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CHAPTER 1 Introduction

Imagine the following scene: a cocktail bar, a cocktail pianist playing in the corner, and

a customer approaching with a request. The customer has had a few too many, and can-

not remember the name of the song he wishes to hear. But he remembers "how the song

goes". "Da-da-dah," the soused customer brays, "da-dee-da-da-da-duh." The musician

then breaks into a flawless version of the standard, "All of Me," which is what the

drunk wanted to hear.

The situation seems pretty mundane, but how does it happen? It is very clear that the

person with the request cannot sing well, and his pitch and rhythm are wildly inaccu-

rate. Yet the sounds that he "sings" contain enough information for the listener to deter-

mine the singer's intention, that is, the idea the customer tried to convey using music.

This thesis examines the issues involved in answering the question, "How does it hap-

pen?" by attempting to characterize what human singers do and having a machine lis-

tening system try to replicate a human listening system.

Using Contour as a Mid-Level Representation of Melody 9



10 Introduction

The cocktail bar example is slightly frivolous, but it illustrates a phenomenon that most

people take for granted. Nearly everyone, including non-musicians, has an incredible

capacity for recognizing countless tunes. These tunes, however, need not be heard pre-

cisely as the originals: they can be recognized despite all sorts of transformations. A

common "transformation" of a melody is the distortion it goes through when sung.

Few but the most highly trained singers in the most controlled situations can sing every

note perfectly, yet all but the most monotonic renditions can be heard as musical, and

often recognized.

What cognitive mechanisms might be in use when listening to a melody? We will con-

cern ourselves with the information gained by a listener after pitch is perceived. There-

fore, we assume that pitch is processed before any decision about melody is made. This

assumption may not be entirely valid if some expectations of pitch affect processing,

but will be sufficient for our experimental purposes, which we will see in Chapter 5.

After characterizing singers' typical errors, we will wrap the results into a mid-level

representation for use in a melody recognition model.

1.1 Why mid-level representation?
Mid-level is a somewhat nebulous term. We use that term to describe our representa-

tion for a number of reasons. It is mid-level because the information with which it deals

lies between raw sample data and a melody model. It is not low-level because the infor-

mation is far abstracted from a representation of a sound wave or that gained from a

cochlear model. Nor is it as precisely high-level as musical notion; our pitch informa-

tion is continuous, therefore containing more precise information than discrete music

notation, but containing less of the crucial symbolic information that makes structure

apparent.

We also consider the system to be mid-level in the sense of approach to the data. Low-

level systems are most commonly data-driven: patterns are derived from the original

data, without overt regard for the high-level interpretation. High-level systems, in con-
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Expectations 11

trast, are often characterized as knowledge-driven: they take knowledge about the

world and sort the data based on that information. Our approach straddles the line

between the two, letting patterns in the data inform our knowledge of the world, but

retaining a strict, sensible musical interpretation over an data-driven optimal represen-

tation without clear meaning.

In general, the mixed approach works well for this problem. We are dealing with very

real human data: we measure direct musical utterances from the subjects. This

approach requires a sensitivity to the human errors made (errors are what we seek to

characterize), as well as the ability to tease the data apart to look for unexpected pat-

terns. The resulting representation is rich enough to capture uniquely human expres-

sions and errors, but is general enough to serve a variety of purposes, such as query-by-

humming, and other applications discussed in Chapter 7.

1.2 Expectations

What do we expect an average untrained singer to sing correctly? We expect the ves-

tiges of rhythm and melodic contour to be correct. At the very least, we expect that

when one note is supposed to be higher than the last, it will be sung higher. If a note is

to be longer than the previous note, it will probably be sung longer. The notes will be

approximate, but will follow the general trends displayed by the original intention.

What errors do we expect of someone singing a melody? We expect the tonic note to be

somewhat approximate. Notes may vary from there, perhaps drifting sharp or flat, but

most likely staying constant. The singers will have difficulty if they attempt to sing at

the extremes of their ranges. Intervals are likely to be "squashed" (large intervals made

smaller), and rests are likely to be "telescoped" (pauses made much shorter).

Given our expectations, what sort of data are we likely to see from singers? Since our

intuitions say that extremes are distorted, we would expect a figure such as Figure 1.

The plots therein predict a model in which standard error increases linearly with inter-

Using Contour as a Mid-Level Representation of Melody



12 Introduction

Model: Standard Error increasing with Interval Size

300-

u 200 -

0
1100- std=.175*int+50

std=.30*int+10

100 200 300 400 500 600 700

Model: Probability of >1/2 semitone error
1

std=.175*int+50

>10.5 --

std=.30*int+20

0 11- I I I I

100 200 300 400 500 600 700
interval (cents)

FIGURE 1. Possible models of error probability increasing with interval
size. Top shows two possible linear increases of errors with intervals,
and bottom shows the corresponding probabilities that the errors are
too large to be correctly rounded. One semitone (equal temperment) is
equal to 100 cents.

val size. We present two plausible error curves. According to our model, there is a con-

stant percentage of a given interval in error, therefore, a larger absolute error as

intervals get larger. The increasing absolute error results in an increasing chance of the

error being larger than one quartertone (also 50 cents, or 1/2 semitone). We focus on

quartertone errors because if we know the error to be less than that, obtaining musical

intention would be as simple as rounding a sung pitch to the nearest semitone.

We would also expect most of the error to be carried over from one note to another: we

mentioned singers drifting sharp or flat, above. If errors accumulate, then the chance of

a quartertone error will be greater later in the stream of notes than earlier. Perhaps we

would see the first interval and last interval in a series be more accurate than the ones in

Using Contour as a Mid-Level Representation of Melody



Preliminary results 13

the middle, observing a primacy/recency effect. Such expectations would result in a

model such as Figure 2. The increase of the standard deviation of error with the square

root of the number of notes results in a less dramatic rise in the probability of a large

error than in Figure 1, but the effects are visible, nonetheless.

Model: Probability of >1/2 semitone error
300

200

100 std=100*sqrt(notes) -

0
2 3 4 5

Model: Probability of >1/2 semitone error
1

std=100*sqrt(notes)

number of notes

FIGURE 2. Possible model of error probability increasing with
number of interceding notes. This model shows a less
dramatic probability of a large error.

1.3 Preliminary results
The previous figures reflect a basic assumption: errors accumulate with the difficulty of

the task. We presume it to be more difficult to sing a large interval than a small one. It

should be more difficult to sing several notes in tune than a pair of notes. As the results

of our experiment will show, such assumptions are wrong. Our subjects made constant-

sized errors across both of these conditions. Some small increases in error with the
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14 Introduction

degree of difficulty were observed, but nothing approaching the dramatic linear

increases in these models.

We now compare some of the experimental results to come with the hypothetical mod-

els presented above in Section 1.2. Figure 3 shows our preliminary model against our

experimental results. The standard deviations of the errors, and therefore the probabil-

Actual: Standard Error versus Interval Size

300

u 200

00

0

1

S0.5

01
10

200

0 200

300 400 500

Actual: Probability of >1/2 semitone error

300 400
interval (cents)

600

600

700

700

FIGURE 3. Experimental results are compared with the possible
model established above. The standard deviations of the errors
are essentially constant, showing that it is not more difficult to
sing a wide interval than a narrow one.

ity of large errors, remain constant, no matter how large the interval is.

Similarly, though less dramatically, the number of intervals between two notes has no

effect on the spread of the error. Figure 4 shows the experimental data to come against

the model established in Figure 2.

Using Contour as a Mid-Level Representation of Melody
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Actual: Probability of >1/2 semitone error
300

200 - actual std devs

100 - std=100*sqrt(notes)

0
2 3 4 5

Actual: Probability of >1/2 semitone error
1

actual std devs ------

~ std=100*sqrt(notes)
>10.5 --

0
2 3 4 5

number of notes

FIGURE 4. Experimental results compared with the model of error
increasing with note distance in time. Although the distinction is
slight, it is apparent that the experimental results reflect a constant
probability of large error.

Although initially perplexing, the implications of the experimental results become

much more useful than our expectations for our intended purposes. They allow for a

more elegant model of human vocal performance than would be allowed by the above

expectations. Such simplicity is well worth the surprise.

1.4 Contours
The underlying discussion through this chapter, indeed, this entire thesis, has been how

to approach amateur singers' approximations to melodies. A common musical term

which could be applied to this area is melodic contour, and different interpretations of

that term will be discussed in the next chapter.
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Chapter 3 and Chapter 4 are concerned with an experiment designed to refine our

notion of contour in the context of human singing: the former detailing the experiment

itself, and the latter detailing the various forms of data analysis. Chapter 5 discusses the

results and implications of the experiment, leading to a workable melody recognition

model in Chapter 6. Chapter 7 summarizes, presents potential applications for this

research, and outlines future research directions.

Using Contour as a Mid-Level Representation of Melody



CHAPTER 2 Background

For a musician, the word "contour" is difficult to define. All musicians have a sense of

what it is, and can give examples, but few can sum up the concept well in a sentence or

two. Simply put, melodic contour is "the up-ness and down-ness of the notes in a mel-

ody." This definition is acceptable as a starting point, but does nothing to capture the

gestalt, neither of the term or the actual melodic phrase. Contour involves a metaphor of

motion. Where does the melody go? Where does the line begin and where does it end?

How fast does it rise and fall? The idea of flowing, continuous motion is powerful,

made only more striking when one considers that, as they are normally heard, melodies

are discrete steps. As we note below, Gjerdingen [1994] treats this aspect of apparent

motion quite nicely

Using Contour as a Mid-Level Representation of Melody 17
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2.1 Representations in music cognition
Contour in the music cognition literature has been represented by a sign that one note is

higher than, lower than, or the same as the previous note. This ternary (+/-/0, also up/

down/same, or u/d/s) representation has been accepted as the standard definition of

melodic contour, drawing upon analogies with early visual perception systems. Divid-

ing contour into these three discrete steps has endured despite its limitations when

compared to a musician's intuitive definition of contour, and despite the limitations of

analogous visual systems.

Handel [1989] summarizes, stating that contour is "the sequential pattern of +, -, and 0."

Researchers distinguish contour from interval representation in articles such as Dowl-

ing [1984] and Edworthy [19851. Dowling notes that inexperienced listeners represent

melodies as sequences of intervals, more experienced listeners use a scale-step repre-

sentation, and professional musicians are capable of using a flexible representation

scheme.

The alternate path in music representations has been to take a structural approach to

melodies. Deutsch and Feroe [1981] present a hierarchical representation for melodies.

The model takes such phenomena as "chunking" into consideration (indeed, chunking,

or grouping into simpler units, is one of its main procedures), but assumes that pitch is

already perceived and that a high-level structure is established. Lerdahl and Jackendoff

[1984] present a hierarchical musical grammar that encompasses large musical struc-

tures as well.

Gjerdingen [1994] takes the opposite approach from the above discrete representations.

Given a discrete representation of a melody, he essentially smooths it to make it a con-

tinuous percept. Although this continuous representation is opposite from the direction

we wish to go, it serves as a reminder that our perception of melody is not necessarily

discrete in time and frequency. Cole [1974] warns that a precise notation comes at the

price of limiting melody to "that which can be notated by a series of fixed pitches." Mel-

odies have a shape, which is illustrated by a musical notation used in Tibetan Buddhist
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chant, seen in Figure 5. This culture has retained the notion of melodies being continu-

ous movements. It is in this sense that we use the word "contour" through most of this

thesis.

FIGURE 5. An excerpt from a dbyangs-yig, a Tibetan
Buddhist songbook. Note the clarity of the notational
curve. The rendering of the parallel lines is an
ornamental notation because this is the beginning of a
song. (Reproduced from Kaufmann [1975]).

2.2 Representation in applications
The primary application of this field of study has been in indexing databases by con-

tent, specifically, query-by-humming. Not surprisingly, the representations used in the

applications have been very influenced by research in music cognition. Recent papers

(Ghias et al. [1995], for example) use the simple ternary system of contour to index into

a database of melodies.

It would seem that this u/d/s representation has been a success since the systems that

use it appear to work well as presented. However, such systems require ten or more

notes as input (which is a sizable portion of many melodies), and by their nature cannot

distinguish between two melodies with the same up-down contour, even if the notes

are vastly different. There is also no accounting for global change, which is illustrated in

Figure 6. The sign representation may be identical for two melodies, but since no sense

of interval size is indicated, one does not know where the melody goes over time. In

short, this ternary representation does not capture the richness of what musicians

instinctively call contour.

Using Contour as a Mid-Level Representation of Melody
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Ab

I -- A t2I

ing+ a U a leve + 

b

FIGURE 6. The shortcomings of a simple contour representation.
These two sequences are indistinguishable using a ternary (+/01-)
representation.

We note that a hierarchical version of sign-based contour would go far towards captur-

ing a musical sense of contour. Using another level of +/-/0 signs, grouping two notes

at a time, would resolve the ambiguity in Figure 6. This approach is a possible future

research direction, but it becomes implicit in our interval representation, outlined below

and detailed in Chapter 6: by combining intervals, global trends become apparent.

Kageyama et al. [1993] appear to use a sort of scale-step representation, using more

information than simple ternary contour, though the details are somewhat sketchy in

the available proceedings paper. Despite such sophisticated techniques as dynamic time

warping, their system requires over a dozen notes as an index, and has limited accu-

racy. It is clearly a working system, however, with an extensive 500 song database.

We will develop a definition of contour which involves not only the signs of intervals,

but approximations to the intervals themselves, therefore more strictly qualifying as an

interval representation. The details of our representation will be informed by the results

of the experiment detailed in the next chapter, which examines human behavior when

reproducing melodies.

Using Contour as a Mid-Level Representation of Melody



CHAPTER 3 Experiment

We wish to characterize the natural musical response as described in the introduction.

We see the unrehearsed musical utterance as a window on internal representation.

There will always be mistakes in musical expression, but if we determine the features of

the errors that remain constant across all levels of ability, we see part of the underlying

representation. Put another way, if a feature appears in all renditions, it probably corre-

sponds to something in the mind. Furthermore, the pattern of errors will also reflect

properties of the underlying representation.

So, in order to characterize normal human performance in recreating melodies, we had

to devise a situation natural enough for subjects to approach in a "casual" musical way.

Naturally, a casual setting would not be rigorous enough for experimental purposes. As

a result, we considered a call-and-response paradigm. It is basic enough for any subject

to understand, especially in a musical or speech domain ("repeat after me"), but it is

also justifiable in psychological terms as a simple stimulus-response pair.

Using Contour as a Mid-Level Representation of Melody 21
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We also note the importance of recreating entire musical phrases, not individual notes.

The two tasks are different and should not be confused.

3.1 Subjects
Six subjects volunteered to participate in this experiment. Five subjects were between 21

and 30 years of age, and the sixth was over 50. There were two males and four females.

There was a representative combination of musical backgrounds among the subjects:

there was one non-musician with less than 5 years musical exposure, four amateur

musicians (one vocalist and three instrumentalists) with more than 12 years of experi-

ence, and one conservatory-level singer with 20 years of training.

3.2 Procedure
The subjects were brought into a soundproof booth. There they filled out the requisite

forms and were told of the basics of the experiment:

"This is an experiment in melody. You will sit in front of the computer with the
headphones on. There will be a series of musical notes played through the head-
phones for you to repeat. Immediately after the series of notes end, you are to sing
them towards the microphone on top of the computer monitor. There is a loudness
meter on the computer screen; please sing as loud as you can without letting the
meter show red. The first, practice trials are single notes. There will be a pause after
the note for you to sing, and the next note will come automatically. I can answer any
questions you have about the procedure after the practice set."

The experimenter was present for the single-note practice trials. The subjects under-

stood the instructions well enough to begin the task, but invariably were caught by sur-

prise by the beginning of the second note. The trial run was sufficient training for them

to settle into the "rhythm" of the trial set.

Using Contour as a Mid-Level Representation of Melody
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3.3 Equipment
The computer mentioned above was an Apple Power Macintosh 8100/110 running

Opcode's StudioVision AV. The trial sets were MIDI sequences with pauses in between

phrases (as described below in Section 3.4). The sequencer recorded directly onto hard

disk from the Apple Plaintalk microphone placed in front of the subject. This micro-

phone was designed to receive such utterances from two feet away The entire trial

made up one soundfile to be later segmented as described in Chapter 4.

Each of the trials was synthesized by a Boss DS-330 MIDI module using the "Piano"

timbre and presented through AKG-K240 headphones.

3.4 Stimuli
The stimuli were designed with several factors in mind. With respect to the subjects, the

melodic phrases had to be relatively easy to remember in order to be sung, as well as be

constrained in pitch range enough to be sung. In order to be suitable stimuli for the pur-

pose of later analysis, they had to cover a wide variety of melodies, and have a rela-

tively equal distribution of intervals.

In keeping with the need for ease of singing by the subjects, the stimuli were designed

to make sense in a tonal context (if the phrases themselves were not strictly diatonic).

Five-note phrases seemed to make the most sense in this case: they were easily spanned

by short-term memory, but were long enough to be "melodies", or at least melodic frag-

ments.

The phrase length of five notes also worked well with the constraint of variety of melo-

dies. We judged the variety of melodies by number of different possible sign-only con-

tours. For five note phrases, there were sixteen distinct up-down contours (five notes

yield four intervals: 24=16). By carefully writing two five-note phrases for each of the

sixteen contours, we were able to distribute each of fourteen intervals (±7 semitones)
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among 32 trials. For further details, including a complete list of musical stimuli, see

the Appendix.

The resulting phrases each were interpretable in a tonal context; however, because of

the limitation of including each chromatic interval between an ascending perfect fifth

and a descending perfect fifth, the trials taken as a whole did sound a bit odd. In partic-

ular, there seemed to be a preponderance of the tritone: since ±6 semitones had to be as

common as every other interval, the tritone appeared more frequently than normal in

traditional western music. As a result of this effect, these somewhat unusual phrases

were more difficult to sing than an average melodic fragment, but they were by no

means impossible to sing.

Because the trials were synthesized, we were able to take advantage of MIDI pitch

bend. That is, each trial was altered by a random amount between -200 and +200 cents.

By continuously randomizing the pitch bend value of each trial, we could eliminate any

consistent tonal base across multiple trials. The microtonal alteration thus set up an

orthogonal pitch axis (Handel [1989]) for each trial.

Although it may be argued that requiring subjects to replicate microtonal variations,

even between trials, is unfairly difficult, the five note phrases were tonal enough to set

up a salient context within the trial. Furthermore, this issue is largely irrelevant to the

analysis, since almost all of the statistics were derived from the intervals presented

(rather than the absolute pitches), which were strictly chromatic.

The trials were presented at a tempo of J=240, or four notes per second. A five note trial

was then 1.25 seconds long. This fast presentation was to ensure that the responses were

immediate and not over-considered. The goal was to get a basic reaction from the sub-

jects, not an accurate rendition.
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3.5 Discussion of experimental strategies

This issue of getting a basic reaction is at the heart of our strategy for the experiment. As

we stated at the beginning of this chapter, we wish to characterize a typical spontane-

ous musical utterance. Because most non-musicians and many amateur musicians are

shy about their singing voices, we wanted an approach that prevented the subjects from

thinking too hard about their singing. This did not necessarily mean making the trials

too easy: if the phrases were overly simplistic, there would be not enough errors to ana-

lyze later. In short, we wanted a fair number of errors from the subject. Nearly all of the

subjects' renditions of the trial phrases were recognizably similar to the stimulus, yet

none were note-perfect. We sought to uncover what is "similar enough" about the sub-

jects' responses to generalize to a resemblance between any spontaneous musical utter-

ance and the utterer's musical intention.

Thus the trials were tonal, had one of sixteen (binary) contours, and had an equal distri-

bution of intervals. They were presented with relatively small pitch perturbations held

for the entire trial. The phrases, as presented, were easy enough to be repeated by any

subject, but difficult enough that no subject could be completely accurate.

The trials were presented in a pseudo-random, interleaved order. No trial was pre-

sented close in time to another with similar contour, nor was a trial presented close to

its inverted contour. There was a three second pause between trials, which was ample

time for an alert subject to repeat the phrase and prepare to hear the next.

Using Contour as a Mid-Level Representation of Melody
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CHAPTER 4 Analysis

Given our rich data of subjects singing responses to melodic phrases, how do we inter-

pret them? The prevailing assumption is that the subjects' responses are approxima-

tions to the stimulus phrases, in a way similar to a spontaneous rendition being an

approximation to the intended result. Here we see the connection between musical

intention and musical expression: the pitches expressed do not necessarily match the

pitches intended.

Although one may instinctively try to examine the actual pitches sung and compare

them with the stimulus pitches, a more appropriate method, as explained in Section 5.2,

is to examine the pitch intervals, or, the differences between two pitches. We will show

that subjects make more errors singing absolute pitches than relative pitches and that

by using relative pitches, many useful musical side-effects, such as key independence,

result. In order for us to see those results, we must first get the data into a usable form.
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The data analysis and matrix manipulation system, MAThAB, was invaluable in process-

ing the data. Although its characteristics as an interpreted scripting language limit its

further use with a real-time system for applications, it served well as a research tool to

establish the parameters necessary for such a future system.

4.1 Segmentation
As noted in Section 3.3, the entire trial sets were recorded as one long sound file. While

it was easy to collect the data this way, it was not easy to process. The multi-megabyte

file was not even able to be loaded into MAUAB in full. The first segmentation script had

to read in manageable chunks of sound, separate the trials from the silence (and each

other), and save each trial in a pre-determined place.

Our first MAmAB script accomplished these goals. The script's function is summarized in

Figure 7. It would read in a portion (five seconds) of the trial set sound file (in aif-for-

mat). It then squared and low-passed the segment, to reflect the magnitude of sound

during those five seconds. MAmAB then hopped through the file (not testing the loud-

ness at every single sample, rather, every fifty samples because the rate of change of

power was slow enough), testing if the magnitude rose above a threshold of 0.001 (-30

dB). When the threshold was crossed, it signified the beginning of the next trial in the

sequence. When the magnitude fell below the same threshold, the script marked it as a

possible end point for the phrase, but checked the magnitude for the next half-second,

to determine if it rose above threshold again. If not, then it was the true end of the

phrase; if the sound got louder within that period, the subject hesitated but continued.

Having marked the beginning and end of one trial in the original five-second segment,

the script saved the phrase (according to the order it came in during the trial set) in a

filename reflecting the original order of the trials (as shown in the Appendix). If the end

of the segment was found before the end of the trial was reached, the script re-loaded

five seconds starting from just before the beginning of the trial. In any case, as one trial
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Input Waveform
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FIGURE 7. Summary of large-scale trial segmentation script. MArLAB
read in a five second section of sound, as represented by the
waveform in the top plot. The bottom plot shows an estimate of
the power at each point, along with the estimated beginning and
end of the trial, as computed by the script. Also note the 0.5
second threshold after the end, to account for the possibility of a
hesitation.

was found and saved, the next five-second segment was loaded. This approach to seg-

menting the trial set into manageable "chunks" was very successful.

4.2 Pitch tracking
Once the individual trials were separated, we had to pitch track and note-segment the

five-note phrases. The pitch tracker was one designed and used by Brown [1992]. It was

a relatively robust constant-Q transform pitch tracker. After a frequency analysis and

converting to a logarithmic spacing in the frequency domain, the pitch tracker

smoothed across several frames to improve stability against spurious octave errors and
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dropouts (which are a common problem for every frequency detector). The pitch

tracker then used a pattern-recognition technique to obtain precise pitch values: it

matched the frequency profile at every time-slice with an expected harmonic profile

(here, usually three to six harmonics).

Output of Pitch Tracker

-1200

-1400

-1600
-1700

-1900

-2100
-2200

-2400

-2600

-2800

0 0.4 0.6 0.8
time(s)

1 1.2 1.4 1.6

FIGURE 8. Output of Brown's [19921 pitch tracker. The above figure is
a fair representation of the sort of basic data we obtained. Note the
octave error in the first 100 msec, and dips in frequency at the note
transitions.

Although the pitch tracker is capable of very fine frequency resolution, and is relatively

stable, the speech-like qualities of the fast five-note phrases "confused" the pitch tracker

often. Despite our efforts to smooth the data, there were occasional drop-outs and

octave errors, artifacts for which we had to adjust later. Figure 8 demonstrates a typical

pitch track for a trial by a musically experienced subject.

Given a continuous (100 frequency values per second) stream of pitch data, we had to

find a way to compare it with a discrete set of five note values. Because we did not

know a priori where one note ended and the next began, we had to determine such

things before comparing one set of values with the other. We could compare the sung
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pitches with the stimuli by matching the "rhythms" (starting and ending times) with

each other, or discretize the frequency stream into pitch estimates for each note for com-

parison with the stimuli. We did both, but relied more heavily on the latter, as discussed

in the following section.

4.3 Note-level segmentation
After having segmented the notes on a phrase level, we segmented them on a note

level, also. We squared and lowpassed the signals as before to get an energy estimate.

We converted to a logarithmic (decibel) scale at this point for the purpose of easy inter-

pretation. Taking advantage of the explicit instructions to the subjects to sing syllables

such as "da" (or anything separating the notes with a consonant), we noticed a very

characteristic dip in energy between the notes. Therefore, treating the discrete-time dif-

ference as an approximation to the derivative, we compared the second difference in

energy to a threshold of 1 dB/centisec2, as shown in Figure 9.

This kind of automatic segmentation worked well in most cases. Different subjects

required different lengths (of 150-200 msec) of inhibition to eliminate double-hits after

each found note boundary. In some (less than 1%) of the segmentation cases, the system

failed to find a note boundary, and we entered a guess based on the information in the

pitch track. It was satisfying to note that for every energy contour where a note bound-

ary was visible to the eye, the system was able to find a suitable boundary: the only fail-

ures were when the subject did not clearly articulate a consonant between notes.

4.4 Event-level estimates
Once the trials had been separated from each other to be pitch-tracked, and further

divided into notes, we could obtain estimates of pitch for each note sung. Although the

pitch estimate process discarded much of the information in the pitch track, we retained

all that was necessary for comparison with the intended pitches (that is, the stimuli
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Energy Contour
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FIGURE 9. Segmentation on a note level. The above plot shows the
energy of the phrase. Note the abrupt positive change in slope of
energy between notes. The second plot compares this second
difference with an experimentally-produced threshold of 1.0. Not
shown is the 200 msec inhibition on secondary "hits" after a note
boundary is found.

which the subjects attempted to repeat). Thus, the data with which we primarily

worked were continuous-valued (in the frequency domain) pitches discretized in the

time domain to individual events.

For us to reach this precise pitch-event representation, we needed to find an average

pitch for each time interval demarcated by the note boundaries. The solution suggested

by various frequency-modulated pitch perception experiments (such as Brown &

Vaughn [19961) was a magnitude-weighted mean frequency Unfortunately, the quality

of the output of the pitch tracker was not sufficient to support such an approach. The

tracker made no continuity assumptions about its input, and a single octave error was

enough to significantly skew the result of the mean.
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With these limitations in mind, we chose to take the median pitch value for each note.

Given 20 to 30 values for each note over the time held, with the data devoid of pitch

track errors, the median was extremely close to the magnitude-weighted mean. In the

case of an error-ridden pitch track, the median was a far better approximation to the

ideal pitch track than the mean. The typical performances of these two methods are

illustrated in Figure 10.

Pitch Track with Median Pitch for notes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Pitch Track with Mean Pitch for notes
-1000

-1500

-2000

-2500

0 0.2 0.4 0.6 0.8
time (sec)

1 1.2 1.4

FIGURE 10. Event-level pitch estimates using median and mean. The octave
errors and drop-outs in the first note, although minimized, adversely
affect the mean-based approximation. The median remains a good
approximation. In the case of the last note, when the pitch track is free of
errors, the median and mean estimates are very close.

By applying the median estimate to each note, we obtained a simple list of each note in

each trial, to be compared with the list of respective stimulus notes. With this continu-

ous-pitch/discrete-time representation in place, we proceeded to look at the experimen-

tal results for each subject.
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CHAPTER 5 Results

Now that we have an event-based approximation of a subject's sung pitch for each

stimulus note, we must turn to determining the relationship between the two. Are our

initial expectations correct? Do people actually make regular mistakes? Is there enough

information remaining after the errors are taken into account to determine the singer's

intention? These questions will be addressed in this and the next chapter.

By looking at pitch plots such as the one in Figure 10 on page 33 (top), we begin to see

some common characteristics in the subjects' musical utterances. We note that the entire

phrase is about two semitones sharp compared to the stimulus pitches. However, the

median pitch estimates follow the same shape as the stimulus, with the same approxi-

mate intervals. The second note, for example, may be higher in relation to the stimulus

than the first note was, but the third note "gets back on track." All of these observations

will be borne out in the following chapter, by looking at all the pitches for all subjects.
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5.1 Absolute pitch or interval?
Since we have good approximations of pitch for each note, we must decide whether

absolute pitch or relative intervals will form the basis for our representation. Our bias in

this matter has been evident from the start, but so far we have not ruled out the possi-

bility of absolute pitch being a valid representation for our purposes.

Absolute pitch is the more easily comprehended representation. People sing notes, not

intervals. Interpretation quickly becomes non-intuitive when one attempts to consider

intervals and how they interact: when an interval is "sharp", it means something differ-

ent depending on whether the interval is ascending or descending; two notes in succes-

sion are easier to understand than two intervals in succession; errors in absolute pitch

are independent from each other. All of these are valid arguments against using interval

size in our representation, but, as we will show here and in Section 6.3, relative intervals

are superior for our purposes.

The first piece of evidence lies in considering all of the notes and intervals in aggregate

form for each subject. As described in Section 3.4 and the Appendix, the stimuli were

designed with this in mind: each interval was to be equally represented across all trials.

Similarly, the stimulus absolute pitches were relatively evenly distributed. By looking at

simple scatterplots of the given pitches versus sung pitches (Figure 11) and of given

intervals versus sung intervals (Figure 12), we can get a sense of the accuracy in each.

We do see in comparing Figure 11 with Figure 12 that for each subject, there is a larger

amount of "scatter" for the absolute pitch than for the intervals. There is a higher corre-

lation for each of the interval plots than for the corresponding absolute pitch plots.

Although these correlations do not allow for a simple t-test comparison, we observe

that five of the six subjects' correlations are less than their corresponding interval corre-

lations, which occurs with a p<0.11. That figure is not very strong, but we will not let it

discourage us. The basic idea is that the error is greater for any given note than for any

given interval.
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FIGURE 11. Correlation between absolute stimulus pitch and
absolute sung pitch. It is worth noting that the pitches do not
deviate from the ideal line at the extremes of the singers' ranges.
There is no discretization on the x-axis because of the random
pitch perturbation for each trial.
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FIGURE 12. Correlation between stimulus and sung interval. The data
on the x-axis is discretized because subjects were presented with
only chromatic intervals.
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5.2 The benefits of intervals
Using interval as a basis for our comparisons confers several benefits over using abso-

lute pitch. A significant one is key independence. Since relative intervals exist without

reference to a key, they allow for much more flexible input to, for example, an index of

melodies. For absolute pitches to do the same, they must be manipulated, such as sub-

tracting the mean pitch for the trial or making the pitches relative to the first note. These

two alternate pitch methods not only throw out the information that makes them

unique from an interval representation, but in the second case, can be completely repre-

sented by the interval scheme. (i.e. if pitch2 through pitch5 have pitch1 subtracted from

them, then pitch2 is equal to intervall, pitch3 is equal to intervall+interval2, and so on.)

Further results below, such as the consistency of variances (in Section 5.4) and the

eigenvectors of the covariance matrices (in Section 6.3), add support to our use of inter-

vals in the analysis.

5.3 Accuracy of interval size
Now that we have decided to focus our investigation on intervals, what trends do we

expect to find in the data? How does the sung interval interact with the stimulus inter-

val within this stream of notes? One of our first expectations as explained in Section 1.2

was that extreme intervals were to be "squashed": large intervals would be sung

smaller than they really are. The effect, shown by the negative slope in Figure 13, is

slight, but more pronounced in the odd-numbered subjects.

The discontinuity in the mean error curve, combined with the negative slope of both

segments, supports a strong division between up- and down- intervals. That is, there is

a strong grouping among the intervals going up, and the intervals going down. Inter-

estingly, this lends credence to the use of the various sign-based contour representa-

tions. We do not doubt the general usefulness of that approach, but, even with the worst

singers, there is more to be learned from their data than a simple binary division.
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FIGURE 13. Deviation of mean interval size from given interval. An ideal
result, where the mean interval size would match the given interval,
would be a constant at zero. The consistent negative slope demonstrates
some interval "squashing". The discontinuity at zero signifies a
categorization between ascending and descending intervals.
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Curiously, the best linear fit to these mean errors is a constant, zero. Also, if one only

examines the absolute value of the interval, as in Figure 15, the mean stays constant,

with the effects of the non-linearity cancelled. Therefore, for now, we will be satisfied

with using the sung interval as a good approximation to the intended interval. We will

explore the effects of the piecewise-linear model of error noted here in our melody rec-

ognition model described in Section 6.3.

5.3.1 Variances of intervals
Although the means of the errors exhibit interesting behaviors, the interactions of the

variances for the intervals are far more revealing.

Displaying information similar to Figure 13, Figure 15 displays the errors by absolute

value of the interval. The size of the interval, whether it is up or down, does not affect

the standard deviation of the error. That is, there is no significant difference between the

standard deviation and a constant for a given subject, with the notable exception of sub-

ject 2, due to extreme outliers. The six plots in Figure 15 are summarized in Figure 14.

interval mean & std errs, all subjects

400-

300-
std dev interval eror-

$ 200- 
- - - - -- -

b 100-

0- nintervalerror

-100
100 200 300 400 500 600 700

FIGURE 14. Summary of mean and standard deviation of errors across all
subjects. See Figure 15 for individual subject data. The mean is zero,
and the standard deviation has a slight positive slope.

The fact that the variances stay constant for a given subject leads us to the surprising

conclusion that "all errors are created equal." This result runs counter to our initial

expectation that error would increase significantly with interval size: subjects make the
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FIGURE 15. Mean and standard deviation of errors by absolute value
of stimulus interval. The mean error flattens out to zero when
collapsing interval size, in contrast to Figure 13. With the
exception of subject 2, the standard deviation for each subject
remains essentially constant.
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same absolute range of interval errors, rather than a percentage of a given interval size.

Therefore, for a single interval, the error size does not depend on the interval size. The

mean of the sung interval can be modeled by the equation:

Sung = M - Given + b - sgn(Given)

But for most of our purposes, we assume that the mean of the given minus sung is zero,

as shown in Figure 14.

5.4 Accuracy of accumulated intervals
The interaction of intervals within a stream of notes is at least as important to our model

as the accuracy of the individual intervals themselves. One can measure individual

intervals, but the result says nothing of how humans put them together to form a musi-

cal phrase. This part of the examination of the subjects is critical to our understanding

of the experiment.

We began by examining scatterplots of different groups of intervals, for example, com-

paring the first note to the last note of the phrase, the first note to the highest pitch in

the trial, and the second note to the fourth note. Example plots and their correlations for

one subject are shown in Figure 16. It soon became clear that the plots were practically

identical for any pair of notes; the correlation between the given and sung interval for

each of these plots was extremely close. Subjects were just as accurate for the first note

to the second note as the first note to the fifth note.

This result was unexpected at first. We had expected errors to accumulate, at least to

some extent. Errors would perhaps decrease for some salient reference point in the

stream of a melody. For example, the first note and last note were expected to be quite

important, as well as the highest and, to a lesser extent, lowest pitch in the group of five

notes. These expectations were not supported by the data, however. In fact, if anything,
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FIGURE 16. Typical relationships of correlations of intervals of
various note-distances in the five-note phrases. These
correlations are representative of those found for every subject.

in the case of the first note to highest note, the correlation of given interval to sung inter-

val was lower than for the others.

Spurred on by this result, we more methodically examined how pitch errors interacted

with distance in time; that is, what happened to the variance as more notes came

between the two notes being compared. By looking at the variances in the absolute

errors for the first note to second note, the first note to third note, and so on, we con-

cluded that there was no difference between each case. Furthermore, when looking at

all note-pairs, with pairs being separated by one, two, three, or four intervening inter-

vals, there was no difference in variance, as seen in Figure 17.
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FIGURE 17. Variance of interval error versus number of notes in time. The x-
axis reflects the increasing distance between notes in time, with as the 3rd-
4th, 1st-3rd, 2nd-5th, and 1st-5th notes as examples of the increasing
distance. Only subject 0 increases (doubles) in variance, but since these
are variances, it would have to increase linearly for errors to accumulate.
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That the variance of the errors should be so consistent was quite a surprise, and its

implications are probably the most important results from the experiment. Errors do

not accumulate from note to note. Rather, more often than not, subjects correct for their

mistakes. If one interval is sharp, then the next is likely to be flat compared to what it

would nominally be according to the stimulus. Individual notes are therefore isolated,

so the error does not propagate significantly through the rest of the trials.

Another approach that supports this observation is to look at the correlation between

the errors of the interval immediately preceding and the error of the interval immedi-

ately following a note. Figure 18 shows such a result. Notice that every subject shows a

negative correlation., and that the correlations hover about -0.5. This result is exactly

predicted by a model of constant variance.

If we take two adjacent intervals X and Y, and examine the interval (X+Y), our constant-

varance model predicts that the variances of X, Y, and (X+Y) are equal. So:
Var(X) = Var(X +Y) = Var(Y)

Var(X+Y) = Var(X)+Var(Y)+2 - Cov(X,Y)

Var(X) = -2- Cov(X, Y)

Corr(X, Y) = Cov(X, Y) - (Ross [1987])
JVar(X)+Var(Y) 2

This value matches the experimental results nicely. The practical upshot of this result is

that each interval can be trusted as well as any other. This result is a great boon for our

representation discussed in the next chapter.
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FIGURE 18. Scatterplots for the error of the interval immediately
preceding a note versus the interval immediately following. There
is a consistent correlation of approximately -0.5.
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CHAPTER 6 Representation and
Model

Using the results gained from Chapter 5, we may now arrive at a model of melody

expression and recognition. The most important fact to be taken from the experiment is

that subjects correct for errors while singing. This fact is supported by the evidence that

each interval in the series of notes is as accurate as any other. Combinations of intervals

do not degrade performance, nor does interval size diminish accuracy The only regular

distortion lies in the mean error depending on interval size, the non-linearity seen in

Figure 13 on page 40.

Conveniently, our experimental results suggest a very simple representation. If some of

our expectations in chapter one had proven to be true, we would have had to adjust for

several factors such as distortions of intervals and different confidences based on note

distance. After our experiment, however, we can set forth a simple but effective repre-

sentation of sung melody.
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6.1 Basic representation
Our primary goals in seeking a representation of melody are compactness, expressive-

ness, and portability. We wish to be compact, so that transformation into our represen-

tation does not cause an explosion in data. Such an increase in data would be ineffective

for large databases of melodies and would slow computation, especially for a database.

We want to retain the expressive qualities of the human input. Simple quantizing

would most likely suppress much musical intention, as well as potential expressive-

ness. Also, this representation is not exclusively tied to melody recognition. If we were

to get a novel input such as a melody intended to be added to a database, we would like

to be able to keep its expressive qualities in order to determine the underlying musical

intention. We want portability in that we do not necessarily want a representation that

relies too much on specific knowledge of a given user. The representation must be

adaptable to many types of inputs and objects it seeks to match.

The basic representation to be used in our melody model is remarkably simple. We

arrive at an interval representation as mentioned in Chapter 2. For n notes to be com-

pared, the representation is a (n-i)-dimensional vector of intervals. These intervals, as

alluded to before, are the (signed) differences in pitch between adjacent notes, in order,

in the melody This "transformation" applies to both the human input to the system,

and the existing data to be compared. Note that though simple, this representation is

richer than the traditional, u/d/s view of contour.

For example, the representation for the stimulus trial shown in Figure 10 on page 33

would be the vector [700 500 200 -200]. The corresponding phrase sung by subject 0

would be [894.1 374.0 225.5 -268.4]. Although the vectors for the two renditions are dif-

ferent, they are close, and more expressive than [+++ + -] from the u/d/s case.

This simple representation meets our above requirements of compactness, expressive-

ness, and portability. It is justified by our experimental data. The chief information we

learned is that for intervals, one interval error is essentially the same as another, and
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therefore we cannot order intervals in terms of confidence. Sung intervals do not devi-

ate from their nominal values in a regular way, so those cannot be transformed, either.

6.2 Basic model
To gauge the effectiveness of this model, we shall use it on a "toy" problem similar to a

typical application. Much of the underlying motivation for this study is for indexing a

database of melodies, attempting the same sort of recognition with a computer as with

the cocktail pianist in our introduction. Thus we will use our experimental data in

reverse. We already know the mapping of musical intention from the sung phrase to the

stimulus phrase, so we can imagine that the stimuli create an index of melodies, and

that the sung phrases attempt to index them.

In this toy system, we measure the distance between each sung phrase and each of the

possible (thirty-two, in this case) stimulus phrases in our "database." We use the simple

(4-dimensional, here) euclidean distance as our distance metric. We minimize the dis-

tance to obtain a best match. This basic melody recognition model performs well, and

demonstrates the characteristics of our representation.

We see the results of this first match-model in Figure 19. The surface has peaks where

the given and sung phrases are closest. This results in most maxima being along the x=y

line.

The crucial data is more visible in Figure 20, which shows the best matches, as in a pos-

sible output from a melody database. For all but subject 1, whose singing ability is lim-

ited, the matches are quite good, with most trials being correctly identified as the best or

second-best match. Some trials, such as sung trial #2, are consistently missed across

subjects, and looking at the musical material, it is easy to see why (see the Appendix).

Stimulus phrase #2 is extremely difficult to sing, and is strikingly similar to the first

stimulus, with which it is most commonly confused. The performance of the matches
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contours. See the Appendix for details.

Using Contour as a Mid-Level Representation of Melody



54 Representation and Model

for this basic representation and its modified forms are summarized in Table 1 on

page 60.

It is worth commenting on the performance of this system compared to others at this

point. The Ghias et al. [1995] melody index system reviewed in Chapter 2 was based on

the ternary contour definition. Since every stimulus trial in our experiment has a corre-

sponding trial with the same binary contour, we are already, with this simple system,

distinguishing between melodies indistinguishable in a sign-based contour system.

In this light, it is not surprising that we see first- and second-choice confusions in 2x2

cells in Figure 20. These cells have identical sign-based contours, and so the indexed

melodies are very similar but can still be distinguished. This system is very promising

for representing melodies.

6.3 Extensions to the basic representation
Our results suggest a number of basic improvements to our model. The first improve-

ment we will attempt, however, is inspired by basic pattern recognition techniques. All

of the improvements to the basic vector representation involve some sort of transforma-

tion of the input vector, and possibly the comparison vector as well. The distance and

scoring metric of inverse euclidean distance remain the same in our model.

6.3.1 Covariance matrix
Therrien [1989] suggests that one way of optimizing this sort of recognition task is to

transform the space in which the recognition takes place. We will optimize this interval

space by examining the covariance matrix for all of the sung trial-vectors for a subject,

and transforming the recognition space by multiplying by the eigenvectors of the said

covariance matrix. This data-driven approach is designed to get as much information

out of the available data as possible.
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and Figure 20.
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This principal component analysis was not effective on our data set. Although the

transformation through the eigenvectors did change the representation space, it did not

significantly change the distances, and therefore the ordering was not changed. The first

and second best matches are exactly identical to the matches in our original, basic repre-

sentation. This pattern recognition technique has gained us nothing, which suggests

that the basic interval space is close to optimal.

As a side note to our covariance matrix discussion, we briefly examined the possibility

of using some variation on an absolute-pitch representation. After zero-meaning the

vectors of five patchiest gain key independence) and taking the eigenvectors of the

covariance matrix, we noted that one of the five eigenvalues for each of the subjects

went to zero. That is, the dimensionality of these five-note vectors was actually of rank

4, because we removed the degree of freedom contained by the means. There was no

gain in information by moving to a five-note representation (once it was made useful)

from a four-interval representation; our use of intervals was further justified.

6.3.2 Piecewise-linear accommodation to subjects
The next modification to our representation was to return to the observed non-linearity

in the means of the errors according to interval size, as illustrated in Figure 13 on

page 40. Since we are able to characterize the distortion in interval size fairly accurately

for each subject, we should be able to use this information to transform the distorted

utterance back to the predicted intention easily. We fit the data into the discontinuous

model:

Sung = M - Given + b - sgn(Given)

and treat the modified sung data as our new pitch vector.

This piecewise-linear technique was slightly more successful than the above pattern

recognition technique. For subject 1, who had a very marked effect of interval distor-

tion, this accommodation had a slight performance increase in best matches. The effects
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FIGURE 22. Inverse distances and best matches for the non-linear
accommodation technique. Subject 1 has slightly improved
performance over the basic model.

can be seen in Figure 22. The performance did not change for subjects 0 and 3, although

there was clearly an observable change in ordering. This method could be effective in

adjusting for particularly untrained singers, but it requires some prior knowledge of the

singer's habits.
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6.3.3 Ten-dimensional expansion
Our final modification to the basic model came directly from the observation that "all

errors are created equal". If that statement were true, would not adding more data with

negatively correlated errors help? Although we could not add any information per se to

the representation, we could attempt to utilize all the information in the data we did

have. From our experiment, we discovered that more distant stimulus intervals (such as

the second note to the last note) were as correlated with the sung intervals as more

closely adjacent intervals were. If these more distant figures could be worked into the

representation, we might be able to see an improvement in matching sung phrases with

intended phrases.

In effect, we added all of the possible note-pairs to our adjacent-interval representation

by transforming the sung and intended vectors as follows:

10 00 100 10 1

[xi X2 X3 X] 010011 0111 = IYY2Y3Y4Y5YY7 Y8Y9Y10

00 0 100 10 1 1

By comparing the new 10-dimensional sung and intended vectors to each other and

taking the euclidean distance in this expanded space, we managed the best improve-

ment in matching ability over the original representation. The matching for subject 0

decreased in accuracy slightly, but the other two we examined for this summary

improved noticeably The degraded performance of matching for subject 0 may be due

to his increasing variance as intervals accumulated: this expansion relies on the

improvements afforded by constant variance with note distance, and his was the only

data not consistent with those results. This expansion to a higher dimensional space

was a surprise success, as there is no information added to the system. It does take full

advantage of our result that most subjects do not "drift" when singing a string of inter-

vals.
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FIGURE 23. Inverse distance and best matches for ten-
dimensional expansion of interval data. Subjects 1 and 3
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6.3.4 Sign-based contour
For the sake of comparison, we ran our data through a sign-based contour system. We

encoded the sign of the intervals as -1 and +1, and took the inner product of the result-

ing sung and index vectors as the score of the match. Results are represented in

Figure 24. This representation, as we mentioned above, is limited in performance by the

number of stimuli: there are 32 stimuli for 16 possible contours. We do see, as in

Figure 25, that performance vastly increased when we allow second-best matches to be

counted as "hits".

6.3.5 Summary
The results for the four different representations and an implementation of u/d/s con-

tour are summarized in Table 1 and Figure 25. The covariance-based optimization does

not change performance at all from the basic representation. The piecewise-linear indi-

vidual subject accommodation makes a slight improvement for the subject with the

worst performance. The full all-interval expansion makes more of a performance gain

for subjects 1 and 3, at the cost of slight degradation in subject 0.

TABLE 1. Comparison of performance of five models, percent correct.

Cov
Basic Model Optimization Accommodation Full expansion U/D/S

1st/ 1st! 1st/ 1st/ 1st!
Sub 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

0 90.6 96.9 90.6 96.9 90.6 96.9 87.5 96.9 50.0 96.9

1 40.6 68.8 40.6 68.8 43.8 71.9 43.8 78.1 34.4 71.9

2 87.5 90.6 87.5 90.6 87.5 90.6 87.5 90.6 40.6 90.6

3 87.5 100.0 87.5 100.0 87.5 100.0 96.9 100.0 50.0 100.0

4 87.5 100.0 87.5 100.0 84.4 96.9 87.5 100.0 43.8 90.6

5 78.1 96.9 78.1 96.9 71.9 100.0 81.3 93.8 50.0 100.0

We conclude that our basic interval representation is the safest for most applications. It

requires no previous knowledge of the singer, and performs across all situations. If
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knowledge about a singer or the ability to train on a subject exist, and the subject is

likely to be a poor singer, then accommodation to the subject's particular type of errors

could possibly raise the matching ability of the system. The full-interval expansion is

also a strong possibility for any type of singer, especially for melody recognition tasks.

The only drawback is a less musical interpretation for every element in the vector. A

sign-based contour representation is not powerful enough for a case with this few

notes. Intervals, even if inaccurate, offer better performance for indexing in the cases we

have examined.

Model Performance

100

80-

* 60 -M st
U 1st/2nd

i 40-

20

0
Basic Optimized Accom. Full u/d/s

FIGURE 25. Summary of the performances of the five models
of melody indexing. The means across all subjects are
shown. The modifications to our interval representation
have a small effect; the full expansion is the most
promising. The performance of u/d/s is limited by the
identical contours in our toy database.
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CHAPTER 7 Conclusion

In chapters one and two, we examined the motivations behind our study. We imagined

a situation in which the study would be relevant, and reviewed both our expectations

and the examinations of others into melodic contour. In chapter three, we reviewed the

procedure of our experiment. In chapter four, we prepared the data for the statistical

analysis of chapter five, which yielded elegant results. Chapter six outlined a potential

means of using the experimental results. We will now evaluate our model, detail possi-

ble applications, and suggest future directions of research.

7.1 Model benefits and shortcomings
Our simple representation for melody has a number of features to recommend it; like-

wise, it has a number of limitations we will discuss. Among the benefits of the model

are its compactness, ease of computation, motivation from actual human performance,
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and adaptability to a variety of situations. Its drawbacks are tied to its simplicity: a

number of features of melodies are not taken into account in the model.

7.1.1 Benefits
The simplicity of the model makes the contour representation trivial to compute. Once

the input is pitch-tracked and segmented, we obtain pitch estimates for each note, and

take the difference between them. Key independence, the fact that a given melody can

be sung at any pitch height, is inherent to using intervals in our representation. The

compact nature of the representation also eliminates storage as an issue. The general

nature of the melody description allows it to be adapted to other situations than melody

recognition, as we will discuss later in this chapter.

The simplicity of the model is its chief positive quality, but we should not forget its

inherent richness. It allows more information to be conveyed than the previous binary

and ternary sign-based models. Such models achieve their robustness through extreme

simplicity, but lack the expressiveness of our representation. For example, a sign-based

contour scheme would miss the differences in the melodies shown in Figure 6 on

page 20, but ours would not. For less-contrived examples, sign-based contour represen-

tations typically require at least ten notes as input in order to distinguish between con-

tours. Since we take interval size into account, we can describe far more melodies in far

fewer notes.

The fear that pushes sign-based contours to seek robustness through simplicity of input

is that average singers cannot accurately reproduce intended intervals well enough to

get any information other than "up or down." We demonstrated otherwise. Subjects

make a variety of errors when replicating melodies, but there is sufficient information

in their utterances to index melodies more compactly and accurately.

7.1.2 Limitations
Since our melody representation is simple, it ignores several features in a given melody

that would be instantly recognized by a human listener. The primary feature of this
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type is rhythm. As we mentioned in Chapter 2, contour is tied to a metaphor of motion.

Human listeners not only hear "which way" (as accounted for in sign-based notation)

and "how far" (as included in our representation), but "how fast," which is rhythm's

prime contribution to the notion of contour. An interesting future research direction

would be to incorporate note durations into a coherent representation of melodic con-

tour.

Our representation, as any representation, also has a bias as to what sorts of melodies

are similar. Because the metric for this representation is distance in pitch height, melo-

dies will be judged to be similar if they go up and down by approximately the same dis-

tances at the same time. The system is blind to modality or any contextual clues, so

tunes which sound different to listeners due to the type of scale used may be very simi-

lar in the representation.

System performance is limited by the quality of the pitch tracker and note segmenta-

tion. Any similar system has the same constraints. Sign-based contour representations

allow for more leeway in terms of pitch, since they only require the sign. Our represen-

tation is more susceptible to pitch tracker errors. However, this drawback is not of great

concern because using the median for note-level estimates gains stability, and singers

are likely to make larger errors than those contributed by the pitch track. Note segmen-

tation is a greater concern, because we rely entirely on note representations. If we

require singers to clearly articulate note divisions, accurate segmentation can be

achieved.

In its current state, our system has assumed melodies and inputs to be of equal lengths.

This situation is seldom true for real-world applications. This limitation can be compen-

sated by setting the n-dimensional vector to be the maximum length expected index.

For all shorter indices and inputs, the end of the vector can be padded with zeros. This

gives a neutral value that would minimally affect comparisons with longer vectors.
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7.2 Applications
The most widely discussed application for our representation is query-by-humming.

This emphasis is very understandable, as we are approaching a time when indexing

multimedia databases by content is becoming both feasible and desirable. If we can

develop a simple notation that summarizes a much richer representation of a song,

whether it be a MIDI karaoke arrangement or a digital recording, we will have much

more flexibility in manipulating and finding the content.

Another possible application is as an active assistant for a composer. With a proper

musical knowledge/constraint system in place, our model allows for novel inputs. The

program could be forgiving of singing errors if it embodied enough information about

music and the singer to adjust for the errors. Simple knowledge would incorporate

scales, and some sort of tonality-based expectation of starting and ending-notes. Such a

system would be difficult to implement well, but our representation is well-suited to

the possibility. The benefits of such a system, if only as a memory aid, could be tremen-

dous to a composer.

Barry Vercoe's synthetic listener/performer [1984] could be extended with a similar sort

of system to make for a more responsive synthetic collaborator. One can imagine an

improvising accompanist which not only follows a singer's tempo, but listens and

incorporates melodic fragments from the singer's performance in the accompaniment.

Such a stunt is only possible if the singer's pitch can be correlated to a quantized score,

and deviations from the score are labelled as "features" to be embellished.

7.3 Future research
Many aspects of this model suggest more that can be done in this field of research.

Incorporating time into a melody model would be interesting, and potentially quite

informative. This enhancement to the model would move us away from relying on

pitch events, and towards being time-based. Some flexibility in the time domain must
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be retained, just as we retained flexibility in the pitch domain by depending on relative

pitch: singers are as likely to vary the tempo of a song as its absolute pitch.

Another direction, suggested by the above applications, is to develop a melody knowl-

edge model that incorporates our representation as input. We believe our current mel-

ody model is neutral enough to fit into existing hierarchical melody models, such as

that by Feroe and Deutsch [1981], and perhaps Lerdahl and Jackendoff [1984]. Knowl-

edge about melodic structure would make deciphering unique inputs much easier than

those accommodated now. We envision a sung interval-distance contour as an approxi-

mation to a region in our melody space, which would be pruned by a melody expecta-

tion system. Likely candidates would then be matched to the input to make a guess at

musical intention. This unconstrained-input transcription has a kinship to other work at

the MIT Media Laboratory (Martin [19961).

7.4 The end
Inspired by the ease with which listeners are able to retrieve musical intention from an

impoverished input, we have developed a new representation for use in melody recog-

nition and other systems. This approximate-interval representation was based on

experimental results that characterized singers' natural behavior in expressing melo-

dies. We demonstrate this pitch-rich scheme to be superior to sign-only contour when

comparing short melodies.
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APPENDIX Experimental Stimuli

On the following pages we show the thirty-two different trial stimuli used in the exper-

iment described in Chapter 3 and in the test of the model presented in Chapter 6. The

phrases were written to include an equal distribution of the fourteen chromatic inter-

vals between a descending perfect fifth and an ascending perfect fifth (-7 semitones to

+7 semitones), excluding an interval of a unison (0 semitones). Since there were four

intervals per phrase and 32 phrases, there were approximately nine of each of the four-

teen required intervals among all trials. We used two each of the possible (24 =) 16

binary contours, which are listed at the beginning of each pair of phrases. Figure 26 and

Figure 27 follow.
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FIGURE 27. Stimulus phrases 17-32.
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