 467–476. 

It is necessary to mention that the slices preparation including anode slicing and X-ray 

imaging was led by Dr. Donald Picard (Research assistant) to meet the objectives of another 

research project. The remaining slices were used in this PhD project. I carried out the 

ordering of missing equipment, cutting of additional slices, experimental set-up preparation, 

acousto-ultrasonic testing, signal analysis and features extraction by writing the necessary 

MATLAB codes. I also performed X-ray images preprocessing, and applied multivariate 

latent variable methods for data analysis. Finally, I wrote the first draft of the manuscript and 

corrected it under the guidance of my supervisors. 

 

Chapter 4:  

This chapter presents an improved acousto-ultrasonic method for testing the materials 

and analyzing their response in a more efficient way. Instead of exciting the materials 

sequentially at different frequencies, a single multi-spectral excitation signal was 

investigated as a mean of reducing the time required for inspecting each anode. The 

frequency modulated excitation signal spanned the same frequency range as that used in 
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the work reported in Chapter 3. Since the new excitation signal results in a more complex 

attenuation response (also containing several frequencies), the method for processing and 

analyzing the attenuation signals also required some modifications. Instead of computing 

acoustic features directly from the attenuated signal (as in Chapter 3), the latter was first 

decomposed into 4 different frequency bands using the 1D Discrete Wavelet Transform 

(DWT), followed by calculation of the acoustic features from each wavelet sub-signal (i.e., 

filtered signal in each frequency band). This new approach was applied on the same anode 

slices and corridors as described in Chapter 3. In addition to this, it was desired to build 

relationships between the CT-scan images of each anode slice and their acoustic 

attenuation features in order to provide a thorough quantitative analysis of the data (as 

opposed to the qualitative validation proposed in Chapter 3). To link material attenuation 

features and images, a vector of features was calculated from the latter in order to formulate 

a regression problem with two data matrices; X containing the acoustic features and Y the 

image data. The CT-scan image features were extracted by applying the 2-D Discrete 

Wavelet Transform to decompose the image signals in 4 frequency bands along three 

spatial directions within the images. The energy of the signal in each wavelet sub-image 

was used to form a row-vector of features of each image. These were found to extract 

information about the material structure (pores and cracks). After applying PLS regression 

using both data matrices, it was found that the multi-frequency excitation strategy led to very 

similar results as the sequential excitation but was much faster. Again, the corridors in each 

slice were discriminated based on the contained pores or cracks, and how severe these 

defects were. 

This work was presented in: 

- M. B. Boubaker., D. Picard, J. Tessier, H. Alamdari, M. Fafard, C. Duchesne, Inspection of 

Prebaked Carbon Anodes using Multi-Spectral Acousto-Ultrasonic signals, Wavelet 

Analysis and Multivariate Statistical Methods, Proceedings of 34rd International ICSOBA 

Conference, October 3-6, Québec City, Canada, 2016.  

And will be submitted in the following journal: 

- M. Ben Boubaker, D. Picard, J. Tessier, H. Alamdari, M. Fafard, C. Duchesne, Inspection 

of Prebaked Carbon Anodes using Multi-Spectral Acousto-Ultrasonic signals, Wavelet 

Analysis and Multivariate Statistical Methods, “to be submitted to Metals”. 
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Through communication with the manufacturer, I have adapted the acoustic system 

for a comparative multi-spectral analysis. This was achieved by adding some external 

components such as resistors and electrical connections. I have performed all the multi 

spectral acousto-ultrasonic tests and data analysis including the writing of the new MATLAB 

codes for signals and image analysis, as well as for modeling. I wrote the first draft of the 

manuscript and revised it under the guidance of my supervisors. 

 

Chapter 5: 

The acousto-ultrasonic inspection technique developed in Chapter 4 was then applied 

to full-size industrial anode blocks, the material ultimately targeted for the industrial 

application. A total of 27 anodes were sampled from the production line at the Alcoa 

Deschambault Quebec (ADQ) smelter, including some anodes containing known defects 

visible from their surface, and a larger set of anodes which had no visual defects but 

manufactured under different operating conditions (i.e., normal operation, start-up of the 

paste plant, and anodes baked in different positions within the furnace). The multi-frequency 

excitation strategy was applied to each anode at 29 different positions (21 along the anode 

height and 8 in the direction of its long side), and the attenuation signals were recorded for 

each. These response signals were preprocessed according to the method proposed in 

Chapter 4. The attenuation features in each position in each anode were organized in two 

different matrices in order to analyze the variability within each anode as well as the 

variability between all of them. The first data matrix was formed by concatenating all the 

attenuation features in all positions for a given anode in a row vector. Thus, each row of that 

matrix corresponds to the attenuation signature of one anode and allows for a comparison 

between the different anodes (between anode variability). Applying Principal Component 

Analysis (PCA) to that data matrix allowed clustering the anodes based on known defects 

or according to the process conditions under which they were produced. To analyze the 

within anode variability, each row of the second data matrix was filled with the attenuation 

features for a single position in a given anode, after which PCA was applied. Several case 

studies are presented, but all of them confirmed the sensitivity of acousto-ultrasonic signals 

to defects within the anode structure and changes in some manufacturing conditions. 

Qualitative validation of the results was performed by collecting images of internal surfaces 

of several anodes after cutting them along their long side. 
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This work was written in a manuscript format to be submitted to a scientific journal: 

- M. Ben Boubaker, D. Picard, J. Tessier, H. Alamdari, M. Fafard, C. Duchesne, Quality 

inspection of carbon anodes with combination of acousto-ultrasonic technique and principal 

component analysis, (It will be submitted to a journal that will be determined soon). 

One of the big challenges in this work was how to deal with the large industrial anodes 

including their selection from a large variety, testing them using acoustic methods and 

cutting them for result validation. The latter was conducted with the help of Mr Guillaume 

Gauvin (research assistant at REGAL centre) and collaboration with the ADQ smelter and 

the Mauricie Sowing Center (MSC). I performed all the experiments including anodes 

preparation, acousto-ultrasonic testing and numerical imaging after cutting some anodes 

followed by the data analysis. At this point, it is necessary to mention that part of tests were 

conducted at ADQ and the other part in the civil engineering labs. I wrote the first draft of 

the manuscript and revised it under the guidance of my supervisors. 

 

Chapter 6:  

In this chapter, an alternative approach to acousto-ultrasonic inspection of baked 

anode blocks, namely vibration modal analysis, was investigated. This technique was 

considered in this thesis because it could lead to a faster inspection compared to acousto-

ultrasonic, and could be easier to implement in an industrial environment site. However, it 

cannot provide as much detailed information as the acoustic methods. A combination of both 

approaches may be considered in the future to improve inspection efficiency. Modal analysis 

would be applied to all manufactured anodes for the purpose of detecting defects. Acoustic 

inspection would be used to provide a detailed diagnosis of the defects (i.e., type, severity, 

location) only upon positive detection by modal analysis. Hence, modal analysis is studied 

in this chapter to determine its potential for defect detection. The same set of 27 anodes 

used in acoustic inspection (chapter 5) was also used for this part of the research work. 

These anodes were mechanically excited at several different positions on four faces of the 

block using a hammer, and the vibration signals of the blocks were measured by 

accelerometers also at different positions. Where to hit the block and to measure the 

vibrations was determined with the assistance of finite element modeling. The vibration 

signals were recorded by seven accelerometers after each excitation. A code was 



xxvi 
 

developed to compute the first two vibration modes (natural frequencies) from each of the 

recorded signal. The frequency corresponding to these modes obtained for each excitation 

point and accelerometer were stored in a row vector. A modal feature matrix was formed by 

collecting the row vectors obtained for each anode. The data was then analyzed by PCA to 

cluster the anodes according to their vibration modes. It was shown that this approach could 

also discriminate the anodes based on known defects and/or the conditions under which 

they have been manufactured. Finally, the results were confirmed visually using some 

images collected after cutting some of the tested anodes (similarly as for the acoustic 

technique).  

The results were presented and published in:  

- M. Ben Boubaker, D. Picard, J. Tessier, H. Alamdari, M. Fafard, C. Duchesne, Non-

destructive testing of baked anodes based on modal analysis and principle component 

analysis, TMS, Light Metals, 2017, 1289-1298. 

I performed all experiments including sensor selection, ordering the missing 

equipment, set-up preparation, anodes fixing and vibration tests. In addition, I developed 

necessary MATLAB codes for natural mode identification and frequency selection. Finally I 

wrote the first draft of the paper under helpful ideas, comments, suggestions and 

modifications by my supervisors. 

 

Appendices: 

Appendices 1&2: 

Due to word and page limitation imposed by ICSOBA proceedings and Metals journal, 

some parts of the work on the reliability of acousto-ultrasonic technique could not be 

included in the submitted manuscript presented in chapter 3 and 4. Hence, two appendices 

present additional results pertaining to the ‘similarity of the acousto-ultrasonic responses of 

the rods to those of their corresponding corridors’ and ‘the possibility to distinguish between 

corridors containing high density of pores and those containing different cracks’, 

respectively. These additional results are discussed in appendix 1 and appendix 2, 

respectively. 



 

xxvii 
 

I performed all the experiments including sample preparation, acousto-ultrasonic tests, 

signal and image analysis, and reported the results under the guidance of my supervisors. 

 

Appendix 3: 

Since Chapter 5 was written in a manuscript format to be submitted to a scientific 

journal the attenuation maps of only three anodes (two anodes containing severe defects 

and a defect free anode) were presented for sake of conciseness. Therefore, the attenuation 

maps of all tested anodes are presented in Appendix 3.   

I performed all the experiments, the corresponding analysis and the attenuation maps 

as well as reported the results under the guidance of my supervisors. 

 

Appendix 4: 

Due to the TMS paper-format restrictions the comparison between the numerical and 

the experimental modal responses of the anode, as well as details about the numerical 

model, such as the boundary conditions used, were omitted in chapter 6. These additional 

information are reported in Appendix 4.  

I performed both of experimental and numerical modal analysis including the 

numerical simulation, preparation of experimental set-up and experimental measurements. 

Finally, I performed the corresponding statistical analysis and reported the results under the 

guidance of my supervisors.
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Chapter 1 Introduction 

Nowadays, global economic development is highly suffering by the increase of energy 

consumption in various sectors. In countries such as Canada, where the economy is mainly 

based on the exploitation of abundant natural resources, the energy consumption grows 

enormously. These large energy requirements are mostly concentrated in the industrial 

sector, especially those involved in metal refining, smelting and production of aluminium. To 

optimize these needs and their effects on global warming, the Canadian government is 

providing funding to meet the performance standards in order to help improve the energy 

efficiency of different sectors. According to the Office of Natural Resources Canada [1], 

these measures have helped the economy by saving more than 1 560 petajoules in 2010, 

which is equivalent to the energy consumption of all sectors throughout the province of 

Quebec during the same year. Figure 1-1 illustrates the efforts of Canadian primary 

aluminium producers in terms of both energy efficiency and production costs. 

 

 

Figure 1-1 Representation of changes in the global primary aluminium production, energy 
consumption and electrical costs per ton of aluminium. The evolution of the LME 

aluminium price is also presented. Sources: Naturel Resources Canada [1], London Metal 
Exchange [2], USGS [3], I.E.A - Energy Prices and Taxes [4]. 

In the context of the strong increase in global primary aluminium production that 

reached 45Mt per year with a Canadian contribution around 7% [5-7], as illustrated in 

Figure 1-1, the industry must improve the performance and efficiency through the reduction 
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of the production cost and technological innovation. The significant increase in demand is 

explained by the intrinsic properties of aluminium that make it an interesting material to 

replace steel in a number of applications. This increment is offset by apparition of the new 

producers that simultaneously affect the economic and strategic issues. To maintain its 

competitiveness, primary aluminium producers rely today on a constant improvement of the 

manufacturing process control in their different smelters. Energy efficiency and carbon 

consumption during manufacturing processes are two important performance metrics that 

need to be optimized. However, these factors are hugely dependent on the carbon anode 

quality. Indeed, the worst-case scenario happens when the carbon anodes contain defects 

(i.e., heterogeneities, cracks, and pores). For such reason, carbon anode quality is 

becoming a well-known concern for aluminium producers. On the one hand, they have to 

deal with the decreasing quality and increasing variability of raw materials (petroleum coke 

and coal tar pitch) on the market. These raw materials are by-products of refineries, who 

have little incentive to better control their quality. On the other hand, the aluminium 

producers must mitigate the impact of changes in these raw material properties through 

appropriate adjustments to the anode manufacturing process parameters. Producing 

anodes with more consistent quality is therefore necessary. 

1.1 Aluminium production 

Aluminium is the third element and the first most abundant metal, constituting around 

8% of the earth's crust [8]. It is produced via an electrochemical reaction, reducing alumina 

to metal aluminium. Alumina is mainly extracted from bauxite by the Bayer process [9]. Paul 

L.T. Héroult in France and Charles M. Hall in the United States of America both had 

independently discovered the electrochemical process for the manufacture of aluminium in 

the 19th century [10]. Until now, the dominant primary aluminium production technology is 

based on the Hall-Héroult process. A schematic of a modern aluminium-smelting cell is 

presented in Figure 1-2. The reactor (also called reduction cell or pot) is made of a steel 

shell internally covered with a lining of carbonaceous materials, acting as a thermal insulator 

and protecting the shell from the extremely harsh conditions prevailing in the cell. The 

electrical current enters the cell by a set of pre-baked carbon anodes (typically 40 

anodes/cell). These are suspended in the cell by means of steel stubs, and float in a layer 

of cryolite (electrolyte also commonly called bath) containing dissolved alumina, 

continuously fed in the cell by point feeders. The overall alumina reduction, reaction taking 

place in the electrolyte layer, is represented in the following equation:  
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 2 3 22Al O +3C+electricity 4Al+3CO   (1.1) 

where alumina (Al2O3) is reduced to aluminium (Al) by applying an electrical current in the 

presence of a carbon source. Carbon dioxide (CO2) is also released during the reaction. The 

aluminium produced by the reaction settles at the bottom of the cell and forms a metal pad. 

A cathode block made of a graphitic material is installed at the bottom of the cell. The 

electrical current exits the cell by the cathode after passing through the metal pad. Several 

hundreds of cells are electrically connected in series in a typical smelter, using a system of 

bus bars. The metallic aluminium is periodically tapped from the cells and sent to the cast 

house. 

Although this technology is a century old, the energy efficiency of modern reduction 

cells is still relatively low, with roughly half of the electrical energy input that leaves, in some 

cases on purpose, the pots in the form of waste heat. Since the primary production of 

aluminium is a process that requires extensive amounts of electricity (~13-15 MWh per ton 

of Al produced), these energy losses are enormous considering the Al production capacity 

of 2.8 million tons per year in the province of Québec alone. 

 

Figure 1-2 Cross section of a prebaked reduction cell technology (Courtesy of Alcoa). 

Carbon anodes provide the carbon source for alumina reduction (i.e., they are 

consumed by the reaction) and are therefore considered as a consumables for the smelting 

process. Their quality affects the economic and environmental performance of the process. 

Approximately half of electrical energy passing through the anodes is converted into heat by 

means of Joule effect.  
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In spite of several improvements in the electromagnetic stability, in the chemical 

behavior of the bath, in electrode design, as well as the application of better process control 

schemes, the typical thermal loss of a modern electrolysis is still high. As mentioned 

previously, these heat losses comprise approximately half of the consumed electrical 

energy. A typical distribution of the heat loss for an electrolytic cell is illustrated in Figure 1-3. 

 

Figure 1-3 Heat loss distributions in an electrolytic cell during operation [75]. 

Basically, 96% of the electrical energy, consumed in a smelter, is used for aluminium 

electrolysis [11] and around 10% of such energy is consumed to overcome the electrical 

resistance of prebaked anode that can reach 60µΩm [12-14]. As shown in Figure 1-3, the 

thermal loss through the anode can reach up to 33% [15-16]. These losses are not only 

related to the nature of anode materials but also to the defects such as heterogeneities, 

cracks and porosity in the baked anodes. In addition, a low quality anode may result in a 

more reactive anode towards air and CO2, which cause more material loss and dusting, low 

flexural strength and low thermal shock resistance [12]. Carbon consumption is also 

negatively correlated with the anode density, affecting its electrical resistivity [13, 17]. This 

explains the difference between theoretical and real carbon anode consumption of 

approximately 0.33 and 0.4kg/kg Al, respectively, as illustrated in Figure 1-4. Finally, in order 

to obtain a lasting service life and good energy efficiency in the electrolysis cell the anode 

quality have to be kept as high as possible in order to minimize the electrical resistivity, air 

permeability and carbon consumption. 
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Figure 1-4 Anode consumption figures [43]. 

1.2 Anode production 

The anode manufacturing process involves five main stages: formulation, blending, 

mixing and forming to obtain the so-called green anode, followed by baking (carbonizing) to 

obtain the so called baked anode [18]. A typical process flowsheet is shown in Figure 1-5. 

The raw materials (coal-tar pitch, petroleum coke and recycled butts) are preheated 

separately at around 200°C and introduced in the mixer or the kneader to produce the anode 

paste. The latter is then densified by pressing or vibro-compacting. Afterwards, the green 

anodes are baked in large open pit furnaces at 1100-1200°C. Lastly, the baked anodes are 

stored until rodding, and the conveyed to the electrolysis cells. The rods (aluminium/steel 

assembly) serve to suspend the anodes in the electrolytic bath and to transmit the electrical 

current to the cell through the anodes. 
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Figure 1-5 Schematic of anode manufacturing process [19]. 

The size of a typical anode is 1.4-1.6 m in length, 0.65-0.75 m in width and 0.6 to 0.65 

m in height. The value of the density of the baked anode can reach up to 1.570 g.cm-3 and 

the Young modulus (compression) varies between 7000-11000 MPa [20-21]. The mass 

composition of a typical anode is 65% of petroleum coke, 15% of coal-tar pitch and 20% of 

anode butts (anode residues crushed and recycled after their use in the electrolysis cells). 

These components are distributed throughout the volume of the anode, sometimes 

heterogeneously. Compositional heterogeneities and variations in carbon structure may give 

rise to defect anodes. The baked anode volume also includes a high quantity of pores of 

different sizes. A normal anode typically contains about 25% of pore space. The typical size 

of these pores varies between 10-300 µm. Larger pores (> 300 µm) can also appear due to 

some variations in the anode process production parameters. The size at which pores 

become an issue for anode performance is still unclear at this point, and more research is 
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required to address this question. For more details about the baked and green anode 

structures as well as the porosity distribution the reader is referred to the thesis of Azari 

Dorcheh [43]. The raw materials (coke and pitch) are by-products of petroleum and coal, 

respectively. Coal-tar pitch is the much preferred binder in the industry. Coke and pitch are 

mostly composed of carbon but there are impurities, in particular, sulfur in petroleum coke 

that tends to increase in recent decades [21]. Recycled anode butts also add some 

impurities (e.g., fluorine, sodium and aluminium) in the anodes since they have been in 

contact with the electrolytic bath. Table 1-1 lists the typical chemical elements and physical 

properties of baked anodes. 

Table 1-1 Chemical components and physical properties of baked anodes [30]. 

 

The anode quality is defined in terms of the properties such as strength, density and 

electrical resistivity. These depend on the operating parameters of the manufacturing 

process as well as on the raw material properties. Any change in these properties or in the 

process is usually reflected in the process efficiency [21-28]. A bad combination of 

manufacturing conditions may decrease the process efficacy by introducing heterogeneities 

in the anode blocks or by increasing the chances of creating cracks. This thesis will elaborate 

the possibilities to identify such defects as well as some of their causes, using non-

destructive techniques.  
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1.3 Factors affecting anode quality 

The various factors that have an influence on the final quality of the anode are divided 

into three groups [29]; including the raw materials characteristics, the manufacturing 

parameters of green anode (mixing, compaction and cooling), and baking conditions. The 

knowledge of the physical and chemical properties of different anode components as well 

as their preparation process is necessary to understand how heterogeneities arise, and how 

cracks are formed in the anode blocks. 

1.3.1 Anode raw materials 

It is worth mentioning that the anode density, electrical resistivity, mechanical 

strength, and reactivity are determined by a number of characteristics such as types, 

portions and properties of raw materials as well as the dry particle sizes. It was mentioned 

previously that the green anode is obtained after molding a mixture of liquid binder coal tar 

pitch and dry aggregates, composed of calcined petroleum coke and recycled butts particles 

of different sizes. The three components and their impacts on the anode quality will be 

discussed in the next section. 

Calcined coke is commonly used in the aluminium industry and is made from green 

petroleum coke, a by-product of the heavy oil refinery, by means of a calcining operation. It 

is the main carbonaceous material in the anodes and has the highest mass fraction in anode 

paste comprising more than 60%. Any problem in calcining conditions and green coke 

quality corresponding to the crude oil quality, refining operation and delayed coking 

operation parameters consequently reflects in the quality of the obtained calcined coke [19]. 

On the other hand, the refineries do not have benefits to improve the quality of low value by-

products such as coke, since it is obtained from the residuals of raw petroleum that have 

low cost on the market. Some authors [31] addressed the classification of various coke 

categories and their effects on the anode characteristics such as cracking, density, CO2 

emission, metallic impurities and oxidation. Others have discussed about the impact of oil 

quality and process operation on green coke quality [32-33]. The study conducted by 

Rodenovc [34] shows that if the coke does not contain high amount of sodium, vanadium 

and sulfur (thermally unstable), good binding efficiency between coke and pitch can be 

obtained after baking. Presence of sulfur in an optimum amount assists in reducing 

reactivity. Contrariwise, sodium and vanadium increase the CO2 and air reactivities. 
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The main role of coal tar pitch, second raw material, is to bind filler aggregates together 

and thus to provide sufficient strength in anode blocks especially after pyrolysis in the baking 

process. It consists of approximately 50% non-volatile fraction of coal-tar that remains in the 

down level of the column after vaporization of all contained oils [35-37]. At room temperature, 

it is presented as a black friable solid. It becomes fluid above its softening point (110-115 

°C, depending on its chemical composition). The pitch is then subjected to various heat 

treatments to improve its quality before being used in the anode recipe [38]. Its quality 

depends on the constituents and the operation conditions in the cooking ovens. The pitch is 

also useful to penetrate in the coke pores to increase the anode density and consequently 

the electrical conductivity. Consequently, its quality can be defined in terms of wetting 

properties since less viscous pitch can penetrate in smaller voids and increase the anode 

density [39]. Moreover, after baking the amorphous pitch transforms into semi-crystalline 

coke that improves the mechanical properties.  

Anode butts consist of the remained anode part after about 25 days operation in typical 

modern electrolysis bath since the anodes are not completely consumed to avoid metal 

contamination by the connection steel rods. They are crushed after cooling and cleaning 

from bath contaminants such as sodium. The crushed butts are then used with coke as dry 

aggregates in the anode paste and account for about 20 % of the green anode formulation 

[40]. The proportion, particle size, physical as well as chemical properties of butts are crucial 

for anode quality [40-42]. In the latter, Fischer, Perruchoud and Belitskus also found that an 

increment in butt content would result in an increase of baked apparent density, decrement 

in electrical resistivity and shrinkage during anode baking. In addition, it was found that 

carbon consumption depends also on butt particle size [40]. 

1.3.2 Green anode manufacturing process  

The quality of carbon anodes depends on other various parameters of the 

manufacturing process such as the type of equipment used, methods of preparation, 

process conditions, and allotted time for each stage. The initial step is the preparation of 

aggregates where the coke particles sizes are reduced by a preheated crusher [43]. This is 

followed by a further refinement of the resulting particles that is defined by the used 

technology. Zhuchkov and Khramenko [44] provided a typical range of particles size 

distribution: 30% coarse particles (0.6-5 mm), 20% medium particles (0.3-0.6 mm), 20% the 

particles of small sizes (<0.3 mm) and finally 30% of dust. After crushing and screening, the 
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coke and butt aggregates must be heated, weighed and then blended with pitch to obtain 

the desired recipe. The preparation of the dry aggregates and paste directly influences the 

formation of defects in the anode, mainly the homogeneity of the block and the cracking 

phenomenon. It is therefore important to use an optimum dosing of different coke particle 

fractions (coarse, intermediate and fines) and the coarse butts as well as the liquid pitch in 

order to ensure a better particles distribution [19,44]. 

The last step to prepare the anode paste is the mixing of the blended raw materials. 

The power, time and temperature of mixing are the most important parameters determining 

the mixing effectiveness. The efficient mixing is defined in terms of homogenous distribution 

of the anode contents [45-49] and lower porosity in the paste in order to obtain anodes with 

high density [49] and thermal shock resistance [46]. The moderate mixing energy is 

important because low energy leads to poor distribution of pitch and therefore 

inhomogeneous paste while high-energy risks to break the large particles [26]. Moreover, 

this must be conducted under a specific temperature (around 170°C) since the pitch 

characteristics such as viscosity and wetting capacity have significant effects on the anode-

cracking phenomenon [48, 51]. Certain properties of the anode such as density and porosity 

can be correlated with mixing temperature and its duration since these parameters have an 

effect on the visual appearance of the paste [53-54]. Therefore, the optimization of all 

parameters mentioned above is necessary to obtain a good anode quality. 

The anode forming can be done in two ways: by pressing or vibro-compacting. The 

processes that are using the vibro-compactor are preferred as they allow a more 

homogeneous distribution in the anode by decreasing the paste viscosity. The anode 

geometry is important as well, because the degassing of volatile components in the pitch 

depends on the anode dimensions. A bigger anode is more likely to undergo cracking 

because the volatiles have to travel a longer distance to exit the block. Insufficient heating 

during anode forming can cause an heterogeneous distribution of pitch and may lead to 

formation of cracks and porous areas during baking [55]. In addition, the forming 

temperature must not be too high (implies too low paste viscosity) in order to avoid the anode 

collapse when removed from the mold. Lastly, since the non-uniform density distribution 

within the anode can occur when the anode paste is filled in the mold, it is very important to 

ensure a balanced filling [55]. 
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After extraction from the mold, the anode undergoes either a slow cooling over 540 

minutes in ambient air or an accelerated cooling by spraying or immersing in water, at a 

temperature approaching 70°C, which takes about only 90 minutes to cool down the green 

anode [18]. Generally, the vibro-compacted anodes need a longer cooling time than those 

formed by presses because of the higher forming temperature [30]. However, in both cases, 

the temperature should be suitably adjusted in order to avoid the development of high 

temperature gradient between the cooling fluid and the anode surfaces. When using a low 

cooling temperature, the anode is exposed to significant thermal stresses, which may 

exceed the limit supported by the anode. Furthermore, small cracks may appears during a 

rapid cooling caused of the excessive contraction in the anode surface since a high 

temperature gradient between the surface and the anode center can be produced. If the 

anode is already holding defects especially cracks, the thermal stresses are more likely to 

cause further propagation of the horizontal pre-existing cracks, regardless of the uniformity 

of the cooling (uniform or variable) [26]. Finally, the transportation, handling and storage of 

the green anodes after forming should be completed with care because the hot anodes are 

more vulnerable to damages.  

1.3.3 Anode baking process 

The most important step in the anode production process is the anode baking since 

the anode mechanical and physical properties develop during this process. In this step, part 

of the pitch is released as volatiles and the other part is coked to give the anode its rigid 

form. The baking process is very complex because there are several parameters that can 

change the anode structure. It is also the most expensive step in the anode production line. 

The anodes are staked vertically in the pits of an open ring furnace and are covered with 

fine particles of coke in order to fill the empty spaces and avoid anode burning during baking 

at high temperatures reaching up to 1200°C [19, 30]. Meanwhile, the heat is provided by 

burning a fuel during all baking operation that takes around two weeks. The furnace design, 

the heat-up rate, the final temperature, the temperature gradient, and the soaking time at 

such temperature are the important baking parameters [60-62]. In addition, the way to inject 

the fuel into the furnace also affects the baking process efficiency in a considerable way and 

consequently affects the quality of baked anodes [63]. 

At the beginning of baking, an anode expansion phenomenon occurs, at about 200°C, 

due to the pressure (induced by the anode expansion) that is accumulated during the 



12 
 

previous process: mixing and green block cooling. However, if the resulting stress exceeds 

a critical limit, a vertical crack may appear at the center of the anode [25, 26]. At a 

temperature higher than 200°C, the release of volatiles generates an evolution of the 

pressure in the whole anode block. If this pressure is not efficiently removed by degassing, 

the same vertical cracking phenomenon can result. When the temperature exceeds the 

boiling point of the pitch, the volatiles emerge through micro-pores and provoke the 

apparition of micro-cracks by interconnecting these pores. For these reasons, it is important 

to operate the furnace with an optimal heating rate to avoid the pressure increase and thus 

to decrease the crack development. In addition, when a high heating rate is used, the 

operation requires more energy (i.e. fuel) especially at the beginning of baking [64]. 

According to Dagoberto et al. [65], the heating rate must not be exceed 15°C/h to avoid the 

formation of this kind of cracks. 

Other types of cracking are caused by the stresses already present within the anode, 

which is accumulated during compacting and green anode block cooling, if they reach a 

certain threshold. The overpressure accumulated inside the anode is quickly stopped when 

the cooling is accelerated by water, which increases the pressure in the anode. However, in 

the case where the cooling is performed by air, the heating rate during firing can be done at 

a higher speed [58]. The better distribution of the pitch in the anode block causes a reduction 

of the internal pressure during de-volatilization, which leads to an anode with less cracks.  

Moreover, the lifetime of the anode and their consumption in the electrolysis are 

directly related to the final cooking temperature [66]. Liu et al. [67] highlighted this by means 

of studying the influence of the plant parameters and anode properties. The results show 

that the major causes of this problem is the propagation of pre-existing cracks. The latter 

are created during the baking process when a density gradient is accumulated in the green 

anode. The release of induced stress, which is formed by both compaction and cooling 

process, leads to the creation of vertical cracks by de-volatilization of pitch during the baking 

process [68].  

In conclusion, it is clear from the above that the appearance of defects can be caused 

either by different anode manufacturing processes or by the quality of raw materials. 

Although these mechanisms are completely different and independent of each other, some 

form of defects, such as vertical cracks, can be caused by different factors. This makes the 

exact origin of these cracks difficult to identify. 
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1.4 Common anode defects  

The carbon anodes, used in the modern electrolysis, are consumables and therefore 

have to be replaced periodically. Indeed, the high temperature of the electrolysis causes a 

thermal shock to the new anode which may favour the development of microscopic cracks 

that may lead to large cracks with different forms (inclined at the corner, horizontal in the 

mid-plane under stub-holes or vertical everywhere in the block) [42,44,69]. The propagation 

of such cracks during electrolysis operation may cause the anode degradation as it is 

illustrated in Figure 1-6. 

 

Figure 1-6 Cracked carbon anode due to the thermal shock  
in the electrolysis cell [50]. 

 

The anode manufacturing objective is to maximize the mechanical strength and 

density in order to reduce the electrical resistivity and the carbon lost caused by the thermal 

chocks. The mechanical strength and density of the anodes are highly influenced by the 

nature of the raw materials (coke, pitch and butts), paste composition, different parameters 

of the production process, the baking parameters in particular, as well as the equipment 

technology. As shown in Figure 1-7, the common defects found in the baked anodes, 

discussed in more details in section 1.4, include:  

 Porosity: it appears due to the exclusion of air, solvents and other contaminants 

during mixing and anode forming. Pores in general belong to two groups, closed 

pores or open pores. These two groups have very different shapes and sizes. They 

are randomly distributed in the anode block. These pores can also be classified into 
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three different types based on their size [291]: micropores (width less than 0.1µm), 

mesopores (width between 0.1 and 10µm) and macropores (width greater that 

10µm). The increasing number of any type of these pores as well as the increasing 

size of macropores may become problematic since this could increase the electrical 

resistivity of the anode; 

 Inclusions: impurities accidentally included in the raw material or introduced by 

production process. These inclusions increase the risk of degradation of the anode 

sides and corners, mainly in the electrolysis, because they are made of different 

materials and show a different behavior, and consequently create more stress 

around their locations; 

 Cracks: Generally cracking in dense carbon anodes begins at the microscopic scale 

and then expands to provide macro-cracks by cyclic thermal loads (i.e., heating and 

cooling). These cracks are distributed throughout the block but more concentrated 

in the median plane under the stub-holes; their length can reach the anode 

dimensions and their width may vary between 1.4–2.1 mm [292]. Depending on their 

positions in the anode, they can occur in three different directions; vertical, horizontal 

and diagonal (corner cracks). Both of micro and macro-cracks have to be considered 

as a defect because as soon as they appear in the anode block they may increase 

the electrical resistivity as well as the anode degradation risk during thermal shocks; 

 Burning: This kind of defect generally appears in the baking process. It results from 

the chemical reactions of oxidation, reactivity to air, which is thermally activated 

process, especially when the oxygen is diffused around carbon. 

 

Figure 1-7 Common anode defects a) pore (inhomogeneity), b) horizontal cracks, c) 
vertical cracks, d) corner cracks, e) impurities, f) over baking. 
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Selecting adequate feedback corrective actions to implement on the anode 

manufacturing process requires an accurate diagnostic of the defects present in an anode 

(identification of their type, location and severity). It is also essential to have a good 

understanding of which part of the process could be responsible for a specific anode defect. 

This helps to know which process parameters could be adjusted to correct the problem. In 

this context, the degree of influence of various factors on common anode defects is 

summarized in Table 1-2 [74]. 

Table 1-2 Degree of influence of the factors provoking common defects in anodes [74]. 

 Inhomogeneity 
(pores) 

Burning Vertical 
cracking 

Horizontal 
cracking 

Slant 
cracking 

Impurities 
(inclusions) 

Raw materials + 
 

- + + ++ 
 

++ 

Composition of 
the anode paste 

++ - + - ++ + 

Mixing of the 
anode paste 

++ - + - + + 

Anode forming 
(Compacting) 

+ - + ++ + - 

Baking 
Parameters 

+ ++ ++ - - - 

Rod sealing and 
handling 

- - ++ - - - 

Thermal shock - - ++ + ++ - 

 
(-) have no influence                          (+) little influence                          (++) lot of influence 

 

1.5 Problems 

High quality carbon anodes contribute to optimal performance of aluminium reduction 

cells. The currently increasing variability of anode raw materials (coke and pitch) makes it 

challenging to manufacture anodes with consistent quality. Intercepting faulty anodes (i.e., 

damaged due to internal cracks and voids) before they are set in reduction cells is therefore 

important. However, this is a difficult task even in modern and well-instrumented anode 

plants because their best quality control strategies consist of characterising only a small 

portion of anode core samples. Typically, less than 1% of produced anodes are cored and 

just half of these cores are fully characterized because the nature of the measurement 

techniques is destructive and the lab characterizations are labour intensive. The measured 

characteristics are divided into four groups: mechanical properties, physical properties, 

chemical composition and reactivity. Laboratory analyses are detailed in [19]. Sinclair and 

Sadler [69, 74] listed the most important problems associated with such anodes quality 

control method: 
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 Core samples are not representative of the population, for economic reasons (tests 

and analysis cost) only a small proportion of anodes from which samples are typically 

cored and characterized; 

 Each core sample is not necessarily representative of the whole anode block to 

which it belongs due to the too small size of the sample comparing to the entire 

anode block and the little number of anodes from which these samples have been 

cored; 

 Long delay (2-4 weeks) for obtaining the laboratory analysis results. The baked 

anodes are often set in the reduction cells before these lab results are available; 

 Only major defects or deviations from targeted properties affecting the entire anode 

blocks over a sufficient long period of time can be detected by core sampling and 

characterization scheme.  

Developing methods for anode health monitoring in a non-intrusive way has become 

fundamental since the majority of defects are located within the anode block and are often 

not visible from the external surfaces. In fact, there are at least three engineering problems 

that need to be addressed before achieving a successful quality control system. First, the 

techniques have to be non-destructive to preserve the product, to be rapid in order to be 

consistent with the plant production rate, and to be able to acquire volumetric information. 

The severity, type, and location of the defects should be evaluated based on information 

contained in the data collected from the material. It is thus necessary to care about several 

concerns such as the time consuming and the computational effort involved for arriving at 

the solution. The data collection, processing and analysis techniques must therefore be 

efficient. The last and most important aspect is how to pave the way for the industrial 

application. It is usually a big challenge to move from lab testing on small samples to real 

tests conditions on full scale samples since we have to deal with new difficult parameters 

and environment conditions (i.e. testing an anode blocks is not as easy as testing a 

samples).  

The following sections present an overview of the different strategies and methods 

that have been proposed to control the anodes quality. Meanwhile, a literature review of the 

non-destructive techniques (NDT) is also presented to select the best methods that satisfy 

the requirements of the primary aluminium industry. 
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1.6 Methods for green and baked anode quality control 

1.6.1 Empirical and numerical models for predicting anode properties 

The mixing, forming, baking, particle fineness, quality of coke and pitch, and 

electrolysis operation are the main factors that have been widely investigated over the last 

decades in order to develop correlations for predicting the final anode properties. Keller and 

Fischer [73] and McClung and Ross [78] were the first to develop empirical models for 

predicting the net carbon consumption in the pot using, respectively, raw materials and 

anode properties. Jones [44] has implemented the difference between the net and the real 

carbon consumptions (excessive consumption) to correlate the carbon reactivity to the 

anode mechanical failure under thermal shock. Other mechanistic models of the baking 

furnace have been also proposed to predict anode temperature [81-83], but all of them 

require long computing times. Moreover, an overview of the relationships that have been 

established between the raw materials properties, baked anodes properties and process 

parameters is available in [84]. Hume et al. [85], for example, have measured the influence 

of sodium and sulfur contamination on the CO2 reactivity of the anodes. Fischer and 

Perruchoud [42] also highlighted the impact of contamination by sodium as well as the 

hardness of the anode butts on the bulk density, air permeability, resistance to bending and 

reactivity to air and CO2. Fischer et al. [87] evaluated the evolution of electrical resistivity, 

flexural strength, reactivity to air and CO2 and thermal conductivity versus baking 

parameters. However, all these studies focusing on only one or few properties. 

Recently, Lauzon-Gauthier et al. [90] have proposed an empirical soft-sensor model 

to predict anode core properties directly after the baking cycle. This includes all the available 

plant data such as raw materials properties, paste plant measurements , baking data and 

anode cores properties, etc. The model has shown good predictions for most of the 

measured properties, but only for anodes baked at the coldest and hottest positions in the 

furnace, due to the constraints of the core sampling strategy. In order to improve this work 

and based on the relation between baking conditions and anode quality discussed in [81-

82], the impact of any baking position was investigated by Dufour et al. [93]. After combining 

different categorical variables, it was possible to accurately predict the temperature history 

of anodes baked in different positions, which is typically not measured during normal 

operation. 
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1.6.2 Machine vision techniques 

Bogoya-Forero et al. [97] proposed a non-destructive machine vision sensor to predict 

Vibrated Bulk Density (VBD) of coke aggregate samples based on their surface textural 

characteristics that are obtained by imaging. In this work, coke mixture properties such as 

particle size, proportion and quality were predicted. They have benefited from the wavelet 

decomposition of the images that helps in model interpretations since it was already 

demonstrated in several industrial product quality control applications [99]. Particle mixture 

samples were collected from the dry aggregate mix from industrial conveyor belts just before 

adding pitch and thus VBD is typically measured according a standard procedure involving 

a vibration table [100]. Since the VBD is a function of the real coke density and its internal 

porosity, it is possible to make an appropriate link to the mixture quality. Furthermore, the 

pitch demand and anode density are highly related to the coke porosity which is one of the 

most important physical properties [98].  

Recently, a machine vision sensor was designed by Lauzon-Gauthier et al. [54, 102] 

for real-time monitoring of anode paste texture prior to forming. Since the visual textural 

appearance of the paste is influenced by the particle size distribution, coke particle porosity 

and pitch distribution, it was thus a good indicator of the anode quality. This method was 

investigated at a laboratory scale and then the final machine vision sensor robustness was 

successfully validated at the industrial scale at the ADQ carbon plant. In addition, the 

visualization and interpretation of the models for large and complex industrial datasets were 

improved according to the suggestions of previous works [90, 103] through a development 

of a new sequential multi-block PLS algorithm (SMB-PLS). This algorithm allows the 

integration of all data related to anode quality such as raw materials properties, process 

operating conditions, some real-time non-destructive measurements of the paste, green and 

baked anodes quality related features, baking furnace operation data, and more into one 

single model. 

1.6.3 Electrical resistivity measurements 

The electrical resistivity is an important anode property, and its distribution in the 

anode could provide indications about the presence of defects and therefore evaluate the 

anode quality. During the last decades, several studies have proven the effectiveness of the 

electrical measurements to generate information on several porous material properties. 
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Electrical impedance tomography [105], for example, has been applied in quality control and 

defects detection for various materials [106-108]. Unfortunately, this method is sensitive to 

the uncertainties and the inaccuracies of the implemented models. In addition, it does not 

take into account the spatial variations of materials conductivity [109]. Such a technique is 

an extension of the electrical resistance tomography technique, which has been used in 

defects cartography and cracks detection for inspecting concrete and composite materials 

[110, 111]. However, since these methods use the experimental measurements as inputs to 

numerical models, the effects of heterogeneities cannot be taken into account, mainly in the 

case of carbon anodes since the material is orthotropic.  

Seger [112, 113] published the earliest application of resistivity measurements for 

baked anodes, in the early 1970’s. The measurement system allows, firstly, the current 

circulation through the anode height. The current and the voltage drop between the stub-

holes and the bottom are then measured by mean of several probes for finally predicting the 

average resistivity value of the anode. Since that time, this same principle was extensively 

employed in the field of carbon anode quality control. Recently, a commercial on-line 

equipment named MIREA [114-115] was successfully implemented by Rio Tinto Alcan 

(RTA) in order to estimate the current distribution in anode block. According to the industrial 

operation, the current was effectively applied to the lateral surfaces of the stub-holes using 

metallic brushes. The anode resistivity distribution is then estimated by using a numerical 

model, which is calibrated by the voltage drop data measured between the top surface and 

the lateral anode surface at different heights. This system can extract the morphological 

information concealed in the voltage drops collected from different locations. Therefore, to 

obtain the spatial distribution of defects, it is necessary to collect the voltage drop in different 

directions. However, due to the size of anode block, the time consuming of the 

measurements remains high.  

The principle of eddy current has also been implemented by Haldemann and Fawzi 

[116] in order to measure the induced current losses in the surfaces of carbon samples. The 

anode sample quality was then predicted by the combination of the current attenuation and 

the electrical resistivity. The main drawback of the apparatus is the limitation of its magnetic 

field, which cannot penetrate deeply in the object. For such reason, the apparatus does not 

seem promising to inspect large objects such as industrial anodes. Furthermore, a 

comparative study between the average electrical conductivity of homogenous and defect 

green anode has been proposed in [117] to evaluate their quality. However, the test bench 
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provides a limited thickness of impedance measurement since the magnetic field created by 

the corresponding coil allowed a penetration of about only ten centimeters in the top anode 

layer. Unfortunately, this depth is not sufficient to evaluate the quality of the whole anode 

block.  

In order to cope with the limitations of the previous techniques, and to eliminate the 

useless baking of defective anodes, a non-intrusive measurement of green anode electrical 

resistivity has been developed by Kocaefe et al. [118-119]. Interesting results were found 

after conducting preliminary tests on anode samples and then on industrial anodes using a 

first generation measurement system. A second generation is now being developed in order 

to provide a more robust prototype, adapted to the industrial application. The main 

advantage of this on-line anode quality control technique is to allow earlier detection of the 

defective green anodes and thus effective use of the fuel in the baking furnace since the 

baking of defective anodes is circumvented. Even though it should be possible to measure 

the resistivity distribution in the whole anode block, it is not clear if these measurements 

could be used to discriminate between the various types of anode defects (e.g., cracks, 

group of pores, etc.). This identification of defects is necessary for taking timely feedback 

corrective actions on the anode manufacturing process. Finally, Alcoa has also proposed its 

own technology for measuring the green anode resistivity based on a 4 points probe (4PP) 

device [327]. 

1.6.4 Characterization of baked anodes and anode paste 

Recently, several characterization tests have been conducted on many anode parts 

to measure the mechanical properties of the anode material and thus directly evaluate its 

quality. Eliassen [20, 88] has proposed some correlations between mechanical properties, 

such as fracture toughness, tensile strength and fracture strain and physical properties such 

as density at different temperatures in order to simulate the anode cracking behavior in the 

electrolysis. Since the established relationships have limitation on crack size and part 

dimensions, a new relationship using a finite element numerical modelling approach was 

investigated [89]. However, due to the very little change relative to the variance of the 

measured values, a dependency to the temperature for the Young’s modulus was not 

established. 

Furthermore, Azari et al. [94-96] proposed a method to reduce the inconsistency in 

the baked anode quality by controlling materials variations and process parameters and 
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provide a feedback to tune the subsequent production steps. In this work, the compaction 

behavior of green anode paste was used as an intermediate quality index to reduce the large 

number of variables that are associated to the anode quality. The measurements include 

the evaluation of density, porosity, pore size distribution and particles shape factors. Good 

paste characteristics such as effective mixing, maximum density, minimum air permeability 

and specific surface area were defined via both optimum mixing time and mixing 

temperature.  

1.7 Other relevant NDT techniques 

The first part of the literature review showed that numerous research activities are 

being conducted to develop tools and techniques for monitoring the anode manufacturing. 

However, few works have directly focused on the anode block inspection. Although there 

are many experimental set-ups and some equipment that have been developed to 

characterize the anode material, it seems that very few attempts were made to develop a 

real-time quality control systems for baked industrial anodes, except the MIREA system that 

may not be able to locate and identify the defects. Consequently, the lack of on-line 

quantitative measurements makes it very difficult to face the increase in raw material 

variability and variations in anode manufacturing process, which increases the energy and 

carbon consumption. Therefore, alternative non-destructive testing techniques (NDT) need 

to be investigated. Indeed, since the electrical connection of the anodes is initiated from the 

center (stub-holes) and in order to expose its internal morphology, the concern of this work 

is the volumetric inspection of the anode block. Finally, the industrial application requires a 

quick but a detailed method that can solicit the whole anode block. 

1.7.1 Visual inspection 

Visual inspection is the most widely used NDT method. Indeed, the operator can 

directly identify the large defects of the surface. Furthermore, this kind of test provides 

information on which complementary control method to be used. There are two types of 

visual control for the detection of surface defects: direct and indirect. The direct control uses 

the naked eye but the indirect control uses some devices, such as endoscopes [120] and 

Charge-Coupled Device (CCD) cameras [121] that produce more rigorous control because 

of their recording ability. The limitations of this method are the different perceptions and the 

low accuracy of human being that cause the non-reproducibility of events. In addition, only 
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defects in accessible surface can be analyzed. This ancient and simple method reveals the 

presence of open discontinuities on surface such as scratches, macro and micro cracks, 

inclusion, wells, etc. It is applicable to all porous materials and its accuracy is as much as 

that of the visual system. In the context of a traditional quality control, this method has 

already been established in two different places in anode plants. The first one is during 

transferring anode on the conveyor and directly after the baking process to measure the 

different anode sizes. The second system is installed at the end in order to analyze the 

shape of anode butts. 

1.7.2 Electromagnetic or Eddy current testing 

This method involves the creation of induced currents in a conductive material by 

varying a magnetic flux, as shown in Figure 1-8. These induced currents flow locally in the 

material with a distribution that is dependent on the excitation of the magnetic field, sample 

geometry and electrical conductivity as well as magnetic permeability of the examined 

material. The presence of abnormalities in the tested material disturbs the current 

circulation. Consequently, by measuring the variation of the apparent impedance of the 

measurement sensor, it is possible to detect and identify the defects since such disturbances 

are correlated to the nature of these defects. The analysis is usually based on a comparison 

between the related apparent impedance signals and the signals measured from defect-less 

material. Notice that the eddy currents are mostly concentrated near the surface of the 

material because the electromagnetic field decreases exponentially with depth [122]. 

Although the penetration depth of the eddy currents in the material can be increased by 

reducing the excitation frequency (penetration depth is inversely proportional to the 

excitation frequency), using a too low frequency reduces the sensitivity of the method. 

Therefore, it is possible to use this method to detect only surface and sub-surface defects 

within conductive materials. 
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Figure 1-8 Eddy current testing procedure [52]. 

Haldemann and Fawzi have developed a system for controlling the electrical quality 

of carbon anodes in an automatic fashion, including detection of internal defects by 

measuring an eddy-current loss and resistivity in the block. A patent was published in this 

context [116], in which these authors have detailed the approach as well as the functioning 

of the system. The method consists of determining the electrical efficiency of anodes by 

determining their electrical resistivity after baking. It aims to detect internal defects such as 

cracks, voids, and heterogeneities in the carbon block. A combination of two electrical 

measurements was used to evaluate the quality of laboratory scale carbon anodes. First, a 

four-point probe was used to measure the electrical resistivity. Second, a large coil, 

surrounding the blocks with parallel capacitor, was used to measure the resistance of two 

groups of ten carbon blocks. The coil size has to be as close as possible to that of the carbon 

block and the electrical current intensity has to be optimal. The main drawback of the tool 

developed here is the limitation of the magnetic field and the resulting eddy-current 

penetration. For this reason, the developed tool does not seem promising for industrial 

anodes application. 

1.7.3 Ultrasound 

Ultrasonic Testing (UT) involves the propagation of ultrasonic waves in the material to 

be tested. In most common UT applications, very short ultrasonic pulse-waves, with center 

frequencies ranging from 0.1-15 MHz and occasionally up to 50 MHz, are transmitted 

through materials to characterize them or detect their internal flaws. It can be performed 

based on two configurations: transmission or reflection. The image shown in Figure 1-9, 

represents the principle of reflection ultrasonic testing. The transducers used in UT consist 
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of a transmitter and receiver, which are available as a separate units or embedded together 

as a single unit. Because of its effectiveness, this technique has become widely used in 

industry. Moreover, it can be used to quickly scan the entire volume of a part and then 

assess its state. Indeed, the presence of porosity strongly disturbs the propagation of 

ultrasonic waves [124-127]. The estimation of porosities in the material can be determined 

through evaluating the ratio of input and output signals [128-130].  

This technique also relies on the comparison of the measured attenuation through 

various materials versus that measured on standard test specimens. There is also the mode 

conversion technique that is quite useful in the field of characterization of porous materials. 

It involves immersing of the material in a viscous liquid to allow shear waves propagation 

after water saturating using the vacuum impregnation technique. The sample must be 

placed between two ultrasonic transducers for acquisitions under several angles of 

incidence. Depending on the chosen incidence angles, the transmitted wave is divided into 

two parts: slow and fast waves. By calculating the ratio between the speeds of these two 

produced waves, which is inversely proportional to the density, the porosity percentage of 

the examined material can be obtained. The main advantage of ultrasonic technique is that 

it allows for a multi-site assessment examination even in objects that have only one 

accessible surface. The measurements of the material properties can be provided based on 

the estimation of wave propagation speed through such material [131-134]. 

 

Figure 1-9 Schematic representation of Ultrasonic testing set-up (pulse-echo mode) [56]. 

The ultrasonic technique was applied in characterization and controlling of several 

heterogeneous materials in various fields that include the Young's modulus estimation of 

human bone [135], measuring dynamic elastic modulus of the porous titanium [136], 

damage evaluation and characterization for concrete, mortars and cement [137-145] and 

rocks, [146] determining the wood’s Young modulus [147] and characterization of ceramic 
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[148-149]. Since the method has been successfully applied on all the materials cited above, 

it may be effective in the porous carbon anode inspection. However, the anodes have larger 

dimensions, and this will increase the attenuation of signals in the entire blocks. Thus, having 

a powerful tool (acoustic wave generator, transducers) that is able to send high-energy 

waves is required to cross the large block that measures over 1.5 m. 

The ultrasonic reflection based method (i.e., pitch-catch) has been proposed by 

Haldemann and Fawzi for detecting cracks in the carbon anode center [116]. However, it 

was impossible to discriminate random backscatter caused by several irregularities (i.e., 

different kinds of pores) from that caused by actual defects. The random scattering also 

attenuates the signal rapidly when crossing the anode sample.  Random back scattering 

from a region close to the transducer may hide the signal from a defect located in the body 

of the carbon block. In addition, this strong attenuation requires a large amount of energy to 

be coupled into the carbon block, which in turn produces more random back scattering. As 

a result, the pitch-catch configuration is useless for carbon anode inspection. Other 

configuration such as transmission (i.e., pitch-catch) could thus cope with the scattering 

problem since the transmitted signal will be measured rather than the reflected one, and 

thus the attenuation caused by defects will be evaluated. Furthermore, it would be more 

beneficial if the implemented generator can produce very low frequency waves with high 

amplitudes. 

1.7.4 Acoustic emission 

The quality control using acoustic emission (AE) testing refers to the evaluation of 

transient elastic waves generated after stressing the material. One difference between AE 

and other NDE methods is that AE inspection can be used either with active excitation, such 

as pulse impact, or with passive excitation, such as spontaneous phenomenon relying on 

energy released from damage formation within the material undergoing the test [152]. 

Figure 1-10 shows a typical installation of acoustic emission test. AE wave propagation 

properties are highly correlated with the material composition and structural component 

characteristics. There are various acoustic excitation tools like AE generators [150-151], 

pencil lead break fractures [153], and excitation with balls surrounded by a variable number 

of metal rings [152]. 
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Figure 1-10 Typical mounting of acoustic emission testing [57]. 

Acoustic emission monitoring is a recognized non-destructive test (NDT) method 

commonly used to detect and locate several defects in materials. In recent years, the AE 

technique has rapidly developed and has become a very important research tool in porous 

materials since the signals generated by this method can deliver abundant information. By 

means of AE monitoring techniques, several materials quality problems leading to industrial 

instabilities, have been successfully solved. Early use of the AE method in porous material 

inspection was for laboratory specimens and simple concrete structures [154-155] before 

being extended to reinforced concrete, concrete composites and bridges [156-159].  

Since AE can be generated under the fracture stress level, it can be used to detect 

defects in fragile materials such as ceramics, silicon carbide, and sintered glass as well as 

different composites [160-163]. Other scientists have carried out extensive research of AE 

phenomena in rock and expanded this to coal rock [164-167]. In the carbon anode field, 

some analyses of preliminary measurements have been conducted on anode block samples 

[116]. The audio sound measurements after hitting different samples using a metallic 

hammer resulted in good discrimination between all sound signatures. However, after they 

easily convert the time domain signatures for each carbon block into frequency spectra, 

some difficulties arose, mainly to determine which part of the spectrum corresponds to flaws. 

Consequently, the authors have abandoned the technique for two reasons (according to 

their opinions). First, this technique requires a homogeneous graphite block to calibrate the 

sound measurement device, and obtain good results with this technique. However, this type 

of calibration material is difficult to obtain. Second, the calibration experiment would have to 

be conducted in an anechoic chamber, which is relatively expensive, in order to protect 

against environmental sound contamination. This approach could be adapted to anode 
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blocks and the analysis of the signals be further studied in order to take advantage of the 

AE method which include better reliability, disturbance to the object, and quick analysis that 

makes it possible to be implemented in real time quality control like in [168].  

1.7.5 Vibration analysis 

The Modal Analysis (MA) approach is usually used for material characterization, 

numerical models updating, and quality control of different products. This technique consists 

of analyzing mechanical oscillations of any material around a reference position [169]. These 

oscillations result from external forces transmitted to the material by mean of a hammer, 

loudspeaker, or shaker. After acquisition of the spatial variation signals using 

accelerometers, microphones or laser vibro-meters, the MA decomposes these signals to 

that we call vibration modes. Some frequency/time indicators can be easily extracted to 

inform about the existence of defects. Figure 1-11 presents the principles of vibration 

analysis testing. 

 

Figure 1-11 Typical vibration analysis set up with impact hammer [58]. 

Material vibration testing and analysis contributes to the progress in many aspects, 

including quality control, diagnosis prediction, and process monitoring [170-171]. The most 

common application is the identification of unwanted vibration modes to improve product 

quality. Vibration-based techniques have been successfully applied for health monitoring 

and quality control of orthotropic materials such as concrete and composite [172-174]. For 

example, it was shown that the identification of defects could be performed by 

measurements at specific locations since damage indexes are affected by the distance 

between such locations and the defects. In addition, an attempt to evaluate the effect of 

defects in graphitized composite on modal dynamic characteristics was carried out by 
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Campanelli and Engblom [175]. In the latter, an efficient computer model was successfully 

developed but the experimental results were difficult to analyze due to the presence of 

spurious modes in the frequency response data. Recently, MA has been used in order to 

replace some traditional methods such as visual classifications and static tests of woods 

[176-177]. The good correlation between physical properties of woods and their dynamic 

properties resulting from vibration analysis were confirmed in these works. 

In general, there are a lot of advantages but also some drawbacks in the experimental 

vibration analysis. The most important advantage is its versatility to identify both 

displacement and strain with one type of sensor, which allows an effective analysis with a 

minimum number of sensors. In addition, it can be used to test different object sizes, allows 

fast tests, delivers immediate answers, and needs low cost investment in experimental as 

well as numerical tools. However, it does not provide information on the location and the 

size of defects when the block size is very large versus that of defects. The user thus can 

just be informed about the existence of defects and if a further control on the material is 

necessary. In addition, instrumentation can be a very critical issue and thus some skills 

would be required in bonding strain gauges or other strain sensors since they can easily 

degrade the quality of the measured signal. Finally, vibration analysis seems to be easily 

implemented in industrial process monitoring.  

1.7.6 Radiography 

Recently, several studies focused on the development of the radiography technique. 

This method is presented in Figure 1-12. The radiography principle is relatively simple: X or 

Γ (gamma) rays, respectively in the frequency range of 3.1016 Hz - 3.1019 Hz and > 3.1019 

Hz, are projected by a radioactive source to analyze the structure. The resulting 

electromagnetic waves (possess very short wavelength: 10-12-10-8m for X-rays and less than 

10-12m for Γ-rays) cross the material where the energy beam is differently absorbed by the 

material contents. A photographic film captures the emitted rays where the more captured 

energy in some location give the information about the existence of defect. Finally, a visual 

examination of the photography film is to be performed by the experts [178]. 
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Figure 1-12 Radiography testing procedure [59]. 

Radiography is a method, which is often used to inspect welds for detecting external 

and internal defects. This method is able to check out the integrity of all types of materials 

(even through several centimeters of steel) and complex geometry parts. The application of 

X-ray radiography to detect several kinds of defects and to characterize porous materials 

such as ceramic, concrete and composites, have been reported since a long time [179-182]. 

For safety reasons, it is necessary to use this method with great caution. Indeed, the room 

must be surrounded by lead to confine the radiation. Unfortunately, for the productivity, time 

consuming and sample size, the potential of application of this technique for quality control 

of anodes is somewhat limited.  

1.7.7 X-rays tomography  

Tomography or CT scan is a recent 3D analytical technique, which provides bulk 

distribution images of the X-rays absorption coefficients. When the sample is considered a 

multi-material whose constituents absorb X-rays at various percentages, it is possible to 

extract a 3D image of the microstructure by segmentation. Figure 1-13 presents the tools 

and the principle of the technique. Tomography allows density measurements, size 

estimations, detecting abnormalities inside objects, and monitoring materials under stress 

[183-184]. Schell [185] was able to get a 3D mapping of fibrous composite material network 

by the application of this method. These works, as well as those of Zermatten [72], explain 

how to obtain porosities present in composite material using a 3D mapping. The calculation 

of the volume percentage of voids and their sizes, which is one of common problems in 

porous materials, can thus be achieved accurately (if the resolution is good and 

consequently the porosity is bigger than pixel size). Nevertheless, this technique is relatively 
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expensive and its application is limited to relatively small objects because of the available 

tools as well as the huge quantity of the generated data. 

 

Figure 1-13 The experimental set-up for obtaining a CT-scan image [70]. 

In the primary aluminium production field, X-ray CT scan has been used by Adams et 

al. [76] in the non-destructive 3-D characterization of pre-baked carbon anodes. The method 

enables reconstruction of the internal morphology of carbon samples. In other works [77, 

79, 80], Picard et al. have demonstrated the use of CT scanning to determine apparent 

density and to estimate the porosity of anode core samples. As a result, a linear relation 

between the anode apparent density and the X-ray attenuation coefficients (CT numbers) 

has been successfully developed. The anode porosity estimation has also been performed 

using a best-fit relationship. In addition, an automated crack detection method was 

successfully applied on the CT-scan images of baked carbon anode slices [80]. This crack 

detection based method, combining accuracy and low computation time, was previously 

developed by Yamaguchi [86, 91] to detect cracks in concrete. Comparing to conventional 

X-radiography, CT scanning is relatively long and high-cost in porosity estimation [92] but it 

is better in other applications that require defects identification since it gives a good 3D 

representation of the material. In addition to the high cost, finding an apparatus that can 

accommodate objects as large as the anode blocks considered in this research is an issue. 

1.7.8 Thermography 

The NDT infrared thermography (IR) method uses a scanning infrared camera for 

temperature sensing and an illumination system, most often, for transmitting the heat to the 

material (Figure 1-14) and this method is called active thermography. Contrariwise to that is 

called passive thermography, where the material is already hot and consequently doesn’t 

need an external temperature gradient to be heated [101]. The presence of defects can be 
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visualized by a change in the surface temperature of the material as shown in the below 

mentioned Figure 1-14 right (thermal contrast). This technique also reveals the thermo-

physical properties of materials such as thermal diffusivity and thermal conductivity [104]. 

Some works on thermographic testing of composite materials [123, 267] and especially 

sandwiched material [287] have been reported. In particular, when the entire thermal field 

of the sample can be obtained, the defects in thin objects, metallic or composite, can be 

detected in this thermal field by mean of suitable software. However, the detection and the 

characterization of small defects concentrated within the center of thick object are very 

difficult.   

 

Figure 1-14 Experimental set-up used for IR thermography [71]. 

1.7.9 Synthesis and method selection 

Each NDT method has its own set of advantages and drawbacks. Some are better 

suited than others in a particular application. Table 1-3 shows the characteristics of the NDT 

methods used in the industry. These characteristics were evaluated by Kuhn [293] based 

on the following criteria: 

 Material: Is this method appropriate for metals and/or composite materials? 

 Geometry: Is it possible to apply this method directly on the real product? Should the 

object size be limited or can be unlimited? The object may have a complex 

geometry? 

 Measurements: The excitation and detection can be easily performed? What kind of 

configuration is possible (i.e. transmission, reflection or both of them)?  

 Defect size and location: Is the technique adapted to detect surface defects, sub-

surface or located in the center? 
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 The method impact: What type of contact is required between the material and the 

tools used in the technique? Does the method risk the creation of further damage? 

Does the nature of the technique cause negative environmental impacts? 

 Rapidity of the method: is the time required to perform the tests and interpreting the 

results sufficiently quick to allow control in real time? 

 Industrialization: Is the method easy to implement and/or automate? What is the 

overall cost of the method? 

Table 1-3 Main features of the widely used non-destructive testing methods used in the 
industry (Modified from [293] and [294]). 

 Visual 
inspection 

(C) Eddy 
current 

Ultrasonic Acoustic 
emission 

Vibration 
analysis 

Radiography Tomography Thermography 

Applicable to 
composite materials 

 

++ -- ++ ++ ++ ++ ++ ++ 

Material 
tested directly 

++ ++ -- + ++ -- -- ++ 

 
Large blocks sizes 

 

++ ++ ++ ++ ++ - - ++ 

Complex geometry - - + + ++ ++ ++ + 

Subsurface 
volumetric defects 

 

-- + ++ ++ + ++ ++ + 

Respect of the 
block integrity 

 

++ ++ + ++ ++ + + + 

Environmental 
compliance 

 

++ ++ + ++ ++ -- -- ++ 

Method 
implementation 

 

++ ++ + ++ ++ -- -- + 

Price of standard 
equipment 

 

++ ++ - ++ ++ -- -- + 

Rapidity 
 

++ - ++ ++ ++ - - ++ 

Possibility of 
automation 

++ - ++ + ++ -- - ++ 

                                                                           (C) Conductive materials only 

(--) not suited or not possible           (-) not well suited          (+)Fairly well suited         (++)Ideal application 

This literature review lead to a detailed overview of non-destructive techniques that 

can be applied for porous materials quality control where each technique has its own 

advantages and disadvantages under certain circumstances. Among these NDT methods, 

modal analysis is more appropriate for quickly evaluating the anode block quality and is 
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easily applicable in industry. It can also provide automated contactless tests with a minimum 

number of experiments. In addition, modal analysis needs a low excitation frequency, using 

a mild material such as rubber in order to avoid the deterioration of the fragile carbon anode.  

On the other hand, acoustic emission (AE) and ultrasonic-based techniques are 

considered to be promising for deeper real-time control of microstructural changes and 

defects evolution in various porous materials. However, in many practical situations, the 

application of acoustic emission techniques in the anode plant is not the best choice since 

the fragile baked anodes must be subjected to an acute mechanical loading in order to 

create sounds emission, and such loading can result in permanent damage to the carbon 

block. Although conventional ultrasonic techniques can detect defects such as voids and 

cracks, they are not very sensitive to succession of defects mainly those having random 

orientations in several directions or being emerged in large quantity of pores. The 

combination of acoustic and ultrasonic emissions, named acousto-ultrasonic (AU) technique 

[298], provides an alternative approach that gathers the advantages of both acoustic 

emission and ultrasonic methods to give a detailed inspection. For this reasons, vibration 

analysis could be applied first to inspect the totality of manufactured anodes and check if a 

more detailed tests are required. Then, if necessary, acousto-ultrasonic testing would be 

applied to deeply analyze the defected anodes and ultimately create a coupled method.  

Finally, CT-Scan can be used in order to validate acousto-ultrasonic and/or vibration 

results since it approximately (depend on the CT image resolution) reveals the internal 

structure and provides the calculation of the volume percentage of the voids (i.e. pores and 

cracks) and their sizes inside porous materials, especially that of baked anodes, using a 3D 

mapping. 

1.8 Objectives 

This work has been undertaken with the general aim of increasing the effectiveness 

of aluminium production by means of developing an inspection system to assess the quality 

of anodes and the presence of defects (cracks, pores, heterogeneities, etc.) before baking 

them or using them in the electrolysis process. This would allow manufacturers to observe 

in real-time the performance of the anode production process and to reduce the adverse 

effects of defect anodes on the performance of the electrolysis. It could also allow making 

timely feedback control adjustments to the anode production process. In addition, the new 
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inspection system should be sensitive to cracks and pores as well as their localization, and 

should also be selective to discriminate between these common defects. 

The strategy involves two quick, non-destructive and complementary techniques for 

inspecting anodes directly after the baking process as shown in Figure 1-15, which 

represents the final inspection concept that we propose for the future. This thesis focuses 

on demonstrating the potential of modal analysis and acousto-ultrasonic for baked anode 

inspection. To the author’s knowledge, this thesis presents the first application of these non-

destructive techniques to the inspection of full-size individual baked carbon anode blocks. 

The two methods would be combined as follows. All baked anodes would be first inspected 

by the vibration method and then if a defect is detected, the flagged anodes would undergo 

a detailed inspection by acousto-ultrasonic to identify and locate the defects (i.e., diagnostic 

phase). The latter will allow sorting of the anodes having critical defects, which will be 

removed from the line and sent to recycling. The proposed inspection scheme may also 

provide relevant information for applying feedback corrective actions on the anode 

production process. For example, heterogeneities may be caused by poor mixing of the 

anode paste and therefore requiring an adjustment of mixing parameters such as 

temperature or duration. In regards to cracks, the worst defects, depending on their 

orientations and size, the process in which they are initiated may be also identified and 

consequently corrective actions to the appropriate process parameters could be 

implemented. 
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Figure 1-15 Schematic of the quality control methodology for baked anodes. 

This PhD thesis then aims at demonstrating the potential of modal analysis (MA) and 

acousto-ultrasonic (AU) methods for the inspection of pre-baked carbon anodes. The 

following specific objectives were pursued in this work. 

The first specific objective is to develop the experimental set-ups for investigating the 

selected non-destructive techniques. In particular, it is necessary to determine how to excite 

the anodes and to collect the corresponding response signals for both MA and AU 

approaches. Depending on the nature of the technique and the available tools, the 

investigations can be conducted either directly on the full size industrial anodes or on some 

samples in the beginning, and then have to be extended on full-scale industrial anodes. 

The second specific objective is to develop an algorithm for each inspection technique 

in order to process and analyze the collected data and then calculate and select the best 

relevant features. These features have thus to be used in only one classification model 

based on multivariate statistical methods in order to allow the classification of the tested 

parts based on their vibration and acousto-ultrasonic signatures and make the 
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corresponding interpretations. Demonstrating the sensitivity of MA and UA to the most 

common defects in baked carbon anodes (cracks and pores) is the ultimate outcome. 

The third specific objective is the validation of the obtained results by the CT-Scan 

technique. Since this technique is already investigated in the case of anode material, it just 

remains to be adapted according to our needs. Developing the new corresponding 

algorithms that allow the relevant analysis of the images is then required. 

Finally, it is necessary to optimize both testing and analysis methods for reducing the 

control time consuming and demonstrate the robustness of the testing strategy on several 

full-scale industrial anodes in order to pave the way for the online control. 
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Chapter 2 Materials and methods 

2.1 Introduction 

As discussed in Chapter 1, modal analysis (MA) has been used extensively in 

evaluating the structures integrity, investigating the properties of materials and detecting 

defects. Acoustic emission and ultrasound are quantitative techniques and tend to be more 

versatile. These techniques, which give individually good results, are even more interesting 

when combined together. Such combination, named acousto-ultrasonic, makes it possible 

to mutually fill the gaps between acoustic emissions and ultrasound. As the name implies it 

is closely linked to the acoustic emission technique since it is equivalent to the simulation of 

the acoustic emission with ultrasonic sources. The acousto-ultrasonic technique is 

increasingly used because in many cases it complements other non-destructive methods.  

Vibration analysis and acousto-ultrasonic techniques both need mechanical excitation, 

but consist of different acquisition technologies and their outcomes of completely different 

natures. Both of them use an electromechanical transducer, which generally consists of a 

single piezoelectric ceramic plate that converts an electrical signal into mechanical vibration 

and vice versa. From this point forward, these transducers will be called vibration sensor 

and acoustic sensor, respectively. The vibration sensor gives an electrical output 

proportional to the motion energy (i.e., acceleration, velocity or displacement) to which it is 

subjected. This electrical output usually has a wide dynamic range and frequency 

bandwidth. However, an acoustic sensor detects sound waves that originate from 

mechanical excitation and travel through the material. Acoustic sensors convert the selected 

sound waves to a proportional electrical signal. They typically provides clearer signals than 

does a vibration sensor at the cost of having a significantly narrower useful frequency range. 

Sound waves are created at the vibrating surface with the same frequency and proportional 

amplitude as the original vibration. Note that in order to avoid unnecessary repetition, the 

detailed description of the various equipment used in vibration and acousto-ultrasonic is not 

presented in this section since it is provided in sections 3.2.1, 3.2.3, 5.2 and 6.2.3. 

In addition, the volumetric X-ray CT-scan technique was found to be effective for 

measuring anode density/porosity and was used to validate the different results. Finally, the 

high number of the resulting data (vibration, acousto-ultrasonic and CT) were analyzed using 

multivariate statistical methods, such as Principal Component Analysis (PCA) and Partial 
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Least Square (PLS) regression. To achieve these investigations, several industrial anode 

parts as well as many full size anodes were tested. 

2.2 Modal analysis 

2.2.1 Principles of modal analysis 

Modal analysis is a dynamic method to test a material or a structure by studying its 

vibrational behavior under mechanical excitation. The modal characteristics are highly 

correlated with the vibration behavior of the object that is determined by the properties, size 

and geometry of the material. For a given material, any defect is able to change its 

characteristics and consequently its dynamic behavior. When this method is implemented, 

the object is subjected to a mechanical excitation in order to solicit the material. The concept 

includes three main phases: excitation of the object, measurement of the modal responses, 

and extracting specific features from these responses. However, a relevant choice of 

excitation and measurement tools is required since the results can be affected by these 

elements. 

2.2.2 Types of excitation systems 

The excitation of the object is critical in modal analysis because the resulting 

measurements depend directly on the excitation technique. The excitation tool must be able 

to stimulate the block with sufficient amplitude over a wide frequency band in order to allow 

easier acquisition, mainly when intermediate sensitivity sensors are implemented. As it was  

reported by Matter [289], the most common excitation methods, [186-188], are: 

 Excitation with hammer; 

 Excitation with shaker; 

 Excitation with loudspeaker. 

The hammer performs an impact excitation. It requires the object to be fixed so as not 

to be sensitive to the rigid modes, except when the tested object is quite heavy or the 

measurement sensors are installed directly on it (i.e., accelerometers). This type of 

excitation provides enough vibration amplitudes, but on a limited and variable frequency 

strip, always depending on both object and hammer materials. Impacts resulting from 

hammer are generally difficult to reproduce. In addition, it is very likely to introduce some 

parasite signals due to the lack of precision as well as the possibility of bouncing that can 
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be caused by the operator’s hands. That is why a pre-treatment is necessary using 

averaging, windowing, and overlapping to perform good quality measurements [186]. A 

rubber hammer seems to be suitable for the current work where the anode block is quite 

heavy and the fundamental natural frequencies are low (under 500 Hz). 

The excitations produced with a shaker are quite flexible. A random noise over a long 

period of time to cover a wide frequency band with constant amplitude is often selected 

[187]. This kind of excitation tool requires a mechanical linkage with the object. In general, 

a small-diameter rod is used to transmit the excitation force of the vibrator to a point on the 

object. The advantage of the shaker is the ease of measuring the force transmitted to the 

specimen and hence the amplitude, phase, and position of the excitation can be determined 

accurately. It is further possible to transmit high forces and to excite the specimen over a 

reasonably wide frequency range, between 10 Hz and a few kHz for high excitation forces 

(around many kN) or up to 20 kHz for low excitation force (about 20N). The drawback of this 

excitation technique comes from the mechanical link connecting a non-fixed object to the 

shaker. This problem appears just in the case of light objects, since this bond influences the 

modal behavior of the structure and must therefore be taken into account during data 

analysis. For heavier blocks such as the carbon anodes, this problem does not take place. 

This solution could be considered to automate and industrialize the final concept. 

The speaker has the most elegant solution at first sight since it provides a contactless 

excitation and good results have been obtained previously [188]. The excitation is 

transmitted through air and sometimes the amplification of the excitation sound is required, 

depending on the application. In addition, by using adequate measurement systems, this 

excitation method allows achieving a modal analysis of the object very similar to a free (not 

fixed) configuration. The major disadvantage of this technique is the difficulty of measuring 

the excitation force transmitted to the structure. Since the excitation is transmitted through 

sound waves, it will be spread in the air (not punctual) and consequently will provide a weak 

excitation. Therefore, the precise evaluation requires measuring the features (amplitude and 

phase) of the pressure field exerted on the entire surface of the tested object, which is very 

difficult. Otherwise, it is possible to measure the excitation using a microphone, fixed as 

close as possible to the specimen surface and directly in front of the speaker where the 

excitation is maximal. An approximation of the ratio of both microphone spectra and 

specimen displacement can be obtained. Furthermore, due to the airborne transmission of 
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the excitation the speaker cannot generate sufficient vibration amplitude within the material, 

mainly when the corresponding object is large and dense. 

A comparative study of the previous techniques has been highlighted by Lafleur et al. 

[189]. The results show a great similarity between the resonance frequencies and their 

respective dynamic properties produced by means of a hammer or a speaker. However, 

there is a slight difference between the results obtained by shaker and those obtained by 

the two other excitation techniques. The measurement errors have been attributed to the 

mechanical connection required by the shaker technique that acts as a preload and changes 

the object weight and stiffness to a certain extent. This phenomenon causes a shift in the 

corresponding natural modes. Hammer excitation is the least expensive and the easiest to 

implement, this explains why this approach was selected in this thesis project. Table 2-1 

summarizes the main characteristics of each type of excitation and provides supporting 

arguments for our choice. 

Table 2-1 Comparison of excitation methods (modified from [189]). 

Features METHOD 

SHAKER HAMMER ACOUSTIC 

Experimental 
preparation of the 

analysis 

long short short 

Mechanical 
connection with 
the study object 

yes no no 

 
Adjustment of the 
frequency range 

easy 
(depending on the 

signal 
generator) 

difficult 
(depends on the 
impact hammer 

head) 

easy 
(depending on the 

signal 
generator) 

 
Frequency shift 

yes Depends on the 
weight of the 

hammer 

no 

Change of the 
excitation point 

long short defining the 
excitation point 

Reproducibility of 
measurements 

good pretty good good 

Adaptation to any 
type of object 

yes yes Mainly shaped 
structures of plates 

and shells 

 

2.2.3 Measurement tools  

Studying the dynamic response of materials under different conditions is very delicate 

for several reasons. First, such analysis requires a high degree of reliability since a repetition 
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of many tests is necessary. It follows that the experimental tools and procedures have to be 

carefully chosen in order to be not intrusive, easily repeatable, and able to provide a reliable 

characterization of the object dynamic behavior, as it was reported in [200]. Basically, three 

types of vibration measurement techniques are available for performing modal analysis. 

These are presented below and comments are made about their suitability for anode 

inspection: 

 Accelerometers: these are widely used in modal analysis, partly due to their wide 

dynamic range and wide frequency bandwidth [190-193]. They are electro-

mechanical transducers that give an electrical output proportional to the acceleration 

to which they are subjected. The spectral analysis of the temporal signals measured 

at various points on the object, leads to identification of the natural frequencies of 

the object and mode shapes. The measurements have to be taken when the 

maximum of fundamental (global) modes can be detected (i.e., it should not be 

limited to local or particular modes). The locations, likely to be nodes (where 

displacement is zero), have to be avoided and those likely to be bellies (where the 

displacement is maximum) have to be favored. In practice, since it is rather difficult 

to coincide exactly with a node, the positioning of accelerometers is not too 

restrictive. The interest behind searching the global modes is to identify the global 

deformation of the whole anode, but do not to miss detecting of some local defects. 

An accelerometer is a small device and is relatively low cost but it needs to be 

attached to the vibrating surface. This is sometimes difficult to achieve especially 

when the tested structure is small because the attached accelerometer itself may 

change the modal response of the object. It is also time consuming to place the 

devices and it is laborious to measure vibrations at several different locations, which 

is essential in the case of large objects. This is the main drawback for using 

accelerometers in industrial applications when short cycle times are required. 

Nevertheless, this technology was selected in this thesis for modal analysis of carbon 

anodes due to their simplicity and low cost. 

 Laser vibrometer: this measurement technique, for evaluating vibrations and 

performing modal analysis, has a widespread application. The measurement 

principle is based on an optical method by means of Doppler effect [194]. The 

specimen is usually fitted with reflective patches to improve the laser reflection and 

consequently the measurements quality. The evaluation of the difference between 
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the incident laser beam and the reflected one allows determining the vibration 

intensity. The analysis of the signal acquired at each instrumented point provides a 

good visualization of the object deformation [195]. However, it is better to use three 

laser sources to obtain a three-dimensional representation of the dynamic 

responses. Such technology is rather expensive but allows accurate contactless 

measurements. It can also be easily implemented in real time control of carbon 

anodes since it provides quick measurements. In spite of being more expensive, 

laser vibrometers are preferred over accelerometers for industrial high-speed 

inspection. 

 Microphone method: This is a rather convenient measurement method because it 

also allows a contactless identification of frequency responses. The measurement is 

multiple since the acoustic pressure is generated from the entire opposite object 

surface. Some studies [189] have shown that it is actually possible to achieve the 

modal analysis of the object using only one microphone installed near the structure. 

This method of modal analysis with a single reference constitutes an innovation in 

the field of the modal analysis. The possibility to consider only one input is argued 

by Bendat [196-197]. This acoustic modal analysis method is thus similar to an 

operating deflection shape [198-199], which would use as reference sound pressure 

instead of vibration intensity. The quality of frequency measurements using this 

configuration is perfect, and it is fully consistent with the typical frequency 

characteristics. However, the acoustic disturbance generated by vehicles and 

machines in industrial environments is the main drawback. The implementation of 

this method for an industrial application ideally needs a soundproofing, which adds 

high costs. 

This study aims at developing a non-destructive inspection system that will be 

subsequently implemented in the anode manufacturing plants. Consequently, it is not 

obvious to use the microphones to measure the material response since it requires an 

environment without background noise, which is not the case in the anode production plants. 

Implementation of microphones requires using a sound isolation chamber that will likely lead 

to a more expensive set-up in comparison with the two former methods. Otherwise, 

accelerometers and laser vibrometers are widely accepted as valid tools for dynamic 

measurements. Their limitations rarely prevent the accurate measurement of the 

phenomena of interest. Several works have made a comparison between both laser 

vibrometer and accelerometer technologies [200-202]. It has been shown that the laser 
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vibrometer and accelerometer are well-correlated methods in modal analysis. However, the 

laser-based method can provide better quality of measurements. This is due to their 

immunity to electrical noise since there are no weak electrical signals transmitted by cables, 

and also due to the independency to the vibration frequency as well. Meanwhile, it is 

preferred to isolate the laser head from environmental vibrations. These reasons encourage 

the implementation of vibrometers for inspecting quickly and easily the anodes, and for using 

the results for a better process control. The accelerometer technique is worth investigating 

for proof of concept since it has a low cost although it is more time consuming. 

Accelerometers were used in this study, but this is not the best choice for the final industrial 

application because it needs to be adapted to high production rate. 

2.2.4 Numerical modal analysis 

A finite elements model was built for anode in order to support the establishing of the 

experimental set-up. The purpose of the model was to simulate the vibration response of 

the anode block obtained for different combinations of excitation points and different ways 

of supporting the anode. The objective was to select the combination that allows the global 

and coupled modes discrimination and thus facilitating the analysis. Indeed, the set-up 

configuration should excite the global deformation modes to be able to capture all possible 

types of defects of different severities (sizes). The finite element method (FEM) [203-204] 

seems to be the best method for the numerical modal analysis of the anode, especially in 

the reproduction of non-linear behavior (i.e., orthotropic material), which is very complicated. 

Moreover, FEM allows computing the natural frequencies and mode shapes of the object 

directly via a conventional calculation of the simulated vibration response to a given 

excitation. 

The FEM model has been implemented in ABAQUS/CAE 6.14-1. The choice of this 

software has been conditioned by the work of Bui et al [206] who highlight the possibility of 

using ABAQUS for harmonic analysis with non-homogeneous materials. To minimize the 

resolution time of the numerical model, modeling the small details of anode, as the flutes of 

the stub holes, was avoided. This solution would indeed have required a significant number 

of elements in order to obtain a correct modeling of a complex and fine geometry relative to 

the dimensions of the model and would need more partitions to make a valid meshing. An 

elegant solution to limit the best model size without compromising on accuracy is the use of 

an average value at the slightly sloping sides. The boundary conditions are applied at the 

contact anode/supports. The anode is supported on bars using type of constraints "tie" and 
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"hard contact" as type of interactions that allow good modeling of degrees of freedom 

associated with the anode supports. 

 

Figure 2-1 Meshing of the anode. 

In order to predict the vibration responses of the full size anode, a simple three-

dimensional model is constructed. It is worth mentioning that distributed irregularities, such 

as pores and cracks, generally cause mass and stiffness variation. Accordingly, the anode 

model was divided in seven different volumes, as reported in Figure 2-2 (Area #1…#7), and 

thus the corresponding mechanical properties were assigned to each area. The values of 

densities were calculated from some reference anodes using computed tomography. 

Contrariwise, the Young’s modulus and Poisson ratio values were taken from the work of 

Eliassen [20] and Allaire [301], respectively, while the bars are always modeled with the 

standard steel properties. Table 2-2 presents the range of value used for these mechanical 

properties, including its designation and the respective units. The finite element model of the 

anode was developed using Abaqus/CAE 6.14-1 software and the anode was modelled with 

more than 100000 quadratic solid elements as shown in Figure 2-1. Some mode shapes of 

the relevant calculated modes are portrayed in Figure 2-3. Lastly, is important to mention 

that the selection of the equipment, accelerometer locations and excitation points as well as 

the best way to support the anode are detailed in Chapter 6. More details on the numerical 

model as well as a comparison between experimental and numerical results are available in 

Appendix 4. 
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Figure 2-2 Areas distribution for the allocation of suitable properties. 

 

Figure 2-3 Example of the anode mode shapes. 

Table 2-2 Mechanical properties of different areas. 

Area 
Density 

(kg.m-3) 

Young’s 

Modulus (MPa) 

Poisson’s 

Ratio 

1 1590 10000 0.18 

2 

3 

4 

5 

6 

7 

1610 

1610 

1590 

1580 

1570 

1560 

11000 

11000 

10000 

9000 

8000 

7000 

0.18 

0.18 

0.18 

0.18 

0.18 

0.18 
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2.3 Acousto-ultrasonic 

2.3.1 Principles of the method 

In this section, the acousto-ultrasonic (AU) technique is discussed in more details to 

provide the reader with a better understanding of the physical phenomena behind the AU 

signal propagation, and thus facilitating their analysis and interpretation. The AU is the 

second method that is proposed to use since it meets the final requirements of the research 

problem, which can be summarized as developing a non-destructive inspection method that 

will not only identify the defects, but will also locate and diagnose them. This technique was 

developed in the late 80s as a non-destructive tool for the evaluation of the mechanical 

properties of composite materials [207-209]. This method uses the propagation of 

mechanical waves to detect and quantify flaws in objects. It has received considerable 

attention [210] and it is especially useful to provide measurable quantitative parameters that 

correlate well with physical properties of various composite and porous materials [211-223].  

AU combines ultrasonic characterization and acoustic-emission signal processing. 

The last term can result either from an acoustic generator excitation or from a sudden energy 

release caused by local environmental changes such as micro-cracking, grain boundary 

sliding, dislocation motion, etc. The generator excitation or the spontaneous event generates 

a mechanical wave in the material. This wave is detected at the surface by a piezoelectric 

transducer, which converts it into an electric signal. This same phenomenon occurs when 

using the acousto-ultrasonic method: an ultrasonic transducer converts a series of electrical 

pulses into ultrasound mechanical waves that are injected into the material. During 

propagation between both excitation and acquisition sensors, these waves interact with the 

internal morphology of the material. 

Consequently, the received acousto-ultrasonic signal is information-rich about the 

structural features of the material. Thus, AU differs from conventional ultrasonic methods 

especially in the nature of the received signal. The response is actually a superposition of 

several waves resulting from the interaction of the original excitation signal with the 

microstructure of the material [212-215]. The morphological factors such as porosity, 

heterogeneity of composition and various defects (e.g., cracks), taken separately or 

together, influence the propagation of the waves and correlate at the same time to changes 

in the material’s mechanical properties. 
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2.3.2 Theory of mechanical wave propagation 

Contrary to electromagnetic waves that can propagate even in vacuum, elastic waves 

need a material medium, fluid or solid, to be able to propagate. The elastic wave is generated 

by a mechanical disturbance propagation such as expansion, compression, shearing and 

vibration inside materials. This disturbance has some temporal shapes. If it is sinusoidal with 

unique duration, the phenomenon is then called harmonic or monochromatic since it has a 

single frequency. It can also comprise several harmonics; it is then periodic but with several 

superposed frequencies. In all cases, there are three frequency ranges: 

 f   20 Hz – Low-frequency waves – Infrasound field 

 20 Hz   f   20 kHz – Audible frequency – Audible field  

 f   20 kHz - High-frequency waves – Ultrasonic field 

In order to have a more detailed idea on different frequency bands, which are 

associated with real applications, each of the following ranges is assigned to a practical field 

of application [344]: 

 1µHz-1Hz : Geophysics, seismology 

 10Hz-100Hz : Geological, Seismic 

 10-100kHz : Ultrasonic cleaning systems (fronts, gear, ...) 

 1-30kHz : Generation of ultrasound by means of microwave 

 10-100kHz : Submarine acoustics 

 50-500kHz : Non-destructive testing with air-coupled ultrasonic 

 20kHz-20MHz : Non-destructive testing with contact or immersion, Acousto-

ultrosonic, Medical, Ultrasound 

 20-100MHz : Acoustic microscopy (thin imaging) 

 100MHz-1GHz : Acousto-optic, acousto-electronic 

 1GHz-1 THz : Study of matter (microscopic) 

From a wave propagation point of view, any material medium can be considered as 

a linear sequence of N spherical particles, each of mass Mi, connected by springs having 

stiffness Ki, which results in a discrete medium with N degrees of freedom, as illustrated in 

Figure 2-4. When the first spring k1 is placed into motion by means of an external force Fext, 

oscillation will take place at the natural frequency fn which is among the properties of the 

system. This spring tends to return to its equilibrium state, and it does so by launching the 
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mass M1 to the right. The latter compresses the second spring K2, which is connected to 

the corresponding mass M2. Thus, side by side, the masses displace to the right, while the 

springs are successively compressed and so on until return to the equilibrium position. Such 

a phenomenon is actually the disturbance propagation in a material medium. 

 

Figure 2-4 Explanatory diagram of propagation [224]. 

It is then possible to define a spatial dimension of the interference that is the 

wavelength λ calculated by ratio of the speed (c) and the frequency of the wave (f): λ = c / f. 

For an effective inspection, the distance between adjacent masses of the sequence have to 

be smaller than the wavelength λ in order to decrease the effect of the signal dispersion in 

interfaces between the particles. In addition, the wavelength should be two times smaller 

than the size of the sought defect. 

2.3.3 Propagation modes 

There are two basic types of wave motions (propagation modes) for mechanical 

waves: longitudinal and transversal waves. In longitudinal waves the displacement of the 

medium is parallel to the propagation direction of such wave (compressional waves: 

Figure 2-5 a). This type of wave can propagate in all material medium. In transversal wave, 

the displacement of the medium is perpendicular to the propagation direction of the wave 

(shear wave: Figure 2-5 b). Since there is no mechanism for driving motion perpendicular to 

the propagation of the wave in fluid medium, the transversal waves cannot propagate in 

liquids and gases. 

 

Figure 2-5 a) Longitudinal mode, b) Transversal mode, λ: Wavelength. U : Displacement 

vector. n : Direction of wave vector, [225]. 
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2.3.4 Wave propagation velocity 

Mechanical waves can propagate through any material medium at a particular speed, 

which depends on the elastic and inertial properties of the material. Some equations are 

used to establish the link between the speed of the longitudinal wave VL and that of 

transversal wave VT by means of elastic modulus E and shear modulus G in an isotropic 

and infinite medium (a given material can be considered as a finite medium when the 

wavelength is much shorter than the object dimensions): 

                              
L

E (1-μ)
V = .

ρ (1+μ).(1-2μ)
    and   

T

G
V =

ρ
  (2.1)                                    

where  is the density of the propagation medium and µ is its Poisson ratio. 

The elastic modulus E and shear modulus G of a solid material medium are related to 

each other by the Poisson's ratio: 
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Physical characteristics of a material, especially the elasticity and the density clearly 

affect the wave velocities. Some examples of propagation velocities in three different 

materials are shown in Figure 2-6. It is worth mentioning that the more flexible the medium 

is, the lower the propagation speed is and vice versa. 

 

Figure 2-6 Propagation velocity rates of the compression waves for the three basic matter 
phases [303]. 

The anode is a porous material made of a solid part (skeleton) and a fluid part (air). 

Generally, when an acoustic wave propagates in a porous material, the thousands of 

irregularities around pore as well as cracks cause the dispersion and the diffusion of the 
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acoustic wave. Consequently the incident wave can be divided to back scattered, absorbed 

and transmitted component. When applying the acousto-ultrasonic approach, the waves 

propagating in the material are assumed to be large compared with the size of the volume 

of homogenization (scale at which porosities and cracks are large enough to be considered 

as defects). This condition allows to neglect the effects of spatial diffusion and dispersion, 

and to consider only the attenuation effect which can be evaluated by measuring the 

transmitted component of the signal. In the case of micro- and macro-cracks, the latter will 

slow down the wave propagation to a greater extent for the same excitation signal, and thus 

it will attenuate more the measured signal. This lies in the fact that the macro-pores have 

more opened surfaces, called crack lips, which dissipate the wave through their mechanical 

vibration. Moreover, it is difficult to say which affect more the signals between micro-cracks 

or any type of pores, because this always depends on the quantity of open surfaces (free 

edges). The velocity of sound waves in solids is proportional to the elastic properties of the 

medium in which they propagate. In Table 2-2, it was mentioned that the Young modulus of 

the anode material varies between 7000-11000 MPa, and the anode density varies between 

1560-1610 Kg.m-3, and the Poisson ratio is about 0.18. The acoustic wave propagation 

velocity in the anode material calculated using equation 2.1 gives a range of 2100-2800 m.s-

1. 

2.3.5 Excitation and acquisition 

In general, the possibility to have several sensor placement configurations (Figure 2-7) 

is one of the points that make this method versatile. Indeed, the measurements can be 

performed in three different ways: 1) direct, where the sensors are applied to both sides of 

the specimen, 2) indirect, where the transmitter is held at a fixed point, the receiver is moved 

successively at predetermined distances, 3) semi-direct, where the sensors are applied to 

the perpendicular surfaces. On other hand, the transmitter and receiver must have sufficient 

bandwidth to excite all the frequencies necessary to examine the material. According to Vary 

[208], a transducer of 1MHz bandwidth would be adequate to characterize composite and 

other orthotropic materials. However, in the porous materials the maximum frequency is 

much less than other orthotropic materials because the high frequency components of the 

signal, usually above 300 kHz, are completely attenuated in the material. Consequently, the 

bandwidth is limited on one side by the minimum excitation frequency, which is limited by 

the wave generator output, and on the other side by the material attenuation. After 
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preliminary test we limited our frequency bandwidth between 100-300 KHz, which result in 

wavelength varying between 7-28 mm.  

 

Figure 2-7 Sensors configurations [226]. 

The sensors must be attached to the specimen using a thin film of a coupling fluid 

such as a gel, silicone grease or hot glue. It is necessary to apply sufficient pressure against 

both of sensors to remove the reverberation problems in the coupling as well as the surface 

roughness problems. The coupling fluid features are very important because they have a 

significant effect on the amplitude of the detected signal. Hashemi [227] showed the effects 

of pressure, type of coupling fluid, and film thickness on the wave amplitude changes. The 

results indicate that, for a given testing frequency, there is an optimal pressure and thickness 

for a coupling liquid. In addition, the amplitude of the received signal generally increases 

with an increase in the pressure at the transducer/specimen interface and a decrease in the 

coupling film thickness. This is certainly due to the fact that the uniformity of the coupling is 

enhanced, and the air trapped in the coupling is released when pressure is applied. To avoid 

all these problems, an alternative technique based on solid couplant (i.e., hot glue) was used 

to test anode parts and blocks. 

2.4 Signal analysis 

In the case of porous structures, known by their very complex behavior, the selected 

features calculated from the time series signals must be sensitive and specific to the defects 

in order to result in high-level identification. These methods must therefore be robust in terms 

of signal discrimination. Each feature belongs to one of the following three main approaches: 

temporal, frequency and hybrid (time/frequency) approach. Each of these approaches have 

its advantages and its limitations, as will be detailed in the following sub-sections. 

2.4.1 Temporal approaches 

A first analysis of the signals using the temporal method is always desired. According 

to several studies (mentioned below) that aimed to choose the appropriate treatment for 

different applications, interesting results can be found through this kind of analysis. These 
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methods are most often based on waveform recognition techniques that are correlated to 

some characteristics of the material. Their main advantage lies in the ease of 

implementation in terms of calculation algorithms. 

 The peak value of the amplitude 

It is an effective and simple tool for extraction of the attenuation characteristics for 

temporal signals due to propagation distance and interfaces. A real application for 

homogeneous material was introduced by Wang et al. [153] in analysis of time signals 

propagated through metal turbine blade with multiple interfaces. It was shown that it is 

possible to manage the compressed signals via the crest values, which justifies the 

effectiveness of these descriptors and the interest in its implementation. Another study by 

Valentin and Pachaud [228], showed how the amplitudes of the temporal signals reflect the 

nature of the physical mechanisms involved in the degradation of the composite material 

(epoxy reinforced with carbon fibers). They also established a relation between signal 

attenuation and cracks parallel to the fibers. 

 Arithmetic mean and standard deviation 

The arithmetic mean of the signal is the sum of numerical values (the sampling points 

of the signal) divided by their total number:    

   
N

i

1

1
= x

N
x   (2.3) 

The mean value of the signal may help detect changes in the wave form symmetry 

caused by irregularities in the material. As longitudinal waves propagate, the material 

undergo a series of compression and depression, and as soon as these waves meet the 

irregularities, their harmonics become asymmetric. In other words, the irregularities such as 

pores and cracks impose a faster decay of the amplitude (linked either to the compression 

or the depression) and the harmonics will not remain symmetrical. The addition of the 

differences between all the harmonics of the same signal results in a mean value that may 

be different from zero. 

Alternatively, weighted averages can also be used as a temporal feature to represent 

a temporal series (xi) (vibration or acousto-ultrasonic signals). It is computed as the weighted 

sum of all the numbers in the time series divided by the sum of their weights: 
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where wi are the weight of xi and N is the total number the sampling point 

s in the signal (i=1…N). 

The standard deviation of 1D-signal is defined as follows: 
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where x  is the arithmetic mean and N is the total number of time sample points. 

In general, combinations of indicators are used instead of individual; i.e., the "crest 

factor" is the ratio of standard deviation to arithmetic mean. In addition to the defects 

detection, such combinations can provide additional guidance. For example, Boulenger et 

al. [229] were able to implement this indicator in real time monitoring of bearings. Indeed, a 

low value of the crest factor was associated to the existence of a specific damage. Therefore, 

these combinations of features may be used to characterize the signals gathered from 

anode blocks. 

 Energy 

This descriptor is frequently used in temporal signals analysis. It represents a whole 

signal characterization, which minimizes the individual and local effects that are usually not 

important. The energy of the signal to be analyzed (xi) is expressed as: 

 
2N

i

i=1

E = x   (2.6) 

At first, when analyzing the attenuation characteristics of the signals due to interfaces 

in synthetic and acrylic bones, Qi [230] found that the energy attenuation is more sensitive 

than other factors such as the amplitude. Secondly, it has been shown that the energy level 

of a decomposed signal provides good defect localization in composite materials [231]. The 

concept of energy reveals different modes of potential failure in the material by 

discriminating the amount of energy in different frequency bands. In light of this, the 

implementation of this indicator for capturing internal defects in a porous material seems to 
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be promising. Furthermore, Wang et al. [153] showed that the energy is an effective tool for 

evaluating the attenuation due to propagation distance and interfaces through the steel 

turbine blades by the decomposition of the acoustic signals in different frequency bands. 

Thus, it was concluded that the energy extraction could have a good chance for giving 

appropriate results in the case of anode materials. 

 Root mean squares 

The root mean squares (RMS) of temporal series can be written in the following 

discrete form: 

 
N 2

ii=1

1
RMS = [x ]

N
  (2.7) 

According to its mathematical equation the whole energy of the signal is contained in 

the RMS. It should have at least some, but not all, of energy advantages because there is 

the possibility to increase the undesirable noise effect. Usually, noise in signal may come 

from sensors, electrical connections, amplifiers, interfaces or external effects such as 

machines in industrial environments. The noise caused by the latter is usually difficult to get 

rid of it, since it is located at low frequency. Other kind of noise can be easily removed using 

thresholding or filtering methods, since most often the noise is localized at high frequencies. 

Therefore, in some applications, RMS is not the most effective indicator, but it has retained 

its place since it is very easy to understand its behavior. In a series of tests, Jokinen and 

Jantunen [232-233], made a comparison between the RMS and some of the previously 

presented descriptors during the control of steel drilling tools. Their results showed that the 

RMS was not always the best descriptor, but still is among the most four effective indicators. 

It is then highly recommended to investigate the implementation of this feature in carbon 

anodes inspection. 

 Skewness and Kurtosis 

Skewness and Kurtosis are two dimensionless descriptors. They are expressed in 

terms of third order and fourth order moments of the signal density distribution, S and K 

respectively: 
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where xi is a measurement provided by the sensor and N is the total number of data points 

in the time series for this variable. 

The success of these parameters is relatively limited in industrial applications. 

However, they were used by researchers as a baseline for the evaluation of new indicators 

and typical works [234-235]. Finally, the use of these indicators in active inspection of 

heterogeneous materials have to be investigated. In addition, simultaneous implementation 

of several indicators could be more interesting. 

2.4.2 Frequency approaches 

In order to unveil the properties of a given signal, one alternative is to use a 

mathematical transformation that allows moving into frequency domain. The majority of the 

frequency techniques, detailed below, provide an easy detection of defects, but it is not 

possible to give an indication about the location of these defects in the object. In special 

cases, such as rotating machines and periodic defects indications that have specific 

frequency signatures, these techniques offer the possibility of making an effective diagnosis. 

The different existing frequency descriptors will be presented in the following sub-sections. 

 Fast Fourier Transform 

Fast Fourier Transform (FFT) is a commonly used tool to transform signals and then 

to detect variations in a frequency domain. By this transformation, it is possible to 

decompose any temporal function into a sum of sinusoidal basic functions where each of 

them is defined as a complex exponential of different frequency. This transformation 

therefore gives a unique way to see any function as the sum of simple sinusoidals. Although 

the FFT is a simple mathematical tool, its widespread popularity is due to its practical 

application in a number of fields of science and engineering. The mathematical formulation 

of FFT is associated with any temporal signal x(t) that produce a function depending on the 

frequency (f) as follow: 

 






(-j2πft)X(f) = x(t)e dt   (2.10) 
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where the Fourier spectrum X(f) is a complex-valued function of frequency, which absolute 

value |X(f)| represents the amount of that frequency present in the original function, and its 

complex argument is the phase offset Φ(f) of the basic sinusoid in that frequency: 

 2 2X(f) = Re(X(f)) +Im(X(f))   and 
 
 
 

Im(X(f))
Φ(f) = -arctan

Re(X(f))
  (2.11) 

At this point it is important to mention that x(t) and X(f) have the same physical 

meaning but in different representations. More details for these transformations are available 

in [236]. 

The Fourier transform preserves the energy contained in the basic timing signal. 

Meanwhile we can define the spectra of energy and the spectra of the density of the energy. 

The latter is commonly used in temporal signal characterization during real applications. 

This is contrary to the energy spectra, which is used in the case of transient signals. 

Furthermore, we can define the Discrete Fourier Transform (DFT) that converts a finite 

sequence of equally-spaced samples of a function into an equivalent-length sequence of 

equally-spaced samples:                                            

 
inN-1 -j2π
N

n i

i=0

X = x e   (2.12) 

where n[0, N-1] and Xn represents the sequence of the sampled signal. 

The Fourier approach is specifically used to differentiate the signals from each other 

through their frequency content [237]. In addition, other interesting quantitative analyses 

were developed in [238-239]. These works were the subject, respectively, of cracks and 

intergranular cracks detection within steel. They have resulted in some relationships 

between the event source in the frequency function and crack severities. The major 

advantage of this transformation is the fast calculation method using specific algorithms. 

Among others, this transformation introduced a compromise between temporal observation 

window and frequency resolution. However, it requires dealing with complex mathematical 

calculations, even for the simplest structures, which needs relatively advanced numerical 

tools. 
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 Frequency Response Functions 

The calculation of frequency response functions (FRF) and other spectral variables 

involves more specialized notions of signal processing which will not be detailed here. 

Nevertheless, an overview of different FRF forms will be reported. Considering an input 

signal x(t) and an output signal y(t) which are corresponding respectively to the excitation 

force and the response of the structure given by the sensor. We then define:   

 The auto-spectra: SXX=X(f)*X(f) and SYY=Y(f)*Y(f), where f is the frequency. 

 The cross spectra or inter-spectra : SXY=X(f)*Y(f) and  SYX=Y(f)*X(f) 

The FRF can then be calculated by three different evaluations. Table 2-3 shows the 

relative definitions and respective benefits: 

Table 2-3 The different evaluations of FRFs [336]. 

Evaluation H1 
yx

xx

SY(f )
=

X(f ) S
 

Minimizes input error 

Evaluation H2 
yy

yx

SY(f )
=

X(f ) S
 

Minimizes output error 

 

Evaluation Hv 

Eigenvector associated with the 

smallest eigenvalue of the matrix:                          



 

xyxx

yx yy

SS

S S
 

Minimizes the overall error 

in the least squares sense 

 

The most frequently used evaluation is H1. A different choice should be based on 

considerations related to noise on the inputs and outputs. Although the Hv evaluation is 

more time consuming, it is much more accurate, which may compromise the real time 

calculation of FRF calculated on the given signals. However, these techniques are not 

effective for defects characterization of some porous materials such as concrete [240]. It is 

more pronounced when the defects dimensions are very small compared to the object size 

since these defects cause minor variations in FRFs. Furthermore, the temporal information 

is completely lost. In addition, this indicator needs an instrumented measurement tool as 

well as an instrumented excitation tool to measure both of input and output signals. 
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 Resonant frequencies 

The resonant frequency determination technique has been applied in the field of 

heterogeneous materials such as refractory products [241]. Most applications for this 

analysis are related to shock excitation rather than continuous vibration. Usually, the energy 

of the waves dissipates in the form of a vibratory phenomenon through the object. This 

phenomenon has variable complexity depending on the nature of the impact force and the 

vibrating body characteristics: i.e., elasticity modulus, weight, shape coefficient and 

Poisson's ratio. An application of elastic modulus calculation using the resonant frequency 

was highlighted in [242]. The sample was vibrated at several (n) frequencies and the 

fundamental resonant frequency N was associated to the natural frequency of the maximum 

amplitude. The dynamic modulus Ed of elasticity can be obtained from the following formula: 
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  (2.13) 

where Ed is the modulus measured in GPa, L is path length travelled by the wave in cm, N 

is the frequency in Hz, and  is the density in g/cm3. It is important to notice that, in the case 

of longitudinal vibrations (i.e., what we measure by our acousto-ultrasonic sensors), the 

cross-section of the specimen (circular, rectangular, thin or thick) has no influence on the 

modulus value. However, in other cases such as that of transversal and torsional vibrations 

the above formula would include information about the shape of the sample [347]. Two 

methods exist for determining the resonant frequency N of an object: 

 Detecting the maximum amplitude of vibration by continuous change of the excitation 

frequency. 

 Measuring the natural frequency of the sample after several excitation pulses. 

Such a method may not effective enough in the inspection of carbon electrodes since 

it aims at characterizing the whole object at one time. 

 Fine strip analysis 

The frequency resolution is related with the temporal observation window. The 

proximity of the dynamic signatures of flaws in some applications requires considerable 

precision in frequency, which is not feasible with conventional analysis methods. However, 

to solve such a problem we refer to what is called "zoom method", known as Fourier 

Transform narrowband. This method consists of concentrating the calculation on a small 
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window. This technique was applied in bearings condition monitoring by Tebec [243]. The 

whole analysis was conducted through the following steps: 

- Multiplying the signal by a complex exponential to translate the signal spectrum 

around a well-defined frequency. 

- Filtering the signal at the band of interest to delete the background noise. 

- Resampling of the signal with new durations equal to the width of the band divided 

by the frequency resolution. 

- Interpretation of the new spectrum. 

 

 Cepstral analysis 

The logarithm of the spectrum of a signal is called the cepstrum. What differs the 

spectrum of a time signal from its cepstrum is the current variable that represents the 

quefrency (time) of the latter while it represents the frequency for the spectrum. El-Wardany 

et al. [244] applied the cepstral method to analysis temporal signals acquired during drilling 

tool inspection. In this work, the peak of quefrency indicates the presence of defect in the 

tool. 

2.4.3 Time-frequency approaches 

The time/frequency methods are increasingly used in the NDT field, especially in time 

signal processing. These methods have the benefits of the methods mentioned earlier and 

provide additional advantages. 

 Wavelet transform 

A wavelet is a finite length wave that represents any temporal function or signal by a 

weighted sum of translated and dilated wavelets. This transformation is similar to time-

frequency domain filter, which is defined by some parameters such as translation, dilation 

and scaling. Indeed, the local extraction of singularities is possible by locally analyzing the 

signal, as it has been applied to the identification of cracks in the elastic plates in [245]. The 

wavelet transform allows the evaluation of defect severity and its location since it is possible 

to decompose a signal into multiple sub-signals. Among these indicators, changes in the 

spatial response determines the location of defects and changes in values of the wavelet 

coefficients reflects defects quantity and sizes. The major advantage of these transforms is 
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that they perform not only the frequency decomposition, like FFT and DFT, but also the time 

domain decomposition. Three main wavelet families exist: the Continuous Wavelet 

Transform (CWT) [250, 251], the Discrete Wavelet Transform (DWT) [246-247], and the 

Wavelet Packet Transform (WPT) [248, 249]. Each of these transforms offers a different 

advantage. The CWT and WPT perform complete decomposition, level by level, of a signal 

but DWT focuses mainly on relatively low frequency bands. The choice of any transform 

depends on the application. Generally, DWT is recommended for detecting large defects 

while the other two transforms are recommended for rigorous inspections. For this reason, 

this type of wavelet (DWT) is exploited in the coming chapters to analyze the signals 

acquired through the anodes. This will have a very good asset, especially, with the presence 

of highly attenuated signals that are containing a significant level of noise caused by the 

scattered waves. These wavelets will thus serve to filter the signals while keeping the 

essential temporal variable. 

Then, in this work, the representative frequency band is obtained by decomposing the 

acousto-ultrasonic signal into different wavelet levels. Each wavelet level corresponds to a 

certain frequency band. 

The WT of the function X(t) is defined as follows [150]: 
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X (a,b) = h ( )x(t)dt
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  (2.14) 

where h(t) is the mother wavelet, h*(t) its complex conjugate, a is the first scale parameter 

that is controlling the dilatation and contraction, and b is the second parameter for translation 

control. For large value of a, the wavelet becomes a stretched version of the mother wavelet 

that is a low frequency function while for small a, it becomes a contracted wavelet, that is a 

short high frequency function. There are several good mother wavelet for the purpose of 

engineering applications. However, three representative WTs, Daubechies, symlet and 

coiflet were investigated, and better results were obtained with the Daubechies wavelet. This 

wavelet is based on the Haar function.  

 f(t) =1         0 < t < 1 (2.15) 

A weighted sum of Eq. (2.15), called the scaling function of the wavelet, is given by 
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 
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f (t) = c f (2t -k)   (2.16) 

This equation defines an iterative procedure to determine the scaling functions of the 

Daubechies wavelets. 

The time-frequency duality is always limited. Therefore, the simultaneous optimization 

of the frequency resolution and the time resolution is impossible since they are negatively 

correlated. Finally, to apply these analytical approaches, it is therefore obvious to have multi-

frequency signals. For this reason, it is important to excite the material under a wide 

frequency band.  

2.5 Computed tomography method 

2.5.1 Principle of the method 

Computed tomography (CT), or the well-known CT-Scan technique, is a recent 3D 

analytical technique, which provides sophisticated images based on X-ray absorption 

coefficients of any material [79, 188]. It can provide a powerful non-destructive evaluation 

(NDE) by means of producing 2-D and 3-D cross-sectional images of an object from flat X-

ray images where the resolution is linearly proportional to the object size. When the sample 

is considered a multi-material whose constituents absorb X-rays at various percentages, the 

object images can be extracted by segmentation. The resolution of the images is however 

limited by the apparatus technology. The object have to be placed between an imaging 

system and radiation source where one of them have to be turntable. Like a film radiograph, 

2-dimensional shadowgraph images can be produced by the imaging system and a software 

produces cross-sectional images of the object.  

2.5.2 X-Ray computed tomography data acquisition 

X-ray images were obtained using a Somatom Sensation 64 located at INRS-ETE 

research Centre in Quebec City (Figure 2-8). The CT method has one main advantage that 

overcomes some limitations; it does not damage or destruct the object and thus it preserves 

the internal structure of the material, which is mandatory when further tests have to be 

carried out. On the other hand, the Siemens Somatom Sensation 64 was designed for the 

human body and consequently was too small for industrial anodes. For this reason, it was 

necessary to slice the anode block. In order to obtain good contrast between defects and 

background (carbon), image resolution had to be adapted to the object size [151]. The final 
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resolution was 0.7 × 0.6 × 0.7 mm3 where the thickness of voxels (volumetric pixels) was 

0.7 mm.   

 

Figure 2-8 INRS-ETE Siemens Somatom Sensation 64 (Courtesy of INRS-ETE). 

The CT-scan apparatus provides a 3D matrix of pixels with attenuation coefficients, 

varying between 1024 and 3071 HU. The attenuation coefficients are converted to grayscale 

images since they are correlated to the local density of the sample, as we can see in Figure 

2-9 left [188, 252]. The voids (i.e., cracks and pores) inside the anode sample correspond 

to groups of dark pixels surrounded by lighter background (Figure 2-9 right). The dense 

impurities (e.g. cast iron contamination) correspond to the few brighter pixels.  

 

Figure 2-9 The appearance of the obtained images: left, 3D-image of  
four different slices. Right, 2D-cross sectional image. 

2.6 Image texture analysis 

Several image processing techniques are available for defects detection and have 

been summarized in a review paper [99]. Three tools are widely employed for variability 
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detection in images. a) Fourier transform, which breaks up a signal into an alternant 

representation, characterized by sine and cosine. b) Gabor transform which is a type 

of short-time Fourier transform that uses a window function to determine 

the sinusoidal frequency and the phase content of local sections of signal. c) Wavelet 

transform, which breaks up a signal into multi-resolution bands in form of shifted and scaled 

versions of the original (or mother) wavelet.   

The wavelet transform method is preferred over the Fourier transform, since it provides 

better spatial localization, and over the Gabor transform since it can maintain good space 

and frequency localization [253]. In addition, wavelet textural analysis has shown a better 

performance than the above mentioned methods in several applications [254-256]. Such 

advanced signal processing method is now considered as state of the art in the literature. 

However, it requires a deeper understanding of the designer parameters such as mother 

wavelets and their order, decomposition level, and wavelet shapes. It will help selecting the 

most suitable parameters since they vary from one application to others [257-261]. These 

works have shown that the selection of the design parameters is critical in the case of 

detecting local characteristics but is less important when just an overall textural 

characteristic of the entire image is required. Wavelet coefficients can be considered as 

correlation coefficients between raw images and a wavelet filter. Consequently, the good 

design of these coefficients can improve the textural analysis performances [256, 262].  

The 2D-wavelet transform performs an image decomposition into multiresolution 

bands. At each decomposition level, the resulted image is decomposed into four sub-band 

images: horizontal detail, vertical detail, diagonal detail, and approximation that will be 

decomposed in the next level and so on. The raw image is considered as the approximation 

at the first scale. The wavelet coefficients resulting from this decomposition consists of sets 

of so-called detail coefficients obtained in three directions (horizontal, vertical and diagonal) 

at each decomposition level, and a final set of approximation coefficients containing low 

frequency information. As for 1D signals, there are three main wavelet transform methods; 

DWT, WPT, and CWT. All of these three wavelet transforms have been implemented in 

various applications, and for each application one of them seems more effective than others. 

CWT, like other rational wavelet analysis methods, does not favor any spatial range and this 

can induce a lack of consistency in some image characterization approaches. DWT can 

overcome this drawback since it privileges the low frequency components. Consequently, 

for the case of the carbon anode material where cracks identification is required, the discrete 
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wavelet can be directly pointed out. However, some numerical algorithms can improve the 

performance of WPT over that of DWT [231]. After some preliminary analysis, the DWT 

based approach was selected to extract the textural features of the CT-Scan images in this 

work (chapter 4). 

This approach needs first to select a wavelet function (i.e., mother wavelet), several 

of which are introduced in the literature [263-265]. The selection of specified functions is 

highly dependent on the application, where their pixel-to-pixel characteristics and similarity 

in a given direction are the main selection parameters. Daubechies and Symlet wavelets are 

two numerical functions usually noted as Db and Sym, respectively. These functions were 

chosen for their orthonormality (no overlap in frequency bands), their resemblance to CT-

scan images, and the fact that they overcome the problem of discontinuities with continuous 

derivatives. At this point, it can be said that the wavelet function has the capability to expand 

for capturing coarse textures at low frequency or to shrink for capturing fine textures at high 

frequency. For this reason, wavelet transform is often referred into a high-pass or low-pass 

filtering approach. Consequently, the 2D-signal is separated to vertical, horizontal, and 

diagonal textural variations when it is convoluted with Db or Sym that are represented by 

three detail sub-images named Dj
v, Dj

h and Dj
d, respectively, at jth decomposition level. 

Several statistical indicators can be calculated through the sub-images e.g., energy, 

variance, entropy, and mean [254, 266]. In this work, energy was found to be sufficient to 

effectively quantify the majority of image textures for the three directions and all 

decomposition levels. The sub-image energy is defined as follows: 
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where D is the detail component image that includes x*y pixels, obtained in k directions 

(v, h and d) and at the jth decomposition level. In the framework of normalization, each energy 

component is divided by the original image size (x*y). At this point, it is important to mention 

that for each anode slice, inspected by CT-scan, 100 successive images were collected. 

The sum of the energy values for the three directions for each image was calculated. 

2.7 Latent variable methods 

Latent variable methods (LVMs) consist of a family of multivariate statistical 

approaches used for analyzing large datasets. They are widely used in the chemometrics 
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literature for data clustering and classification [269-270]. The most commonly used LVMs 

are Principal Component Analysis (PCA) and Projection to Latent Structure (PLS) [271-272]. 

Briefly, PCA and PLS project a multivariate dataset from a high dimensional space to a lower 

dimensional space, allowing to visualize and interpret the information contained in Big Data. 

These methods have been used in materials inspection based on acoustic features [282-

283] as well as on vibration features [284-286] and very interesting results have been 

obtained. In addition, some authors [273-274, 282] have combined wavelet analysis with 

PCA, called Wavelet-PCA, to improve the results of control. In this thesis, a large number of 

features were computed from the acousto-ultrasonic and vibrational responses of the 

various materials in order to describe them. It was found that these features were highly 

collinear. Instead of performing feature selection, it was decided to use all of them together 

to maximize the chances of detecting and discriminating anode defects. To cope with 

collinearity, PCA was used to cluster anode parts or anode blocks based on their acousto-

ultrasonic and modal responses. Projection to Latent Structures (PLS) regression was also 

used to correlate acousto-ultrasonic features and textural descriptors collected from 

corresponding X-ray CT-Scan images. This regression method is known as a strong 

multivariate statistical method that works better than traditional multiple linear regression 

(MLR) [275] on highly collinear datasets as is the case in this thesis. Although multivariate 

and wavelet methods have generally been used to explore data for non-destructive 

evaluation, there has been little or even no attempt to consider their applications for the 

intricate cases highlighted in this project.  

2.7.1 Principal Component Analysis (PCA) 

PCA is a widely used multivariate statistical method for the analysis of large datasets 

containing noisy and highly collinear data. Assume a data matrix X (I×J) containing J 

measurements collected from I samples. Furthermore, assume that both systematic 

variations and noise are present in this data. PCA decomposes the variance structure of X 

by finding a small number of orthogonal latent variables A <<< J capturing most of the 

systematic variations in X, but leaving noise or irrelevant information as residuals. These 

latent variables (also called components) are defined as linear combinations of the J original 

measurements and together define a lower dimensional subspace allowing easy 

visualization and interpretation of the information contained in large datasets.  

The PCA decomposition is expressed mathematically as shown below [276].    
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where the orthogonal vectors ta (I×1) are those latent variables (called scores) providing the 

coordinates of each sample in the low dimensional subspace (plane or hyperplane) after 

projection. The subspace itself is defined by A orthonormal loading vectors pa (J×1), which 

are defined as a linear combination of the original variables (i.e., ta = X pa). The projection 

residuals are collected in the residual matrix E (I×J). The loading vectors are calculated in 

such a way that t1 explains the greatest amount of variance in X, t2 the second greatest 

amount of variance that not explained by the first component, and so on. The cross-

validation procedure is typically used to select the sufficient number of principal components. 

2.7.2 Projection to latent structures (PLS) 

PLS is one of the powerful multivariate statistical methods that can correlate the signal 

features of the anode samples gathered in matrix X with corresponding image textural 

features collected in a second matrix Y consisting of H variables and I observations. This 

regression method has the advantage to overcome the strong correlation between the 

columns of both X and Y while building linear relationships between them. The model based 

on PLS is used to explore the relationships existing within and in between both datasets, X 

and Y. It can be seen as an extension of PCA, but for two sets of data. 

As for PCA, the set of constraints ensure that the weight vectors W are orthonormal 

and that latent variables (t’s) are orthogonal to each other. The objective for using PLS in 

this thesis is to relate the acoustic response of anode samples to their microstructural 

characteristics obtained after applying wavelet texture analysis to X-ray CT-Scan images 

[272, 277]. The model equations are presented below: 

  X TP ET
  (2.19) 

  Y TQ FT   (2.20) 

 *T XW    (2.21) 

 T -1*W = W P )W(   (2.22)
  

The common latent variable space of both X and Y is represented by the scores T 

(I×A). The latter corresponds to the combinations of the X variables that are highly correlated 
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with the Y data. The weights of each variable in each component are collected in the weight 

matrix W* (J×A). The P (J×A) and Q (H×A) matrices contain the loading vectors defining the 

latent variable spaces of X and Y, respectively. E (I×J) and F (I×H) are the PLS model 

residuals. 

2.7.3 Model interpretation tools 

PCA and PLS offer many diagnostic tools for helping model interpretation and learning 

from data. The first two are the scatter plots of the scores (t’s) and the loading plot (p’s) that 

are used to visualize respectively relationships between the observations and the variables, 

and their clustering patterns. Usually, a combination of two latent variables is visualized 

simultaneously through these tools using 2D scatter plots. 

A complementary information to the score space is given by the square prediction 

errors (SPE) that represent the sum of squares of the residuals (e) for any observation [278, 

331]. SPE is used to verify how well the model fits each observation and whether outlier 

data are present. The residual errors for the ith observation is computed by [279]: 
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where K is the number of columns of X (N×K). 

Contribution metrics are used to diagnose a shift or important change in the data [279]. 

This parameter is usually calculated between two clusters of observations in a score plot to 

see how much each variable contributed in the variation. The mathematical formula for the 

contribution of variable Xk (Ck) to a shift in the score space from group 1 to group 2 is the 

following:                   

 
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where ta,1 and ta,2 represent the average of the score values for group 1 and 2 along the ath 

component. The variables Xk,1 and Xk,2 are the mean values of the kth x-variable calculated 

for the first and second group of data, respectively. Index a identifies the component number, 

Sta is the standard deviation of the ath score, and pka is the loading value for the kth x-variable 

in the ath component. In general, a higher contribution for one variable means that this 

variable has an important contribution in the change according to the given direction. 
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The Hotelling’s T2 represents how far an observation is from the origin of a score plot. 

It can also be used for detecting outliers in the LV space. It is calculated as follows [280]: 

 
2A

2 ia
i 2

a=1 ta

t
T =

S
  (2.25) 

where Sa
2 is the variance of ta in the PCA model, A is the total number of latent variables, 

and tia is the score value of observation i for ath latent variable. The T2 can be used to define 

a control region in a latent variable space where the outliers are found outside the confidence 

interval that is usually drawn at 95% of the variation. 

Another parameter, which can summarize the importance of the variables in a PLS 

model, for X and Y simultaneously, is named variable importance on the projection (VIP) 

[281] and is defined as: 
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where Wj,a is the weight of the jth X-variable in the ath PLS latent variable, SSY(a) is the sum 

of squares of Y explained by the ath LV of the PLS model and SSY(A) is the total sum of 

squares of Y explained by the model. Otherwise, the VIP is a weighted sum of squares of 

the PLS weights where the variables having a VIP larger than 1 are the most influential in 

the model [278, 331]. Finally, the ProMV software version 15.08 (ProSensus, Ancaster, ON, 

Canada) was used to build PCA and PLS models. 

2.8 Anode parts and blocks  

A full size baked anode, manufactured at the Alcoa Deschambault smelter located in 

Quebec - Canada (ADQ), was used for investigating the acousto-ultrasonic technique. The 

anode was first sliced and scanned using computed X-ray tomography (CT-scan) to reveal 

its internal structure. The anode block was carefully sliced since the scanning area of the X-

ray apparatus (Siemens Somatom Sensation 64) was designed for the human body and 

consequently was too small for the anode (Figure 2-8). It was first cut into 26 slices of equal 

thickness along its length and then each slice was cut further in half along the height of the 

anode. A total of 52 half slices were finally obtained as we presented in Figure 2-10. It is 

known that spatial distribution of anode density, mainly due to the random distribution of 
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pores and cracks, within the block is non-uniform. In addition, the internal structure at both 

ends of the anodes as well as below and between the stub holes are expected to be 

systematically different. The top and the bottom of each slice were also cut prior to collecting 

the acousto-ultasonic measurements in order to keep a unique height and standardize the 

geometry of all slices to be selected (Figure 2-11).  

Several slices were selected in different positions according to the special needs of 

different tests. Finally, each of them was divided into 6 corridors along the sample height, 

as shown again in Figure 2-11. These corridors of equal width were marked using a white 

chalk. They were numbered from 1 to 6 where corridor 1 corresponds to the anode center 

and the last corridor is close to the outer surface. 

 

Figure 2-10 Baked anode after slicing. 

 

Figure 2-11 Preparation of six corridors after removing top and bottom. 

An additional set of 27 full size baked anodes manufactured at ADQ smelter were 

selected in order to validate the robustness of the proposed approaches and paving the way 
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for the online control. Defect-free anodes as well as anodes holding different types of defects 

are required for this demonstration. Since it is difficult to assess non-destructively whether 

an anode contains internal defects or not, it was decided to select the anodes according to 

the following plan:  

- Anodes produced under different conditions: some under normal operation and 

some others during paste plant start-up; 

- Anodes containing open (visible from the surface) transversal and longitudinal 

cracks; 

- Anodes holding surface defects due either to intensive baking or to handling.  

The majority of the selected anodes had no externally visible defects. These anodes 

were numbered from A1 to A27. Table 2-4 shows which anodes were assigned to each of 

the previously mentioned categories. 

Table 2-4 Anode numbers and description. 

Anode numbers Description 

1, 4, 5, 6, 10, 11, 16, 17, 
18, 19, 20, 21, 22, 23, 24, 

25, 26, 27 

Free of external 
defects 

2, 3, 7 Cracks visible 
externally 

8, 12, 13 Surface defects 

14, 15 Start-up anodes 

 

Some examples of these anodes are shown in Figure 2-12. Anode A1 had no 

externally visible defects, A2, A3 and A7 had large cracks visible on the surface, and A8, 

A12 and A13 had different types of surface defects. 
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Figure 2-12 Some examples of the selected anodes with various defects. 
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 The potential of acousto-ultrasonic 

techniques for inspection of baked carbon anodes 

Résumé 

Les anodes de carbone cuites contribuent à la performance optimale des cellules de 

réduction en aluminium. Cependant, la qualité actuellement décroissante et la variabilité 

croissante des matières premières anodiques (coke et brai) rendent difficile la fabrication 

des anodes avec une qualité globale constante. L'interception d'anodes défectueuses 

(comportant beaucoup de fissures et de pores) avant leur installation dans des cellules de 

réduction dont ils risquent de détériorer la performance est donc importante. C'est une tâche 

difficile, même dans des usines modernes d'anodes et bien instrumentées, car les essais 

en laboratoire utilisant des échantillons (carottes) ne peuvent caractériser qu'une faible 

proportion des anodes produites en raison du coût, du temps et de la nature destructive des 

méthodes analytiques. De plus, ces résultats ne sont pas nécessairement représentatifs du 

bloc d’anode entier. L'objectif de ce travail est de développer une méthode rapide et non 

destructive pour le contrôle de la qualité des anodes cuites en utilisant des techniques 

acousto-ultrasoniques (AU). Les réponses acoustiques des échantillons d'anodes 

(tranches) ont été analysées à l'aide d'une combinaison des indicateurs temporels calculés 

à partir des signaux AU et de l'analyse des composantes principales (PCA). Les signaux 

AU ont été trouvés sensibles aux pores et aux fissures et ont été capables de discriminer 

les deux types de défauts. Les résultats ont été validés qualitativement en soumettant les 

échantillons à la tomographie à rayons X. 
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Abstract 

 High quality baked carbon anodes contribute to the optimal performance of aluminium 

reduction cells. However, the currently decreasing quality and increasing variability of anode 

raw materials (coke and pitch) make it challenging to manufacture the anodes with consistent 

overall quality. Intercepting faulty anodes (e.g., presence of cracks and pores) before they are 

set in reduction cells and deteriorate their performance is therefore important. This is a difficult 

task, even in modern and well-instrumented anode plants, because lab testing using core 

samples can only characterize a small proportion of the anode production due to the costly, 

time-consuming, and destructive nature of the analytical methods. In addition, these results 

are not necessarily representative of the whole anode block. The objective of this work is to 

develop a rapid and non-destructive method for quality control of baked anodes using 

acousto-ultrasonic (AU) techniques. The acoustic responses of anode samples (sliced 

sections) were analyzed using a combination of temporal features computed from AU signals 

and principal component analysis (PCA). The AU signals were found sensitive to pores and 

cracks and were able to discriminate the two types of defects. The results were validated 

qualitatively by submitting the samples to X-ray Computed Tomography (CT scan). 

Keywords: baked carbon anode; non-destructive testing; acousto-ultrasonics; 

principal component analysis (PCA); primary aluminium smelting 
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3.1 Introduction 

The currently decreasing quality and increasing variability of anode raw materials (coke 

and pitch) make it challenging to manufacture the anodes with consistent overall quality. 

Intercepting faulty anodes before they are set in reduction cells and deteriorate their 

performance (i.e., energy consumption and efficiency) requires testing all or the majority of 

the manufactured anodes. However, even in modern and well-instrumented anode 

manufacturing plants, the traditional lab inspection strategy based on core sampling can, at 

best, evaluate the properties of about 1% of the manufactured anodes due to the costly, 

time-consuming, and destructive nature of the analytical methods. In addition, the core 

sample properties are typically available after the anode is set in the reduction cells due to 

the long lab delays. For economical and logistics reasons, it is generally not possible to 

improve the rate of anode testing by increasing the lab workload. Furthermore, the 

properties obtained from core samples are not necessarily representative of the whole 

anode block, as reported by Sinclair and Sadler [69,74], who provide a complete list of issues 

related to the use of core samples for quality control and decision-making. Indeed, anode 

blocks are heterogeneous materials that may contain different types of internal defects (i.e., 

coke particles not penetrated by pitch, regions of high/low pitch concentration, pores and 

cracks) which can lead to the anisotropic distribution of properties within the block. The 

current strategy may completely miss these defects if the core is not sampled where the 

defects are located. Hence, the mechanical properties and electrical resistivity obtained from 

core samples may only reflect localized properties. Therefore, rapid and non-destructive 

techniques to inspect anode blocks should be investigated in order to provide a better picture 

of the anode quality in a timely fashion. This would allow anode sorting strategies to be put 

in place and feedback-corrective adjustments to be implemented on the paste plant and 

baking furnace operation parameters. 

Recent research efforts were focused on developing systems for measuring the anode 

resistivity distribution online based on the work of Seger [112,113] and/or Haldemann and 

Fawzi [116]. For example, a device called MIREA (Mesure Instantanée de la Résistivité 

Électrique Anodique) was proposed to measure the anodic electrical resistance [114,115]. 

Basically, an electrical current entering by the stub holes is passed through the anode in a 

similar way to if the anode was rodded while several voltage drop measurements are 

collected at different locations on the anode surface. A numerical model of the anode is then 

used together with the voltage drop measurements to estimate the anode resistivity 
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distribution. Alternatively, the resistivity distribution can be measured using an array of 

electrical contact points placed at the top and bottom of the anode and by measuring the 

voltage drop at each of these points [119,295]. In addition to providing resistivity 

measurements, these systems should allow detecting the presence of defects within the 

anodes since damage within the carbon block should, in principle, disturb the electrical 

current distribution. However, their ability to discriminate between different types of defects 

(e.g., pores vs. cracks) has not been demonstrated. 

Alternatively, the internal structure of the anodes could be inspected by acousto-

ultrasonic (AU) techniques. These non-destructive methods have been widely used in the 

inspection of composite materials, such as concrete and refractories [296-298]. However, 

applications of AU for testing complex porous materials naturally containing pores and 

cracks, such as baked carbon anodes, are not as common as for denser materials such as 

parts made of metal alloys or highly graphitized carbon materials, which are expected to be 

free of internal voids. The main issue with the anodes is separating defects affecting their 

performance in the reduction cells from the internal porosity, which is always present, when 

both types of voids attenuate the acoustic waves propagating through the materials. The 

only publicly available reports on the application of acoustic methods on carbon electrodes 

appear to be those of Allaire [299] and Allaire et al. [300] using the SonicByte™ system 

[301]. Their work mainly focused on measuring the elastic properties of refractory and 

carbonaceous materials as a means of detecting defects. Although this technique may help 

identify faulty anodes, it only provides an estimate of the overall material properties. 

Inspecting the anode block at different positions should provide more information about the 

distribution of pores and cracks within the volume, and provide a clearer diagnostic. This is 

essential for taking appropriate corrective actions on the anode manufacturing plant 

operations. In addition to detecting and discriminating the internal anode defects, the AU 

signals could provide measurements of the anode density distribution, which is 

complementary information to electrical resistivity measurements. 

The objective of this work is to investigate the sensitivity of the acousto-ultrasonic 

techniques to defects within the internal structure of carbon anode materials. It focuses 

especially on the detection and identification of two types of internal voids, namely pores 

and cracks, using the attenuated acoustic signal propagating through the material. To prove 

the concept, a baked anode was sliced along its length and analyzed by X-ray Computed 

Tomography (CT scan) to reveal its internal structure [80]. Acoustic excitation waves at 
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different frequencies were sent through the materials and the attenuated signals were 

measured at different positions on a certain number of slices. Several features were 

computed from the AU signals and collected in a data matrix, which was then analyzed using 

principal component analysis (PCA) [277]. The clustering patterns obtained in the PCA score 

space suggest that the proposed approach is sensitive to the concentration of pores and the 

presence of cracks, and that both types of voids can be distinguished. The results were 

validated qualitatively using CT scan images. 

The paper is organized as follows. The experimental details about the acoustic 

inspection set-up as well as the baked anode samples are presented first. The methods 

used for processing and analyzing the acoustic signals are then described. The results 

obtained with the proposed approach are presented and discussed. Finally, some 

conclusions are drawn. 

3.2 Experimental 

3.2.1 Acoustic Inspection System 

An overview of the AU signal measurement system is shown in Figure 3-1. Signal 

conditioning was performed by pre-amplifiers. The conditioned signal (with an amplification 

gain of 40 dB) was sent to the main data-acquisition board in which the AU waveforms and 

parameters were stored.  

 

Figure 3-1 The acoustic inspection system. (1) multi-channel acoustic emission system, 
(2) acoustic sensors, (3) pre-amplifier, (4) AEwin™ software, (5) coupling gel. 
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The system is composed of four Physical Acoustics™ (PAC) hardware components 

(MISTRAS Group Inc.: Princeton Jct., New-Jersey, USA). The components are identified 

directly within Figure 3-1 and are also listed below: 

(1) PAC SAMOS™ multi-channel acoustic inspection system consisting of four 16-bit PCI-

8 boards, including a 1-MHz analog-digital converter on each channel.  

(2) PAC R6-α resonant transducers (bandwidth 10 kHz–1 MHz, resonant frequency at 55 

kHz, 15 mm Ø).  

(3) PAC model 2/4/6 pre-amplifier (10 kHz–2 MHz).  

(4) PAC application software AEwin™ (Physical Acoustics, version E3.41, Princeton Jct., 

New-Jersey, USA , 2008) for SAMOS™.  

Acoustic coupling (gel type) was also used to ensure a good contact between the 

acoustic sensors and the baked anode samples (number 5 in Figure 3-1). Note that an 

anode core sample is shown in this figure (Figure 3-1) for illustration purpose only. 

3.2.2 Baked Anode Samples 

A full-scale baked anode manufactured at the Alcoa Deschambault smelter located in 

Quebec, Canada (ADQ), was used in this work. The anode was first scanned using 

computed X-ray tomography (CT scan) to reveal its internal structure [80]. This imaging 

technique is non-destructive in nature, but it is expensive to purchase and operate, and the 

data analysis is too time-consuming to be used for routine anode inspection at the plant. 

Hence, the CT scan images were used to qualitatively validate that the variations observed 

in the attenuated acoustic signals were associated with pores and cracks. The baked anode 

was sliced prior to imaging because the available instrument could not take samples as large 

as an anode. It was first cut into 26 slices of equal thickness along it length as shown in 

Figure 3-2a, and then each slice was cut further in halves along the height of the anode (see 

Figure 3-2b). A total of eight slices were selected for collecting the acoustic signals. These 

correspond to slices numbered 2, 3, 5, 7, 11, 15, 24, and 25 identified in red in Figure 3-2a. 

They were selected in such a way to obtain a representative sampling of the internal 

structure of the anode. The slices were selected at both ends of the anode as well as below 

and between the stub holes. It is well known in the field that spatial distribution of anode 

density, pore and crack concentration within the block is non-uniform, and that the internal 

structure at both ends of the anodes, below and between the stub-holes are expected to be 

systematically different. Note that the top and bottom of each half slice were also cut prior 
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to collecting the acoustic measurements to obtain samples of even height and to standardize 

the sample geometry for all the selected slices (see Figure 3-2b). Finally, each sample was 

divided (virtually) into six corridors along the sample height as shown again in Figure 3-2b. 

These corridors of equal width were delimited using a white chalk. They were numbered 1 

to 6 from the center of the anode toward its outer surface. 

 

(a) 

 

(b) 

Figure 3-2 The sliced baked anode. (a): The selected eight slices are identified in 
red; (b): Example of the seventh slice used for acoustic testing. 

An example CT scan image is shown in Figure 3-3 for slice number 7. The numbers 

within the image identify the six corridors drawn on the slices, in the same order as discussed 

previously (1 is at the center of the anode and 6 is close to the outer surface). The image 

clearly shows the pores and cracks, and regions of different densities (proportional to gray 

level intensities). 

 

Figure 3-3 Example X-ray Computed Tomography (CT scan) image obtained for slice 
number 7. The 6 corridors within the slice are virtually divided by red lines and are 
identified by numbers 1-6. The black region correspond to one of the anode slot. 
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3.2.3 Acoustic Inspection Data Collection 

The acoustic sensors were mounted and put into close contact with the samples as 

shown in Figure 3-4. Both sensors (emitter and receiver) were positioned at both ends of a 

given corridor within a slice. They were maintained into position using a clamping device. 

The interfaces between the sensors and the material were filled with coupling gel in order to 

maintain appropriate signal transmission. The material in each corridor was then submitted 

sequentially to seven different excitation frequencies (100, 130, 150, 170, 200, 230, and 250 

kHz) while recording the attenuated acoustic signals. This procedure was repeated for each 

of the 6 corridors and for the 8 anode slices. In addition, preliminary work (not shown) has 

established that 250 kHz is the maximum excitation frequency for this material because the 

acoustic signal was found to be completely attenuated at higher frequencies. The data 

collection strategy was found to be repeatable and it was not necessary to average several 

raw signals to reduce measurement errors. The sample surface quality was similar for most 

samples. It is therefore considered that the signal attenuation is mainly due to the material 

properties and voids (pores, cracks) and the effect of surface quality is negligible.  

 

Figure 3-4 Acoustic data acquisition set up through different corridors of an anode slice. 
The corridors are identified by numbers in the figure. 

Some of the acoustic signals acquired at different frequencies on a particular corridor 

are shown in Figure 3-5 for illustration purpose. The signal attenuation pattern clearly 

changes as a function of the excitation frequency. According to mechanical wave 

propagation theory [303-305], there is a relationship between the attenuation at a given 

frequency and the size of the voids inside a material. Higher frequency waves are attenuated 

by smaller voids compared to lower frequency waves. Hence, exciting the material at 

different frequencies should help detect variations in void sizes within the material. 
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Figure 3-5 Examples of raw acoustic signals acquired at different excitation frequencies. 

3.3 Acoustic Signal Processing and Analysis 

3.3.1 Acoustic Features Extraction 

Waveform processing of acoustic signals has routinely been used for detecting defects 

in materials. The acoustic wave propagating through the material attenuates at defects and 

discontinuities such as voids, cracks and inclusions. Hence, efficient techniques for acoustic 

signal analysis should allow distinguishing materials with and without defects. Although 

direct analysis of all the raw signals could be performed using, for example, unsupervised 

clustering techniques such as principal component analysis (PCA) [282], it was instead 

decided to compute a small number of commonly used temporal features from each 

attenuated acoustic signal in order to reduce the size of the dataset to be analyzed and 

facilitate interpretation of the results. Indeed, a total of seven signals were collected from the 

material contained in each corridor (one for each excitation frequency), and one such raw 

signal is formed by several thousands of data points. The following commonly used time 

domain scalar attenuation features were therefore computed from each raw attenuated 

acoustic signal [307]: the maximum (MAX), mean, standard deviation (STD), energy (E), 

root mean square (RMS), skewness (S) and kurtosis (K) of the signal time series x(i), i = 1, 

2, …N: 

 N

i=1MAX =max x(i)   (3.1) 
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 
N

i=1

1
Mean = x = x(i)

N
  (3.2) 

 
N 2

i=1

1
STD = (x(i) - x)

N
 (3.3) 

 
2N

i=1
E = x(i)   (3.4) 

 
N 2

i=1

1
RMS = [x(i)]

N
  (3.5) 

 


N 31
N i=1

3

(x(i) - x)
S =

STD
  (3.6) 

 


N 41
N i=1

4

(x(i) - x)
K =

STD
  (3.7) 

where N is the total number of data points in the signal time series (same for all signals 

collected in this work). Signal processing was performed using Matlab version R2014a 

(MathWorks, Natick, MA, USA). 

The data was stored in a (48 × 49) dimensional matrix X. The 49 columns correspond 

to the seven temporal features computed from the seven attenuated acoustic signals 

collected from each of the 48 samples (six corridors × eight anode slices). Principal 

component analysis (PCA) was then used to analyze the information contained in the feature 

matrix X. 

3.3.2 Principal Component Analysis (PCA) 

PCA is a widely used multivariate statistical method for the analysis of large datasets 

containing noisy and highly collinear data, as is the case in this study. Assume a data matrix 

X (I × J) containing J measurements collected from I samples. Further, assume that both 

systematic variations and noise are present in this dataset. PCA decomposes the variance-

covariance structure of X by finding a small number of orthogonal latent variables A << J 

capturing most of the systematic variations in X, but leaving noise or irrelevant information 

as residuals. These latent variables (also called components) are defined as linear 

combinations of the J original measurements and together define a lower dimensional 
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subspace allowing easy visualization and interpretation of the information contained in large 

datasets. The PCA decomposition is expressed mathematically as shown below:  

 
A

T

a=1

= +a aX t p E    (3.8) 

where the orthogonal score vectors ta (I × 1), a=1,2,…,A, are those latent variables providing 

the coordinates of each sample in the low dimensional subspace (plane or hyperplane) after 

projection. The subspace itself is defined by the A orthonormal loading vectors pa (J × 1), 

which are linear combinations of the original variables (i.e., ta = X × pa). The projection 

residuals are collected in the residual matrix E (I × J). The loading vectors are calculated in 

such a way that t1 explains the greatest amount of variance in X, t2 the second greatest 

amount of variance left unexplained by the first component, and so on. 

PCA effectively performs unsupervised clustering of the I samples in the latent variable 

subspace, which can be visualized using scatter plots of the scores (t’s). The differences 

between the clusters can be interpreted using the loading vectors (p’s). The reader is 

referred to Wold et al. [277] for more details about PCA. The ProMV software version 15.08 

(ProSensus, Ancaster, ON, Canada) was used to build the PCA models. 

3.4 Results and Discussion 

The mechanical wave exciting a porous material, such as carbon anode materials, 

usually has complex propagation characteristics. PCA was applied to the attenuated 

acoustic signal feature matrix X to assess whether the anode samples (corridors) located at 

different positions within the block could be distinguished based on their attenuation 

behavior (quantified by temporal features at different frequencies). 

A total of 15 principal components (i.e., latent variables) were found statistically 

significant by a cross-validation procedure [308]. The cumulative sum of squares explained 

(R2) and predicted (Q2) by the first two PCA components are provided in Table 3-1. Only 

those two components are discussed since they were found sufficient to discriminate the 

samples. They explain 65% of the variance of the attenuation features (X) and maintained 

a relatively good performance in prediction by cross-validation (Q2 = 56%). 
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Table 3-1 Percent cumulative sum of squares explained (R2) and predicted (Q2) by the 
principal component analysis (PCA) model built on attenuation features collected from  

anode slices. 

Component R2 (%) Q2 (%) 

1 56.5 49.3 
2 65.2 56.0 

Figure 3-6 presents the latent variable score space (t1 vs. t2) for the first two components 

of the PCA model. Each marker corresponds to the attenuation behavior of one particular 

corridor (one row in X). Those were labeled in the plot using the slice and corridor numbers 

(slice#_corridor#) presented in Figure 3-2. The clustering pattern in the t1-t2 score space 

reveals that corridors 1–2, 3–5, and 6 of any slice roughly cluster in three groups (black, 

orange and blue markers, respectively). At this point, it is important to make a note that the 

corridors labeled #1 are located at the center of the anode and #6 at the outer surface. It 

can also be observed that the attenuation features of corridors 1–2 and 6 seem more 

variable than those of corridors 3–5 (the orange cluster is tighter than the black and blue 

clusters). 

 

Figure 3-6 The t1-t2 score plot of the principal component analysis (PCA) model  
built on acousto-ultrasonic (AU) signal attenuation features. 

In order to interpret the differences between the three clusters based on the internal 

structure of the corridors, the CT scan images of the eight slices were examined first. To 

support the discussion, the images of four of these slices are provided in Figure 3-7. In 

general, it was found that the central/upper regions of corridors 1–2 in most slices were 
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showing several cracks, whereas the lower part of these corridors had a high density of 

pores. Corridors 3–5 were much denser with a few cracks, sometimes extending from 

corridors 1–2 in the transverse direction. Finally, corridor 6 rarely showed cracks but had a 

variable density of pores. Therefore, the clustering pattern shown in the score plot 

(Figure 3-6) suggests that the first component (t1) is sensitive to the presence of cracks 

because, from right to left in the score plot (along the t1 direction), the corridors cluster 

according to the increasing presence of cracks. The second component (t2), on the other 

hand, seems to distinguish dense from porous regions. Corridors 3–5 (orange markers) are 

denser and cluster in the negative t2 region as opposed to those corridors characterized by 

a high pore density (most of the corridors 1–2 and some 6) fall in the positive t2 region.  

 

Figure 3-7 X-ray images showing the distribution of cracks and pores through different 
corridors for selected anode slices. 

These results are also in agreement with carbon plant knowledge. The region below the 

stub holes corresponding to corridors 1–2 in slices #5, #7, #11, and #15 are generally 

expected to show a higher concentration of cracks, as shown in Figure 3-8. Most of these 

corridors fall in the cluster formed by the black markers. Corridors 1–2 in slices #24 and #25 

(edges) project closer to the denser region (orange markers), which is normally expected 

unless cracks extend in the longitudinal direction from the center of the anode towards its 

surface, as seems to be the case for the other edge of the anode (slices #2 and #3). Finally, 

it is important to understand that the overlap between the clusters should not be interpreted 

as a misclassification as it was not attempted to do so. Although cracks and pores are 

expected to concentrate in certain regions within the anode block, they may very well be 

found in locations where they are less or not expected (hence the overlap between clusters) 

but still need to be detected by the inspection system. The color code used to distinguish 

the corridors and slices in Figure 3-6 was selected for illustration purposes only. 
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Figure 3-8 X-ray images showing a transversal section of the sliced anode. 

The relationships between the clusters in the score space (Figure 3-6) and the 

attenuation features are now interpreted using the p1-p2 loading plot shown in Figure 3-9. 

As discussed previously, each score vector ta is defined as a linear combination of the 

attenuation features (i.e., ta = X × pa), and the loading vector pa contains the weights of each 

feature in that linear combination. The weights of each feature in both components are 

presented in the form of a scatter plot (Figure 3-9). Each point in this graph corresponds to 

one feature calculated at one excitation frequency (i.e., one column of X). The label of each 

point identifies the feature name followed by the excitation frequency. 
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Figure 3-9 The p1-p2 loading plot of the PCA model built on AU signal attenuation 
features. MAX: maximum, STD: standard deviation, E: energy, RMS: root mean square, S: 

skewness, K: kurtosis. Numbers next to the feature names indicate the excitation 
frequency (kHz). 

The loading plot is interpreted as follows. The absolute value of the loading weights 

indicates the importance of the feature in a given component, whereas the sign of the 

weights informs about the sign of the correlation between pairs of features. Those features 

with loading values of the same sign are positively correlated while those with opposite signs 

are negatively correlated. Figure 3-9 reveals that the first component is mainly driven by the 

mean and the variance-related features (MAX, E, RMS and STD). In addition, the mean 

features have an opposite sign compared to the others, indicating that they are negatively 

correlated with MAX, E, RMS, and STD. This means that moving from the positive t1 region 

(a low concentration of cracks) towards negative t1 values (a high concentration of cracks) 

involves lower values of the variance-related features (MAX, E, RMS and STD) and higher 

values of the mean of the signal. This is consistent with AU signal attenuation by an 

increasing concentration of cracks. The second component (orthogonal to the first) involves 

most features except for the kurtosis and skewness (K and S) in particular, which were not 

as important in the first component. These features are negatively correlated at all 

frequencies, except for at 200 kHz. In addition, their loading values switch signs around that 

frequency. This suggests that the presence of pores modifies the shape of the distribution 

of the AU signal (as opposed to simple attenuation of the signal by cracks). Furthermore, 
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the fact that the loading values for K and S are frequency-dependent may indicate that t2 is 

not only sensitive to pore concentration, but also to their size. For example, corridor #6 of 

slice 7 (see Figure 3-3) has a high concentration of large pores, corridors #1–2 are also 

characterized by large pores but they are fewer in number compared to corridor #6, and 

corridors #3–5 have smaller pores. In the score plot (Figure 3-6), corridor #6 has the highest 

t2 value, corridors #1–2 have intermediate values, and corridors #3–5 have the lowest values 

for this slice. Hence, the larger the pore size, the higher the t2 values. The relationship 

between pore size and the shape of the AU signals at different frequencies is currently being 

investigated further. 

3.5 Conclusion 

Defective baked carbon anodes decrease the performance of primary aluminium 

reduction processes by increasing energy and carbon consumption in the electrolysis cells. 

It is therefore important to detect them before they are set in reduction cells. However, the 

current quality control schemes used by most anode manufacturers based on core sampling 

and lab characterization are inadequate to cope with the currently decreasing quality and 

increasing variability of the anode raw materials. They can, at most, assess the quality of a 

small percent of the anode production. In addition, the time delay introduced by lab 

characterization is too long to allow timely feedback-corrective actions to be applied on the 

anode manufacturing process when deviations of anode properties from their target occur, 

and/or to reject and recycle the defect anodes. Hence, new rapid and non-destructive 

techniques are required for inspecting every individual baked anode before they are rodded 

and set in reduction cells. 

The objective of this work was to investigate the potential of acousto-ultrasonic (AU) 

techniques to detect the presence of defects affecting the performance of baked anodes in 

the cells, such as pores and cracks, and to discriminate both types of defects. To achieve this 

goal, a full-scale anode was sliced in both longitudinal and transversal directions and imaged 

using X-ray Computed Tomography (CT-Scan) to reveal its internal structure. Each half slice 

was further virtually divided into six corridors along the anode height, from the center of the 

anode to its external surface. At one end, the anode samples (corridors) were submitted to an 

acoustic excitation signal at seven different frequencies ranging from 100 to 250 kHz, while at 

the other end, the attenuated acoustic signals were recorded. A vector of temporal attenuation 

features was calculated from the attenuated signal of each anode sample. Principal 

component analysis (PCA) was then applied to the attenuation feature matrix in order to 



 

89 
 

perform an unsupervised clustering of the acoustic response of each anode sample (i.e., the 

corridor in each tested slice). 

The results have shown that the temporal features calculated from the AU signals are 

sensitive to the presence of cracks within the anode samples (measured by overall signal 

attenuation) and to the density of pores distributed throughout the material. It was also found 

that both types of defects have a different signature in the AU signals and could be 

discriminated in the PCA score space. Furthermore, it appears that some combinations of 

temporal AU features computed at various frequencies are correlated with pore size, 

although further work is required to confirm this. These results were validated qualitatively 

by using the CT scan images of the samples and they were also found in good agreement 

with anode manufacturing process knowledge. 

The proposed approach appears very promising for full-scale anode inspection. In 

addition to detecting and discriminating important defects, the AU system could also provide 

measurements of the anode density distribution, a complement to the electrical resistivity 

measurements currently being developed in the field. Future work will concentrate on the 

scale-up of the approach to industrial-scale baked anodes and to investigate its robustness. 

Regarding the acoustic inspection set-up, minimizing the acquisition time of the acoustic 

signals at multiple points, coping with variations in anode surface quality (i.e., roughness) 

and a more complex geometry are the main challenges to be addressed for application at 

full scale. The analysis of the acoustic signals will also need to discriminate the variations in 

the signals caused by changes in raw material properties, anode formulation and process 

operations from internal defects. 
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 Inspection of Prebaked Carbon 

Anodes using Multi-Spectral Acousto-Ultrasonic 

signals, Wavelet Analysis and Multivariate 

Statistical Methods 

Résumé 

L’efficacité des cellules de réduction dans la production d'aluminium primaire est 

fortement influencée par les propriétés des anodes cuites. La production des anodes de 

qualité constante est plus difficile aujourd'hui en raison de la variabilité croissante des 

matières premières. La prise de mesures correctives instantanées pour atténuer l'impact 

des fluctuations des matières premières sur la qualité de l'anode est également difficile 

compte tenu de la stratégie d'échantillonnage et de caractérisation actuellement utilisée par 

la plupart des fabricants d'anodes. En effet, selon cette stratégie, en termes de capacité les 

laboratoires ne peuvent supporter qu’une très faible proportion (environ 1%) des analyses 

de la totalité des anodes produites à cause de la capacité limitée des ressources et du coût 

élevé. À ce problème de capacité s’ajoute aussi le retard causé par le long délai nécessaire 

pour les analyses de laboratoire. L'objectif de ce travail est donc de développer des 

méthodes rapides et non destructives pour l'inspection des anodes cuites. Dans un 

précédent travail, il a été démontré que les signaux acousto-ultrasoniques, collectés à partir 

des tranches d’anode à différentes fréquences, sont sensibles aux défauts de l’anode (pores 

et fissures) ce qui a été validé qualitativement par la tomographie à rayons X. Pour améliorer 

cette approche, ce présent travail fait plutôt appelle à l'utilisation des signaux d’excitation 

multi-spectrales ainsi que la corrélation quantitative entre les signaux acousto-ultrasoniques 

et les défauts extraits des images de tomographie. Pour ce faire, les transformées en 

ondelettes et la méthode des moindres carrés partiels ont été mises en œuvre, 

respectivement, pour l’analyse des signaux et la régression. Il en résulte un temps 

d’acquisition plus court et un modèle plus spécifique et robuste pour l'inspection des anodes. 

La performance de cette approche a été mise en évidence à l'aide d’échantillons d’anodes 

industrielles. 
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Abstract 

Reduction cell operation in primary aluminium production is strongly influenced by the 

properties of baked anodes. Producing consistent anode quality is more challenging 

nowadays due to the increasing variability of raw materials. Taking timely corrective actions 

to attenuate the impact of raw material fluctuations on anode quality is also difficult based 

on the core sampling and characterization scheme currently used by most anode 

manufacturers because it is applied on a very small proportion of the anode production 

(about 1%), and long-time delays are required for lab characterization. The objective of this 

work is to develop rapid and non-destructive methods for inspection of baked anodes. In 

past work, it was shown that acousto-ultrasonic signals collected from anode parts at 

different frequencies were sensitive to anode defects (pores and cracks) and this was 

validated qualitatively using X-ray computed tomography. This work attempts to improve the 

method by using multi-spectral excitation signals and by establishing quantitative 

relationships between the acousto-ultrasonic signals and defects extracted from 

tomography images using Wavelet Transforms and Partial Least Squares (PLS) regression. 

This results in shorter acquisition time and a more specific and robust model for anode 

inspection. The method performance is illustrated using samples collected from industrial 

scale anodes. 

Keywords: Non-destructive testing; acousto-ultrasonic signals; CT-Scan images; 

PCA; PLS. 
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4.1 Introduction 

Most modern primary aluminium smelters use the Hall-Héroult (H-H) electrochemical 

process to reduce alumina powder to metal aluminium. To carry out the reaction, prebaked 

carbon anodes are utilized in order to distribute the electrical current in the reduction cells, 

and to supply the carbon required by the reaction. Hence, the anodes are consumed and 

need to be replaced according to a predefined set cycle. The overall performance of the H-

H process is strongly influenced by the quality of the anodes blocks. For instance, a low 

electrical resistivity is important to maximize the energy efficiency. A high mechanical 

strength and density and low reactivity to air and CO2 are desired to minimize carbon 

consumption, and to reduce the environmental footprint and greenhouse gas (GHG) 

emissions. Any physical defects within the anode blocks, such as pores, cracks or 

compositional heterogeneities, may adversely affect the anode performance, and 

consequently, that of the reduction cells. Producing high quality anodes consistently is 

therefore a major concern for the manufacturers who are currently facing degrading quality, 

increasing variability and cost of the anode raw materials (petroleum coke and coal tar pitch). 

The traditional anode quality control scheme used by the industry and consisting of 

collecting core samples from the baked anodes and characterizing them in the laboratory is 

inadequate to address the current needs. Indeed, core samples are gathered from a very 

small proportion of the anode production (often less than 1%) because of the destructive 

and time/resource consuming nature of the procedures. Furthermore, the samples 

themselves represent only 0.1-0.2% of the anode block volume which properties are known 

to be anisotropic. Finally, the core sample properties are typically available after a long time 

delay, which limits the implementation of feedback corrective adjustments to the anode 

manufacturing process when deemed necessary. Therefore, alternative rapid and non-

destructive techniques are required for assessing the quality of individual baked anodes 

before they are set in the H-H reduction cells. 

Recent research efforts focused on developing devices for measuring the electrical 

resistivity of the individual green [119, 295, 327] and baked [114, 115] anode blocks using 

different technologies. These sensors allow measuring a very important anode property 

related with energy efficiency, but their capacity to detect, locate and diagnose physical 

defects within the anode blocks has yet to be established. Alternatively, the performance of 

acousto-ultrasonic (AU) techniques for detection of various defects in carbon anodes has 
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been demonstrated in previous work [309] using sequential acoustic excitation at different 

frequencies. Sliced anode samples were tested using this approach and their acoustic 

responses was analyzed using Principal Component Analysis (PCA). The relationship 

between the attenuation of the acoustic signals and the presence of different defects was 

validated qualitatively using X-ray images collected from the slices. However, sequential 

excitation at multiple points on the material is a lengthy process, and shortening the cycle 

time of the acoustic inspection scheme is highly desirable for industrial implementation. 

The aim of this work is to demonstrate that exciting the anode materials using a single 

frequency modulated acoustic wave (multi-frequency signal) can lead to similar or better 

results compared to sequential excitation, while significantly reducing cycle time. For 

instance, the sequential excitation scheme used in previous work to obtain good inspection 

results consisted of testing the materials at seven excitation frequencies in the 100-250 kHz 

range for each measurement point [309]. A single frequency modulated wave in the same 

range would reduce cycle time by 7 to 1 for the same number of data points. A side objective 

of this work is to validate the proposed approach more quantitatively, by building empirical 

regression models between the acoustic response of the materials and the corresponding 

CT-scan images. These images are used for the sole purpose of confirming the inspection 

results as they would not be available in an industrial implementation.  

Under frequency-modulated excitation, the material response signal is more complex 

as it also contains multiple frequencies. To quantify the acoustic attenuation at different 

frequencies, the signal needs to be first decomposed. One approach consists of using the 

Fast-Fourier transform (FFT) [310-313]. However, it only performs frequency domain 

decomposition and does not capture variations in the signal frequency content through time, 

which may limit the performance in defect detection and identification. An alternative 

approach is to perform time-frequency decomposition of the signals using the Wavelet 

Transforms (WT) [314-316, 345], which were shown to be a powerful tool in all areas dealing 

with transient signals [317-319]. Qi et al. [231-320] showed the effectiveness of the Discrete 

Wavelet Transform (DWT) to process the acousto-ultrasonic signals from composite 

materials. A similar approach is used in this work.  

To quantify defects in tomographic images, texture analysis techniques are used since 

the defects introduce local variations in grey level intensity in the images according to some 

relatively well defined patterns (e.g., round spots for pores and streak lines for cracks). Again 
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here, one could extract textural features from tomographic images using the two-

dimensional Fast Fourier Transform (2D-FFT) [321]. The frequency decomposition of the 

images could be used determine the severity of the defects. However, variations in 

frequency content within the images (i.e., spatial information) cannot be extracted using this 

approach. On the other hand, the 2D Discrete Wavelet Transform (2D-DWT) is effective for 

extracting both frequency and spatial information [322]. Wavelet texture analysis has proved 

a useful tool in several areas dealing with noise and low variation in images. 

After applying the WT to both sets of data (acoustic signals and images), wavelet 

features were extracted and analyzed using PCA in order to explore the clustering pattern 

of the various anodes slides. A regression model was then built between both data sets. The 

results show that the attenuated acoustic response of the materials obtained after 

frequency-modulated excitation are sensitive to the presence of cracks within anode 

samples, and to the density of pores distributed throughout the anode samples (slices). The 

performance of this approach was found to be similar to that obtained using sequential 

excitation [6], but with a significant reduction in cycle time. 

4.2 Materials and experimental data acquisition 

4.2.1 Baked anode samples and X-Ray CT-Scan imaging 

A full-size industrial baked carbon anode was scanned using a Siemens Somatom 

Sensation 64 tomograph. The scanning area of the X-ray apparatus was limited to objects 

of less than 40 × 40 mm2 cross-section. Since the anode was too large to fit in the scanning 

area in one piece, it was cut in several slices as shown in Figure 4-1. The cutting was 

performed with care to avoid altering any anode defects. Furthermore, a higher image 

resolution at each scan is obtained when the samples are smaller in size, which increases 

the contrast between defects and the background [252]. The anode was first cut into 26 

slices (Figure 4-1 a), and then each of them were cut further in halves along their heights 

(Figure 4-1 b). The top and bottom of each half slice was also cut to obtain samples of 

uniform geometry before collecting the acoustic response of the material. Note that the 

following eight slices were selected for further AU analysis: 2, 3, 5, 7, 11, 15, 24, and 25 

(indicated using red numbers in Figure 4-1 a). These slices span a range of internal 

structures, and were selected from areas which are expected to contain different types of 

defects (see [309] for more details).  
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The CT-scan measured the attenuation coefficients of the material for a set of 

512×512 3D voxel (volumetric pixel) per scan, which correspond to the tomograph 

resolution. Given the slice dimensions, the voxels had a resolution of 0.7×0.6×0.7 mm. The 

X-ray attenuation coefficients of the voxels (also called CT numbers) were converted to 

grayscale images showing spatial variations correlated with the materials density [77, 252]. 

Cracks and pores appear as groups of dark pixels surrounded by lighter background 

(carbon anode). The high-density impurities appear as bright pixels inside a darker 

background. Figure 4-2 shows an example X-ray CT-Scan image for one slices.  

 
(a) 

 
(b) 

Figure 4-1 The sliced baked anode. (a): the selected 8 slices are identified in red; (b): 
Example of a slices used for acousto-ultrasonic testing [309]. 

 

Figure 4-2 Example X-ray Computed Tomography (CT Scan) image obtained for slice 7. 
The corridors are identified by the red lines and numbered from 1-6. The black region 

corresponds to one of the anode slots [309]. 

4.2.2 Acousto-ultrasonic signal acquisition 

The acousto-ultrasonic inspection system used in this work was described in details in 

[6]. It consists of a multi-channel acousto-ultrasonic apparatus using two acoustic sensors 
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(an emitter and a receiver), a pre-amplifier, and a software for controlling the excitation and 

recording the emission signals. The sensors were mounted on both ends of the anode slices 

(one on top and the other on the bottom surface) using mechanical clamps. Couplant gel 

was applied on the anode surfaces before the sensors were put into contact with the 

materials. This was made to ensure good contact between the sensors and the anode 

samples which typically have rough surfaces. The sensors were placed vis-à-vis each other 

and moved together along the anode width so as to measure the AU response of the 

materials included in the 6 so-called corridors identified by a white chalk in Figure 4-1 b), 

and by red lines in Figure 4-2. The material structure clearly changes from the center of the 

anodes to the external surface (corridor 1 and 6 in Figure 4-2, respectively), as shown by 

variations in material density (i.e., gray level) and the presence of pores and cracks. As 

mentioned in the previous section, such variations in the material structure are also expected 

along the length of the anode (i.e., various slices). 

The excitation signal was specified as a modulated frequency signal between 100 and 

300 kHz as shown in Figure 4-3. This range was selected based on previous work [309]. 

The AU measurements were made using a pre-amplification gain of 40dB, and sampling 

rate of 1000 kHz. This procedure was repeated for all 6 corridors (Figure 4-1 b) in each of 

the selected anode slices.  

 

Figure 4-3 The frequency modulated waveform used as the excitation signal. Both the 
time series (top) and the frequency content (bottom) of the signal are shown. 



98 
 

4.3 Extraction of features from acoustic signals and X-ray 

images  

4.3.1 Acousto-ultrasonic signals 

The majority of the acousto-ultrasonic signals propagating through the porous anode 

materials are in the frequency range of 10-300 kHz. Dividing this range into a set of 

consecutive frequency bands may help relate different time-frequency features of AU signals 

to various anodes defects. The wavelet transforms were used to decompose the signals and 

extract meaningful time-frequency domain features from them. 

The decomposition of a continuous 1D signal x(t) using a specific scaled or dilated 

mother wavelet  (t,a,b) is obtained by the convolution of both the signal and the wavelet 

function as follows [324]:  

 dt





 
 
 

a,b

1 t -b
d = x(t)ψ

aa
  (4.1) 

In the above equation,  (t) is the mother wavelet function which corresponds to a wave 

of finite length and having a particular shape. Several types of mother wavelet exist (e.g., 

Haar, Daubechies, Coiflet, Symlet, Mexican Hat, etc.), and they mainly differ by their shape 

(frequency content). The type of mother wavelet is typically selected so as to match the 

shape of the signal x(t) the best possible. The Daubechies wavelet (Db5) was selected in 

this work. This choice came after selecting the best results from trying several different 

mother wavelets. Parameters a and b are called the scaling and the translation parameters, 

respectively. The former stretches the mother wavelet and changes its frequency content 

while the latter performs a translation of the wavelet over time. The results of the convolution 

is a scalar quantity da,b, called the wavelet detail coefficient, and represents how well the 

signal x(t) matches the dilated mother wavelet at scale a and time point b. Changing the 

scaling coefficient a from a small to a large value progressively dilates the wavelet and 

therefore allows extracting information about signal x(t) from high to low frequency. 

Translating the wavelet using parameter b from the beginning to the end of the x(t) signal 

allows capturing information at different time points. Hence, changing a and b in a nested 

fashion performs a spatial-frequency decomposition of signal x(t) and how well the signal 

matches at wavelet at scale a and time point b is quantified by the detail coefficient da,b. Note 

that the acoustic signals analyzed in this work are discrete (i.e., sampled at a given 
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frequency). A discrete version of equation 4.1 exist for sampled signals as well. This leads 

to the so-called Discrete Wavelet Transform (DWT), which is numerically implemented as a 

filter bank, involving sets of low and high-pass filters, instead of a convolution integral 

(equation 4.1). Instead of changing the scale by contracting or dilating the mother wavelet, 

the latter is kept at a fixed length but the signal itself is progressively decimated according 

to a dyadic sampling selected for computing efficiency and to avoid signal aliasing. Hence, 

at the first scale, the wavelet extracts high frequency information, and subsequent scales 

extracts lower frequency components. The mother wavelet to use as well as the number of 

scales (integer number) are set by the user. For more details on the DWT, the reader is 

referred to [322]. 

After performing the wavelet decomposition of discrete signal x(i), a set of vectors of 

detail coefficients da(i) is obtained, one for each scale a. Each vector contains the detail 

coefficient at a given scale but for all time points. In other words, the original signal x(i) is 

decomposed into a set of detail signals da(i), each containing information about a certain 

frequency band. Three time domain features were then calculated from each time series 

da(i), i=1,2,…N, N being the number of samples in the time series. These features are the 

maximum (MAX), the root mean square (RMS) and the time of flight, or arrival time (AT). 

These features are calculated as follows: 

 N
i=1

MAX =max d (i)a a
  (4.2) 

  
N 21

a aN i=1
RMS = d (i)   (4.3) 

 AT =i when d (i) ³ 0.15×max(d (i))a a a   (4.4) 

The acoustic response of the materials x(i) was decomposed up to level 4 (four 

different discrete values of a) and the MAX and RMS features were calculated from each of 

them as well as the arrival time. Figure 4-4 provide an example of a raw acoustic signal 

decomposed into 4 frequency bands (details 1-4), and also shows the residual signal after 

four decomposition levels (called approximation).  
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Figure 4-4 Example wavelet decomposition of an acoustic signal using 4 decomposition 
levels. The raw signal, the 4 wavelet detail signals as well as the residuals (approximation) 

are presented. 

The data were then collected in a (48×15) dimensional matrix X. The 15 columns 

correspond to the three features computed from the 4 wavelet detail signals as well as the 

approximation for all of the 48 samples (6 corridors × 8 anode slices). Signal and image 

processing were performed using Matlab version R2014a (MathWorks, Natick, MA, USA). 

4.3.2 X-ray image texture analysis 

The texture of X-ray images was analyzed using a very similar approach as for the 

acoustic signals. The tomography data were first converted to grayscale images. The 

Discrete Wavelet Transform was then applied to the images to extract textural information. 

The choice of using texture analysis on X-ray images is motivated by the fact that it allows 

to detect and quantify anode defects in an automated fashion without having to segment the 

images (a more tedious operation). The main difference in the application of wavelets to 

images and acoustic signals is that images are 2D signals. An image is a matrix of data 

I(nX,nY) where nX and nY are the number of pixels in the horizontal and vertical directions in 

the images and the elements of that matrix correspond to the X-ray attenuation coefficients 

converted to grayscale values. The convolution between a mother wavelet and the image 

signals (i.e., discretized version of equation 4.1) is performed along each row and each 

column of the image (horizontally and vertically) as well as diagonally. Wavelet detail 

coefficients are obtained for each pixel of the images at each scale and for each of the three 

directions. These are collected into matrices Dj
k where j correspond to the scale, k to each 

direction (h,v,d), and each element of these matrices to the detail coefficient at a certain 

pixel location (nX, nY). These matrices can also be shown as images for visual interpretation, 

and are typically called wavelet detail sub-images (Dj
h, Dj

v, Dj
d). At the first scale, high 
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frequency information is captured from the images in all three directions and these are 

associated with small objects or patterns in the image. As the scale increases, lower 

frequency information introduced by larger objects or patterns are extracted. The 5th order 

Daubechies wavelet (Db5) wavelet was selected for extracting textural information from the 

X-ray images.  

Several scalar textural descriptors or textural features can be calculated from the 

wavelet detail sub-images, the most popular being the energy, variance, entropy, and the 

mean [254, 266]. Our results showed that the energy is sufficient to extract information 

related with anode defects (pores and cracks) within the X-ray images. The energy is 

calculated as follows from the wavelet detail sub-images at each scale and for the three 

directions: 

 


X Yn n
2

k

j
k m=1 n=1
j

X Y

D (m,n)

E =
n n

  (4.5) 

where dj
k is the detail coefficient for pixel located at the (nX, nY) position within an image in 

the kth direction (k = h, v, d) and at the jth scale. The total number of pixel within the images 

(nX×nY) is used to normalize the energy values. The X-ray images were decomposed up to 

scale 4. This yields 12 energy values per anode corridor (4 scales  3 directions). These 

values were collected for the 48 corridors and stored in matrix Y of dimensions (4812). 

The application of wavelet decomposition to one such X-ray image is shown in Figure 

4-5. It displays the original image as well as the detail sub-images for each of the 4 scales 

and directions. The sub-images are identified by the direction first (h,v,d) and then by the 

scale number (1,2,3,4). For instance, sub-images v3 displays the information extracted from 

the image by the wavelet in the vertical direction at scale 3. The vertical and diagonal sub-

images at scales 2-4 clearly capture the profile line of the vertical and diagonal cracks in the 

image. This information will be regressed against the acoustic signals in order to link the 

acoustic attenuation to anode defects quantitatively. 
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Figure 4-5 2D discrete wavelet decomposition of an X-ray image at 4 scales and in 3 
directions. The wavelet sub-images are identified by the direction of analysis (h,v,d) 

followed by the scale number (1-4). 

4.4 Multivariate statistical methods for analysis of the AU signal 

and image features 

Multivariate statistical methods are used to analyze the large data matrices obtained 

in this study. First, Principal Component Analysis (PCA) is used to cluster the X-ray images 

based on their texture (Y data). Then, Partial Least Squares (PLS) regression is used to 

build relationships between the acoustic attenuation data (X) and then image textural 

features (Y). These methods are briefly described below. 

4.4.1 Principal Component Analysis (PCA) 

Data clustering in the latent variable space using methods such as PCA is widely used 

for the analysis of large datasets containing noisy and highly collinear data. PCA 

summarizes the variations contained in a large set of J variables X=[x1, x2,…, xJ] by a much 

smaller number of orthogonal latent variables (or scores) T=[t1, t2,.., tA] (A<<J) together 

capturing the dominant sources of variations in the data. The scores are obtained by an 

eigenvector-eigenvalue bilinear decomposition of the X matrix and is mathematically 

expressed as follows [277, 346]: 

 
A

T T

a a

a=1

X = t p +E = TP +E   (4.6) 

where the orthogonal vectors ta are the latent variables (called scores) providing the 

coordinates of each sample in the low dimensional subspace (plane or hyperplane) after 

projection. The subspace itself is defined by the A orthonormal loading vectors pa, which are 

linear combinations of the original variables (i.e., ta = X pa). The projection residuals are 
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collected in the residual matrix E. The loading vectors are calculated in such a way that t1 

explains the greatest amount of variance in X, t2 the second greatest amount of variance 

not explained by the first component, and so on. Plots of the score values are used to 

visualize the clustering pattern of the data while the loadings allow interpretation of the 

patterns by the changes in the variables. The reader is referred to [277] for more details on 

PCA. 

4.4.2 Partial Least Squares (PLS) regression 

The PLS regression method is used here to correlate the acousto-ultrasonic features 

of the anode corridors gathered in X matrix with corresponding image textural features 

collected in Y. Similar as for PCA, this regression method has an advantage of overcoming 

the strong correlation between features in both data blocks. Each PLS latent variable is 

calculated in such as was to maximize the covariance in both data matrices and the following 

model structure is obtained [271, 272]: 

 
T= +X TP E   (4.7) 

 
T= +Y TC F   (4.8) 

 * T -1= = ( )T XW XW P W   (4.9) 

where the latent variable space of both X and Y correspond to the scores T (orthogonal PLS 

components) which relate X to Y. The sub-spaces of X and Y are modelled by the loading 

matrices P and C, respectively, while the corresponding residuals are stored in E and F. 

Finally, the so-called weight vectors W* contains the linear combinations that expresses T 

in terms of X and allow to make predictions of Y. 

The PLS method also performs clustering of samples vector in the latent variable subspace 

according to the Y data. The clustering patterns can be visualized using scatter plots of the 

scores (t’s). The differences between the clusters can be interpreted using the loading 

weight vectors (w*’s). The reader is referred to Wold et al. [272] for more details about these 

methods. The ProMV software version 15.08 (ProSensus, Ancaster, ON, Canada) was used 

to build PCA and PLS models. 

4.5 Results and discussion  

The X-ray image textural features (Y data) are analyzed first using PCA in order to 

associate them with anode defects (voids such as pores and cracks). A PLS regression 
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model is then built using both the acoustic and image textural features in order to correlate 

them. This provides a quantitative validation of the impact of anode defects on the acousto-

ultrasonic features. 

4.5.1 Texture analysis of X-ray images 

Using the cross-validation procedure [308], two PCA components (or latent variables) 

were found significant and together explain most of the variations in the image textural 

features. The cumulative sum of squares explained (R2) and predicted (Q2) by the first two 

PCA components are provided in Table 4-1. The first two components were found sufficient 

to discriminate the corridors based on their textural features since they explain over 83% of 

variance of the textural features stored in Y (Q2=83.21% in Table 4-1). 

Table 4-1 Percent cumulative sum of squares explained (R2) and predicted (Q2) 
by the PCA model built on textural features collected from anode slices X-ray images. 

Component R2 (%) Q2 (%) 

1 60,3 58,7 

2 84 83.21 

The main variability directions in the image dataset captured by the two PCA 

components are presented in the t1-t2 score plot shown in Figure 4-6. Each marker in this 

plot represents a summary of the textural features of one particular corridor. These are 

identified by the slice number followed by the corridor number. Corridors having similar 

textural features cluster close to each other while those having different features cluster in 

different locations in the latent variable space. It is observed that the corridors located in the 

same position within the slices cluster together (see markers of the same color in Figure 4-

6). Furthermore, each group is discriminated from the others along both PCA components 

except those of slice number 25. This slice is located close to the corner of the anode block, 

and contains larger pores and cracks which makes them look like either corridors #1-2, 

typically containing several cracks, or to corridors #6 that contain lots of pores. This explain 

why the corridors of slice #25 cluster close to corridors #1-2 or #6. 
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Figure 4-6 Score plot of the PCA model (t1-t2) showing the clustering pattern of the 
corridors in each slice based on their textural features extracted from X-ray images. 

Observations are identified by the slice number (red numbers in Fig. 1) followed by the 
corridor number (1-6). Different colors are used to distinguish the different corridors as 

shown in the anode slice image included in the figure. 

The clustering pattern in the score space can be interpreted based on changes in the 

textural features by examining the p1-p2 loading plot shown in Figure 4-7. Each point in the 

loading plot corresponds to one textural feature calculated from the image of each corridor. 

They are labeled according to the feature name followed by the wavelet decomposition level. 

The loading values define the weight of each textural features in each component. The 

higher the absolute value of the loadings the more important the features are in a given 

component. The signs of the loadings indicates the sign of their correlation. Features having 

loading values of the same sign are positively correlated and those having opposite signs 

are negatively correlated. The loading plot reveals that the first component is driven by most 

wavelet decomposition levels, and all of them have loading values of the same sign (i.e., 

vary all together in the same direction). This component seems to explain variations in 

density and/or the total volume of voids (i.e., defect severity) across the X-ray images. A 

denser region is characterized by higher CT numbers and hence by higher grey levels in the 

image. This typically leads to higher energy values as calculated from the wavelet texture 
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analysis. Since corridors 3-4 (and 5 to some extent) are known to be denser, it is expected 

that these corridors would fall in the positive t1 region (see Figure 4-6) because the energies 

at all scales and directions would be higher. On the contrary, corridors 1-2 and 6 typically 

contain more defects (cracks and pores) and therefore are less dense. Hence, lower CT 

numbers, grey level intensities and energies. Thus, it is expected that these would fall in the 

negative t1 region of the score plot. 

The second component, however, is driven by a contrast between the energies at 

scales 1-2 vs 3-4 since these two groups have loading values of opposite signs. This 

component seems to capture textural variation that corresponds to defects sizes. Corridors 

containing larger defects (e.g., cracks) should be characterized by higher energies at lower 

frequencies (scales 3-4) and lower energy at higher frequencies (scales 1-2) since the lower 

frequency bands are associated with larger objects or patterns. Since corridors 1-2 typically 

contain more cracks they fall in the positive t2 region (higher energies at scales 3-4 and 

lower at scales 1-2). The situation is opposite with corridor 6 typically containing pores 

(clusters in negative t2 region). Hence, the proposed wavelet texture analysis of X-ray 

images seems to capture variations in density and to discriminate between small and large 

defects in the anode samples (i.e., pores vs cracks).  

 

Figure 4-7 Loading plot of the PCA model (p1-p2) built on image textural features (Y data). 
The energy features are identified by letter “E” followed by the wavelet direction (H, V, or 

D), and scale number. 



 

107 
 

4.5.2 Regression of X-ray image textural features on acousto-ultrasonic 

features 

Five PLS components were found statistically significant by a standard cross-

validation procedure, and together explain about 40% of the variance of the image features 

(Y data). However, the first two were found sufficient in number to discriminate samples 

based on their acousto-ultrasonic features. 

The latent variable score space for the first two components of the PLS model is 

displayed in Figure 4-8. Each marker in the plot corresponds to the acousto-ultrasonic 

response of one corridor, which are identified as described in the previous section. The 

clustering pattern in the t1-t2 score space reveals that corridors 1-2, 3-5 and 6 of any slice 

cluster in 3 groups (black, orange and blue markers, respectively). At this point, it is 

important to remind that corridors #1 are located at the center of the anode and corridors #6 

at the outer surface. It can also be observed that the attenuation features of corridors 1-2 

and 6 seem more variable than the majority features of corridors 3-5 (orange cluster tighter 

than black and blue).  

The first component (t1) in Figure 4-8 seems to capture the types of defects in the 

materials since the corridors where most of the cracks were found (1-2) are located in the 

negative t1 region, those characterized by high concentration of pores (corridor 6) are 

located in the positive t1 region, and corridors 3-5 containing a mixture of both fall in between 

the two. The w1
*-c1 – w2

*-c2 loadings bi-plot presented in Figure 4-9 confirms this 

interpretation. The sign of X-loadings and Y-loadings (w*’s and c’s or black and red markers 

in Figure 4-9) indicate the sign of the correlation between pairs of features whereas their 

absolute values is proportional to their importance in a given component. Note that 

comparing the black or the red loading values allows interpreting the correlation between 

the acoustic or the image textural features, whereas comparing the black against the red 

loadings provide information about the cross-correlation between the acoustic and the 

textural features, and the relationship between both the X and Y datasets. Clearly, the first 

PLS component captures a similar contrast in the energies at scales 3-4 vs 1-2 as the 

second PCA component discussed in the previous section. The variations in the acoustic 

features (black markers in Figure 4-9) are also consistent with those in the X-ray image 

textural features (red markers in Figure 4-9). When the materials mainly contains cracks, 

especially when these are oriented perpendicular to the wave propagation direction, arrival 

times should be longer, the signals more attenuated (lower MAX and RMS features), and 
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the energies in lower frequency range (scales 3-4) should be higher compared to scales 1-

2. Hence, those corridors containing more cracks should fall in the negative t1 region, and 

those having a higher concentration of pores (and less cracks) should fall in the positive 

region. This is consistent with the clustering pattern shown in Figure 4-8. The X-ray images 

of selected corridors are also shown in Figure 4-10. Slices 5_1 and 7_1 both have similar t2 

values but extremely different t1 scores compared to corridors 5_6 and 7_6. Their X-ray 

images clearly show that the former two corridors contain several transversal cracks and 

some pores whereas the latter two mostly contains pores, which are also larger. 

 

Figure 4-8 Score plot of the PLS model (t1-t2) between acoustic attenuation and X-ray 
image textural features. Observations are identified by the slice number (red numbers in 
Fig. 1) followed by the corridor number (1-6). Different colors are used to distinguish the 

different corridors as shown in the anode slice image included in the figure. 

The second component does not segregate the corridors as much as t1 does, as most 

of them span the t2 range. Since it is orthogonal to the first component, the second captures 

a different source of covariation between the acoustic and textural features. The loading plot 

(Figure 4-9) shows that all features have the same sign in the t2 component (all positive), 

although the energies in scales 1-2 and most of the MAX and RMS features (except RMSD4) 

contribute less in this component. The same sign for the loadings means that they all vary 
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together in the same direction. This is consistent with the first component of the PCA model 

presented in the previous section, which was associated with variations in material density 

and/or total volume of voids. Indeed, corridors containing more and larger voids (cracks 

and/or pores) would lead to longer arrival times, and more energy at scales 3-4 (lower 

frequencies). Hence, they would project in the positive t2 range compared with corridors 

containing fewer and smaller voids, which would fall in the negative t2 area. The X-ray 

images for corridors 3_3 and 15_3 have similar t1 values, but very different t2 scores 

compared with corridors 5_5 and 24_5. The images in Figure 4-10 clearly show that the 

former two projecting in the high t2 region contain more and larger voids (or defects) 

compared with the latter two falling in the lower t2 region. 

 

Figure 4-9 Loadings bi-plot (w2
*-c1 – w2

*-c2) of the PLS model between acoustic 
attenuation signals and X-ray image textural features. The features are identified by their 

names and by the scale at which they were calculated (1-4). 
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Figure 4-10 X-ray images showing the distribution of cracks and pores in selected 

corridors. 

4.6 Conclusion 

Baked carbon anodes are used in the Hall-Héroult aluminium reduction process to 

distribute the electrical current throughout the cells, and to provide the source of carbon 

required by the electrolytic reaction. However, poor quality anodes containing structural 

defects such as cracks and a high concentration of pores, can deteriorate the reduction cell 

performance by reducing energy efficiency and increasing carbon consumption. The current 

quality control scheme based on collecting core samples from a small proportion of the 

anode production and characterizing them in the laboratory is not adequate for detecting 

pores and cracks in a rapid and non-destructive fashion. Research efforts are currently being 

made to develop new sensors for inspecting individual anode blocks non-intrusively, at a 

speed compatible with industrial requirements. 

Past work have demonstrated the potential of acousto-ultrasonic techniques (AU) to 

detect pores and cracks in anode samples using sequential excitation at different 

frequencies [309]. However, this approach require long cycle times to collect all 

measurements. The present work aims at reducing cycle time by using a single frequency-

modulated excitation, and showing that such an approach leads to similar inspection results 
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as those obtained with sequential excitation. A quantitative validation of the inspection 

results is also proposed using X-ray images collected from each sample used in this study. 

A full size baked carbon anode was cut into 26 slices of equal thickness. A total of 8 

slices distributed along the anode length and showing different internal structures were 

selected for this work. After collecting X-ray images of the samples using a CT-Scan, they 

were excited by a frequency-modulated wave at 6 different points along the slice width. The 

AU signal received after the wave propagated through the material at each location (so-

called corridors) was recorded. The Discrete Wavelet Transform (DTW) was used to 

decompose the AU signals into different frequency bands, and to perform texture analysis 

of the X-ray images. A number of scalar features were subsequently calculated from the 

wavelet sub-signals and images. Multivariate latent variable methods such as Principal 

Component Analysis (PCA) and Partial Least Squares (PLS) regression were then used to 

cluster the corridors in each slice according to their internal structure. A regression model 

was also built between the AU signals and the X-ray images in order to relate variations in 

the acoustic signals with the presence of defects in the material.  

The results show that the textural features extracted from the X-ray images efficiently 

detected the voids in the anode samples, and allowed to discriminate pores from cracks, 

and captured the severity of those defects. The PLS regression model built between the X-

ray image textural and the AU signal features for each corridor clearly showed that variations 

in the acoustic response of the samples also allows detecting and discriminating both types 

of defects, and to assess their severity. Furthermore, the inspection results obtained with 

the frequency-modulated excitation led to the same conclusions as those obtained with 

sequential excitation [6], with a significantly shorter cycle time.   

The proposed non-destructive acousto-ultrasonic inspection approach appears very 

promising for a real-time quality control of industrial scale pre-baked carbon anodes. Future 

work will investigate the application of the inspection scheme to full size anodes collected 

from an industrial manufacturing plant. 
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 Inspection of baked carbon anodes 

using a combination of multi-spectral acousto-

ultrasonic techniques 

 

Résumé 

Le fonctionnement optimal des cellules d’électrolyse utilisées dans la production 

d'aluminium primaire est fortement influencé par la qualité des anodes, notamment par la 

présence de défauts microstructuraux tels que les fissures et les pores. La qualité des 

anodes commerciales disponibles souffre d'une variabilité croissante due à celle des 

matières premières. Le système actuel de contrôle de la qualité des anodes précuites 

consiste à mesurer différentes propriétés basées sur l'échantillonnage et la caractérisation 

au laboratoire. Cependant, les échantillons ne sont pas représentatifs de la population, car 

seulement moins de 1% des anodes produites sont analysées. Il y a aussi un délai de 

plusieurs semaines avant d'obtenir les résultats du laboratoire, ce qui rend le contrôle du 

processus de rétroaction difficile. Pour faire face à ce problème, un système d'inspection 

non destructive pour des échantillons d'anodes utilisant des signaux acousto-ultrasoniques 

et des méthodes statistiques multivariées a été développé, puis amélioré pour application 

directement sur plusieurs blocs d'anodes industrielles fabriquées par l’usine de Alcoa à 

Deshambault. Les résultats montrent que les caractéristiques acousto-ultrasoniques dans 

différentes gammes de fréquences sont sensibles à la présence des défauts ainsi que leur 

localisation dans les blocs anodiques. Ce travail démontre également les effets de la 

cuisson sur la qualité des anodes. La validation de cette approche a été accomplie au moyen 

d'images recueillies après le sciage de quelques anodes parmi celles qui ont été testées.  
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Abstract 

The operation of Hall-Héroult electrolytic cells in the production of primary aluminium 

is strongly influenced by the quality of baked carbon anodes, and particularly by the 

presence of microstructural defects such as cracks and pores. The traditional pre-baked 

anode quality control scheme used by most aluminium smelters consists of measuring 

different properties based on core sampling and laboratory characterization. However, the 

samples are not representative of the population, as core samples are typically collected 

from less than 1% of the manufactured anodes. The delay of several days to obtain the lab 

results also make feedback process control adjustments difficult to implement in a timely 

manner. Such corrective actions would greatly help coping with the increasing anode raw 

material variability (coke and pitch). A non-destructive testing method was previously 

developed and tested on anode samples using acousto-ultrasonic signals and multivariate 

statistical methods. This paper reports on the application of the inspection scheme to several 

industrial scale anode blocks. It is shown that the acousto-ultrasonic features in different 

frequency ranges were found sensitive to the defects severity as well as their location in the 

anode blocks. The proposed approach also allowed clustering the anodes according to the 

conditions under which they were baked. The results were validated using images collected 

after cutting some anodes. 

Key words: Non-destructive testing, acousto-ultrasonics, wavelet analysis, PCA, 

baked carbon anodes, primary aluminium smelting. 
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5.1 Introduction 

The Hall-Héroult electrolytic cells are widely used for primary aluminium smelting. In 

this process, large carbon blocks acting as anodes distribute the electrical current 

throughout the cells. They also participate in the electrolytic reduction reaction and therefore, 

they need to be replaced after a set cycle of about 20-30 days. The baked anodes are often 

manufactured on site using petroleum coke and coal tar pitch as the main raw materials.  

A major concern in the aluminium industry is the declining quality and increasing 

variability of the anode raw materials. The frequent supplier changes made in order to meet 

quality specifications while reducing purchasing costs further contributes to incoming raw 

material variability. Variations in raw materials properties combined with changes in the 

anode manufacturing process conditions may create internal flaws such as pores and cracks 

within the anode blocks, which, in turn, affect the performance of the aluminium reduction 

cells by decreasing their energy efficiency and increasing the specific carbon consumption. 

The anode quality control scheme widely used throughout the industry consists of collecting 

core samples from baked anodes according to a well-established sampling plan, followed 

by core characterization in the laboratory. This control strategy is applied to a small 

proportion of the anode production (about 1% typically), because it is costly, time consuming 

and destructive. In addition, the core samples themselves are not necessarily representative 

of the whole anode block which properties are known to be spatially anisotropic (a core 

sample is about 0.1-0.2% of the block volume). Furthermore, lab characterization results are 

often available after a delay of several days, which limits the application of feedback 

corrective actions to the manufacturing process in a timely fashion. Hence, there is a need 

for developing rapid and non-destructive techniques to assess baked anode quality before 

setting them in aluminium reduction cells. 

Empirical models have been proposed to predict individual baked anode quality, for 

instance net carbon consumption [78, 325], which is considered as an overall indicator of 

anode performance. Raw material properties and/or process data are used as model inputs. 

Other authors have applied latent variable modeling techniques for predicting the baked 

anode properties measured from core samples [90, 93]. The models were built using 

routinely collected historical data, from raw material properties to process parameters and 

final anode core properties. Multivariate statistical methods, such as Principal Component 

Analysis (PCA) and Partial Least Squares (PLS) regression were used to estimate the 

models. Empirical models allow making predictions on anode properties as soon as the input 
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data is available (no need to wait for lab results). However, they do not provide direct 

information on the anode internal structure, and are limited by the quality of the routinely 

measured plant data and their sampling frequency. 

Current research focuses on developing rapid and non-destructive sensors for quality 

assessment of individual anode blocks. Electrical resistivity measurements systems are 

being developed for green [119, 295, 327] and baked anodes [114,115] based on different 

technologies. These new devices provide measurements for the resistivity distribution within 

the anodes, a very important property affecting reduction cell performance. However, their 

capacity to detect and locate defects within them, and to identify and discriminate different 

types of flaws has not been demonstrated yet. The defect diagnosis phase is, however, 

crucial for decision making on what actions operators should implement on the anode 

manufacturing process and/or whether an anode should be rejected and recycled back to 

the manufacturing plant. 

The acoustic emission technique (AE) has been considered for the inspection of 

various materials and processes [152, 237, 328]. Non-destructive evaluation based on 

acoustic signals and multivariate statistical techniques was also tested on different porous 

materials other than carbon anodes [282, 283, 330]. An apparatus, based on sonic wave 

propagation, was developed to measure the physical properties of refractory and 

carbonaceous materials including anode materials [299, 301]. It was primarily designed for 

characterizing the materials, but can also detect large flaws on small samples having simple 

geometries. A combination of acousto-ultrasonic techniques and PCA for data clustering 

was recently proposed for anode quality assessment [309, 332]. This approach was tested 

on smaller anode parts (slices) and its ability to detect voids and to discriminate between 

pores and cracks was demonstrated. The present work reports on the application of the 

method to a number of industrial scale anode blocks selected based on the presence (or 

absence) of externally visible defects, and differences of processing conditions under which 

they were manufactured. The method was able to detect the presence of cracks within large 

anode blocks and was sensitive to the damage severity (volume of voids). It was also 

possible to locate the cracks and provide indications on their orientation within the anodes. 

This paper also shows that the proposed approach may be able to discriminate the anodes 

based on difference in the thermal history under which they were baked, which is known to 

impact on their internal structure. The results obtained with the proposed approach were 
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validated by cutting a certain number of anodes and collecting images of the internal 

surfaces. 

5.2 Materials and experimental set-up 

A total of 27 industrial-scale baked anodes were obtained from the Alcoa 

Deschambault Quebec (ADQ) smelter.  In order to test the proposed approach, it was 

necessary to select anodes of different quality including defect free anodes, and some 

containing defects of different types and sizes (severity). Since this task is difficult to achieve 

without destroying the blocks to get access to their internal structure, it was decided to 

sample anodes belonging to three groups, as shown in Table 5-1. The first group of anodes 

had defects visible from their external surfaces. For example, anodes A2, A3, and A7 contain 

large transversal cracks, and anodes A8, A12, and A13 show surface degradation mainly 

caused by burning of the material during the baking operation. The second group had no 

externally visible defect but were manufactured under different process conditions. Anodes 

A14 and A15 were produced during plant start-up whereas A16-A27 were baked in different 

positions within the furnace where they have been submitted to a more or less severe 

thermal history. The last group (anodes A1, A4, A5, A6, A9, A10 and A11) had no external 

defects but some of their manufacturing conditions could not be retrieved (i.e. baking 

positions). 

Table 5-1 Anode numbers and description. 

Anode description Anode numbers 

Visible external defects  
Transversal cracks 2, 3, 7 

Degradation and burn 8, 12, 13 

Produced under different conditions (no external 
defects) 

 

Start-up anodes 14,15 
Different baking positions 16-27 

No external defects but baking position unknown 1, 4, 5, 6, 9, 10, 11 

The experimental set-up shown in Figure 5-1 was used to measure the propagation 

behavior of the mechanical waves through the tested industrial anodes. First, the blocks 

were flipped on their side onto two steel bars isolated from environmental vibrations using 

rubber parts. It was safer to turn the anodes on their side because the acoustic sensors 

were mounted manually on the blocks. Flipping of the anodes would not be necessary using 

an industrial automated set-up. A computer generated acousto-ultrasonic frequency 

modulated wave was sent through the material by a transmitter in order to excite the anode 
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block on one surface, and the attenuated response wave was recorded by the receiver 

located vis-à-vis the transmitter but on the opposite surface. Both acoustic sensors were 

held in place on the anode using hot glue. Alternatively, an automated mechanical clapping 

device could be designed to maintain the sensors in place by applying a certain pressure on 

them. Coupling gel could also be applied between the sensors and the anode surface to 

ensure good contact (if necessary). After several preliminary tests, it was determined that 

exciting the anodes in the 100-200 kHz frequency band was the most relevant range for 

detecting and discriminating anode defects [332].  

 

Figure 5-1 Experimental acousto-ultrasonic measurement set-up. 

The measurements were collected at 29 different positions on each anode as shown 

in Figure 5-2. For the excitation points 1-21, the sensors were mounted on the top and 

bottom surfaces in order to measure the acoustic wave attenuation across the anode height. 

The attenuation along the length of the anode (long side) was obtained from the last 8 

excitation points (22-29). The anodes were tested in both directions to assess whether it is 

possible to discriminate defects having different orientations in the block (e.g., cracks 

oriented horizontally, vertically or diagonally). Indeed, the mechanical wave should be more 

attenuated by cracks oriented in the perpendicular direction to the wave propagation front 

for a given defect size. Hence, the excitation points 1-21 should better capture defects 

mostly oriented horizontally while points 22-29 should capture vertically-oriented defects 

more clearly. Diagonal cracks are expected to affect the signal in both directions. Some 

excitation points could not be tested for a few anodes because of physical damage at that 
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location (e.g., sensors could not be mounted due to piece broken off). Two templates made 

of cardboards were prepared and used to ensure that the excitation and measurement 

points on the four surfaces were always at the same location for all tested anodes. The wave 

attenuation data were gathered sequentially (one position at a time) but could also be made 

simultaneously by using several pairs of sensors, which would make the method applicable 

for real time control. 

 

Figure 5-2 Location of the 29 excitation positions on each anode. 

5.3 Processing and analysis of acousto-ultrasonic signals 

The anodes are complex spatially anisotropic and porous materials. They always 

contain pores and sometimes defects such as cracks. Both types of voids attenuate the 

propagation of mechanical waves, but the main objective is to detect the signature of cracks 

within the blocks. This is possible to achieve using the experimental set-up detailed 

previously. Indeed,  Figure 5-3 shows the difference between the attenuated waves 

(responses) collected from an anode containing cracks and porosity (highly attenuated) and 

another from an anode containing only porosity (slightly attenuated signal). The acoustic 

data clearly shows that signal of the damaged anode is more attenuated, and the time 

required for the wave to arrive at the receiver sensor (i.e., arrival time or AT) is longer than 

that of the sounder anode. 
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Figure 5-3 Examples of two raw acoustic signals with varying degree of attenuation. 

In order to detect damaged areas and to obtain indications on the severity of the flaw 

from the 29 excitation points on each anode, the signal processing and analysis framework 

shown in Figure 5-4 was established. The signals were first pre-processed by truncating 

after the first 1365 points (or about 1023 µs), instead of original signal length of 4095 points. 

This was performed to eliminate the influence of reflections from the anode sides, and helps 

detecting defects and discriminating the anodes since the remaining three quarters of the 

signals were found very similar for all anodes. Signal truncation is not shown in Figure 5-4. 

Thus the truncated signal is considered as the raw input signal to the analysis framework.  
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Figure 5-4 Signal processing and analysis framework. 

The acoustic features calculated from each discrete raw signal x(k), k=1,2,…,K (i.e., 

attenuated wave signal at one excitation point) were obtained using the approach described 

in previous work [332]. Since the excitation signal is a frequency-modulated wave (multi-

frequency), it was first decomposed into a certain number of frequency bands using the 

Discrete Wavelet Transform (DWT). The attenuation of the sub-signals in each frequency 

band was then quantified by two scalar features: the maximum sub-signal value (MAX) and 

its root mean square (RMS). In parallel, the time of flight or the arrival time (AT) of the raw 

signal was also calculated. The AT calculated from the raw signal and the MAX and RMS 

features computed at each sub-band for all excitation points and all anodes were then 

collected and organized into a feature matrix X. The data in X were organized in two ways 

in order to answer different research questions (more on this later). Principal component 

analysis (PCA) was then applied to the feature matrix X in order to cluster the anode based 

on their acoustic responses. More details on the various steps of the method are provided 

next. 

5.3.1 Acoustic attenuation features 

The DWT decomposes the raw signal x(k) into J+1 sub-band signals by means of a 

filter bank [322]. The user first selects a mother wavelet (finite length wave of a particular 
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shape) mathematically represented by two orthogonal functions, namely the scaling and 

wavelet functions. Both functions are expressed as filters which cutting frequency can be 

modulated at discrete dyadic values or so-called wavelet decomposition levels j=1, 2, …, J. 

High frequency information is extracted from the raw signal at the first level (j=1). 

Subsequent decomposition levels (j=2, 3, …, J) progressively extract lower frequency 

components. The convolution (or inner product) of the raw signal x(k) and the scaling and 

wavelet functions at J decomposition levels yields a set of detail coefficients vectors dj(k) 

j=1, 2, …, J, representing the degree of similarity of the raw signal with the wavelet function 

at a given scale (or frequency). The convolution with the scaling function after J 

decomposition levels leads to the approximation signal aJ(k) containing the residual low 

frequency information of the signal after J decomposition levels. In this work, the Daubechies 

wavelet (Db5) [333] was selected since it matched the shape of the signal fairly well. Four 

decomposition levels (J=4) were found sufficient to allow good defect detection and anode 

discrimination performance.  

As illustrated in Figure 5-4, the MAX and RMS scalar features were calculated from 

all detail coefficient vectors dj(k) j=1, 2, …, J and the final approximation vector aJ(k) as 

shown below, where s(k) represents a detail or the approximation vectors: 

 K

k=1MAX =max (k)s   (5.1) 

 
K 2

k=1

1
RMS = [ (k)]

K
s   (5.2) 

The velocity of the acoustic wave is also affected by the presence of any flaw in the 

anode. It can be evaluated by calculating the arrival time of the corresponding waves directly 

from the raw signal. The arrival time can be easily calculated by setting a threshold relative 

to the magnitude of the signal and recording the time of the first threshold crossing [247, 

335]. It was found that setting a threshold amplitude at 15% of the raw signal maximum 

value provided adequate results. This is slightly higher than typical threshold values (e.g., 

10% [247]), but was necessary due to a higher level of baseline noise. The baked anodes 

are porous materials containing discontinuities (i.e., pores and cracks) which generates 

scattered waves and consequently a higher level of noise. All calculations described in this 

subsection were implemented in the Matlab software version R2014a (MathWorks, Natick, 

MA, USA), using custom scripts. 
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  AT =k When [ (k) 0.15 max( (k))]x x   (5.3) 

As mentioned earlier, the data were arranged in two different ways, depending on the 

objective of the analysis: comparing the overall acoustic response of the anodes (between 

anode variability) or analyzing the within anode variability. The signal processing framework 

shown in Figure 5-4 yields a total of 2(J+1) +1 attenuation features for each excitation point 

and for each anode (i.e., 11 features since J=4). In order to compare the overall anode 

responses, the features computed for all excitation points for each anode were stored row-

wise in the Xb matrix which dimensions are (27×319). The number of rows correspond to 

the total number of anodes, and the number of columns to the product of the number of 

excitation points and the number of attenuation features (29×11=319). To investigate the 

within anode variability, the attenuation features for each excitation point for a given anode 

were stored row-wise in Xw, and the data for all anodes were concatenated vertically. In this 

case, Xw is (783×11) dimensional since there are 27 anodes and 29 excitation points for 

each (27×29=783 rows), and 11 attenuation features (columns). Note that data for some 

excitation points are missing because the measurements could not be collected for some 

anodes, as mentioned previously. Also, these feature matrices were subsampled in the 

different case studies presented later in order to emphasize certain results. 

5.3.2  Analysis of the acoustic features using PCA 

The acoustic attenuation features matrices Xb and Xw have large dimensions and their 

columns are highly collinear. Principal Component Analysis (PCA) was therefore applied for 

dimensionality reduction and for coping with the inter-correlated features. PCA performs the 

following bilinear decomposition of the variance-covariance of a data matrix X (I×M): 

 
A

T

a=1

= +a aX T P E   (5.4) 

Where Ta (I×1) is the lower dimensional subspace formed by the A orthogonal score 

vectors (T’s), and Pa (J×1) contains the corresponding orthonormal loading vectors which 

are linear combinations of the original variables (i.e. Ta = X Pa). The model residuals are 

gathered in the residual matrix E (I×M). The components (pairs of T’s and P’s) are ordered 

in such a way that the first component (t1) captures the greatest amount of variations in the 

data, whereas the second component captures the greatest amount of variance orthogonal 

to the first, and so on. In this application, PCA clusters the anodes as a function of their 
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acoustic attenuation features. The clustering pattern can be observed in scatter plots of 

scores (Ta’s). Loading plots (Pa’s) are used to interpret the clustering patterns based on 

changes in the attenuation features. For more details on PCA the reader is referred to Wold 

et al. [277]. The PCA models were built using the ProMV software version 15.08 (ProSensus, 

Ancaster, ON, Canada). The data matrices were all mean-centered and scaled to unit 

variance (auto-scaling) prior to applying PCA. 

5.4 Results and discussion 

The potential of the proposed acousto-ultrasonic technique for baked anode 

inspection is demonstrated using three case studies. The first two focus on showing the 

capacity of the method to detect defects and assess their severity by comparing the overall 

acoustic responses of the anodes (i.e., between anode variability). Indeed, the primary 

objective of the system is to determine whether an anode is sound enough to be set in the 

reduction cells or should be sorted out of the production line and recycled because it is 

damaged too severely. The first case study concentrates on the acoustic responses 

measured through the stub holes because cracks are known to develop underneath them 

due to the anode forming process. In the second, all measurement points are used to show 

that the overall anode responses can be discriminated based on the thermal history under 

which they were baked. Finally, the third case study illustrates how to assess the within 

anode variability in order to locate the defects and obtain more detailed information about 

the anode blocks. These pieces of information would help diagnose the source of the flaw 

and determine if feedback corrective adjustments should be implemented on the 

manufacturing process.  

5.4.1 Defect severity underneath stub holes 

The dataset used for the first study was formed by extracting the attenuation features 

obtained from excitation points 16, 18 and 20 (see Figure 5-2) from the Xb feature matrix. 

The resulting Xb,stub dataset of dimensions (27×33) was subsequently modeled by Principal 

Component Analysis. A total of 6 principal components (PC’s) were found to be statistically 

significant by a standard cross-validation (CV) procedure. The cumulative percentage of the 

variance of the features explained (R2
cum) and predicted (Q2

cum) by the PCA model after 6 

PC’s were 94.89% and 87.76%, respectively. However, only the first two components are 

investigated in this case study because they were found sufficient to cluster the anodes 
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according to defect severity. The variance explained and predicted by the first two PC’s are 

provided in Table 5-2. 

Table 5-2 Cumulative percent of the variance 
of Xb,stub explained and predicted by PCA. 

Components R2
cum (%) Q2

cum (%) 

1 70.26 64.56 

2 80.84 71.75 

 

A scatter plot of the scores (t1-t2) is presented in Figure 5-5. The clustering pattern 

shows four different anode groups spread along the t1 direction and identified by dots of 

different colors (blue, orange, black, and green). The second component, however, does not 

discriminate the groups as much as the first PC. The variability along this direction seems 

to affect all the groups. The anodes identified by black dots are more spread than others in 

the t2 direction. 

In order to interpret the clustering pattern in the score space based on changes in the 

attenuation features, the loading plot of the first two PC’s (p1-p2) presented in Figure 5-6 is 

examined. In this plot, each point corresponds to one attenuation feature. These were 

labelled by their names (MAX or RMS), followed by the wavelet sub-signal and 

decomposition level (details or approximation), and the excitation point number. For 

instance, label MAXD3_18 refers to the maximum value calculated from the vector of detail 

coefficients at the 3rd decomposition level (d3) of the raw signal measured at excitation point 

#18. The arrival times were simply identified by AT followed by the excitation point number. 

To interpret the plot, it is important to understand that the sign of the loadings indicates 

whether the correlation between the features is positive (same signs) or negative (opposite 

signs), and their absolute value is proportional to the importance of the corresponding 

features in a given component. In the first PC, the variance-related features (MAX and RMS) 

are all positively correlated to each other because their loadings have the same sign, but 

are negatively correlated with arrival times. Hence, the anodes clustering in the negative t1 

region have higher arrival times and lower MAX and RMS values, and those projecting in 

the positive t1 region have the opposite combination of features. This means that the defect 

severity increases from right to left in the score plot (along the t1 axis). Indeed, a more 

damaged material slows down the wave propagation and attenuates the signal more 

significantly.  
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Figure 5-5 PCA score plot (t1-t2) of the anode responses underneath the stub holes. 
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Figure 5-6 PCA loadings plot (p1-p2) for the anode responses underneath the stub holes. 

To validate the information captured by the first component, a certain number of 

anodes were cut after collecting the acousto-ultrasonic measurements, and images of their 

internal surfaces were collected. Examples of those images are shown in Figure 5-7. These 

images support the observations made on the four clusters identified in Figure 5-5. Note that 

the size of the cracks in these images has been manually enlarged for a clearer visual 

appreciation. The images of anodes A4 and A27, belonging to the blue group in Figure 5-5, 

clearly show the absence of cracks underneath the stub holes. The cut of anode A5 (orange 

group) shows a long horizontal crack extending from the right edge to the region below one 

stub hole. Cracks under two stub holes are observed in the images of anodes A11 and A20 

(black group). Finally, all the other anodes shown in Figure 5-7 (A14, A17-A19, A23, A24, 

A26) belong to the green clusters and all of them contain cracks underneath the three stub 

holes. Therefore, the first component seems to capture variations in the features related with 

the presence of cracks and their severity (total void volume associated with cracks).  
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Figure 5-7 Images of cuts made on some tested baked anodes. The anode number is 
indicated in the top left corner of each image. 

The second component, however, captures a different source of variation since the 

PC’s are orthogonal to each other. The loading plot (Figure 5-6) reveals that the features 

computed for excitation point #18 vary in opposite direction to those of points #16 and #20 

in the PC2 direction. Based on the signs of the p2 loading values, it can be said that the 

anodes falling in the negative t2 region show less attenuation at the center (point 18) than at 
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both ends of the anodes (points 16 and 20). The anodes projecting in the positive t2 region 

of the score plot (Figure 5-5) show the opposite behavior. The variations captured by the 

second component seems related with an uneven distribution of the anode properties along 

its length. Fluctuations in the anode formulation and/or in the processing conditions during 

the anode paste mixing and forming operations may explain spatial variations of the 

properties within the anodes. However, this could not be verified at the time the experiments 

were conducted. Nevertheless, this result shows the potential of the approach for detecting 

changes in the anode homogeneity. 

5.4.2 Effect of baking position 

This section investigates the sensitivity of the acousto-ultrasonic signal features to the 

thermal history of the anodes during baking. It is well known in the field that anodes baked 

in different positions within open-top ring furnaces are submitted to slightly different 

temperature profiles, and this may affect their internal structures as well as the development 

of their mechanical properties. Indeed, Figure 5-8 shows how the anodes are organized and 

stacked in the pits of one section in a typical furnace. Pit #1 is adjacent to the external wall 

whereas pit #6 is located close to the center of the furnace. The thermal history of the anodes 

vary according to where they were positioned in the furnace as shown in Figure 5-8. The 

position of the anodes is identified by the pit number, followed by the row and column 

number in which they were placed. A total of 12 anodes baked in warmest, intermediate and 

coldest regions of the furnace (positions 111, 222 and 333 or red, green and blue colors in 

Figure 5-8) were sampled (4 anodes/position). The baking position of the rest of the anodes 

(27-12=15) were unknown. The aim here was to verify whether the inspection scheme could 

cluster the anodes based on those baking positions. The complete Xb (27×319) data matrix 

including all 29 excitation points was decomposed by PCA. Although 9 principal components 

were found significant by cross-validation (R2
cum=86.87% and Q2

cum=56.98%), only the 

statistics for the first two components are presented in Table 5-3. These two components 

were found sufficient to cluster the anodes according to their baking position. 

Table 5-3 Cumulative percent of the variance 
of Xb explained and predicted by PCA. 

Components R2 (%) Q2 (%) 

1 47.33 37.98 

2 56.38 41.29 
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Figure 5-8 Different baking positions; a) Top view of one furnace section, b) Side view of 
one pit. Positions 111, 222 and 333 correspond to the warmest (red), the intermediate 

(green), and the coldest (blue) regions in the furnace. 

The score plot (t1-t2) of the PCA model is presented in Figure 5-9. The anode baking 

positions are identified using the same colors as in Figure 5-8. In general, a trend seems to 

exist between damage severity and the baking positions, since the anodes cluster roughly 

according to them. The loading plot (p1-p2) shown in Figure 5-10a) leads to a similar 

interpretation for the first component as in the previous case study, that is damage severity 

increases from right to left in the score plot. Most of the anodes baked in the warmest 

position (111) fall in the more damage region (negative t1 values) whereas those baked in 

the coldest position (333) cluster in region where the anodes are less damaged (positive t1 

values). The anodes baked in position 222 fall in between the two extremes. A possible 

explanation for this clustering pattern is that the anodes baked under warmer conditions may 

have been submitted to a higher heating rate which could have led to a faster degassing of 

pitch volatile components, and an increasing the number and/or size of the cracks within the 

material. However, this could not be confirmed. Anode A26 project in the damaged region 

although it was baked in the coldest position. Such confounding between classes is 

expected since baking position is not the only factor affecting the development of cracks. 

Figure 5-7 indeed confirms that anode A26 contains several cracks. The anodes identified 

by black dots (baking positions unknown) span the entire score space, but no link can be 

made between damage severity and thermal history during baking for those.  
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Figure 5-9 PCA score plot (t1-t2) obtained using the data collected for all excitation 
positions. The colors indicate the anode baking positions in the furnace (red: 111; green: 

222; blue: 333; black: position unknown). 

The loadings of the second component (PC2) are difficult to interpret based on 

Figure 5-10a) only because of the larger number of features (the figure is cluttered) and the 

absence of spatial mapping of the loadings on the anodes (i.e., the 29 excitation points in 

Figure 5-2). To clarify the interpretation of the second component, the signs of the PC2 

loading values for the MAX feature were indicated next to the excitation point numbers on 

the anodes as shown in Figure 5-10b). Negative and positive loading values were identified 

using blue and red colors, respectively. Again in this case, the second component seems to 

capture spatial variations in anode properties within its volume, as the MAX features for the 

region in red vary in a negatively correlated fashion relative to those of the region in blue. 

The reasons for this behavior are similar as those invoked in the first case study (i.e., 

changes in anode paste formulation and process conditions). Note that overlying the signs 

of the loadings for the RMS features would lead the same conclusions since RMS is very 

highly collinear with MAX. Plotting the AT loadings would only change the signs of the 

loadings since AT is negatively correlated with MAX and RMS, but this would not change 
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the interpretation. Finally, the conclusion regarding excitation points 16, 18, and 20 seems 

different than the one reached in the first case study (i.e., they vary together instead of 18 

against 16 and 20). This is explained by the fact the data used in this case include all the 

features and more variability compared to the first case. Hence, the PCA model captures 

more dominant source of variations than that of the center versus the edges. Additional 

components (PC’s) may capture the more subtle variations related with the stub hole 

regions. 

 

 

Figure 5-10 PCA model built using all excitation points. a) Plot of the loadings (p1-p2), b) 
map of signs of the p2 loadings on the anodes. 
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5.4.3 Assessment of the within anode variability 

The intra anode variability is investigated separately for the signals collected across 

the anode height (points 1-21) and its long side (points 22-29), because the material 

thickness in between the sensors is significantly different in these two cases. Furthermore, 

the excitation points collected in the stub holes (points 16, 18, and 20) are also analyzed 

separately from points 1-21 for the same reason (i.e., the stub holes are a few inches deep). 

Systematic differences between the three sets of signals are expected because thicker 

materials attenuate the signal to greater extent, but these variations are irrelevant in the 

inspection problem. Hence, separate PCA models were built on each set of excitation points. 

The following two subsections examine the anode responses in the longitudinal direction 

first. Then, a signal attenuation map using the first component of all three PCA models is 

proposed to illustrate a potential anode inspection scheme. 

5.4.3.1 Excitation along the longitudinal direction (points 22-29) 

The data obtained from the 8 excitation points (22 to 29) on each of the 27 anodes 

were extracted from Xw, resulting in a (216×11) dataset. However, for illustration purposes, 

it was decided to concentrate on 4 anodes spanning the score space of the PCA model built 

using all the anodes. The selected materials include a sound anode (A4), one containing a 

crack extending in the horizontal direction along the anode length (A5), and two anodes 

containing cracks in the vertical direction along the anode height (A3 and A7). The internal 

structure of anodes A4 and A5 can be visualized in Figure 5-7. The cracks in anode A3 and 

A7 are shown in Figure 5-11. These two anodes were not cut because the cracks were 

visible from the surface.  



134 
 

 

Figure 5-11 Pictures of the most severely damaged anodes, a) A3 and b) A7. 

PCA was applied to the reduced dataset Xw,L (32×11). Four principal components were 

found statistically significant by cross-validation. The model statistics are presented in 

Table 5-4.  

Table 5-4 Cumulative percent of the variance of Xw,L explained and predicted 
by the PCA model built on anodes A3, A4, A5 and A7. 

Components R2
cum (%) Q2

cum (%) 

1 74.20 72.21 

2 86.04 82.88 

3 93.30 91.77 

4 96.96 95.66 

The PCA score and loading plots for the first two components are shown in Figure 5-12 

and Figure 5-13, respectively. Different colors are used in the score plot to identify the 

measurements collected from each anode (A4: black; A5: red-orange; A3: green; A7: blue). 

The scores clearly show that the measurements collected on the sound anode (A4) cluster 

in the right hand side of the plot, whereas the most severely damaged anodes (A3 and A7) 

project in the left hand side. This separation along t1 is again explained by the overall 

attenuation of the acoustic signals as shown by the PC1 loadings (Figure 5-13). A shift 

towards the left is also observed for those excitation positions where defects were detected 

(see dashed areas on the anodes in Figure 5-12). In the case of anode A5, the measurement 

points 26-29 all cluster in the sound material region close to anode A4, but those collected 

for positions 22-25 are significantly shifted towards the left (more damaged region). The 
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image of anode A5 in Figure 5-7clearly shows the presence of a horizontal crack extending 

in the region below the stub holes and above the sluts. A similar behavior is also observed 

for anode A7, but this material globally attenuates the signals to greater extent, as all 

measurement points are located further to the left compared to A5. Anode A3 also 

attenuates the signals more significantly. However, all the excitation points shift towards 

negative t1 values, except for position 29. This indicates that the region where the crack is 

present covers a larger area in the anode compared to A5 and A7. Finally, the relative 

position in the score plot of anodes A3 and A7 with respect to A5 seems consistent, because 

the cracks in the former two anodes are oriented in the perpendicular direction to the wave 

propagation front, and thus attenuates the wave more significantly compared to A5 in which 

the crack is parallel to the wave. 

 

Figure 5-12 PCA score plot (t1-t2) showing the intra anode variability in the longitudinal 
direction (excitation points 22-29). 
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Figure 5-13 PCA loadings (p1-p2) capturing the intra anode variability in the longitudinal 
direction (excitation points 22-29). 

The second component captures a contrast in the acoustic attenuation features in 

different frequency ranges. Indeed, the low frequency components of the signal (wavelet 

approximation and d4 sub-signals) have the same sign in PC2, but opposite signs compared 

to the higher frequency sub-signals (d1-d3). This PC is, however, more difficult to interpret 

because the material may be more or less sensitive to different frequencies for several 

reasons. The lower region of the anodes (excitation points 26-29) is known to be less dense 

and more homogenous compared with the upper region (points 22-25) which is typically 

denser and more heterogeneous (observations specific to vibro-compacted anodes). 

Significant density gradients exist in this area, which often contains cracks [79, 292]. The 

geometry of the material through which the wave propagates is also different in these two 

regions. The wave propagation path is more complex around points 22-25 because of the 

presence of the stub holes (indicated by the dashed line in Figure 5-2) and the upper end of 

the sluts, whereas the excitation wave at points 22-29 propagates into a simpler geometry 

(rectangular shape). Further experimental studies are necessary to clarify the interpretation 

of PC2. 
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5.4.3.2 Attenuation maps 

To illustrate how the measurements collected at all excitation points could be used in 

an anode inspection scheme, acoustic signal attenuation maps were prepared, as shown in 

Figure 5-14. In this figure, the values of the scores of the first component (t1) of the three 

PCA models are displayed using a color map. PC1 explains 78.9%, 85.1%, and 68.6% of 

the variance of the datasets collecting excitation points 1-21 (excluding stub holes), 16-18-

20, and 22-29, respectively. It was previously shown that less attenuated materials fall in the 

positive t1 region, and the most attenuated ones fall in the negative quadrants (see 

Figure 5-12). This observation is also consistent for all three PCA models (i.e. loading plots 

are similar). Hence, the score values were scaled from 0 to 1 using the maximum and 

minimum values in such a way that 0 and 1 are assigned to the least and the most attenuated 

signals in the dataset, respectively. A color map ranging from dark blue to dark red was then 

applied on each excitation point shown in the anode drawings (Figure 5-2) to indicate 

progressively higher attenuation of the signals. Note that the score values obtained with 

different PCA models cannot be compared, since the scaling of the data matrices for each 

set of excitation points is different. Therefore, it was decided to adjust the color map based 

on the minimum and maximum score values obtained by each PCA model separately. This 

implies that one can compare the colors for those excitation points within the same set, but 

not between the sets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



138 
 

 

 

 

Figure 5-14 Maps of the t1 score values associated with signal attenuation for anodes A3, 
A4, and A5. The color bar indicates the level of attenuation on relative scale, from low 

(dark blue) to high attenuation (dark red). 

Although attenuation maps can be obtained for all 27 anodes, as shown in Appendix 

3, only those for anode A3, A4, and A5 are presented in Figure 5-14 for sake of conciseness. 

These three anodes were investigated in section 4.3.1 (Figure 5-12) and illustrate different 

defect severity and orientation within the block. The map for anode A3 clearly shows a 

greater signal attenuation on the right hand side of the anode block (points 1-2 and 13-15) 

and for most excitation points in the transversal direction (all points except 29). The cracks 

in this anode are visible from the surface as shown in Figure 5-11 a). The cracks are clearly 

detected and correctly located in the attenuation map. The sound anode A4 is overall less 

attenuated compared with the other two anodes (most points are blue). The map shows no 
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indication of cracks, which is consistent with the image of the anode cut in Figure 5-7. Finally, 

the map of anode A5 provide evidence of a defect in the right hand side of the anode (points 

1-2, 14-16), and in between the stub holes and the upper end of the sluts (points 22-25). 

The longitudinal crack invisible from the surface (see Figure 5-7) was again correctly 

identified and located. The maps clearly demonstrate the capacity of the proposed 

inspection scheme to detect and locate the defects in the anodes. Indeed, detailed 

information about the defects could lead to a more precise diagnostic and help find an 

assignable root cause. This is essential to determine the corrective actions to implement on 

the manufacturing process. 

5.5 Conclusion 

This paper presents a practical application of non-destructive testing techniques for 

the inspection of the carbon anodes used in the Hall-Héroult aluminium reduction cells. The 

proposed approach would be useful to develop a quality control scheme for individual anode 

blocks, which currently lacks in the field. The method is based on the combination of multi-

spectral acousto-ultrasonic signals and Principal Component Analysis (PCA), allowing to 

detect and locate defects, and discriminate different anodes based on their acousto-

ultrasonic signatures. A set of full-scale baked anodes were selected from the Alcoa 

Deschambault Quebec (ADQ) smelter, including anodes containing a variety of defects 

and/or produced under different manufacturing conditions. The anodes were scanned along 

both transversal and longitudinal directions using acousto-ultrasonic sensors at multiple 

locations. The acousto-ultrasonic signatures of each anode were obtained from their 

response recorded in the 100-200 KHz frequency range. The large set of features was 

analyzed using PCA in order to cluster the tested anodes based on their acousto-ultrasonic 

signature. Numerical images collected after cutting some of the tested anodes were also 

used to support the results interpretation. 

The acoustic attenuation features obtained for 29 excitation points on the anodes were 

organized in two different data matrices in order to analyze both the between and within 

anode variability. The sensitivity of the acoustic signals to defect severity was demonstrated 

by using the attenuation features obtained from the stub-hole regions. The proposed 

approach was able to clearly distinguish anodes have no cracks underneath the stub holes 

from those having cracks under one, two and all three of them. Using the data collected from 

all 29 excitation points, it was possible to show that the anodes baked in different positions 

within the open pit ring furnaces, which were submitted to a slightly different thermal history, 
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could also be distinguished to some extent. This analysis also showed that the first 

component of the PCA model captured the overall attenuation of the acoustic signals while 

the second could be related to heterogeneities within the blocks. Finally, after investigating 

the anodes intra-variability, it was possible to show the ability of the proposed approach to 

detect and locate defects within the anode blocks, and assess their severity. Attenuation 

maps were used to illustrate a potential way to implement the inspection scheme in practice. 

This framework could be used for industrial real time inspection of carbon anodes to improve 

the efficiency of the electrolysis by means of intercepting defect anodes before they are set 

in reduction cells and/or by allowing feedback corrective actions to be implemented on the 

manufacturing process. 

Future work will look at paving the way for the final industrial application by 

demonstrating the performance and robustness of the inspection scheme on a wider range 

of anodes with more variability. The link between the results of the inspection technique and 

the anode performance in the cells will be explored by means of tracking the tested anodes 

in the pot-room. Finally, the tolerable defects interval and how to use the information about 

those defects for designing automatic feedback control schemes will also be investigated as 

part of this continued research effort. 
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 Non-destructive testing of baked 

anodes based on modal analysis and principal 

component analysis 

Résumé 

Le contrôle de la qualité des anodes cuite est encore essentiellement basé sur 

l'échantillonnage et la caractérisation des carottes. Seule une faible proportion de la 

production peut être testée par cette méthode en raison du coût, du temps et de la nature 

destructive des techniques analytiques. En outre, les propriétés des carottes ne sont pas 

nécessairement représentatives de celles du bloc entier. Une méthode rapide et non 

destructive pour le contrôle de la qualité de l'anode basée sur l'analyse modale est donc 

proposée. Un certain nombre d'anodes cuites fabriquées dans des conditions différentes à 

la fonderie d’Alcoa Deschambault a été retenu pour la validation de la méthode. Les anodes 

ainsi sélectionnées ont été excitées mécaniquement à différents endroits et donc les 

signaux de vibration des blocs ont été mesurés par des accéléromètres. L'analyse en 

composantes principales (PCA) a été utilisée pour regrouper les modes de vibration des 

anodes. Les résultats montrent que l'approche proposée permet de détecter et de distinguer 

différents types de défauts internes au sein des anodes. Certaines anodes testées ont été 

coupées et imagées afin de confirmer visuellement ces résultats. 
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Abstract 

Baked anodes quality control is still mostly based on core sampling and 

characterization. Only a small proportion of the production can be tested by this method due 

to the costly, time consuming, and destructive nature of the analytical techniques. 

Furthermore, the core properties are not necessarily representative of those of the whole 

block. A rapid and non-destructive method for anode quality control based on vibration 

modal analysis is proposed. A number of baked anodes produced under different conditions 

at the Alcoa Deschambault smelter were selected. These were excited mechanically at 

different locations and the vibration signals of the blocks were measured by accelerometers. 

Principal Component Analysis (PCA) was used to cluster the vibration modes of the anodes. 

It is shown that the proposed approach allows detecting and distinguishing different types 

of anode internal defects. Some of the tested anodes were cut and imaged in order to 

confirm the results visually. 
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6.1 Introduction 

The decreasing quality and increasing variability of the anode raw materials [337,338], 

combined with the frequent supplier changes made to reduce purchasing costs and meet 

specifications, make it increasingly difficult for carbon plant operators to manufacture 

anodes with consistent quality. Since fluctuations in anode properties may affect the 

performance of reduction cells, it is important that sudden drifts in anode quality be detected, 

and that corrective actions be implemented in a timely fashion. This is difficult to achieve 

using the quality control scheme based on core sampling and lab characterization currently 

used in most modern primary aluminium smelters. Only a small proportion of the production 

can be tested by this method due to the costly, time consuming, and destructive nature of 

the analytical techniques. In addition, it is known that the core properties are not necessarily 

representative of those of the whole block. Hence, developing rapid and non-destructive 

methods for quality control of individual baked anode blocks are highly desirable.  

New devices for measuring the electrical resistivity distribution in carbon anodes were 

recently proposed as an indicator of anode quality [114, 115]. These systems target one of 

the most important anode properties (electrical resistivity) and should enable feedback 

corrective actions to be implemented on the anode manufacturing process (e.g. paste 

formulation). Although these instruments have been shown to detect changes in resistivity 

distribution, it is not clear at this point if these measurements could be used to diagnose the 

cause of these changes and discriminate between the various types of anode defects 

occurring in practice (e.g., cracks, poorly mixed paste, etc.). 

This work investigates an alternative and perhaps complementary approach based on 

vibrational excitation of the baked anodes and modal analysis. This non-destructive testing 

method can potentially be a more direct approach for sensing the anode internal structure 

because physical defects modify the material vibration response. It should provide overall 

information about the quality of an anode block, and enable defect diagnosis if these have 

a different impact on the anode vibration response. Modal techniques are also easy to 

implement for online defect detection and quality control. A similar approach has been 

applied for various porous materials [340,341]. 

Modal analysis can be implemented in different ways depending on the application. 

Most of them use the lower natural frequencies obtained experimentally from the power 

spectrum of the material vibration response signals [342,343]. Alternative approaches 
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include empirical modelling of the mode shapes estimated from vibration response data 

[290, 302, 306], as well as numerical model updating methods [326, 329, 334]. The first 

approach based on natural vibration frequencies was selected in this work since it is simple 

and allowed discriminating the anode defects of interest.  

In order to test the proposed approach, a set of full scale baked anodes were selected 

from the Alcoa Deschambault Quebec (ADQ) smelter. Some anodes had known defects 

visible from the surface and others not. Anodes free of visible defects were also included in 

the set. The anodes were excited mechanically on different faces and positions on the block 

and their vibration responses were also recorded at different locations. The vibration modes 

of each anode were obtained from their signal power spectrum. It was decided to use only 

the first two fundamental natural frequencies based on numerical modelling. The large set 

of vibration mode data was analyzed using Principal Component Analysis (PCA) [284, 334, 

339] in order to cluster the tested anodes based on their vibration response signature. It is 

shown that defect free anodes can be discriminated from defect anodes. In addition, the 

latter could be distinguished based on the type of defect present in their structure. These 

results were validated by visual inspection after cutting some of the anodes.  

6.2 Materials and Methods 

6.2.1 Selection of Industrial Anodes 

A total of 27 full-scale baked anodes manufactured at the Alcoa Deschambault 

Quebec (ADQ) smelter were used in this work. In order to test the proposed approach, good 

anodes (defect free) as well as anodes including different types of defects are required. 

Since it is difficult to assess whether an anode contains defects or not without destroying 

them (unless defects are visible from the surface), it was decided to select a variety of 

anodes produced under different conditions (i.e., normal operation and during paste plant 

start-ups) as well as some anodes containing known defects, visible from the surface (i.e., 

cracked anodes, surface defects due either to intensive firing or to handling). Most of the 

selected anodes had no externally visible defects. The anodes were numbered from A1 to 

A27. Table 6-1 shows which anodes were assigned to each of the previously mentioned 

categories. 
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Table 6-1 Anode numbers and description. 

Anode numbers Description 

1, 4, 5, 6, 10, 11, 16, 17, 18, 
19, 20, 21, 22, 23, 24, 25, 26, 

27 

Free of external defects 

2, 3, 7 Cracks visible 
externally 

8, 12, 13 Surface defects 

14, 15 Start-up anodes 

Some example anodes are shown in Figure 6-1. Anode A1 has no externally visible 

defect, A3 and A7 had large cracks visible from the surface, and A8, A12 and A13 had 

different types of surface defects. 

 

Figure 6-1 Example of anodes showing different types of defects. 

6.2.2 Numerical Modeling 

A finite elements model of a baked anode was built in order to guide in the 

development of the experimental mechanical vibration set-up. The purpose of the model 

was to simulate the vibration response of an anode obtained for different combinations of 

excitation points and type and position of the anode supports as shown in Figure 6-2. The 

objective was to select the combination allowing to identify the most global vibration modes 

with the highest signal-to-noise ratio that capture the most important defects. 
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Some of the small geometrical details of the anode, such as the flutes in the stub hole, 

were simplified in the model because they were found to have little impact on the global 

vibration modes. The boundary conditions were applied either at the bottom or at the side 

of the anode so as to leave only two translations and one rotation modes to simulate different 

supports as per the tested configurations shown in Figure 6-2 (plan support, three prismatic 

supports or bars). The interaction constraints "tie" and "hard contact" allowed good modeling 

of the degrees of freedom associated with the anode supports. 

In order to predict the vibration responses of the full-scale anode, a simple three-

dimensional model was constructed. It is worth mentioning that distributed irregularities such 

as pores and cracks generally cause mass and stiffness variations. Accordingly, the anode 

model was divided into seven zones along the anode height (numbered in yellow in Figure 

6-5), and different mechanical properties were assigned to each zone. The ranges were as 

follows: density 1560-1610 kg.m-3, Young’s modulus 7000-11000 MPa and Poisson’s ratio 

0.18. The density values were obtained from X-ray computed tomography images collected 

in previous work [80]. The Young's modulus and Poisson ratio values were taken from the 

work of Eliassen [20] and the CIR Laboratory [301], respectively. The supports (bars and 

prisms) always had the properties of steel. The finite element model of the anode was 

developed using the Abaqus/CAE 6.14-1 software and the anode was modelled with more 

than 100000 quadratic solid elements. Some of the simulated modes are shown in Figure 

6-3. 
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Figure 6-2 Different tested supports configurations. 

After simulating the different support configurations and excitation positions shown in 

Figure 6-2, the one where the anode sits on its side on two cross bars was selected (top 

right in Figure 6-2). This configuration yielded lower frequency vibration modes, which 

should help distinguishing the various types of anode defects. 

 

Figure 6-3 The first two simulated vibration modes of the anode for the two cross 
bars configuration and excitation on the top. 

6.2.3 Excitation and Measurement Set-Up  

The vibration set-up shown in Figure 6-4 was designed to identify the natural 

frequencies of the anodes after mechanically exciting them on four faces. A soft rubber 
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impact hammer was used for the excitation in order to reduce the induced resonance and 

increase the amount of energy transferred by the mechanical displacement. The anode was 

excited at five different places on each face as shown in Figure 6-5. The accelerometers 

were positioned differently when exciting on different faces as shown in Figure 6-6. The 

colors of the dots in these two figures identify the excitation face. Note that excitation faces 

E2 and E3 (blue and red dots in Figure 6-5) are the same, but the accelerometers were 

placed differently in these two cases. Each excitation test was repeated 8 times to average 

out inaccuracies caused by manual excitation. 

 

Figure 6-4 Experimental mechanical vibration set-up. 

Seven accelerometers (Kristler, model 8310A25A1M11SP15M) were distributed 

across each face and measured the acceleration resulting from each excitation. They were 

held in place using hot glue to ensure good contact, especially for those mounted vertically 

which could fall off the anode during testing. 
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Figure 6-5 Position of the five excitation points (identified by numbers) on four different 

anode faces (E1-orange, E2-blue, E3-red, E4-green circles). 

 

Figure 6-6 Position of the seven accelerometers (identified by numbers) for 
measuring the response of each corresponding excitation face (R1-orange, R2-blue, R3-

red, and R4-green dots). 

The acquisition system Vishay 6100 Series was used to acquire the accelerometer 

signals by strain gauge cards. Since high-level reading cards were unavailable, all 

accelerometers had to be connected with a line voltage reducer device to strain gauge 

reading cards. The system can acquire accurate signals at a frequency of 10,000 Hz 
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playback channels. In addition, the system software (Strainsmart, Vishay) can analyze the 

raw data of each 16384 series by mean of Fourier transform. The longest data acquisition 

time was 6.4 seconds, which includes the time required for excitation and reading the data 

of the accelerometers. The data exported from the acquisition system were the relative 

amplitudes on a set of frequencies for each of the accelerometers.  

6.3 Modal Analysis of the Vibration Signals 

6.3.1 Mode identification and features calculation 

An algorithm developed in Matlab version R2014a (MathWorks, Natick, MA, USA) was 

used to identify the first two fundamental natural frequencies after transferring the time signal 

into frequency domain using Fast Fourier Transform (FFT). Figure 6-7 shows the power 

spectra of the vibration responses of 11 anodes measured by one accelerometer located at 

the same position on the top face (E1-orange dots in Figure 6-5). The power spectra show 

two dominant peaks at 60 Hz and 300 Hz corresponding to the first two global modes, so 

called fundamental modes. The presence of defects in the anode structure would cause 

these peaks to shift on the frequency scale. After some preliminary work, it was decided to 

limit the analysis to frequencies lower than 500 Hz because the modes beyond that 

frequency did not help discriminate the anodes. This also increases the resolution of the 

signals and facilitates the identification of the modes.   

 

Figure 6-7 The first two peaks of the power spectrum of 11 anodes obtained from 
one accelerometer after excitation on the top face. 
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The first two peaks of each anode vibration response were selected for the analysis 

since they are the most accurate and were found sufficient to detect and discriminate the 

defects present in the anodes. Modal tests were thus conducted initially on a defect free 

anode to identify the first two fundamental natural frequencies as shown in Figure 6-7. 

Identical tests were subsequently performed on all the 27 anodes. The frequency at which 

the first two peaks occurred for a given anode was extracted from each vibration response 

collected from that anode (i.e., 5 excitation points × 4 faces × 7 accelerometers = 140 

signals/anode) and these were stored in a (1×280) row vector. This vector of frequencies 

contains the vibration signature of one baked anode. Collecting those vectors for all the 

tested anodes yields a matrix X of dimensions (27×280). This large data matrix was then 

analyzed using PCA. 

6.3.2 Principal Component Analysis (PCA) 

PCA is a multivariate statistical method approximating a high dimensional dataset X 

(I×J) by a much lower dimensional subspace T (I×A), where A<<J, explaining the main 

variance directions in the data. It performs the following bilinear decomposition of the data 

matrix X: 

  +X t p E
A

T

a

a=1

= a   (6.1)

    
Where the orthogonal score vectors ta (I×1) represent the projection of each 

observation (row in X) into the lower dimensional subspace formed by the corresponding 

orthonormal loading vectors pa (J×1). The latter consists of linear combinations of the original 

variables (i.e. ta = X pa). The model residuals are gathered in the residual matrix E (I×J). The 

principal components (pairs of t’s and p’s) are ordered in such a way that the first (t1) 

captures the greatest amount of variations in the data, whereas the second captures the 

greatest amount of variance orthogonal to the first, and so on. Scatter plots of the scores ta 

allow to visualize the clustering patterns of the observations (i.e., tested anodes) in the lower 

dimensional subspace. Interpretation of the clustering patterns based on the original 

variables (columns of X or the vibration modes) is obtained by using scatter plots of the 

loading values pa. For more details on PCA the reader is referred to Wold et al. [277].  
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6.4 Results and Discussions 

In this section, the results of the PCA model applied to the anode vibration data matrix X are 

presented first. The clustering patterns of the anode vibration response is explained and 

interpreted based on the vibration modes. The results are then further validated by showing 

images of cuts made on several of the tested anodes to unveil their internal structure. Finally, 

a simplified PCA model is presented based on a reduced number of accelerometers and 

excitation points in order to show that similar conclusions can be reached using a simpler 

experimental vibration set-up. 

The first two PCA components were found sufficient to discriminate the anodes based 

on their vibration response. Only these two are discussed here. The cumulative sum of 

squares explained (R2) by the PCA model using the two first components is provided in 

Table 6-2. About half of the variance contained in the vibration mode data matrix X is 

captured using only the first two components. The columns of X were mean-centered and 

scaled to unit variance prior to applying PCA (common practice). 

Table 6-2 Percent cumulative sum of squares explained (R2) by 
the PCA model built on modal features collected from anodes. 

Component R2 (%) 

1 33.2 
2 53.0 

The PCA results are presented in Figure 6-8 and Figure 6-9. Figure 6-10 supports the 

discussion by showing images of some of the anode cuts. The clustering pattern of the 27 

anodes is shown in the t1-t2 score plot (Figure 6-8). Each point in the plot corresponds to the 

vibration response signature of one anode. They were labelled and colored according to the 

anode number and description presented in Table 6-1. The anodes containing known 

defects visible from the surface (red and blue dots) as well as the start-up anodes (green 

dots), which are expected to be different, fall on the left hand side of the score plot in the 

negative t1 region. All these anodes clearly distinguish themselves from most of the other 

anodes having no externally visible defects (black dots). At the time of vibration testing, it 

was unknown whether the latter group of anodes contained defects within their structure or 

not. This explains why cutting the anodes was necessary for validation purposes. It is also 

interesting to note that these anodes (black dots) divide into roughly two groups: anodes 

A19, A21, A23 and A27 (lower right quadrant), and all the others. It will be shown later that 
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the former group of anodes had no or very few internal defects after visual inspection of their 

cuts. The others had different types of defects. 

 

Figure 6-8 PCA score plot (t1-t2) of the anode vibration responses. 

Images of the internal structure of some anodes are provided in Figure 6-10 in order 

to support the observations made on the anodes clustering pattern (Figure 6-8). Note that 

the size of the cracks in these images has been virtually enlarged for a clearer visual 

appreciation. The anodes containing cracks visible from the surface (red dots in Figure 6-8) 

all cluster together in the negative t1 region. The image of anode A2 after cutting shows large 

transversal (vertical) cracks at one end. The anodes A18 and A24 clustering in the extreme 

positive t1 region had several longitudinal (horizontal) cracks below the stub-holes. Anodes 

A14 and A26 (lower left quadrant) had a mixture of vertical and horizontal cracks also below 

the stub-hole regions. Finally, the images of anodes A19 and A27 revealed no or very few 

defects in their structure. These results clearly show the potential of modal analysis for 

detecting the presence of defects within baked anodes. It also demonstrates a good 

sensitivity to the types of defects. A clearer diagnosis may help selecting appropriate 

remedial actions to implement on the manufacturing process and/or establishing anode 

sorting schemes. 
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Figure 6-9 PCA loadings (p1-p2) of the anode vibration responses. 

The loading plot shown in Figure 6-9 is now used to interpret the clustering pattern 

observed in Figure 6-8 in relation with how the presence of defects shifted the first two 

vibration modes. Each point on this plot is related with the frequency of its corresponding 

mode obtained after exciting the anode at a given position, on a given face and recorded by 

one of the seven accelerometers. To facilitate the reading of the plot, the vibration modes 

are identified by ellipses. 
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Figure 6-10 Images of cuts made on some tested baked anodes. 
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The loading plot should be interpreted as follows. The absolute value of a loading 

indicates the importance of the corresponding variable (vibration frequency for a given mode 

in response to an excitation at one point on one face) in a given component. The signs of 

the loading values are used to interpret the correlation between pairs of variables. Modal 

features having loading values of the same sign for one component are positively correlated 

and they are negatively correlated when they have opposite signs. The loading values can 

be interpreted independently for each PCA component since they are orthogonal to each 

other. Figure 6-9 shows that most of the first mode features have strong loadings along the 

second component (p2) and weak values along the first (p1). The opposite can be said about 

the loading values of the second mode. This suggests that the separation of the anodes 

along the first PCA component (t1) is determined by the second vibration mode and the 

separation along t2 by the first vibration mode. Hence, the second vibration mode for the 

anodes having positive t1 score values shifted towards higher frequencies compared to the 

average of the 27 anodes, and vice-versa for the anodes having negative t1 values. Similarly, 

the first mode of the anodes clustering in the positive t2 score region shifted towards higher 

frequencies and in the opposite direction for those anodes clustering in the negative t2 

region. 

Therefore, it seems that the direction of the shifts in the second vibration mode 

indicates the orientation of the cracks. A shift towards lower frequencies is associated with 

anodes containing cracks mostly oriented vertically (cluster in the left hand side of the score 

plot). A shift towards higher frequencies suggests that the cracks are mostly oriented 

horizontally (anodes in the right hand side of the plot). Those clustering around the t1 origin 

(frequency around average value) contain a mixture of crack orientations. The first mode 

separates anodes A13, A14, A26 and A19, A21, A23, A27 from all the other anodes along 

the t2 axis. It is speculated that the shifts in the first mode related with this clustering pattern 

may be due to differences in the physical and/or mechanical properties of the anodes 

affecting their dynamic vibrational response. This will be clarified in future work.  

6.5 Pruning of the PCA model 

Although the proposed approach seems promising, it uses many excitation points and 

accelerometers which can become cumbersome and time consuming for an industrial 

implementation. It addition, the loading plot (Figure 6-9) has shown that several of the 
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responses obtained for different excitation points and accelerometers were redundant (i.e., 

very similar loading values). Pruning of the PCA model was therefore investigated. 

 

Figure 6-11 PCA score plot (t1-t2) after model pruning. 

The results shown in Figure 6-11 were obtained for a pruned model based on one 

single excitation point (instead of 5) on the four anode faces and vibrations recorded by 4 

accelerometers (instead of 7). Hence, the dimensions of the vibration data matrix X were 

significantly reduced to (27×32). Comparing Figure 6-8 and Figure 6-11 reveals only minor 

differences in the clustering pattern of the anodes, and do not change the conclusions 

obtained using the original model. It is therefore clear that the experimental set-up for modal 

analysis can be optimized to reduce cycle time while providing useful information for baked 

anode quality control. 

6.6 Conclusion 

Modal analysis was investigated for rapid and non-destructive testing of individual 

baked carbon anodes. A set of full scale baked anodes were selected from the Alcoa 

Deschambault Quebec (ADQ) smelter, including some high quality anodes and defect 

anodes (visible from the surface and not). The anodes were excited mechanically on 
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different faces and positions on the block and their vibration response was also recorded by 

accelerometers at different locations. The vibration modes of each anode were obtained 

from their signal power spectrum in the 0-450 Hz range. Numerical modelling of the anode 

was used to support the experimental set-up design. The large set of vibration mode data 

was analyzed using Principal Component Analysis (PCA) in order to cluster the tested 

anodes based on their vibration response signature. 

It was shown that defect free anodes can be discriminated from defect anodes. In 

addition, the latter could be distinguished based on the type of defect present in their 

structure. The second vibration modes were found to be sensitive to the presence and 

orientation of cracks within the anode block while the first might be related to changes in the 

physical and mechanical properties of the anodes. These conclusions were supported by 

images of the internal structure of the anodes collected after cutting some of them. Based 

on these promising results, the modal analysis set-up will be further refined and optimized 

in future work. 
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 Conclusion and recommendations 

7.1  Conclusion 

Current competition between aluminium producers and environmental constraints 

deepen the necessity of reducing the energy consumption of the manufacturing process as 

well as carbon consumption through a superior process control. The highly recommended 

optimization of manufacturing parameters consists of ensuring a consistent production of 

high-quality anodes, due to the fact that the anode raw materials are becoming highly 

variable. This variability leads, in several cases, to faulty anodes containing internal cracks 

and voids. As a result, intercepting of the afore-mentioned faulty anodes prior to their 

installation in reduction cells and deterioration of their performance is important. On the other 

hand, the current inefficient quality control strategy practiced by the majority of anode plants 

is based on anodes core sampling and measurements of static properties such as 

mechanical and physical properties, chemical composition and air/CO2 reactivity. Hence, 

based on the fact that the above-mentioned strategy does not allow the immediate detection 

of defect anodes, instantaneous corrective actions are not possible to adjust the production 

process. 

To sum up, it becomes a priority to find effective methods to maintain consistent anode 

quality and consequently compensate the variability originating from raw materials. 

The aim of the current project was to elaborate the design and implementation of an 

inspection system to perform an effective quality control of baked carbon anodes. This would 

allow manufacturers to monitor the performance of the anode production process in real-

time as well as to reduce the adverse effects of defective anodes on the overall performance 

of the electrolysis process. This novel system would not only allow feedback corrective 

actions to be implemented on the anode production process, but also make it possible to 

detect, locate and evaluate the severity of the internal defects of anode blocks. 

By applying a combination of modal analysis, acousto-ultrasonic techniques, and 

signal analysis techniques, it has been shown that various defects within the anode blocks 

can be detected, discriminated and localized. Several multivariate models have been 

developed in order to cluster the anodes. These models would help establish an effective 

anode sorting strategy. The proposed models also help further understanding the variability 

in the anodes introduced by some variations in manufacturing conditions. It is hoped that 
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such information will eventually enable the implementation of feedback corrective actions 

on process operation. In addition, a third non-destructive technique based on X-ray image 

analysis was implemented to validate the investigation results. Finally, the totality of 

demonstration results on industrial anodes have been successfully validated by a numerical 

images taken after cutting many tested anodes. 

7.2 Original contributions 

As the first step in this project, the potential of acousto-ultrasonic (AU) technique to 

detect defects affecting performance of baked anodes in electrolysis, such as pores and 

cracks, and also to discriminate between both types of defects was investigated. First, a full-

scale anode was sliced in both longitudinal and transversal directions and imaged using X-ray 

Computed Tomography (CT-Scan) to reveal its internal structure. Each half slice was further 

virtually divided into six corridors along the anode height, from the center of the anode to its 

external surface. In this case, seven AU waves having different frequencies ranging from 100 

to 250 kHz were propagated and measured through the anode samples (corridors). The wave 

attenuation behavior was quantified by many temporal features which values are calculated 

from the recorded signals. An attenuation feature matrix containing the acoustic responses of 

the anode samples (i.e., all corridor of all tested slices) was then used in a Principal component 

analysis (PCA) model, which performed an unsupervised clustering of such corridors. The 

results showed that the temporal features calculated from the AU signals are not only 

sensitive to the presence of cracks within the anode samples (measured by overall signal 

attenuation) but also to the density of pores distributed throughout the material. It was also 

found that each defect has a unique signature in the AU signals, as they could be 

discriminated in the PCA score space. Furthermore, it appears that some combinations of 

temporal AU features computed at various frequencies are correlated with pore size. These 

results were validated qualitatively by using the CT scan images of the samples, and they 

were also found to be in good agreement with anode manufacturing process knowledge. In 

addition to detecting and discriminating significant defects, the AU system could also provide 

measurements of the anode density distribution. 

For the second part of this project, in order to optimize both testing and analysis times, 

multispectral acousto-ultrasonic techniques, combined with multivariate statistical methods, 

were used in an attempt to quickly assess the presence of defects in the internal anode 

structure. The same full size anode (utilized in the previous part) was used, which was sliced 
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in both longitudinal and transversal directions.  First, the 1D wavelet transforms were used 

to decompose each raw signal and calculate the corresponding multispectral sub-signals 

features. Second, the 2D wavelet transform was utilized to decompose CT-scan images and 

extract the sub-images textural features for quantitative validation of the observations made 

from the acousto-ultrasonic signal features and correlating them with internal morphology of 

the anode. After applying Partial Least Square (PLS) regression on both images texture and 

acousto-ultrasonic signatures, it was demonstrated that multispectral signals features are 

not only sensitive to the presence of cracks within anode samples, but also to the density of 

pores distributed throughout the block. The other advantages of this technique are its non-

destructive nature and rapidity. From the afore-mentioned advantages and the obtained 

results, it can be concluded that the proposed approach appears to be very promising for a 

real-time quality control of industrial scale prebaked anodes. 

As the third part of this project, the already-developed and optimized approach, which 

resulted in the combination of multispectral acousto-ultrasonic signals and PCA modelling, 

was implemented to inspect several industrial anodes. These anodes have been 

intentionally selected with different kinds of defects, while some of them were visible on the 

surface. These anodes were produced at Alcoa Deschambault Quebec (ADQ) smelter. The 

proposed inspection method consists of clustering the various anodes based on their 

acousto-ultrasonic signature. The results have shown that such combination gives a good 

discrimination of anodes that are holding different kinds of defects.  Such method can also 

provide information about the effect of changes in thermal history during baking, as one 

cause of defects, particularly the cracks. However, the use of all scan positions, instead of 

only using some of them (e.g., the three scan positions underneath the stub holes), was 

found to be the most appropriate for such baking effect study. It was shown that the number 

of defects inside the anodes, being baked in hotter position, increases. This success is due 

to the strong frequency dependency of the implemented waves propagation.  

In order to further optimize inspection time and prepare the system for online control, 

the modal analysis technique was investigated for general quality evaluation of individual 

anodes. Modal testing were conducted on the same set of 27 industrial baked anodes that 

were used to investigate the previous technique. The anodes were thus conventionally 

excited using a rubber hammer at different locations and the corresponding vibration 

responses were recorded by seven accelerometers. After coding the corresponding 

algorithms, the vibration modes of each anode were calculated from their power spectrum 
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signal. In addition, a numerical modelling of the anode was used to support the experimental 

set-up design. The large set of data, natural frequencies in this case, were analyzed by 

Principal Component Analysis (PCA) in order to cluster the tested anodes based on their 

vibration response signature, and hence defect-free anodes could be discriminated from the 

defect anodes. Another important result is that the anodes containing flaws could be 

distinguished from each other, based on the type of defect present in their structure. 

Furthermore, the second vibration modes were found to be sensitive to the presence and 

the orientation of cracks within the anode block while it is postulated that the first mode might 

be related to changes in the physical and mechanical properties of the anodes. Most of 

these conclusions were supported by images of the internal structure of the anodes, 

collected after cutting some of them. 

It is worth mentioning that since real-time process monitoring is adopted in many 

industries and the real-time quality control of different products is becoming a key element 

for the industrial competition, several industries have attempted to develop reliable 

techniques for continuous measurements. Consequently, non-destructive testing methods 

for inspecting homogenous and non-porous materials have been developed and well 

documented. Some methods also address the quick control and even in real time. However, 

they can generally not be easy applied to extremely heterogeneous and porous materials 

(i.e., carbon anodes material) because of the non-linear effects and the high attenuation 

caused by such material.  

Compared to existing characterization and control methods, the originality of the 

inspection system developed in this work, is that it combines a non-destructive and real-time 

(fast) measurement with a possibility to use the data interpretation to establish a predictive 

modeling for feedback corrective actions. In this way, it is possible to circumvent the 

constraints imposed by the high rate of anode production and to satisfy specific criteria in 

anodes sorting requested by aluminium producers including:  

- Investment in measurement time and data processing should be minimal. 

- Reliability of the whole control system. 

- Fast delivery of test results to enable anode sorting at the right time. 

- Adjustment of the corresponding process steps progressively. 

Finally, the capacity of this type of control system to inspect extremely heterogeneous 

materials, such as those with a high degree of porosity, can extend its use to different 
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industry sectors. Taking the case of steel plants for example, they are using graphitized 

carbon anodes, which make the developed control system effective. The inspection methods 

can also be applied in civil engineering fields where several new materials are being added 

to improve the quality of concrete, which complicates the material morphology. The 

developed system can also be applied to the control and characterization of all porous 

materials such as ceramics, refractories, composites, woods, etc. 

The contributions of the research project in the already-developed control systems 

and implementing detailed analyzes are listed below: 

- Optimize the process control using the combination of two different approaches that 

will minimize the number of parts (i.e., anodes) that will be tested by the second phase 

in which detailed analysis is used. 

- Reduce the cost invested in the equipment and operation time of detailed method 

(acousto-ultrasonic) by testing all the parts using a global testing (modal analysis) first. 

- Reduce the failure risk by combining two different techniques (modal and acousto-

ultrasonic analyses) in this control strategy. 

7.3 Recommendations for future work 

The testing and analyzing methods developed in this project demonstrated to be 

effective for evaluating the severity, location and type of defects inside the anodes, and in 

general to assess the anode quality. They may also provide useful information to apply 

feedback corrective actions on the anode manufacturing process in order to reduce the 

inconsistency in the baked anode. However, the proposed approach needs to be adapted 

to the industrial applications. To achieve that, four main steps need to be accomplished: 

 Establishing the sorting limits, which is defined in terms of critical defects (based on their 

kinds, severities and localizations). In this context, the real effect of the defects have to 

be evaluated under the electrolysis operation. The effects evaluation can be performed 

by the establishment of a correlation between control data and the anode performance. 

This performance has to be measured for industrial anodes that will be tracked during 

full operation.  
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 It is also suggested to employ other tools to provide on-line quality control. This requires 

novel tools that allow quick testing in both vibration and acousto-ultrasonic techniques. 

Modal analysis can thus be improved using an automatic hammer (pneumatic or electric) 

for the excitation and contact-less measurement tools such as laser-vibrometer or 

microphone. Regarding the acousto-ultrasonic technique, both excitation and 

measurements can be performed simultaneously by multiplying number of emitters and 

the corresponding receivers. 

 The classification models, built in sorting strategy, provide a preliminary database. This 

database of defect and good anodes have to be extended by testing more industrial 

anodes. This is mainly important in the start-up of the control system. Also, models may 

need to be adapted when a different anode morphology or new defects are observed, 

from example because of a raw material supplier change. In addition, the database has 

to be adjusted continuously with the anode quality improvement by the effective 

feedback process control. 
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Appendix 1 Similarity of the acousto-ultrasonic 

responses of the rods to those of their 

corresponding corridors 

In Chapter 3, the potential of sequential acousto-ultrasonic technique was investigated 

for non-destructive and detailed inspection of baked anodes. This section presents the work 

that has not been included in Chapter 3 due to the paper-format restrictions.  The objective 

of this section is to show that the acousto-ultrasonic responses of the corridors cut from the 

anode slices (call rods hereafter) are similar to those of their corresponding corridors in the 

slice before cutting them. This will remove the doubt about the contribution of the proximity 

of each corridor in the attenuation of the signals. This will allow also concluding that the 

classification of the corridors only depends on their contents. 

Indeed, eight other slices, holding the numbers 4, 10, 12, 14, 18, 19, 21 and 22, have 

been selected. After removing their tops as well as their bottoms, these slices were cut in 

form of rods, as shown in Figure A1-1, and the rods were tested individually. Each rod is 

labeled by the number of the slice to which it belongs followed by its location number in the 

corresponding slice: 1, 2, 3, 4, 5 or 6. Therefore, six rods per slice were obtained except 

those who were broken due to the existence of large cracks. At this point, it is important to 

remember that the signals acquisition were performed after some sequential excitation at 

seven different frequencies: 100, 130, 150, 170, 200, 230 and 250 kHz. Finally, the acousto-

ultrasonic signatures were identified by calculating the different features that were 

systematically gathered in the same matrix. 

 

Figure A1-1 An example of 6 rods cut of slice #21. 
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In order to make sure that the classification contribution is mainly influenced by the 

propagation distance and defects interfaces and not by the location of each scan position, 

the tests have been carried out in a similar way as in Chapter 3. The acoustic sensors were 

positioned as shown in Figure A1-2. The emitter was mounted on the first end of each rod, 

which corresponded to the anode top, and the receiver was located on the opposite end of 

the sample, which corresponds to the bottom of the anode. The interfaces between the 

sensors and the material were filled with coupling gel in order to maintain appropriate signal 

transmission. Since both of top and bottom of each slice were removed, all the interfaces 

had low roughness. Therefore, most of the signals attenuation were considered to be caused 

by the internal structure of the material and not to the interface material/sensors. 

 

Figure A1-2 Acoustic data acquisition setup. 

As a result, a total of 3 principal components were found statistically significant by 

cross-validation procedure. The cumulative variance of the data (acousto-ultrasonic 

signatures): explained part (R2) and predicted one (Q2) by the PCA model are shown in 

Figure A1-3. Only the first two components are kept for interpretation of the clustering pattern 

of the samples since they explain the majority of variation in the acoustic data. 
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Figure A1-3 Cumulative variance explained (R2) and predicted (Q2) by the PCA model 
built on the acoustic responses of rods. 

The latent variable score space for the first two components of the PCA model (t1-t2 

scatter plot) is shown in Figure A1-4. This plot represents the dominant sources of variability 

in the AE dataset. Each marker represents a summary of the acoustic response of a given 

sample. These are labeled by the number of the corresponding slice followed by their 

position number in the same slice. Different colors were added to facilitate the visualisation 

of different groups. In Figure A1-4, the samples that were projected in the vicinity of each 

other in the score space had similar acoustic responses. It is possible to look at the clustering 

patterns (i.e., similarity or differences) of different samples in the latent variable score space 

of Figure A1-4. These clusters indicate the classification of samples according to the defects 

type. The CT-Scan images showed that in the first and the second corridors (black triangles), 

the material had many cracks with pore concentration areas whereas in corridors 3, 4 and 

5 (orange circles) there was only few cracks with homogeneous pore distribution. In the 6th 

corridor (blue squares) there were high density of pores. 

The results clearly showed that the rod samples cluster according to the following 

order:  from the middle of the anode (first scan position) to the end of the anode (6th and last 

position), that is according to their contents and defects. It is important to note that the more 

porous and/or cracked samples were considered as the most defect samples. Therefore, it 

can be concluded that the first component (t1) corresponds to the variation of the damage 

caused by cracks and the second component (t2), to the concentration of pores. The test 

results revealed that the responses of the rods were similar to those of the corridors (as 
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presented in Figure 3-6) and consequently the acoustic responses obtained for the corridors 

was a function of the internal structure of this corridor and did not significantly depend on 

their neighbors. 

 

Figure A1-4 PCA scores plot of rods using sequential excitations (t1-t2). 

Finally, the acousto-ultrasonic was applied as a control technique to detect the defects 

and to quantify the variations in some separated anode parts (rods). It was possible to obtain 

a clustering pattern similar to that of the model established using the corridor responses by 

cutting the corridors of each slice to an equal number of rods. This was attributed to the fact 

that the acousto-ultrasonic responses were not really affected by the scattering caused by 

the boundaries. Therefore, it was confirmed that the classification depends on the internal 

contents and not on the location and the surroundings of the corridors.  
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Appendix 2 Inspection of Prebaked Carbon Anodes using Multi-

Spectral Acousto-Ultrasonic signals, Wavelet Analysis and 

Multivariate Statistical Methods: Additional results 

 As it is mentioned in the title, the implementation of different methods aimed at 

investigating the use of acousto-ultrasonic technique for volumetric inspection of baked 

carbon anodes. The study focused on mapping the morphological constituents in the carbon 

material in order to evaluate the spatial distribution of pores and cracks using acoustic wave 

attenuation. This part complement the work that has been presented in Chapter 4 by virtually 

dividing the slice to 7 corridors instead of 6 corridors, as shown in Figure A2-1. The depth of 

the new corridors corresponds to the diameter of the smallest couple of sensors available in 

the lab. Previously it was not possible to shrink as much the corridors because the 

comparison of the results of different sensors needs the depth, of each corridor, to be equal 

to the distance of the largest diameter (i.e., the largest couple of emitter and receiver). 

According to this new partition, the different region in the anode, especially the outer area, 

can be better characterized since the tests will be carried out in a narrower areas. To achieve 

and simplify the analysis, both PCA and PLS were used to provide classification and 

regression models. The clustering patterns obtained showed the sensitivity of the proposed 

approach to detect and distinguish the concentration of pores from the cracks.    

As discussed in Chapter 4, Siemens Somatom Sensation 64 was used to scan a whole 

industrial baked carbon anode. At this point, it is important to remember that the CT-scan 

apparatus provides a 3D matrix (size 1000 × 1200 × 10000) full of pixels attenuation 

coefficients that varied between 0 and 4095, which were converted later to grayscale images 

as they were correlated to the carbon materials density. As shown in Figure A2-2, the cracks 

and the pores inside the anode correspond thus to a dark group of pixels that is surrounded 

by a light background. However, the bright pixels in a dark background defined the impurities 

in the carbon. 
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Figure A2-1 Example of a slice used for acoustic emission testing. 

 

Figure A2-2 Distribution of cracks and pores through different X-ray images of some 
corridors. 

An overview of the acoustic signal measurement system was discussed in Chapter 4. 

However, it is necessary to remember that one acoustic transducer was used as an emitter 

while the other was used as a receiver, as shown in Figure A2-3. Via the power generator, 

the input signals were specified as modulated frequency between 100 kHz-200 kHz. This 

range was found appropriate after the preliminary tests that have been conducted. The 

procedure was repeated for each of the seven corridors and for the eight anode slices. The 

waveform attenuation is mainly affected by the material through the propagation distance. 

Hence, the attenuation effect of the interface sensor/sample was negligible and then 

averaging of the repeated signals in order to reduce measurement errors was not necessary. 
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Figure A2-3 Acoustic data acquisition set-up through different 
corridors of an anode slice. 

As results, using the cross-validation procedure [308], the PCA model needs five latent 

variables to explain the whole variations in textural features. The variance of the data 

explained (R2) and predicted (Q2) by the first three principal components are calculated by 

the model. Their values are listed in Table A2- 1. The three components are sufficient to 

distinguish the corridors based on their textural features when they explain over 92% of 

variance inside those features. 

Table A2-1 Percent cumulative sum of squares explained (R2) and predicted (Q2) 
by the PCA model built on textural features collected from corridor images. 

Component R2 (%) Q2 (%) 

1 62,9 57,9 
2 83,2 78,5 
3 92,2 88,7 

The main variability in the datasets is illustrated in the corresponding latent variable 

space for these three components of PCA model in Figure A2-4. Each marker corresponds 

to the fundamental textural features of one particular corridor. These were identified by the 

slice number followed by the corridor number. Two plots were then used for this work. The 

first one was assigned to the clustering pattern in t1-t2 score space. The second plot 

presented that of t1-t3 score space. From the plots shown in both figures, the efficiency of 

the classification approach can be depicted. It is noticeable that, in Figure A2-4A) and Figure 

A2-4B), the corridors located in the same position within the slices are clustering together 

with small extensions according to the second component of corridor 2-3-4-5-6 and 

according to both components of the remaining corridors (1 and 7). Furthermore, each group 

is separated from other groups according to both components except those of #1 and #7, 

which fall close to each other. Often, corridor #1 was mainly affected by cracks whereas 

corridor #7 was affected by a higher pore concentration, which were also larger in size. Since 

the wavelets capture variations in the image signals caused by defects (pores and cracks), 
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and both types of defects are large in corridors #1 and #7, the first two PCA components 

capture their similar effect on the wavelet energies. Consequently, the 3rd PCA component 

was examined (see Figure A2-4B), and this additional component was found to capture 

information in the energies that allowed discriminating the textural features of corridor #7 

(mainly pores) from those of corridor #1 (mainly cracks). 

 

 

Figure A2-4 Projection of the textural images features along the plane defined 
by the first three principal components: (a) t2-t1, (b) t3-t1. 
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In this section, the link between the clusters in the score space and the textural 

features will be discussed using the p1-p2 and p1-p3 loading plots shown in Figure A2-5A 

and Figure A2-5B). These plots can be used respectively with those of Figure A2-4A) and 

Figure A2-4B. The direction of variations were the same in each pair of figures (the score 

and its loading). Each point in the graphs corresponds to one textural feature calculated 

from the images of one particular corridor, which were labeled with the feature name 

followed by the wavelet-decomposition level number. The first pair of figures (Figure A2-4A) 

and Figure A2-5A)) reveals that the first component was mainly driven by the frequency 

which implies proportionality to the size of the defects. The 4th level features (EH4, EV4, and 

ED4) increased towards the left side of loadings plot, which means that the most damaged 

corridor was located in the left side of the score plot (corridor #1 and #7) and vice-versa. 

However, the second component was mainly driven by the direction of textural variation that 

corresponds to the defect types (i.e., pores or cracks). On the other hand, the fact that the 

loading values of horizontal and vertical directions were negatively correlated in the second 

pair of figures, t3-t1 and p3-p1, resolves the overlap between textural features of corridors 1 

and 7 in Figure A2-4A). Furthermore, in t3-t1 it is possible to look at the divergence of the 

features of corridors 1 from those of corridors 7. This means that the defects in the latter 

corridor, which corresponds to pores, have similar effects in both directions contrary to the 

former corridor, which correspond to cracks. Hence, after visual observation of the contents 

appearance it was concluded that the central region of anode that corresponds to corridors 

1-2 were showing several cracks in most slices, whereas corridor 2 had less cracks and high 

density of pores in its lower part. Corridors 3-4-5 were much denser with a few cracks, 

sometimes extending from corridors 1-2 in the transversal direction from 3 to 5. Finally, 

corridors 6-7 rarely showed cracks but had a variable density of pores while corridor 7 was 

the most porous. 
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Figure A2-5 Loading plot of the PCA model built on image textural features: 
(A) p2-p1, (B) p3-p1. 

Now, both of acoustic and textural data were analysed according to the flowchart 

shown in Figure A2-6. 
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Figure A2-6 Analysis flowchart. 

Only four principal components were found statistically significant by a standard cross-

validation procedure. This procedure was suitable to distinguish samples based on their 

acousto-ultrasonic signatures. The latent variable score space for the first two components 

of the PLS model is displayed in Figure A2-7. Such presentation gives the dominant sources 

of variability in the dataset, in which each marker corresponds to the acoustic response of 

one corridor while keeping the previous notation (slice#_corridor#). The clustering pattern in 

the t1-t2 score space reveals that corridors 1-2, 3-5 and 6-7 of any slice cluster in 3 groups 

(black, orange and blue markers, respectively). It can also be observed that the attenuation 

features of corridors 1-2 and 6-7 seem more variable than the majority features of corridors 

3-5 (orange cluster tighter than black and blue).  

The internal structure of the corresponding samples that were previously analysed via 

establishing the PCA model of textural images is required to interpret the differences 

between the three groups. The first component indicated by the horizontal axis in Figure A2-

7 captures the existence and the kind of defects (mainly cracks or pores) since the number 

of cracked corridors increase in the left side whereas those of porous corridors increase on 

the right and vice versa. The second direction, which is orthogonal to the first, is sensitive to 
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severity of defects (size of cracks and pores) as the denser corridors (some of corridors 3-

5) are located above both of more porous corridors 1-2 and 6-7 and more cracked corridors 

(slice #5 and #7 as they are locating in the region under the stub holes) are located above 

others. Finally, it is important to note that this ascertainment is also in agreement with the 

carbon plant knowledge. The region below the stub holes corresponding to corridors 1-2 

(black cluster) in slices #5, 7 and 15 are generally expected to show a higher concentration 

of cracks while obviously some others, as in slice #11, project closer to the denser region 

(orange markers). However, corridors 6-7 are expected to be submitted to wall friction due 

to a lack of lubrication in the vibro-compactor and consequently show high concentration of 

pores. These are projecting at the right of the score plot (blue markers) except for those of 

slices #24 and 25 that are more affected by the release of the compressed gas, as they are 

located in the anode corner.  

 

Figure A2-7 The t1-t2 score plot of the principal component analysis (PCA) model built on 
acousto-ultrasonic (AU) signal attenuation features. 

It is also possible to look at the loading plot in the Figure A2-8 to explain the 

relationship between acoustic attenuation features and the clustering pattern in the latent 

variable space. The latter can be interpreted simultaneously with t1-t2 score plot (Figure A2-

7) as follows: the sign of loadings indicates the sign of the correlation sign between pairs of 

features whereas their absolute values indicate the importance of the feature in a given 
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component. It can be concluded that the first component is mainly driven by the variance 

related features (MAX and RMS) and the arrival time. The former are negatively correlated 

to the latter since they have an opposite sign, which means that going away from the positive 

side towards the negative side on t1 means an increase in the concentration of cracks and 

consequently an increase in the arrival time of the acoustic signal due to the wave 

attenuation. However, the decomposition levels control the second component when those 

of variance and those of arrival time (symmetrically distributed 1 to 4 and 4 to 1) are inversely 

proportional. This is consistent with the modification of the shape of the density distribution 

of the acoustic signal by pores since such decomposition levels are frequency dependent. 

Since these levels are frequency dependent that indicate also the size of pores, the higher 

the frequency attenuated the smaller are the size of the pores. 

 

Figure A2-8 p1-p2 loading plot of the PLS model built on AE signal attenuation features. 

The correlation between the acoustic attenuation features and the features of the 

textural image has been interpreted using the w*c1-w*c2 loadings bi-plot shown in Figure A2-

9. This figure can be interpreted simultaneously with both previous scatter plots. Heading 

towards the left along the first component means that the significance of cracks increase, 

which increases the pixels intensity around these cracks and therefore increasing of energy 

values (red markers). This phenomenon corresponds to the acoustic signals attenuation and 

consequently the decreasing of the variance related features and the increasing of the arrival 
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time through the current component and vice versa. Contrariwise, the second component 

seems to be sensitive to the defects severities, since the signals are attenuated at all 

frequencies (high and low). This is clear in this figure where the majority of acoustic 

frequency is inversely proportional to those of textural features. At this point, it is important 

to note that the textural-feature frequencies decrease when their number markers increase. 

 

Figure A2-9 Loadings bi-plot (w*c1 – w*c2) of the PLS model between acoustic 
attenuation signals and X-ray image textural features. 

Lastly, acousto-ultrasonic techniques combined with multivariate statistical methods 

were used in an attempt to reveal the internal physical morphology of a full-scale anode, 

which was sliced in both longitudinal and transversal directions. Such combination was 

already studied in Chapter 4 but with only 6 corridors. This part was added in order to further 

detail the analysis of different anode areas, especially the outer surface (7th corridor) that is 

holding high concentration of pores. Further, CT-scan image analysis served as a reference 

for quantitative validation of the observations made from the acousto-ultrasonic signatures 

and correlate them with the internal contains of the anode.  

The results showed that it was possible to distinguish between corridors containing 

high density of pores and those containing different cracks. Indeed, the only overlapping 

was between the area most damaged by cracks (corridor #1) and the most porous one 

(corridor#7) in the textural image classification. However, it was possible to discriminate both 
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of them by means of involving the third component of the corresponding PCA model. 

Therefore, the acousto-ultrasonic signatures are not only sensitive to the presence of cracks 

and pores concentration within anode material but they are also able to discriminate both of 

them. Besides, the non-destructive nature and the rapidity of the procedure are extra 

advantages of the acoustic technique. Therefore, from these advantages and the obtained 

results, it can be confirmed that the proposed approach is promising for a real time quality 

control of prebaked anodes. 
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Appendix 3 Attenuation maps of all tested anodes 

For sake of conciseness the attenuation maps of only A3, A4, and A5 were presented 

in chapter 5. Consequently we added this appendix to illustrate the attenuation maps of all 

anodes. At this point, is important to remember that the scores values of the first component 

(t1) of three PCA models are displayed using a color map. These three models were built on 

the datasets collecting excitation points 1-21 (excluding stub holes), 16-18-20, and 22-29, 

respectively. The score values were scaled from 0 to 1 using the maximum and minimum 

values in such a way that 0 and 1 are assigned to the least and the most attenuated signals 

in the dataset, respectively. As it is illustrated in Figure A3-1, the color map ranging from 

dark blue to dark red was then applied on each excitation point shown in the anode drawings 

to indicate progressively higher attenuation of the signals.  
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Figure A3-1 Maps of the t1 score values associated with signal attenuation for all 
tested anodes. The color bar indicates the level of attenuation on relative scale, from low 

(dark blue) to high attenuation (dark red). 
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Appendix 4 Comparison of the numerical and experimental modal 

results 

This section presents the work that has not been included in Chapter 6 due to the paper-

format restrictions. It was added to better establish the link between the numerical modelling and 

experimental results. After choosing the two steel bar supports configuration, appropriate 

boundary conditions were applied at the contact line between the anode side and these supports. 

Especially, the translation in Y direction and rotations with respect of X and Z directions were 

restricted, as shown in Figure 6-2, where X, Y and Z correspond to the anode length, height and 

width directions, respectively. The "tie" constraint and the "hard contact" option were chosen as 

an interaction type between the anode and the supports. 

 The measured and calculated modes for ADQ’s pre-baked anodes are presented in Table 

A4-1. The experimental and numerical modal frequencies are also showed in Figures A4-1-A4-3 

and Figure A4-5, respectively. At this point is important to remind that only the responses of three 

faces are presented since the response of the front face (face R1 in Figure 6-6) is similar to that 

obtained when collecting the measurements between the anode slots (face R2 in Figure 6-6) for 

the first modes (modes between 0-500Hz). The experimental frequencies correspond to the mean 

of different anode responses, which are presented in Figures A4-1-A4-3. In these figures we have 

a total of 5 modes. Some of them are detected in some views (one face in Figure 6-6) and others 

are detected in other views. However it is difficult to discriminate the first two modes since they 

are very close to each other and are of very low amplitudes compared to the others. Indeed, Figure 

A4-4 was added to clarify this aspect. This figure represents a zoom (0-100Hz) of the left view 

response shown in Figure A4-2 but with a different location of excitation, especially the location 

that allows the simultaneous excitation of the first two modes. In this same figure we can clearly 

differentiate both of these two first modes at around 7 Hz and the other around 16 Hz. 

The first significant numerical mode corresponds to the fourth mode in Figure A4-5 (7.21 

Hz) because the boundary conditions consisting of one translation and two rotations restrict the 

model to give automatically three rigid body modes (two translation and one rotation not restricted 

by the boundary conditions). Therefore, the second, third, fourth and fifth significant numerical 

modes correspond to the fifth (16,63 Hz), sixth (61.20 Hz), seventh (355.79 Hz) and eighth (476.51 

Hz) modes in Figure A4-4, respectively. 
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Table A4-1 Comparison of the measured and calculated anode responses 

Number of the 
experimental mode 

Experimental 
frequency (Hz) 

Numerical Frequency 
of the corresponding 

mode (Hz) 

Relative frequency 
error (%) 

#1 7 7.21 3 

#2 16 16.63 3.93 

#3 60 61.20 2 

#4 300 355.79 18.6 

#5 400 476.51 19.12 

 

The model predicts the first three modes with good accuracy (relative error between 2-4%). 

The prediction of the two higher order modes is not as precise. This is justified by the difficulty of 

the model to consider the physical phenomena involved when the mode shapes become more 

complex. The prediction of the model degrades when the energetic interactions between the 

sensitive zones of the structure, in particular the areas between anode slots and stub holes, are 

complex. In addition, material properties values were obtained from different works, made on 

anodes from other companies. These anodes do not have the same shape and the same sources 

of raw materials as those studied in this thesis.  

Nevertheless, the first two modes in Table A4-1 (considered as global modes) of the 

structure have been correctly predicted by the model without implementation of any updating 

process. However, the main objective of the modeling part was to support the development of the 

experimental set up by allowing to determine the way to set the anodes on the supports, and the 

optimum excitation and measuring positions. Of course, these results can be considerably 

improved by implementing an updating process. In general, before the design phase and insertion 

of the material properties, especially for structures as porous as the anode material, it is also better 

to carry out characterization tests directly on the same type of anode (ADQ) to have the accurate 

values of Young's modulus and Poisson’s coefficient. 
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Figure A4-1 The first two peaks of the power spectrum of 11 anodes obtained from one 

accelerometer after excitation on the top face. 

 
Figure A4-2 The first two peaks of the power spectrum of 11 anodes obtained from one 

accelerometer after excitation on the left face. 
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Figure A4-3 The first two peaks of the power spectrum of 11 anodes obtained from one 

accelerometer after excitation on the front face. 

 

Figure A4-4 Zooming of the left view responses with another excitation point (different 
from that of Figure A4-2). 
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Figure A4-5 Numerical natural frequencies obtained by Abaqus software 

 


