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Abstract 17 

Drainage systems are important components in cartography and Geographic 18 

Information System (GIS), and achieve different drainage patterns based on the form 19 

and texture of their network of stream channels and tributaries due to local 20 

topography and subsurface geology. The drainage pattern can reflect the geographical 21 

characteristics of a river network to a certain extent. In order to preserve drainage 22 

pattern during the generalization process, this paper proposes a solution to deal with 23 

multiple factors, such as the tributary length and the order altogether in river tributary 24 

selection. This leads to a multi-objective optimization problem solved with a Genetic 25 

Algorithm. In the multi-objective model, different weights are used to aggregate all 26 

objective functions into a fitness function. The method is applied on a case study to 27 

evaluate the importance of each factor for different types of drainage and results are 28 

compared with a manually generalized network. The result can be controlled by 29 

assigning different weights to the factors. From this work, different weight settings 30 

according to drainage patterns are proposed for the river network generalization. 31 
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1 Introduction 32 

In both Geographic Information System (GIS) and terrain analysis, drainage systems 33 

are important components. Due to the local topography and subsurface geology, a 34 

drainage system achieves a particular drainage pattern based on the form and texture 35 

of its network of stream channels and tributaries. The drainage pattern is “the 36 

arrangement in which a stream erodes the channels of its network of tributaries” 37 

(Chernicoff & Whitney, 2006). It can reflect the geographical characteristics of a river 38 

network to a certain extent because it depends on the topography and geology of the 39 

land. Whether in cartography or GIS, hydrography is one of the most important 40 

feature classes to be generalized to produce representations at various levels of detail. 41 

In general, there are two typical operations in river network generalization: tributary 42 

selection and scale-driven generalization (Li, 2007). There are many methods for 43 

tributary selection, but few of them consider the drainage pattern in the first place. 44 

Tributaries are selected based on the stream order and on local parameters such as 45 

their length or catchment area.  Drainage pattern and other global factors measured on 46 

the network have not been considered before in the process. 47 

Recently, many researchers have paid more attention on geospatial patterns in 48 

cartographic generalization (Heinzle et al., 2006; Mackaness & Edwards, 2002; 49 

Zhang, 2012). Drainage classification based on their patterns was introduced by 50 

Zhang and Guilbert (2013). This paper proposes a river network generalization 51 

method with consideration of different factors according to the drainage pattern. For 52 

that purpose, a Genetic Algorithm (GA) is designed and implemented for tributary 53 

selection. The method is applied to networks following different patterns and the 54 

importance of each factor is evaluated in each case so as to provide a proper weight 55 

setting for each drainage pattern in river tributary selection. 56 

The remainder of the paper is organized as follows. Section 2 reviews related work 57 

about tributary selection. In Section 3, a tributary selection model is presented with 58 

consideration of different factors, and the objective function is provided. Section 4 59 

introduces basic concepts of GA and explains how they are applied to tributary 60 

selection. In Section 5, the selection method is applied for each type of pattern, and 61 

results showing the importance of different factors are analyzed. Section 6 is the 62 

conclusion and the last section is limitations and future work.  63 

2 Related work 64 

Tributary selection consists, in river network generalization, in keeping or removing 65 

river segments according to their importance and the scale of the map. Rusak Mazur 66 

and Castner (1990) gave four possible options for the selective elimination of river 67 

tributaries based on the number of tributaries to be kept. Richardson (1993) presents a 68 

method to select rivers based on the Horton order (Horton, 1945) and the river length. 69 

Thomson and Brooks (2000) apply the Gestalt recognition principles to river network 70 

generalization to emphasize the main channels and omit less important channels. A 71 

mainstream is detected based on strokes using their Horton order and their length but 72 

determining the main stream using the longest path on clipped river network leads to 73 

errors. Touya (2007) presents a method that relies on the organization of river strokes 74 

in a hierarchy. His work allows the building of strokes on a clipped area where some 75 

sources are not natural, such as irrigation zones. However, it only focuses on the 76 
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geometric factors of river networks, and it does not simplify the river network with 77 

consideration of geomorphologic structures. 78 

As the structure and shape of a river is constrained by the underlying terrain, several 79 

authors developed generalization supported structures integrating terrain information 80 

to add knowledge in the selection process. Wolf  (1988) builds a weighted network 81 

data structure to determine the significance of a river. Different from Horton’s work, 82 

the weight of surface networks takes pits, passes and peaks together with the 83 

connecting ridges and courses into consideration. Wu (1997) investigates the 84 

characteristics of the river tree and develops a method based on spatial buffer analysis 85 

to establish the river tree structure. Ai et al. (2006) present a selection method where 86 

the importance of a channel is not defined by the geometric characteristics of the river 87 

stream but by the area of its watershed. Density and upstream drainage area are also 88 

used to prune the river network (Stanislawski, 2008, 2009). In the case of man-made 89 

ditches, Sandro et al. (2011) present a typification method for generalization of groups 90 

of ditches, which are represented as regular patterns of straight lines. In order to 91 

consider different geographical factors, such as river length, river tributaries spacing, 92 

catchment area, and river network density, there is a need for a multi-objective 93 

optimization (also known as multi-criteria or multi-attribute optimization) process in 94 

river tributary selection. Zhai et al. (2006) built a river data structure model 95 

representing the river system’s spatial knowledge, and selected the river tributaries 96 

automatically based on a genetic multi-objective optimization algorithm. In their 97 

model, indicators such as the river length, the river importance and the distance 98 

between proximity rivers1 were taken into account during the selection. 99 

Although these works mentioned above take into account further parameters in river 100 

network generalization, they are only applied locally to express knowledge at river 101 

segment level. The structure of a river network is the result of complex 102 

geomorphologic processes that shaped the terrain and so the pattern exhibited by a 103 

network provides knowledge at a more global level that should be considered and 104 

preserved during the generalization process. However, little research has been done 105 

on this aspect. Touya (2007) and Jiang et al. (2009) both acknowledge the drainage 106 

pattern as an important factor in river network generalization, but no details about 107 

how to consider it are given. In order to maintain the main hydrographical properties, 108 

Jiang et al. (2009) just present a simple result of river networks preserving the 109 

patterns after a selection operation but they did not go further to explain how these 110 

patterns were preserved. In different drainage patterns, different factors should be 111 

considered during the river network generalization. Sen et al. (2014) proposed a 112 

method using self-organizing maps (SOMs) for the selection of hydrographic model 113 

generalization. Geometric attributes, such as length and sinuosity, and topologic 114 

attributes, such as degree, betweenness and closeness, are used as input variables to 115 

the SOM. The method is tested on dendritic and modified basic pattern composed 116 

mostly of trellis (grid-like structures) and in part of rectangular networks, but the 117 

drainage pattern is not taken into account. 118 

We can see that much work has been done on river networks generalization relating to 119 

tributary selection. However, most of them focus on geometric properties only, and do 120 

not consider the pattern in the first place. Considering that the drainage pattern is an 121 

important piece of information to preserve in river network generalization, a specific 122 

method adapted to the drainage may be designed. As the pattern can be characterized 123 

by factors such as the tributary balance and spacing (details are in Section 3.1), this 124 

                                                 
1 Proximity rivers are adjacent rivers on the same side of a main stream (Ai et al., 2006). 
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paper presents a multi-objective tributary selection method where the importance of 125 

each factor depends on the drainage pattern. The method is based on a genetic 126 

algorithm in order to optimize the selection.  127 

3 Tributary selection modeling  128 

This section presents a list of factors considered in the description of each drainage. 129 

Each factor is characterized by a value assigned by an objective function. These 130 

functions are later combined into a multi-objective function. 131 

3.1 Geometric factors and objective functions 132 
3.1.1 Drainage pattern membership 133 
Drainage patterns are classified on the basis of their form and texture according to the 134 

terrain slope and structure. Their shape or pattern develops in response to the local 135 

topography and subsurface geology. There are several drainage patterns, such as 136 

dendritic, parallel, and trellis. Dendritic pattern is the most common form of river 137 

system. In a dendritic river system, there are many contributing streams (analogous to 138 

the twigs of a tree), which join together and are the tributaries of a main river 139 

(Lambert, 2007). Parallel patterns form where there is a pronounced slope to the 140 

surface. Tributary streams tend to stretch out in a parallel-like fashion following the 141 

slope of the surface (Ritter, 2006). In a trellis pattern, as the river flows along a strike 142 

valley, smaller tributaries feed into it from the steep slopes on the sides of mountains. 143 

These tributaries enter the main river at approximately 90 degree angles, causing a 144 

trellis-like appearance of the river system (Ritter, 2006). 145 

In this research, these three drainage patterns are considered and tested. A list of 146 

characteristics for each of them is proposed and shown in Table 1. 147 

Attributing a pattern to a network is a subjective operation as it is based on a 148 

combination of qualitative characteristics. Zhang and Guilbert (2013) proposed a 149 

fuzzy logic approach in which a membership degree for each pattern is assigned to a 150 

network. The higher it is, the more characteristic the pattern is. In order to consider 151 

the drainage pattern in tributary selection in the first place, the pattern membership 152 

can be regarded as an important factor. Before generalization, the pattern of a river 153 

network or a sub-network can be identified first. Then, as an objective function, the 154 

membership degree can be applied to the generalization according to its pattern.  155 

The objective function of the drainage pattern membership can be given as follows:  156 
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 157 

where , , ,  and     are the average junction angle, the bended tributaries percentage, 158 

the average length ratio and the catchment elongation respectively, and [0,1]MF  . 159 

The details of drainage pattern membership value are shown in our previous work 160 

(Zhang & Guilbert, 2013).  161 
3.1.2 Stream order 162 
The stream order is a way to define the size of perennial and recurring streams based 163 

on a hierarchy of tributaries. There are several ordering schemes. The Horton-Strahler 164 

scheme (Strahler, 1957) and the Shreve scheme (Shreve, 1966) are the most famous 165 

ones. In this paper, the Horton-Strahler order after upstream routine, which is the 166 

process to determine the main stream (Li, 2007), will be used for tributary selection as 167 
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it can provide a generalized river network close to human-made (Rusak Mazur & 168 

Castner, 1990).  169 

In river network generalization, the selection operation, in general, starts from 170 

tributaries at lower order. Tributaries at larger orders have higher opportunity to be 171 

shown on the map after selective omission. So, the objective function of the stream 172 

order is designed to evaluate the stream order of all network elements:  173 

1

, 0
n

o i

i

F O n N


   , (2) 

 174 

where Fo is the total order of selected tributaries; Oi is the order of the selected 175 

tributary i. 176 
3.1.3 Stream length  177 
In a digital map, a stream is stored as a set of points, and the length can be calculated 178 

approximately by the additive value of all distances between these points.  179 
1

2 2

1 1

1

( ) ( )
n

i i i i

i

L x x y y


 



    , (3) 

 180 

where L is the length of a stream composed of n points (xi, yi) (1≤i≤n). 181 

The stream length factor implies in a certain extent that a longer tributary is more 182 

important.  In order to select longer tributaries preferentially, the following objective 183 

function FL aims at maximizing the length value of all selected rivers.  184 

1
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 185 

where FL is the total length of selected tributaries, n is the selected number of 186 

tributaries, which should not be bigger than the original number of tributaries N and Li 187 

is the length of selected tributary i. 188 
3.1.4 Balance coefficient 189 
In order to avoid that only tributaries on one side of a river are eliminated, the 190 

tributary balance between two sides of a river should be maintained. Balance 191 

coefficient is the difference between the total length of streams on the left side of the 192 

mainstream and the total length on the right side. It shows the uneven degree of a 193 

drainage system. The larger the value, the more balanced the water quantities flowing 194 

from two sides of the mainstream. The balance coefficient B is calculated as: 195 
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 196 

where m and n are the numbers of tributaries on the left and right side of the 197 

mainstream respectively; Li is the length of stream i on the left side (1≤i≤m), and Lj is 198 

the length of stream j on the right side (1≤j≤n). 199 

The calculation of the balance coefficient shows that  0,1B . B = 1 corresponds to a 200 

river that receives as much water from both side. The objective of the balance 201 
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coefficient is to maintain the balance after generalization. Therefore, the objective 202 

function of the balance coefficient is defined by the Gaussian function as follows, 203 

1

( ;0.1, )
m

B i i

i

F g B B m


 , (6) 

 204 

where m is the number of streams with the order > 1 (a stream should have upper 205 

streams); Bi is the balance coefficient of stream i before generalization, B'i is the 206 

balance coefficient of stream i after generalization; and [0,1]F
B
 . In the Gaussian 207 

function, the center is Bi, and the standard deviation is set to 0.1. So, the closer B'i to 208 

the center, the greater the value to 1. 209 
3.1.5 Tributary spacing 210 
Tributary spacing is the distance between two adjacent tributaries which are on the 211 

same side of a main stream. As adjacent tributaries are not parallel in general, the 212 

calculation of the distance is complicated. For two polygonal curves, the distance can 213 

be given by the Frechet distance (Alt & Godau, 1995). Ai et al. (2006) proposed a 214 

weighted distance computation method. Here, the application of the tributary spacing 215 

is more relevant to the trellis and parallel pattern, where the tributaries are more or 216 

less parallel. The shortest distance between two tributaries is used for tributary 217 

spacing. The advantage of using the shortest distance is that it prevents tributaries 218 

from being too close when the scale becomes smaller and so is preferred to other 219 

distances. 220 

If two polygonal curves A and B are at some distance from each other, for any point a 221 

of A and any point b of B, the distance D, which is similarly regarded as the spacing S, 222 

between A and B is defined by: 223 

  ( , ) min min ( , )
a A b B

S D A B d a b
 

  , (7) 

 224 

where d(a, b) is the distance between a and b. 225 

As to the objective function of the tributary spacing, it is given as 226 

min( ), 1,2,...s iF S i k  , (8) 

 227 

where k is the number of spacing of tributaries after selection, and Si is the tributary 228 

spacing of tributary i. This function should be maximized to avoid tributaries 229 

clustering together. 230 

3.2 Multi-objective modeling with consideration of the drainage pattern 231 
For multi-objective problems, the weighted sum method is the most convenient and 232 

simplest approach. It aggregates a number of objective functions into a single one by 233 

multiplying each function by a weight value (Deb, 2001). It can be written as (Hajela 234 

& Lin, 1992):  235 

1

( ) ( )
k

i i

i

F X w F X


 , (9) 

 236 

where k is the number of objective functions; wi is the weight of each objective 237 

function Fi, and the weights satisfy the requirement of 
1

1
k

i

i

w


 . As the magnitude of 238 

each objective function may be different, they shall be rescaled, and the final formula 239 

is as follows: 240 
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 241 

where *

iF are the scaled objective functions. Usually, the normalization method is 242 

used for function scaling, and *

iF  is given by 243 
* min max min( ) ( ( ) ) ( )i i i i iF X F X F F F   . (11) 

 244 

For all objective functions, the multi-objective functions are aggregated for the fitness 245 

in the GA process. It is given as follows. 246 
* * *( ) ( ) ( ) ( ) ( ) ( )M M O O L L B B S SF X w F X w F X w F X w F X w F X     , (12) 

 247 

where 1M O L B Sw w w w w     , wM, wO, wL, wB and wS are weights for drainage 248 

pattern membership, stream order, stream length, balance coefficient and tributary 249 

spacing respectively. 250 

4 Tributary selection using a genetic algorithm 251 

Optimizing river selection according to different factors at the same time is a multi-252 

objective optimization problem. A genetic algorithm (GA) is a class of adaptive 253 

stochastic optimization algorithms that simulates the process of natural evolution, and 254 

is used to find available solutions to optimization and search problems (Mitchell, 255 

1996). Van Dijk, Thierens, and De Berg (2002) showed that GAs can solve GIS 256 

problems, such as map labeling, generalization and line simplification. Ware, Wilson, 257 

and Ware (2003) applied GA to solving spatial conflict between map objects after 258 

scaling.  259 

In GA, the solution (called individual) to the problem is represented by a chromosome 260 

(or genome). Usually, a solution is represented by series of ones and zeros, but there 261 

are also other possible encodings (Whitley, 1994). An initial set of solutions called 262 

population is first generated, and genetic operators such as selection, crossover and 263 

mutation are applied to generate new solutions in order to find the best one(s) by 264 

evaluating the fitness of every individual in the population. The process of a basic GA 265 

is shown in the  266 

Figure 1.  267 

4.1 Encoding of a river network 268 
In the proposed method, a chromosome corresponds to a generalized river network. 269 

The chromosome is composed by genes and each gene is associated to a tributary in 270 

the network. A gene is set to 1 if the tributary is selected in this network and to 0 if it 271 

is not. Following Thomson and Brooks (2000), tributaries are defined by strokes in 272 
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the network and ordered according to the Horton-Strahler order scheme after 273 

upstream routine.  274 

In Figure 2(a), a simulated river network is illustrated, where the number is the ID of 275 

a stroke. In Figure 2(b), in chromosome 1, all strokes are selected, while all strokes 276 

are omitted in chromosome 2. In chromosome 3, only strokes with IDs 1, 3, 4 and 6 277 

are selected, and others are omitted. As strokes must remain connected to the network, 278 

a stroke cannot be omitted if strokes at higher order are selected. 279 

The process requires first to fix the number of strokes to be selected and is initialized 280 

by generating a population as possible solutions. At each step, a new population is 281 

generated through reproduction and the best chromosomes are selected so as to get a 282 

population containing better solutions. 283 

4.2 Initialization 284 
In the initialization process, the number of selected strokes (noted Ns) can be 285 

calculated by the “Radical Law” (Topfer & Pillewizer, 1966) or other methods. As the 286 

number of strokes to select is fixed beforehand and the consistency of the network 287 

must be preserved, we define the following rules: 288 

1) The number of genes set to 1 in a chromosome is equal to Ns. 289 

2) A gene cannot be assigned 0 if it breaks the topology of a river network, i.e., a 290 

stroke cannot be omitted if its upper strokes are selected. 291 

3) Strokes with the higher order have priority to be selected; otherwise, strokes 292 

with lower order will be omitted first. 293 

These rules translate into the following algorithm 1 which is applied to generate each 294 

chromosome of the initial population. 295 

Algorithm 1- Initialization of a chromosome 296 

Input: La the list of all strokes; Ns the number of strokes to be selected 297 

Output: Ls the list of selected strokes 298 

Set Lo empty list of strokes 299 

Set Na = card(La) // total number of strokes 300 

Set No = Na – Ns // number of strokes to be omitted 301 

Set Nc = 0 // number of strokes currently omitted 302 

Set Lt = La 303 

While Nc<No 304 

    Randomly choose a stroke Rs from Lt 305 

    Set Ns’ the number of upper strokes of Rs (including Rs) 306 

    If Nc + Ns’ > No then // Rs cannot be omitted 307 

        Remove Rs from Lt 308 

    Else 309 

        Nc = Nc + Ns’ 310 

        Add Rs and its upper strokes to Lc 311 

        Remove Rs and its upper strokes from Lt 312 

    End if 313 

End while 314 

Ls = La – Lc 315 

 316 

4.3 Selection 317 
In this paper, the elitist model (Mitchell, 1996) is used for the selection operation in 318 

the GA. Elitism directly copies the best chromosomes to a new population without 319 

any other reproduction operations. This method can rapidly increase the performance 320 

of the GA, and it preserves the best solution all the time. 321 
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4.4 Reproduction 322 
The reproduction for tributary selection using GA should be customized following 323 

similar rules to initialization. They are: 324 

1) After reproduction, the number of selected genes must be equal to Ns. 325 

2) The reproduction cannot break the topology of a river network, and cannot 326 

omit a stroke if it has upper strokes. 327 
4.4.1 Crossover 328 
In order to obey the rules of the reproduction for the tributary selection using GA, the 329 

crossover operation cannot be applied normally as one-point-crossover or two-point-330 

crossover. The information exchange between the two parent chromosomes should be 331 

controlled to follow the rules. Here, a mask, which is represented as a chromosome of 332 

the same length, is used to determine which genes are inherited from which parents. 333 

An offspring is generated as indicated in the mask (see also Figure 2): a gene is from 334 

the first parent chromosome if the mask gene is 1 and from the second parent if it is 2.  335 

The crossover algorithm is given by algorithm 2. 336 

Algorithm 2 – Chromosome crossover 337 

Input: Two chromosomes C1 and C2 338 

Output: the offspring chromosome O 339 

Set the mask M as a list of Na values set to 1 340 

Set Lp as an empty list 341 

For i = 1 to Na 342 

    If C1(i) != C2(i) // genes have different values in C1 and C2 343 

        Add i to Lp 344 

For each i of Lp 345 

    If changing the value of C1(i) breaks the network topology 346 

        Remove i from Lp 347 

While Lp is not empty 348 

    Randomly select i1 and i2 in Lp such that C2(i1) != C2(i2) 349 

    If no i1 and i2 can be selected Then 350 

        Exit While 351 

    Set M(i1) = 2 352 

    Set M(i2) = 2 353 

    Remove i1 and i2 from Lp 354 

End While 355 

For i = 1 to Na 356 

    If M(i) = 1 357 

        Set O(i) = C1(i) 358 

    Else 359 

        Set O(i) = C2(i) 360 

 361 

Figure 2(c) shows an example of crossover process with two chromosomes. C1 and 362 

C2 are parents and O is the chromosome obtained by crossover. Genes 1, 3 and 8 of 363 

C1 and C2 are identical and so are copied directly to O. Other six allelic genes are 364 

different. However, the allelic genes in positions 4 and 5 are invalid. If genes 365 

exchange in position 4 or 5, stroke 5 would be separated from the river network in C2 366 

or C1 respectively. M is one of the workable masks determined by random selection. 367 

In order to follow rule 1, positions 2 and 7 in the chromosome are marked to 368 

exchange information between the parents. A new offspring is generated by taking 369 

genes in positions 2 and 7 from C2 and other genes from C1. 370 
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4.4.2 Mutation 371 
The mutation operation changes a gene in a chromosome in order to avoid a too early 372 

convergence towards a local instead of a global optimum. Here, if only one gene is 373 

changed, the rule 1 of the reproduction cannot be satisfied. If a gene is changed from 374 

0 to 1, another gene needs to be changed from 1 to 0. In the process, only one pair of 375 

genes is supposed to be changed.  376 

The modified mutation for selecting tributaries is given in the following algorithm. 377 

Algorithm 3 – Chromosome mutation 378 

Input: a chromosome C 379 

Output: the mutated chromosome C 380 

Set L1 the list of genes valued to 1 // list of selected tributaries 381 

Set L0 the list of genes valued to 0 // list of omitted tributaries 382 

For each g in L1 383 

    If setting g to 0 breaks the topology 384 

        Remove g from L1 385 

Randomly choose a gene in L1 and set it to 0 386 

For each g in L0 387 

    If setting g to 1 breaks the topology 388 

        Remove g from L0. 389 

Randomly choose a gene in L0 and set it to 1 390 

 391 

In Figure 2(d), an example of mutation is illustrated. C is a chromosome that 392 

represents a solution of selecting six strokes for the river network in Figure 2(a). In 393 

step 1, lists L1 and L0 are established. In step 2, stroke 1 is removed from L1. Step 3 394 

chooses stroke 3 to be changed from 1 to 0. Then, in step 4, because its lower river 395 

(stroke 4) is omitted, stroke 5 cannot be selected and, as such, is removed from L0. 396 

Finally, stroke 4 is chosen to be changed from 0 to 1. The C’ is the chromosome after 397 

the mutation. 398 

4.5 Termination 399 
The GA process does not stop until a termination condition is satisfied. For the 400 

termination of this problem, two methods are used. The first one sets the number of 401 

iterations. The second sets a number of iterations where the best chromosome does 402 

not change. In the experiments, both termination conditions are set to stop the GA 403 

process. 404 

5 Experiments and results 405 

In the experiment, datasets of the Russian river, California are tested (Figure 3). Data 406 

at 1:24K are provided by the Russian River Interactive Information System (RRIIS1) 407 

while data at 1:100K were obtained from the National Hydrography Dataset (NHD2). 408 

The river flow dataset at 1:100K scale was not generalized automatically from  409 

detailed data. It can be regarded as a manually generalized dataset. Therefore, the 410 

NHD data at 1:100K scale is used as a standard to check generalized river networks 411 

by comparing the similarity, which is calculated by an overlap ratio.  412 

Similarity is a complicated problem (Lv et al., 2012). In our experiment, as the 413 

number of selected segments is fixed, we look only at segments common to both 414 

                                                 
1 http://www.rrwatershed.org 

2 http://nhd.usgs.gov/data.html 
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datasets. In addition, the segment length participated was considered in the 415 

overlapping ratio to give more importance to long segments. Supposing a river 416 

network from the NHD is composed of N river segments and an automatic 417 

generalized river network has M river segments overlapped with the NHD data, the 418 

overlap ratio is calculated as 419 

1 1

100%
M N

i j

i j

Similarity Len Len
 

 
  
 
  , (13) 

 420 

where Lenx is the length of a river segment. An overlap example is shown in Figure 4.  421 

The experiment is conducted as follows: 422 

1) Get a sub-network from Russian river at 1:24k, and identify its drainage 423 

pattern. 424 

2) Get the same river network from the NHD, and build strokes to obtain the 425 

number of selected strokes. 426 

3) According to the pattern, set weights for the fitness function. 427 

4) Get a generalized river network by applying GA. 428 

5) Calculate the similarity with the river network from the NHD. 429 

6) Repeat above steps for all sub-networks. 430 

In the experiment, parameters are set as follows: the population size is set to 100; for 431 

termination, the total number of generation is 500, and the iteration would stop if the 432 

best solution does not change for 20 generations. These settings are empirical values. 433 

The algorithm runs faster if the population size is small, but this more often leads to a 434 

local optimal solution. However, it is not good to set the population too large because 435 

it will slow the algorithm and the result would not be better than a suitable population 436 

size.  437 

There are several objectives to achieve in the experiment: one is to test the importance 438 

of each factor by setting a weight to 0 and others are 0.25, and another is to rank the 439 

factors in the order of importance for the multi-objective function according to 440 

different drainage patterns by setting a weight of a factor to 0.6 and others to 0.1. So, 441 

different weights are set in the GA. The importance of a factor can be validated 442 

through these tests. Then, according to tested results, other schemes of weights setting 443 

can be examined to obtain a feasible setting for a drainage pattern.  444 

As the stroke and length method was regarded as the method that “most closely 445 

approximates the generalisation decisions made by a human cartographer” 446 

(Thomson & Brooks, 2000), it is applied in the experiment for comparison. Taking a 447 

stroke as an entity, there are two steps in the generalization process: ①remove the 448 

lower order stroke first; ②remove the shorter strokes if they are in the same order. 449 

Different sets of weights have been set for each drainage pattern. These weights were 450 

tested by performing a selection on each sub-network of the Russian river. Appendix 451 

A presents the detailed results for dendritic networks. Appendix B presents 452 

commented results obtained for trellis and parallel networks. A summary of best 453 

results obtained for each pattern is presented in Table 2. 454 

In Table 2, for all patterns, the length is the most important factor, because the length 455 

weights (wL) are 0.6, 0.6 and 0.5 for the dendritic, trellis and parallels patterns 456 

respectively. They are much bigger than other weights. In the dendritic pattern, the 457 

pattern membership and the order are the second important factors (wM = 0.15, wO = 458 

0.15); the factor of balance is not so important and even cannot be considered. For the 459 

trellis pattern, the tributary spacing is the second important factor (wS = 0.2), and the 460 

balance is also not important. Trellis tributaries are usually short streams of order 1. 461 
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As a consequence, giving too much importance to the order tends to eliminate these 462 

tributaries first and loose the character of the network. Hence, the order should not be 463 

considered as an important factor for the preservation of trellis.  In the parallel pattern, 464 

the membership factor (wM = 0.2) is more important than others except the length. 465 

Compared to the stroke and length method, the GA method provides a better network 466 

both in similarity and drainage pattern preservation.  467 

6 Conclusion 468 

In this paper, we introduced a new genetic algorithm for river selection where the 469 

objective function includes different factors weighted according to their importance. 470 

Five factors corresponding to geometric characteristics of the networks were chosen 471 

(drainage pattern membership, order, tributary length, tributary balance and spacing 472 

between tributaries). Different results can be obtained by adjusting the weights of the 473 

multi-objective function. For example, the drainage pattern can be preserved by 474 

assigning more weight to pattern membership (wM). If the weight of river order (wO) 475 

was set to a higher value, the tributaries in lower order would be eliminated first. The 476 

length factor can preserve longer tributaries; the balance coefficient can keep the 477 

original balance of a tributary along a river; and the tributary spacing can avoid 478 

tributaries to cluster together. 479 

The proposed GA method is used to assess the influence of different factors in the 480 

generalization process for each type of drainage. It was applied to the Russian river 481 

data and results were compared with manually generalized data with the goal to 482 

achieve similar results and test the importance of the drainage pattern. The most 483 

important factor is the length. In general, during manual generalization, the length is 484 

indeed the most considerable factor. Although the drainage pattern does not change 485 

much in the manual work, it can be preserved better if the pattern membership 486 

participates in the GA process.  487 

For each pattern, a proper set of weights is given to achieve a greater similarity with 488 

the manual generalized river networks. Table 3 illustrates the approximate settings for 489 

weights. 490 

7 Limitations and future work 491 

One limitation of the research is that the similarity is not improved obviously 492 

comparing to the stroke and length method. There are some reasons. ① The GA is 493 

implemented by encoding the network with strokes. Correct strokes will help to 494 

increase the similarity, but sometimes strokes are not built as expected. ② Some 495 

manual networks are not generalized as expected: some tributaries are short and in 496 

lower order, but they are still selected after generalization. It may happen that the 497 

tributary has some significant meanings in the geography so it should be preserved 498 

whether it is short or long.  Some examples are shown in Figure 5. Another limitation 499 

is that the only involved map scales in this paper are 1:24K and 1:100K scales. Other 500 

datasets and other scales should be tested in future work. 501 

Further from this, some work still can be done to improve this study. The first one is 502 

that other factors can be considered. Semantic factors such as the name and 503 

geographical meanings of tributaries are not considered. The name of tributaries can 504 

help to establish correct strokes. Some tributaries have priorities in the selection 505 

process according to their geographical meanings. The second one is that rectangular 506 
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drainages (Figure 6) should also be considered. The third one is to provide a method 507 

to calculate the weights of objective functions. This work requires more datasets at 508 

different scales. Apart from cartography, drainages are also important in studying the 509 

geomorphology of an area. Characterizing and preserving patterns can be useful in 510 

applications where terrain characteristics are studied at different scales. 511 
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Appendix 593 

A. Dendritic example 594 
A tested dendritic river network is shown in Figure 7. The result of this example is 595 

given in Table 4. The weights settings are shown in the first column. In the table, the 596 

column of the GA process records the value of fitness function and all participating 597 

objective functions at each generation during the process. The value of the stream 598 

order function is decreasing, and others are increasing. This is because a selection 599 

solution is initialized based on stream order. Lower order streams are eliminated first, 600 

and then, after the GA operations, some streams with lower order would be selected 601 

back due to the influence of other factors. The pattern membership value is increasing 602 

which can guarantee the pattern is preserved during the process.  603 

From Table 4, the similarities of generalized networks (A) to (E) are 66.2%, 65.6%, 604 

81.0%, 60.7% and 61.7% respectively. Network (C) is the result of setting the weight 605 

of the length factor with 0.6, and it has the greatest similarity among the group tests, 606 

which is also bigger than the similarity of the generalized network by the method of 607 

the stroke and length (81.0% > 73.2%). The similarities with the manual generalized 608 

network at 1:100K scale of other networks are fairly low. Then, we can see, the length 609 

is an important factor to a dendritic pattern. After the second group test, without 610 

considering the length, network (H) is generalized by setting wL = 0, and the similarity 611 

decreases to 61.7% from 81.0%. For other factors, without the membership or the 612 

order, similarities of networks (F) and (G) also decrease from 66.2% to 65.6% and 613 

from 65.6% to 60.6% respectively. However, without factors of the balance 614 

coefficient or the tributary spacing, the increased similarities indicate that these two 615 

factors are not so important to the dendritic pattern. From the result, the preliminary 616 

rank of the factors is length (wL) > drainage pattern membership (wM)  ≈ order (wO) > 617 

tributary spacing (wS) ≈ balance (wB),  the length is definitely the most important one.  618 

In the following tests, wL is set as a high value to 0.5 or 0.6, and other factors are 619 

given different values to fix the importance between wM and wO, and between wS and 620 

wB. For networks (K) and (M) in Table 4, although wM and wO are different,  the 621 

similarities are the same. It is hard to say which factor has priority between wM and 622 

wO. However, with these two weight settings, similarities are still not greater than for 623 

network (C). For this reason, considering wB has influenced the similarity a lot, it is 624 

set to 0 for networks (N), (O) and (P). The results show that wS > wB because all 625 

similarities of (N), (O) and (P) have improved.  626 

B. Generalized networks in Russian River 627 
B.1. Generalized dendritic networks 628 
The setting of weights for the fitness function used in Appendix A is also tested on all 629 

dendritic river networks in the Russian river. The whole river network can be 630 

decomposed in different sub-networks at different orders. According to the Horton-631 

Strahler order of its main stream, a sub-network can belong to different orders from 2 632 

to 4. The statistic result is listed in Table 5. 633 

From Table 5, comparing the first five and the second five tests, it shows the same 634 

conclusions with the dendritic case study except for setting the weight of drainage 635 

pattern membership to 0 (Row 6). Without considering the drainage pattern, the 636 

average similarity increases from 72.6% to 75.4%. The similarity is computed by 637 

comparing with the manual work, so it can illustrate that in the manually generalized 638 

river networks, the type of pattern is preserved to some extent but is not emphasised. 639 

On the opposite, putting a heavy weight on the pattern membership function tends to 640 
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increase this membership and to caricature the pattern. From the results, the 641 

similarities can be improved by setting length factor (wL) with high values. It shows 642 

that the length is the most important factor among all five proposed factors. Weight 643 

settings for the pattern membership (wM), order (wO), length (wL), balance (wB) and 644 

tributary spacing (wS) with 0.15, 0.15, 0.6, 0 and 0.1 get the greatest average 645 

similarity (80.4%) among all settings. The result is same with the case study, so it can 646 

confirm that the settings are more appropriate for dendritic river networks. The 647 

average pattern membership of all dendritic networks before generalization at 1:24K 648 

scale is 0.47. After generalization, although the average membership of networks 649 

generalized by the setting (0.15/0.15/0.6/0/0.1) is only 0.37, which is smaller than 650 

0.47, it is greater than the value of manual generalized river networks (0.31). Only the 651 

average membership of generalized networks in order 2 is smaller than the original 652 

one (0.33 < 0.46) because many generalized networks in order 2 do not have enough 653 

tributaries for the computation of the drainage pattern membership. So, with 654 

consideration of the drainage pattern, the drainage pattern membership value is even 655 

increased after generalization. In addition, sub-networks in order 3 and 4 have higher 656 

average similarities than in order 2, so do average memberships. It illustrates that, to 657 

some extent, networks in lower order do not have enough tributaries to calculate each 658 

factor value in the fitness function, and there is no need to apply a complicated 659 

generalization method to a network with few tributaries.  660 
B.2. Generalized trellis networks 661 
For all trellis river networks in Russian river, the statistic results which are tested by 662 

different weight settings are listed in Table 6. 663 

From Table 6, without considering the length, the average similarity reduces from 664 

81.0% to 69.0% (the decreasing amplitude is 14.8 points). The length factor 665 

influences the similarity a lot. The first test shows that pattern membership increased 666 

after generalization by assigning drainage pattern membership(wM) with 0.6 and 667 

others with 0.1. Although the average similarity is low, the pattern has been preserved 668 

a lot from the average drainage pattern membership values in row 1. So, it is useful to 669 

take the factor of membership into consideration to preserve or even improve the 670 

drainage pattern representation during the generalization process. From the last five 671 

tests (rows 11-15), the average similarity is bigger than the method of the stroke and 672 

length. The multi-objective method does better than the stroke and length method 673 

especially in the preservation of the drainage pattern. The weight settings for wM, wO, 674 

wL, wB and wS with 0.1, 0.1, 0.6, 0 and 0.2 respectively are the most proper settings 675 

from the statistic results.   676 
B.3. Generalized parallel networks 677 
In the dataset, there are no parallel networks in order 4, and most networks are in 678 

order 2. The statistic result is listed in Table 7. 679 

In Table 7, comparing with the result by assigning the weight of balance (wB) with 0.6, 680 

the average similarity reduces to 64.3% from 65.4% by assigning wB with 0. It shows 681 

that the factor of balance contributes to the similarity to some extent. The length is 682 

still the most important factor during the generalization as the average similarities 683 

would decrease (65.3% to 60.2%) if the length is not considered. By assigning the 684 

weight of length (wL) with 0.5 and adjusting weights of other factors, the pattern 685 

membership should be set up as the second important factor. The average similarity is 686 

the greatest by assigning wM = 0.2, wO = 0.1, wL = 0.5, wB = 0.1 and wS = 0.1. The 687 

average similarity is not larger than 70% due to the influence of low similarities of 688 

networks in order 2. The average similarity of generalized networks in order 3 is 689 

91.6%. The same situation happens in the average membership in order 3.   690 
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Table 1. Drainage pattern characteristic. There are three patterns addressed in this 

research. The geometric and topologic characteristics are summarized from their 

definitions in Ritter (2006)’s book. 

Drainage 

pattern 

Schematic 

Diagram 
Geometric and Topologic Characteristic 

Dendritic 

 

-Tributaries joining at acute angle 

Parallel 

 

- Parallel-like 

- Elongated catchment 

- Long straight tributaries 

- Tributaries joining at small acute angle 

Trellis 

 

- Short straight tributaries 

- Tributaries joining at almost right 

angle 
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Table 2. The best weight settings from the experiment results. The experiment details 

are show in the appendix.  wM, wO, wL, wB and wS are the weights of drainage pattern 

membership, order, length, balance and tributary spacing respectively.  

Drainage  

Pattern 

Weights Setting 

(wM/wO/wL/wB/wS) 

Average Similarity 
Average Dranage Pattern 

Membership 

Order 2 Order 3 Order 4 Total Order 2 Order 3 Order 4 Total 

Dendritic 
(0.15/0.15/0.6/0/0.1) 78.4% 88.4% 83.0% 80.4% 0.33 0.53 0.48 0.37 

Stroke + Length 77.5% 86.4% 78.4% 79.2% 0.25 0.48 0.28 0.29 

Trellis 
(0.1/0.1/0.6/0.0/0.2) 79.7% 89.2% 82.2% 82.2% 0.26 0.52 0.87 0.35 

Stroke + Length 78.0% 82.2% 84.0% 79.4% 0.20 0.40 0.86 0.28 

Parallels 
(0.2/0.1/0.5/0.1/0.1) 64.7% 91.6% - 66.9% 0.47 0.73 - 0.50 

Stroke + Length 62.9% 91.6% - 65.3% 0.44 0.73 - 0.47 
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Table 3. The approximate weight settings for each drainage pattern. Balance 

coefficient cannot be considered in the dendritic and trellis patterns. The length is the 

most important factor for all patterns. 

 Dendritic Parallel Trellis 

Pattern membership (wM) ● ● ○ 

Stream order (wO) ● ● ○ 

Stream length (wL) ●● ●● ●● 

Balance coefficient (wB) × ○ × 

Tributary spacing (wS) ○ ○ ● 

●● - more important    ● - important   ○ - not important    × - not considered 
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Table 4. Generalized results for dendritic case. wM, wO, wL, wB and wS are the weights 

of drainage pattern membership, order, length, balance and tributary spacing 

respectively. 

Weights(wM/wO/ 
wL/wB/wS) 

Generalized network GA process* Similarity 

(0.6/0.1/ 

0.1/0.1/0.1) 

  

66.2% 

(0.1/0.6/ 

0.1/0.1/0.1) 

  

65.6% 

(0.1/0.1/ 

0.6/0.1/0.1) 

  

81.0% 

(0.1/0.1/ 

0.1/0.6/0.1) 

  

60.7% 

(0.1/0.1/ 

0.1/0.1/0.6) 

  

61.7% 

(0/0.25/0.25/ 

0.25/0.25) 

  

65.6% 
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(0.25/0/0.25/ 

0.25/0.25) 

  

60.6% 

(0.25/0.25/0/ 

0.25/0.25) 

  

61.7% 

(0.25/0.25/ 

0.25/0/0.25) 

  

73.9% 

(0.25/0.25/ 

0.25/0.25/0) 

  

69.9% 

(0.2/0.1/ 

0.5/0.1/0.1) 

  

81.0% 

(0.1/0.2/ 

0.5/0.1/0.1) 

  

81.0% 
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(0.2/0.1/ 

0.6/0/0.1) 

  

83.5% 

(0.1/0.2/ 

0.6/0/0.1) 

  

83.5% 

(0.15/0.15/ 

0.6/0/0.1) 

  

83.5% 

*
The vertical axis is the value of theobjective function; the horizontal axis is the number of iterations.  
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Table 5. Generalized dendritic networks results. wM, wO, wL, wB and wS are the 

weights of drainage pattern membership, order, length, balance and tributary spacing 

respectively. 

 
Weights Setting 

(wM/wO/wL/wB/wS) 

Average Similarity 
Average Drainage Pattern 

Membership 

 Order 2 Order 3 Order 4 Total Order 2 Order 3 Order 4 Total 

1 (0.6/0.1/0.1/0.1/0.1) 71.8% 76.2% 70.4% 72.6% 0.50 0.71 0.59 0.55 

2 (0.1/0.6/0.1/0.1/0.1) 74.7% 82.5% 74.0% 76.1% 0.33 0.56 0.42 0.38 

3 (0.1/0.1/0.6/0.1/0.1) 77.4% 87.3% 81.1% 79.4% 0.32 0.53 0.48 0.37 

4 (0.1/0.1/0.1/0.6/0.1) 70.9% 70.1% 63.3% 70.4% 0.28 0.47 0.44 0.33 

5 (0.1/0.1/0.1/0.1/0.6) 73.2% 77.5% 70.3% 73.9% 0.34 0.64 0.53 0.41 

6 (0/0.25/0.25/0.25/0.25) 73.9% 82.5% 72.8% 75.4% 0.27 0.49 0.19 0.31 

7 (0.25/0/0.25/0.25/0.25) 73.4% 78.9% 69.6% 74.3% 0.40 0.68 0.63 0.46 

8 (0.25/0.25/0/0.25/0.25) 69.9% 72.0% 64.5% 70.0% 0.37 0.66 0.50 0.43 

9 (0.25/0.25/0.25/0/0.25) 74.4% 81.6% 77.3% 75.9% 0.39 0.67 0.52 0.44 

10 (0.25/0.25/0.25/0.25/0) 75.4% 80.8% 73.2% 76.3% 0.36 0.64 0.55 0.42 

11 (0.2/0.1/0.5/0.1/0.1) 78.1% 86.2% 80.0% 79.7% 0.35 0.61 0.53 0.40 

12 (0.1/0.2/0.5/0.1/0.1) 78.0% 87.5% 79.6% 79.8% 0.32 0.54 0.41 0.36 

13 (0.2/0.1/0.6/0/0.1) 78.2% 86.6% 83.1% 79.9% 0.35 0.60 0.56 0.41 

14 (0.1/0.2/0.6/0/0.1) 78.3% 87.8% 82.7% 80.3% 0.32 0.52 0.47 0.36 

15 (0.15/0.15/0.6/0/0.1) 78.4% 88.4% 83.0% 80.4% 0.33 0.53 0.48 0.37 

16 Stroke + Length 77.5% 86.4% 78.4% 79.2% 0.25 0.48 0.28 0.29 

17 River networks at 1:24K scale from the Russian river 0.46 0.53 0.38 0.47 

18 River networks at 1:100K scale from the NHD 0.28 0.43 0.27 0.31 
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Table 6. Generalized trellis networks results. wM, wO, wL, wB and wS are the weights 

of drainage pattern membership, order, length, balance and tributary spacing 

respectively. 

 
Weights Setting 

(wM/wO/wL/wB/wS) 

Average Similarity 
Average Drainage Pattern 

Membership 

 Order 2 Order 3 Order 4 Total Order 2 Order 3 Order 4 Total 

1 (0.6/0.1/0.1/0.1/0.1) 62.9% 73.0% 67.7% 65.7% 0.74 0.76 0.96 0.76 

2 (0.1/0.6/0.1/0.1/0.1) 74.3% 82.2% 76.5% 76.4% 0.32 0.42 0.93 0.37 

3 (0.1/0.1/0.6/0.1/0.1) 79.7% 84.8% 81.2% 81.0% 0.28 0.49 0.89 0.36 

4 (0.1/0.1/0.1/0.6/0.1) 64.3% 64.6% 67.9% 64.5% 0.35 0.65 0.90 0.45 

5 (0.1/0.1/0.1/0.1/0.6) 73.7% 79.7% 73.2% 75.1% 0.29 0.66 0.91 0.41 

6 (0/0.25/0.25/0.25/0.25) 74.9% 80.3% 76.7% 76.3% 0.24 0.33 0.86 0.29 

7 (0.25/0/0.25/0.25/0.25) 73.3% 79.4% 70.7% 74.7% 0.38 0.68 0.95 0.49 

8 (0.25/0.25/0/0.25/0.25) 66.6% 76.2% 66.9% 69.0% 0.45 0.72 0.92 0.54 

9 (0.25/0.25/0.25/0/0.25) 75.9% 80.7% 77.6% 77.2% 0.33 0.66 0.93 0.44 

10 (0.25/0.25/0.25/0.25/0) 75.0% 78.6% 75.0% 75.9% 0.35 0.67 0.93 0.46 

11 (0.2/0.1/0.5/0.1/0.1) 79.1% 84.3% 80.6% 80.5% 0.29 0.66 0.92 0.41 

12 (0.1/0.2/0.5/0.1/0.1) 78.5% 83.1% 80.9% 79.8% 0.27 0.66 0.90 0.40 

13 (0.1/0.1/0.5/0.1/0.2) 80.3% 83.1% 82.8% 81.1% 0.28 0.58 0.89 0.39 

14 (0.2/0.1/0.5/0/0.2) 77.3% 85.9% 79.0% 79.5% 0.32 0.65 0.92 0.43 

15 (0.1/0.1/0.6/0.0/0.2) 79.7% 89.2% 82.2% 82.2% 0.26 0.52 0.87 0.35 

16 Stroke + Length 78.0% 82.2% 84.0% 79.4% 0.20 0.40 0.86 0.28 

17 River networks at 1:24K scale from the Russian river 0.21 0.18 0.03 0.19 

18 River networks at 1:100K scale from the NHD 0.12 0.15 0.002 0.12 
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Table 7. Generalized parallel networks results. wM, wO, wL, wB and wS are the weights 

of drainage pattern membership, order, length, balance and tributary spacing 

respectively. 

 
Weights Setting 

(wM/wO/wL/wB/wS) 

Average Similarity 
Average Drainage 

Pattern Membership 

 Order 2 Order 3 Total Order 2 Order 3 Total 

1 (0.6/0.1/0.1/0.1/0.1) 61.5% 82.3% 63.2% 0.54 0.90 0.57 

2 (0.1/0.6/0.1/0.1/0.1) 62.9% 79.4% 64.3% 0.49 0.69 0.51 

3 (0.1/0.1/0.6/0.1/0.1) 62.9% 91.6% 65.3% 0.44 0.73 0.47 

4 (0.1/0.1/0.1/0.6/0.1) 63.6% 85.1% 65.4% 0.48 0.58 0.49 

5 (0.1/0.1/0.1/0.1/0.6) 61.8% 76.3% 63.0% 0.48 0.67 0.49 

6 (0/0.25/0.25/0.25/0.25) 60.0% 73.8% 61.2% 0.45 0.26 0.43 

7 (0.25/0/0.25/0.25/0.25) 62.9% 73.2% 63.8% 0.49 0.64 0.50 

8 (0.25/0.25/0/0.25/0.25) 60.2% 60.5% 60.2% 0.51 0.52 0.51 

9 (0.25/0.25/0.25/0/0.25) 62.9% 79.4% 64.3% 0.49 0.69 0.51 

10 (0.25/0.25/0.25/0.25/0) 63.8% 91.6% 66.1% 0.49 0.73 0.51 

11 (0.2/0.1/0.5/0.1/0.1) 64.7% 91.6% 66.9% 0.47 0.73 0.50 

12 (0.1/0.2/0.5/0.1/0.1) 62.9% 91.6% 65.3% 0.44 0.73 0.47 

13 (0.1/0.1/0.5/0.2/0.1) 62.9% 91.6% 65.3% 0.44 0.73 0.47 

14 (0.1/0.1/0.5/0.1/0.2) 62.2% 91.6% 64.6% 0.45 0.73 0.47 

15 (0.3/0.1/0.5/0.1/0) 64.0% 91.6% 66.3% 0.48 0.73 0.50 

16 Stroke + Length 62.9% 91.6% 65.3% 0.44 0.73 0.47 

17 River networks at 1:24K scale from the Russian river 0.56 0.66 0.56 

18 River networks at 1:100K scale from the NHD 0.64 0.46 0.63 
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Figure 1. A Basic GA process. 

 

 
Figure 2. Tributary selection by GA. (a) An example of a river network, the numbers 

is the stroke IDs. (b) Some examples of chromosomes with binary encoding 

of a river network. (c) An example of crossover process. (d) An example of 

mutation process. 
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Figure 3. Russian river, California, USA. Left: 1:24,000-scale (1:24K) from RRIIS. 

Right: 1:100,000-scale (1:100K) from NHD. 

 

 
Figure 4. An example of overlap. Supposing network (a) is a generalized network and 

network (b) is a network from the NHD, the overlapped river segments are 

shown in bold gray shadow in (c). So, the similarity is the length of 

segments in shadow divided by the total length of network (b). 

 

 
Figure 5. Unexpected situations, dashed lines are eliminated tributaries. Network (a) 

and (c) are from the Russian river at 1:24K scale. Network (b) and (d) are 

from the NHD at 1:100K scale. The bold line is the main stream obtained 

by the stroke. In the dashed box, the stroke is not the same as the stroke in 

network (b) because segments at 1:100k do not exist at 1:24k. No matter 

how the weights are adjusted, network (a) cannot be generalized as (b). 

Network (c) is a generalized network, where dashed tributaries are 

eliminated by considering the length. However, in the dashed circle, 

network (d) from the NHD set, a shortest tributary was selected. 
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Figure 6. An example of rectangular drainage pattern. 

 

 
Figure 7. Tested network for dendritic case study. Network (a) is from Russian river 

at scale 1:24K. Network (b) is from the NHD at 1:100K scale. Network (c) 

is generalized by stroke and length method. It has the same number of 

strokes with the network from the NHD, and the similarity between them is 

73.2%. 


