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Abstract5

In this paper we solve the Vehicle Routing Problem with Lunch Break (VRPLB)

which arises when drivers must take pauses during their shift, for example,

for lunch breaks. Driver breaks have already been considered in long haul

transportation when drivers must rest during their travel, but the underlying

optimization problem remains difficult and few contributions can be found for10

less than truckload and last mile distribution contexts. This problem, which

appears in the furniture delivery industry, includes rich features such as time

windows and heterogeneous vehicles. In this paper we evaluate the performance

of a new mathematical formulation for the VRPLB and of a fast and high

performing heuristic. The mixed integer linear programming formulation has15

the disadvantage of roughly doubling the number of nodes, and thus significantly

increasing the size of the distance matrix and the number of variables. Consequently,

standard branch-and-bound algorithms are only capable of solving small-sized

instances. In order to tackle large instances provided by an industrial partner,

we propose a fast multi-start randomized local search heuristic tailored for the20

1



VRPLB, which is shown to be very efficient. Through a series of computational

experiments, we show that solving the VRPLB without explicitly considering the

pauses during the optimization process can lead to a number of infeasibilities.

These results demonstrate the importance of integrating drivers pauses in the

resolution process.5

Keywords: vehicle routing problem with lunch break; time windows; heterogeneous fleet; pauses;

exact formulation; multi-start local search.

1 Introduction

In this paper we introduce, model and solve a rich vehicle routing problem with lunch break (VRPLB)

proposed by an industrial partner dealing with furniture delivery. This pause scheduling problem10

arises, e.g., in retail delivery, parcel and mail delivery, waste collection, and home blood sampling

collection [5, 17, 24]. In the VRPLB, drivers must make a pause during their shift to respect the law,

union rules, and/or company regulations. The VRPLB is a generalization of several classes of the

well-known VRP [18], notably the VRP with time windows in which each node must be visited within

a certain time interval. In our context, not only customers have time windows, but for each15

vehicle route a pause must also be taken within an interval. Since its location is unknown a priori

one cannot simply add pause nodes to the problem, as the distances between customers must remain

unchanged. Moreover, one does not know a priori how many pauses will be needed, as the numbrer

of routes is typically a decision variable.

Pauses are often seen in long-haul transportation when drivers are required to stop and rest after a20

given number of driving hours to avoid excessively long working shifts [4, 11, 12, 13, 14, 15, 31]. In

last mile distribution, pauses are also present, for example, when drivers have time allotted for lunch

breaks. Also, when many customers must be visited, the timing of the pauses highly

affects the feasibility of the solution with respect to their time windows, whereas in long

haul transportation, with only one customer to be visited by a full truckload delivery,25

the position of the pause does not impact the arrival time.

Although very practical, the literature on VRPLB is rather scarce, and we are aware of only two papers

modeling it exactly [7, 25]. Buhrkal et al. [7] add binary variables indicating whether the pause was

taken between a visit of two consecutive nodes in the trip, whereas Sahoo et al. [25] model it by adding
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a single lunch break to the problem by means of a single dummy node which is then linked to all other

location nodes. Nevertheless, neither Buhrkal et al. [7] nor Sahoo et al. [25] used their models in the

optimization phase, relying on heuristics, so the performance of these models is still unknown. Finally,

Vidal et al. [32] work in the context of a unified framework based on genetic operators to solve the

VRPLB and other rich VRP problems heuristically without proposing a mathematical model.5

Regarding industrial applications of the VRP, only a few works report results based on real cases and

even fewer report industrial implementations. Among them, the food and soft-drink industries are the

most prominent [16, 21, 27, 28]. Other applications arise in different industries, including lubricating

oil distribution [23, 29], waste collection [5, 17], industrial gases [9, 10], petroleum products [3, 6],

and cash [30]. However, even if these articles deal with real applications, drivers pauses were not10

considered in an exact and extensive fashion.

Our study is motivated by the request of an industrial partner facing this problem. Thus, we model,

solve exactly and evaluate drivers pauses as a real-world constraint, and we compare the solutions

of an exact algorithm with those of our fast heuristic. Despite a large body of research on VRPs,

many industrial applications remain open and in some cases can only be handled with heuristics,15

due to the lack of a mathematical formulation and algorithms capable of handling them. One of

these constraints is related to drivers pauses. Notwithstanding, thousands of miles of drivers routes

are planned every day. In practice, routes are often planned disregarding the pause, which is later

inserted into the final solution, yielding a poor approximation. This strategy can be applied for

problems in which the pause separates two delivery periods, similar to a multi-period problem [1].20

However, in a short planning horizon such as daily delivery in which our problem is defined, the pause

does not lead to a multi-period problem. In fact, this strategy does not suit the retail industry where

many customer deliveries should be done within some (tight) time windows and where service quality

is highly important. In that context the timing of the pause becomes crucial.

The main contributions of this paper lie in formulating the problem as a mixed-integer linear programming25

model, considering time windows and driver pauses without the need for specific pause variables as in

Buhrkal et al. [7] and Sahoo et al. [25]; in developing a fast and efficient multi-start randomized local

search heuristic capable of handling this and other practical constraints; and finally in demonstrating

through computational experiments the potential drawbacks of solving distribution problems with

time windows without explicitly considering drivers pauses.30

The remainder of this paper is organized as follows. In Section 2 we formally describe the VRPLB.

In Section 3 we propose a mixed-integer linear programming formulation to model the VRPLB. The
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description of our multi-start heuristic is presented in Section 4, which is followed by the computational

experiments in Section 5. Conclusions are presented in Section 6.

2 Description of the problem

The VRPLB is defined on a directed graph G = (V,A), where V = {0, . . . , n+ 1} is the vertex set and

A is the arc set. Vertices 0 and n+1 correspond to two copies of the depot, while the remaining vertices5

of V ′ = {1, . . . , n} represent the customers requesting a delivery. Each arc (i, j) ∈ A is associated

with a travel distance dij and a travel time lij . Each customer i is associated with a service time Si,

a delivery weight wi, and a delivery volume vi. The service of a customer i must start within a time

window [ai, bi]. We assume that all time windows are feasible, i.e., all customers can be reached from

the depot within their time windows.10

A heterogeneous fleet of K vehicles is located at the depot. Each vehicle k is associated with a volume

capacity Vk and a weight capacity Wk. Vehicles routes must begin between [a0, b0] and must end

before bn+1 and, within these limits, each route must respect a maximum working time Lk. Vehicles

are allowed to wait between two customers, and a lunch period lasting Sp units of time must be

scheduled to start between [ap, bp] in each route. We assume pauses are made at a customer location,15

as is the case of our industrial partner. In this context, the goal is to minimize the total length of the

routes in terms of traveling distance.

3 Mathematical formulation

Since drivers’ pauses can be taken at a customer site right after the service has been completed, or

at a customer site just before starting the service, distances from the pauses’ sites to the customers20

locations need to consider both cases. Without loss of generality, in our model we assume

that pauses are taken immediately after visiting a customer. However, the actual pause

can be taken anywhere along the route, as long as it happens before the next visit, and

the solution will remain the same. We provide in Sections 3.1 and 3.2 a detailed description of

the transformations required to account for a pause in each route, and in Section 3.3 a mathematical25

formulation for the VRPLB.
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3.1 Extended distance matrix

Consider an instance with n customers, and its distance matrix dij defined over A. The distance

matrix dij contains n+ 2 rows and n+ 2 columns. In order to account for pause and time windows,

we will work with an extended distance matrix d
′

ij containing 2n+ 4 rows and columns. For notation

purposes, we define a new set W containing all nodes of V ∪ {n + 2, . . . , 2n + 3}. In the extended5

distance matrix d
′

ij , indices n+ 2 to 2n+ 2 refer to pause nodes, one for each original node, and node

2n+ 3 indicates the depot.

d
′

ij =



d00 d01 · · · d0,n+1 d0,n+2 d0,n+3 · · · d0,2n+2 d0,2n+3

d10 d11 · · · d1n+1 d1,n+2 d1,n+3 · · · d1,2n+2 d1,2n+3

...
...

. . .
...

...
...

. . .
...

...

dn+1,0 dn+1,1 · · · dn+1,n+1 dn+1,n+2 dn+1,n+3 · · · dn+1,2n+2 dn+1,2n+3

dn+2,0 dn+2,1 · · · dn+2,n+1 dn+2,n+2 dn+2,n+3 · · · dn+2,2n+2 dn+2,2n+3

dn+3,0 dn+3,1 · · · dn+3,n+1 dn+3,n+2 dn+3,n+3 · · · dn+3,2n+2 dn+3,2n+3

...
...

. . .
...

...
...

. . .
...

...

d2n+2,0 d2n+2,1 · · · d2n+2,n+1 d2n+2,n+2 d2n+2,n+3 · · · d2n+2,2n+2 d2n+2,2n+3

d2n+3,0 d2n+3,1 · · · d2n+3,n+1 d2n+3,n+2 d2n+3,n+3 · · · d2n+3,2n+2 d2n+3,2n+3



A1 A2 A5

A3 A4 A6

A7

Obviously, the upper-left part of matrix d
′

ij , identified as A1, corresponds to dij :

d
′

ij = dij i, j ∈ V. (1)

In order to model the problem, one needs to represent each location as two different nodes to adequately10

account for pauses. The reason is that there is no cost related to traveling to a pause location, but we

must keep track of the last node visited before the pause in order to compute the appropriate distance

to the next node after the pause. Thus, node n + 2 models a pause made immediately after leaving

the depot (node 0); node n + 3 models a pause made immediately after visiting node 1, until node

2n + 2 which represents a pause taken immediately after visiting node n. Since there is no cost for15

traveling to the pause, distances in the submatrix A2 of d
′

ij are modeled as follows:

5



d
′

ij =

0 if j = i+ n+ 2

∞ otherwise

i ∈ V j ∈ W\ (V ∪ {2n+ 3}) . (2)

Then, one needs to model the distance from each pause node back to each customer i ∈ V. If the

vehicle visits the pause node associated with customer i, it cannot go back to i, thus the associated

distance will be infinity. However, the vehicle can travel to any other customer j with the same

original distance dij . Thus, the elements of d
′

ij in the submatrix A3 are modeled as:

d
′

ij =

∞ if j = i− n− 2

di−n−2,j otherwise

i ∈ W\ (V ∪ {2n+ 3}) j ∈ V. (3)

Submatrix A4 in d
′

ij indicates an arc linking two pause nodes, which is forbidden. Thus, all its elements5

are equal to infinity:

d
′

ij =∞ i, j ∈ W\ (V ∪ {2n+ 3}) . (4)

Finally, one needs to model the last row and last column of the extended distance matrix, which refers

to trips from and to the arrival depot node. Submatrix A5 refers to trips from customers i ∈ V to the

depot node 2n+ 3, which are all equal to di0:

d
′

i,2n+3 = di0 = di,n+1 i ∈ V. (5)

Submatrix A6 is related to trips from pause nodes to the arrival depot, which have the same distance10

as the trips from the original nodes associated with each pause node:

d
′

i+n+2,2n+3 = di0 i ∈ V. (6)

The last row of the extended distance matrix d
′

ij refers to trips from the arrival depot node to all other

nodes. Since the arrival depot node is a sink, no vehicle is allowed to leave it, and all the elements in

submatrix A7 are equal to infinity:

d
′

2n+3,j =∞ i ∈ W. (7)
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Traveling times need to be updated in a similar fashion as the distance matrix.

3.2 Updating time windows and service duration parameters

The creation of the extended distance matrix leads to larger time window and service duration matrices

as well. These updates must take into account the node they refer to (customers, pauses, or depot).

Using the nomenclature defined in the previous section, we now provide the time windows and service5

duration information for all nodes in W. Nodes 0 to n + 1 refer to the original outgoing depot,

customers, and incoming depot of the problem, and thus their time windows and service duration

remain unchanged.

All pause nodes are identified by indices n + 2 to 2n + 2, and their time windows are all equal to

[ap, bp]. The service duration when these nodes are visited is always equal to Sp.10

The last node 2n + 3 indicates the arrival depot, thus its service time is equal to zero. Each vehicle

must return to the depot by bn+1, so the time window of the returning depot is [a0, bn+1].

3.3 Mixed-integer linear programming formulation

Using the extended distance matrix, we define an extended arc set Z, with arcs (i, j) ∈ Z, i, j ∈ W.

We formulate the VRPLB using the following variables. Binary routing variables xkij are equal to one15

if and only if arc (i, j) ∈ Z, is used on the route of vehicle k ∈ K. Binary variables yki are equal to one

if and only if node i ∈ W is visited by vehicle k. Continuous variables ski represent the starting time

of the service for customer i by vehicle k. Let M be a big number. The problem is then formulated

as follows:

minimize
∑

(i,j)∈Z

∑
k∈K

dijx
k
ij (8)

subject to the following constraints:20

∑
i∈V′

viy
k
i ≤ Vkyk0 k ∈ K (9)

∑
i∈V′

wiy
k
i ≤Wky

k
0 k ∈ K (10)
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∑
k∈K

yki = 1 i ∈ V ′ (11)

∑
i∈W\(V∪{2n+3})

yki ≤ 1 k ∈ K (12)

∑
i∈W\(V∪{2n+3})

yki = yk0 k ∈ K (13)

nyk0 ≥
∑
i∈V′

yki k ∈ K (14)

∑
i∈W\{0,2n+3}

xk0i = yk0 k ∈ K (15)

5

yk2n+3 = yk0 k ∈ K (16)∑
i∈W\{0,2n+3}

xki,2n+3 = yk2n+3 k ∈ K (17)

∑
j∈W

xkij +
∑
j∈W

xkji = 2yki i ∈ W\{0, 2n+ 3} k ∈ K (18)

∑
i∈W

xkij ≤ 1 i ∈ W k ∈ K (19)

∑
i∈W

xkji ≤ 1 i ∈ W k ∈ K (20)

10

ski + Si + lij −M
(
1− xkij

)
≤ skj i, j ∈ W k ∈ K (21)

ski ≥ ai i ∈ W k ∈ K (22)

ski ≤ bi i ∈ W k ∈ K (23)

sk2n+3 − sk0 ≤ Lk k ∈ K (24)

xkij , y
k
i ∈ {0, 1} (i, j) ∈ Z i ∈ W k ∈ K. (25)

The objective function (8) aims at minimizing the total vehicle routing costs/distance. Constraints15

(9) and (10) impose vehicle capacities with respect to the total volume and weight, respectively.

Constraints (11) impose that all customers must be visited by exactly one vehicle. Constraints (12)

impose that at most one pause node is visited by each vehicle, while constraints (13) require that

a pause node is visited if the vehicle is used. Constraints (14) impose that the vehicle visits the

depot if any customer is assigned to it, and constraints (15) ensure that the vehicle leaves the depot.20

Constraints (16) ensure that if a vehicle leaves the depot node 0 it should return to the depot node

8



2n + 3. Constraints (17) ensure that if the vehicle should return to the depot, one arc towards it is

used. Constraints (18) are degree constraints, and constraints (19) and (20) ensure that there are at

most one incoming and one outgoing arc for each node. Time windows and subtour elimination are

imposed by means of constraints (21). Bounds on the time windows for the beginning of the service

on every node are imposed through constraints (22) and (23). Shift duration constraints are imposed5

through constraints (24). Integrality conditions are imposed by constraints (25).

4 Multi-start randomized local search

We will later show that the formulation presented in Section 3.3 is too difficult to be solved even

for small sized instances of the VRPLB. Thus, we propose an insertion and improvement heuristics

embedded into a multi-start randomized local search, which will help us demonstrate the impact of10

managing driver pauses in large artificial and real-life instances.

The multi-start algorithm contains four main procedures, which are repeated a predetermined number

of times (20 in our implementation). We describe the initialization phase in Section 4.1. An important

procedure in our algorithm is related to the way we open new routes. We describe in Section 4.2 the

procedure which opens one or several new routes as required. The randomized procedure to route15

customers is presented in Section 4.3. A local improvement procedure is described in Section 4.4, and

a route compression phase is presented in Section 4.5.

In our algorithm, pauses are handled by adding a dummy customer with a time window [ap, bp] and

a service time Sp to each route.

It is worth mentioning that because of the practical nature of the problem, and due to the limited20

number of vehicles and to tight customer time windows, it may not be possible to include all customers

in a solution. These unserved customers are referred to as exceptions. In practice, the list of exceptions

is handled by the transportation department having the ability to violate some constraints in order

to fit each exception or the customer service department who will contact the associated customer in

order to schedule another delivery date. Such a set of customers not to be visited has already been25

treated in the literature [2, 8].
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4.1 Initialization

The first phase of the algorithm creates and initializes the different data sets that will be used during

the routing process. Let R be the set of active routes and E be the set of exceptions, both initially

empty. Let C be a set containing all customers. After these initializations, the following procedure

is executed in order to open one or several routes and to sequentially assign customers in C until all5

customers have been assigned to routes or to the set E .

4.2 Opening new routes

One important feature of our algorithm is that, unlike other classic approaches which open one new

route at a time, it can open up to π new routes simultaneously whenever the existing routes cannot

accommodate the remaining customers in C. The motivation for opening several routes instead of10

only one is to avoid having very busy routes which are concentrated in a specific area, which leads to

very high costs when customers away from this cluster need to be visited. Thus, if two or more routes

are open, the procedure tries to initialize them in different directions aiming at a better geographic

coverage.

The number of routes to open depends on the number of the remaining customers to be visited, and15

on their needs. In particular, the procedure computes an estimate on the number of routes required

to fulfill the deliveries to the remaining customers. This estimation is based on three ratios regarding

the capacity of the vehicles in terms of both volume and weight, and the traveling and service times.

The first two ratios are computed as the total required volume (weight) of the deliveries divided by the

average capacity of the vehicles. The third one is based on the maximum shift duration, and is equal to20

the ratio between the estimation of the total time required to visit all the remaining customers and the

maximum shift duration. The total time required to visit all customers is estimated as the average

traveling time between each unvisited customer i and all the nodes in C ∪ {0} plus their required

service times. The maximum of these three ratios provides the number of routes to be opened by this

procedure, bounded by the number of available vehicles and by a parameter indicating the maximum25

number of routes to be opened per iteration. New routes are opened using the vehicles with larger

capacity.

Each of the new routes is initialized with a pause and by adding a customer to it in the following

manner. If only one route is created, we include in this route the customer in C the farthest customer

from the depot. If two routes are opened, two customers i and j in C are selected in such a way30
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that the total distance d0i + dij + dj0 is maximized. If three routes are created, three customers i,

j and k are selected such that d0i + d0j + d0k + dij + djk + dki is maximized. We have limited π to

three as per our preliminary numerical experiments. This way, new routes will tend to cover opposite

regions. This approach was mainly motivated by the fact that the territory of the province of Quebec

is very large and sparsely populated. According to our experiments, this issues would be less critical5

in densely populated areas.

Each of the new routes are added to R, and the customers that have been assigned to them are

removed from C.

4.3 Routing customers

This step inserts customers from C into existing routes R. At the end of this step, all customers will10

have been routed or set as exceptions. For each customer, we use the following procedure to find the

best route and to place the customer in the best position.

We try inserting each customer in each possible position of all the existing routes. The insertion

between two customers is feasible only when it respects capacity constraints, all time windows, total

route duration, and end of route time. When all the routes and all the insertion positions have15

been tested, the procedure returns for each customer the best insertion position and cost (see line 7 of

Algorithm 1). The next customer to be inserted is obtained by dividing the insertion cost by a random

value following a uniform distribution taken from the interval [α, 1] (see lines 8–11 of Algorithm 1),

where α = 1− iteration−1
max iterations , and selecting the customer with the smallest value. This means that the

first iteration is fully deterministic, while the remaining successive iterations are each more randomized20

than the previous one.

If an insertion is possible, we remove the selected customer from C, updateR, and repeat the procedure.

Otherwise, we try to open a new route using the procedure described in Section 4.2. If no more vehicles

are available, the remaining customers are added to the exception set E . We provide a sketch of this

procedure in Algorithm 1.25

4.4 Local improvement

The local improvement phase consists of two neighborhood search heuristics which are applied to all

routes in R in order to decrease their total distance. We first apply an intra-route search, followed by
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Algorithm 1 Routing customers (Section 4.3)

1: best client = 0
2: best ratio = ∞
3: if C = ∅ then
4: Return routes and E .
5: end if
6: for i ∈ C do
7: ci ← best feasible insertion for customer i
8: c

′
i ← ci

rand[α,1]

9: if c
′
i < best ratio then

10: best ratio ← c
′
i

11: best client ← i
12: end if
13: end for
14: if best client 6= 0 then
15: Insert best client in its best position
16: C ← C\{best client}
17: Return call routing customers().
18: else
19: if there are vehicles available then
20: Call open new route(s) procedure (see Section 4.2)
21: Return call routing customers().
22: else
23: Insert all customers from C in E
24: end if
25: end if
26: Return routes and E .
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an inter-routes search.

Two feasibility checks are performed in order to accept a move. First, we evaluate the vehicle capacity,

both in terms of volume and weight, as well as the total route duration. The second feasibility check

concerns the time windows of all the customers in the route.

The intra-route improvement considers one route at a time. It applies the 3-opt algorithm of Lin [19]5

in which we also check for time window feasibility. Within each iteration, the first improving move

is applied and the complete 3-opt algorithm is applied until no more improvements can be obtained,

with a worst case complexity of O(n4) for each iteration.

Then, the inter-routes improvement procedure considers all routes in R = {r1, . . . , rK} and tries to

improve each pair of routes ri (i = 1, . . . , K−1) and rj (j = i+1, . . . , K) by exchanging customers10

between them. As proposed by Renaud et al. [22] for the fleet size and mixed vehicle routing problem,

11 exchanges are evaluated. These exchanges are detailed next and are applied to all possible chains of

four consecutive vertices between routes ri and rj . The depot and the dummy nodes representing the

drivers’ pauses are never exchanged. The first improving move is applied and the procedure continues

as long as improvements are obtained. Once all the possible pairs of routes have been considered,15

the procedure restarts by evaluating only the pairs of routes for which at least one of the routes have

been modified during the previous iteration. This procedure can be viewed as a restriction of the

2-interchange procedure of Osman [20], however we concentrate on more promising moves yielding a

much faster heuristic. The worst case complexity of these moves is O(n3) for each iteration.

The local search procedures are based on the 11 operations described by Renaud et al. [22]. A brief20

explanation follows. Let (i1, i2, i3, i4) and (j1, j2, j3, j4) be two chains of four vertices from routes ri

and rj ∈ R. The following 11 moves are considered are: (1) place i2 between j1 and j2; (2) place j2

between i1 and i2; (3) swap i2 and j2; (4) move i2 and i3 to rj , inserting (i2, i3) between j1 and j2;

(5) move i2 and i3 to rj , inserting (i3, i2) between j1 and j2; (6) move j2 and j3 to ri, inserting (j2,

j3) between i1 and i2; (7) move j2 and j3 to ri, inserting (j3, j2) between i1 and i2; (8) swap i2 and25

j2, swap i3 and j3; (9) swap i2 and j3, swap i3 and j2; (10) replace i2 and i3 by j2 and j3, respectively,

and replace j2 and j3 by i3 and i2, respectively; (11) replace i2 and i3 by j3 and j2, respectively, and

replace j2 and j3 by i2 and i3, respectively. Moves 1 to 3 correspond to the 1-interchange procedure

of Osman [20], and moves 4 to 11 represent a subset of the 2-interchange exchanges tested by Osman

[20].30
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4.5 Route compression

This phase of our algorithm consists of a route compression procedure which aims at reducing the

total time duration of a route. In order to evaluate if a route is feasible, our heuristic relies on

the computation of its schedule with respect to the time windows. All insertion and improvement

procedures described so far aim at creating routes that leave the depot and arrive at each delivery5

location as soon as possible. It also has the advantage of giving a certain margin to the company

dispatchers to compensate for unplanned execution problems. Since each delivery (and pause) has an

associated time window, there is a risk of inducing unnecessary waiting times along the route that

should be eliminated in order to minimize total route duration. For this reason, a route compression

algorithm is included when scheduling the route.10

Once the early schedule is established, the compression approach is applied when the total waiting

time of the route is positive. The procedure is based on the forward time slack (FTS) concept,

first described in Savelsbergh [26]. Without loss of generality, the early departure of a visit can be

postponed by its FTS without causing any infeasibility in the route. Our compression procedure starts

by computing F0, the FTS of the depot, and sequentially moves the departure of each visit i until15

Fi = 0 or when all visits have been evaluated for postponement, whichever comes first.

In addition to the potential reduction in the total route duration, this compression procedure also has

two positive side effects. First, the visit to the last customer is performed as soon as possible, which

is usually appreciated by the customers and drivers. Second, the first visit is performed as late as

possible, which besides being appreciated by the customers also helps drivers avoid the early morning20

traffic.

5 Computational experiments

In this section we describe the results of the computational experiments carried out to show the

relevance of adequately planning drivers’ pauses, and to evaluate the performance of the proposed

mathematical formulation presented in Section 3 and of the heuristic presented in Section 4. First, we25

show that the VRPLB model cannot be solved to optimality even for very small instances. Second, we

demonstrate that driver pauses should be considered in the optimization phase, and that neglecting

this step, for example, by creating vehicle routes without pauses which are reinserted later, can lead

to very poor solutions.
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Our heuristic was implemented using VB.net. Numerical experiments were carried out on a desktop

equipped with an Intel Core i7-3612QM running at 2.1 GHz and with 8 GB of RAM running MS

Windows x64. The mixed integer linear programming formulation was implemented in C++ using

CPLEX Concert Technology and the experiments were carried out on a desktop equipped with an

Intel i7 running at 3.66 GHz and with 8 GB of RAM, under a Linux operating system.5

We start by comparing the performance of the VRPLB formulation proposed in Section 3 to that of

the heuristic presented in Section 4. We have generated 15 small instances based on a large real-life one

obtained from our industrial partner. These instances contain from five to 20 delivery requests, and

were solved by both methods. Table 1 presents average results, and shows that the branch-and-bound

algorithm quickly becomes inefficient when the size of the instance increases (see column Gap (%)). In10

particular, we observe that after one hour of computing time, the branch-and-bound algorithm is not

able to find optimal solutions, nor to yield reasonable gaps for instances containing 20 requests. Given

that the real instances provided by our partner contain at least one hundred requests and can go up

to 400 requests, it becomes clear that the proposed formulation is not suitable for real applications.

Table 1 also shows that the computing time required by our heuristic remains extremely low when15

the size of the instances increases. Moreover, on these small instances for which the exact algorithm

was able to obtain optimal solutions, our heuristic performed very well, being able to yield optimal

solutions when these are known. This enables us to further evaluate the impact of the pauses in

distribution problems.

Table 1: Comparison of the performance of the branch-and-bound algorithm and of the
heuristic

# requests
B&B algorithm Heuristic

Km Gap (%) Time (s) Km Time (s)
5 182.6 0.00 3.2 182.6 0.178
10 282.4 0.00 737.6 282.4 0.497
20 733.6 51.58 3600.0 709.8 1.365

We have shown that explicitly considering drivers pauses greatly increases the size of the model,20

so that only very small instances can be solved to optimality. The most intuitive workaround to

adapt classical algorithms to obtain solutions for the VRPLB is to solve the problem in two phases

as follows. First, one solves the problem without considering the pauses by using well known VRP

algorithms. Then, one reintroduces the pause in the best possible position and adjust the delivery

schedules accordingly. We now aim at showing how this two-phase approach for handling the pauses25

can lead to major solution infeasibilities. Moreover, we empirically demonstrate that the number of
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infeasibilities rapidly increases when the percentage of deliveries with time windows increases, and

also when time windows are tighter. A real instance with 209 deliveries provided by our industrial

partner is used to support our experiments.

First, we removed all time windows from the instance. Then we randomly generated time windows

for 10%, 20%, 30%, 40% and 50% of the deliveries. These time windows were randomly generated5

between 8:30 and 15:00. It is worth mentioning that since the drivers’ pauses must be taken between

11:30 and 13:00, morning time windows are not impacted by the pause, but they still help shape

the final solution. We have repeated this experiment twice, first considering 3-hours time windows,

and then tighter 2-hours time windows. We solved these instances by the two-phase approach just

described. To this end, we first set the pause time duration to zero and reduced the length of the day10

accordingly, i.e., drivers should return to the depot one hour earlier. The problem was then solved

without pauses, using the heuristic described in Section 4. In the resulting solution, a pause with

zero duration was included in each route. In the second phase, the pause length was set back to 60

minutes and the driver schedule after the pause was updated. We also tried to relocate the pause to

all possible positions within its feasible time window to reduce infeasibilities as much as possible. If15

reinserting the pause leads to an infeasible solution, the position leading to the smallest number of

violated time windows was selected. If many positions were feasible, the one which yielded the shortest

trip duration was selected. A summary of these experiments is provided in Tables 2 and 3, where

the column % of TW shows the percentages of deliveries having a time window, Km and # of routes

shows the number of kilometers and the number of routes in the solution, respectively, the column20

# of infeasible routes provides the number of infeasible routes in the solution, and # of infeasible

customers shows the total number of customers that are visited outside of their time windows. For

our heuristic, we provide the length of the routes and number of vehicles used. Obviously, all routes

yielded by our heuristic are feasible.

Table 2: Impact of neglecting drivers’ pauses with three-hour time windows on an instance
with 209 deliveries

% of TW
Two-phase approach Our heuristic

Km # of routes # of infeasible routes # of infeasible customers Km # of routes
0 2913 22 – – 2913 22
10 3290 23 3 6 3433 23
20 3325 23 3 4 2891 23
30 3059 23 7 12 2871 23
40 3044 24 6 8 2957 24
50 3089 24 10 18 3353 25
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Results reported in Table 2 clearly show the impact of neglecting driver pauses in the solution process

when three-hour time windows are imposed. Even when only 30% of deliveries have time windows,

seven routes out of 23 (30%) are infeasible, with 12 late deliveries (5.7%). When 50% of the requests

contain time windows, 41% of the routes become infeasible and 18 deliveries are late (8.6%). If we

consider that, on average, half of 209 deliveries are performed in the afternoon, this means in fact5

that 18 deliveries out of 104.5 are late, which increases the real percentage of late deliveries to 17.2%.

The results of our heuristic, on the other hand, respect all time windows and typically present the

same number of vehicles used. All the improvement procedures we have created are clearly capable

of improving an initial solution, as can be observed by some cases in which our final solution is

better than the (infeasible) solution without time windows. The performance of the heuristic will be10

evaluated later.

Table 3 presents results with tighter, two-hour, time windows. As expected, the results quickly

deteriorate when time windows are not initially considered in the solution. For 30% and 50% of

deliveries with time windows, the number of infeasible deliveries nearly doubled to 20 and 38 customers

when comparing instances with 2- and 3-hour time windows. Our heuristic was still able to provide15

high quality solutions with the same number or few extra trucks. These results clearly demonstrate

that driver pauses should be directly included in the resolution process and that not doing so yields

a bad approximation which leads to numerous infeasibilities.

Table 3: Impact of drivers’ pauses with two-hour time windows on an instance with 209
deliveries

% of TW
Two-phase approach Our heuristic

Km # of routes # of infeasible routes # of infeasible customers Km # of routes
0 2913 22 – – 2913 22
10 2888 23 3 6 3180 23
20 3031 23 7 8 3154 23
30 2862 23 11 20 2992 23
40 3163 23 16 32 3609 24
50 3235 24 16 38 3490 27

Finally, in order to assess the performance of the heuristic on more challenging cases, we have solved

two larger instances stemming from our industrial partner. These instances represent the real-life20

operations on two typical days and contain 290 and 382 deliveries. In the first one, the current

software used by the company yields a solution with 3449 km while our heuristic returns 3232 km on

a single run, and 2773 and 2725 km for 10 and 20 iterations, respectively, for a global improvement

of 20% and a running time of only 20 minutes. For the second instance containing 382 deliveries, the
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company solution requires 5138 km while the heuristic yields 4147, 3953 and 3856 km for its initial

run, 10 and 20 iterations, for a global improvement 25%. The computing time was 46 minutes. For

these two instances the ratios between the initial heuristic solution and the final one after 20 iterations

are respectively 15% and 7%.

6 Conclusions5

We have formally described a rich vehicle routing problem with pauses and time windows arising in

the furniture delivery industry. We have proposed a mixed-integer linear programming formulation

for this problem and showed that a branch-and-bound algorithm applied to it is impractical for

real-life applications. We have also developed an efficient multi-start randomized local search heuristic

which is capable of solving instances containing several hundred customers with time windows, several10

vehicles, and places the drivers pauses in the required time window. The results of our computational

experiments confirm that one must solve the problem by taking into account the drivers’ pauses

explicitly in the optimization phase, or risk not being able to obtain feasible solutions for many

situations. Our algorithm is now currently under evaluation by our industrial partner, already being

integrated into their enterprise resource planning system.15
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