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Abstract

This paper presents a novel approach for approximate stochastic dynamic pro-
gramming (ASDP) over a continuous state space when the optimization phase
has a near-convex structure. The approach entails a simplicial partitioning of
the state space. Bounds on the true value function are used to refine the parti-
tion. We also provide analytic formulae for the computation of the expectation
of the value function in the “uni-basin” case where natural inflows are strongly
correlated. The approach is experimented on several configurations of hydro-
energy systems. It is also tested against actual industrial data.

Keywords: Dynamic programming, curse of dimensionality, dynamic decision
process, value function, simplicial state space partitioning.

1. Introduction

This paper presents an approximation scheme for stochastic dynamic pro-
gramming (ASDP), particularly intended for contexts where the state space is
continuous and stage optimization problems are nearly convex (e.g. involving
a nearly concave period revenue function over a polyhedral feasible domain).
An exemplary problem of this sort pertains to the planning of water releases for
energy production in a multi-stage multi-echelon hydro-energy inventory system
with random natural water inflows. We will consider a hydrologic network of
reservoirs evolving over a finite set of time periods. Each period is character-
ized by initial states, control variables, possibly random perturbations, which
together determine the period’s final states. Solving a dynamic program entails
computing an optimal “control policy” which at each stage maps initial states
to control variables. Since the state space is continuous, the full map is not
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usually computable, requiring some finite discretization of the state space in
each period.

Discretization of the state space is usually achieved via two complementary
devices: (i) selecting a finite grid within the state space, and (ii) extending
the value function assessed at grid points to the state space continuum. A
traditional practice for (i) used to be coordinatewise independent (rectangular)
grids, entailing an exponential complexity with respect to the number of state
variables. An early proposal to mitigate this complexity consisted in Monte-
Carlo sampling [1], enjoying reasonable asymptotic properties. However, the
distribution of points in a Monte-Carlo sample usually entails some irregularities
(voids and near-redundancies). Hence a recent strand of study has dealt with
regularized or quasi-random sampling, seeking a more uniform covering of the
state space. This involves techniques such as orthogonal arrays [2] or low-
discrepancy sampling [3] among others.

From a finite grid evaluation, one seeks to extrapolate a full continuous value
function. This “training” step resorts to an extrapolation model, i.e. a class
of “fitting” functions. A member of this class is selected so as to minimize the
“gap” between the model’s evaluation and the presumed true value of the return
function at grid points. Fitting models include Chebyshev polynomials [4],
neural networks [5–7], splines function[6–8], kernels [9, 10] among others. Local
(rather than global) estimation [3, 9–11] yet adds to the variety of available
methods. The choice of a fitting model is of course crucial for the quality
of the approximation. As often in statistical learning, a trade-off should be
struck between empirical error at grid points and generalization error (risk of
overfitting) over the value function’s domain.

Thus various combinations of sampling-extrapolation strategies have been
proposed in the “Value Function Approximation” literature [e.g. 2, 3, 6, 7, 9–15].
However, this literature is mainly concerned with fast computation of approx-
imate value functions, sometimes giving short shrift to the optimization step
of dynamic programming. The choice of a computationally convenient (e.g.
smooth) fitting model is a potential source of error. So are overly simplistic
representations of the optimization step. Such errors are cumulative over time
periods, making it difficult to assess the real accuracy of a proposed approxima-
tion. The question of assessing the quality of a solution remains largely open
[16, 17].

The purpose of our method is to permit a user-chosen balance between com-
putational burden and accuracy. The proposed ASDP scheme has the following
features: (i) the sample state grid is not given in advance but constructed on-line
on the basis of optimality gap estimation; (ii) in the case of revenue maximiza-
tion, the extension model is a minimal concavification operator, providing the
best piecewise linear concave fit to grid point evaluations; differentiability is not
assumed nor necessary; (iii) for each grid point, the optimization problem is cast
in the form of an easily computable generalized linear program; and (iv) under
progressive error–reducing densifications of grids, the value function converges
to its concave envelope.

The proposed method is suited for problems with nearly concave determinis-
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tic period revenue functions, a polyhedral optimization domain, and stochastic-
ity in the linear constraints’ right-hand-sides. This class includes multi-echelon
problems with stocks and flows embedded in a network structure, with possi-
bly stochastic inflows and outflows. We are more specifically concerned with
the particular case of mid-term operations planning in an arborescent hydraulic
energy production system. Section 2 reviews the current literature in reservoir
management. Section 3 presents a theoretical optimization model in continuous
state space. Section 4 presents the foundations of our method. Results of nu-
merical experiments are reported in section 5. Section 6 presents the application
of the method in the industrial context of a reservoir system at Rio Tinto (RT).
A conclusion follows in section 7.

2. Models and methods for tactical reservoir management

The management of reservoir systems involves decisions on water utilization,
i.e. the volume of water to be released for immediate production of energy
and the volume to be stored for future usage. Such decisions are made under
stochastic inflows and possibly stochastic energy prices, in order to maximize an
expected revenue or minimize expected costs over some longer time horizon. A
major difficulty stems from uncertainty about the future natural inflows process.
Empirical studies often show wide disparities between inflow time-profiles over
different years. A wide variety of stochastic optimization methods has been
used in order to cope with such uncertainty. A major distinguishing feature
among such methods is the number of stages, a “stage” being a decision epoch
based on new information, leading to decision rules (a stage may encompass
several time periods). Chance constrained programs [e.g. 18–21] are examples
of one-stage models. Two-stage stochastic programming [e.g. 22–24] has long
been a customary format.

Two and multi-stage stochastic programs are inherently complex due to the
size of the inflows process. The uncertain parameters’ distribution is usually
approximated by a finite discrete distribution; the corresponding multi-period
sample space is a “scenario tree” where each scenario is a time trajectory of
realizations. Under this representation, a two- or multi-stage problem can be
formulated as a “deterministic equivalent” mathematical program (with due
non-anticipativity contraints). Thus [25, 26] formulate deterministic scenario-
tree-based linear programs to be used on a rolling horizon basis. The very large
size of such deterministic programs usually calls for some form of decomposition.
Several decomposition strategies are available, such as cutting plane methods
(e.g. nested decomposition [27], and operator splitting [28–31]). Stochastic
dynamic programming (SDP) is a particular decomposition technique, where
the multi-period problem is temporally decomposed into smaller subproblems
in a coordinated way.

Scenario sampling is often resorted to in order to alleviate the computa-
tional burden [32–36]. Scenarios are usually based on historical records. In
Ensemble Streamflow Prediction (ESP), the sample consists of representative
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realized multi-period trajectories (scenarios), to serve for recourses in a two-
stage program. Other sampling methods seek to replicate a scenario tree. The
construction of a proper sample scenario tree is in itself a daunting question
[37]. Sample sufficiency, confidence bands on the optimal value, and stopping
criteria are also important concerns [16, 17, 38, 39].

One notable specificity of reservoir management is in the modeling of stochas-
tic inflows. These may be subject to seasonality, persistence, and yearly intensity
(e.g. due to variable snow covers). Studies [26, 40] indicate that in some (but
not all) contexts the addition of hydrological variables improves the overall per-
formance of optimization methods. Hydrographic dynamics may be modeled
by time-series analysis of historical data. However available data often does not
statistically support more than very elementary time-series models. In a more
informal way, ESP models may help capture important hydrodynamics.

A second specificity pertains to the productivity of hydro-electric power
plants. As a function of water flows, electricity generation may vary nonlinearly
with the number of power generating groups in action, and with the height of
the water head. These factors depend on the current state of the energy system
and may have a significant influence on the power generation function [e.g. 41].
In theory, SDP provides a flexible, and accurate representation of multi-stage
decision. However its application is plagued by the curse of dimensionality. Ad
hoc state aggregation schemes have been proposed to overcome this difficulty
[42]. More promising avenues may reside in the construction of grid points in
state space. For instance, in the stochastic dual dynamic programming method
(akin to Benders decomposition, see [32] and [43]), the state space is not dis-
cretized, but rather sampled. In order to motivate our approach, we now present
a theoretical continuous state-space prototype SDP model.

3. Structure and control of a reservoir system

A hydroelectric system is generally composed of several reservoirs and power
plants, each of which may be associated with a reservoir or be run-of-the river.
The reservoirs’ connections usually form an arborescence.

The management of reservoir systems is challenging, in large part, because
of uncertain natural inflows. Operational decisions are concerned with water
releases for energy production and spillage in case of excess water. We may
assume that planned release decisions are made before observing natural inflows.
The available information for these decisions then are the reservoirs’ initial levels
and possibly an observed previous hydrological variable that may be used to
forecast future natural inflows. By contrast, spillage occurs after the realization
of the natural inflows process. Therefore, spilled water is conditioned on both
releases, and natural inflows.

To produce energy, water is sent through turbines that have finite mechan-
ical capacities. Thus, bounds are imposed on the release of water. Reservoir
systems also have finite capacities and are often used for other purposes such as
irrigation, flood control, and recreational activities. As a consequence, admissi-
ble water stocks are restricted to some lower and upper bounds.
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A multi-reservoir system may be modeled by a graph where each node rep-
resents a reservoir alone, or a run-of-the-river power plant, or a reservoir-power
plant group. The nodes may be numbered from 1 to p in a topological order.
Figure 1 shows an example with 6 nodes. Triangles represent reservoirs, rectan-
gles represent power plants, full arcs represent planned releases or spillage, and
dashed arcs represent natural inflows.
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Figure 1: Example of a multi-reservoir system

We distinguish node types via the following sets of indices: (i) IF : the set of
nodes with power plant alone (run-of-river nodes); (ii) IR: the set of nodes with
a reservoir (alone or reservoir-power plant group), with |IR| = n; (iii) IC : the
set of nodes with power plant, with |IC | = m and (iv) IRC = IR ∩ IC : the set
of nodes with reservoir and power plant. A notation nomenclature is provided
in Appendix B.

This graph comprises two networks corresponding to planned releases and
spillage. The topology of these networks is described via the following p × p
incidence matrices:

Bij =

 1 if i = j
−1 if the planned releases leaving node j arrive at node i
0 otherwise

and

Cij =

 1 if i = j
−1 if the water spilled at node j arrives at node i
0 otherwise

Optimization models are often used to determine releases and spillage at
each node over a planning horizon of T periods, typically a year with weekly
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intervals or a month with daily time steps. For each period t, let uit, i ∈ IC ,
denote releases (in hm3) and yit, i = 1, . . . , p, spillage (in hm3).

The state of the physical system is described by the reservoir levels at the
end of period t, noted st. We note respectively st and s̄t lower and upper bounds
on such levels in period t. Similarly, ut and ūt denote lower and upper bounds
on the planned releases in each period t.

The natural inflows to the network’s nodes in period t, noted Qt, are modeled
by a non-stationary process that depends stochastically on a scalar hydrological
variable ε̃t, which forms an autoregressive stochastic process of order 1. We
then have:

ε̃t = αε̃t−1 + at, (1)

where at is a white noise process (a sequence of unbiased independent and
identically distributed centered random variables). Such hydrological variables
are often used to model persistence phenomena in the natural inflows process
[e.g. 35, 44, 45].

Thus, in each period t, the state of the system evolves according to the
standard water balance equation:

st = st−1 −BIRut − CIRyt +QIRt, (2)

and the water conservation equation:

QIF t −BIF ut − CIF yt = 0, (3)

where, for any matrix A ∈ Rp×r, any vector a ∈ Rp and any subset I ⊂
{1, . . . , p}, AI (aI) denotes the submatrix (the subvector) obtained by selecting
the lines of A (the elements of a) indexed in I.

Eq.(3) reflects the fact that the water entering a run-of-the-river node in
period t leaves in the same period since it is not stored.

Let xt = st−1−BIRut be the reservoir levels after the releases ut and before
the realization of the {Qt} process. For any node i ∈ IRC , f̄it(si,t−1, xit +
Qt, ε̃t−1) denotes its production function in period t. Head effects are taken
into account through the reservoir levels at the beginning and the end of each
period, and water release during the same period. For any node i ∈ IF , energy
production is a function of uit alone since there is no stock variation; fit(uit)
denotes such a function.

Optimization models generally seek to maximize the expected energy pro-
duction or to minimize the expected production cost over the entire planning
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horizon. This optimization can be stated as:

Max
ut,yt

T∑
t=1

EQt|ε̃t−1

[ ∑
i∈IRC

f̄it(si,t−1, xit +Qt, ε̃t−1) +
∑
i∈IF

fit(uit)
]

(4)

Subject to, for 1 ≤ t ≤ T :
st = st−1 −BIRut − CIRyt +QIRt (5)
QIF t −BIF ut − CIF yt = 0 (6)
st ≤ st ≤ s̄t (7)
ut ≤ ut ≤ ūt (8)
yt ≥ 0 (9)
ut conditioned on st−1 and εt−1 (10)
yt and st conditioned on st−1, ut and Qt (11)

Let fit(uit, si,t−1, εi,t−1) = EQt|ε̃t−1

[
f̄it(si,t−1, si,t−1 −BIRut +Qt, ε̃i,t−1)

]
,

∀ i ∈ IRC . Within the framework of SDP, we note Vt(st, εt) the value of available
water at the end of period t under the information state (st, εt). Under the
previous assumptions, for t = T, T − 1, . . . , 1, an SDP recursion reads:

Vt−1(st−1, εt−1) =Max
ut

{ ∑
i∈IRC

fit(uit, si,t−1, εi,t−1) +
∑
i∈IF

fit(uit)+

EQt,ε̃t|εt−1

[
Max
st,yt

Vt(st, ε̃t)
]}

S.t. (5− 11)

For a given period t, this optimization problem involves two decision stages.
The “ex post” recourse stage aims at computing an optimal overflows spillage
policy y∗t as a function of planned stocks xt and observed inflows Qt. The “ex
ante” stage seeks an optimal planned water release policy u∗t as a function of
initial stocks st−1 and the observed hydrological variable εt−1.

In the ex post stage, given reservoir levels xt and natural inflows Qt, spillage
decisions are made to maximize the value (in energy units) of remaining water.
The ex post optimal decisions then are solutions to the following problem:

Ft(xt, Qt, εt) = Max
st,yt

Vt(st, ε̃t) (12)

S.t. st = xt − CIRyt +QIRt (13)
QIF t −BIF ut − CIF yt = 0 (14)
st ≤ st ≤ s̄t (15)
yt ≥ 0 (16)

In the ex ante stage, reservoir levels st−1 at the beginning of period t and
the previous hydrological variable ε̃t−1 are observed. Release decisions are made

7



to maximize immediate and future energy production:

Vt−1(st−1, εt−1) = Max
ut,xt

{ ∑
i∈IRC

fit(uit, si,t−1, εi,t−1) +
∑
i∈IF

fit(uit)+ (17)

EQt,ε̃t|εt−1 [Ft(xt, Qt, ε̃t)]
}

(18)

S.t. xt = st−1 −BIRut (19)
BIF ut = 0 (20)
st ≤ st ≤ s̄t (21)
ut ≤ ut ≤ ūt (22)

The domain of the optimal policy of the ex post step is very large. It is
nonetheless possible to formulate as a simple rule an optimal spillage policy
consistent with the notion of increasing value of water.
Proposition 1. If all nodes are equipped with an unlimited spillage system,
function Vt−1(st−1, εt−1) is non-decreasing in st−1.

Given that Vt−1 is non-decreasing, the optimal spillage decisions for (12)-(16)
can be found via the following simple rule [46]:
Proposition 2. Let Pred(i) be the set of predecessors of node i (the set of
nodes j such that Cij = −1, j ∈ {1, . . . , p}) in the spillage network. Under the
assumptions of proposition 1, if xt ≥ st, there exists a unique Pareto-minimal
spillage policy given recursively by:

y∗it(xt +Qt) = max {0, xit +Qit +
∑

j∈Pred(i)

y∗jt(xt +Qt)− s̄it}, (23)

with the conventions xit = 0 ∀i ∈ IF and
∑

j∈Pred(i)
y∗jt(xt +Qt) = 0 if Pred(i) =

∅.This policy is optimal for the ex post spillage problem. The resulting final
stock is:

s∗it(xt +Qt) = min {s̄it, xit +Qit +
∑

j∈Pred(i)

y∗jt(xt +Qt)} (24)

Note that the optimal final stock satisfies the conditions s∗t (xt + Qt) ≥ st.
In case of water overflows (spillage), the upper bounds on the stock levels are
saturated, i.e. (s̄t − s∗t )T y∗t = 0. This simple spillage policy (Eq.(23)) states
that starting with the upstream nodes, we only spill the excess water in each
reservoir.

Under this spillage policy, the stochastic dynamic program simplifies to:

Vt−1(st−1, εt−1) = Max
ut,xt

{ ∑
i∈IRC

fit(uit, si,t−1, εi,t−1) +
∑
i∈IF

fit(uit)+

EQt,ε̃t|εt−1 [Vt (s∗t (xt +QIRt) , ε̃t)]
}

(25)

S.t. (19)− (22) (26)
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A distinguishing feature of hydro-energy systems is the possibly variable pro-
ductivity of power plants. If the production functions are concave, the problem
is convex and concavity of the value function propagates backwards:
Proposition 3. If (i) Vt(st, εt) is concave in st, (ii) fit is jointly concave in
(sit, uit), ∀i ∈ IRC , and (iii) fit is concave in uit, ∀i ∈ IF , then Vt−1 is concave
in st−1.

Nonconcavity of production functions may have several causes. On one
hand, energy production is a function of water releases as well as of head effects,
namely the difference between the upstream and downstream water levels, and
of friction loss in penstock. Managers are often concerned with maintaining a
high head in order to maximize efficiency, yet tailrace (channel that carries water
away from the plant) effect may negatively affect power generation (net head
reduction) as water release increases. However, head effects may be difficult to
capture when forebay (the portion of a reservoir immediatly upstream the dam)
and tailrace levels significantly depend on the rate of water inflow or release.
The relationship between release rates and head size may then require careful
attention [47].

A second reason is that the power delivered by a turbine varies nonlinearly
with the flow rate. A minimum rate is needed for setting the turbine into mo-
tion. The turbine achieves its maximum efficiency at a given flow rate. Beyond
an upper threshold, turbulence may actually decrease the turbine’s efficiency.
Of course, the total energy produced depends on the number of turbines in op-
eration. Figure 2 depicts a hypothetical energy production function together
with a concave piecewise affine approximation. Such an approximation is par-
ticularly acceptable if the operational policies derived from a mid term model
serve as inputs to a short term model aimed at deriving daily or hourly opera-
tional policies. This is the case, for instance, at RT, our case study. It has been
advocated, [e.g. 41], that the concave hull of the production function would be
an adequate approximation.

 

Energy 
production 

Actual production 

Approximation 

Water release 

Figure 2: Example of a plant’s energy production function and its approximation

4. Approximate stochastic dynamic programming

Our proposed approximation is in three parts. The optimization step is
discussed in subsection 4.1. Subsection 4.2 deals with the approximation of the
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value function by a finite grid. This leads in subsection 4.3 to a possible method
for computing, without sampling, the expectation of the value function when
inflows are strongly correlated.

4.1. Approximate optimization via generalized linear programming
We now turn to the solution of problem (25)-(26). Its feasible domain, a

convex polyhedron, is partly generated by inequalities. The nonlinear functions
in the objective are not in general differentiable. This context suggests that
inner generalized linear programming (GLP, see [48]) is an appropriate method.
Inner GLP performs interpolations of functions over a discrete sample of points.
If the original problem is convex, well-conceived densification of the sample will
ultimately converge to the original problem. In nonconvex cases (e.g. here if the
production functions are not concave), GLP performs a convex approximation
(a “convexification”) of the original problem. See [49, pp. 694-699] for further
details on sample points generation.

To implement the GLP, we shall need (i) a grid of states {x̂jt|j ∈ Υt} over
which function Ĵt(xt, εt−1) =
EQt,ε̃t|εt−1

[
V̂t (s∗t (xt +QIRt))

]
has been evaluated and, (ii) for each power plant

i, a sample of points {ûijt|j ∈ Γit} where the production function is assessed.
Furthermore, we distinguish power plants associated with a reservoir (i ∈ IRC)
from run-of-the river ones (i ∈ IF ). Given these fixed samples, the GLP seeks
a “best” interpolation :

10



V̂t−1(st−1, εt−1) = Max
ut,xt,λ,µ

{ ∑
i∈IRC

∑
j∈Γ1

it

fit(û1
ijt, si,t−1)λ1

ij+

∑
i∈IF

∑
j∈Γ2

it

fit(û2
ijt)λ2

ij +
∑
j∈Υt

Ĵt(x̂jt, εt−1)µj
}

(27)

S.t: for all 1 ≤ t ≤ T (28)
xt = st−1 −BIRut (29)
BIF ut = 0 (30)

xt =
∑
j∈κt

x̂jtµj (31)

∑
j∈κt

µj = 1 (32)

st ≤ st ≤ s̄t (33)
ut ≤ ut ≤ ūt (34)

uit =
∑
j∈J1

it

û1
ijtλ

1
ij i ∈ IRC (35)

∑
j∈J1

it

λ1
ij = 1 i ∈ IRC (36)

uit =
∑
j∈J2

it

û2
ijtλ

2
ij i ∈ IF (37)

∑
j∈J2

it

λ2
ij = 1 i ∈ IF (38)

λ, µ ≥ 0 (39)

where ut = (u1
t , u

2
t )T , ût = (û1

t , û
2
t )T and λ = (λ1, λ2)T .

The following simple property will be critical to refining the state space grid,
as later presented.

Proposition 4. V̂t−1 is concave in st−1,∀ εt−1.

In general, it cannot be predicted on which side the GLP approximation will
err. However, as a basis for comparison, we have a definite answer in the convex
case.

Proposition 5. If the production functions fi are concave in uit, and if V̂t ≤ Vt,
then GLP (27)-(39) underestimates the actual energy production in period t, and
V̂t−1 ≤ Vt−1.

Finally, let us note that the optimal policy can be extended to a continuum
by interpolation, since the feasible domain (28)-(39) is convex.
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4.2. Approximation of the value function
The value function in period t, V̂t, will be computed by GLP over a finite

grid of points in the state space. Elsewhere, it will be interpolated. The state
grid will be progressively constructed as follows.

Note that instead of the hyperrectangle [st, st], the stocks can be allowed
to be confined to a more general polytope Pt. Let Σot be an initial simplex
containing Pt. Such a simplex exists since Pt is bounded. For instance, in
the case of a hyperrectangle Pt = [at, bt], a suitable choice could be Σot ={
st|st ≥ at, eT st ≤ eT bt

}
, where eT = (1, 1, . . . , 1). We will progressively con-

struct finer partitions of Σot into simplices. The vertices of these simplices in Pt
will be our grid points.

4.2.1. Operations on simplices
A simplex in Rn is the convex envelope of n+ 1 affinely independent points.

Thus an n × (n + 1) dimensional matrix S with affinely independent columns
generates the simplex:

Σ(S) ∆=
{
s ∈ Rn

∣∣∣∣∣
(
s
1

)
=
(
S
eT

)
λ, λ ≥ 0

}
.

Since S has affinely independent columns,
(
S
eT

)
is of full rank. Matrix S will

be called a simplex generator.
We present an overview of common operations on simplices, namely (i) test-

ing whether a point belongs to a simplex, (ii) dividing a simplex, (iii) finding a
smallest simplex containing a given point, and (iv) moving across simplices.
(i) Membership test. Given a matrix generator S and a vector s ∈ Rn, check

whether s ∈ Σ(S). The answer is yes if and only if
(
S
eT

)−1(
s
1

)
≥ 0. This

test requires a matrix inversion, hence at most O(n3) elementary algebraic op-
erations.
( ii) Simplex division. Grid points will be numbered in order of their cre-
ation. Assume a “parent” (n-dimensional) simplex Σ(S) is to divided into k
(n-dimensional) “children” simplices, where 2 ≤ k ≤ n+1. This division will be
organized around a division point s∗ ∈ Σ(S), which will eventually be incorpo-
rated into the grid. The number of children will depend on the location of the
division point in the parent simplex (the choice of the division point will be dis-
cussed in subsection 4.2.2). We assume away the trivial case where the division
point is at a vertex of the parent simplex. The division point is then located on
the relative interior of some face F , which will be the minimal simplex within
Σ(S) containing s∗. This face can be identified by its vertices, which are the

columns of S indexed in I, where I =
{
i

∣∣∣∣
[(

S
eT

)−1
]
i

(
s
1

)
> 0
}
. It is readily

verified that dim F = |I| − 1. The parent simplex will have |I| children. Each
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child will be generated by the matrix S′i obtained by replacing column i ∈ I by
s∗. It can be verified that S′i has affinely independent columns.

As an instance, if s∗ is in the interior of Σ(S), then F = Σ(S), and the latter
has n + 1 children (e.g. [s∗, v, w], [u, s∗, w], and [u, v, s∗] in Figure 3 (a)). If
F is an edge, two children (e.g. [u′, s∗, v′], and [s∗, v′, w′] in Figure 3 (b)) are
generated. In all cases, identifying the children of a simplex requires a matrix
inversion entailing O(n3) operations.

•s
∗

u

v

w

•s∗

(a) (b) u’

v’

w’

Figure 3: Illustration of the division of simplices

Since some simplices are divided into smaller simplices, the overall parti-
tion of the state space has a nested structure, which can be represented as an
arborescence. The nodes of this arborescence are simplices. Its arcs represent
division. A simplex which is not divided (a leaf in the arborescence) will be
called active. The set of active simplices forms the finest available partition
of the state space, the one of interest to us. We nonetheless keep track of the
arborescence to be able to locate a point efficiently. To that end, with each
simplex in the arborescence we associate the list of its n+ 1 vertices.

Each simplex division generates one additional grid point (i.e. the division
point), and k children, where 2 ≤ k ≤ n+1. The parent simplex is then removed
from the active list. Thus if κ is the current number of grid points and N the
current number of simplices, κ ≤ N ≤ nκ.

We call neighbor of a simplex Σ(S) a simplex Σ(S′) sharing n vertices with
Σ(S). We keep track of the neighbors of each active simplex. The children of
a simplex are neighbors to each other. Each child may also have one neigh-
bor inherited from its parent. Identifying the latter involves, for each parent’s
neighbor, comparing two lists of n elements. In total, updating the lists of all
children’s neighbors involves at most O(n4) operations.
(iii) Simplex traversal. Starting from a point s ∈ Σ(S), our task is to move as
far as possible in a given direction δ ∈ Rn

+\{0} without leaving the simplex. We
say that simplex Σ(S) properly contains the point s relatively to the direction
δ, which we note s ∈δ Σ(S), if a positive step is possible, that is if for any
sufficiently small ε > 0, s + εδ ∈ Σ(S). It follows from the definition that
s ∈δ Σ(S) if and only if ∀ 1 ≤ j ≤ n+ 1, λj = 0⇒ σj ≥ 0, where s ∈ Σ(S), λ =(
S
eT

)−1(
s
1

)
and σ =

(
S
eT

)−1(
δ
0

)
. This property holds since by definition,

s ∈δ Σ(S) if and only if ∀ε > 0, λ+ εσ ≥ 0.
The maximal displacement will get us to a point s′ 6= s located on the
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boundary of Σ(S) and such that s′ /∈δ Σ(S). Formally, we seek the step length

θ∗ = max{θ ∈ R+|s+ θ∗δ ∈ Σ(S)}.

It is readily verified that θ∗ = min
{
− λj

σj
|σj < 0

}
, 1 ≤ j ≤ n + 1. We also

see that a simplex traversal requires a matrix inversion (O(n3) operations) and
O(n) comparisons.

4.2.2. Refinement of the state grid
Suppose we have an initial set of grid points over which function V̂t−1 has

been evaluated. These points are the vertices of simplices. We may want to
densify the grid to improve the approximation. Additional grid points may be
obtained by iteratively dividing the existing simplices until meeting a desired
level of precision.

The hydrological variable ε̃t−1 being held constant, it will temporarily be
omitted for the sake of simplicity. We assume that for any grid point st−1 we
have an evaluation of the value function V̂t−1(st−1) and a subgradient gt−1 ∈
∂V̂t−1(st−1). Suppose simplex Σ(Sjt−1) is to be divided. The imprecision around
the true value function over Σ(Sjt−1) will be assessed via the maximum differ-
ence, over Σ(Sjt−1), between an upper bound and a lower bound. Both bounds
are based on the concavity of V̂t−1(st−1).

The lower bound simply consists in an interpolation from simplex vertices
sit−1, 1 ≤ i ≤ n + 1. Letting zit−1 = V̂t−1(sit−1), 1 ≤ i ≤ n + 1, the lower bound

is V t−1(st−1) = zTt−1

(
Sjt−1
eT

)−1(
st−1
1

)
, st−1 ∈ Σ(Sjt−1), where

zTt−1 = (z1
t−1, z

2
t−1, · · · , zn+1

t−1 ). The upper bound will result from tangency condi-
tions. For any grid point ξ0

t−1, with z0
t−1 = V̂t−1(ξ0

t−1), and g0
t−1 ∈ ∂V̂t−1(ξ0

t−1),
the linearization wt−1(st−1; ξ0

t−1) ∆t−1= z0
t−1 + g0

t−1(st−1 − ξ0
t−1), with support

{ξ0
t−1} satisfies:

wt−1(st−1; ξ0
t−1) ≥ V̂t−1(st−1) ∀st−1 ∈ Pt−1.

This can be generalized to a multi-support Ξt−1 = {ξ0
t−1, ξ

1
t−1, · · · , ξmt−1}. The

function V t−1(st−1; Ξt−1) ∆t−1= Min1≤k≤mwt−1(st−1; ξkt−1) (hereafter V t−1(st−1)
for short) is indeed an upper bound on V̂t−1 over Pt−1. The multi-support Ξt−1
will include all vertices sit−1, 1 ≤ i ≤ n+ 1, of Σ(Sjt−1), but also possibly neigh-
boring vertices. The resulting upper bound is local, hence not the tightest
possible, in order to limit the computational burden.

In summary, the evaluation of simplex Σ(Sjt−1) seeks an imprecision measure
∆j
t−1 and a division point s∗t−1 where this imprecision is realized:

∆j
t−1 = Maxst−1

{
V t−1(st−1)− V t−1(st−1)|st−1 ∈ Σ(Sjt−1)

}
,

s∗t−1 ∈ Argmaxst−1

{
V t−1(st−1)− V t−1(st−1)|st−1 ∈ Σ(Sjt−1)

}
.
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We note that V̂t−1(st−1) is affine over Σ(Sjt−1) if and only if ∆j
t−1 = 0,

in which case it is of no interest to further divide Σ(Sjt−1). For each period
t−1, t = 2, . . . , T+1, the foregoing optimization can be cast as a linear program:

∆j
t−1 = Max

µt−1,st−1,λ
µt−1 − zTt−1λ (40)

S.t. µt−1 ≤ zit−1 + git−1(st−1 − ξit−1), 1 ≤ i ≤ m (41)
st−1 = Sjt−1λ (42)
eTλ = 1 (43)
st−1 ∈ Pt−1 (44)
λ ≥ 0 (45)

Assuming for instance that |Ξt−1| ≤ 2(n+ 1) and that Pt−1 is defined by p
inequalities, this program in standard equality form involves at most 3(n+ 1) +
p+ 1 equalities and 4(n+ 1) + p variables. The number of operations required
to solve the linear program is polynomial in these two quantities.

In summary, each iteration of the refinement phase consists in the following
steps:

(i) find an active simplex with maximal imprecision ∆j
t−1 (requiring O(N) op-

erations);

(ii) update the list of active simplices (O(n+ 2) operations) and the list of grid
points (1 operation);

(iii) for each child i:

• update its vertices (1 operation) and its neighbors ( O((n + 1)n2)
operations);

• solve (40)-(45) (polynomial in n and p), and note the optimal ∆i
t−1

and si∗t−1; and
• update the imprecision of any neighbor which shares the child’s di-
vision point by solving (40)-(45) (polynomial in n and p).

4.3. Computing the expectation of the value function
The SDP recursion (25)-(26) has two major sources of complexity, namely

(i) taking an expectation and (ii) optimizing. The object of this section is the
computation of the expectation EQt,ε̃t|εt−1 [Vt (s∗t (xt +QIRt) , ε̃t)] for all discrete
states (xt, εt−1). We assume that the hydrological variable evolves according to
a known transition probability distribution P (ε̃t = εt|ε̃t−1 = εt−1). This is akin
to considering that the hydrological variable is Markovian, which is a common
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assumption in reservoir management (see [40]; [34]; [41]). We then have:

EQt,ε̃t|εt−1 [Vt (xt +QIRt)] = Eε̃t|εt−1EQt|εt−1 [Vt (s∗t (xt +QIRt))]

=
∑
εt

P (ε̃t = εt|ε̃t−1 = εt−1)

EQt|εt−1 [Vt (s∗t (xt +QIRt))] .

Taking the expectation then amounts to computing:

Jt(xt, εt−1) = EQt|εt−1 [Vt (s∗t (xt +QIRt) , εt)]

for a discrete set of values (xt, εt−1). This may again be simplified if the natural
inflows to the reservoirs are spatially perfectly correlated. This “uni-basin”
hypothesis is approximately verified in many real situations, where the reservoirs
are fed by a common hydrological basin. From a practical point of view, the
dimension of the natural inflows’ support decreases from n to 1. This assumption
is often used by hydrologists in case of planning horizon with monthly or weekly
time step (see [42]). For instance this hypothesis will be used later in the case
study.

In the case of perfect correlation, we may consider a scalar variate τ̃t ≥ 0
such that

Qt = qtτ̃t,

where qt ∈ Rn represents the relative contributions of natural inflows to the
reservoirs, and τ̃t ≥ 0.

Numerical integration might be used to compute function Jt(xt, εt−1) when-
ever the probability distribution of τ̃t is known. However, the final stocks space
being partitioned into simplices, we are able to obtain analytical forms for the
expectation. We will first analyze the trajectory of the final stocks in the par-
titioned space. Second, we will address the evaluation of function V̂t over this
trajectory.

The vertices of the simplices form an irregular grid over which V̂t has been
evaluated. For any simplex Σ(Sjt ), let zti = V̂t(sit, εt), 1 ≤ i ≤ n + 1. For any
other point st ∈ Σ(Sjt ), V̂t is interpolated over Σ(Sjt ). The interpolation is
uniquely determined as the affine form:

V̂t(st, εt) = zTt

(
Sjt
eT

)−1(
st
1

)
, where zTt = (z1

t , . . . , z
n+1
t ).

Under the uni-basin hypothesis, the optimal spillage and final stocks trajec-
tories are unidimensional paths in Rn. From (24) we see that the final stocks’
trajectory ŝt(τ) ∆= s∗t (xt + qtτ) is linear until attaining a state space boundary.
We call corner a point at which a space state boundary becomes saturated. At
each new corner, the trajectory direction changes, the new boundary remaining
saturated until the end of the trajectory, s̄t. The trajectory ŝt(τ) is illustrated
in Figure 4.

In addition to corners, the trajectory ŝt(τ) crosses the simplices at interme-
diate traversal points (see Figure 4). We may define a set of nodes Θ = {θi|i =
1, . . . , w} of the parameter τ̃t such that ŝt(θi) is a corner or a traversal point.
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ŝt(θ1)
ŝt(θ2)

ŝt(θw)

Legend :
corner
traversal point

Figure 4: Example of final stocks’ trajectory

Computing the trajectory entails a sequence of simplex traversals. Each
traversal is followed by the determination of a neighboring simplex via a pivot
operation (O(n2) operations). The number of simplices to be traversed over the
whole trajectory is at worst O(N) .

Function V̂t is evaluated at each node θi, i = 1, · · · , w. Let ht(θi, εt) =
V̂t(ŝt(θi), εt). Function ht’s slopes change at the nodes in Θ. Thus, ht is piece-
wise affine. For each segment (θi−1, θi), the slope is constant and is given by:

αi = ωi − ωi−1

θi − θi−1
, i = 2, . . . , w + 1,

where ωi = V̂t(ŝt(θi), εt). In particular, αw+1 = 0. Function ht is constant for
τ ≥ θw, the stocks of water attaining their maximal levels. We have

ht(θi, εt) =
{
ωi i = 2, . . . , w
ωw i = w + 1.

Then, function ht is of the form:

ht(τ, εt) =
{
ωi−1 + αi(τ − θi−1) θi−1 ≤ τ ≤ θi, i = 2, . . . , w,
ωw τ ≥ θw.

4.3.1. Analytical form
Function Jt(xt, εt−1) is calculated over each segment (θi−1, θi), i = 2, · · · , w+

1. Let Ft(τ) be the cumulative distribution of τ̃t conditioned on the value
εt−1. Over each interval [θi−1, θi], the conditional expectation is computed as∫ θi
θi−1

ht(τ, εt)dFt(τ). Using the linearity property of the expectation, we then
get

Jt(xt, εt−1) =
w+1∑
i=2

∫ θi

θi−1

ht(τ, εt)dFt(τ),
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where
w+1∑
i=2

∫ θi

θi−1

ht(τ, εt)dFt(τ) =
w+1∑
i=2

∫ θi

θi−1

(ωi−1 + αi(τ − θi−1))dFt(τ)

=
w+1∑
i=2

αiE[τ̃t|εt−1]θiθi−1
+
w+1∑
i=2

γi−1 [Ft(θi)− Ft(θi−1)]

=
w+1∑
i=2

αiE[τ̃t|εt−1]θiθi−1
+

w∑
i=2

γi−1 [Ft(θi)− Ft(θi−1)] +

ωw[1− Ft(θw)],

with γi = ωi − αi+1θi and θw+1 = +∞.
We provide more details for the specific cases of normal and log-normal

distributions.

4.3.2. Case of the truncated normal distribution
Assume τ̃t is a normal random variable with mean µ(εt−1) and standard

deviation σ(εt−1), we have:

Ft(τ) = P (τ̃t ≤ τ) = Φ
(
τ − µ(εt−1)
σ(εt−1)

)
ft(τ) = F ′t (τ) = 1

σ(εt−1)φ
(
τ − µ(εt−1)
σ(εt−1)

)
,

where φ(v) = 1√
2π e

−v2
2 and Φ(v) =

∫ v
−∞ φ(t)dt are respectively the density

function and the cumulative distribution of the standard normal variable. Let
G(τ) = µ(εt−1)Ft(τ) − (σ(εt−1))2ft(τ). The standard normal distribution has
the property: φ′(v) = −vφ(v). It follows that∫

τft(τ)dτ = G(τ).

Therefore
E[τ̃t|εt−1]θiθi−1

= G(θi)−G(θi−1)

and

Jt(xt, εt−1) = 1
1− Ft(0)

w+1∑
i=2
{αi [G(θi)−G(θi−1)] + γi−1 [Ft(θi)− Ft(θi−1)]} .

4.3.3. Case of the log-normal distribution
τ̃t is a log-normal variable with parameters µ(εt−1) and σ(εt−1) if ln τ̃t is

a normal variable with mean µ(εt−1) and variance (σ(εt−1))2. The density

function of τ̃t is: ft(τ ;µ(εt−1), σ(εt−1)) = 1√
2πσ(εt−1)τ e

−
(ln τ−µ(εt−1))2

2(σ(εt−1))2 ; its mean
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is ν = E[τ̃t] = eµ(εt−1)+ (σ(εt−1))2

2 , and its kth moment about the origin νk =
E[τ̃kt ] = ekµ(εt−1)+ k2(σ(εt−1))2

2 .
As previously, let Φ be the cumulative distribution of the standard normal

variable. Let ρ(v) = ln v−µ(εt−1)−(σ(εt−1))2

σ(εt−1) . We conclude with the following
result:

Proposition 6. For 0 ≤ a < b, E[τ̃t|εt−1]ba = ν [Φ (ρ(b))− Φ (ρ(a))].

Let us observe that the cumulative distribution of τ̃t is : Ft(τ) = Φ(ρ(τ) +
σ(εt−1)). Then

Jt(xt, εt−1) =
w+1∑
i=2
{ναi [Φ(ρ(θi))− Φ(ρ(θi−1))] + γi−1 [Φ(ρ(θi) + σ(εt−1))−

Φ(ρ(θi−1) + σ(εt−1)]} .

5. Numerical experimentation

The goal of this section is to empirically examine trade-offs between com-
plexity and accuracy. We define complexity in terms of two dimensions: number
of reservoirs n and number of grid points κ. For fixed n, relative imprecision is
measured by the ratio ρκ = ∆κ

∆1
, where ∆κ is the imprecision (40) corresponding

to the κth grid point. Two lines of enquiry are conducted. In subsection 5.1,
controlling for the number of reservoirs n, we examine the relationship between
relative accuracy and number of grid points. In subsection 5.2, controlling for
the number of grid points κ, we ask to what extent relative imprecision depends
on the state space dimension n, and thus withstands the curse of dimensionality.
The results are briefly discussed in subsection 5.3.

5.1. Accuracy vs. state grid density
We consider network configurations with n = 3, 4, 5, 6 and 10 reservoirs that

form an arborescence. For each n, a fixed configuration is considered and 40
test problems are generated. The time span of each problem is 10 periods. The
parameters of each test-problem are generated randomly and independently in
each period (see Table 1), introducing non-stationarity as well as a high degree of
variation among test problems. Production functions for run-of-the-river power
plants i ∈ IF are of the form

fi(uit) = βi[(uit + γi)αi − γαii ], 0 ≤ αi ≤ 1, βi > 0, γi ≥ 0.

These functions are concave and non-decreasing, reflecting the fact that head
effects often can be neglected. Production functions for plants downstream of a
reservoir i ∈ IRC are of the form

fi(uit, sit) =βi[(uit + γi)αi − γαii + (uitsit)θi ], 0 ≤ αi ≤ 1, βi > 0,
γi ≥ 0, 0 ≤ θi ≤ 1.
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The interaction term uitsit, denoting a positive effect of head height on pro-
duction efficiency, destroys concavity to an extent depending on the parameter
θi.

In each period t, the value function is approximated over grid points gen-
erated by the simplicial partitioning method described in subsection 4.2.2, by
solving problem (27)-(39) for each such grid point. The expectation is computed
as described in subsection 4.3. For each test problem, the following parameters
are randomly and independently generated from a uniform distribution on a
support of the form [a, b] as depicted in Table 1. In addition, in each period,
a vector qt of relative contributions to the reservoirs, with

∑n
i=1 qit = 1, is

randomly generated.

Table 1: Bounds on the model parameters

Parameter a b
sit, i ∈ IR 150 600
s̄it, i ∈ IR 800 7000
uit, i ∈ IR 0 0
ūit, i ∈ IR 0.05s̄it 1.5s̄it
ūit, i ∈ IF 950 3500

β 0.9 1.5
α 0.7 0.9
γ 0.25u 0.7u
θ 0.05 0.1

For each of the test problems, the division algorithm is performed recursively
on each of the 10 value functions. The division stops when the number κ of
grid points reaches a prescribed maximum κ̄. The relative imprecision is then
measured on the initial value function. Since larger grid sizes are expected
to be required with larger space dimension, we set κ̄ = O(n(n + 1)). For a
fixed number n of reservoirs, 40 test problems are run. For each κ, relative
imprecisions are then sorted from smallest to largest, and we note the 10th, 50th

and 90th percentiles.
In Figure 5, the trajectories of ln ρκ against κ are mapped for these three

percentiles. They seem to indicate a deteriorating rate of convergence. To
ascertain this effect, we run two regression models for each percentile trajectory.
Model 1 (Log-Log) is of the form: ln ρκ = β+αlnκ+error. It implies a sublinear
convergence with varying rate (1 + 1

κ )α(α < 0). The geometric average of this
rate of convergence over a span {1, · · · , κ̄} is (1 + κ̄)(α/κ̄). Model 2 (Log-Lin)
is of the form: ln ρκ = β + ακ + error. It implies a linear convergence with
constant rate eα(α < 0).

Tables 2 report regression results for 3 percentiles of 5 reservoir configura-
tions. With a high degree of significance they concur to suggest a sublinear
convergence. Indeed, regardless of the number of reservoirs, both regressions
(Log-log, and Log-lin) exhibit high statistical significance, as illustrated by the
values of R2 (> 0.70 in all, but one case), however with a clear edge to the
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Log-log models (R2 in general greater than 0.90). These results also confirm
those depicted in Figure 5; the rate of convergence (RoC) slightly deteriorates
as the number of reservoirs increases.

Table 2: Imprecision vs. grid size
(n = # of reservoirs, RoC = estimated rate of convergence)

Percentile 10% 50% 90%

n=
3 Lo

g-
lo
g Estimated ln ρκ = ln ρκ = ln ρκ =

model - 0.3014 - 0.9452 ln κ 0.1332 - 0.8486 lnκ 0.2557 - 0.6931 lnκ
RoC 0.9727 0.9629 0.9667
R2 0.9803 0.9982 0.9943

Lo
g-
lin

Estimated ln ρκ = ln ρκ = ln ρκ =
model -2.5976 - 0.02165 κ -1.8679 - 0.0204 κ -1.3574 - 0.0170 κ
RoC 0.9786 0.9798 0.9831
R2 0.7104 0.7994 0.8301

n=
4

Lo
g-
lo
g Estimated ln ρκ = ln ρκ = ln ρκ =

model 0.105 - 0.5751ln κ 0.1675 - 0.4935 lnκ 0.1227- 0.3750 lnκ
RoC 0.9849 0.9870 0.9901
R2 0.9836 0.9870 0.8523

Lo
g-
lin

Estimated ln ρκ = ln ρκ = ln ρκ =
model -1.4861 - 0.0089 κ -1.2037 - 0.0076 κ - 0.9659- 0.0052 κ
RoC 0.9912 0.9925 0.9947
R2 0.8598 0.8523 0.7131

n=
5

Lo
g-
lo
g Estimated ln ρκ = ln ρκ = ln ρκ =

model - 0.0822 - 0.3462 lnκ - 0.0340 - 0.2774 lnκ 0.1820 - 0.2707 lnκ
RoC 0.9933 0.9946 0.9947
R2 0.9895 0.9946 0.9842

Lo
g-
lin

Estimated ln ρκ = ln ρκ = ln ρκ =
model -1.1819 - 0.0036 κ - 0.9229 - 0.0028 κ - 0.6725 - 0.0028 κ
RoC 0.9964 0.9972 0.9972
R2 0.8083 0.7827 0.8259

n=
10

Lo
g-
lo
g Estimated ln ρκ = ln ρκ = ln ρκ =

model - 0.6811- 0.1457 ln κ - 0.1183 - 0.1731 lnκ 0.08844 - 0.1182 lnκ
RoC 0.9975 0.9971 0.9980
R2 0.9009 0.9595 0.9521

Lo
g-
lin

Estimated ln ρκ = ln ρκ = ln ρκ =
model -1.1659 - 0.0013 κ - 0.6829 - 0.0016 κ - 0.2917- 0.0011 κ
RoC 0.9987 0.9984 0.9989
R2 0.7474 0.8643 0.9083

n=
12

Lo
g-
lo
g Estimated ln ρκ = ln ρκ = ln ρκ =

model - 0.2261 - 0.1223 ln κ - 0.0912- 0.0856 lnκ 0.0590 - 0.0428 lnκ
RoC 0.9989 0.9992 0.9996
R2 0.9484 0.9995 0.9607

Lo
g-
lin

Estimated ln ρκ = ln ρκ = ln ρκ =
model -0.7061 - 0.0006 κ - 0.4474 - 0.0003 κ - 0.1132 - 0.0002 κ
RoC 0.9994 0.9997 0.9998
R2 0.8723 0.6455 0.7857

5.2. Accuracy vs. state space dimension
We consider fixed network configurations with n = 4, 6, 8, 10 and 12 reser-

voirs. For each configuration, we consider a time span of a single period and as-
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sume that the terminal value function is of the form V1(s) = 1
2s
′T s′− 1

2 ||s−s
′||2,

where s′ > Q is a target reservoir level.
We use the same production functions as in subsection 5.1, and problem

parameters are similarly generated. The maximum grid size is set at κ̄ = 100n,
then at κ̄ = 200n. For each (n, κ̄) pair, we randomly generate 20 test problems.
We note the 10th, 50th and 90th percentiles of the attained relative imprecisions,
as reported in Table 3. Increasing the number of grid points has little effect on
the attained imprecision as the number of reservoirs increases.

Table 3: Attained relative imprecision

Grid
size

Percen-
tile

n = 4 n = 6 n = 8 n = 10 n = 12

100n
10% 0.030 0.192 0.542 0.666 0.747
50% 0.036 0.232 0.573 0.721 0.788
90% 0.043 0.253 0.644 0.787 0.803

200n
10% 0.021 0.089 0.546 0.631 0.737
50% 0.024 0.107 0.498 0.666 0.770
90% 0.028 0.136 0.557 0.760 0.825

5.3. Discussion of the results
Our method rests on two principles : (i) simplicial partitioning of the state

space, and (ii) bounding the approximation error. The fundamental underlying
goal is to balance accuracy and computational efficiency, as a joint trade-off. The
method is adaptive, as error bounding is performed online. No prior state grid
is required. The bounding mechanism is strict, requiring no ex-post validation.
It requires some assumptions on problem structure, which are often deemed
reasonable in multi-echelon multi-stage logistics.

The preceding experimentation reflects a particular implementation of our
method, suggesting the following remarks.
1. The generic method is highly parallelizable.

2. The value function used in the experiments has continuously varying curva-
ture, resulting in uniformly-distributed grid points. By contrast, in hy-
dropower management, the value function is almost linear on a large part
of the state domain, nonlinearities occurring in the vicinity of reservoir
capacities.

3. The present simplex division method turns out to yield very elongated sim-
plices, thus overstating upper bounds on the value function (hence over-
stating errors). It could easily be revised to produce more regular parti-
tions.

4. The present division criterion does not take into account the likelihood that a
simplex will be visited. Visit frequencies could be assessed by simulation.
A division criterion based on expected error (weighted by visit frequencies)
would concentrate divisions where they matter most.
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(c) n = 5
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(d) n = 6
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(e) n = 10

Figure 5: Evolution of the relative imprecision as a function of the number of grid points κ
for 5 reservoir configurations
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6. Case study

The aluminum division of Rio Tinto (RT) is an international company that
produces and sells aluminum on the international market. RT has power plants
located in Saguenay, a city of the province of Québec (Canada). The hydro-
electric system is composed of six power plants, of which three are run-of-the
river. The installed capacity is 3100 MW . However, because of insufficient
natural inflows at some times during the year, the average production is about
2100 MW . The system feeds four aluminum plants for an overall load of about
2300 MW . Hence all internal electricity production is absorbed by aluminium
smelting.

Section 6.1 describes the system under study. Sections 6.2 and 6.3 report the
experimental framework adopted to solve RT’s problem as well as the results of
these experiments, respectively.

6.1. Description of the system under study
For operational reasons, RT is interested in studies on the south portion of

the system as illustrated in Figure 6. The full arcs represent turbined flows,
the dash line are spillage and the dotted lines illustrate natural inflows.This
subsystem is undersized compared to the volume of natural inflows, and is more
difficult to manage compared with the upstream portion of the system. Further-
more, the upstream turbines have low capacity. The downstream subsystem, of
interest to us, comprises two reservoirs: Chute-Du-Diable and Lac Saint-Jean
associated with the power plants Chute-Du-Diable and Isle-Maligne, respec-
tively, and two run-of-the-river power plants: Chute-Savanne and Shipshaw.
RT’s research department assesses the value function of this subsystem through
an SDP model. The model is parallelized, which allows the use of a sufficiently
fine-grained grid. Hence, this model provides an optimal solution and is used
as a standard by RT to evaluate the performance of other methods on this sub-
system. RT’s ultimate goal is the complete basin system, for which RT has no
benchmark. Our mandate consisted in replicating the value functions for the
south subsystem, with a view to reducing the size of the grid as compared to
the standard SDP benchmark.

Q1

Q2 Q3CCD CCS CIM CSH

PDECH

Figure 6: Representation of the RT’s downstream subsystem
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In the following, we will use the same notation as earlier.
Power generation is a function of the turbine’s feeds and the level of the

reservoirs for the power plants Chute-Du-Diable (CCD) and Isle-Maligne (CIM)
(associated with the similarly labeled reservoirs). Though Chute-Savanne (CCS)
is a run-of-the power plant, besides the turbine’s feeds, its power generation also
is a function of the level of the reservoir Lac Saint-Jean (LSJ), since the latter
affects the level of its tailbay. Lastly, as concerned the power plant Shipshaw
(CSH), power generation only depends on water release rate.

The maximal water release rate in the power plants Chute-Du-Diable and
Isle-Maligne depends on the level of reservoir in the beginning of each period,
whereas it is a constant for the power plants Chute-Savanne and Shipshaw.
B̃i(sit), i = 1, 3, denote these maximal release rate functions. Furthermore, in
the four power plants, any excess of water is spilled and causes loss of power
by increasing the level of the tailbay. Ãi(yit), i = 1, · · · , 4 denotes linear ap-
proximations of the loss of power functions. The reservoir LSJ is equipped with
another spillway (PDECH). The water flowing through this spillway does not
influence the power generation, however this spillway has a limited capacity
that depends on the storage of water, which may influence the spillage in power
plant CIM.

In period t, y3,1t denotes spillage through the power plant CIM, and y3,2t
spillage through the outlet PDECH. D̃(s3t) denotes the maximal water rate
through the spillway PDECH.

During the summer, the bounds on the reservoir LSJ are very tight in or-
der to allow navigation and recreational activities. If at the end of the spring
the natural inflows are low, it may not be possible to release water from this
reservoir during the summer. An optimization problem may then be infeasi-
ble. Therefore, following practices at RT’s research group, we penalize bounds
violation in the objective function. We will use penalty terms of the form
−φ max{0, st+1 − st+1} and −φ max{0, st+1 − s̄t+1}; where each hm3 of water
under or over the regulatory limit is penalized by the amount φ supplied by RT.
The planning horizon of RT’s problem is the year with weekly time steps. In
week t, we use the previous natural inflows Qt−1 as hydrological variable. Thus,
for t = 52, 51, · · · , 1, the SDP recursion is Vt(st, Qt−1) = EQt|Qt−1 [Gt(st, Qt)],
with
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Gt(st, Qt) =Max
ut,yt

{ ∑
i=1,3

fi(sit, si,t+1, uit) + f2(s3t, s3,t+1, u2t) + f4(u4t)−∑
j=1,2,4

Ãj(yj)− Ã3(y3,1t)− φd̃1t − φd̃2t + Vt+1(st+1, Qt)
}

(46)
S.t. st+1 = st +QIRt −BIRut − CIRyt (47)

d̃1t ≥ st+1 − st+1 (48)
d̃2t ≥ st+1 − s̄t+1 (49)
0 ≤ uit ≤ B̃i(sit), i = 1, 3 (50)
u1t + y1t +Q2t − u2t − y2t = 0 (51)
u3t + y3,1t + y3,2t − u4t − y4t = 0 (52)
0 ≤ uit ≤ ūi, i = 2, 4 (53)
y3,2t ≤ D̃(s3t) (54)
yt ≥ 0 (55)
d̃1t, d̃2t ≥ 0 (56)

6.2. Experimental framework
We test the simplicial methodology on RT’s subsystem through a two-phase

approach: estimation of the value functions and simulation of the optimal op-
erational policy. In each week, we use the simplicial decomposition scheme to
construct the state space grids. As discussed in Section 4.1, in each week, a
linear approximation of problem (46)–(56) (Ĝt) is solved for each point of the
grid. Recall that to implement GLP, moreover state space grid points, we also
need evaluations of the production functions over a sample of points. These
evaluations were provided by RT, but we use interpolation error analysis to
reduce the size of the original samples.

RT’s model assumes that release decisions are made after observation of the
natural inflows. These latter are modeled as Markovian processes and, based
on recommendations from RT, are assumed to obey log-normal distributions.
In period t, assume that {qit|1 ≤ i ≤ lt} are the possible realizations of the
process Qt, and for each value of Qt−1, let P (Qt = qit|Qt−1) be the associated
conditional transition probabilities. We then have V̂t(st, Qt−1) =

∑lt
i=1 P (Qt =

qit|Qt−1)Ĝt(st, Qt).
We construct a multiple regression model with seasonal variables to estimate

the conditional parameters of the log-normal distributions, which we use to
estimate the conditional probabilities. The regression parameters are estimated
through a 33-year sample of historical inflows. We adopt a similar scheme as in
[50] to discretize the inflow processes. In week t, suppose the possible realizations
of the inflows process are divided into lt classes for which q1

t , · · · , q
lt
t are the

respective center. Let Ft(Qt = qit|Qt−1) be the cumulative distribution of the
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log-normal distribution of (Qt = qit|Qt−1) of parameters µt(Qt−1) and σ2(Qt−1).
For each Qt = qt, we take P (Qt = q1

t |Qt−1) = Ft(q1
t ), P (Qt = qit|Qt−1) =

Ft(qit)− F (qi−1
t ), i = 2, . . . , lt − 1, and P (Qt = qltt |Qt−1) = 1− Ft(qtlt−1). The

conditional probability of each value of Qt then is estimated as the conditional
probability of its class.

The terminal value of water is first considered to be null. To deal with en-
of-horizon effects, 208 weeks are being considered, the last 52 serve to eliminate
such effects for the first 52, taking into account e.g. seasonal and persistence
phenomena.

In the second phase, the estimated value functions are used to simulate the
operational policy for another 25-year sample of historical inflows. Given an
observed state (st, Qt), the optimal policy is [ut, st+1, yt] ∈ Argmax{Ĝt(st, Qt)},
which is obtained by solving the linear approximation of (46)–(56). An initial
storage s1 is chosen corresponding to the maximal level of the first reservoir
and about 98% of the second one. In the first period the linear approximation
of (46)–(56) is solved for the state (s1, Q1). Afterwards, the approximation is
solved for (s2, Q2), where s2 is the optimal final stock at the end the first period.
The process is repeated until the last week of the 25-year simulation horizon.
For comparison purposes, in the simulation phase we use the same functions as
in RT’s model to evaluate the production corresponding to the optimal releases.

The results of the simulations are compared to those obtained with a clas-
sical SDP scheme constructed by RT and used as standard by RT’s operations
research group. To construct the value functions, in each week, RT’s approach
uses a fixed 10 × 30 × 7 grid points (these numbers are the number of dis-
cretization points of the first and second reservoirs’ levels, and the number of
discretization values of the inflows, respectively). We similarly discretize the
inflow processes.

6.3. Results and analysis
The two approaches (RT and the simplicial scheme) are compared based

on the average effectiveness of the simulated policy defined as the ratio of the
average generated power to the total outflows (water release and spillage). We
do not report the raw results for confidentiality reasons.

Table 4 reports the relative average effectiveness (RT/simplicial) for each
power plant as well as statistics pertaining to the number of grid points per
week to construct the value functions. We use three different values ρκ = ∆κ

∆1
as

thresholds on the attained relative imprecision. The solution time (to estimate
the 52 value functions) is also reported for each such threshold.

Overall, on average, the effectiveness of the policy is very similar in both
cases, with a slight edge in favor of our method. Also observe that the effective-
ness of release policy of CCD is slightly better with RT’s approach than with
ours. Since these results are very similar, we conjecture that the slight differ-
ences might be due to the fact that the production functions are approximated
differently in the two models. However, the computational burden is signifi-
cantly reduced with our approach. In each week, our method spares evaluations
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of the value function. In each week, RT’s scheme performs 2100 evaluations of
the value function (300 stock grid points × 7 discrete values of inflows) for a
total of 109 200 evaluations over the 52 weeks. By contrast, with an imprecision
ρ = 0.8, in each week, on average, our method performs 413 evaluations of the
value functions (59 stock grid points × 7 discrete values of inflows), for a total
of 21 476 evaluations over the entire year, which roughly represents 20% of the
total evaluations performed by the SDP used by RT.

Table 4: Comparison between the two models: relative effectiveness (RT/Simplicial) of the
simulated policy and number of grid points per week

Relative effectiveness
CCD CCS CIM CSH Overall average

Simp. (ρ = 0.8) 1.037 0.958 0.988 1.000 0.997
Simp. (ρ = 0.5) 1.037 0.958 0.992 1.000 0.997
Simp. (ρ = 0.1) 1.037 0.958 0.992 1.000 0.997

Approach Number of stock grid points per week
Min Max Average – –

RT 300.000 300.000 300.000 – –
Simp. (ρ = 0.8) 57.000 65.000 59.000 – –
Simp. (ρ = 0.5) 62.000 78.000 68.327 – –
Simp. (ρ = 0.1) 117.000 553.000 188.238 – –

Solution time for the simplicial model in seconds
ρ = 0.8 ρ = 0.5 ρ = 0.1 – –
175.032 200.144 662.166 – –

Let us also observe that, in our model, while the solution time increases
significantly with the precision 1−ρ, the effectiveness of the policy remains quite
similar. These results reveal that densifying the stock grids, i.e. performing
significant number of evaluations of the value function in each week, does not
necessarily improve the operational policy of the system.

In addition, Figure 7 shows the average (over 1300 weeks) of the weekly
simulated trajectory of the reservoirs as prescribed by both approaches (RT
and simplicial with ρ = 0.8). In both cases, at the beginning of the year, the
level of the reservoirs are high. Then the reservoirs are progressively emptied in
anticipation of the spring run off. Then refill occurs. Except for the summer,
RT’s model operates the reservoir CD with higher reservoir levels than does our
model. However, in general this is the contrary for LSJ. Since RT’s software
provides an optimal solution for the maximization of the expected energy pro-
duced, and since the simplicial algorithm yields a very close value, we are in the
presence of multiple near-optimal solutions.
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Figure 7: Comparison of the average optimal trajectory of the reservoirs

7. Conclusion

We presented an adaptive methodology for approximate stochastic dynamic
programming, based on simplicial partitioning of the state space. The vertices
of the simplices form an irregular grid where the value function is assessed. The
grid is adaptively constructed in the course of problem solution and will be
denser where the curvature of the true value function is higher.

The optimization step used here is a Generalized Linear Programming for-
mat, compatible with many mathematical programming structures, including
combinatorial aspects. It automatically yields a concavification of the (approx-
imate) value function. It is therefore best suited for problems which are nearly
convex, e.g. with a convex feasible domain and a close to concave objective to
be maximized. Concavity of the approximate value function allows us to assess
its “imprecision”. This measure guides where refinements of the grid should be
conducted.

The simplex partitioning methodology yet simplifies another task, namely
computing the expectation of the value function. It is possible to exploit the sim-
plicial partition on a basin, i.e. a subset of nodes in the reservoir network where
natural inflows are strongly correlated. Perfect correlation allows us to consider
the inflow process as unidimensional. This facilitates analytical or numerical
integration, sparing costly sampling. Although we illustrated a uni-basin case,
the method can easily be extended to a hydrographic region partitioned into
several disjoint basins.

We experimented our method on 400 test problems. Not unexpectedly, im-
precision increased with the number of reservoirs and with restrictions on the

29



grid size. We think however, that this first version of our method could be
significantly perfected.

Our scheme was also applied in an industrial context, using a large data base.
Our method was compared with the fine regular grid SDP algorithm used as a
standard at the company’s research laboratories. We were able to replicate the
optimal value of water while the computational burden significantly decreased,
as in each week our model spared evaluations of the value function. Thus,
the problem could be solved with an acceptable precision for an appropriately
selected sample of grid points complemented by interpolation. For these reasons,
we believe this paper makes a useful scientific contribution to the field of SDP.
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Appendix A: Proofs of propositions

Proof of Proposition 1. The spillage network is arborescent. Without loss of
generality, assume the nodes are labeled in a topological order (as in Figure 1).
The incidence matrix C of this network is then lower triangular. Since each
node is equipped with a spillage system, the diagonal elements of this matrix
are all equal to 1. It follows that C is non-singular and C−1 ∈ {0, 1}p×p [51].

Now, let us show that for all ds ≥ 0, Vt−1(st−1 +ds, εt−1) ≥ Vt−1(st−1, εt−1).
To simplify the notation, we omit the hydrological variable εt−1.

Define

φt(st−1, ut, Qt, yt) =
∑
i∈IRC

fit(uit, si,t−1, εt−1) +
∑
i∈IF

fit(uit)+

Vt(st−1 −But − Cyt +Qt, εt).

Function φt measures the value of water for given reservoirs’ levels st−1,
release decisions ut, observed inflows Qt and spillage decisions yt. Given an
initial stock st−1, in period t, the optimal policy consists in a rule u∗t (st−1)
followed by a rule y∗t (st−1 −But +Qt). It follows that

Vt−1(st−1) = EQt [φt(st−1, u
∗
t (st−1), Qt, y∗t (st−1 −Bu∗t (st−1) +Qt))] .

Suppose the initial stock increases from st−1 to ŝt−1 = st−1 + ds (ds ≥ 0).
Consider a new policy where such stock increases are spilled:

ût(ŝt−1) = u∗t (st−1),

ŷt(ŝt−1 −Bût(ŝt−1) +Qt) = y∗t (st−1 −Bu∗t (st−1) +Qt) + dy,

30



with Cdy = ds.
This policy is feasible. Indeed (i) the planned releases do not change and sat-

isfy their bounds, (ii) the final stock does not change, (iii) the spillage increases
by dy = C−1ds ≥ 0. In addition, one verifies that

φt(st−1, ût(ŝt−1), Qt, ŷt(ŝt−1 −Bût(ŝt−1) +Qt)) =
φt(st−1, u

∗
t (st−1), Qt, y∗t (st−1 −Bu∗t (st−1) +Qt)).

Since the new policy is feasible but not necessarily optimal for the initial
stock level st−1 + ds, we get:

Vt−1(st−1 + ds) ≥ EQt [φt(st−1, ût(ŝt−1), Qt, ŷtŝt−1 −Bût(ŝt−1) +Qt))]
= EQt [φt(st−1, u

∗
t (st−1), Qt, y∗t (st−1 −Bu∗t (st−1) +Qt))]

= Vt−1(st−1).

Proof of Proposition 3. If Vt(st, εt) is concave in st, so is the expectation by the
linearity property of the exception. Also if the production functions are concave,
the objective is also concave (sum of concave functions). The claim follows since
the feasible domain is a convex polyhedron.

Proof of Proposition 4. The objective is linear and is maximized. The set Dt =
{ut, xt, λ, µ|(28)− (39)} is convex. It follows that V̂t−1 is concave in st−1 ∀ εt−1.

Proof of Proposition 5. Since the production functions ft are concave in ut,
for the same releases, the production value estimated as the best interpola-
tion (convex combination) over samples points {ûjt|j ∈ Γt} is a lower bound
on the actual production. In addition, since V̂t ≤ Vt, we have Ĵt(xt, εt−1) ≤
EQt,ε̃t|εt−1 [Vt (s∗t (xt +QIRt) , ε̃t)] ∀xt (by linearity of the expectation). There-
fore, for any post-release reservoir levels xt, the expectation evaluated as the
best interpolation over sample points {x̂jt|j ∈ Υt} is underestimated. Lastly, let
us observe that the polyhedron (28)-(39) (feasible domain of V̂t−1) is included in
the polyhedron (26) (feasible domain of Vt−1). Since the objective is maximized,
these prove our claim.

Proof of Proposition 6. We have

E[τ̃t]ba = E[eZ ]ln bln a, where Z ∼ N(µ(εt), σ(εt)2)

= 1√
2πσ(εt)

∫ ln b
ln a e

− 1
2

(
z−µ(εt)
σ(εt)

)2
+z
dz.
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We also have

− 1
2

(
z−µ(εt)
σ(εt)

)2
+ z = − 1

2σ(εt)2

(
z2 − 2µ(εt)z + µ(εt)2 − 2σ(εt)2z

)
= − 1

2σ(εt)2

(
z2 − 2

(
µ(εt) + σ(εt)2) z + µ(εt)2)

= − 1
2σ(εt)2

[(
z −

(
µ(εt) + σ(εt)2))2 − (µ(εt) + σ(εt)2)2 +

µ(εt)2]
= − (z−(µ(εt)+σ(εt)2))2

2σ(εt)2 + µ(εt) + σ(εt)2

2 ,

Hence

E[τ̃t|εt]ba = ν√
2πσ(εt)

∫ ln b

ln a
e
− 1

2

(
z−µ(εt)−σ(εt)2

σ(εt)

)2
dz
.

By the change of variable t = z−µ(εt)−σ(εt)2

σ(εt) , we get

E[τ̃t|εt]ba = ν

∫ ρ(b)

ρ(a)

1√
2π
e−

1
2 t

2
dt.

The integrand is the density function of the standard normal variable, which
proves the proposition.

Appendix B: Notation nomenclature

Sets
IR Network nodes with a reservoir
IC Network nodes with a power plant
IF Network nodes with power plant alone
IRC Network nodes with a reservoir and a power plant
R Real numbers
Rn n-dimensional vectors
Pt A general polytope
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Parameters
n Number of reservoirs
B Connectivity matrix
BIF (BIR) Submatrix obtained by selecting the lines of B

indexed in the set IR(IF )
C Spillage routing matrix
CIF (CIR) Submatrix obtained by selecting the lines of C

indexed in the set IR(IF )
T Planning horizon
st (resp. st) lower (resp. upper) bound on reservoir levels
ut (resp. ut) lower (resp. upper) bound on turbined flows
Qt Natural inflows to the reservoirs in period t
QIF t(QIRt) Vector obtained by selecting the elements of Qt

indexed in the set IR(IF )
ε̃t Hydrological variable in period t
e Vector filled with ones
Σ(S) Simplex generated by n+ 1 columns of matrix S
δ Direction vector in Rn

+\{0}
∆ Upper bound on the imprecision over a given simplex
κ Number of grid points
ρκ Relative imprecision at the κth grid point
N Number of simplices
qt Relative contributions of natural inflows to the reservoirs

in period t
τ̃t Scalar variate representing the total inflows to the network

in period t

Decision variables
ut Volume of released water in period t
xt Reservoir levels in period t after release decisions and before the

realization of natural inflows
yt Spilled water after the realization of natural inflows
st Reservoir levels at the end of period t
s∗ Division point of Σ(S)

Functions
fi(·) Production function of power plant i ∈ IC
Vt(·) Future value of water in energy units
Jt(·) Expected value of water in energy units
V̂t(·) Approximated future value of water in energy units
Ĵt(·) Approximated expected value of water in energy units
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