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Abstract: Noise filtering, data predicting, and unmonitored data interpolating are important to
dam deformation data analysis. However, traditional methods generally process single point
monitoring data separately, without considering the spatial correlation between points. In this
paper, the Space-Time Kalman Filter (STKF), a dynamic spatio-temporal filtering model, is used as
a spatio-temporal data analysis method for dam deformation. There were three main steps in the
method applied in this paper. The first step was to determine the Kriging spatial fields based on the
characteristics of dam deformation. Next, the observation noise covariance, system noise covariance,
the initial mean vector state, and its covariance were estimated using the Expectation Maximization
algorithm (EM algorithm) in the second step. In the third step, we filtered the observation noise,
interpolated the whole dam unmonitored data in space and time domains, and predicted the
deformation for the whole dam using the Kalman filter recursion algorithm. The simulation data
and Wuqiangxi dam deformation monitoring data were used to verify the STKF method. The results
show that the STKF not only can filter the deformation data noise in both the temporal and spatial
domain effectively, but also can interpolate and predict the deformation for the whole dam.

Keywords: Space-Time Kalman filter; dam deformation; Kriging interpolation; spatio-temporal
interpolation and prediction

1. Introduction

Water pressure, temperature, geological condition, construction quality, and other causes
bring structural damage to dams, threatening the life of people living in the surrounding area.
Dam deformation monitoring and its data processing are effective ways to assess dam safety and avoid
possible dam failures [1]. Kalman filter, an effective data processing method for dynamic systems,
has been widely used in deformation monitoring data processing [2,3], and improved Kalman filter
methods, such as the Kalman filter for colored measurement noise and the robust Kalman filter, have
been developed for deformation data analysis [4–6]. However, all these applications are based on
single point monitoring data series, without considering the spatial correlation between monitoring
points. So in some sense, neither the standard nor the improved Kalman filters suit the data analysis of
dam deformation, which should be considered as a whole deformation body [7,8]. Furthermore,
with the development of modern deformation monitoring technologies, such as Interferometric
Synthetic Aperture Radar (InSAR), the observed deformation data can provide more spatio-temporal
characteristics of deformation bodies. As such, it is imperative that new data analysis methods are
developed to process the deformation data of all monitoring sites as a whole deformation body in both
space and time domains.
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The Space-Time Kalman Filter (STKF), proposed in the 1990s [9–12], is a spatio-temporal data
processing method combining the Kalman filter and geostatistics models. The commonly used
geostatistics model is the Kriging model, so the STKF is also called the Kriged Kalman Filter
(KKF) [12]. To overcome the difficulties caused by large datasets and the modeling of spatio-temporal
interactions in KKF, a dimension-reduced STKF was developed [13,14]. Distributed Kriged Kalman
Filter (DKKF) [15] and Bayesian Kriged Kalman Filter (BKKF) [16–18] were proposed later. Current
applications of STKF mainly focus on environmental issues. Mardia et al. (1998) employed KKF
in dealing with the distribution of Sulphur dioxide in Leeds [12]. Wikle et al. (1999) validated the
STKF model with a dataset of near-surface tropical winds [13]. Sahu et al. (2005) applied STKF
to model atmospheric particulate distribution in New York in the USA and made a short-term
prediction [16]. Lasinio et al. (2005) established a spatio-temporal rainfall model which includes
seasonality and covariates based BKKF [17]. Al-Awadhi et al. (2012) used regression and BKKF
to predict average hourly concentration of non-methane hydrocarbons in unmonitored areas of
Kuwait [18]. Qing et al. (2012) adopted BKKF for short-term wind speed predictions [19]. However,
STKF is quite rarely used in deformation data analysis. As such, this paper brings the STKF to the
deformation analysis of dam.

In this paper, we first introduce the mathematical model of STKF. Then, the methods and
algorithms to determine the Kriging spatial fields and parameters of STKF for the dam deformation
data analysis are presented in detail. Then, we apply a STKF model to filter the noise, interpolate
deformation data for the whole dam both in space and time domains, and make a short-term prediction.
Finally, experiments with simulation data and real dam horizontal displacement monitoring data are
conducted to verify the STKF model.

2. Space-Time Kalman Filter Model

In this part, the mathematical model of STKF is introduced in Section 2.1. Section 2.2 shows how
to construct the spatial fields of STKF using the Kriging model. In Section 2.3, we discuss briefly the
Expectation Maximization algorithm (EM algorithm) for parameter estimation. In the last section,
we review the Kalman Filter recursion steps and methods of interpolating and predicting deformation
in space and time.

2.1. Mathematical Model

Given location points {s = s1, s2, . . . , sn} and time points {t = 1, 2, . . . , m}, observation value
Lt (s) can be decomposed into mean and observed error components [14]:

Lt (s) = Yt (s) + εt (s), (1)

where εt (s) is the observed error components and Yt (s) is the mean component. Yt (s) can be expressed
as a time-varying linear combination α (t) (p× 1) of spatial fields h (s) (p× 1) [12], which can be
written as

Yt (s) = h1 (s) α1 (t) + h2 (s) α2 (t) + · · ·+ hp (s) αp (t) = h (s)T α (t), (2)

where (∗)T is the transpose operator and the vector α (t) is the state for Yt (s), representing the dynamic
time components. Generally speaking, p� n, so the number of p is the key to reduce the dimension
of the space domain.

Writing H =
[
h (s1)

T ; h (s2)
T ; . . . ; h (sn)

T
]
, Lt = [Lt (s1) , Lt (s2) , . . . , Lt (sn)]

T , and

εt = [εt (s1) , εt (s2) , . . . , εt (sn)]
T , the substitution of (2) into (1) gives the observation Equation (3)

of STKF.
Lt = Hα (t) + εt (3)
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The state equation can be shown by

α (t) = Φα (t− 1) + η (t), (4)

where Φ is the state transition matrix, η (t) is the system error at time t. Suppose εt ∼ N (0, Σε),
η (t) ∼ N

(
0, Ση

)
, where N (∗, ∗) is the normal distribution operator, Σε is the observation noise

covariance and Ση is the system noise covariance.
Equations (3) and (4) form the STKF model. According to the model, matrices H, Φ, Σε, Ση and

the initial state α (0) ∼ N
(

â0|0, P0|0

)
are essential to implement the STKF recursion. The spatial fields

H are built by spatial Kriging fields which is the key to take spatial correlation into consideration.
Parameter θ =

{
â0|0, P0|0, Φ, Σε, Ση

}
can be estimated by the EM algorithm. In the following sections,

we will present the method to obtain these matrices in detail.

2.2. Spatial Fields H

Spatial fields H are built by spatial Kriging model. At time point t the universal Kriging model is
as follows:

Yt (s) = fT (s) βt + ςt (s), (5)

where f (s) =
[

f1 (s) , f2 (s) , .. fq (s)
]T is the given space trend fields, whose elements are a function

of the coordinate of s. Commonly used space trend fields are constant, linear and quadratic trends.
The subscript q is determined by the chosen trend. βt is the coefficient of f (s), and ςt (s) is the local
space variation after removing space trend. Assume ςt (s) is stationary, and it can be described by
the spatial covariance (or semi-variogram) model [14,16]. An empirical semi-variogram model can be
obtained from the observations to describe ςt (s). First, calculate the detrended data Dt at time point t
by ordinary least squares,

Dt = Yt − F(FT F)
−1

FTYt, (6)

where (∗)−1 is the inverse operator, Dt = [Dt (s1) , Dt (s2) , . . . , Dt (sn)]
T , Yt =

[Yt (s1) , Yt (s2) , . . . , Yt (sn)]
T , and F =

[
f (s1)

T ; f (s2)
T ; . . . ; f (sn)

T
]

is the chosen trend matrix.
Here, assuming F does not change with time, the empirical semi-variogram can be estimated by
average semi-variogram,

γ̂ (d) =
1

2m

m

∑
t=1

[Dt (s)− Dt (s + d)]2, (7)

where ∑∗∗ (∗) is the sum operator. Choose a semi-variogram model to fit γ̂ (d), and spatial covariance
can be obtained by σς

(
si, sj

)
= C− γ̂

(
‖si − sj‖

)
, where C is the sill value of semi-variogram model

and ‖ ∗ ‖ is the distance operator.
After choosing the space trend fields and fixing the semi-variogram function, the Kriging predictor

can be written as follows [20,21]:

Ŷt (s) = f (s)T AYt + σς (s)
T BYt, (8)

where σς (s) = [σς (s, s1) , σς (s, s2) , . . . , σς (s, sn)]
T . Matrices A and B have the fixed form as

A =
(

FTΣ−1
ς F

)−1
FTΣ−1

ς , (9)

B = Σ−1
ς − Σ−1

ς FA, (10)

where Σς is a spatial covariance matrix with (Σς)ij = σς

(
si, sj

)
, and B is known as the bending energy

matrix [12,22], which is used to describe the scale of local space variation after removing space trend.
For dimension reduction, consider the spectral decomposition of matrix B,
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B = UDUT , Bui = diui, (11)

where columns of U = [u1, u2, . . . , un] are eigenvectors of B, and diagonal elements of
D = diag (d1, d2, .., dn) are corresponding eigenvalues, and diag (∗) is the diagonal matrix operator.
It is easy to verify that BF = 0, which means columns of F can be thought as the eigenvectors of B with
corresponding zero eigenvalues d1, d2, .., dq. Obviously, smaller eigenvalues show larger scale space
variations, while larger eigenvalues describe the local spatial variations [16].

The eigenvectors ui form a set of orthogonal basis, so the mean vector Yt can be represented as
a linear combination of the eigenvectors ui. Indeed, suppose that Yt = ∑n

i=1 ci,t ui, β̂t = AYt and
Equation (8) can be rewritten as

Ŷt (s) = f (s)T β̂t +
n

∑
i=q+1

ci,tdiσς (s)
T ui = h (s)T

[
β̂t

ct

]
(12)

where ct =
[
cq+1,t, .., cn,t

]T . If n is very large, we only take the first p space variations to reduce
dimension, which results spatial fields in the form of dimensionality reduction (13). Parameter p can be
obtained while the ratio e = ∑

p
i=1 di/ ∑n

i=1 di exceeds a certain percentage (usually 90% or 95%) [18],
which explains the proportion that the selected spatial variations take in the total spatial variation.

hi (s) = fi (s) , for i = 1, 2, . . . , q
hj (s) = djσς (s)

T uj, for j = q + 1, . . . , p
(13)

It is worth noting that hi (s) = fi (s) is the trend field used to describe the global trend.
hj (s) = djσς (s)

T uj is the principal field used to grasp local spatial variation. If ignoring the principal
field, STKF will reduce to a spatio-temporal trend surface model [16], and if continuously taking
hi (s) = fi (s) = 1, STKF will reduce to a standard Kalman model. Also, if only taking observation
equation of STKF into consideration, STKF will reduce to a universal Kriging model.

2.3. Parameters Estimation

The maximum likelihood estimation (MLE) is an effective way to estimate parameter
θ =

{
â0|0, P0|0, Φ, Σε, Ση

}
. However, from the logarithm of joint likelihood function (14), we cannot

maximize directly the logarithm of joint likelihood function log (l) because of the unknown distribution
of state vector α(t).

log(l) = − 1
2 log

∣∣∣P0|0

∣∣∣− 1
2 (α (0)− α̂0|0)

T P−1
0|0 (α (0)− α̂0|0)

−m
2 log

∣∣∣Ση

∣∣∣− 1
2 ∑m

t=1 (α (t)−Φα (t− 1))TΣ−1
η (α (t)−Φα (t− 1))

−m
2 log

∣∣∣Σε

∣∣∣− 1
2 ∑m

t=1 (Lt − Hα (t))TΣ−1
ε (Lt − Hα(t))

, (14)

where |∗| is the determinant operator and log (∗) is the logarithm operator.
The EM algorithm provides an iterative method to maximize log (l), which consists of Expectation

Step (E step) and Maximization Step (M step) [23]. Suppose it is in the (r + 1) th iteration, then the
main steps of EM algorithm are as follows:

1. Use Kalman smoother to estimate the unknown state parameter α (t) with respect to the (r) th
iterated value θr.

2. E step: calculate the conditional expectation G (θr) = E(log (l)|L1, L2, .., Lm) of log (l) under the
estimated α (t) distribution in step 1, where E (∗) is the expectation operator.

3. M step: maximize G (θr), which yields the newly iterated value θr+1.
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4. Replace θr with θr+1, and repeat steps 1, 2, and 3 until the logarithm of joint likelihood function
log (l) or the innovations form [23] stop increasing.

2.4. Denoising, Space-Time Interpolation, and Prediction

As matrix H and parameter θ are estimated, Kalman filter recursion can be conducted. It should
be noted that the STKF model needs no preprocessing, such as the interpolation of missing data,
which can be dynamically calculated while filtering the noise. Suppose at time point t, the observation
equation is as follows: (

L1
t

L2
t

)
=

(
H1

H2

)
α (t) +

(
ε1

t
ε2

t

)
, (15)

where L1
t , H1, and ε1

t are the observed data, spatial fields, and errors of observed data, respectively,
and L2

t , H2, and ε2
t are the missing data, spatial fields, and errors of missing data, respectively. In order

to implement Kalman recursion, setting L2
t and H2

t to zero matrix [23], the estimation of α (t) can be
obtained by

α̂t|t = E (α (t)|L1, L2, . . . , Lt)

= α̂t|t−1 + Gt

(
Lt − Hα̂t|t−1

) , (16)

and its mean-squared-prediction-error matrix

Pt|t = E[
(

α̂t|t − α (t)
) (

α̂t|t − α (t)
)T

]

= Pt|t−1 − GtHPt|t−1

, (17)

where the Kalman gain matrix Gt is given by

Gt = Pt|t−1HT
(

HPt|t−1HT + Σε

)−1
. (18)

The one-step-ahead-forecast quantities are given by

α̂t|t−1 = Φα̂t−1|t−1, (19)

Pt|t−1 = ΦPt−1|t−1ΦT + Ση . (20)

Short-term prediction involves optimal prediction of Yt (s) from L1, L2, . . . , Lm, where
tε {m + 1, m + 2, . . .}. Based on the one-step-ahead-forecast Equations (19) and (20), the optimal
prediction estimator α̂t|m of α (t) is

α̂t|m = E (α (t)|L1, L2, . . . , Lm) = (
t

∏
i=m+1

Φ)α̂m|m, (21)

with its mean-squared-prediction-error matrix

Pt|m =

(
t

∏
i=m+1

Φ
)

Pm|m

(
t

∏
i=m+1

Φ
)T

+ Ση

+
t−1
∑

i=m+1


(

t
∏

j=m+1
Φ

)
Ση

(
t

∏
j=m+1

Φ

)T


(22)

where Π is the multiplication operator. The optimal prediction of Yt (s) can be calculated by
Ŷt (s) = h (s)T α̂t|m.
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After obtaining α̂t|t, the optimal estimator of Yt (s) at any location point s and time point t of
interest can be calculated by

Ŷt (s) = h (s)T α̂t|t, (23)

where h (s) can be calculated by Equation (13).
Lastly, a flow diagram of the overall procedure of STKF is displayed in Figure 1.
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3. Simulation Experiment

To simulate the horizontal displacement observation data of a dam, we assumed that the
horizontal displacement has a quadratic curve trend in space and it changes in a sinusoidal trend in
time. The horizontal displacement of a dam in space and time can be described by

g (s, t) =
(

0.0013s2 − 0.04s− 2.7
)

sin
(

0.005πt2 − 0.00125π
)
+ ε. (24)

In Equation (24), g is the displacement, s is the position of the monitoring points on the dam, t is the
time, and ε is the observation noise with a standard deviation of 0.1 mm. Suppose s = 0 (m) + 20k (m),
k = 0, 1, 2, . . . , 22, for 23 points in total, and t = 1 (day) + 1j (day) , j = 0, 1, 2, . . . , 2900, then the
horizontal displacement data series (1 day sampling rate) of 23 monitoring points have been simulated.

As mentioned in Section 2.2, in order to acquire the spatial fields H, we had to first get the
trend matrix F. Since the simulation experiment constructs a known space-time curve, the trend field
is known as F =

[
s2, s, 1

]
. To get the principal fields, it was necessary to choose a suitable spatial

semi-variogram model. Commonly used models are the exponential model, Gaussian model, spherical
model, and Matèrn family model [20,21]. We chose the spherical model in this experiment as it can
maximally show the spatial variation and is the most widely used spatial semi-variogram model [24].
The rest parameter θ =

{
â0|0, P0|0, Φ, Σε, Ση

}
was estimated by the EM algorithm, which is described

in Section 2.3.
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In the simulation experiment, we used all data to filter the noise firstly. Secondly, in order to
verify the effectiveness of the spatio-temporal interpolation using STKF, we randomly sampled one
point as the unobserved data, the rest points as the observed data to establish a model and use the
established model to interpolate the unobserved displacement. We repeated the sampling process
until all monitoring points were interpolated. The interpolation results are shown in Figure 2. Lastly,
we predicted three days of horizontal displacement for all points using STKF. The statistic results of
filtering, interpolation, and prediction are shown in Table 1 followed by the statistic model of RMS1:

RMS1 =

√√√√ N

∑
i=1

(Ŷi − Ri)
2/N (25)

where Ŷi is the estimated value, Ri is the true value, and N is the number of Ŷi.
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Figure 2. Interpolation of the 23 points.

Table 1. RMS1 of Interpolation, Filter, and Prediction of each point (unit: mm). Interp, Interpolation;
Pred, Prediction.

Site Interp Filter Pred Site Interp Filter Pred Site Interp Filter Pred

1 0.019 0.022 0.030 9 0.039 0.043 0.059 17 0.014 0.019 0.038
2 0.024 0.025 0.056 10 0.037 0.037 0.073 18 0.009 0.017 0.029
3 0.026 0.029 0.051 11 0.036 0.036 0.077 19 0.004 0.012 0.003
4 0.030 0.032 0.055 12 0.034 0.034 0.068 20 0.008 0.013 0.008
5 0.033 0.035 0.061 13 0.031 0.032 0.064 21 0.015 0.017 0.033
6 0.035 0.035 0.081 14 0.028 0.029 0.055 22 0.023 0.025 0.040
7 0.037 0.037 0.091 15 0.024 0.027 0.042 23 0.032 0.034 0.057
8 0.037 0.037 0.072 16 0.019 0.022 0.038

As Figure 2 shows, the interpolated values coincided with the observed values. As such, we
can say that the STKF can well interpolate the point data without monitoring. As listed in Table 1,
the interpolation and filter RMS1 was about 0.03 mm, which had been reduced by about 70% compared
with the noise whose standard deviation was 0.1 mm. The interpolation result and filter result were
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very close, which may be due to the fact that we used a very exact trend matrix. For the prediction
result, the prediction accuracy was lower than that of filter and interpolation. Its RMS was around
0.05 mm with the maximum value of 0.091 mm, which was close to the standard deviation of 0.1 mm.

4. Application

4.1. Description of Wuqiangxi Dam Tension Wire Alignment Data

The real horizontal displacement data came from Wuqiangxi Dam tension wire alignment.
Wuqiangxi Dam, located in the main stream of Yuan River in the Yuanling County of Hunan Province,
was built in 1994. The dam is a concrete gravity dam with a horizontal length of 724.4 m, a crest
height of 85.8 m, and a maximum water reservoir volume of 4.29 × 109 m3. The left side of the
dam is a generator set with a power of 1.2× 106 KW and the right side of the dam is a navigation
lock. The foundation of this dam can be divided into four types: sandstone, quartzite, slate, and
phyllitic slate. This dam is equipped with the automatic monitoring system of wire alignment,
inverted plumbline, hydrostatic levelling, seepage monitoring, uplift pressure monitoring, and water
level measuring system [25]. The Wuqiangxi Dam contains two tension wire alignments, EX1 and
EX2. We selected the EX2 tension wire alignment data in the experiment, which are composed of
23 measuring points and their unidimensional position information, with their original points lying in
the far left of the EX2 tension wire alignment, as presented in Table 2. The displacement data contains
2233 daily observations from 1 July 2004 to 11 August 2010. Figure 3 shows the distribution of the
tension wire alignment sites. In our experiment, displacement data of EX2_09, EX2_22, and EX2_23
were excluded due to their poor quality. Figure 4a shows the displacement sequences of all selected
points. From Figure 4a, we can conclude that the displacement data has significant seasonal trends in
the time domain. In order to extract more information from the observation data, Figure 4b shows
the amplification of the displacement data of EX2_21 point. There was a gross error that occurred in
the time surrounding the 100th day that resulted in some missing data of varying lengths during the
whole displacement sequence.

Table 2. Position information of EX2 tension wire alignment measuring points (unit: m).

Site Position Site Position Site Position Site Position

EX2_1 0.5 EX2_2 17.1 EX2_3 41.6 EX2_4 61.1
EX2_5 81.6 EX2_6 97.1 EX2_7 115.6 EX2_8 134.1
EX2_10 168.6 EX2_11 184.1 EX2_12 205.6 EX2_13 230.2
EX2_14 254.7 EX2_15 279.2 EX2_16 286.2 EX2_17 303.7
EX2_18 329.2 EX2_19 353.7 EX2_20 378.2 EX2_21 402.7
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Figure 4. Displacement sequences. (a) Displacement sequence of the 20 points; (b) Displacement
sequence of EX2_21.

4.2. Filtering, Spatiotemporal Interpolation, and Prediction

In this experiment, displacement data before 8 August 2010 were used for filtering and
interpolation. Displacement data from 9–11 August 2010 were used to verify the prediction
effectiveness. Similar to the simulation experiment, we used the STKF to filter the observed data firstly.
Secondly, in order to check the effectiveness of spatio-temporal interpolation using STKF, we chose
19 points as observation points, and the rest point as a check point. We Repeated the process until
all the points were interpolated. Thirdly, we predicted three days’ displacement of all 20 points to
check the effectiveness of the spatio-temporal prediction of STKF. Lastly, the whole dam horizontal
displacement in spatio-temporal domain was interpolated to view its spatio-temporal variation, and
the three days of horizontal displacement prediction for the whole dam was also included. According
to the flow diagram of STKF, we randomly chose data from the 700th, 1300th, and 1600th day of dam
horizontal displacement in the analysis to select space trend firstly.

Figure 5 shows that the horizontal displacement data had a linear trend, so the chosen trend
matrix was F = [s, 1]. Similar to the simulation experiment, a spherical semi-variogram model was also
chosen to describe the local spatial variation. As the parameter θ of STKF was fixed, spatio-temporal
filtering series, spatio-temporal interpolated series, and spatio-temporal prediction values could be
obtained by implementing the STKF recursion part in Section 2.4. Figure 6a plots filtered time-series of
all points and the EX2_21 point’s filtering result is enlarged in Figure 6b. Figure 7a shows interpolated
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time-series of all points and the EX2_21 point’s interpolated result is enlarged in Figure 7b. For the
purpose of comparing the filtering result and the interpolated result, EX2_21 point’s filtering result is
also displayed in Figure 7b. Table 3 shows statistic results of filtering, interpolation, and prediction.
The statistic model of RMS2 is as follows:

RMS2 =

√√√√ N

∑
i=1

(Ŷi −Oi)
2/N (26)

where Ŷi is the estimated value, Oi is the observed value, and N is the number of Ŷi.ISPRS Int. J. Geo-Inf. 2016, 5, 236  9 of 14 
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Figure 5. Displacement data on the 700th, 1300th, and 1600th day.
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Figure 6. Filter and interpolated missing data results. (a) Filter and interpolated missing data results of
all points; (b) Filter and interpolated missing data results of EX2_21.
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Figure 7. Interpolated time series. (a) Interpolation of all points; (b) Filter and interpolation results
of EX2_21.

As Figure 6 shows, the STKF is fairly reliable in filtering the observation points. The result
not only reduces the observation error of the series, but also maintains the detailed altitude change.
There are big jumps on the 100th day, as shown in Figure 6b, which may have been caused by some
instrumental malfunctions on that day. We consider these as gross errors and STKF can reduce their
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effects significantly. Ellipse in Figure 6b shows the interpolated missing data by spatio-temporal
interpolation. The interpolated missing data results can connect with the filter results very well, so we
can conclude that the STKF is a suitable method to interpolate the missing data.

In Figure 7a, the interpolated time-series plot coincides with the original time-series plot except
for some points with peak values, such as EX2-05, EX2-06, EX2-07, EX2-08, and EX2-21. In Figure 7b,
there is a small difference between the results of the 200th day, 800th day, and 1300th day. However, in
EX2-11, EX2-12, EX2-13, EX2-14, EX2-15, and so on, the interpolated results perform very well even for
the peak values. A possible reason of this fact could be that the chosen trend matrix is not very accurate,
and the semi-variogram model cannot describe all the residual spatial variations. From Table 3, we can
see that the filter RMS2, interpolation RMS2, and prediction RMS2 are about 0.1 mm, 0.5 mm and
0.8 mm, respectively. The largest prediction RMS2 is up to 1.14 mm in EX2_14, which suggests that the
STKF model still has a high prediction accuracy. The larger interpolation RMS2 occurs in EX2_6 and
EX2_7, which is up to 1.12 mm and 1.67 mm, due to the slightly poor performance in peak values.

After verifying the effectiveness of spatio-temporal interpolation and prediction based STKF,
the whole dam deformation in spatio-temporal domain can be interpolated and a short-term
spatio-temporal prediction for the whole dam can also be predicted. Figure 8 shows interpolated
horizontal displacement of the whole dam in the spatio-temporal domain. We equally chose 20 days
of interpolated displacement results of the whole dam between the 420th (24 August 2005) day and
the 1000th (17 March 2007) day to view the spatio-temporal variation, which is shown in Figure 9.
Figure 10 shows the 3 days of prediction results for the whole dam horizontal displacement.

Table 3. RMS2 Filter, Interpolation, and Prediction of each point (unit: mm). Interp, Interpolation;
Pred, Prediction.

Site Filter Pred Interp Site Filter Pred Interp

EX2_1 0.05 0.43 0.45 EX2_12 0.16 1.07 0.52
EX2_2 0.05 0.09 0.15 EX2_13 0.18 1.07 0.32
EX2_3 0.08 0.43 0.29 EX2_14 0.18 1.14 0.45
EX2_4 0.12 0.38 0.41 EX2_15 0.12 1.06 0.2
EX2_5 0.11 0.91 0.84 EX2_16 0.12 1.05 0.19
EX2_6 0.11 0.31 1.12 EX2_17 0.12 0.31 0.53
EX2_7 0.11 0.84 1.67 EX2_18 0.2 0.70 0.74
EX2_8 0.09 0.44 0.76 EX2_19 0.22 0.58 0.4

EX2_10 0.15 0.66 0.66 EX2_20 0.23 0.41 0.42
EX2_11 0.12 0.93 0.28 EX2_21 0.21 0.53 0.92
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In Figures 8 and 9, the horizontal displacement of the dam shows ‘ascend-descend’ periodic
variation in the time domain. Some missing data appears on days 20 June 2006 and 17 November 2006,
and all data on day 16 September 2006 is completely missed. There is an interesting phenomenon in that
the interpolated results for the missing area are repeatedly similar to the results of the same area in the
next subfigure. For example, the missing data interpolation results of 20 June 2006 and 18 September
2006 are very similar to that of 20 July 2006 and 18 September 2006, respectively. This indicates that
the interpolated result is not only affected by its surrounding measuring points in the spatial domain,
but also by its surrounding data in the temporal domain. In Figure 10, the short-term prediction result
agrees with the original data, but its statistic result of the RMS2 model seems to be larger along with
the length of the backward prediction. This suggests that the prediction result may be inaccurate for
long-term prediction.
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5. Conclusions

This paper applied the STKF model, which combines Kalman filter and Kriging model, to analyze
dam deformation data. All points are processed together, and the dam deformation is analyzed as a
whole. From the experiments with simulation data and Wuqiangxi Dam tension wire data, we can
infer that STKF not only can filter the deformation data noise and predict the deformation of the points
effectively both in the temporal domain and spatial domain, but it can also interpolate missing data or
date for any position of the dam no matter where the monitoring point is located, which cannot be
achieved by the single point Kalman Filter method, because it does not consider the spatial correlation.
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