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Abstract

Contour lines are important for quantitatively displaying relief and identifying
morphometric features on a map. Contour trees are often used to represent spatial
relationships between contours and assist the user in analysing the terrain. How-
ever, automatic analysis from the contour tree is still limited as features identified
on a map by sets of contours are not only characterised by local relationships be-
tween contours but also by relationships with other features at different levels of
representation. In this paper, a new method based on adjacency and inclusion re-
lationships between regions defined by sets of contours is presented. The method
extracts terrain features and stores them in a feature tree providing a description of
the landscape at multiple levels of detail. The method is applied to terrain analysis
and generalisation of a contour map by selecting the most relevant features accord-
ing to the purpose of the map. Experimental results are presented and discussed.
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1 Introduction
The contour line is one of the most fundamental elements of a topographic map. Con-
tours are one of the most appropriate method for displaying relief at large and medium
scales. They also assist the user in identifying morphometric features such as valleys
and ridges and in interpreting the map [11]. Indeed, it is the set of contour lines, not the
individual lines themselves, which depict the major features of a landscape and retain
its intrinsic character.

Most of the research on feature characterisation has been concerned with the anal-
ysis of digital terrain models [4, 8] as these provide more accurate local information
(slope, aspect, curvature). Existing work on terrain feature identification from a con-
tour map utilises contour trees representing spatial relationships between contour lines
based on their inclusion. They can be built from the terrain model [27] or from the con-
tours directly [13, 7, 5]. As shown in these papers, contour trees are useful for reasoning
as they can assist the user in identifying and analysing terrain features. However, they
do not fully take into account the different possible levels of description of the terrain
since they focus on features located at the highest level of detail [22, p. 180].

The focus of this paper is to build up a hierarchical description of terrain features
from the contours. At the end of the process, a feature tree is provided where each
feature is defined by a set of contours. The tree allows a representation of the terrain
at different levels of detail and is directly related to the complexity of the landscape,
providing a qualitative description of the landscape. Geometric properties of the sur-
face (slope, curvature) or the contours (distance between or length of contours) are not
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involved and features are described based on topological relationships (adjacency and
inclusion) ensuring a simple and robust process.

This paper also proposes a tool enabling qualitative terrain description useful for
route planning and location (where landforms can be described according to different
perspectives) and map generalisation. Currently, much work in contour line general-
isation relates to cartographic generalisation where only aesthetics and legibility are
considered [10, 15, 17, 19]. In some applications, features must be represented on the
map in accordance with their meaning. For instance, in nautical chart generalisation,
features are selected in accordance with the risk they represent (e.g. reef) or their rele-
vance to navigation (e.g. fairway). Therefore, features must be identified and classified
so that contours can be generalised with regard to the features they relate to.

The article is organised as follows. The next section reviews previous work related
to contour trees and topological data structures for surfaces and to the description of
landscapes at multiple levels. Section 3 describes an iterative process for extracting
features at different levels. In section 4, the method is applied to terrain analysis and
nautical chart generalisation and results are discussed. Conclusions and directions for
future work are presented in the final section.

2 Related work

2.1 Contour trees and graphs
The first data structure addressing the description of surface topology was the Reeb
graph as reported in [22, p. 8]. The Reeb graph is obtained from a surface as a topolog-
ical quotient space where all the points having the same elevation and lying in the same
connected component are equivalent [28]. Equivalence classes correspond to contours
and nodes of the Reeb graph, which are the critical points (peaks, passes, pits) of the
surface, represent the topological transitions between the contours.

If the surface is defined by a set of contours at arbitrary elevations, building up a
topological graph is not based on the detection of critical points which can lead to nu-
merical instability but on the spatial relationships between the contours. The resulting
graph is called a contour tree. The structure is identical to a Reeb graph [26] since
topological transitions between contours are also recorded (Figure 1). Contour trees
are used for terrain representation and in computer visualisation for segmenting or ren-
dering multi-dimensional data [3]. The most commonly used technique for building a
contour tree is based on the containment relationship. If one contour is contained by
another then that contour is a descendant. This simple approach has been applied in [7]
where the map is partitioned into different areas, each containing a contour tree. The
author uses this structure to interpolate terrain information such as elevation or gradi-
ent at a given point from neighbouring contour lines. Work taking a different approach
based on containment relations is [13] where a single contour tree is built for the whole
map. The method starts from the lowest elevation contour defining the root node recur-
sively creating the contour tree in a depth-first fashion. The authors also consider the
extraction of peaks and pits from the contour tree by considering the number of chil-
dren of a node: a peak or a pit is defined by a starting node where all its descendants
have only one child, excepted the last which has none (Figure 1).

The containment method is very simple but some limitations have motivated the
development of different approaches. One difficulty for feature characterisation is that
all contours are considered closed, thus limiting its application to specific cases. Open
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Figure 1: Contour tree corresponding to a set of closed contours. Branches with white
nodes are peaks or pits. Nodes with several children are passes.

contours may be considered closed by the border of the map but it is not always possible
to define which side is the interior or the exterior of a contour.

Other methods build the contour tree by considering contours in close proximity.
Contours are considered adjacent if their growing regions [23] or their Voronoi regions
[5] share a common boundary. The disadvantage of this approach is that the construc-
tion of the tree is based on the relationship between region boundaries, a relationship
which does not necessarily correspond to the containment relationship. In [5], the al-
gorithm detects and corrects such problems so that results are always consistent.

The Voronoi region based method can provide a contour tree for any kind of contour
set, including open contours, but the changes in slope cannot be identified from the tree
as elevations are not considered. Contours characterising one feature can be classified
as descendants of a contour that is part of an adjacent feature. This occurs, for example,
when a change of slope is represented by a series of open contours. Indeed, the contour
tree representation is a limitation as it creates an artificial hierarchical structure of the
landscape. It limits relationships between contours to those of containment only and
fails to represent adjacency between open contours.

Another approach to the storing of relationships between contours is the use of a
contour graph. Nodes are contours and edges represent adjacency relationships. Two
contours are adjacent if a line can be drawn that connects the two contours and inter-
sects no other contour [20]. Elevation is not required to build the graph. The structure
applies to any kind of contour map containing open and closed lines (Figure 2c) and has
been used for plane navigation [21] and vectorisation of map images [16]. The dual
of the contour graph is the inter-contour region graph where contours are edges and
inter-contour regions are nodes of the graph (Figure 2d). Both structures are equivalent
since one is the dual graph of the other but the contour graph is easier to implement
[16].

Another data structure storing topological relationships between regions is the ex-
tended Reeb graph [1] where equivalence classes are regions bounded by contour lines.
If the contour map is defined by an arbitrary set of contours, the extended Reeb graph is
identical to the inter-contour region graph. The structure is more reliable than the con-
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Figure 2: Contour map (a) with its corresponding contour tree (b), contour graph (c),
region graph (d). Numbers indicate elevation. Letters are inter-contour regions.

tour tree or the Reeb graph as a region boundary can be composed of several contours
and it better represents the topology between areas of the surface.

2.2 Multi level description of landscapes
Although describing a landscape at different levels has been tackled for Digital Eleva-
tion Models (DEM), topological structures such as contour graphs and Reeb graph do
not address multiple representation of features [22, p. 180]. The definition of landforms
depends on the scale of observation and the interpretation of the user [9]. Existing work
relates to the identification of specific landforms [4], the definition of an ontology to
describe these landforms [24], or the representation of terrain morphology of a DEM
at multiple resolutions [8].

Six morphometric classes of terrain can be represented on a DEM [29] (Figure 3).
Multi-level description depends on the scale of measurement or visualisation [9] and
a point may belong to different morphometric classes depending on the size of the
filter computing slope variations. In Figure 4, if the location is at the bottom of the
pit marked G, use of a small size filter leads to its definition as a pit G. With a larger
filter, the location is designated as belonging to peak B and with an even larger filter
as belonging to peak A. Precision depends on the number of filters and their sizes set a
priori.

Contour maps do not provide as much terrain information as a DEM but, although
local variations of slope cannot be computed accurately, they can still provide qualita-
tive information on terrain structure and features identified by sets of contours. Cur-
rently, contour trees can identify eminences and depressions at the highest level but not
at lower levels. A less restrictive definition should be considered so that features at
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Figure 3: Morphometric classes of terrain.
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Figure 4: Morphometric description at different scales, using the example of Figure 1.
At a small scale, feature A is defined as one structure. At a larger scale, feature B is
identified. At the largest scale, C, D, E, F, G are detected.

different levels can be identified. One possibility would be to define a feature such that
one contour delineates its boundary and all its descendants in the tree. For example,
in Figures 1 and 4, contours contained in feature E also belong to features B and A.
However, contour trees fail to represent correct relationships between contours. A fea-
ture boundary cannot be defined by two or more contours and larger features may not
be correctly portrayed: a channel going across the map cannot be represented. Feature
characterisation would be possible from the contour graph or the inter-contour region
graph where relationships are correct, but feature at different levels cannot be shown
on such a graph. Therefore, a new structure, the feature tree, defined from the contour
graph is introduced in the next section.

3 Construction of the feature tree from a contour graph

3.1 Definition of features on a contour map
On a contour map, a region is defined by a set of contours and is the connected area
bounded by these contours. The smallest regions that can be identified on a contour
map are the inter-contour regions. Larger regions can be identified by the merging
together of adjacent inter-contour regions.
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The most obvious landforms identified on a contour map are eminences [18] and
depressions. An eminence is defined as a region where all the inner contours are higher
than the boundary contours. In a similar way, a depression is a region where all the
inner contours are lower than the boundary contours. In order to allow comparison,
the boundary contours must all be at the same elevation. Examples of eminences from
Figure 2 are regions J, U and ABCD (the region formed by inter-contour regions A,
B, C and D). Region EF is a depression as its edge elevations are all equal to 2 and it
contains a lower contour. On the opposite, E is neither an eminence nor a depression
as edges E-F and D-E are not at the same elevation.

Distinction between peaks and ridges and between pits and channels is made by
checking the number of contours on the boundary. A region with only one boundary
contour is a peak or a pit with its highest or lowest point at the centre. A region with
two or more boundary contours is a channel or a ridge and its orientation is given by
its medial axis. For instance, in Figure 2, KL is a pit and EF is a channel. In some
cases, a region obtained by merging several regions may form a leaf of the graph and
be neither an eminence nor a depression as its boundary contour is neither the highest
nor the lowest. This feature is designated as a mixed feature. Region IJKL in Figure
2 is an example of a mixed feature.

In a DEM, a pass is a point defining a local minimum in one direction and a local
maximum in the other. On a contour map, a pass would be located in a lower (re-
spectively higher) region joining two higher (respectively lower) regions. In the graph,
the pass is a region identified as connecting two or more features of the same type.
Examples of passes from Figure 2 are regions S and M.

A plane is a type of terrain with a regular slope. On a contour map, it is a region
delineated by two boundary contours of different elevations where all the inner contour
elevations are within the boundary elevations. They correspond to regions representing
hillsides such as BCD in Figure 2.

Eminences, depressions and mixed features should be as large as possible, i.e. if a
feature is adjacent to a plane, both feature and plane can be merged into a larger feature
of the same class. For example, in Figure 2, region A is not considered as a peak as it
is part of the larger peak ABCD.

Following these definitions, all features from the region graph can be identified and
arranged in a feature tree based on their inclusion relationship. An example of a feature
tree obtained from the contour map of Figure 1 is presented in Figure 5 right. Only
eminences and depressions are shown. Figure 5 left represents the inter-region graph
equivalent to the contour tree of Figure 1. Features A, B, C, E and F are obtained by
merging together some inter-contour regions. D is not stored as it is a pass connecting
A, C and B.

The next section presents a method for building the feature tree from a set of con-
tours. As features are identified by grouping regions together, the method first requires
the construction of the inter-contour region graph and proceeds by successively merg-
ing regions at one level to form larger regions at the next level.

3.2 Construction process
The hierarchical structure of the terrain is represented by a feature tree containing all
the eminences, depressions and mixed features. Feature extraction from an initial re-
gion graph (Figure 6a) is an iterative process starting with features at the highest level
of detail (Figure 6b) and moving towards larger features until no new feature can be
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Figure 5: Left: Region graph from Figure 1 contour map with features at different
levels. Right: Feature tree extracted from the region graph.

extracted (Figure 6g). At each step of the process three operations are performed in a
sequence:

• obtain the greatest extent of each feature by merging it with adjacent planes;

• copy the new features into the feature tree;

• move to the next level by aggregating features with adjacent regions.

When a region is connected to several features, two cases can arise. First, the
region is a pass connecting features of the same type and the pass is aggregated with
the features to form a larger feature. For example, pass S and peaks T and U of Figure
6b are aggregated into a larger peak STU (Figure 6c). In the second case, the region
connects features of different types (for example, region E of Figure 6d). The order in
which the aggregations are performed leads to different features: E can be aggregated
with F to form a depression or with other features to form an eminence. Aggregation of
the region and its features involves several steps according to the different cases. This
process may result in storing passes (such as IJ in Figure 6d) in the feature tree during
the intermediate steps. These spurious features are removed in a last stage after the tree
has been built as they can only be characterised as passes once features at the next level
have been added to the tree.

The merging process applied to features and planes is described in the next section
3.2.1. The feature aggregation process, with the classification of regions in different
cases is detailed in section 3.2.2. Third, spurious feature removal is described in section
3.2.3. Finally, the algorithm summarising the whole process is described (section 3.3).

3.2.1 Region merging

As mentioned in section 3.1, a feature should be of the largest possible extent and
therefore should be merged with its adjacent planes. In the region graph, merging
consists of collapsing the edge joining two adjacent regions. Two regions are merged
if:

• they are adjacent planes oriented in the same direction. The merged region is
another plane (regions B, C and D of Figure 6a).
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• they consist of one feature and a plane and the new feature belongs to the same
class (regions G and H or K and L of Figure 6a).

The merging process is repeated until no more merging can be performed. New
features are copied to the feature tree. The result does not depend on the order in
which the regions are merged. Figure 6b shows the region graph and feature tree after
the first merging step. The features which are first identified correspond to the leaves
of the feature tree. The merging algorithm is detailed in algorithm 1.

Algorithm 1 The procedure merge(R) merges those neighbouring regions of the graph
which have no more than two neighbours and have the same slope direction.

Input: a region graph R

Output: the region graph R after merging

Begin

While merging

merging = false

For each edge e of R

rl = e.leftRegion
rr = e.rightRegion
If rl.neighbours ≤ 2 and rr.neighbours ≤ 2
and rl.slope(e) == −rr.slope(e)

merging = true

e.collapse
End If

End For

End while

End

3.2.2 Region aggregation

The process consists of aggregating features such that the aggregated region is a new
leaf describing a feature at a lower level of detail. The operation is done by collapsing
the edges between the features and the region. Candidate regions for aggregation are
regions r from the graph for which all adjacent regions but one are leaves. The region
which is not a leaf is the one connecting r to the rest of the graph by the edge which
is the base of the region as it encloses the subset formed by r and its leaves. The
procedure for candidate region detection is detailed in algorithm 2. In Figure 6b, I, M
and S are candidate regions for aggregation; E is not.

Algorithm 2 The function M = candidate(R) returns the list of regions of the graph
for whom all but one neighbour are leaves.

Input: a region graph R

Output: the list M of candidate regions

Begin

Set M an empty list of regions

For each region r of R

counter = 0

For each neighbour n of r
If n is not a leaf

r.base = r.edge(n)
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++counter

End If

End For

If counter == 1

M.push(r)
End if

End For

End

To order the aggregation, three cases are considered. They are based on the ele-
vation of the edges connecting r with its leaves and with the elevation b of the base.
Indeed, as r is an inter-contour region, only two different elevations are possible. The
elevation differing from b is denoted z. Algorithm 3 details the method for classifica-
tion of candidate regions into three categories. A region r can be classified as:

• a pass: all the edges of the leaves are at the same elevation z. Region r is a pass
connecting all the leaves to the base. Examples of passes are regions S and M of
Figure 6b.

• undefined: edges of the leaves are at different elevations. There is no change of
slope between the base and the leaves at elevation z but there is a change of slope
between the base and features at the same elevation. Region I of Figure 6b and
region E of 6d are undefined.

• a level region: All the edges are at the same elevation b as the base so that there
is a change of slope between the base and the features. Regions EF and IJ of
Figure 6e are examples of a level region.

Algorithm 3 The procedure classify(M, Mpass, Munde f , Mlevel) takes the list of candi-
date regions and builds three lists corresponding to the three cases.

Input: a list of regions M

Output: three lists of regions Mpass, Munde f , Mlevel
Begin

Set Mpass, Munde f , Mlevel three empty lists of regions

For each region r of M

count1 = 0

count2 = 0

For each edge e of r
If e 6= r.base

If e.elevation == r.base.elevation
++count2

Else

++count1

End If

End If

End For

If count2 == 0

Mpass.push(r) ’ r is a pass

Else If count1 == 0

Mlevel.push(r) ’ r is a level region

Else
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Munde f .push(r) ’ r is undefined

End If

End For

End

If r is a pass, features are aggregated to r into a new feature f . Feature f is their
parent in the feature tree (passes M and S of Figure 6c).

A level region can be seen in two different ways. It can be a channel or a ridge
connecting other features at the same level. In that case, r is a feature and must appear
in the feature tree at the same level as all its adjacent features (feature EF in Figure
6g). It can also be a pass connecting the leaves at a higher level. In that case, r with
its leaves, forms a larger region whose descendants are leaves of r. For example, the
mixed feature IJKL in Figure 6g is obtained by aggregating level region IJ with its leaf
KL.

An undefined region r cannot be a feature as its edges are at different elevations but
it can be aggregated with other features at elevation z to form a level region c connecting
those other features with the base region: level region IJ is obtained by aggregating I
with its leaf J in Figure 6c and level region EF is obtained by aggregating E with its
leaf F in Figure 6e. The z features are descendants of c which is at the same level as
all the b features. At this stage, it is not possible to know if c is a pass as this depends
on whether or not c is contained by a larger region. Therefore c is added to the feature
tree and whether it should be removed is checked at a later stage once the whole tree
has been built. Features which must be removed are denoted as spurious.

As mentioned above, the order in which candidate regions are aggregated with their
leaves influences the feature tree. Passes are treated first as they create no ambiguity.
Undefined regions are also aggregated with their leaves at elevation z in order to trans-
form them into level regions. Only level regions need to be ordered so that bigger
features are given more importance and are placed closer to the root of the tree.

The height of a region is defined by the difference between its lowest and highest
contours. If a level region is connected to a higher leaf, it is given more importance
than a region connected to a smaller leaf and it should be aggregated later so that the
high leaf appears at a lower level in the tree. Therefore, level regions are sorted based
on the height of the highest adjacent leaf and the level region with the smallest value is
aggregated with its leaves first.

Algorithm 4 The procedure aggregate(R, Mpass, Munde f , Mlevel) aggregates the can-
didate regions with their neighbouring leaves according to the different cases.

Input: the region graph R

the lists of candidate regions Mpass, Munde f , Mlevel
Output: the region graph R after aggregation

Begin

If Mpass 6= /0 or Munde f 6= /0
For each region r of Mpass

’ Aggregate pass r with its leaves

For each neighbour n of r
e = r.edge(n)
If e 6= r.base

r = r.aggregate(n)
End If

End For
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End For

For each region r of Munde f
’ Aggregate r with leaves at elevation z

For each neighbour n of r
e = r.edge(n)
If e.elevation 6= r.base.elevation

r = r.aggregate(n)
End If

End For

End For

Else

For each r of Mlevel
Set r.h height of highest neighbour of r

End For

Set r the region with smallest h
’ Aggregate level region r with all its leaves

For each neighbour n of r
e = r.edge(n)
If e 6= r.base

r = r.aggregate(n)
End If

End For

End If

End

After aggregation, the merging process is repeated in order to extract new features
and insert them into the feature tree. The whole process is iterated (Figures 6b-g) until
features at the last level of the feature tree form a whole partition of the map (Figure
6g). The whole map includes one more feature which is the root of the tree. This
feature cannot be characterised because features are defined by comparing their edges.
With only one feature, characterisation depends only on the user’s interpretation.

3.2.3 Removal of spurious features

During the construction stage, undefined regions are aggregated to form level regions.
If the level region is a pass, it is spurious and should be removed from the feature tree.
It corresponds to the case where the level region with its neighbouring features form a
partition of their parent. For example, level region IJ and feature KL form a partition
of feature IJKL in Figure 6g. After removal, feature IJKL contains only two features
KL and J.

If the level region is a ridge or a channel, it is kept in the feature tree. If this
region has only one descendant which is of the same type (eminence or depression),
this descendant is spurious since its extent is not maximum. This occurs with features
EF and F in Figure 6g. F has been identified as a depression inside region EF which is
also itself a depression. The final feature tree after spurious feature removal is shown
in Figure 6h.

3.3 Algorithm of the whole process
The whole process, from the initial contour graph to the final feature tree is summarised
below. Algorithm 6 constructing the inter-region graph is presented in Appendix A.
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(a) Initial region graph. (b) ABCD, GH, KL and NO are obtained by merging.
Candidate regions for aggregation are passes M
and S and undefined region I.

(c) Aggregation of S and M with their leaves.
I is aggregated with the higher leaf J.

(d) RSTU is obtained by merging. RSTU, MNOPQ and
IJ are added to the feature tree. Candidate regions 
for aggregation are crater IJ and undefined region E.

(e) Aggregation of E to form the crater EF. No merging
needs to be done. EF is added to the feature tree.
Candidate regions are craters EF and IJ.

(f) IJ is aggregated with KL. EF not aggregated
because it connects higher features than IJ. 
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(h) Feature tree after removal of spurious features.(g) Feature tree at the end of aggregation process.
F and EF are both depressions so F is spurious.
IJ is a pass between KL and J and is spurious.

Figure 6: Construction of the feature tree from the inter-contour region graph of Figure
2. Grey nodes with thin outline are eminences, grey nodes with thick outlines are
depressions. White nodes with thick outline are mixed features. Figures from b to f
show the evolving states of the region graph and the feature tree during the merging
and aggregation process. Figures g and h represent the feature tree before and after
removal of spurious features.
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An alternative algorithm constructing the region graph from a DEM is presented in [1].
Output is the feature tree with features classified as peaks, ridges, pits, channels and
mixed features.

Algorithm 5 Feature tree construction

Input: a set of contour lines

Output: feature tree F

Begin

Construction of the contour graph

Construction of the inter-contour region graph R ’ algorithm 6

Set F an empty feature tree

’ Construction of the feature tree

merge(R) ’ algorithm 1

Add new features to F

While regions at last level of F do not form

a complete partition of the map

M = candidate(R) ’ algorithm 2

classify(M, Mpass, Munde f , Mlevel) ’ algorithm 3

aggregate(R, Mpass, Munde f , Mlevel) ’ algorithm 4

merge(R) ’ algorithm 1

Copy new features of R to F

End While

’ Removal of spurious features

For each feature f of F

If f is adjacent to all its sister features

Remove f from F

End If

If f is the only descendant

and belongs to the same class as its parent

Remove f from F

End If

End For

End

3.4 Feature tree simplification
Apart from the analysis of terrain morphology and its complexity, the feature tree can
also be used to perform simplification operations on the contour map, mainly deleting
features which are considered not relevant. Feature deletion may be performed based
on semantic meaning (type of feature), spatial relationships in the feature tree or geo-
metric criteria (elevation, height or spatial extent of a feature). If a feature is deleted,
all its contour lines are removed from the map. A feature can be deleted in different
ways; for example by simply deleting all its contours or by aggregating the feature with
a neighbouring feature sharing the same parent.
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Figure 7: Left: Feature tree after removing feature KL. Right: Feature tree after re-
moving feature J.

Removal can trigger two kinds of change: a change of class for ascendant features
and removal of adjacent features. Firstly, an ascendant feature which was a mixed
feature may become an eminence or a depression. This is checked by comparing the
edges of the ascendant feature with its inner contours. Secondly, if after removal the
ascendant feature contains only one feature of the same class, the smaller feature be-
comes spurious and is removed from the feature tree. Its contours are not deleted but
become inner contours of the larger feature. For example, in Figure 7 left, feature KL
was removed. Feature IJKL, which was a mixed feature, becomes a peak containing
another peak J so that J is removed from the tree.

4 Results
The algorithm was implemented in C++ with CGAL [6] used for the construction of
the contour graph. Results are presented for a set of contour lines representing a coastal
area with relatively smooth terrain below sea level and more variations for the terrain
above sea level. In Figure 8, contour lines are drawn at vertical intervals of five metres.
The digital elevation model was provided by the Hydrographic and Oceanographic
Service of the French Navy (SHOM1). The algorithm was also applied to other sets of
contours of different sizes up to a maximum of 1500 contours and 500 features. Con-
struction of the contour graph and the region graph are obtained immediately. Feature
tree construction is directly related to the number of features. As no geometric oper-
ation is performed, the data resolution or the number of points have no influence on
the result but the number of features does depend on the vertical interval between the
contours: the smaller the interval, the more precise the description of the terrain. In the
worst case tested, feature tree generation took a few seconds. The algorithm was also
tested on singular cases and is robust when adjacent contours touch at one point: since
polygons bounding the regions are not explicitly computed, occurrence of non simple
polygons does not affect the process.

4.1 Identification of morphometric features
The corresponding feature tree is presented in Figure 9. Features can be displayed at
different levels of detail. At level 1, three features are identified. These consist of the
channel in the middle of the map and the peaks on each side (Figure 10). The depth of
the feature tree is directly related to the complexity of the terrain. The node on the left
of the tree corresponds to the peak at the right hand side of the map where the terrain
is much more complicated. The tree on this side goes deeper (down to level 10) than it
does for the left hand peak, which is described in five levels of detail.

1http://www.shom.fr
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Figure 8: Contour map of a coastal area. Vertical interval is equal to five metres, the
deeper the area, the darker the colour. Thick contour line is the zero metre isobath.

During the aggregation process, features inside the left hand peak and inside the
channel are quickly aggregated together but the peak and the channel still remain as
separate features. Indeed, the channel is a candidate region for aggregation correspond-
ing to a level region but as the left peak is too big a feature, in comparison with other
features in the right hand part of the map, it cannot be aggregated with the channel be-
fore all the features inside the right hand peak are aggregated. It is also worth noticing
that some features in the right hand peak can include eminences and depressions and
not be classified as mixed features. This is because the base of the larger feature is
below or above all other inner contours.

Features at the highest level of detail correspond to features which do not contain
any smaller details and are the leaves of the tree (Figure 11). This level of repre-
sentation extracts the same features as does the contour tree presented in [13] where
multi-level representation is not considered.

4.2 Application to contour map generalisation
As mentioned in section 3.4, the feature tree can be used to perform generalisation.
Generalisation operators can be applied depending on characteristics highlighted by
the terrain features. Here, only selective omission has been applied to remove features
with their contours.

4.2.1 Reduction of complexity

The first example of simplification consists in reducing the complexity of the map
by fixing a maximum level of detail. Features located close to the root are the most
relevant as they represent the biggest features. In Figure 12, features of level 6 and
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Figure 9: Feature tree of the contour map. Black nodes: depressions, Grey nodes:
eminences, White nodes: mixed features. Numbers indicate levels.

above have been removed with their contours. The feature that was mixed in level 5
of the feature tree now appears as an eminence. Such an operation is useful to show
the spatial extent of the main features composing the landscape and provides a more
uniform distribution of features over the map.

4.2.2 Generalisation of isobathymetric lines for nautical charts

A more common operation is the removal of features which do not fit some given crite-
ria related to the purposes of the map. On a nautical chart, in order to ensure safety of
navigation, isobaths featuring underwater peaks or ridges such as reefs must be main-
tained while isobaths featuring pits may be removed from the chart. The importance
of a feature is therefore defined by its class (eminences are more important than de-
pressions), its area (features which are too small and not hazards may be removed) and
its location (underwater features which are useful for navigation must be preserved;
on land, only salient features that are visible from afar may be kept). Figures 13 and
14 illustrate this kind of generalisation where pits below sea level are removed if their
areas are smaller than a given threshold and, on land, only peaks of sufficient height
and area are kept.
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Figure 10: Features at the lowest level of details. Channel in dark grey, peaks in light
grey.

5 Conclusions and perspectives
In this paper, a new method for extracting and analysing terrain features from a contour
map is presented. This method classifies the features into eminences (peaks and ridges),
depressions (pits and channels) and mixed features. The main contribution of this
work is that the features are extracted at different levels of detail based on their spatial
relationships. Other information, such as the locations of passes, can also be extracted
from the feature tree. The method is based on the construction of a region graph where
both open and closed contours are represented and features can be delineated by several
contours.

The method is based on an iterative process which identifies features at the highest
level of detail first and moves to lower levels by aggregating regions into larger fea-
tures. Once the process is complete, a final stage is still required in order to remove
any spurious features that may appear in the tree. Feature classification is based only
on adjacency relationships from the region graph and on comparison of their heights.
No geometric criteria such as the distance between contours, the area of a region or
the steepness of a slope are used in the process, avoiding any kinds of error due to
numerical approximation or the use of any threshold parameter.

The feature tree allows easy identification of terrain features and terrain analysis
from the contour map. The number of features depends on the vertical interval between
the contours. The smaller it is, the more detailed the terrain description. However, in
rugged areas, characterisation of features at high levels may be more difficult if the
interval is too small resulting in a large number of mixed features which are noise.

Information stored in the tree can also be applied to map generalisation. An exam-
ple is presented for isobathymetric line generalisation. The interest is that some model
generalisation operations can be performed automatically. This issue is quite impor-
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Figure 11: Features at the highest level of details. Pits in dark grey, peaks in light grey.

tant in cartography as most of the existing work on contour generalisation focuses on
cartographic generalisation where only legibility and aesthetics are considered.

Other limitations are due to contour representation and the lack of information
about terrain morphology between the contour lines. Point features such as saddle
points and local terrain characteristics such as slopes and curvatures cannot be com-
puted from the contour set and represented in the feature tree. Such computation re-
quires the definition of a DEM from the contours with a sufficiently small vertical
interval. Nonetheless, contours provide a structure, the feature tree, wherein features
are organised according to their spatial relationships, and may be combined with infor-
mation extracted from the DEM. For instance, in [4], the authors make use of contours
to delineate the spatial extent of morphometric features computed on a DEM.

A first direction for future work is to achieve a more thorough feature description
for chart generalisation. Feature points extracted from a DEM or spot heights from
a topographic map can be considered to define geometric parameters (feature shape,
slope) for this purpose. Based on the classification of underwater features provided
in [12], a taxonomy of features based on their geometric, topological and contextual
information may be established. Specific generalisation constraints and operators can
be defined with consideration of terrain features. These sets of constraints and opera-
tors can be worked out at different levels: operators that apply either to the contours
or to the features [30]. Analysis of terrain features can also be undertaken to estimate
the quality of a generalisation by measuring the amount of information preserved on
different maps [2].

Second, feature trees provide a qualitative description of a landscape. They can be
used for different types of applications that relate to qualitative description of landforms
such as valleys [25], or to positioning and wayfinding such as describing or locating a
position or an itinerary from users’ representations [14]. The feature tree may be used
in both circumstances to translate numerical positions into qualitative descriptions or
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Figure 12: Reduction of map complexity. Only features from levels 1 to 5 are kept.

to locate a position from a qualitative description.

A Construction of the inter-contour region graph
This section presents the method used for constructing the inter-contour region graph
from the contour graph. A contour is defined by a polygonal line and an elevation
(Figure 15). Its neighbours are stored into two lists, one for each side of the contour
referred to as the positive and negative sides following definitions in CGAL [6]. A
region is defined by a set of contours forming its boundaries (Figure 16). The feature
type indicates if the region is a feature (peak, pit, ridge, channel) or not. Region height
is the difference in elevation between the highest and lowest of all contours in the
region. Regions are the nodes of the region graph. Each edge of the graph is stored as
a triplet formed by a contour and the two regions located on either sides of the contour
(Figure 16).

Construction of the inter-contour region graph is done recursively by visiting all
the contours of the graph. Each time a new contour is visited, the region formed by the
contour and all its contours on the side not yet visited is created (Algorithm 6).

Algorithm 6 Construction of the inter-contour region graph.

Constructor of the region graph class

Input: one contour c of the contour graph

Begin

createRegion(c, positive)

createRegion(c, negative)

End
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Figure 13: Feature selection for isobathymetric line generalisation.

Procedure createRegion(Contour, Side)

Input: one contour c and one side s (positive or negative)

Begin

Region r = New Region(c, s)
node.push(r)
For each b of r.boundary

If b 6= c
z = b.getSideOf(c)
createRegion(b, −z)

End If

End For

End
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