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Abstract—Finding a physiological signature of a player’s fun
is a goal yet to be achieved in the field of adaptive gaming. The
research presented in this paper tackles this issue by gathering
physiological, behavioural and self-report data from over 200 par-
ticipants who played off-the-shelf video games from the Assassin’s
Creed series within a minimally invasive laboratory environment.
By leveraging machine learning techniques the prediction of
the player’s fun from its physiological and behavioural markers
becomes a possibility. They provide clues as to which signals
are the most relevant in establishing a physiological signature of
the fun factor by providing an importance score based on the
predictive power of each signal. Identifying those markers and
their impact will prove crucial in the development of adaptive
video games. Adataptive games that tailor their gameplay to the
affective state of a player in order to deliver the optimal gaming
experience. Indeed, an adaptive video game needs a continuous
reading of the fun level to be able to respond to these changing fun
levels in real time. While the predictive power of the presented
classifier remains limited with a gain in the F1 score of 15%
against random chance, it brings insight as to which physiological
features might be the most informative for further analyses and
discuss means by which low accuracy classification could still
improve gaming experience.

Keywords—Affective computing; Machine learning; Biomedical
measurement, Video Game

I. INTRODUCTION

In recent years, studies have increasingly linked video
games to their potential social, cognitive and motivational
benefits [1]. This led to an important growth in the interest of
serious gaming and learning environments that use games for
other reasons than pure entertainment [2]. Fun within games
has proven to be a positive factor in learning and behavioural
changes [3] and is also documented as an important factor
in the satisfaction of players in entertainment-driven games, a
30-billion-dollar market [4]. It thus seems to be an important
target to take into account in the development of any games,
regardless of whether they were designed for educational or
entertainment purposes. The optimization of the player’s fun
during gameplay would ensure that the experience is positive.
To this end, a continuous assessment of the fun throughout the

gameplay would allow a real-time adaptation that are tailored
to the player preferences.

As with many subjective experiences, there are different
definitions of the concept of fun, for it could be used as a
label for different states across individuals. For instance, some
people experience fun through the relief of fear by reaching
a safe point in a horror game [5] or by overcoming a level
after repeated failures [6]. While context and specific triggers
of fun may vary, the necessary condition for something to be
fun can be described as evoking a state of positive valence
to a person [7]. Yet, fun remains a challenge to capture,
contrarily to the assessment of difficulty and skill levels which
are accurately measured through in-game behaviour [8]. Like
any human affective or cognitive state, fun is continuous
and unfolds over time and over multiple gaming sessions
[9]. However, it is often reduced to a holistic rating in the
study of user experience due to practical reasons [7], [10].
Yet this approach makes it near impossible to pinpoint the
specific factors which contribute to the player’s fun. Most
importantly, such measures of the player’s fun prevent any
real-time adaptation of gameplay as only general appreciation
can be assessed.

Traditionally, game designers have tried to identify player
preference profiles [11], [12] and created content to respond
to some or all player profiles as a way to ensure a sense of fun
within the game. However, this led to either large population
not being targeted by the game, or game content that did
not match certain player profiles. Furthermore, this approach
could only be used during the game design as players profiling
requires lengthy psychometric assessment, which is difficult to
implement at a larger scale.

To overcome these limits, game developers have started
modelling player experiences in real time from behavioural
cues [13], [14]. For instance, dynamic difficulty adjustment
algorithms have been developed to assess subjective difficulty
from gameplay and adapt the game to maintain an optimal flow
level [8]. However, these approaches rely on the assumption
that every player experience fun in the same context and that
all players react to difficulty the same way.
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Although human-computer interaction initially operated
primarily on the basis of behavioural markers, research in
affective computing now provides access to other dimensions
of a player’s state through the use of psychophysiological
measures [15]. Changes in physiological responses have long
been recognized as potential markers of affective and cognitive
states but has gained popularity in the last decades through
advances in recordings, interpretation and analysis [16]. As
opposed to subjective ratings, psychophysiological measures
are mostly independent from bias and can be measured con-
tinuously without breaking flow [17]. These markers have,
therefore, the potential to add a number of important features
to help infer the fun of a player. Nonetheless individual
physiological markers are non-specific measures of the player’s
experience [18]. Thus, by collecting both behavioural and
physiological markers, the strength of each can be leveraged
in the continuous inference of the fun.

Over the last decade, an increasing number of studies
have shown associations between physiological markers and a
wide range of cognitive and affective states such as workload
[19], attention [20], and various discrete emotions [21], [22].
In gaming research, the focus has mostly been on direct
biofeedback as a way to improve the player’s experience [23],
[24]. However, few studies have attempted to predict either
affective or cognitive states within video games and even less
using a commercially available game. Although the approach
presented here focuses on fun, it is general enough to adapt
to other cognitive and affective states, such as stress and
engagement, given a different measure.

This study thus aimed to find a specific physiological
signature of the player’s fun during video game session. To
this end, a multitude of data sources were exploited: 1) The
signals coming from several physiological measures; 2) The
responses to a wide range of questionnaires aiming to capture
individual differences; 3) The game events, which provide
information on the player’s actions in the game and the state
of play; 4) A proxy of the subjective state of the player
during the game obtained through a replay of the session
during which the participant rated the fun experienced on a
continuous scale. Finding a signature from those data sources
would open the door to new possibilities in affective gaming
by adapting content to the player’s experience and reinforcing
motivation for the game. This research is part of the FUNii
project introduced in previous papers [25], where participants
played off-the-shelf popular games from Ubisoft’s Assassin’s
Creed series. Preliminary results were reported in [26], in
which only a subset of the modalities (limited number of
physiological measures) from a small set of 63 participants
were leveraged. The current paper proposes an approach that
takes into account the full dataset using all of the modalities
for a larger sample of 218 participants.

The paper is structured as follows: the methodology and
the materials used in the creation of the dataset are presented
in sec. II. Analysis, pre-processing and labelling of the dataset
is presented in sec. III. The modelling and fun prediction from
the dataset are then presented in sec. IV. Finally, a discussion
and conclusion including future works are presented.

II. METHODS AND MATERIALS
A. Participants

Two hundred twenty eight participants aged between 18
and 35 years old (M = 25.49, SD = 4.54; 212 male, 16
females), were recruited from Université Laval and Ubisoft
Québec’s volunteer database. This last database and the type
of game proposed to the participants are the main reason
for the heavy gender imbalance of the dataset. None of the
participants reported any mental health diagnosis, cognitive
impairment, uncorrected vision, or health issue that could im-
pact the physiological and cognitive measures gathered during
the experiment. Furthermore, participants were required not to
have played the specific games used in the experiment. This
project was approved by Université Laval’s Ethics Committee
(#2012-272).A monetary compensation of $20 was given to
participants.

B. Materials

The sample was split based on two different games from
the Assassin’s Creed series: 103 participants played the mis-
sions ”The Prophet” (S5M3) and ”The Escape” (S9M3) from
Assassin’s Creed Unity (ACU) and 115 played the missions
”A Spoonful of Syrup” (S4M1) and ”Survival of the Fittest”
(S5M3) on Assassin’s Creed Syndicate (ACS). These missions
were selected based on their relatively short completion time
and differences in subjective difficulty and fun during pilot
studies. Both games were the latest opus of the series at
the time of experimentation to ensure that we could reach
enough players that had never played the game. The games
were played on a high-end PC using an Xbox 360 controller
for Windows. Finally, game sessions were recorded using a
dedicated video monitoring card (Blackmagic WDM).

Four distinct sources of data were leveraged in this study:
1) Physiology: A set of physiological measures were recorded
during game sessions using a Biopac MP150 system. Cardiac
activity was monitored with an electrocardiogram (ECG) using
a lead II configuration. Respiratory activity was monitored
using a respiration (RSP) belt transducer placed around the
player’s chest. Electro dermal activity (EDA) was monitored
on the left thenar and hypothenar eminences. Muscle activity of
the right abductor pollicis longus (APL) was monitored using
electromyography (EMG) for a small subset of participants.
Furthermore, eye movements and pupil size were recorded
using the Smart Eye Pro eye-tracking system. Other measures
included blinks, fixations, saccades, and head and gaze orien-
tation. Head and gaze orientation might capture larger scale
movement like head shake or shrug. Finally, twenty facial
action units, for which intensities are rated on a scale from 0
to 5, were extracted from a video recording of the participant
during gameplay using Noldus FaceReader 5.0. Data from all
different sources were synchronized using Noldus Observer
XT 11 and in-house routines in Matlab 2015b.

2) Questionnaires: Self-reports were included in the study
to capture individual differences, such as an immersion ques-
tionnaire [27]. Participants also reported the subjective diffi-
culty and fun on a 1 to 5 scale, 1 being the lowest intensity
and 5 the highest, for each mission played, and completed the
short version of the NASA Task Load Index [28].
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Fig. 1. Interface of the ”Funmeter” with its associated control knob.

3) Game events: A set of game events were also recorded
during the gameplay. The player’s activities were recorded
at regular intervals, each second for ACU and each two
seconds for ACS. Activities range from simple activities like
walking, sprinting and leaping to more complex activities
like “In conflict,” meaning that the player is involved in a
fight or “Investigated,” meaning that enemies are searching
for the participant’s character. Game events during gameplay
were tracked online. Controller inputs were recorded using the
Xinput v1.2.1 API.

4) Fun: A custom software called ”Funmeter”, of which
the interface can be seen in Fig. 1, was developed as part of
the project to measure the player’s level of fun continuously.
This software allowed players to rate the level of fun after the
mission by watching a replay of their previous game session
and scoring the level of fun on a linear scale from -100 to
100. Ratings were controlled by the player through a knob
(PowerMate USB, Griffin technology) with visual feedback
and sampled at 30 Hz. The interpretation of the meaning of
the fun level was left to the participant.

C. Procedure

Upon arrival for a two-hour-long session, participants were
given a brief overview of the project. Electrodes and physio-
logical sensors were then installed on the participants. Once
signal quality was confirmed, baseline activity for ECG, RSP,
EDA and EMG signals were recorded for 3 minutes during
which participants were asked to clear their mind while fixing
a cross on a white screen and while a white noise was played in
headphones as to create a baseline for those signals. The eye-
tracking system was then calibrated for the participant. Partic-
ipants were asked to read through a tutorial about the game
to learn the game controls and mechanics. They then had a 5-
minute trial session during which they had to achieve specific
objectives to ensure that they knew everything necessary to
complete the experiment. Participants then played the selected
missions in counterbalanced order. They had an undisclosed
maximum of approximately 15 minutes to complete each mis-
sion. Following each mission, players watched a replay of their
last game session and rated their fun level continuously using
the Funmeter software. They then reported their subjective
experience regarding difficulty, fun and completed the NASA-
TLX and the immersion questionnaires. Electrodes and sensors
were removed and participants were debriefed.

D. Data Processing

From all the 218 participants, 25 were discarded because of
technical issues. For all 193 remaining participants, of which 9

were female, the two missions played were kept for a total of
384 game sessions. General statistics of these game sessions
broken-down by missions are shown in the Table I.

From the dataset available, a total of 16 different modalities
were extracted, which are presented in the Table II. Sub-signals
were extracted from the main signals like the heart rate and the
respiration rate, which are derivatives of the electrocardiogram
and the respiration intensity. ECG, RSP, EDA and EMG signals
were normalized using their baseline value acquired during the
first 3 minutes of the experience where players were at rest.

III. DATASET ANALYSIS AND PREPROCESSING

A. Game event analysis

The players’ preferred activities were determined by exam-
ining their fun ratings in relation to game events. Fig. 2 shows
the distribution of participants’ fun ratings as a violin plot and
a sample of the underlying points. The ratings were aggregated
based on different activities and averaged by participants (e.g.
a player who has rated the activity “Leaping” at an average of
20 is represented as a point in this distribution for the activity
“Leaping”). This figure shows a large variance in the rating of
each activity and that participants mostly rated the fun above
zero. Most activities have their means around the average fun
for all activities (35), meaning that the participant fun is not
strongly linked to it. Exceptions to this are the “Conflict”,
“Beaming” and to a lesser extent the “investigated”, “Slow
walk” and “Known” activities because their median differ from
the average. The “Conflict” activity is the most interesting one,
since its occurrence is high and can be easily interpreted as
participants having more fun during conflict. It also shows that
the distribution is fairly even and that no clear groups emerge.
It would therefore be difficult to differentiate different type of
player based on this information alone.

B. Feature Extraction

The continuous biometric signal and rating of the fun by
the participant were divided into epochs of fixed time length as
this method is useful for many statistical analyses. The epoch’s
duration has been set empirically to 5 sec with no overlapping.
The 5 sec epoch duration provided the best trade off between
a good temporal resolution and higher information (entropy)
from the signals, being longer than the time constant of the
physiological signals.

From the array of input modalities, features have to be
extracted to suit machine-learning techniques. A total of 244
features have been extracted from all the data sources, which
can be grouped in two different categories: time dependent
and time independent. Time dependent feature consists of all
the different time series presented in the Table II. From the
time dependent signal, statistical features are extracted for each
epoch. Those statistical features were the mean, min, max,
skewness, kurtosis and the trend. Spectral power density was
also extracted in bands from 0 Hz to 10 Hz.

Time independent data are answers to the questionnaires.
All of the questions were based on a rating from 1 to 5
and are used as features appended to each epoch of the
same participant. While these answers were obtained after the
experiment so that they cannot be used in real time, they are
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TABLE I. GENERAL STATISTICS OF THE DATABASE, AVERAGE (STANDARD DEVIATION) ACROSS ALL PARTICIPANTS

ACU - S5M3 ACU - S9M3 ACS - S4M1 ACS - S5M3
Completion time [min] 14.5 (2.2) 8.62 (2.0) 9.9 (2.2) 14.6 (2.0)
Rated fun [-100; 100] 35.6 (20.3) 38.7 (22.1) 32.8 (22.8) 34.8 (22.2)

Heart Rate [beats/minutes] 75.0 (13.6) 75.4 (13.1) 73.3 (10.7) 73.8 (10.4)
Respiration Rate [resp./minutes] 24.3 (1.8) 24.6 (1.8) 24.9 (2.0) 24.8 (1.6)

Pupil diameter [cm] 0.45 (0.07) 0.46 (0.07) 0.42 (0.07) 0.44 (0.07)
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Fig. 2. Distribution of the average rating of the participants for each activity. The activities are arranged from most occurrences to least occurrences, with the
occurrences in parentheses. The dotted blue line is the average of the fun for all the game sessions.

TABLE II. MODALITIES DESCRIPTION

ecg Electrocardiogram and its derivative: heart rate and heart rate
variability

emg Electromyography of the right abductor pollicis longus
(thumb abductor)

rsp Respiration intensity (diameter of the thorax) and its deriva-
tive: respiration rate

eda Electro dermal activity
pup Pupil diameter (Smart Eye system)
eye Eye information (Smart Eye system) such has position of

the gaze on the screen, eye fixation, saccades and blinking
head Pitch, Yaw, Roll of the head (Smart Eye system)
au Facial Action Units (Noldus FaceReader)
lum Screen luminosity, to capture interactions with pupil diam-

eter
immrQ Responses to the immersion questionnaire
nasaQ Responses to the Nasa TLX questionnaire
acgame Time played on previous entries in the Assassin’s Creed

series
difficulty Self reported difficulty of the mission played
appreciation Self reported appreciation of the game session
gender Participant gender
age Age of participant
spurious A random value that will help in identifying truly useful

features

representative of what time-independent features can bring to
a classifier.

C. Data Preprocessing

The participants were divided into training and test set to
the ratio of 3 training participants for 1 test participant. The test

participants were kept for final analysis to evaluate accuracy
on unseen data.

Missing values were filled in by the imputation of values
using the average of the training set corresponding features. All
features were then standardized so that the training features
have a zero mean and unit standard deviation along feature
type.

D. Labelling

It is possible to infer the level of fun on a linear scale
by regression methods but those are subject to the limitations
inherent to ratings. Indeed, this kind of rating is subjective
and of limited use, as is, notably due to limitations such as
interpersonal differences and non-linearity as reported in [29]
and [30]. While the ratings in this experiment had a large
numerical spectrum as opposed to more common rating-based
questionnaires in which the participant is asked to choose his
level of agreement on a scale of one to five, it entailed the
same limitations.

Two different methods for reducing label variance were
investigated. First, a simple threshold classification of the fun,
i.e. the fun is classified according to its relation to a threshold
value. For example, it is placed in one class if higher than the
threshold or in another if lower. The choice of the threshold
values still remains somewhat arbitrary but can be chosen using
relevant statistical method. An example of threshold is the
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mean fun of the participant during the game session. For the
current project, the thresholds were thus chosen in relation to
the mean (x) and standard deviation (σx) of each game session
as

class(xi) =


low fun if (xi − x) < − 1

3σx
neutral fun if − 1

3σx ≤ (xi − x) ≤ 1
3σx

high fun if 1
3σx < (xi − x)

,

(1)
where xi is the fun rating at time i in the game session and
x = [x1, . . . , xi, . . . , xlast]

T .

Second, ranking was chosen as a method of classification.
Since the absolute level of the fun is subjective and suffers
from the non-linearity of reporting. The differentiation of the
absolute level of fun might give a clearer indication of the
increase or decrease in the level of fun. From the changes
of the absolute level of fun, a change in the fun ranking can
be inferred, that is, if the participant reports an increase in the
absolute fun, a change from a lower ranking of fun to a higher
ranking of fun should occur. It is mathematically expressed as

rank(xi) =


min(−1, rank(xi−1)− 1) if xi − xi−1 < −T
max(1, rank(xi−1) + 1) if xi − xi−1 > T

xi = xi−1 otherwise,
(2)

where T is an adjustable threshold that has been set to balance
the classes evenly. Drift issues caused by the differentiation
of the fun signal are limited by constraining the rank to
a maximum and minimum. This ranking still implies some
subjectivity in the choice of the magnitude of change in
the absolute fun level considered enough for a rank change
(threshold).

IV. MODELLING

This section presents the models developed and how they
are trained. Three different models are presented: one based
on a regression technique and two based on classification
techniques with different labelling methods, namely the clas-
sification and the ranking method.

A. Grouping and Validation Scheme

In preliminary experiments [26], prediction accuracy of the
fun of the player was found to be higher when the training and
test sets came from a single participant (intra-participant), than
from training on multiple participants before making prediction
on untested participants. While the prediction accuracy was
better in the intra-participant case, it was of less interest for
finding a specific physiological signature of the fun during a
video game play, since it requires previous knowledge of the
player. For this reason, the current study focused on inter-
participant predictions, meaning that a signature was to be
found on a set of players and then tested on another set to
see if it generalizes well.

The dataset is split in two, a train set and a test set. The
train subset is used in a cross validation scheme for hyper-
parameter tuning and model selection. The test set is used to
report final model accuracy and was only used once to report
on model accuracy.

TABLE III. CLASSIFICATION RESULTS ON THE CROSS VALIDATION
FOLDS ON THE CLASS LABEL

F1 score (standard deviation) Accuracy
K Nearest Neighbours 0.354 (0.005) 0.415
Support Vector Classifiers 0.340 (0.012) 0.334
XGBoost 0.380 (0.018) 0.410
Multi-layer Perceptron 0.36 0.373
Most basic classifier 0.331 (0.013) 0.340

Since a general physiological signature of the fun is sought,
the game events, which are specific to the Assassin’s Creed’s
game, were discarded as features for fun prediction even if
they were related to the fun experienced by participants.

B. Regression

The first machine learning technique evaluated was a
regression technique, which, for each epoch, the average of
the fun rating was to be predicted. Several regression algo-
rithms from the Scikit-Learn library [31] were tested such as
linear model (Elastic Net), Support Vector Machines (SVM)
and Nearest Neighbours. An ensemble method, the optimized
distributed gradient from the XGBoost library, [32] has also
been tested. None of those regression algorithms were able
to predict the fun state with accuracy. None showed a linear
correlation between their predictions and the truth labels as
the Pearson correlation coefficient stayed at zero. Noisy labels
were assumed to be the main culprit of this poor performance.
This is why a classification method with a limited number of
classes might perform better by aggregating similar ratings and
therefore limit the variance of the labels.

C. Classification

Classification techniques were then evaluated to learn to
predict distinct state of fun for the player. To translate the
rated fun into distinct state of fun, the method shown in (1)
was used for each player. The number of classes was chosen
as to maintain a good accuracy but also to keep a meaningful
difference between classes. The three classes were interpreted
as low fun, neutral and high fun. Those classes are therefore
not absolute and are relative to the game session. Several
classifiers, available in the Scikit-Learn library, have been
tested for classification such as Nearest Neighbours, Support
Vector Classifiers (SVM), Random Forest, logistic regression
and Adaboost. An optimized distributed gradient boosting
library (XGBoost [32]) was also tested. Hyper-parameters for
each of the algorithm have been tuned by random searches
in a threefold cross validation scheme on the training set.
A multi-layer perceptron was also implemented using the
Keras deep-learning library. Only a subset of those classifier
is presented here which correspond to the best among their
family of classifier. Finally, a most basic classifier that predicts
at random following the probability distribution of each class
was also implemented as a point of comparison to chance level
accuracy. The F1 score was chosen as a scoring metric. This
scoring method is a weighted average of the precision and
recall globally across the total true positives, false negatives
and false positives. The average F1 scores across three folds
are presented in Table III for each classifier including the most
basic classifier which indicates the score corresponding to a
random guess.
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TABLE IV. FEATURES RANKING FROM THE XGBOOST CLASSIFIER

Classification Ranking
rank modality score modality score
1 rsp 0.164 rsp 0.397
2 ecg 0.141 eye 0.139
3 eye 0.131 au 0.118
4 head 0.094 ecg 0.093
5 immrQ 0.080 head 0.081
6 emg 0.080 lum 0.038
7 nasaQ 0.080 emg 0.036
8 au 0.059 immrQ 0.029
9 pup 0.052 eda 0.022
10 eda 0.034 pup 0.021
11 ACgame 0.025 nasaQ 0.013
12 lum 0.024 age 0.006
13 age 0.008 ACgame 0.005
14 difficulty 0.004 spurious 0.002
15 appreciation 0.003 appreciation 0.001
16 spurious 0.002 difficulty 0.001
17 gender 0.001 game 0.000
18 game 0.000 gender 0.000

TABLE V. CONFUSION MATRIX OF THE XGBOOST CLASSIFIER ON
THE TEST SET

predicted
low fun
state

predicted
neutral state

predicted
high fun
state

actual low fun state 1091 255 1721
actual neutral state 712 218 1535
actual high fun state 737 332 2304

From these results, it appears that the XGBoost classifier
reached better performance for this task with respect to the
F1 score. This classifier also gave an indication of features
importance, which is explained in detail in [33]. The impor-
tance of each feature as computed by the XGBoost classifier
on the training set is presented in Table IV. Features from the
same modality (signal) are grouped to give a preview of the
importance of each modality. The spurious feature, a random
value added to each feature sample, can help determine a
threshold score indicating unimportant modalities.

Features extracted from the respiratory activity were the
most used, followed by features coming from the electro-
cardiogram, head tracking of the Smart Eye Pro system,
questionnaires and electromyography. Facial action units and
pupil size also contributed to the inference but to a lesser
degree as did the electro-dermal activity. The other modalities
such as the previous experience with the Assassin’s Creed
series’s games, the perceived difficulty, the age, the general
appreciation, the game played (Unity or Syndicate) and the
gender are not or only marginally contributing to the inference.
They indeed have a similar or lower score than that of the
spurious feature. It is important to note that the distribution
of participants was heavily skewed towards male participants
(184 males against 9 females) and therefore the gender cannot
be discounted as an important feature for further research.

To confirm the generalization of the learning from the
XGBoost classifier, it was tested on the participants from
the test set. A confusion matrix of the result is presented in
Table V, along with a matrix presenting precision, recall and
F1 score of the classifier in Table VI.

These results showed that the classifier leaned toward
predicting a high fun state, indeed it identified 62% of the
occurrence of a high fun state. It was unable to predict a
neutral fun state, but fairly capable of predicting a low fun
state. One hypothesis explaining this might be the fact that

TABLE VI. PRECISION RECALL AND F1 SCORE OF THE XGBOOST
CLASSIFIER

precision recall F1-score support
low fun state 0.43 0.36 0.39 3067
neutral state 0.27 0.09 0.13 2465
high fun state 0.41 0.68 0.52 3373
avg / total 0.38 0.41 0.38 8905

TABLE VII. CLASSIFICATION RESULTS ON THE CROSS VALIDATION
FOLDS ON THE RANK LABEL

F1 score (standard deviation) Accuracy
K Nearest Neighbours 0.33 (0.012) 0.415
Support Vector Classifiers 0.302 (0.008) 0.311
XGBoost 0.351 (0.022) 0.360
Multi-layer Perceptron 0.347 0.344
Basic classifier 0.344 (0.011) 0.341

players were playing a game they never played before (a
recruitment criterion) and, thus, were mostly in a state of
fairly high fun during the whole session. This could limit the
difference between the low and the high fun state increasing
the classification difficulty.

D. Ranking

As explained in the Section III-D, simple classification of
rating from the player entails inherent limitations. To help
circumvent some of these limits, classification based on a
ranking was conducted to test if a better accuracy could be
achieved. The same procedure as for the classification of
the fun was applied here, with the difference that instead of
predicting the average of the fun rating during the epoch,
the average of the fun ranking, shown in (2), was to be
predicted. Results from the same classifiers as before, retrained
for ranking is shown in Table VII. It can be seen from a
comparison between the two methods that the ranking method
did not help classification. It seems that instead of reducing
label noise, it increased it.

Features importance from the XGBoost classifier is also
presented in Table IV, which shows that the modalities were
ranked similarly in both classification and ranking, indicating
a certain robustness to the features’ rank.

V. DISCUSSION

The goal of this study was to find a physiological signature
of the player’s level of fun during a video game session by
converging multiple sources of data, namely the physiological
signals and questionnaire answers. Those sources of data
served in the prediction of the fun factor, which was rated
by the participant while watching a playback of his/her game
session. The results of the different classifiers showed that the
best classifier was better at predicting the player’s level of
fun than the most basic classifier (chance) by improving the
F1 score by 15%, 0.38 against 0.331. One hypothesis for this
limited improvement is due to noisy labels, which is a direct
effect of inter-individual variability [7], i.e. differences in the
subjective rating of the fun by each participant. This fact was
also reported at an earlier stage of this project [26]. Indeed,
accuracy was much higher in intra-participant prediction as
opposed to predictions on an unseen set of participants. The ad-
dition of more participants, facial features and their responses
to questionnaires has improved inter-participant prediction,
but not by a large factor. There is therefore a need to first
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categorize a player by their way of rating the fun. The method
for ranking the fun presented in this paper still falls short of
removing the impact of inter-individual variability.

With a goal of real-time inference of the fun and in light
of the feature importance ranking, some type of modalities
might be more useful than others like the electrocardiography,
respiration and eye and head tracking. While head and eye
movements are not intrusive measures, as they were acquired
by cameras, an electrocardiogram and a respiration transducer
are currently more intrusive for the player. Those are important
considerations if such inference is to be deployed at larger
scale. Questionnaires bring a small amount of information and
are not intrusive during game play, but require additional time
either before, or after a play session.

While the accuracy remains modest at 41% amongst 3
classes, it followed expectations as the fun rating is inherently
subjective and suffers from non-linearity of reporting and inter-
individual variability. This accuracy should nonetheless be
useful to create a statistically significant profile of a player
given many samples of similar events in a game session.
Indeed, taking the conflict state as an example, it is occurring
an average of 50 times in 5 sec epochs during a game session.
By predicting the fun level with an accuracy of 41% each time,
the mean fun level of the predictions should have a relatively
low variance, which gives a good indication of the player’s
appreciation of conflicts.

VI. CONCLUSION

This paper presented a classifier capable of predicting the
fun rating that could be a major step in the development of
adaptive gaming. Indeed, by inferring the level of fun over
multiple events, its noisy nature should get averaged out to give
a more accurate representation of the likes and dislikes of a
player. The method presented in this paper allowed the evalua-
tion of the importance of each source of data. This should help
in sensor selection for further research by favouring a heart
rate monitor, eye/head tracker and respiration belt transducer.
Future works will consist in identifying which modalities
are less prone to affect gameplay and better performing at
predicting the fun in real time. Also works in collaboration
with game designers could include game events to the set of
modalities used for prediction. Since an adaptive game has
a direct impact on those game events, a careful integration
of those events to the features is necessary as they close the
information loop. Profiling the player to help better predict
fun during gameplay is also considered as a way to increase
prediction accuracy by reducing inter participant variability.
Further development, which is one of the main goals of
the FUNii project, is the development of an adaptive game
prototype that will take advantage of the predicted fun to adjust
itself in a way that optimizes the gaming experience. Finally,
even if this paper focuses on the fun in gaming, its conclusion
should be applicable to a wide range of intelligent systems that
uses physiological readings has proxy for other psychological
states such as stress, workload and engagement, for example.
It should help build adaptive systems that might maximize
health, performance or security of workers or patients.

Future works include the creation of an adaptive game
based on the fun prediction. Indeed, by collecting the fun pre-
dictions over time and by associating them with game events,

an appreciation of each game event can be inferred. With that
appreciation profile the adaptive game will tailor itself to the
player preferences by modifying the game scenarios in real
time.
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